
CT437

COMPUTER SECURITY AND FORENSIC COMPUTING

HASH CRACKING AND RAINBOW TABLES

Dr. Michael Schukat

Lecture Overview
2

 Methods to reverse-engineer hashed passwords

 Rainbow tables

 A recap on SQL injection attacks (based on CT417

content), i.e.

 SQL

 HTTP get / post Methods and PHP

 SQL injection attacks

 SQL injection attack mitigation strategies

 can be found at the end of this slide deck

Lecture Motivation
3

 One-way property, weak and strong collision

resistance are fundamental properties of a hash

function

 These come also into play when we consider

common password storage methods …

 … and approaches to undermine such methods

 Such approaches are summarised in this slide deck

What is a Password?

 A memorised secret used to confirm the identity of a user

 Typically, an arbitrary string of characters including letters, digits, or

other symbols

 A purely numeric secret is called a personal identification number (PIN)

 The secret is memorised by a party called the claimant while

the party verifying the identity of the claimant is called the

verifier

 Claimant and verifier communicate via an authentication

protocol

Claimant and Verifier

Claimant
(User / Browser)

Verifier

(e.g., Social Media

Platform)

Authentication Protocol

Storing User Passwords

 User passwords at rest (e.g., in database tables)

are hashed instead of being stored in plaintext

 Idea:

 “KenSentMe!” → “7b24afc8bc80e548d66c4e7ff72171c5”

◼ Note: This token is in hex format, it is128 bit long (32 x 4 bits)

 An attacker cannot algorithmically reverse-engineer a

hash function to recover the original password

◼ Recall hash function properties

 The verifier does not have a plaintext copy of the

password either

Why is this Form of Password Hash

Management problematic?

Claimant
(User)

Verifier

(e.g. Instagram)
Authentication Protocol

over secure connection

Hash Function

User ID Password Hash

ms@gmail.com 1d8922d005733

…

k51@outlook.com 628749afdb83…

abd@yahoo.com 980ade367fc93…

Consider a webserver that stores user credentials.

A user registration entails the following steps:

1. The claimant visits the verifier’s landing / login

page using their web browser

2. The claimant enters and submits their user id and

password

3. Both are sent to the verifier over the secure

connection

4. The verifier calculates the hash, and and stores it

together with the user name in the DB table

Server-Side Password Storage

Claimant
(User)

Verifier Authentication Protocol

over secure connection

Hash Function

User ID Password Hash

ms@gmail.com 1d8922d005733

…

k51@outlook.com 628749afdb83…

abd@yahoo.com 980ade367fc93…

1. The claimant enters user id and password (i.e., login

details)

2. A client-side (e.g. JS) script calculates the password

hash

3. User id and hashed password are sent to the verifier

using the secure connection

4. The verifier checks if the transmitted user id and hashed

password against the stored values in the table

5. The verifier notifies the claimant via the authentication

protocol if the authentication was successful

Hash Function

Dictionary-Based Brute-Force Search

 Assume an attacker retrieves an entire DB table containing user IDs and
hashed passwords

 Hash functions are one-way functions, so hash values cannot be
transformed back to the original input

 However, assuming that a user picks a common word or phrase, or a
known password as their own password, a simple dictionary search can
be used to systematically identify a match for a given hash value

 Here the underlying hash function must be known

 Such dictionaries are based on large word, phrase or password
collections

 ☺ :

 Straight forward process

 Large dictionaries are readily available (next slide)

  :

 Significant computational effort to find match

 No guaranteed result

CrackStation's Password Cracking

Dictionary

 https://crackstation

.net/crackstation-

wordlist-password-

cracking-

dictionary.htm

https://crackstation.net/crackstation-wordlist-password-cracking-dictionary.htm
https://crackstation.net/crackstation-wordlist-password-cracking-dictionary.htm
https://crackstation.net/crackstation-wordlist-password-cracking-dictionary.htm
https://crackstation.net/crackstation-wordlist-password-cracking-dictionary.htm
https://crackstation.net/crackstation-wordlist-password-cracking-dictionary.htm

Example

 Assume a hash code and the underlying hash function are
known

 The dictionary contains 1010 entries

 A single laptop / PC can compute 105 hash values per
second

 It takes 105 seconds (~29 hours) to search the entire
dictionary for a match

 This process can be vastly improved by using pre-processed
lookup tables

Lookup Table-Based Attacks

 For a given hash function and dictionary

 Calculate the hash values for all dictionary entries

 Insert both values to a table (i.e. one line per entry)

 Sort table (e.g. in ascending order of hash values)

◼ Also called lookup table

 Store the table

 Example table (assuming 44-bit hash values):

Hash value Password

0x00000000354 gangster

0x00000001003 Bluemoon

0x00000001032 Z0om!

