CT437
COMPUTER SECURITY AND FORENSIC COMPUTING

HASH CRACKING AND RAINBOW TABLES

Dr. Michael Schukat

\ b L
T %_ OLLSCOILNA GAILLIMHE
X ‘L'.r—l’ y -

Lecture Overview
I

0 Methods to reverse-engineer hashed passwords
0 Rainbow tables

0 A recap on SQL injection attacks (based on CT417
content), i.e.
o SQL
0 HTTP get / post Methods and PHP
o SQL injection attacks

o0 SQL injection attack mitigation strategies

can be found at the end of this slide deck

Lecture Motivation
I

0 One-way property, weak and strong collision
resistance are fundamental properties of a hash
function

0 These come also into play when we consider
common password storage methods ...

0 ... and approaches to undermine such methods

0 Such approaches are summarised in this slide deck

What is a Password?
N

0 A memorised secret used to confirm the identity of a user

O Typically, an arbitrary string of characters including letters, digits, or
other symbols

O A purely numeric secret is called a personal identification number (PIN)

0 The secret is memorised by a party called the claimant while
the party verifying the identity of the claimant is called the
verifier

0 Claimant and verifier communicate via an authentication
protocol

Claimant and Verifier

i =)

Storing User Passwords
N

0 User passwords at rest (e.g., in database tables)
are hashed instead of being stored in plaintext

0 ldea:

O “KenSentMe!” 2 “7b24afc8bc80e548d66c4e7ff72171c5”
B Note: This token is in hex format, it is128 bit long (32 x 4 bits)

o0 An attacker cannot algorithmically reverse-engineer o
hash function to recover the original password
m Recall hash function properties

0 The verifier does not have a plaintext copy of the
password either

Why is this Form of Password Hash
Management problematic?

s Gz

Consider a webserver that stores user credentials.

A user registration entails the following steps:

1. The claimant visits the verifier’s landing / login
page using their web browser

2. The claimant enters and submits their user id and
password

3. Both are sent to the verifier over the secure
connection

4. The verifier calculates the hash, and and stores it

together with the user name in the DB table

Server-Side Password Storage

g =)

1. The claimant enters user id and password (i.e., login
details)

2. Aclient-side (e.g. JS) script calculates the password
hash

3. Userid and hashed password are sent to the verifier

using the secure connection

4, The verifier checks if the transmitted user id and hashed
password against the stored values in the table

5. The verifier notifies the claimant via the authentication
protocol if the authentication was successful

Dictionary-Based Brute-Force Search

0 Assume an attacker retrieves an entire DB table containing user IDs and
hashed passwords

0 Hash functions are one-way functions, so hash values cannot be
transformed back to the original input

0 However, assuming that a user picks a common word or phrase, or a
known password as their own password, a simple dictionary search can
be used to systematically identify a match for a given hash value

O Here the underlying hash function must be known

0 Such dictionaries are based on large word, phrase or password
collections

D@:

O Straight forward process

O Large dictionaries are readily available (next slide)

0 ®:

O Significant computational effort to find match
O No guaranteed result

CrackStation's Password Cracking

Dictionar
.

O https://crackstation

.net /crackstation-
wordlist-password-

cracking-

dictionary.htm

CrackStation's Password Cracking Dictionary

I am releasing CrackStation's main password cracking dictionary (1,493,677,782 words, 15GB) for download.
What's in the list?

The list contains every wordlist, dictionary, and password database leak that I could find on the internet (and I spent a LOT of time looking). It also
contains every word in the Wikipedia databases (pages-articles, retrieved 2010, all languages) as well as lots of books from Project Gutenberg. It
also includes the passwords from some low-profile database breaches that were being sold in the underground years ago.

The format of the list is a standard text file sorted in non-case-sensitive alphabetical order. Lines are separated with a newline "\n" character.

You can test the list without downloading it by giving SHA256 hashes to the free hash cracker. Here's a tool for computing_hashes easily. Here are
the results of cracking LinkedIn's and eHarmony's password hash leaks with the list.

The list is responsible for cracking about 30% of all hashes given to CrackStation's free hash cracker, but that figure should be taken with a grain of
salt because some people try hashes of really weak passwords just to test the service, and others try to crack their hashes with other online hash
crackers before finding CrackStation. Using the list, we were able to crack 49.98% of one customer's set of 373,000 human password hashes to
motivate their move to a better salting scheme.

