
CT417 : Software Engineering III

WK03 Containerisation

Outline

• Introduction to Containerisation
How to deploy?

• Why use Docker?
a better way to pack everything together

• Introduction to Docker
building and running apps in docker container

Planned topics for this lesson:

CT417 : Software Engineering III

CI/CD Pipeline
Example of a continuous software development system:

Week 1 :
version
control

WK03 Containerisation

CT417 : Software Engineering III

CI/CD Pipeline
Example of a continuous software development system:

Week 2 :
build tools

WK03 Containerisation

CT417 : Software Engineering III

CI/CD Pipeline
Example of a continuous software development system:

Week 3 :
containers

WK03 Containerisation

CT417 : Software Engineering III

Containerisation
What is it?

WK03 Containerisation

• Containerisation is a method of packaging
software code and all its dependencies so
that it can run uniformly and consistently
across any infrastructure.

• Containers are isolated environments in
which applications run, ensuring consistent
behaviour across different environments
(e.g., development, testing, production).

Containers are like shipping containers in logistics—they encapsulate
everything needed to run a service, making it easy to transport across
various platforms.

CT417 : Software Engineering III

Containerisation
How do Containers Work?

WK03 Containerisation

• Containers virtualise the operating system (OS), unlike virtual machines (VMs), which virtualise hardware.

• Containers share the OS kernel but isolate the application and its dependencies.

CT417 : Software Engineering III

Containerisation
How do Containers Work?

WK03 Containerisation

• Heavy, resource-intensive.
• Requires an entire OS for each VM.
• Slower startup and resource

usage.

• Lightweight, share the OS kernel.
• Faster startup, less overhead.
• More efficient resource usage.

CT417 : Software Engineering III

Containerisation
Why use Containerisation?

WK03 Containerisation

• Portability: Containers ensure that applications run the same regardless of the environment (dev, test, prod).

• Scalability: Containers can be scaled easily, making them ideal for microservices architecture.

• Efficiency: Containers are lightweight and use fewer resources than traditional VMs.

• Isolation: Each container is isolated, meaning multiple containers can run on the same host without interference.

• Faster Deployment: Containers can be started in seconds, enabling fast deployments and rollbacks.

CT417 : Software Engineering III

Containerisation
What is a Docker?

WK03 Containerisation

