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Lecture Content
B

0 Recap motivation digital certificates

0 Digital certificates and certificate authorities
o Concepts
O Applications

o Case studies



Recap: Key Management via Public-

Key Authority
—
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0 Please see also lecture notes “Public Key Encryption”



Recap: Key Management via Public-

Key Authority
B

0 Drawback of public-key authority:
Authority is a bottleneck! If it is compromised (e.g. via a DoS
attack), public keys cannot be requested or distributed

0 Therefore: Introduction of certificates, that can be used by
participants to exchange keys without contacting a public-key
authority

0 Requirements:

O Any participant can read a certificate to determine the name and public
key of the certificate’s owner

O Any participant can verify that the certificate originated from the
certificate authority and is not counterfeit

O Only the certificate authority can create, renew and revoke certificates

O Any participant can verify the validity (i.e., expiration or revocation) of the
certificate



Recap: Key Management via

Certificate Authority
]

0 Architecture allows exchange of public-key

certificates (PKC):
ertificate
Authority
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Recap: Example for a Simple XML-Based

Signature: Plaintext
N

<SimpleSignature>
<Authority> NUI-Galway </Authority>
<SignatureType> SimpleSignature </SignatureType>
<Created> 15-NOV-2019 </Created>
<Expires> 14-NOV-2020</Expires>
<OwnerName> William Simpson </OwnerName>
<KeyType> RSA </KeyType>
<Keylength> 256 </KeylLength>
<PublicKey>
gHJgih57 JKf#'\;gkwg @4 5tRET46 $Ed
</PublicKey>
< /SimpleSignature>



Recap: Example for a Simple XML-Based
Signature: Ciphertext

!
hi6IGHJ gu#”:HGLFdyUf56EEdx3X5XxXuAzyl;*6/.,:g
wqui*0Qudfsqgfhaspfajtw994HK51'fig095u321 \er3f2875
gyor23ro32ri6yhgglGUoowqru07199Y)*-36wrqgwUluiill
No891 u['[cO t6Rt*(v858e3w70-v794x3x27c8c9799999s
Qudfsgfhaspfaj7t99 -v794x3xz7c8c9799 09udfsgfhaspfai#
w994HK5 1'fig0925u32nfiewYU87Deffe7s%Rk?36-J0D9d



X.509 Certificates

o X.509 is an International Telecommunication Union (ITU) standard
defining the format of Public Key Certificates (PKC)
O Public key management generally involves the use of PKCs
O PKCs bind an identity (the subject) to a public key,
m usually with other info such as period of validity, rights of use etc.
®m with all contents signed by a trusted Certification Authority (CA), the issuer
O Therefore, X.509 certificates are also called identity certificates

O In all PKC use cases (e.g., peer-to-peer data communication), involved

parties either already know, or can securely obtain and verify the public key
of the CA to verify the certificate

0 X.509 certificates are widely used in secure email (S/MIME -
Secure Multipurpose Internet Mail Extensions), secure web
browsing (TLS / HTTPS), secure software patching, etc.



X.509 Certificate Structure

0 The certificate is issued by a CA, who

& F Y &
Version signs the certificate
Certificate
Signature S“‘j‘;‘gﬁt“h“"‘]"” O The certificate is hashed, and the hash is
algorithm—« |- ------—-----—----- . o o
idontiﬁor{ Eo z encoded (signed) by the CA using its
Issuer Name A . .
Period of{ _____not before > % prlvate key
validity e ﬂN “| = 0 In the diagram below, M is the entire
Subject Name = v . . . .
Subject’s T k: certificate excluding the signature, which in
ublic key-4 |~~~ ~ parameters_ ~ " "~ .
o { h__iﬂkeljniquc v turn is the encrypted hash
Identifier
Subject Unique 0 The certificate can be validated by
Identifier v
T anyone who has a trusted (!) copy of
- v
signature § =5 the issuer’s (CA’s) public key:

" I M ) l
kR, Kly  Compane KR, = €A private key

P | f $ KU, = CA public key
T [ - (B




X.509 Certificate Specification

T
0 Digital certificates are described via ASN.1
0 Abstract Syntax Notation One (ASN.1) is a standard
interface description language for defining data structures

that can be serialised and de-serialised in a cross-platform
way (=2 later)

Certificate ::= SEQUENCE f{
warsion theCertificate TBSCertificate,
signatureAlgorithm BlgorithmIdentifier,
Certificate serial number signatureValue BIT STRING }
sgnaturs TESCertificate ::= SEQUENCE
version [0] EXPLICIT Versiom DEFAULT w1,
is5Lar sk Beslinrs serialWumber CertificateSeriallumber,
validity /./"-’ not aftar ?ignature RBlgorithmIdentifier,
thsCarfificate - issusx Name,
subject validity Validity,
signatura akgorithm aligorithm subject HName=,
- public key " public key subjectPublicEeyInfo SubjectPublicHeyInfo,
signaturs valus : _— issuerUniqueID [1] IMPLICIT Unigqueldentifier OPTIONAL,
Issuar umqua subjectUnigqueID [2] IMPLICIT Unigueldentifier OPTIONAL,
subject unique ID extensions [3] EXPLICIT Extensiocns OPTIOMAL ]-
exiensions
Y idantifiar
extension  |f———| criticaliy flag
o valua

extanson




X.509 Certificates and OID

varsion

sarial numbsar

sgnatura
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thsCarfificats

validity /’/
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signature valua
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subject unique 1D

axEnsions
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O

X.509 digital certificates contain
various fields containing
mandatory and optional attributes

O Mainly extension are optional

These attributes are described /

encoded using Object Identifiers
(OID) = next slide

A digital certificate is a structured
list of OIDs and attribute values

This list is converted into a data
structure encoded using BER (Basic
Encoding Rules) =2 later



Obiject Identifiers (OID)

0 OIDs are a standardised identifier
mechanism for naming any object,
concept, or "thing" with a globally
unambiguous persistent name

0 OIDs are dotted numbers, with
similar concepts often having
identical or similar OID pre-fixes

0 X.509 attribute values are either

Algorithm Type Ol

MID5 Cryptographic hash function | 1.2.840.113549.2.5
5HAL Cryptographic hash function | [.3.14.3.2.26
SHA256 Cryvptographic hash function | 2.16.840.1.101.3.4.2.1
SHA3E4 Crvptographic hash function | 2.16.840.1.101.3.4.2.2
SHAS12 Cryptographic hash function | 2.16.840.1.101.3.4.2.3
SHAZ56withDSA Digital signature 2.16.840.1.101.34.3.2
SHAZ56withECDSA Digital signature I.2.B40.10045.4.3.2
SHAIB4wiIthECDSA Digital signature 1.2.B40.10045.43.3
SHAS12withECDSA Digital signature 1 .2.B40.10045.4.3.4
MD5withRSA Digital signature [.2B40.113549.1.1 4
SHAIwithRSA Digital signature I.2.B40.113549.1.1.5
SHA IwithDSA Digital signature I 2B40.10040.4.3
SHAIwithECDS A Digital signature 1.2.B40.10045.4.1

AES with 128 bit key in ECE mode

Secret key encryption

216840 L 101.3.4.1.1

AES with 256 bit key in CBC mode

Secret key encryption

216840, 1001.3.4.1.42

HMAC-MID5 MaC 1.3.6.1.3.5.8.1.1
HMAC-5HAI MAC 1.3.6.1.558.1.2
RSA Public key encryption 1.2.840.113549.1.1.1

instances of primitive data types (e.g., an integer for version
number), or are described by an OID

0 For example, all (standardised) cryptographic algorithms used /
supported by X.509 have their unique OID — see also the table

above




OIDs in Digital Certificates

* In the mock-up example attribute OIDs are replaced with their name
don’t appear in a certificate and are only added to increase readability