Download

Note: To download the torrents, you will need a torrent client like Transmission (for Linux and Mac), or uTorrent for Windows.

Torrent (Fast)

GZIP-compressed (level 9). 4.2 GIB compressed. 15 GiB uncompressed.

HTTP Mirror (Slow)

Checksums (crackstation.txt.gz)

MDS: 4748a7270611934a17662446862casf8
SHA1: efa3fsecbfba®3df523418a78871ec59757b6d3f
SHA256: a6dc17d27d@a34f57¢989741acdd485b8aeed5a6e9796dafB8c9435370dc61612

https://crackstation.net/crackstation-wordlist-password-cracking-dictionary.htm
https://crackstation.net/crackstation-wordlist-password-cracking-dictionary.htm
https://crackstation.net/crackstation-wordlist-password-cracking-dictionary.htm
https://crackstation.net/crackstation-wordlist-password-cracking-dictionary.htm
https://crackstation.net/crackstation-wordlist-password-cracking-dictionary.htm

Example
N

0 Assume a hash code and the underlying hash function are
known

0 The dictionary contains 10'° entries

0 A single laptop / PC can compute 10° hash values per
second

0 It takes 10° seconds (~29 hours) to search the entire
dictionary for a match

0 This process can be vastly improved by using pre-processed
lookup tables

Lookup Table-Based Attacks
N

0 For a given hash function and dictionary
O Calculate the hash values for all dictionary entries
O Insert both values to a table (i.e. one line per entry)

o Sort table (e.g. in ascending order of hash values)
m Also called lookup table

O Store the table
0 Example table (assuming 44-bit hash values):

Hash value Password
0x00000000354 gangster
0x00000001003 Bluemoon

0x00000001032 Z0om!

Lookup Table-Based Attacks
N

0 A matching password for a given hash value can be recovered by
systematically searching the look-up table via a binary search

0 ©:
0 Such a table can be generated offline

O The search process itself is fast (~log,(# of entries)) using binary
search

m A table containing 1.8x10'? entry would require just 64 guesses to find (or
not) the correct password for a given hash value

0 ® .

O Huge table, with no guaranteed result

o Different table required for every hash function

Lookup Table-Based Attacks: Example
N

0 Assume a hash function that generates 16-byte (128 bit) hash
values

0 We calculate a lookup table for all possible 6-character long
passwords composed of 64 possible characters A-Z, a-z, 0-9,

u.u omd u/n
0 A table would consist of 64° (= 68,719,476,7 36) entries, with

every entry consisting of a 6-byte password and a 16 bytes
hash

0 Total size of table ~ 1.4 Terabyte

0 However, there are online services available that host pre-
computed look-up tables for password attacks (see next slide)

Crackstation’s free Password Hash

Cracker
I

Free Password Hash Cracker

d9295ddbbe9fd599a8c8849d14d@186eadb6d998a4e70335bdBb712831b74Fa8

|:| h 'l"l' p S: ,/,/C r 0 C k S.I. q .I_i Enter up to 20 non-salted hashes, one per line:

on.net/ —

Crack Hashes

Supports: LM, NTLM, md2, md4, mdS, md5(md5_hex), md5-half, shal, sha224, sha256, sha384, sha512, ripeMD160, whirlpool, MySQL 4.1+ (shal(shal_bin}),
QubesV3.1BackupDefaults

Hash Type Result

Color Codes: BGF8&NY Exact match, Yellow: Partial match, Bl Not found.

Download CrackStation's Wordlist

How CrackStation Works

CrackStation uses massive pre-computed lookup tables to crack password hashes. These tables store a mapping between the hash of a password,
and the correct password for that hash. The hash values are indexed so that it is possible to quickly search the database for a given hash. If the
hash is present in the database, the password can be recovered in a fraction of a second. This only warks for "unsalted" hashes. For information on
password hashing systems that are not vulnerable to pre-computed lookup tables, see our hashing_security page.

Crackstation's lookup tables were created by extracting every word from the Wikipedia databases and adding with every password list we could
find. We also applied intelligent word mangling (brute force hybrid) to our wordlists to make them much more effective. For MD5 and SHA1 hashes,
we have a 190GB, 15-billion-entry lookup table, and for other hashes, we have a 19GB 1.5-billion-entry lookup table.

