
Dr. Michael Schukat

CT437
COMPUTER SECURITY AND FORENSIC COMPUTING

DIGITAL CERTIFICATES

Lecture Content
2

 Recap motivation digital certificates

 Digital certificates and certificate authorities

 Concepts

 Applications

 Case studies

Recap: Key Management via Public-

Key Authority

 Please see also lecture notes “Public Key Encryption”

Recap: Key Management via Public-

Key Authority

 Drawback of public-key authority:
Authority is a bottleneck! If it is compromised (e.g. via a DoS
attack), public keys cannot be requested or distributed

 Therefore: Introduction of certificates, that can be used by
participants to exchange keys without contacting a public-key
authority

 Requirements:
 Any participant can read a certificate to determine the name and public

key of the certificate’s owner

 Any participant can verify that the certificate originated from the
certificate authority and is not counterfeit

 Only the certificate authority can create, renew and revoke certificates

 Any participant can verify the validity (i.e., expiration or revocation) of the
certificate

Recap: Key Management via

Certificate Authority

 Architecture allows exchange of public-key
certificates (PKC):

Recap: Example for a Simple XML-Based

Signature: Plaintext

<SimpleSignature>

 <Authority> NUI-Galway </Authority>

 <SignatureType> SimpleSignature </SignatureType>

 <Created> 15-NOV-2019 </Created>

 <Expires> 14-NOV-2020</Expires>

 <OwnerName> William Simpson </OwnerName>

 <KeyType> RSA </KeyType>

 <KeyLength> 256 </KeyLength>

 <PublicKey>

 gHJgjh57JKf#j’\;gkwg@45tRET46$Ed

 </PublicKey>

</SimpleSignature>

Recap: Example for a Simple XML-Based

Signature: Ciphertext

hi6IGHJ^gu#”:HGLFdyUf56EEdx3X5XxXuAzyl;*6/.,:g

wqui^09udfsqfhaspfaj#w994HK51’fjg095u321\er3f2875

gyor23ro32rj6yhggIGUoowqru07t99Y)*-36wrqwUIuiill

No891 u[`[c0 t6Rt*(v858e3w70-v794x3xz7c8c9799999s

9udfsqfhaspfaj7t99 -v794x3xz7c8c9799 09udfsqfhaspfaj#

w994HK51’fjg095u32nfjewYU87Deffe7s%Rk936-J0D9d

X.509 Certificates

 X.509 is an International Telecommunication Union (ITU) standard
defining the format of Public Key Certificates (PKC)
 Public key management generally involves the use of PKCs

 PKCs bind an identity (the subject) to a public key,

◼ usually with other info such as period of validity, rights of use etc.

◼ with all contents signed by a trusted Certification Authority (CA), the issuer

 Therefore, X.509 certificates are also called identity certificates

 In all PKC use cases (e.g., peer-to-peer data communication), involved
parties either already know, or can securely obtain and verify the public key
of the CA to verify the certificate

 X.509 certificates are widely used in secure email (S/MIME -
Secure Multipurpose Internet Mail Extensions), secure web
browsing (TLS / HTTPS), secure software patching, etc.

X.509 Certificate Structure

 The certificate is issued by a CA, who

signs the certificate

 The certificate is hashed, and the hash is

encoded (signed) by the CA using its

private key

 In the diagram below, M is the entire

certificate excluding the signature, which in

turn is the encrypted hash

 The certificate can be validated by

anyone who has a trusted (!) copy of

the issuer’s (CA’s) public key:

X.509 Certificate Specification
10

 Digital certificates are described via ASN.1

 Abstract Syntax Notation One (ASN.1) is a standard
interface description language for defining data structures
that can be serialised and de-serialised in a cross-platform
way (→ later)

Certificate

X.509 Certificates and OID
11

 X.509 digital certificates contain
various fields containing
mandatory and optional attributes

 Mainly extension are optional

 These attributes are described /
encoded using Object Identifiers
(OID) → next slide

 A digital certificate is a structured
list of OIDs and attribute values

 This list is converted into a data
structure encoded using BER (Basic
Encoding Rules) → later

Object Identifiers (OID)

 OIDs are a standardised identifier
mechanism for naming any object,
concept, or "thing" with a globally
unambiguous persistent name

 OIDs are dotted numbers, with
similar concepts often having
identical or similar OID pre-fixes

 X.509 attribute values are either
instances of primitive data types (e.g., an integer for version
number), or are described by an OID

 For example, all (standardised) cryptographic algorithms used /
supported by X.509 have their unique OID – see also the table
above

12

OIDs in Digital Certificates

Version: 3

Serial Number: 3c:50:33:c2:f8:e7:5c:ca:07:c2:4e:83:f2:e8:0e:4f

Issuer: O=VeriSign, Inc., OU=VeriSign Trust Network,

 OU=www.verisign.com

 CN=VeriSign Class 1 CA

Validity NotBefore: Jan 13 00:00:00 2021 GMT NotAfter: Mar 13 23:59:59 2026 GMT

Subject: O=VeriSign, Inc., OU=VeriSign Trust Network, OU=www.verisign.com CN=Lawrie Brown
Email=lawrie.brown@canb.auug.org.au

Subject Public Key Info: rsaEncryption RSA Public Key: (512 bit):

00:98:f2:89:c4:48:e1:3b:2c:c5:d1:48:67:80:53: d8:eb:4d:4f:ac:31:a9:fd:

11:68:94:ba:44:d8:48: 46:0d:fc:5c:6d:89:47:3f:9f:d0:c0:6d:3e:9a:8e:ec:

82:21:48:9b:b9:78:cf:aa:09:61:92:f6:d1:cf: 45:ca:ea:8f:df

Signature Algorithm: SHA1withRSA

Signature Value: 5a:71:77:c2:ce:82 …

• In the mock-up example attribute OIDs are replaced with their name

• Other descriptors don’t appear in a certificate and are only added to increase readability

• Note that Issuer / Subject and NotBefore / NotAfter attributes can be only distinguished via

their position in the cert (i.e, Subject appears after the Issuer; notAfter appears after NotBefore)

OID of Version:

2.5.29.19

In Class Activity: Inspect Digital

Certificates on your Device / Browser
14

 Android (version 11):

 Open Settings

 Tap “Security”

 Tap “Encryption & credentials”

 Tap “Trusted credentials.” This will display a list of all trusted certs on the device

 In Chrome (Windows OS):

 Goto Settings

 Open “Security and Privacy” and “Security”

 Open “Manage device certificates”

 IoS devices require you to open the keystore

 IoS devices:

 Tap Settings > General > About

 Scroll to the bottom of the list

 Tap Certificate Trust Settings

 Follow the link

 Generic: https://www.ssllabs.com/ssltest/?form=MG0AV3

https://www.ssllabs.com/ssltest/?form=MG0AV3

Example: X.509 Certificates in Web

Browsers

 In Chrome: see https://www.ssl2buy.com/wiki/how-to-view-ssl-certificate-
details-on-chrome-56

https://www.ssl2buy.com/wiki/how-to-view-ssl-certificate-details-on-chrome-56
https://www.ssl2buy.com/wiki/how-to-view-ssl-certificate-details-on-chrome-56

X.509 Certificates in Detail: Field

version
16

 X.509 certificates went through three iterations before v3

was finally released in 1996 (!)

 The value of the version field

(OID 2.5.29.19) is an integer

 X.509v1 → 0

 X.509v2 → 1

 X.509v3 → 2

Fields Issuer and Subject
17

 Issuer is the certificate authority
(CA) that signed the certificate

 Subject is the owner of the cert

 Both their descriptions are provided via a string called the
Distinguished Name (DN)

 A DN is a sequence of OID encoded attributes and their values

 Example: CN=Alice, OU=Administration, O=TU Darmstadt, C=DE

 This DN describes a person with common name (CN) Alice, who belongs

to the organisational unit (OU) “administration” of the organization (O)

“TU Darmstadt” that operates in the country (C) Germany

 Here the DN reflects a logical hierarchy of a person belonging to an
organisational unit which is part of an organisation located in a country

 The DN as string would look like “2.5.4.3Alice2.5.4.11Administration …”

Field serialNumber
18

 The certificate issuer assigns a unique serial number to each signed
certificate, composed as follows:

 SerialNumber (OID 2.5.4.5)

 a positive 20 byte long integer

 E.g. “2.5.4.501234567890123456789”

◼ As we will see later, each item is in fact represented as a Type-Length-Value
triplet

 The serial number field is mandatory

 Therefore, the combination of the issuer name and the serial number
uniquely identifies a certificate

 Consider a subject could have multiple certificates signed by the same
CA

 Note that different CA can issue a certificate that has the same serial
number

Field signature
19

 The issuer of an X.509
certificate signs the certificate

 The mandatory field signature
describes the signature
algorithm that was used by the
issuer to sign the certificate

 The field is of type
AlgorithmIdentifier (OID
1.3.6.1.1.15.7)

 It is complemented by the OID
of the signature algorithm that
is used (see table) and
optional additional
parameters

Field validity
20

 The validity field (OID
2.5.29.16) indicates the
validity period of the
certificate

 This field contains just two
dates, which have no OID
and are just referenced as
notBefore and notAfter

 Between these two dates the
certificate is valid unless it
has been revoked (→ later)

Field subjectPublicKeyInfo
21

 The subjectPublicKeyInfo field (OID

1.2.840.113549.1.1.1) contains the public key data

that is certified by the certificate

 This data is described as a sequence containing the

OID of an algorithm followed by optional

parameters and the public key

 The example below shows the ASN.1 structure of an

EC public key and its parameters

Fields issuerUniqueID and

subjectUniqueID
22

 The subjectUniqueID and issuerUniqueID fields were introduced with X.509v2

 It may happen that the same distinguished name is assigned to different

entities

 For example, if a subjectDN is used twice by an issuer, then the owner of the

corresponding certificate is not uniquely determined by the subject DN

 To make the owner description unique, the subjectUniqueID field may be

added

 The content of that field is a binary string that is a unique identifier for the

owner of the certificate

 Likewise, several issuers may share the same DN

 In this case the issuerUniqueID field resolves the situation

 However, the use of these fields is not recommended because they make

certificate use more complicated

Field signatureAlgorithm and

signatureValue
23

 The signature algorithm that was used to sign the

certificate is specified twice in an X.509 certificate:

 In the tbsCertificate structure (under signature), as seen before

 In the signatureAlgorithm field

 signatureValue holds the

signature on the tbsCertificate

content of the certificate,

i.e. the encrypted hash of

tbsCertificate (but not signature

algorithm)

x

x

X.509 Certificate Extensions
24

 The contents of X.509 version 1 and version 2 certificates turned out to be

insufficient in practice

 X.509v3 certificates may contain extensions which support various PKI

processes

 The ASN.1structure of X.509 certificate extensions can be seen below:

 The first field in such an extension is extnID, which contains the OID of

the extension

 Next, any extension contains a criticality indicator critical

◼ If its value is true, then all applications that use this certificate must evaluate the
extension; If an application is unable to do so, then it must consider the
certificate to be invalid

 The third field contains the extension description

Extension Field AuthorityKeyIdentifier
25

 Problem:

 An issuer / CA may have multiple key pairs to sign a digital certificate

 If a given certificate is to be validated, the correct public key must be chosen

 The information in the issuer field just points to the CA, but not to the correct key

 Solution:

 This extension, also known as AKI extension or AKIE, is to support applications in
identifying the public key of the issuer, to be used to verify the certificate signature

 The authority key identifier extension must be present in any X.509v3
certificate unless the certificate is self-signed (→ later)

 Also, this extension must not be marked critical

 Typically, this value is a 20-byte SHA-1 hash of the public key

belonging to the private key of the issuer that was used to sign the

certificate

 Similarly, the extension field SubjectKeyIdentifier can be used to hash
the subject’s public key (more later)

Extension Field KeyUsage
26

 The KeyUsage extension indicates what the
public key contained in a certificate can be
used for

 Possible uses are:

 digitalSignature
The public key can be used to verify digital signatures, for example, to
validate the authenticity and origin of signed emails

 nonRepudiation
The public key can be used to verify signatures to provide nonrepudiation

◼ E.g. denial of a digitally contract being signed

 keyEncipherment
The public key may be used to encrypt symmetric session keys

 dataEncipherment
The public key may be used to encrypt data

 keyAgreement
The public key may be used in a key agreement scheme (i.e., Diffie-Hellman)

Extension Field KeyUsage
27

 Possible uses are:

 keyCertSign
The private key corresponding to the public key in the
certificate may be used to sign certificates. The public
key is then used to verify certificate signatures

 cRLSign
The private key corresponding to the public key in the certificate may be used to sign
certificate revocation lists (→ later)

 encipherOnly
Undefined in the absence of the keyAgreement bit
When the encipherOnly bit is asserted and the keyAgreement bit is also set, the subject
public key may be used only for enciphering data while performing key agreement

 decipherOnly
ditto

 Many clients and applications evaluate the key usage extension

 Example: An email client that has access to several certificates of the recipient of an
email can tell by the key usage extension which certificate is to be used for

◼ email encryption

◼ verifying signatures of received emails

Extension Field SubjectAlternativeName
28

 Up to now a subject is identified via its subject field that contains the
distinguished name (DN) with all the aforementioned attributes

 This extension binds additional names to the public key in the certificate
not covered by the DN

 Typical names contained in this extension are owner’s

 email address

 IP address

 domain name (DNS names)

 uniform resource identifier (URIs)

 For example, if the public key in the certificate is used for authentication
of the web server of an organisation, the DNS name or the IP address
of that server is typically contained in this extension

 Clients that connect securely to such a server verify that the IP address or the
DNS name of the server matches the IP address or DNS name contained in
this extension (more later)

 Example: UoG certificate

Attribute Certificates
30

 An attribute certificate binds certain privileges or
attributes to their owners

 It is signed by an attribute authority (AA)

 For example, attribute certificates are used in
smartphones to provide apps with the permission to
access certain phone resources, e.g., a user’s
address book

 In contrast to identity certificates, an attribute
certificates does not contain the owner’s public key

 On the other hand, identity certificates could be
complemented by additional attributes encoded as
new extension fields, and to some extend mimick
attribute certificates

 Such a certificate is also called a combined certificate

Attribute Certificates
31

 Attributes are TLV triples as well, uniquely

identified by their OID

 Attribute certificates are often used in

conjunction with X.509 public key certificates

 For example, consider a firmware update for a

mobile phone:

 It is signed by its issuer and the signature

verification key is authenticated by a certificate

 In addition, an attached verifiable attribute

certificate specifies whether or not this update may

be used for a certain type of mobile phone

Example Home Automation
32

 Consider a range of wireless IoT
home automation devices that require

1. secure inter-device communication

2. end-point authentication

3. optimised inter-device communication
(i.e. the smart fridge and the electricity

smart meter only exchange energy consumption data)

4. the exclusion of 3rd party devices

 All devices are integrated in a home-automation network (HAN)
and form P2P connections via some handshake protocol

 Each device has its own X.509 public key certificate

 Certificates are exchanged between paired devices to provide end-

point authentication (1) and secure session keys for secure wireless data
communication (2)

Example Home Automation
33

 However, in order to address 3. and 4., additional
information must be encoded:

 The device manufacturer

 The device type

 Rules that describe other devices it can talk to

 This info can be encoded in
 an additional attribute certificate, or

 additional extension fields of the public key certificate (creating a
combined certificate)

 Subsequently, a device that during the handshake
 cannot present these credentials, or

 has the incorrect attribute values (e.g. different manufacturer)

 cannot complete the process and is excluded from the HAN

Trust Models and Digital Certificates
34

 Problem: Public key cryptography (and subsequently

digital certificates) can only be used in practice if users

trust the authenticity of the CAs public keys

 For example, in the diagram below, how do A and B

acquire the public key of the CA, and why / how can

they trust this key?

 The CA is the root of trust,

but how can this trust be

justified?