* Note that / and / attributes can be only distinguished via
their position in the cert (i.e, appears after the ; appears after )
Version: g3
Serial Number: 3c:50:33:c2:%:e7:5c:cq:O7:c2:4e.3:f2:e8:0e:4f OID of Version:

O=VeriSign, Inc., OU=VeriSign Trust Network,
OU=www.verisign.com
CN=VeriSign Class 1 CA
Validity Jan 13 00:00:00 2021 GMT Mar 13 23:59:59 2026 GMT

O=VeriSign, Inc., OU=VeriSign Trust Network, OU=www.verisign.com CN=Lawrie Brown
Email=lawrie.brown@canb.auug.org.au

Subject Public Key Info: rsaEncryption
00:98:f2:89:c4:48:e1:3b:2c:c5:d1:48:67:80:53: d8:eb:4d:4f:ac:31:a9:fd:
11:68:94:ba:44:d8:48: 46:0d:fc:5¢:6d:89:47:3f:9f:d0:c0:6d:3e:9a:8e:ec:
82:21:48:9b:b9:78:cf:00:09:61:92:f6:d 1:cf: 45:ca:ea:8f:df
SHA1 withRSA
5a:71:77:c2:ce:82 ...




In Class Activity: Inspect Digital

Certificates on zour Device ‘ Browser
TH

0 Android (version 11):

o Open Settings

o Tap “Security”

o Tap “Encryption & credentials”

o Tap “Trusted credentials.” This will display a list of all trusted certs on the device
0 In Chrome (Windows OS):

o Goto Settings

o Open “Security and Privacy” and “Security”

o Open “Manage device certificates”

O loS devices require you to open the keystore

0 loS devices:
O Tap Settings > General > About
o  Scroll to the bottom of the list
O Tap Certificate Trust Settings
o Follow the link

0 Generic: hitps://www.ssllabs.com/ssltest /2form=MGOAV 3



https://www.ssllabs.com/ssltest/?form=MG0AV3

Example: X.509 Certificates in Web

Browsers
N

0 In Chrome: see https:/ /www.ss|2buy.com/wiki/how-to-view-ssl-certificate-
details-on-chrome-56

a | Certificate x a | Certificate X
General Details Certification Path General Details Certification Path _ How to View SSL Certificate Det: X +
Show: |<A||> ~ i . . .
| Certificate Information & & & ssl2buy.com/wiki/how-to-view-ssl-certificate-details-
A
Field Value ~
This certificate is intended for the following purpose(s): [Elversion V3 Ss 2B UY
= Ensures the identity of a remote computer [FISerial number 05400a3c3f48d5bb...
= Proves your Identity to a remote computer [Zisignature algorithm  sha256RSA global sl provider
+2.16.840.1.114412.1.2 [Isignature hash alg... sha256
+2.23.140.1.21 [Hlssuer RapidSSL RSA CA 2...
[Fvalid from 11 March 2020 00:0...
* Refer to the certification authority's statement for details. Valit.j to 11 March 2022 12:0...
[Esubject *_s512buy.com
[ Public kev RSA (7048 Bits) v

Issued to:  *.ssl2buy.com

05400a303f48d5bh44eB8102101c85hiE

Issued by: RapidSSL RSA CA 2018

Valid from 11/03/2020 to 11/03/2022

Issuer Statement Edit Properties... Copy to File...



https://www.ssl2buy.com/wiki/how-to-view-ssl-certificate-details-on-chrome-56
https://www.ssl2buy.com/wiki/how-to-view-ssl-certificate-details-on-chrome-56

X.509 Certificates in Detail: Field

version

0 X.509 certificates went through three iterations before v3
was finally released in 1996 (!)

F Y F Y rF Y
Version
0 The value of the version field “Certificate
Signature Serial Number
N algorithm
(OID 2.5.29.19) is an integer alzorithm 3 |- 2emn |
identifier =
[ssuer Name =
s
n X.SOQV] 9 O Period Of{ _____l“_“_b_"‘f“_"f _____ - .E
validity not after E -
I:I X.509V2 9 ] Subject Name g
Suh!'ect’s — algorithms =
o X.509v3 > 2 pubic ky | 22 e :
Issuer Unique
Identifier
Subject Unique
Identifier v
Extensions
- v
Signature { E
g




Fields Issuer and Subject

I I ———

Attribute type String representation Ol

0O Issuer is the certificate authority [ counuyname C 2545
. . fo organizationMName i 2.54.10

(CA) ‘I'hC]‘l' $|g ned fhe Cerf|f|cq1'e organizationalUnitMName | OL 25411
commonMame M 2543

o ° localityMame L 2.5.4.7

O Subject is the owner of the cert 2= Lo s

00 Both their descriptions are provided via a string called the
Distinguished Name (DN)

0 A DN is a sequence of OID encoded attributes and their values

0 Example: CN=Alice, OU=Administration, O=TU Darmstadt, C=DE

O This DN describes a person with common name (CN) Alice, who belongs
to the organisational unit (OU) “administration” of the organization (O)
“TU Darmstadt” that operates in the country (C) Germany

O Here the DN reflects a logical hierarchy of a person belonging to an
organisational unit which is part of an organisation located in a country

O The DN as string would look like “2.5.4.3Alice2.5.4.11Administration ...”



Field serialNumber
T

0 The certificate issuer assigns a unique serial number to each signed
certificate, composed as follows:
O SerialNumber (OID 2.5.4.5)
O a positive 20 byte long integer

O E.g. “2.5.4.501234567890123456789”

m As we will see later, each item is in fact represented as a Type-Length-Value
triplet

0 The serial number field is mandatory

0 Therefore, the combination of the issuer name and the serial number
uniquely identifies a certificate

O Consider a subject could have multiple certificates signed by the same
CA

O Note that different CA can issue a certificate that has the same serial
number



Field signature

0 The issuer of an X.509
certificate signs the certificate

0 The mandatory field signature
describes the signature
algorithm that was used by the
issuer to sign the certificate

0 The field is of type
Algorithmldentifier (OID
1.3.6.1.1.15.7)

0 It is complemented by the OID
of the signature algorithm that
is used (see table) and
optional additional
parameters

Algorithm Type Ol

MD3 Cryptographic hash function | 1.2.840. 11354925
5HAL Cryptographic hash function | [.3.14.3.2.26
SHA256 Cryvptographic hash function | 2.16.840.1.101.3.4.2.1
SHA3E4 Cryvptographic hash function | 2.16.840.1.101.3.4.2.2
SHAS12 Cryptoeraphic hash function | 2.16.840.1.100.3.4.2.3

SHA256withDSA Digital signature 2.16.840.1.101.3.4.3.2
SHA256withECDSA Digital signature | .2B40.10045.4.3.2
SHA3B4withECDSA Digital signature | .2B40. 10045433
SHAS12withECDSA Digital signature | 24010045434
MD5withR5A Digital signature [.2B40.113549.1.1.4
SHAIwithRSA Digital signature .2.B40.113549.1.1.5
SHAlwithDSA Digital signature I 240 10040.4.3

SHAIwithECDS A
Wit 28 DIl Key in mode

Diigital signature
SECrel key encrypion

[.2.840.10045.4.1

s

AES with 256 bit key in CBC mode

Secret key encryption

216840, 101.3.4.1.42

HMAC-MID3

MaAC

1.3.6.1.3.5.8.1.1

HMAC-5HAI

MAC

1.3.6.1.558.1.2

RSA

Public key encryption

1.2.840.113549.1.1.1




Field validity

T [ ——
0 The validity field (OID

2.5.29.16) indicates the o

validity period of the pr—

certificate | = e
0 This field contains just two e O

dates, which have no OID pp—

and are just referenced as = .

notBefore and notAfter tonson |+l sy g
0 Between these two dates the -

certificate is valid unless it
has been revoked (=2 later)