You can download CrackStation's dictionaries here, and the lookup table implementation (PHP and C) is available here.

https://crackstation.net/
https://crackstation.net/

In-Class Activity: Password Recovery
N

0 5 minutes only, work alone or in a group

0 What to do:

o Pick a password and calculate its MD5 or SHAT1 hash using
hitps: / /defuse.ca/checksums.htm

0 Copy and paste the hash value into https:/ /crackstation.net/
to see if it is can be recovered

0 Repeat the above and keep a list of all passwords
® that can be cracked

m that cannot be cracked

https://defuse.ca/checksums.htm
https://crackstation.net/

Rainbow Tables
N

0 Look-up tables are huge and take up a lot of hard
disk space

0 Rainbow tables in contrast provide an efficient way
to represent large numbers of hash values

0 They require more processing time and less storage
to find a match compared to a simple lookup table

0 Rainbow tables are a practical example of a
space—time trade-off

0 They are based on pre-computed hash chains

Pre-Computed Hash Chains
N

0 Such chains contain long sequences of password candidates (green
strings below) and hash values (black strings below)

0 The are based on using a hash function “2” and a reduction function
“27 e.g.,
aaaaaa—2>173bdfede2ee3ab3 2 jdikvo 29fdde3a0027fbb36 = ... 2 k3rtol

O In this example we only consider passwords (green) that are 6 characters long,
which are converted into 64-bit hash values

O Each chain starts with a different password
O Each chain has a fixed length, e.g. 100,000 passwords and their hashes

O Here “—=2” converts the 64-bit hash value into an arbitrary 6é-byte long string
again, i.e. it's not an inverted hash function!

0 We only store the first and the last value (starting point and end
point), i.e. “caacaaa” and “k3rtol”

Example for a simple Reduction

Function
T

private static String reductionFunction(long val) { // Hash value i3 just a long integer
otring car, out; // The method returns an alphanumeric string
int i;
char dat;

car = new String("0123456789ABCDEFGHIJKLMNOPQRSTUNVXYZabedefohijkinnopgratuvwxyz!3");
out = new String("");

for (1 =107 1<) i+4) {
dat = (char) (val % ©3);
val = val [23;
out = out + car.chardt(dat);

return out:

Coverage of Hash Chains
N

0 The reduction function determines the range (i.e., length and
composition) of plaintext (i.e., password) candidates that are
covered

0 Example:
O Consider the password “Domino5”

O In order to have this word stored in a chain, the reduction function must
create outputs that are
m At least 7 characters long
m Contain small and capital letters, as well as numbers

O Also, hash chains may not be able to cover all possible character
combinations

é’é@

Pseudo-Code to create a single Chain

0 This example creates a chain with the start value “abcdefg” that

covers 10,001 plaintext words

0 Note that the last value of this chain is a hash value (i.e.

ciphertext)

0 We don’t know for certain what type of words the reduction
function returns, possible only words of length 7 that consist of

small letters only

String plaintext,

plaintext =

for (int i=0;

1<10000;

first, ciphertext;

first = "abcdefg":

i++) {

ciphertext = hash it (plaintext}):
plaintext = reduce it (ciphertext});
¥

System.out.printf ("%3:%3\n", first, ciphertext);

Chain Lookup

Assume we have a table with just 2 chains (with start and end values), i.e.
aaaaaa>173bdfede2ee3ab3 - ... - 8995tg ->9fdde3a0027fbb36 — ... = k3rtol
nfk39f>856385934954950 —> ... = delphi -759858fde66e8aa8 —> ... = | prp56e
... and a hash value “759858fde66e8aa8” we'd like to crack

Starting with this hash value we apply consecutively “2” and “=>”, until we
hit a known end value (e.g., k3rtol), or
have repeated “2” and “2” x times (with x being the length of the chain)

If we hit a known end value, e.g. “prp56e”, we repeat the transformation, beginning
with the start value of the chain, i.e., “hfk391”, until we hit “759858fdeb66e8aa8”
again

The input that led to the hash value (i.e., “delphi”) is the solution

Chain Lookup Pseudocode

1. Input: Hash value H
2. Reduce H into another plaintext P

3. Look for the plaintext P in the list of final plaintexts (i.e. end values),
if it is there, break out of the loop and goto step 6.