… …

Lookup Table-Based Attacks

 A matching password for a given hash value can be recovered by
systematically searching the look-up table via a binary search

 ☺ :

 Such a table can be generated offline

 The search process itself is fast (~log2(# of entries)) using binary
search

◼ A table containing 1.8x1019 entry would require just 64 guesses to find (or
not) the correct password for a given hash value

  :

 Huge table, with no guaranteed result

 Different table required for every hash function

Lookup Table-Based Attacks: Example

 Assume a hash function that generates 16-byte (128 bit) hash
values

 We calculate a lookup table for all possible 6-character long
passwords composed of 64 possible characters A-Z, a-z, 0-9,
“.” and “/”

 A table would consist of 646 (= 68,719,476,736) entries, with
every entry consisting of a 6-byte password and a 16 bytes
hash

 Total size of table ~ 1.4 Terabyte

 However, there are online services available that host pre-
computed look-up tables for password attacks (see next slide)

Crackstation’s free Password Hash

Cracker

 https://crackstati

on.net/

https://crackstation.net/
https://crackstation.net/

In-Class Activity: Password Recovery

 5 minutes only, work alone or in a group

 What to do:

 Pick a password and calculate its MD5 or SHA1 hash using
https://defuse.ca/checksums.htm

 Copy and paste the hash value into https://crackstation.net/
to see if it is can be recovered

 Repeat the above and keep a list of all passwords

◼ that can be cracked

◼ that cannot be cracked

https://defuse.ca/checksums.htm
https://crackstation.net/

Rainbow Tables

 Look-up tables are huge and take up a lot of hard

disk space

 Rainbow tables in contrast provide an efficient way

to represent large numbers of hash values

 They require more processing time and less storage

to find a match compared to a simple lookup table

 Rainbow tables are a practical example of a

space–time trade-off

 They are based on pre-computed hash chains

Pre-Computed Hash Chains

 Such chains contain long sequences of password candidates (green
strings below) and hash values (black strings below)

 The are based on using a hash function “→” and a reduction function
“→”, e.g.,
aaaaaa→173bdfede2ee3ab3 → jdjkuo →9fdde3a0027fbb36 →… → k3rtol

 In this example we only consider passwords (green) that are 6 characters long,
which are converted into 64-bit hash values

 Each chain starts with a different password

 Each chain has a fixed length, e.g. 100,000 passwords and their hashes

 Here “→” converts the 64-bit hash value into an arbitrary 6-byte long string
again, i.e. it's not an inverted hash function!

 We only store the first and the last value (starting point and end

point), i.e. “aaaaaa” and “k3rtol”

Example for a simple Reduction

Function
19

Coverage of Hash Chains

 The reduction function determines the range (i.e., length and
composition) of plaintext (i.e., password) candidates that are
covered

 Example:

 Consider the password “Domino5”

 In order to have this word stored in a chain, the reduction function must
create outputs that are

◼ At least 7 characters long

◼ Contain small and capital letters, as well as numbers

 Also, hash chains may not be able to cover all possible character
combinations

Pseudo-Code to create a single Chain

 This example creates a chain with the start value “abcdefg” that
covers 10,001 plaintext words

 Note that the last value of this chain is a hash value (i.e.
ciphertext)

 We don’t know for certain what type of words the reduction
function returns, possible only words of length 7 that consist of
small letters only

Chain Lookup

Assume we have a table with just 2 chains (with start and end values), i.e.

aaaaaa→173bdfede2ee3ab3 →… → 8995tg →9fdde3a0027fbb36 →… → k3rtol

hfk39f→856385934954950 →… → delphi →759858fde66e8aa8 →… → prp56e

… and a hash value “759858fde66e8aa8” we’d like to crack

Starting with this hash value we apply consecutively “→” and “→”, until we

- hit a known end value (e.g., k3rtol), or

- have repeated “→” and “→” x times (with x being the length of the chain)

If we hit a known end value, e.g. “prp56e”, we repeat the transformation, beginning

with the start value of the chain, i.e., “hfk39f”, until we hit “759858fde66e8aa8”

again

The input that led to the hash value (i.e., “delphi”) is the solution

Chain Lookup Pseudocode

1. Input: Hash value H

2. Reduce H into another plaintext P

3. Look for the plaintext P in the list of final plaintexts (i.e. end values),

if it is there, break out of the loop and goto step 6.