Field subjectPublicKeylInfo

0 The subjectPublicKeylnfo field (OID
1.2.840.113549.1.1.1) contains the public key data
that is certified by the certificate

0 This data is described as a sequence containing the
OID of an algorithm followed by optional
parameters and the public key

0 The example below shows the ASN.1 structure of an
EC public key and its parameters

ECParameters ::= SEQUENCE {
version ECFVer,
fieldID FieldID,
curve Curve ,
base ECPoint,
order INTEGER,

cofactor INTEGER OFTIONAL }



Fields issuerUniquelD and

subjectUniquelD
mb

0 The subjectUniquelD and issuerUniquelD fields were introduced with X.509v2

0 It may happen that the same distinguished name is assigned to different
entities

0 For example, if a subjectDN is used twice by an issuer, then the owner of the
corresponding certificate is not uniquely determined by the subject DN

0 To make the owner description unique, the subjectUniquelD field may be
added

00 The content of that field is a binary string that is a unique identifier for the
owner of the certificate

0 Likewise, several issuers may share the same DN
0 In this case the issuerUniquelD field resolves the situation

0 However, the use of these fields is not recommended because they make
certificate use more complicated



Field signatureAlgorithm and

signatureValue
m—

0 The signature algorithm that was used to sign the
certificate is specified twice in an X.509 certificate:

o In the tbsCertificate structure (under signature), as seen before

o In the signatureAlgorithm field

0 signatureValue holds the ——
signature on the tbsCertificate —— T
— .'-"’F//' not aftar
validity

signature algoritim X aligorithm

i.e. the encrypted hash of o I— TN g
tbsCertificate (but not signature

content of the certificate, \ canicas o

subject uniqua ID

axEnsions

algorithm) —— s

extansian




X.509 Certificate Extensions

0 The contents of X.509 version 1 and version 2 certificates turned out to be
insufficient in practice

0 X.509v3 certificates may contain extensions which support various PKI
processes

0 The ASN.1structure of X.509 certificate extensions can be seen below:

O The first field in such an extension is extnID, which contains the OID of
the extension

O Next, any extension contains a criticality indicator critical

m [f its value is true, then all applications that use this certificate must evaluate the
extension; If an application is unable to do so, then it must consider the
certificate to be invalid

O The third field contains the extension description

Extension ::= SEQUENCE |
extnID OBJECT IDENTIFIER,
critical BOOLERN DEFAULT FALSE,

extnValue OCTET STRING }



Extension Field AuthorityKeyldentifier
I

0 Problem:
O Anissuer / CA may have multiple key pairs to sign a digital certificate
o If a given certificate is to be validated, the correct public key must be chosen

O The information in the issuer field just points to the CA, but not to the correct key

0 Solution:

O This extension, also known as AKI extension or AKIE, is to support applications in
identifying the public key of the issuer, to be used to verify the certificate signature

0 The authority key identifier extension must be present in any X.509v3
certificate unless the certificate is self-signed (=2 later)

0 Also, this extension must not be marked critical

0 Typically, this value is a 20-byte SHA-1 hash of the public key
belonging to the private key of the issuer that was used to sign the
certificate

0 Similarly, the extension field SubjectKeyldentifier can be used to hash
the subject’s public key (more later)



Extension Field KeyUsage
T

° . ° KeylUzage ::= BIT ESTRING {
0 The KeyUsage extension indicates what the ﬁigii'algimtm ©.
. . . ofe nonRepudiation 1},
public key contained in a certificate can be keyEncipherment (2
dataEncipherment (3},
Used fOI’ keyRAgreemaent (4),
keyCertSign {5},
. cRLS4 (6),
0 Possible uses are: R e
decipherOnly (s) }

o digitalSignature
The public key can be used to verify digital signatures, for example, to
validate the authenticity and origin of signed emails

O nonRepudiation
The public key can be used to verify signatures to provide nonrepudiation

m E.g. denial of a digitally contract being signed

O keyEncipherment
The public key may be used to encrypt symmetric session keys

O dataEncipherment
The public key may be used to encrypt data

O keyAgreement
The public key may be used in a key agreement scheme (i.e., Diffie-Hellman)



Extension Field KeyUsage
B

0 Possible uses are: i L
. nonRepudiation (1),

O keyCertSign STl e

. . . o taEncipherment 3},

The private key corresponding to the public key in the keyAgrasment (4)
certificate may be used to sign certificates. The public il o

key is then used to verify certificate signatures encipherinly (73,
decipherinly (s} }

O cRLSign
The private key corresponding to the public key in the certificate may be used to sign
certificate revocation lists (= later)

O encipherOnly
Undefined in the absence of the keyAgreement bit
When the encipherOnly bit is asserted and the keyAgreement bit is also set, the subject
public key may be used only for enciphering data while performing key agreement

O decipherOnly
ditto

0 Many clients and applications evaluate the key usage extension

O Example: An email client that has access to several certificates of the recipient of an
email can tell by the key usage extension which certificate is to be used for
B email encryption
m verifying signatures of received emails



Extension Field SubjectAlternativeName
BT

0 Up to now a subject is identified via its subject field that contains the
distinguished name (DN) with all the aforementioned attributes

0 This extension binds additional names to the public key in the certificate
not covered by the DN

0 Typical names contained in this extension are owner’s

X509v3 Subject Alternative Name:

. DNS:*.wikipedia.org, DNS:*.m.mediawiki.org, DNS:*.m.wikibooks.org, DNS:*.m.wikidata.org,
n emC”I Gdd reSS DNS:*.m.wikimedia.org, DNS:*.m.wikimediafoundation.org, DNS:*.m.wikinews.org, DNS:*.m.wikipedia.org,
DNS:*.m.wikiquote.org, DNS:*.m.wikisource.org, DNS:*.m.wikiversity.org, DNS:*.m.wikivoyage.org, DNS:*.m.wiktionary.org,
DNS:*.mediawiki.org, DNS:*.planet.wikimedia.org, DNS:*.wikibooks.org, DNS:*.wikidata.org, DNS:*.wikimedia.org,
n IP Gddress DNS: *.wikimediafoundation.org, DNS:* . wikinews.org, DNS:*.wikiquote.org, DNS:*.wikisource.org, DNS:*.wikiversity.org,

DNS: *.wikivoyage.org, DNS:*.wiktionary.org, DNS:*.umfusercontent.org, DNS:*.zero.wikipedia.org, DNS:mediawiki.org,
DNS:w.wiki, DNS:wikibooks.org, DNS:wikidata.org, DNS:wikimedia.org, DNS:wikimediafoundation.org, DNS:wikinews.org,

Ll
n domqln nqme (DNS nqmeS) DNS:wikiquote.org, DNS:wikisource.org, DNS:wikiversity.org, DNS:wikivoyage.org, DNS:wiktionary.org,

O uniform resource identifier (URIs)

0 For example, if the public key in the certificate is used for authentication
of the web server of an organisation, the DNS name or the IP address
of that server is typically contained in this extension
o Clients that connect securely to such a server verify that the IP address or the

DNS name of the server matches the IP address or DNS name contained in
this extension (more later)

0 Example: UoG certificate



Attribute Certificates
D ————

1 An attribute certificate binds certain privileges or
attributes to their owners

Serial Number

0 It is signed by an attribute authority (AA)

Signature Algorithm

1 For example, attribute certificates are used in
smartphones to provide apps with the permission to
access certain phone resources, e.g., a user’s
address book

Issuer

Validity period
Holder

0 In contrast to identity certificates, an attribute SO

certificates does not contain the owner’s public key Iss. Unique Identifier

7 On the other hand, identity certificates could be
complemented by additional attributes encoded as AA ss'g\ahrc
new extension fields, and to some extend mimick
attribute certificates