4. If it isn't there, calculate the hash H of the plaintext P
5. Goto step 2., unless you've done the maximum amount of iterations

6. If P matches one of the final plaintexts, you've got a matching chain;
in this case walk through the chain in question again starting with the
corresponding start value, until you find the text that translates into H

Chain Collisions
N

0 Consider the following scenario:
aaaaaa—> ... » 173bdfede2ee3ab3 - delphi - 759858fde66e8aa8 - ... > prp56e
hfk39f-> ... = 856385934954950 - delphi - 759858fde66e8aa8 —> ... - prp56e

0 These 2 chains could merge, because

O the reduction function translates two different hashes into the same password (as
reduction functions are imperfect), or

O the hash function translates two different passwords into the same hash (which
should not happen = see hash function requirements)
00 Because of these collisions or chain loops (next slide) hash chains will

not cover as many passwords as theoretically possible despite having
paid the same computational cost to generate

0 Previous chains are not stored in their entirety; therefore, it is impossible to
detect this efficiently

2caBd0cf2f25cadb
b35d8dc0bETIc3f

Tf8bb0fe8b3aTEORD
B8feBbB0ced14529
6236c78a73f52110a
@39e588bad8delb

a70dab11c90d06bE
08d0be230731762a

a70dab11c30d060b8
08d0ba230731762a

2caBdOcf2f25c4db
basdadeObETIc3f

Chain Loops
=

0 Here you find repetitions of hashes in a single chain

0 The result of imperfect reduction functions that map
two different hashes into the same plaintext

Rainbow Tables
N

0 Rainbow tables effectively solve the problem of collisions
with ordinary hash chains by replacing the single reduction
function R with a sequence of related reduction functions
R, through R, (one reduction function per chain element)

0 In this way, for two chains to collide and merge they must
hit the same value on the same iteration, which is rather

unlikely

441219b5ISITIBOE

dledbasdeidaso

AaTdled 4144740403 Sid2c08iS583 a6
AaciBcchBas3dab

Sld2c 0BS5S 310G 40f4daIdbbe1B0214 aSEE15484d142080
12bbbed 5516 d c23bBaEGdadlTT2 2E7Tab8A15dTA5E6]

Example for a Reduction Function for a

Rainbow Table
e

private static String reductionFunction(long val, int round) { // Note that for the first function call "round" has to be 0,

otring car, out; // and has to be incremented by one with every subsequent call.
int i; /{ I.e. "round" created variations of the reduction function.
char dat;

car = new String("0123456789ABCOEFGHIJKIMNOPQRSTUNVXYZabedefghijklmnopgratuvwxyz ! ") ;
out = new String("");

for (1 =07 1< 27 i+4) |

val -= round;

dat = (char) (val % ¢2);

val = val [03;

out = out + car.charat(dat);
}
return out;

Coverage of Reduction Functions
N

0 Rather than calculating a random string a reduction function
may calculate an integer index value to identify an entry
(word) in a large (password) dictionary

0 Example:
P | # |dicteniry

o H(lalo) = 368437FDA

O Dogb

0 R(368437FDA) = 6 = dict[6] = robot123 1 Simple

o0 H(robot123) = DDA0087e73 2 fEED2
a... 3 lalo
0 This is similar to a lookup table, but requires 4 mEn
far less space, as hashes are not stored 5 hat

0 However, it may be difficult to design a hash : robot1 23

rose

function that covers all dictionary indices

Searching a Rainbow Table (Wikipedia)
7

0 Let's assume a Rainbow table of length 3 with 3
different reduction functions R,, R, and R,

0 Again, we just store start (green) and end (yellow)
value of each chain

........... .

tllip-llil. C:} u-llhd l:.'} ::} ib‘.pmw ::r jimhu- l:.':il uﬂﬂ-: I::'.ll roatreat -

H El .y [——) |+ —— H E3

aaa
. [

Searching a Rainbow Table (Wikipedia)
7

0 Consider you have the rainbow table below and the password hash “re3xes”
O Calculate R3(“re3xes”) and check if the result matches any of the chain ends (yellow boxes)

Calculate R2(H(R3(“re3xes”))) and check if the result matches any of the chain ends