Direct Trust
35

 Trust in the authenticity of a public key is direct if the public key is
directly obtained from the key owner or its owner directly confirms
the authenticity of the key in a way that is convincing for the user

 Example:

 Most Linux systems allow the installation of additional software such as

updates or services from trusted servers located on the Internet

 The authenticity of those software packages is established by a digital

signature

 The verification of the signature requires a public key, which is

embedded in the Linux distribution

 The authenticity of this key is guaranteed by the authenticity of the Linux
installation image

 Such public keys are usually internally stored as self-signed certificates

 Similarly, self-signed certificates can be found in web browsers

Self-Signed Digital Certificates
36

 Self-signed digital certificates are
issued by the public key owner
themselves, as opposed to a
certificate authority (CA) issuing them

 Subject and issuer fields point to the
same identity and the cert is signed
using the owner’s private key

 Obviously, they do not provide any
trust value per see

 However, root CA have self-signed
certificates (→ later)

 See also self-signed browser
certificates using OpenSSL

 https://www.akadia.com/services/ssh_
test_certificate.html

https://www.akadia.com/services/ssh_test_certificate.html
https://www.akadia.com/services/ssh_test_certificate.html

Commercial CAs

 Self-signed certificates have no value to 3rd parties, as
different users that need to exchange their certs need a
common root of trust

 This is achieved by hundreds of companies worldwide that
provide digital certificates to clients

 e.g. Verisign (www.verisign.com) and
SSL (www.ssl.com)

 These CAs form a CA hierarchy

http://www.verisign.com/
http://www.ssl.com/

Certificate Classes
38

 Certificate classes in digital certificates are typically

encoded using specific OIDs within the certificate's

extensions

 These classes can indicate different levels of validation

and trust, such as

 domain validation (DV)

 organization validation (OV)

 extended validation (EV)

Certificate Classes
39

Certificate Type Validation Level Issuance Time Use Case Assurance Level

Domain

Validation (DV)
Basic Minutes

Personal

websites, blogs,

small businesses

Low, does not

verify the

identity of the

subject

Organization

Validation (OV)
Intermediate Few days

Business

websites,

organizations

Medium,

validates the

subject's identity

Extended

Validation (EV)
Highest

Several days to

weeks

E-commerce sites,

financial

institutions,

websites

handling

sensitive data

High, as the CA

conducts a

thorough vetting

process, including

verifying the

legal, physical,

and operational

existence of the

organization

Domain-Validated Certificates
40

 Digital certificates are usually issued to websites

 The public key in it is used to setup a secure connection between client
browser and server (by negotiating a symmetric key -> later)

 Practically, many CAs often do not do a thorough check on a
website (e.g. malware check) or their owners (id, credentials etc.)

 Instead, automatic checks are done, where it is validated that the
applicant has control over the website and the DNS of the website
domain, e.g.,

 Place a specific file at the specific URL on the website

 Add a specific DNS record to the website domain

 Create an email address in the site domain and receive a password at
that email

 As a result, such (HTTPS) certificates are called domain-validated
certificates

Certificate Signing Request (CSR)
41

 A CSR is a Base64-and BER-encoded message (formally described using ASN.1)
sent from an applicant to a CA of the PKI in order to apply for a digital certificate

 The most common format for CSRs is the PKCS #10 specification

 PKCS stands for "Public Key Cryptography Standards“

 Before creating a CSR, the applicant first generates a key pair, keeping the
private key secret

 The CSR subsequently contains the public key, as well as the following fields
(source: Wikipedia):

In-class Activity: Generating a Digital

Certificate
42

 Generate certificate signing request (CSR) via

https://csrgenerator.com/

 View the CSR https://lapo.it/asn1js/

 Create a CSR and submit it to https://getacert.com/

A certificate will be returned

 View the content of this certificate via

 https://lapo.it/asn1js/

 “Open in PEM format” in https://getacert.com/

https://csrgenerator.com/
https://lapo.it/asn1js/
https://getacert.com/
https://lapo.it/asn1js/
https://getacert.com/

Hierarchical Trust
43

 In this simple hierarchical PKI, a single CA has issued certificates to
the entities Alice, Bob, and Carl

 The CA is the trust anchor. It has generated a self-signed
certificate, which is issued to Alice, Bob, and Carl too

 The self-signing is depicted by a loop arrow from the CA to itself

 All entities in the PKI establish direct trust in the trust anchor

 Since the PKI users trust the trust anchor to sign certificates, the PKI
users trust the authenticity of the public keys of Alice, Bob, and
Carl, after validating their certificates

 Also, if entities outside the PKI trust the
trust anchor and its public key, then they
also accept the public keys of Alice,
Bob, and Carl as authentic

Simple Hierarchical Trust Example
44

 Alice receives Bob’s digital certificate (let’s call it BDC)
signed by the CA

 Alice checks the issuer section of BDC, which determines
the CA being the issuer

 Alice has already a copy of the CAs self-signed
certificate (let’s call it CDC) and extracts the public key

 Alice may even check the integrity of CDC in a similar
way as she checks Bob’s certificate below

 Alice validates that BDC has not expired

 She checks that the signature algorithm in BDC

is compatible to CAs public key (e.g. RSA versus ECC)

 Alice decrypts BDC’s signature value and compares
it against the hash calculated over BDC excluding the

signature value itself

 If both values match, the certificate and Bob’s public key stored in it is valid

 Next, Alice validates Bob’s authenticity via a challenge-response protocol

CA Hierarchy I

 Assume a scenario, where multiple CAs provide certificates
 These CAs form a tree-like hierarchy with a “parent CA“ providing

certificates for its “children”:
 CA1 and CA2 are intermediate CAs whose certificates were signed by RCA
 CA3 and CA4 are intermediate CAs whose certificates were signed by CA1
 Alice and Bob have certificates signed by CA1
 Carl’s certificate was signed by CA4
 Diana’s and Emil’s certificate was signed by CA2

 Note that the leaves of this tree are end-entities (or end users)
 RCA could in principal sign end-entity certificates too
 End users and even CAs have no visibility of the entire CA hierarchy

CA Hierarchy II

 The RCA is the root of trust, and has a self-signed certificate

 Remember that anybody could issue a self-signed cert to themselves!

