CT420 REAL-TIME SYSTEMS

WCET ANALYSIS

Dr. Michael Schukat

\ b L
T %_ OLLSCOILNA GAILLIMHE
X ‘L'.r—l’ y -

Lecture Overview
I

0 This slide deck provides an overview of
methodologies to estimate the Worst-Case
Execution Time (WCET) of a task or function using

o0 empirical evidence (empirical WCET analysis)

o analytical methods (control flow graph-based WCET
analysis)

Recall: CE and Task Execution Times
S

Task Period p Exec Time
[ms] [ms]
A 25 10
B 25 8
C 50 5
D 50 4
E 100 2

0 Before we can determine
whether or not a
scheduling algorithm will
allow all periodic /
sporadic tasks to satisfy
their deadlines, we must
be aware of their
execution time

0 Principal question: How

do we determine the
(worst case) execution
times of tasks?

Estimating Worst-Case Execution Times
N

0 Many tasks exhibit non-uniform run times, e.g.:

O A task may inspect an environmental condition by simply recording
some data; however, occasionally, the task may have to react to a
situation that has been observed, that takes up additional CPU time

0 Thus, we must estimate for each task the worst-case execution
time (WCET) for each task and determine whether or not all
deadlines can still be met under such circumstances

0 This can be done via
O an analysis of the source code (CFG-based WCET analysis), or
O an estimation from empirical evidence (empirical WCET analysis)

0 The goal of WCET analysis is to generate a safe (i.e. no
underestimation) and tight (i.e. small overestimation) estimate of

the worst-case execution time of a program (or program
fragment)

Empirical WCET Analysis

Execute Task on Target HW

v

WCET estimate ?

* To perform such a WCET analysis, a multitude of measurements with different task inputs and
task states are done
* To get meaningful results,
* the program execution must be uninterrupted (no pre-emptions or interrupts)
* there must be no interfering background activities, such as garbage collection, blocking,
synchronisation, or inter-task communication

Example empirical WCET Analysis
N

int g, b, z, t;

while (1) { i;:l:e *(‘] '
a = rand();
b = rand(); I’e_SeT_’rimer();
=0 t =0;

reset_timer(); sartfmerl)
_ ; a = ReadTempSensorA();

start_timer();
z = Voter(q, b);

stop_timer();

stop_timer();
t = read_timer();

. store timer_content(t);
t = read_timer(); - - (t);

store_timer_content(t);

Empirical WCET Analysis in Practice
N

* Execute tests (with different inputs and states), store execution times (store_timer_content() in
previous example), quantise determined execution times (e.g., 1ms bin width), plot a histogram
for visualisation of results, and determine WCET, possibly also BCET and ACET

* Note: Light bars represent obtained results, black bars represent a (hypothetical) exhaustive test

él worst-case performance >l
== worst-case guarantee
S P
o The actual WCET
2 - t be found i
S| Lower Minimal L‘muser gogxgedor Maximal Upper
K] T observed Pp observed .
= | timing BCET ti ti WCET timing
B3| bound execution execution bound
o time time
Ll "I III“I“I ENEEE . T s NN R 1 ' >
0 . . time
measured execution times
possible execution times >
n timing predictability >
[Wilhelm4-08]

WCET: Worst-Case Execution Time
BCET: Best-Case Execution Time
ACET: Average-Case Execution Time

The WCET/BCET is the longest/shortest execution time possible for a program.
Must consider all possible inputs—including perhaps inputs that violate specification.

Limitations of empirical WCET Analysis
T

0 Measuring all different execution traces of a real size
program is intractable in practice

0 e.g., even a mid-size task may have millions of different
paths

0 Selected task inputs and task states may fail to trigger
the longest execution trace

0 Rare execution scenarios may be missed (see example
on slide 4)

CFG-based WCET Analysis

0 For hard RTS we can’t effort to miss only a single deadline, so
we need to make sure to capture a task’s WCET

0 Starting point is to implement tasks with a low complexity
0 i.e. limit the number of nested loops, if-then-else statements, etc.

O Software testing tools like Cobertura (a Java tool) allow
measuring method complexity

0 Subsequently, flow analysis techniques using control flow

graphs (CFG) are used to identify possible ways a program
can execute

0 These are combined with the execution times of programme
blocks

0 Both used in tandem allow the calculation of a task’s WCET

Steps of a CFG-based WCET Analysis

T e
Create the CFG

0 Draw nodes for each basic block of code

0 Connect nodes with directed edges to represent control flow (including if
statements and loops)

Annotate execution times

0 Annotate each node with the execution time of the corresponding basic
block

Identify possible paths

0 Traverse the graph to identify all possible paths from the entry node to the
exit node; incorporate maximum number of loop iterations