O Such a certificate is also called a combined certificate




Attribute Certificates

1 Attributes are TLV triples as well, uniquely
idenﬁfied b)’ their OID Serial Number

Signature Algorithm

1 Attribute certificates are often used in

I
conjunction with X.509 public key certificates st

Validity period

1 For example, consider a firmware update for a Holder

mobile phone:

o It is signed by its issuer and the signature
verification key is authenticated by a certificate

o In addition, an attached verifiable attribute
certificate specifies whether or not this update may
be used for a certain type of mobile phone



Example Home Automation
B

HOME SMART HOME

0 Consider a range of wireless loT
home automation devices that require

1. secure inter-device communication

2. end-point authentication

3.  optimised inter-device communication
(i.e. the smart fridge and the electricity
smart meter only exchange energy consumption data)

4. the exclusion of 3™ party devices

0 All devices are integrated in a home-automation network (HAN)
and form P2P connections via some handshake protocol

0 Each device has its own X.509 public key certificate

O Certificates are exchanged between paired devices to provide end-

point authentication (1) and secure session keys for secure wireless data
communication (2)



Example Home Automation
N

0 However, in order to address 3. and 4., additional
information must be encoded:

0 The device manufacturer
O The device type
O Rules that describe other devices it can talk to

0 This info can be encoded in
0 an additional attribute certificate, or

0 additional extension fields of the public key certificate (creating a
combined certificate)

0 Subsequently, a device that during the handshake
O cannot present these credentials, or
0 has the incorrect attribute values (e.g. different manufacturer)

cannot complete the process and is excluded from the HAN



Trust Models and Digital Certificates

0 Problem: Public key cryptography (and subsequently
digital certificates) can only be used in practice if users
trust the authenticity of the CAs public keys

0 For example, in the diagram below, how do A and B
acquire the public key of the CA, and why / how can
they trust this key?

0 The CA is the root of trust,
but how can this trust be
justified?




Direct Trust

0 Trust in the authenticity of a public key is direct if the public key is
directly obtained from the key owner or its owner directly confirms
the authenticity of the key in a way that is convincing for the user

0 Example:

O Most Linux systems allow the installation of additional software such as
updates or services from trusted servers located on the Internet

O The authenticity of those software packages is established by a digital
signature

O The verification of the signature requires a public key, which is
embedded in the Linux distribution

O The authenticity of this key is guaranteed by the authenticity of the Linux
installation image

O Such public keys are usually internally stored as self-signed certificates

O Similarly, self-signed certificates can be found in web browsers



Self-Signed Digital Certificates
T

0 Self-signed digital certificates are | Certficate X
issued by the public key owner
themselves, as opposed to a

General Details Certification Path

certificate authority (CA) issuing them @ Certificate Information
Ll SUbieCT dnd iSSUGF fields pOinT to The Thisoertiﬁcat;is;ntendefd for the following purpose(s):
. . . . ()= i ti te te
same identity and the cert is signed ures the ety of a remote computer

using the owner’s private key

0 Obviously, they do not provide any
trust value per see

Issued to: TestVM2
o However, root CA have self-signed

certificates (=2 later) Issued by: Test/M2

0 See also self-signed browser Valid from 3/7/2023 to 3/7/2024
ce rﬁfiCCﬂ'eS USing OpenSSL ? You have a private key that corresponds to this certificate.

O https:/ /www.akadia.com/services/ssh R —
test certificate.html



https://www.akadia.com/services/ssh_test_certificate.html
https://www.akadia.com/services/ssh_test_certificate.html

Commercial CAs
S

0 Self-signed certificates have no value to 3" parties, as

different users that need to exchange their certs need a

common root of trust

0 This is achieved by hundreds of companies worldwide that

provide digital certificates to clients

o e.g. Verisign (www.verisign.com) and

SSL (www.ssl.com)

0 These CAs form a CA hierarchy

Rank

Lo T 5 O o o e R

Issuer
IdenTrust
DigiCert
Sectigo (Comodo Cybersecurity)
Let's Encrypt
GoDaddy
GlobalSign

Usage
43.4%
16.6%
13.8%
7.2%
5.4%
2.4%

Market Share
45.9%

18.7%

15.5%

8.2%

5.1%

2.7%


http://www.verisign.com/
http://www.ssl.com/

Certificate Classes
S

0 Certificate classes in digital certificates are typically
encoded using specific OIDs within the certificate's
extensions

0 These classes can indicate different levels of validation
and trust, such as
0 domain validation (DV)
0 organization validation (OV)
O extended validation (EV)



Certificate Classes
T

Ceriificate Type_| Validation Level | Issuance Time _| Use Case ___| Assurance Lovel_

Domain
Validation (DV)

Organization
Validation (OV)

Extended
Validation (EV)

Basic

Intermediate

Highest

Minutes

Few days

Several days to
weeks

Personal
websites, blogs,
small businesses

Business
websites,
organizations

E-commerce sites,
financial
institutions,
websites
handling
sensitive data

Low, does not
verify the
identity of the
subject

Medium,
validates the
subject's identity

High, as the CA
conducts a
thorough vetting
process, including
verifying the
legal, physical,
and operational
existence of the
organization



Domain-Validated Certificates
T

0 Digital certificates are usually issued to websites

O The public key in it is used to setup a secure connection between client
browser and server (by negotiating a symmetric key -> later)

0 Practically, many CAs often do not do a thorough check on a
website (e.g. malware check) or their owners (id, credentials etc.)

0 Instead, automatic checks are done, where it is validated that the
applicant has control over the website and the DNS of the website
domain, e.qg.,

O Place a specific file at the specific URL on the website
O Add a specific DNS record to the website domain

O Create an email address in the site domain and receive a password at
that email

0 As a result, such (HTTPS) certificates are called domain-validated
certificates



Certificate Signing Request (CSR)

O

O

O

DNE

CN

ou

5T

C

EMATL

A CSR is a Base64-and BER-encoded message (formally described using ASN.1)
sent from an applicant to a CA of the PKI in order to apply for a digital certificate

The most common format for CSRs is the PKCS #10 specification
O PKCS stands for "Public Key Cryptography Standards*

Before creating a CSR, the applicant first generates a key pair, keeping the
private key secret

The CSR subsequently contains the public key, as well as the following fields
(source: Wikipedia):

Information Description Sample
Common Name This is fully qualified domain name that you wish to secure * wikipedia.org
Organization Usually the legal name of a company or entity and should include any suffixes such as Lid_, Wikimedia Foundation,
Name Inc., or Corp. Inc.

Organizational o .
i Internal organization department/division name IT
Locality Town, city, village, etc. name San Francisco

Province, region, county or state. This should not be abbreviated (e.g. West Sussex, -
State California
Normandy, New Jersey).

Country The two-letter IS0 code for the country where your organization is located us

Email Address The organization contact, usually of the certificate administrator or IT department



In-class Activity: Generating a Digital

Certificate
o |

0 Generate certificate signing request (CSR) via

https: / /csrgenerator.com/
0 View the CSR hitps://lapo.it /asn1js/
0 Create a CSR and submit it to htips://getacert.com/

A certificate will be returned
0 View the content of this certificate via
O https://lapo.it/asnljs/
0 “Open in PEM format” in htips:/ /getacert.com/



https://csrgenerator.com/
https://lapo.it/asn1js/
https://getacert.com/
https://lapo.it/asn1js/
https://getacert.com/

Hierarchical Trust
I

0 In this simple hierarchical PKI, a single CA has issued certificates to
the entities Alice, Bob, and Carl

0 The CA is the trust anchor. It has generated a self-signed
certificate, which is issued to Alice, Bob, and Carl too

O The self-signing is depicted by a loop arrow from the CA to itself
1 All entities in the PKI establish direct trust in the trust anchor

0 Since the PKI users trust the trust anchor to sign certificates, the PKI
users trust the authenticity of the public keys of Alice, Bob, and
Carl, after validating their certificates