 This RCA root certificate is distributed to all nodes in the hierarchy

in a trustworthy fashion, for example via their

 internet browser (a browser installation includes typically 200+ intermediate and

root certificates) or

 operating system installation

CA Hierarchy III

 During operations, an endpoint may
receive a certificate from another user that
was signed by a CA unknown to them

 E.g., Alice receives Emil’s certificate that was
signed by CA2

 Therefore, the user needs to get and validate the public key from
an unknown CA (that is referenced in the received certificate), via
a secure methodology, in order to validate the other user’s
certificate

 E.g., Alice needs to acquire CA2’s public key, and validate its authenticity,
before validating Emil’s certificate

 This process is called Certification Path Construction

Certification Path Construction
48

 Consists of two phases:

 Path construction

Involves building one or more candidate certification paths;

"candidate" indicating that although the certificates may chain

together properly, the path itself may not be valid for other

reasons such as exceeding a maximum path length

 Path validation

Involves making sure that each certificate in the path is within

its established validity period, has not been revoked, and any

constraints (e.g. maximum path length) are honoured

Certification Path Construction via

Name Chaining
49

 A candidate certification path must "name chain"

between the recognised trust anchor (example RCA) and

the target (example Alice’s) certificate

 Working from the trust anchor to the target certificate,

this means that the Subject Name in one certificate must

be the Issuer Name in the next certificate in the path,

and so on

Name Chaining Example
50

Certification Path Construction via Key

Identifier Chaining
51

 Recall certificate extensions AuthorityKeyIdentifier

(AKID) and SubjectKeyIdentifier (SKID)

Alice

CA3

CA1

RCA

Example Certificate Path Construction

 Consider an example with

 “Alice” (left) being “secure website” (right)

 “Emil” (left) being “user at PC” (right)

 “RCA” (left) being “Certificate Authority (CA)” (right)

 Emil sends a HTTPS connection request to Alice and receives a response containing her digital certificate

 Emil cannot validate Alice’s certificate directly, because it was signed by CA3 (and not RCA or CA2)

 However, if Emil can construct a Certification Path between Alice’s certificate and the RCA, he can
validate Alice’s certificate (assuming he acknowledges the RCA as the root of trust)

Certification Path Construction
53

 In order for Emil to build the path, he must get copies of
CA3’s and CA1’s certificates

 RCA’s self-signed cert is already in Emil’s possession

 This can be done in 2 ways:

1. Alice tags both certificates to hers and send all 3 of them to
Emil

2. Emil uses a directory service to
retrieve both CA certificates, for
example via LDAP (Lightweight
Directory Access Protocol)

Path Validation
54

 Now that Emil has a candidate path and all certificates, he must validate

everything

1. Firstly, Emil checks if all certificates have not expired yet (more later!)

2. Then, using RCA’s public key, he validates CA1’s certificate as seen

before

3. If CA1’s certificate is ok, Emil extracts its public key to validate CA3’s
certificate

4. If CA3’s certificate is ok, Emil extracts its public key to validate Alice’s

certificate

5. If Alice’s certificate is ok, and if her

domain name (remember Alice is a
secure website) matches the URL

Emil entered, Emil goes ahead with the

connection

HTTPS Server Authentication

Process (→ later)

 HTTPS is a secure

version of HTTP

 In HTTPS, HTTP

operates on top of TLS

(Transport Layer

Security), a secure

transport layer

protocol

Basic Constraints
56

 Another X.509v3 extension…

 It is marked critical if the subject of the certificate is a CA

 cA is a Boolean value which is true if the certificate

belongs to a CA and false otherwise

 If this value is true, then the public key contained in the

certificate can be used to verify signatures

Basic Constraints
57

 It has two fields, the 2nd field:

 pathLenConstraint is used only for CA certificates in which the cA
field is true and the keyCertSign bit is set in the key usage
extension

 The value of this field is an integer; it sets a
limit on the number of intermediate CA
certificates that may be found after this
certificate in the certification path before the
path is invalid (i.e., when A generates B’s
certificate, it inserts its pathLenConstraint - 1

 Self-issued certificates do not count

 If such a limit is not desired, then this field is empty

 This parameter allows to limit the depth of a CA hierarchy
M

Combining Trust Hierarchies: Trusted

Lists
58

 Assume two independent PKIs with their own trust anchor

 How can Alice validate Greg’s

certificate?

 Solution 1: Trusted lists

 Here Alice accepts CA2 as

another trust anchor (note that her cert is signed be CA3 only)

◼ CA2 cert is pre-installed on her browser / OS

 She is then able to construct a certification path (Greg – CA6 –

CA2, potentially using a directory service), subsequently

◼ validating CA6’s cert using the public key in CA2’s cert

◼ validating Greg’s cert using the public key in CA6’s cert

Combining Trust Hierarchies: Provide a

common Root
59

 Here each end entity of the

combined PKIs replaces

its original trust anchor

by the new common root

 As a consequence, certification paths that establish the

authenticity of a public key have to be changed by

prepending the common root

Combining Trust Hierarchies: Cross

Certification
60

 Cross-certification allows users of two PKIs to authenticate
each other’s public keys
without replacing their trust
anchors

 The idea is that the two root
CAs certify each other’s
public keys using so-called cross-certificates

 In fact, the two CAs that cross-certify each other may also be
only intermediate CAs

 However, this implies that only the users covered by these CAs can
validate each other’s public keys

 E.g. a single cross-certificate between CA4 and CA5 provides only
interoperability between Carl, Diana and Emil

Certificate Revocation
62

 The validity period of certificates may be quite long

 For example, X.509 server certificates issued by SSL are

typically valid for at least 2 years

 However, it may happen that during the validity period

a certificate has to be invalidated

 Example: the private key that corresponds to the public key

in the certificate has been compromised

 The process of invalidating the certificate before its

expiration time is called revocation

Certificate Revocation Lists (CRL)
63

 A CRL is a list of revoked certificates which is digitally signed to prove its
authenticity