4. If it isn't there, calculate the hash H of the plaintext P

5. Goto step 2., unless you’ve done the maximum amount of iterations

6. If P matches one of the final plaintexts, you’ve got a matching chain;

in this case walk through the chain in question again starting with the

corresponding start value, until you find the text that translates into H

Chain Collisions

 Consider the following scenario:
aaaaaa→ … → 173bdfede2ee3ab3 → delphi → 759858fde66e8aa8 →… → prp56e
hfk39f→ … → 856385934954950 → delphi → 759858fde66e8aa8 →… → prp56e

 These 2 chains could merge, because

 the reduction function translates two different hashes into the same password (as
reduction functions are imperfect), or

 the hash function translates two different passwords into the same hash (which
should not happen → see hash function requirements)

 Because of these collisions or chain loops (next slide) hash chains will
not cover as many passwords as theoretically possible despite having
paid the same computational cost to generate

 Previous chains are not stored in their entirety; therefore, it is impossible to
detect this efficiently

Chain Loops

 Here you find repetitions of hashes in a single chain

 The result of imperfect reduction functions that map

two different hashes into the same plaintext

Rainbow Tables

 Rainbow tables effectively solve the problem of collisions

with ordinary hash chains by replacing the single reduction

function R with a sequence of related reduction functions

R1 through Rk (one reduction function per chain element)

 In this way, for two chains to collide and merge they must

hit the same value on the same iteration, which is rather

unlikely

Example for a Reduction Function for a

Rainbow Table
27

Coverage of Reduction Functions

 Rather than calculating a random string a reduction function
may calculate an integer index value to identify an entry
(word) in a large (password) dictionary

 Example:

 H(lalo) = 368437FDA

 R(368437FDA) = 6 ➔ dict[6] = robot123

 H(robot123) = DDA0087e73

 …

 This is similar to a lookup table, but requires
far less space, as hashes are not stored

 However, it may be difficult to design a hash
function that covers all dictionary indices

dict entry

0 Dog5

1 Simple

2 fEED2

3 lalo

4 mEn

5 hat

6 robot123

7 rose

…

Searching a Rainbow Table (Wikipedia)

 Let's assume a Rainbow table of length 3 with 3

different reduction functions R1, R2 and R3

 Again, we just store start (green) and end (yellow)

value of each chain

Searching a Rainbow Table (Wikipedia)

 Consider you have the rainbow table below and the password hash “re3xes”

 Calculate R3(“re3xes”) and check if the result matches any of the chain ends (yellow boxes)

 Calculate R2(H(R3(“re3xes”))) and check if the result matches any of the chain ends

 ..

 Repeat this process until the algorithm reaches R1, or a match is found

 If a match is found, traverse through the chain in question as seen before, to find the

solution

Perfect and non-perfect Rainbow

Tables

 In a perfect rainbow table any word does not

appear in more than one chain

 Non-prefect rainbow tables (as shown below)

have redundant entries

◼ They are easier to compute, but less memory-efficient

because of these repetitions (which are not collisions!)

Defense against Rainbow Tables

 Idea:

 Increase the (required minimum) length of a password

 By doing so there are many more potential passwords to

be considered by a rainbow table …

◼ … up to a point where such tables are simply no more

economical to generate

 Increasing the password length can be either done by the

◼ password owner (e.g., on the client side), or

◼ algorithmically (e.g., on the client or server side)

Defence against Rainbow Tables

Client-side defence:

 A user requirement to choose long passwords that contain different types of
characters,
e.g. consider passwords that contain “A…Z”, “a…z”, “1-8”:

 6 characters long passwords result in 660 = 46,656,000,000 combinations

 10 characters long passwords result in 1060 = 604,661,760,000,000,000
combinations

Server- (and potentially client-) side defence:

1. Password salting

 A unique and random, but known string (“salt”) per user that is appended to each
password before its hash is calculated