0 Also, if entities outside the PKI trust the =

Certification Authority (CA)

trust anchor and its public key, then they
also accept the public keys of Alice,
Bob, and Carl as authentic

Carl

Alice




Simple Hierarchical Trust Example

Alice receives Bob’s digital certificate (let’s call it BDC)
signed by the CA

Alice checks the issuer section of BDC, which determines
the CA being the issuer

Alice has already a copy of the CAs self-signed
certificate (let’s call it CDC) and extracts the public key

O Alice may even check the integrity of CDC in a similar
way as she checks Bob’s certificate below

varsion

sarial number

signature

issuar

thsCarfificate

validity

signature algorithm

subject

signature valua

pubiic key

issuar unique 1D

subject unique 1D

ax@nsions

not bafare

not aftar

algorithm

public kay

identifier

extension

|
[ ]

criticality flag

valus

Alice validates that BDC has not expired

She checks that the signature algorithm in BDC
is compatible to CAs public key (e.g. RSA versus ECC)

Alice decrypts BDC’s signature value and compares
it against the hash calculated over BDC excluding the

A
G2

(¥

Certfication Authority (CA)

Alice

signature value itself

Carl

If both values match, the certificate and Bob’s public key stored in it is valid

Next, Alice validates Bob’s authenticity via a challenge-response protocol




O O

O O O

CA Hierarchy |

,7-“/
CAl | CA
.0 .
/ N [\
| CA3 [ CA4
- \ L ¥ )

| Alice | EEe | Diasia l'}mil-rl

Assume a scenario, where multiple CAs provide certificates

These CAs form a tree-like hierarchy with a “parent CA* providing
certificates for its “children”:

O CA1 and CA2 are intermediate CAs whose certificates were signed by RCA
O CA3 and CA4 are intermediate CAs whose certificates were signed by CA1
O Alice and Bob have certificates signed by CA1

O Carl’s certificate was signed by CA4

O Dianad’s and Emil’s certificate was signed by CA2

Note that the leaves of this tree are end-entities (or end users)

RCA could in principal sign end-entity certificates too

End users and even CAs have no visibility of the entire CA hierarchy



CA Hierarchy I

l Alice Bol

I Carl

——— S —

0 The RCA is the root of trust, and has a self-signed certificate

0 Remember that anybody could issue a self-signed cert to themselves!

0 This RCA root certificate is distributed to all nodes in the hierarchy

in a trustworthy fashion, for example via their

O internet browser (a browser installation includes typically 200+ intermediate and

root certificates) or

O operating system installation



CA Hierarchy I

1 During operations, an endpoint may
receive a certificate from another user that
was signed by a CA unknown to them

O E.g., Alice receives Emil’s certificate that was
signed by CA2

Y E

/SR -
| cas [ CAL

- \\ _
[ Alice [ Ban | [ Carl | ‘ Diann Ewil

1 Therefore, the user needs to get and validate the public key from
an unknown CA (that is referenced in the received certificate), via
a secure methodology, in order to validate the other user’s

certificate

O E.g., Alice needs to acquire CA2’s public key, and validate its authenticity,

before validating Emil’s certificate

1 This process is called Certification Path Construction



Certification Path Construction
e

0 Consists of two phases:

O Path construction
Involves building one or more candidate certification paths;
"candidate" indicating that although the certificates may chain
together properly, the path itself may not be valid for other
reasons such as exceeding a maximum path length

o Path validation
Involves making sure that each certificate in the path is within
its established validity period, has not been revoked, and any
constraints (e.g. maximum path length) are honoured



Certification Path Construction via

Name Chainin
nh

0 A candidate certification path must "name chain”

between the recognised trust anchor (example RCA) and
the target (example Alice’s) certificate

0 Working from the trust anchor to the target certificate,
this means that the Subject Name in one certificate must

be the Issuer Name in the next certificate in the path,
and so on



Name Chaining Example

nnnnnnn

.

[Self-Signed Certificate]

Issuer = RCA .

[Intermediate CA Certificate]

Issuer = RCA .

Subject= CA1

—

[Intermediate CA Certificate]

Issuer= CA1 .

Subject = CA3

i

[End-Entity Certificate]

Issuer = CA3 L

L ]

Subject = Alice




Certification Path Construction via Key

|dentifier Chainin
n*

0 Recall certificate extensions AuthorityKeyldentifier
(AKID) and SubjectKeyldentifier (SKID)

Equal
[Self-Signed Certificate]
. . » tﬁﬁlr[;;u:}ﬂ . s SKID =W . . » RCA
% [Intermediate CA Certificate
- & @ AKID =W . SKID =X - & & CA'I
% [Intermediate CA Certificate]
L AKID = X .« = = SKID=Y .« = 2 CA3

”*‘ % [End-Entity Certificate]

. & =& AKID =Y - & @ SKID=Z . & & .
Alice




Example Certificate Path Construction

request web site
i s oriee= celthﬁcate ¥ Certification
web site B} autbanty
‘“‘iss"e“”‘-v—sign/
~— | \
—A % |
. ‘ b3
| CA2 23 5%
S m— 29 © 2
£ 0% Sz =3
\ g |
Ty / /
/ \ : v
CA:
| Al user at PC ) E| browser
7 with browser [ distribute =21 ongor
; \ with browser
/ ,“' \ =
i r . Vs
; [ N verify - ;
I Allce T Bob J l Carl [ Dinna | Euil CA root certificate
- —— e —— -web site certificate

0 Consider an example with
o “Alice” (left) being “secure website” (right)
o “Emil” (left) being “user at PC” (right)
o “RCA” (left) being “Certificate Authority (CA)” (right)
Emil sends a HTTPS connection request to Alice and receives a response containing her digital certificate
Emil cannot validate Alice’s certificate directly, because it was signed by CA3 (and not RCA or CA2)

However, if Emil can construct a Certification Path between Alice’s certificate and the RCA, he can
validate Alice’s certificate (assuming he acknowledges the RCA as the root of trust)



Certification Path Construction

0 In order for Emil to build the path, he must get copies of
CA3’s and CATl’s certificates

o RCA’s self-signed cert is already in Emil’s possession
0 This can be done in 2 ways:

1. Alice tags both certificates to hers and send all 3 of them to
Emil

2. Emil uses a directory service to

retrieve both CA certificates, for /E
example via LDAP (Lightweight Lz ] [ e |
. / e |
Directory Access Protocol) [m]  [Cen]
" \.
| | | [ca | | | Buil_|




Path Validation
T

0 Now that Emil has a candidate path and all certificates, he must validate
everything

1. Firstly, Emil checks if all certificates have not expired yet (more later!)

2. Then, using RCA’s public key, he validates CA1’s certificate as seen
before

3. If CAl’s certificate is ok, Emil extracts its public key to validate CA3’s
certificate

4. If CA3’s certificate is ok, Emil extracts its public key to validate Alice’s
certificate

5. |If Alice’s certificate is ok, and if her
domain name (remember Alice is a i
secure website) matches the URL (o] o]
Emil entered, Emil goes ahead with the Z %
connection -




HTTPS Server Authentication

Process (=2 later)
—

request web site D HTTPS is q Secure

i celttjﬂcate M Certification R
b st 2 Authorty version of HTTP
‘—-issue——*-t sign”| ;
5 In HTTPS, HTTP

o

gﬁ =8
?5: 4 operates on top of TLS
) ] (Transport Layer
st P NN~ rovser Security), a secure
with browser [ ———— dIStribute "—===—"1 " yendor
- with browser
= | transport layer
\ f
verfy [ CA root certificate

protocol
.web site certificate




Basic Constraints
T

BasicConstrainkts ::= SEQUENCE |

0 Another X.509v3 extension... Ty
0 It is marked critical if the subject of the certificate is a CA

0 cA is a Boolean value which is true if the certificate
belongs to a CA and false otherwise

o If this value is true, then the public key contained in the
certificate can be used to verify signatures