 CRLs are regularly updated and made available at predictable points in time

 When a CRL is updated, newly revoked certificates are inserted into the CRL

 There are direct CRLs and indirect CRLs:

 Direct CRLs only contain certificates of one issuer and are issued and signed by that
issuer

 Indirect CRL may contain certificates of several issuers and is signed by the so-called CRL
issuer

 Users who wish to obtain revocation information

 download the CRL and verify its digital signature

 check whether the certificate that they are interested in is contained in the CRL

 CRLs may become quite large since expired certificates are not always removed

 Therefore, delta CRLs have been introduced which only contain the certificates that
have been revoked after the publication of the last full CRL

 The full CRL (i.e. complete CRL) contains all revoked certificates

Online Certificate Status Protocol

(OCSP)
64

 CRLs may become very large, downloading them becomes time consuming,
and storing may need a lot of (unavailable) space

 Also, due to the potentially long time intervals between the publication of
two subsequent lists, revocation information may not be up to date when it
is used, in particular, shortly before the next update

 OCSP allows clients to query an OCSP server about the revocation status
of individual certificates

 Here users may obtain revocation information immediately after the
certificate is revoked

 Unless of course the server just queries a CRL

 OCSP responses are digitally signed by the OCSP server, so they can be
validated for their authenticity

 On the other hand, in contrast to the CRL method, OCSP requires the
applications that need revocation information to be online

Validity Models for Digital Signatures
65

 Certificates in a validation path may have different expiry
dates (because they were generated by different entities
with different policies at different times), which poses the
question, for how long an end-user certificate may be
deemed valid, i.e. when does its path validation invalidates

 Simple example:

 Assume Paul sells his house to Anna on 1 October 2023

 Paul signs the sales contract digitally

 The certificate that authenticates Paul’s signature verification key
expires on 31 July 2024

 Should Paul’s signature still be considered valid after his certificate
has expired?

The Shell Model
66

 In this model all certificates
along the certification path
must be valid when the sig-
nature is checked

 This model is appropriate
in all applications, where
signing and verification
times are very close to
each other

 Examples of such applications are

 challenge-response authentication

 mechanisms or email authentication

 However, for contract signing (with a legal binding long into the future)
this model is inappropriate

The Chain Model
67

 In the chain model the validity
of a signature is independent
of the verification time for this
signature

 The chain model is often used for
verifying legally binding electronic
signatures because such signatures
may be used for contract signing

 The chain model supports long validity periods for digital signatures

 However, it has certain drawbacks:

 If Alice issues a signature and later a certificate in the chain that certifies
Alice’s verification key is revoked, the signature remains valid

 This may have serious effects if the revocation reason is key compromise

 In the above example, the “2011-06-01” signature is valid at the point
“2012-06-06”, the signature “2012-05-12” is not

PKI Architecture Components
68

 A CA is a very well protected infrastructure that should only
generate / sign certificates and CRLs

 Often, a RCA is only turned on on-demand (as a means of
protecting it against attacks) to generate certificates for
intermediate CA

 Such intermediate CA do all the signing work

 It accepts CSRs (as seen before) from clients

 However, in order to reduce the attack surface of such a CA, client
/ end user communication including the processing of CSR, is done
by a registration authority (RA)

 Similarly, CRL are distributed via dedicated CRL distribution points

Example for a PKI Architecture
69

 Putting all components together, results in an architecture as shown below

 The Relying Party may be a web browser

 The Subject may be a web server

FYI: ASN.1
70

 Abstract Syntax Notation One (ASN.1) is a standard
interface description language for defining data structures
that can be serialised and de-serialised in a cross-platform
way

 Originally introduced to describe network data packets
exchanged between endpoints, it is also widely used in
cryptography and biometrics

 It is closely associated with a set of encoding rules that
specify how to represent a data structure as a series of
bytes, i.e.,
 Basic Encoding Rule (BER)

 Distinguished Encoding Rules (DER)

 Here encoded elements are typically type-length-value
(TLV) sequences

FYI: ASN.1 Basic Syntax
71

 ASN.1 is case sensitive

 Keywords start with capital letter

 Comments start with “--“

 The underscore is forbidden in identifiers and keywords

 Assignments use symbol “::=“

 The top-level container of a type declaration is a
module, e.g.

myModule DEFINITIONS ::= BEGIN
…
END

FYI: ASN.1 Basic Syntax
72

 The available basic types are:

 BOOLEAN

 INTEGER

 ENUMERATED

 REAL

 NULL

 Examples:

 Automatic ::= BOOLEAN

 Color ::= ENUMERATED {red, blue, green}

 Pi REAL ::= 3.141

 Important: All types are abstract, e.g. there is no length of size associated with an
INTEGER

 There are 3 types of strings (character, binary and hexadecimal), e.g.

 IA5STRING ::= “Hello World” – International alphabet 5 with 7-bit characters

 encryptionKey BIT STRING ::= ‘00100’B

 encryptionKey OCTET STRING ::= ‘ABC01’H

FYI: ASN.1 Restricted Types
73

 Range:

 Example: Age ::= INTEGER (0..50)

 Value set:

 Example: Age ::= INTEGER {5, 10, 15, 20}

 Enumerated values

 Example: Color ::= ENUMERATED {red(1), blue(2)}

 Default type

 Example: Age ::= INTEGER DEFAULT 42

FYI: ASN.1. Structured Types
74

 SEQUENCE

 Like a struct in C

 Example: See next slide

 SEQUENCE OF

 Sequence of the same type

 Example: myCars ::= SEQUENCE OF Car

 SET

 Like a set

 SET OF

 Set of the same type

 CHOICE

 Similar to a union in C

Example ASN.1 (Wikipedia)

Consider the following ASN.1 definition:

FooProtocol DEFINITIONS ::= BEGIN

 FooQuestion ::= SEQUENCE {

 trackingNumber INTEGER(0..199),

 question IA5String

 }

 FooAnswer ::= SEQUENCE {

 questionNumber INTEGER(0..199),

 answer BOOLEAN

 }

 FooHistory ::= SEQUENCE {

 questions SEQUENCE(SIZE(0..10)) OF FooQuestion,

 answers SEQUENCE(SIZE(1..10)) OF FooAnswer,

 anArray SEQUENCE(SIZE(100)) OF INTEGER(0..1000),

 ...