0 Calculate the total execution time for each path by summing up the
execution times of the nodes along that path

Determine WCET

0 The WCET is the maximum execution time among all possible paths in the
CFG

Example for a CFG-based WCET
Analysis
) e ————————

for (...){// A
if (...){//B
...//C mester: [°) Longest path
} a[A] B
else { e o // Unit timing
// D L 31
P 3
) oo o
T # WCET Calc
if (...){//E ,IEE' I WCET
ol theader + g
a 2] Lt
} | ™ J | 2 ‘ 3+431*99=
else { .HH___E 2_ BRI | |3072
coe // G 1““ "-i““
} (a) Control-flow
/ / H graph with timing (b} Path-based calculation

Acquiring Execution Times of Building

Blocks: From C to Assembly Language
-A

1 int arith(int x, 0 Each instruction requires a set amount of CPU cycles for its
2 int y, execution (CPU spec will tell)
3 int z)
a | 0 CPU cycle length is derived from a CPU’s clock rate
5 int tl = x+y;
£ int t2 = z*48; o Eg.
- int t3 = t1 & 0xFFFF; O 4 MHz CPU clock = 4 x 107 [s] cycle length (4 microseconds)
g int t4 = £2 * t3; O An instruction that requires 10 CPU cycles has an execution time of 4 x
¥ 1073 [s] (40 microseconds)
10 return t4;
11}
1 movl 12(%ebp), teax Get y
2 movl 16(%ebp) , $edx Get z
3 addl 8 (%ebp), feax Compute tl = X+y
Il leal ($Sedx, %$edx,b2),%edx Compute z+*3
3 sall $4, %edx Compute t2 - z*48
5 andl $65535, Seax Compute t3 = C1&0XFFFF
7 imull %feax, Yedx Compute td - t2+t3
3 movl %edx, $eax Set td as return val

Pitfalls when calculating Execution

Paths
N

const int max = 100;
foo (int x) {
A: for(i = 1; i <= max; i++) {
B: if (x > 5)
C: X =X * 2;
else
D: X =x + 2;
E: if (x < 0)
F: b[i] = al[il;
G: bar (i)
1}

¢ Loop bounds: Easy to find in this example; in general, very difficult to
determine

* Infeasible paths: Can we exclude a path, based on data analysis?
A-B-C-E-F-G is infeasible—since If x>5, it is not possible that x * 2 < 0.
Well, really? What about integer overflows? Must be sure that these do not
happen in the example...

Recall: Two’'s Complement Integer

Representation

] C qnd o-l-her prog rqmming Binary Number Unsigned Value Signed Value
0000 0 0
languages do not check for 000’ j :
o . 0010 2 2
numeric (signed and s : g
unsigned integer) overflows % ° ’
0100 4 4
0 E.g., with 4-bit signed int oo ° :
0110 6 4]
7+ 17 = 0111 7 7
1 " 1000 8
O111 + 0001”7 = o :
“1000” = -8 1010

1011

1100
1101
1110
1111

LNk b s N

WCET and SOTA CPUs

0 Modern processors increase performance by using caches, pipelines, and
branch prediction

0 These features make WCET computation difficult, as execution times of
instructions vary widely

O Best case - everything goes smoothly: no cache miss, operands ready, needed
resources free, branch correctly predicted

O Worst case - everything goes wrong: all loads miss the cache, resources needed
are occupied, operands are not ready

®m Span may be several hundred cycles

0 This makes it very problematic to use such CPUs for empirical WCET
analysis

0 In CFG-based WCET analysis, performance optimising features are
simply ignored

Summary
N

0 The determination of reliable WCET estimates is
fundamental for hard, and even soft RTS

0 WCET analysis can be done via empirical methods
or flow analysis, with both options having their pros,
cons, and limitations

0 A good starting point, particularly when dealing
with hard RTS, is the implementation of tasks with
low cyclomatic complexity, that are executed on
CPU / hardware with constant instruction execution
times, and with no timing accidents

	Slide 1: CT420 Real-Time Systems WCET Analysis
	Slide 2: Lecture Overview
	Slide 3: Recall: CE and Task Execution Times
	Slide 4: Estimating Worst-Case Execution Times
	Slide 5: Empirical WCET Analysis
	Slide 7: Example empirical WCET Analysis
	Slide 8: Empirical WCET Analysis in Practice
	Slide 9: Limitations of empirical WCET Analysis
	Slide 10: CFG-based WCET Analysis
	Slide 11: Steps of a CFG-based WCET Analysis
	Slide 12: Example for a CFG-based WCET Analysis
	Slide 13: Acquiring Execution Times of Building Blocks: From C to Assembly Language
	Slide 14: Pitfalls when calculating Execution Paths
	Slide 15: Recall: Two’s Complement Integer Representation
	Slide 16: WCET and SOTA CPUs
	Slide 19: Summary