 The salt is stored in the user database

User ID Salt Password Hash Password (not part of table)

ms@gmail.com 12367 1d8922d005733… 12367KenSentme!

k51@outlook.com 56f87 628749afdb83… 56f87Fluffybear

abd@yahoo.com 465d0 980ade367fc93… 46d05Limerick

Defense against Rainbow Tables

2. Password peppering

 Similar to Salting, but a unique secret string is concatenated
to all passwords before they are hashed

4. Multiple iterations

 A password is hashed multiple (e.g., 1000) times before
stored in the database

5. Combination approach
 Different techniques are combined to create a complex hash

algorithm, e.g.,

 NewHash(password) = hash(hash(password) || salt)

Some revision material covering

• SQL

• HTTP get / post Methods and PHP

• SQL injection attacks

• SQL injection attack mitigation strategies

SQL Attacks 35

What are SQL Injections?
36

 SQL injection is a code injection technique, used

to attack data-driven applications, in which malicious

SQL statements are inserted for execution

 A way of exploiting user input and SQL Statements to

compromise the database and/or retrieve sensitive data

 Such attacks are closely linked to various web

technologies, i.e. HTTP and PHP

HTTP get / post Methods and PHP
37

 PHP is a general-purpose server-side scripting language especially suited
to web development

 PHP originally stood for Personal Home Page, but it now stands for the
recursive initialism PHP: Hypertext Pre-processor

 The HTTP GET method sends the encoded user information appended to the
page request

 The page and the encoded information are separated by the ? Character

 Example: http://www.test.com/index.htm?name1=value1&name2=value2

 PHP provides $_GET associative array to access all the sent information
using GET method, e.g.

 foo.php:

 <?php
 …
 $var1 = $_GET[‘first_name’];
 …

http://www.test.com/index.htm?name1=value1&name2=value2

HTTP get / post Methods and PHP
38

 The POST method transfers information via HTTP headers

 The information is encoded as described in case of GET
method and put into a header called QUERY_STRING

 The POST method does not have any restriction on data size
and type to be sent

 The data sent by POST method goes through HTTP header
(rather than the page request)

 PHP provides $_POST associative array to access all the
sent information using POST method

foo.php:
<?php
…
 $var1 = $_POST[‘first_name’];
…

SQL Syntax Review
39

 Basic select query:

SELECT <columns> FROM <table> WHERE

<condition>

 Example:

SELECT * FROM user WHERE id = 1 AND pass =

‘bla’

 Note:

 Literal strings are delimited with single quotes

 Numeric literals aren’t delimited

SQL Syntax Review
40

 Some databases allow semicolons to separate

multiple statements:

DELETE FROM user WHERE id = 1; INSERT INTO

user (id, pass) VALUES (1, 'secure');

 For most SQL variants, the sequence -- means the

rest of the line should be treated as a comment

SQL Code Injection Example
41

SQL Code Injection Example
42

Email Hashed Password

ms@mail.ie af47f8d1ac4

… …

Table tblclinician:

SQL Code Injection Example
43

$sql = "SELECT * FROM tblclinician WHERE Email=‘’; DROP
TABLE tblclinician; --’ AND Password=‘’

 Note: The SQL DROP TABLE statement deletes an existing
table in a database

 While an attacker does not know the tables’ names, the
attacker can do a blind attack

 More generally, If DB details are not known to the attacker,
blind SQL injections are used

Other Code Injections if DB structure is

known
44

 SELECT * FROM tblclinician WHERE Email =‘’; INSERT
INTO tblclinician (Email,Password) VALUES (‘hacker’,123);-
-’ AND `Password`=‘’

 SELECT * FROM `login` WHERE Email =‘’; UPDATE
tblclinician SET Password = 1284ffa WHERE Email =
ms@mail.ie ;--’ AND `Password`=‘’

 The first injection creates a new user (hacker) including
password hash

 The second injection replaces a user’s password hash

mailto:ms@mail.ie

Types of SQL Injection Attacks
45

 Blind SQL Injection

 Enter an attack on one vulnerable page but it may not display results

 A second page would then be used to view the attack results

 Conditional Response

 Test input conditions to see if an error is returned or not

 Depending on the response, the attacker can determine yes or no
information

 First Order Attack

 Runs right away

 Second Order Attack

 Injects data which is then later executed by another activity (job, etc.)