 }

END

75

Example for FooQuestion:

FooQuestion ::= SEQUENCE {

 trackingNumber INTEGER(5),

 question “Anybody there?"

}

ASN.1 description of a

simple application layer

question / response protocol

between a client and a

server

ASN.1 Encoding Formats
76

 There are three ASN.1 encoding formats:

 Basic Encoding Rules (BER)
The original rules laid out by the ASN.1 standard for encoding
data into a binary format

 Canonical Encoding Rules (CER)

 Distinguished Encoding Rules (DER)

 Both CER and DER are subsets of BER

 Whereas BER gives choices as to how data values may be
encoded, CER (together with DER) selects just one encoding from
those allowed by the basic encoding rules
◼ For example: In BER a Boolean value of true can be encoded as any

positive integer up to 255, while in DER it has to be a 1

BER Overview
77

 BER specifies a self-describing and self-delimiting format for

encoding ASN.1 data structures

 Each data element is encoded as a type identifier, a length

description, the actual data elements (TLV format), and, where

necessary, an end-of-content marker

 These types of encodings are commonly called type–length–value (TLV)

encodings

Some BER Identifier Octets and their

Encodings (Wikipedia)
78

 The identifier octets encode the

ASN.1 tag's class number and

type number

Normally all 0

Example BER Encoding (Wikipedia)

Consider the following ASN.1 definition:

FooProtocol DEFINITIONS ::= BEGIN

 FooQuestion ::= SEQUENCE {

 trackingNumber INTEGER(0..199),

 question IA5String

 }

 FooAnswer ::= SEQUENCE {

 questionNumber INTEGER(10..20),

 answer BOOLEAN

 }

 FooHistory ::= SEQUENCE {

 questions SEQUENCE(SIZE(0..10)) OF FooQuestion,

 answers SEQUENCE(SIZE(1..10)) OF FooAnswer,

 anArray SEQUENCE(SIZE(100)) OF INTEGER(0..1000),

 ...

 }

END

79

The FooQuestion structure “5Anybody

there?” encoded in DER format:

30 13 02 01 05 16 0e 41 6e 79 62 6f

64 79 20 74 68 65 72 65 3f

with

 30 — type tag indicating SEQUENCE

 13 — length in octets of value that follows

 02 — type tag indicating INTEGER (see previous slide)

 01 — length in octets of value that follows

 05 — value (5)

 16 — type tag indicating IA5String (i.e. ASCII)

 0e — length in octets of value that follows

 41 6e 79 62 6f 64 79 20 74 68 65 72 65 3f (”Anybody

there?” in plain ASCII format)

ASN.1 Encoding of OIDs
80

 Practically, OIDs need to be
encoded as TLV triplets

 The TLV triplet begins with a Tag
value of 0x06 (see table on the
right)

 Each OID integer (i.e., node) is
encoded as follows:

 The first two nodes of the OID are
encoded onto a single byte, by
multiplying the first node with 40 and
adding the result to the value of the
second node

 Subsequent bytes are represented
using Variable Length Quantity, also
called base 128

Example: BER Encoding of an OID
81

 This example shows how the ClientId
attribute (OID: 1.3.6.1.4.1.311.21.20) of
a certificate request is encoded:
1.3.6.1.4.1.311.21.20vich3d.jdomcsc.nette
st.microsoft.comJDOMCSCadministratorcer
treq”

Base64 Encoding
82

 Problem: How can BER encoded binary data (including

certificates) be stored or transported in channels that

only reliably support (readable) text content?

 Examples:

 Embedding (binary) images inside textual assets such as

HTML and CSS files

 Embedding attachments (e.g. images) in emails

 Solution: Apply a binary-to-text encoding scheme, e.g.

Base64

Base64 Encoding
83

 Base64 divides
a binary input
into 6-bit
snippets, with
each snippet
represented by
a printable
character

 Example Base64
table from RFC
4648:

Base64 Encoding Examples

(Wikipedia)
84

 “Many hands make light work” is converted into

TWFueSBoYW5kcyBtYWtlIGxpZ2h0IHdvcmsu

 Generally, 3 bytes are converted into 4 printable

Base64 characters (with padding character “=“ added

if input length is not multiple of 3), as follows:

Example: Base64 Encoded Certificate

Signing Request (more later)
85

-----BEGIN NEW CERTIFICATE REQUEST-----

MIICkzCCAXsCAQAwTjELMAkGA1UEBhMCQ0ExCzAJBgNVBAgTAmdmMQswCQYDVQQH

EwJnZjELMAkGA1UECxMCZ2YxCzAJBgNVBAoTAmdmMQswCQYDVQQDEwJnZjCCASIw

DQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEBAMlwsZXhim1CYsCcz5MOwHILhkxU