Basic Constraints
A

BasicConstrainkts ::= SEQUENCE |

D III. hqs TWO fieldsl the 2nd field: ::thLenEanst:raint ?DNgELEEz ?ﬁFAE]FEE?IZaM}

0 pathLenConstraint is used only for CA certificates in which the cA
field is true and the keyCertSign bit is set in the key usage
extension

O The value of this field is an integer; it sets a A
limit on the number of intermediate CA [+ ]
certificates that may be found after this -

7 o]
[ ¢ ]

certificate in the certification path before the
path is invalid (i.e., when A generates B’s
certificate, it inserts its pathLenConstraint - 1 Ceticate | Pal lenglh constraint

Cs 1
Ci 0

0 Self-issued certificates do not count cr o

o If such a limit is not desired, then this field is empty
0 This parameter allows to limit the depth of a CA hierarchy



Combining Trust Hierarchies: Trusted

Lists
N

0 Assume two independent PKls with their own trust anchor

0 How can Alice validate Greg’s
certificate? /"-’”\ /cr-—w\

0 Solution 1: Trusted lists /m\ /“\ o /‘“ﬁ\
0 Here Alice accepts CA2 as Aos | | Bob | | Cad | | Disna Buil | | Fruok | | Gree

another trust anchor (note that her cert is signed be CA3 only)
m CA2 cert is pre-installed on her browser / OS

o She is then able to construct a certification path (Greg — CA6 —
CA?2, potentially using a directory service), subsequently
m validating CA&6’s cert using the public key in CA2’s cert
m validating Greg'’s cert using the public key in CA6’s cert



Combining Trust Hierarchies: Provide a

common Root
I

0 Here each end entity of the

combined PKls replaces

its original trust anchor T T

CAl CaAZ

by the new common root N\ /\

CA3 CA4 CAS CAG

FANINA [ 7

Bob LATIA Emil Frank Greg

0 As a consequence, certification paths that establish the
authenticity of a public key have to be changed by
prepending the common root



Combining Trust Hierarchies: Cross

Certification
Teo |

00 Cross-certification allows users of two PKls to authenticate

each other’s public keys — cea —
without replacing their trust Ve ' \ o 7 "\
anchors oA o oas

CAB
Frank B

Greg

0 The idea is that the two root _/ \ | / \.
CAs certify each other’s e ) W s
public keys using so-called cross-certificates

0 In fact, the two CAs that cross-certify each other may also be
only intermediate CAs

0 However, this implies that only the users covered by these CAs can
validate each other’s public keys

o E.g. a single cross-certificate between CA4 and CA5 provides only
interoperability between Carl, Diana and Emil




Certificate Revocation
T

0 The validity period of certificates may be quite long

O For example, X.509 server certificates issued by SSL are
typically valid for at least 2 years
0 However, it may happen that during the validity period
a certificate has to be invalidated

O Example: the private key that corresponds to the public key
in the certificate has been compromised

0 The process of invalidating the certificate before its
expiration time is called revocation



Certificate Revocation Lists (CRL)

O

A CRL is a list of revoked certificates which is digitally signed to prove its
authenticity

CRLs are regularly updated and made available at predictable points in time
0 When a CRL is updated, newly revoked certificates are inserted into the CRL

There are direct CRLs and indirect CRLs:

O Direct CRLs only contain certificates of one issuer and are issued and signed by that
issuer

O Indirect CRL may contain certificates of several issuers and is signed by the so-called CRL
issuer

Users who wish to obtain revocation information
O download the CRL and verify its digital signature
O check whether the certificate that they are interested in is contained in the CRL

CRLs may become quite large since expired certificates are not always removed

Therefore, delta CRLs have been introduced which only contain the certificates that
have been revoked after the publication of the last full CRL

The full CRL (i.e. complete CRL) contains all revoked certificates



Online Certificate Status Protocol

SOCSPI
i

0 CRLs may become very large, downloading them becomes time consuming,
and storing may need a lot of (unavailable) space

0 Also, due to the potentially long time intervals between the publication of
two subsequent lists, revocation information may not be up to date when it
is used, in particular, shortly before the next update

0 OCSP allows clients to query an OCSP server about the revocation status
of individual certificates

0 Here users may obtain revocation information immediately after the
certificate is revoked

O Unless of course the server just queries a CRL

0 OCSP responses are digitally signed by the OCSP server, so they can be
validated for their authenticity

0 On the other hand, in contrast to the CRL method, OCSP requires the
applications that need revocation information to be online



Validity Models for Digital Signatures
T

0 Certificates in a validation path may have different expiry
dates (because they were generated by different entities
with different policies at different times), which poses the
question, for how long an end-user certificate may be
deemed valid, i.e. when does its path validation invalidates

0 Simple example:
o0 Assume Paul sells his house to Anna on 1 October 2023
O Paul signs the sales contract digitally

O The certificate that authenticates Paul’s signature verification key
expires on 31 July 2024

O Should Paul’s signature still be considered valid after his certificate
has expired?



The Shell Model
T

0 In this model all certificates Carsicne 1 | |
along the certification path Costonoz | | |
must be valid when the sig- costcans ||| A S
nature is checked - .

D This mOdeI is qppropriate 21:I11E:I1I'.'I1 :2&115'35&1 " o 3311!12‘31ﬁ :2&12iﬂ4‘3ﬂ Srma
in all applications, where 2011000 f I /mw /
signing and verification #r Stratra raaten T anea  FEECT 22000
times are very close to O Sgraure vashoan
each other

0 Examples of such applications are
O challenge-response authentication

0 mechanisms or email authentication

0 However, for contract signing (with a legal binding long into the future)
this model is inappropriate



The Chain Model

I I ———

0 In the chain model the validity - |
of a signature is independent ooz | o
of the verification time for this comcans || 4 : |
signature ]

0 The chain model is often used for marer | oo T m””ﬁmﬂﬁ” e
verifying legally binding electronic - o Zm
signatures because such signatures | ... ... e

may be used for contract signing
0 The chain model supports long validity periods for digital signatures

0 However, it has certain drawbacks:

o If Alice issues a signature and later a certificate in the chain that certifies
Alice’s verification key is revoked, the signature remains valid

O This may have serious effects if the revocation reason is key compromise

0 In the above example, the “2011-06-01" signature is valid at the point
“2012-06-06", the signature “2012-05-12" is not



PKI Architecture Components

0 A CAis a very well protected infrastructure that should only
generate / sign certificates and CRLs

0 Often, a RCA is only turned on on-demand (as a means of
protecting it against attacks) to generate certificates for
intermediate CA

0 Such intermediate CA do all the signing work
O It accepts CSRs (as seen before) from clients

0 However, in order to reduce the attack surface of such a CA, client

/ end user communication including the processing of CSR, is done
by a registration authority (RA)

o Similarly, CRL are distributed via dedicated CRL distribution points



Example for a PKI Architecture
I

0 Putting all components together, results in an architecture as shown below
0 The Relying Party may be a web browser

0 The Subject may be a web server

Root
HER
Issuing CA 32 '
Certificate t\ ‘‘‘‘‘‘‘
Issuing

Certificate A
Authonty
: (CA) % Mo,
Registration 7 TP I3\ covificate ™

! , Certificate
Authontyl i v Revocatton List (CRL)

). A‘f)ind Entity 3 S
~§ Certificate N oo cm_
; e ~ Distribution
Subject == J8¥ ‘

...... Point

o




FYIl: ASN. 1

B2
0 Abstract Syntax Notation One (ASN.1) is a standard
interface description language for defining data structures

that can be serialised and de-serialised in a cross-platform
way

0 Originally introduced to describe network data packets
exchanged between endpoints, it is also widely used in
cryptography and biometrics