 Lateral Injection

 Attacker can manipulate values using implicit functions

What is at Risk?
46

 Any web application that accepts user input

 Both public and internal facing sites

 Public facing sites will likely receive more attacks than

internal facing sites

 For the last couple of years (i.e. since 2013), (SQL)

Injection is one of the frontrunners on the OWASP

top ten list

 A well understood attack, but still not fully grasped by

the developer community

M

OWASP Top 10
47

 The Open Web Application Security Project (OWASP)

is a non-profit foundation dedicated to improving the

security of software

Some historical Notes
48

 Guess Inc. is an American clothing brand and
retailer

 Guess.com was open to a SQL injection attack

 In 2002 Jeremiah Jacks discovered the hole and
was able to pull down 200,000 names, credit card
numbers and expiration dates in the site's customer
database

 The episode prompted a year-long
investigation by the US Federal Trade
Commission

Some historical Notes
49

 In 2003 JJ used an SQL injection to retrieve

500,000 credit card numbers

from PetCo

 In 2014 Russian hackers used a

Botnet to recover a vast collection of stolen data,

including 1.2 billion unique username/password

pairs, by compromising over 420,000 websites

using SQL injection techniques

What can SQL Injections do?
50

 Retrieve sensitive information, including

 Usernames/ Passwords

 Credit Card information

 Social Security / PPS numbers

 Manipulate data, e.g.

 Delete records

 Truncate tables

 Insert records

 Manipulate database objects, e.g.

 Drop tables

 Drop databases

What can SQL Injections do?
51

 Retrieve System Information

 Identify software and version information

 Determine server hardware

 Get a list of databases

 Get a list of tables

 Get a list of column names within tables

 Manipulate User Accounts

 Create new sysadmin accounts

 Insert admin level accounts into the web-app

 Delete existing accounts

	Slide 1: CT437 Computer Security and Forensic Computing Hash Cracking and Rainbow Tables
	Slide 2: Lecture Overview
	Slide 3: Lecture Motivation
	Slide 4: What is a Password?
	Slide 5: Claimant and Verifier
	Slide 6: Storing User Passwords
	Slide 7: Why is this Form of Password Hash Management problematic?
	Slide 8: Server-Side Password Storage
	Slide 9: Dictionary-Based Brute-Force Search
	Slide 10: CrackStation's Password Cracking Dictionary
	Slide 11: Example
	Slide 12: Lookup Table-Based Attacks
	Slide 13: Lookup Table-Based Attacks
	Slide 14: Lookup Table-Based Attacks: Example
	Slide 15: Crackstation’s free Password Hash Cracker
	Slide 16: In-Class Activity: Password Recovery
	Slide 17: Rainbow Tables
	Slide 18: Pre-Computed Hash Chains
	Slide 19: Example for a simple Reduction Function
	Slide 20: Coverage of Hash Chains
	Slide 21: Pseudo-Code to create a single Chain
	Slide 22: Chain Lookup
	Slide 23: Chain Lookup Pseudocode
	Slide 24: Chain Collisions
	Slide 25: Chain Loops
	Slide 26: Rainbow Tables
	Slide 27: Example for a Reduction Function for a Rainbow Table
	Slide 28: Coverage of Reduction Functions
	Slide 29: Searching a Rainbow Table (Wikipedia)
	Slide 30: Searching a Rainbow Table (Wikipedia)
	Slide 31: Perfect and non-perfect Rainbow Tables
	Slide 32: Defense against Rainbow Tables
	Slide 33: Defence against Rainbow Tables
	Slide 34: Defense against Rainbow Tables
	Slide 35: SQL Attacks
	Slide 36: What are SQL Injections?
	Slide 37: HTTP get / post Methods and PHP
	Slide 38: HTTP get / post Methods and PHP
	Slide 39: SQL Syntax Review
	Slide 40: SQL Syntax Review
	Slide 41: SQL Code Injection Example
	Slide 42: SQL Code Injection Example
	Slide 43: SQL Code Injection Example
	Slide 44: Other Code Injections if DB structure is known
	Slide 45: Types of SQL Injection Attacks
	Slide 46: What is at Risk?
	Slide 47: OWASP Top 10
	Slide 48: Some historical Notes
	Slide 49: Some historical Notes
	Slide 50: What can SQL Injections do?
	Slide 51: What can SQL Injections do?