3KAEhr1pg3tOPmzImuXTnWWt4sDb//fsadcZ9EBInUMoRurTLLo8TuNnNhAlkGD0

9PPSEZPb+loYLASA8DG4SkRyrl2sVhlVmzq8w7/zp561ur5m3wV+c5ru3W/CvjdT

Z78RelUTlul2nCJ46PQlYky+2IPGtj+VY/9IDe+iXLs9i/u7k2oppBo70qdzR3vR

hml55nobIm+eUcVL21w2jMTz6nZAnsat+4fnrAgM6ZmNzXyaoj3PNWoBYtSBuiYe

QArBhiOpR1Og9E2XGOvbsyc4+ORNWPSfX0H4uFYZNAS5n4fBrFTSkJ9MKEUCAwEA

AaAAMA0GCSqGSIb3DQEBBQUAA4IBAQCTLS7EWjqVewqrotQ5NZa8lXIFSoGaNOeU

WVJoXWUIkhd6CSOgxXiDdYlDlVe1EUGUQ5Lx9bVnniBy0F7ssUFBgehG6maxWrq7

AEPFQESgfsEYH6JGvhZM1Fa9WjxaCi0XpozP1SIF9j6RzNvJudxpDOd80RSjojfg

f4QXNfdW1fpXa56ED2NBgozXb1IWeu/Kb2JU7AlUmY6Xde1tAyW5I7glbFapAacv

//edvQZm1Zfq0/CVSKhxwcg8K8gf1rLfgTNPz7FbvGhDO9YFir7qVK1xx7HEaBe9

BkQqxArSzTCtKpFbNPQ+A6mxBnVXXFhEOtNeaU/foq0k7I+3k9LD

-----END NEW CERTIFICATE REQUEST-----

 See http://lapo.it/asn1js/

http://lapo.it/asn1js/

	Slide 1
	Slide 2: Lecture Content
	Slide 3: Recap: Key Management via Public-Key Authority
	Slide 4: Recap: Key Management via Public-Key Authority
	Slide 5: Recap: Key Management via Certificate Authority
	Slide 6: Recap: Example for a Simple XML-Based Signature: Plaintext
	Slide 7: Recap: Example for a Simple XML-Based Signature: Ciphertext
	Slide 8: X.509 Certificates
	Slide 9: X.509 Certificate Structure
	Slide 10: X.509 Certificate Specification
	Slide 11: X.509 Certificates and OID
	Slide 12: Object Identifiers (OID)
	Slide 13: OIDs in Digital Certificates
	Slide 14: In Class Activity: Inspect Digital Certificates on your Device / Browser
	Slide 15: Example: X.509 Certificates in Web Browsers
	Slide 16: X.509 Certificates in Detail: Field version
	Slide 17: Fields Issuer and Subject
	Slide 18: Field serialNumber
	Slide 19: Field signature
	Slide 20: Field validity
	Slide 21: Field subjectPublicKeyInfo
	Slide 22: Fields issuerUniqueID and subjectUniqueID
	Slide 23: Field signatureAlgorithm and signatureValue
	Slide 24: X.509 Certificate Extensions
	Slide 25: Extension Field AuthorityKeyIdentifier
	Slide 26: Extension Field KeyUsage
	Slide 27: Extension Field KeyUsage
	Slide 28: Extension Field SubjectAlternativeName
	Slide 30: Attribute Certificates
	Slide 31: Attribute Certificates
	Slide 32: Example Home Automation
	Slide 33: Example Home Automation
	Slide 34: Trust Models and Digital Certificates
	Slide 35: Direct Trust
	Slide 36: Self-Signed Digital Certificates
	Slide 37: Commercial CAs
	Slide 38: Certificate Classes
	Slide 39: Certificate Classes
	Slide 40: Domain-Validated Certificates
	Slide 41: Certificate Signing Request (CSR)
	Slide 42: In-class Activity: Generating a Digital Certificate
	Slide 43: Hierarchical Trust
	Slide 44: Simple Hierarchical Trust Example
	Slide 45: CA Hierarchy I
	Slide 46: CA Hierarchy II
	Slide 47: CA Hierarchy III
	Slide 48: Certification Path Construction
	Slide 49: Certification Path Construction via Name Chaining
	Slide 50: Name Chaining Example
	Slide 51: Certification Path Construction via Key Identifier Chaining
	Slide 52: Example Certificate Path Construction
	Slide 53: Certification Path Construction
	Slide 54: Path Validation
	Slide 55: HTTPS Server Authentication Process (later)
	Slide 56: Basic Constraints
	Slide 57: Basic Constraints
	Slide 58: Combining Trust Hierarchies: Trusted Lists
	Slide 59: Combining Trust Hierarchies: Provide a common Root
	Slide 60: Combining Trust Hierarchies: Cross Certification
	Slide 62: Certificate Revocation
	Slide 63: Certificate Revocation Lists (CRL)
	Slide 64: Online Certificate Status Protocol (OCSP)
	Slide 65: Validity Models for Digital Signatures
	Slide 66: The Shell Model
	Slide 67: The Chain Model
	Slide 68: PKI Architecture Components
	Slide 69: Example for a PKI Architecture
	Slide 70: FYI: ASN.1
	Slide 71: FYI: ASN.1 Basic Syntax
	Slide 72: FYI: ASN.1 Basic Syntax
	Slide 73: FYI: ASN.1 Restricted Types
	Slide 74: FYI: ASN.1. Structured Types
	Slide 75: Example ASN.1 (Wikipedia)
	Slide 76: ASN.1 Encoding Formats
	Slide 77: BER Overview
	Slide 78: Some BER Identifier Octets and their Encodings (Wikipedia)
	Slide 79: Example BER Encoding (Wikipedia)
	Slide 80: ASN.1 Encoding of OIDs
	Slide 81: Example: BER Encoding of an OID
	Slide 82: Base64 Encoding
	Slide 83: Base64 Encoding
	Slide 84: Base64 Encoding Examples (Wikipedia)
	Slide 85: Example: Base64 Encoded Certificate Signing Request (more later)