Repeat this process until the algorithm reaches R1, or a match is found

If a match is found, traverse through the chain in question as seen before, to find the

solution

......................... : =

iwi:l:ﬂ .E ' rootroot i <= rambo 4.‘:3= @

............ . 3 H

E_W : ' myname linux23 ‘<:=<:=| crypto ﬁ(rﬂxes)

..y

Perfect and non-perfect Rainbow

Tables
I

¢ In a perfect rainbow table any word does not
appear in more than one chain

* Non-prefect rainbow tables (as shown below)
have redundant entries

m They are easier to compute, but less memory-efficient
because of these repetitions (which are not collisions!)

dledbasdeidaso

aSEE15484d142080
2E7Tab8A15dTA5E6]

Sld2c 0BS5S 310G 40f4daIdbbe1B0214
12bbbed 5516 d c23bBaEGdadlTT2

Defense against Rainbow Tables
—

0 ldea:
0 Increase the (required minimum) length of a password

o0 By doing so there are many more potential passwords to
be considered by a rainbow table ...

M ... up to a point where such tables are simply no more
economical to generate

O Increasing the password length can be either done by the
m password owner (e.g., on the client side), or

® algorithmically (e.g., on the client or server side)

Defence against Rainbow Tables

T e
Client-side defence:

0 A user requirement to choose long passwords that contain different types of
characters,

e.g. consider passwords that contain “A...Z”, “a...z”, “1-8":

o 6 characters long passwords result in 60 = 46,656,000,000 combinations
o 10 characters long passwords result in 1090 = 604,661,760,000,000,000

combinations
Server- (and potentially client-) side defence:

1. Password salting

o A unique and random, but known string (“salt”) per user that is appended to each
password before its hash is calculated
u] The salt is stored in the user database
User ID Salt Password Hash Password (not part of table)
ms@gmail.com 12367 | 1d8922d005733... 12367KenSentmel
k51@outlook.com | 56f87 628749afdb83... 56f87Fluffybear
abd@yahoo.com 465d0 | 980ade367fc93... 46d05Limerick

Defense against Rainbow Tables
—

2. Password peppering

o Similar to Salting, but a unique secret string is concatenated
to all passwords before they are hashed

4. Multiple iterations

0 A password is hashed multiple (e.g., 1000) times before
stored in the database

5. Combination approach

o Different techniques are combined to create a complex hash
algorithm, e.g.,

0o NewHash(password) = hash(hash(password) | | salt)

- SQL Attacks

Some revision material covering
SQL
HTTP get / post Methods and PHP
SQL injection attacks
SQL injection attack mitigation strategies

What are SQL Injections?

0 SQL injection is a code injection technique, used
to attack data-driven applications, in which malicious
SQL statements are inserted for execution

0 A way of exploiting user input and SQL Statements to
compromise the database and/or retrieve sensitive data

0 Such attacks are closely linked to various web
technologies, i.e. HTTP and PHP

HTTP get / post Methods and PHP

I I ————

0 PHP is a general-purpose server-side scripting language especially suited
to web development

0 PHP originally stood for Personal Home Page, but it now stands for the
recursive initialism PHP: Hypertext Pre-processor

0 The HTTP GET method sends the encoded user information appended to the
page request

The page and the encoded information are separated by the ¢ Character

Example: http: //www.test.com /index.htm2name 1 =value 1&name2=value2

PHP provides $_GET associative array to access all the sent information
using GET method, e.g.

<form method="GET" action="foo.php">

foo-php: First Name: <input type="text" name="first name" />

Last Name: <input type="text" name="last name" />

<?php <input type="submit" name="action" walue="Submit" />

</form>

.$.\;ar1 = $_GET[*first_name’];

http://www.test.com/index.htm?name1=value1&name2=value2

HTTP get / post Methods and PHP

s
0 The POST method transfers information via HTTP headers

0 The information is encoded as described in case of GET
method and put into a header called QUERY_STRING

0 The POST method does not have any restriction on data size
and type to be sent

0 The data sent by POST method goes through HTTP header
(rather than the page request)

0 PHP provides $_POST associative array to access all the
sent information using POST method

foo.p hp: <form method="POST" action="foco.php">

<2php First Name: <input type="text™ name="first_name" />

Last Name: <input type="text" name="last name" />

$vq rl = $ POST[‘firST nqme’]; <input type="submit" name="action" value="Submit" />