0 It is closely associated with a set of encoding rules that
specify how to represent a data structure as a series of
bytes, i.e.,

O Basic Encoding Rule (BER)
o Distinguished Encoding Rules (DER)

0 Here encoded elements are typically type-length-value
(TLV) sequences



FYl: ASN.1 Basic Syntax

T
0 ASN.1 is case sensitive
0 Keywords start with capital letter
0 Comments start with “--*
00 The underscore is forbidden in identifiers and keywords
00 Assignments use symbol “:: ="

0 The top-level container of a type declaration is @
module, e.g.

myModule DEFINITIONS ::= BEGIN

END



FYl: ASN.1 Basic Syntax
T

0 The available basic types are:
o BOOLEAN
o INTEGER
O ENUMERATED
O REAL
o NULL

0 Examples:
O Avutomatic ::= BOOLEAN
O Color ::= ENUMERATED {red, blue, green}
O PiREAL ::= 3.141

0 Important: All types are abstract, e.g. there is no length of size associated with an
INTEGER

0 There are 3 types of strings (character, binary and hexadecimal), e.g.
0 |AS5STRING ::= “Hello World” — International alphabet 5 with 7-bit characters
O encryptionKey BIT STRING ::= ‘00100’B
o encryptionKey OCTET STRING ::= ‘ABCO1'H



FYl: ASN.1 Restricted Types

T
0 Range:
0 Example: Age ::= INTEGER (0..50)
0 Value set:
0 Example: Age ::= INTEGER {5, 10, 15, 20}
0 Enumerated values
0 Example: Color ::= ENUMERATED {red(1), blue(2)}

0 Default type
O Example: Age ::= INTEGER DEFAULT 42



FYl: ASN.1. Structured Types

e P
0 SEQUENCE

O Like a struct in C
O Example: See next slide

0 SEQUENCE OF

O Sequence of the same type
O Example: myCars ::= SEQUENCE OF Car

0 SET
O Like a set

0o SET OF
O Set of the same type

0 CHOICE

0 Similar to a union in C



Example ASN.1 (Wikipedia)

.00
Consider the following ASN.1 definition:
FooProtocol DEFINITIONS ::= BEGIN

FooQuestion ::= SEQUENCE {
trackingNumber INTEGER(O..199),
question IA5 String

} }

FooAnswer ::= SEQUENCE {
questionNumber INTEGER(0..199),
answer BOOLEAN

}
FooHistory ::= SEQUENCE {

questions SEQUENCE(SIZE(O..10)) OF FooQuestion,
answers SEQUENCE(SIZE(1..10)) OF FooAnswer,
anArray SEQUENCE(SIZE(100)) OF INTEGER(0..1000),

Example for FooQuestion:
FooQuestion ::= SEQUENCE {
trackingNumber INTEGER(5),

question “Anybody there?2"

ASN.1 description of a
simple application layer

question / response protocol

between a client and a
server

END



ASN.1 Encoding Formats

I =
00 There are three ASN.1 encoding formats:

O Basic Encoding Rules (BER)
The original rules laid out by the ASN.1 standard for encoding
data into a binary format

o Canonical Encoding Rules (CER)
o Distinguished Encoding Rules (DER)

1 Both CER and DER are subsets of BER

0 Whereas BER gives choices as to how data values may be
encoded, CER (together with DER) selects just one encoding from
those allowed by the basic encoding rules

® For example: In BER a Boolean value of true can be encoded as any
positive integer up to 255, while in DER it has to be a 1



BER Overview
2

0 BER specifies a self-describing and self-delimiting format for
encoding ASN.1 data structures

0 Each data element is encoded as a type identifier, a length
description, the actual data elements (TLV format), and, where
necessary, an end-of-content marker

O These types of encodings are commonly called type—length—value (TLV)
encodings

|dentifier octets Length octets Contents octets End-of-Contents octets
Type [ ength Value (only if indefinite form)
First length octet /
Bits
Form
8/ 7|6 |6 |43 |21
Definite, short | 0 | Length (0—127) Long form example, length 435
Indefinite 1l0 Octet 1 Octet 2 Octet 3

Definite, long | 1 | Number of following octets (1—126) | ™ 1 0jojoj0j0 100000000 T|1 /0110011

Reserved 1197 Long form | 2 length octets 110110011, = 435, content octets



Some BER Identifier Octets and their

Encodings (Wikipedia)
T

Tag number
Name Permitted construction ° efe
oecgat vesscecmat| [ The identifier octets encode the
End-of-Content (EOC) Primitive L '
e — T ASN.1 tag's class number and
_— N
INTEGER Primit 2 2
rmiive type number
BIT STRING Both 3 3
OCTET STRING Both 4 4 -
NULL Primitive 5 5 oniv i 20
nly if ta e
OBJECT IDENTIFIER Primitive 6 6 y it tag fyp 0
Object Descriptor Both 7 7 8 1 8 7654321
EXTERNAL Constructed 8 8 / Tag type (if 0=%04,) Long Form
- Tag class | PIC
REAL (floa) Primitive ? ? / 349 = Long Form | 1=More | 7 bits of Tag fype
ENUMERATED Primitive 10 y
EMBEDDED PDV Constructed 1 /B \ J
UTF8String Both 12 /, C !
RELATIVE-OID Primitive / Normqlly all 0
TIME Primitive // 14 E
|dentifier octets Length octets Contents octets End-of-Contents octets

Type Length Value (only if indefinite form)




}

Example BER Encoding (Wikipedia)

.00V
Consider the following ASN.1 definition:

FooProtocol DEFINITIONS ::= BEGIN
FooQuestion ::= SEQUENCE {

trackingNumber INTEGER(0..199),
question IA5String

FooAnswer ::= SEQUENCE {

}

questionNumber INTEGER(10..20),
answer BOOLEAN

FooHistory ::= SEQUENCE {

END

questions SEQUENCE(SIZE(O..10)) OF FooQuestion,
answers SEQUENCE(SIZE(1..10)) OF FooAnswer,
anArray SEQUENCE(SIZE(100)) OF INTEGER(0..1000),

The FooQuestion structure “5Anybody
there?” encoded in DER format:
301302010516 0e 41 b6e 79 62 6f
6479 2074 68 6572 65 3f

with

o 30 —type tag indicating SEQUENCE

] 13 — length in octets of value that follows

o 02— type tag indicating INTEGER (see previous slide)
o 01 — length in octets of value that follows

o 05— valuve (5)

| 16 — type tag indicating IA5String (i.e. ASCII)

0  Oe — length in octets of value that follows

O 416e79626f6479207468 657265 3f ("Anybody
there?” in plain ASCIl format)



ASN.1 Encoding of OIDs
B

0 Practically, OIDs need to be | | Tag number
encoded as TLV triplets Name Permitted construction Decimal | Hexadecimal

. . . End-of-Content (EOC) Primitive 0 0

0 The TLV triplet begins with a Tag OOLEAN — 1 1

value of 0x06 (see table on the INTEGER primitie 2 2

rig h'l') BIT STRING Both 3 3

OCTET STRING Both 4 4

| ECICh OID in’reger (i.e., node) is NULL Primitive 5 5

encoded as fO”OWS: OBJECT IDENTIFIER Primitive 6 6

. Object Descriptor Both 7 7

O The first two nodes of the OID are — — . .

encoded onto a single byte, by REAL (float) Primitive 5 9

mul’riplying the first node with 40 and ENUMERATED Primitive 10 A

adding the result to the value of the EMBEDDED PDV Constructed 11 B

second node UTF8String Both 12 €

RELATIVE-OID Frimitive 13 D

O Subsequent bytes are represented e — ” -

using Variable Length Quantity, also
called base 128



Example: BER Encoding of an OID

0110.=3.5.1.1.1.311.21.20 (ClientId Attribute) D This edeple Shows hOW the Clienfld
1) Encoding the Fist T Nodes attribute (OID: 1.3.6.1.4.1.311.21.20) of
Lx 40+ 3 = 43a = 0x2m = a certificate request is encoded:

IS ) I

2 ® 1.3.6.1.4.1.311.21.20vich3d.jdomcsc.nette

2) Single byte encoding of all remaining nodes other than 311: . e o
s = oxon s’r.ml,c,rosof’r.comJ DOMCSCadministratorcer
6§ = 0x06 = treq

4 = 0x04 = [0]0[0[0]0]i[0]0]
21 =15
- F EEEEEEEE]

N ) 0 CIE) LI BN 86 89 ; OBJECT_ID (9 Bytes)
| 2b @86 @1 84 B1 82 37 15 14 g 1.2.6.1.4.1.311.21.28
3) Multiple byte encoding of 311: 31 4a ; SET (4a Bytes)
311d = 0x0137 = [O[0[0[o[0[o[o]r] [E[O[T[r[o]T]r]T] 3@ 48 ; SEQUENCE (48 Bytes)
- = = 82 o1 ; INTEGER (1 Bytes)
This is encoded to 0x82 D37 by: | ed
1) Satting bit 7 of the lefimost byte to 1. Bc 23 ; UTF8_STRING (23 Bytes)
2} Ignoring bit 7 of the rightmost byte. -
3) Shifting the right nibble of the leftmost byte ta the left by 1 bit. | 76 69 63 68 33 64 2e 6a 3 wvich3d.j
8 N NN =4 E N E N E N | &4 6f 6d 63 73 63 2e 6Ge H domcse.n
| ISy E— L .
8 2 3 2 | 74 74 65 73 74 2e 6d 69 ; ttest.mi
When decoded, the bits are assembled in the following manner; | T P TP IR e i : SrEL
Doojooos nm—m | = - =
1 Bc 15 ; UTF8_STRING (15 Bytes)
°°°1 ofofij 0111 | 4a 44 4f 4d 43 53 43 &5¢ H JDOMCSCH,
| 61 64 6d 62 6e 69 73 74 ; administ
| 72 61 74 &6f 72 :  rator
3) Summary encoding of OID :1.3.6.1.4.1.311.21.20
Bc @7 ; UTFE STRING (7 Bytes)
Ox2B Ox06 Ox01 Ox04 Ox01 OxB82 0x37 0x15 Oxl4 B3 RS 72 74 72 65 71 H cer‘treq




Baseb64 Encoding
B

0 Problem: How can BER encoded binary data (including
certificates) be stored or transported in channels that
only reliably support (readable) text content?

0 Examples:

O Embedding (binary) images inside textual assets such as
HTML and CSS files

0 Embedding attachments (e.g. images) in emails

0 Solution: Apply a binary-to-text encoding scheme, e.g.
Baseb4



Base64 Encoding
B

B 6 4 d. . d Index Binary Char| | Index Binary Char| |Index Binary Char | Index  Binary Char
L basée Ivides 0 | 000000 A 16 | 010000| Q 32 |100000| g 48 | 110000 | w
a binqry inpu’r 1 | 000001 | B 17 |010001| R 33 | 100001 | h 49 | 110001 | x
into 6_bi-|- 2 | 000010 ¢ 18 | 010010| s 34 (100010 | i 50 |110010| vy
. . 3 | 000011| D 19 | 010011 | T 35 | 100011 | 3 51 | 110011 z
snippets, with
. 4 | 000100 | E 20 |010100| U 36 |100100| k 52 110100 | e
each Snlppet 5 |000101| F 21 (010101 V 37 [100101| 1 53 |110101| 1
represented by 6 |o000110| 6 22 | 010110 | W 38 | 100110 m 54 | 110110 2
a prin’rqble 7 | 000111 | H 23 | 010111 | X 39 (100111 | n 55 | 110111 | 3
8 |001000| I 24 | 011000 | v 40 |101000| o 56 | 111000 | 4
character 9 | 001001 | 3 25 | 011001 | Z 41 [101001| p 57 |111001| 5
[ Example 505664 10 | 001010 | K 26 | 011010 | a 42 101010 | q 58 | 111010 6
table from RFC 1 | 001011 | L 27 | 011011 | b 43 101011 | r 59 | 111011 | 7
12 | 001100 | M 28 | 011100 | 44 101100 | s 60 |111100| 8
4648 13 | 001101 | N 29 | 011101 | d 45 101101 | t 61 | 111101 | 9
14 | 001110 | © 30 |01M110 | e 46 101110 | u 62 | 111110 | +
15 | 001111 | P 31 [ oMl | 47 [ 101111 | v 63 | 111111 | /
Padding =




Base64 Encoding Examples

SWikiEedioi
o

0 “Many hands make light work” is converted into
TWEueSBoYWOkcyBtYWt1IGxpZzZ2hOIHdvcmsu

0 Generally, 3 bytes are converted into 4 printable
Baseb4 characters (with padding character “=" added
if input length is not multiple of 3), as follows:

Text (ASCII) M a n
Source
Octets 77 (Ox4d) 97 (0x61) 110 (OxGe)
Bits o{1|o|o|1|1|o|1|o0|1|1|o|o|o|O|1]|0|1|1]0|1[1]1]|0
Sextets 19 22 5 46
Base64
Character T W F u

encoded
Octets 84 (0x54) 87 (0X57) 70 (0x46) 117 (0X75)



Example: Base64 Encoded Certificate
lﬂSi ning Request (more later

----- BEGIN NEW CERTIFICATE REQUEST-----

MIICkzCCAXsCAQAWTELMAKGA 1UEBhAMCQOExCzA JBgNVBAgTAMdmMQswCQYDVQQH
EwInZiIELMAKGA1UECxMCZ2Y xCzA JBgNVBAoTAMdmM QswCQYDVQQDEw JnZ]CCASIw
DQY JKoZIhveNAQEBBQADggEPADCCAQoCggEBAMIwsZ Xhim 1CY sCcz 5SMOwHILhkxU
3KAEhr 1 pg 3tOPmzImuXTnWW1t4sDb / /fsadcZ 9EBInUMoRur TLLo8 TuNnNhAIkG DO
9PPSEZPb+lo YLASA8DG4SkRyrl 2sVhIVmzq8w7 /zp56 1ur5m3wV+c5ru3W/ CvidT

Z7 8RelUTIul2nCJ46PQIYky +2IPGtj+VY /9IDe+iXLsQi /u7k20ppBo70qdzR3vR
hmI55noblm+eUcVL21 w2iMTzb6nZ Ansat+4fnrAgM6ZmNzXyaoj3PNWoB YtSBuiYe
QArBhiOpR10g9E2XGOvbsyc4 +ORNWPSFXOH4uFYZNASS5n4fBrFTSkJ9MKEUCAWEA
AaAAMAOGCSqGSIb3DQEBBQUAA4IBAQCTLS7EW[qVewqrotQ5NZa8IXIFSoGaNOeU
WV JoXWUIkhd6CSOgxXiDdYIDIVe 1 EUGUQS5Lx9bVnniByOF7ssUFBgehG 6maxWrq7
AEPFQESgfsEYH6 JGvhZM1 Fa9WixaCiOXpozP1SIF?j6RzNvJud xpDOd80RSjojfg
fFAQXNFdW 1fpXa56ED2NBgozXb11Weu/Kb2JU7 AlUmY6Xde 1tAy W517glbFapAacy
//edvQZm1Zfq0/CVSKhxwcg8K8gf 1rLfgTNPz7FbvGhDO9YFir7qVK1 xx7HEaBe9
BkQqxArSzTCtK pFbNPQ+AémxBnV XXFhEOtNeaU /foqOk71+3k9LD

0 See http://lapo.it/asnljs/



http://lapo.it/asn1js/
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