</ form>

SQL Syntax Review
I

0 Basic select query:

SELECT <columns> FROM <table> WHERE
<condition>

0 Example:
SELECT * FROM user WHERE id = 1 AND pass =

‘bla’
0 Note:
o Literal strings are delimited with single quotes

1 Numeric literals aren’t delimited

SQL Syntax Review
N

0 Some databases allow semicolons to separate

multiple statements:
DELETE FROM user WHERE id = 1; INSERT INTO

user (id, pass) VALUES (1, 'secure’);

0 For most SQL variants, the sequence -- means the
rest of the line should be treated as a comment

SQL Code Injection Example
N

1 -
2 Login code
3 = ——D
4 [Cl<?php
S require once('connection.php'};
&
7 Semail = Spassword = Spwd = '';
g $email = § POST['username'];
10 $pwd = $_POST['password'];
11
12 SZpassword = MD5 (Spwd) ;
13
14 £3gl = "SELECT * FROM tklclinician WHEEE Emzil='"$Semail' AND Password='Spassword'"™;
15 $result = mysqgli gumery($conn, $sqgl);:
16
17 if (mysqgli_num rows ($result) > 0)
18 [H{
15
20 header ("Location: searchpatl.php™):;
21 =¥
22 else
23 =k
24 header ("Location: loginfailed.php™):
25 -}
26 =2

SQL Code Injection Example
T | e

— Member Login
ms@mail.ie momm s Username :

dory123 - Password :

femail = £ POST['usernam='];
Spwd = § POST['password']l;

Spassword = MD5 (Spwd) ;

£3gl = "SELEC # FROM thlclinician WHEEE Email='Semail' AND Password='Spassword'"™:
Sresult = mysgli guery(Sconn, £sqgl):

Table tblclinician:

Email | Hashed Password

ms@mail.ie af47f8d1ac4

SQL Code Injection Example
N

Member Login
‘; DROP TABLE tbiclinician; -- gmss) Username :

Em Password :

$sql = "SELECT * FROM tblclinician WHERE Email=""; DROP
TABLE tblclinician; --> AND Password="

0 Note: The SQL DROP TABLE statement deletes an existing
table in a database

0 While an attacker does not know the tables’ names, the
attacker can do a blind attack

00 More generally, If DB details are not known to the attacker,
blind SQL injections are used

Other Code Injections if DB structure is

known
N

0 SELECT * FROM tblclinician WHERE Email =*; INSERT
INTO tblclinician (Email,Password) VALUES (‘hacker’,123);-
-> AND "Password ="

0 SELECT * FROM “login® WHERE Email =*"; UPDATE
tblclinician SET Password = 1284ffa WHERE Email =
ms(@moail.ie ;-- AND “Password ="

0 The first injection creates a new user (hacker) including
password hash

0 The second injection replaces a user’s password hash

mailto:ms@mail.ie

Types of SQL Injection Attacks

L
0 Blind SQL Injection
O Enter an attack on one vulnerable page but it may not display results
O A second page would then be used to view the attack results
0 Conditional Response
O Test input conditions to see if an error is returned or not

O Depending on the response, the attacker can determine yes or no
information

0 First Order Attack

O Runs right away
0 Second Order Attack

O Injects data which is then later executed by another activity (job, etc.)
0 Lateral Injection

O Attacker can manipulate values using implicit functions

What is at Risk?

I =
0 Any web application that accepts user input
0 Both public and internal facing sites

0 Public facing sites will likely receive more attacks than
internal facing sites
0 For the last couple of years (i.e. since 2013), (SQL)
Injection is one of the frontrunners on the OWASP
top ten list

o A well understood attack, but still not fully grasped by
the developer community

OWASP Top 10

I
0 The Open Web Application Security Project (OWASP)

is a non-profit foundation dedicated to improving the
security of software

2017 2021

A01:2021-Broken Access Control
A02:2021-Cryptographic Failures
~»A03:2021-Injection

(New) AD4:2021-Insecure Design

A05:2021-Security Misconfiguration
A06:2021-Vulnerable and Outdated Components

= AD7:2021-ldentification and Authentication Failures

AD1:2017-Injection
AD2:2017-Broken Authentication
AD3:2017-5ensitive Data Exposure
AD4:2017-XML External Entities (XXE)
AD5:2017-Broken Access Control
AD6:2017-Security Misconfiguration
AD7:2017-Cross-Site Scripting (X55)

AD8:2017-Insecure Deserialization /_/ {New) AD8:2021-Software and Data Integrity Failures
A09:2017-Using Components with Known Vulnerabilities /’,_,—)ADB:ZDII—Securiw Logging and Monitoring Failures*
A10:2017-Insufficient Logging & Monitoring (New) A10:2021-Server-Side Request Forgery (SSRF)*

* From the Survey

Some historical Notes
e

0 Guess Inc. is an American clothing brand and
retailer

0 Guess.com was open to a SQL injection attack

0 In 2002 Jeremiah Jacks discovered the hole and
was able to pull down 200,000 names, credit card
numbers and expiration dates in the site's customer
database

0 The episode prompted a year-long
investigation by the US Federal Trade
Commission

Some historical Notes

49|
0 In 2003 JJ used an SQL injection to retrieve

500,000 credit card numbers
from PetCo]
0 In 2014 Russian hackers used a Psrco

Botnet to recover a vast collection of stolen dataq,
including 1.2 billion unique username /password
pairs, by compromising over 420,000 websites
using SQL injection techniques

What can SQL Injections do?
N

00 Retrieve sensitive information, including
0 Usernames/ Passwords
o Credit Card information
O Social Security / PPS numbers
0 Manipulate data, e.g.
O Delete records
O Truncate tables
O Insert records

0 Manipulate database objects, e.g.
o0 Drop tables
O Drop databases

What can SQL Injections do?
N

00 Retrieve System Information
O Identify software and version information
O Determine server hardware
0 Get a list of databases
O Get a list of tables

0 Get a list of column names within tables

0 Manipulate User Accounts
o Create new sysadmin accounts
O Insert admin level accounts into the web-app
0 Delete existing accounts

	Slide 1: CT437 Computer Security and Forensic Computing Hash Cracking and Rainbow Tables
	Slide 2: Lecture Overview
	Slide 3: Lecture Motivation
	Slide 4: What is a Password?
	Slide 5: Claimant and Verifier
	Slide 6: Storing User Passwords
	Slide 7: Why is this Form of Password Hash Management problematic?
	Slide 8: Server-Side Password Storage
	Slide 9: Dictionary-Based Brute-Force Search
	Slide 10: CrackStation's Password Cracking Dictionary
	Slide 11: Example
	Slide 12: Lookup Table-Based Attacks
	Slide 13: Lookup Table-Based Attacks
	Slide 14: Lookup Table-Based Attacks: Example
	Slide 15: Crackstation’s free Password Hash Cracker
	Slide 16: In-Class Activity: Password Recovery
	Slide 17: Rainbow Tables
	Slide 18: Pre-Computed Hash Chains
	Slide 19: Example for a simple Reduction Function
	Slide 20: Coverage of Hash Chains
	Slide 21: Pseudo-Code to create a single Chain
	Slide 22: Chain Lookup
	Slide 23: Chain Lookup Pseudocode
	Slide 24: Chain Collisions
	Slide 25: Chain Loops
	Slide 26: Rainbow Tables
	Slide 27: Example for a Reduction Function for a Rainbow Table
	Slide 28: Coverage of Reduction Functions
	Slide 29: Searching a Rainbow Table (Wikipedia)
	Slide 30: Searching a Rainbow Table (Wikipedia)
	Slide 31: Perfect and non-perfect Rainbow Tables
	Slide 32: Defense against Rainbow Tables
	Slide 33: Defence against Rainbow Tables
	Slide 34: Defense against Rainbow Tables
	Slide 35: SQL Attacks
	Slide 36: What are SQL Injections?
	Slide 37: HTTP get / post Methods and PHP
	Slide 38: HTTP get / post Methods and PHP
	Slide 39: SQL Syntax Review
	Slide 40: SQL Syntax Review
	Slide 41: SQL Code Injection Example
	Slide 42: SQL Code Injection Example
	Slide 43: SQL Code Injection Example
	Slide 44: Other Code Injections if DB structure is known
	Slide 45: Types of SQL Injection Attacks
	Slide 46: What is at Risk?
	Slide 47: OWASP Top 10
	Slide 48: Some historical Notes
	Slide 49: Some historical Notes
	Slide 50: What can SQL Injections do?
	Slide 51: What can SQL Injections do?

