
CT420 REAL-TIME SYSTEMS

WCET ANALYSIS

Dr. Michael Schukat

Lecture Overview
2

 This slide deck provides an overview of

methodologies to estimate the Worst-Case

Execution Time (WCET) of a task or function using

 empirical evidence (empirical WCET analysis)

 analytical methods (control flow graph-based WCET

analysis)

Recall: CE and Task Execution Times

 Before we can determine
whether or not a
scheduling algorithm will
allow all periodic /
sporadic tasks to satisfy
their deadlines, we must
be aware of their
execution time

 Principal question: How
do we determine the
(worst case) execution
times of tasks?

3

Task Period p

[ms]

Exec Time

[ms]

A 25 10

B 25 8

C 50 5

D 50 4

E 100 2

Estimating Worst-Case Execution Times
4

 Many tasks exhibit non-uniform run times, e.g.:

 A task may inspect an environmental condition by simply recording
some data; however, occasionally, the task may have to react to a
situation that has been observed, that takes up additional CPU time

 Thus, we must estimate for each task the worst-case execution
time (WCET) for each task and determine whether or not all
deadlines can still be met under such circumstances

 This can be done via

 an analysis of the source code (CFG-based WCET analysis), or

 an estimation from empirical evidence (empirical WCET analysis)

 The goal of WCET analysis is to generate a safe (i.e. no
underestimation) and tight (i.e. small overestimation) estimate of
the worst-case execution time of a program (or program
fragment)

Empirical WCET Analysis
5

• To perform such a WCET analysis, a multitude of measurements with different task inputs and

task states are done

• To get meaningful results,

• the program execution must be uninterrupted (no pre-emptions or interrupts)

• there must be no interfering background activities, such as garbage collection, blocking,

synchronisation, or inter-task communication

Example empirical WCET Analysis

Example 1

int a, b, z, t;

while (1) {

 a = rand();

 b = rand();

 t = 0;

 reset_timer();

 start_timer();

 z = Voter(a, b);

 stop_timer();

 t = read_timer();

 store_timer_content(t);

}

Example 2

int a, t;

while (1) {

 reset_timer();

 t = 0;

 start_timer();

 a = ReadTempSensorA();

 stop_timer();

 t = read_timer();

 store_timer_content(t);

}

7

Empirical WCET Analysis in Practice

• Execute tests (with different inputs and states), store execution times (store_timer_content() in

previous example), quantise determined execution times (e.g., 1ms bin width), plot a histogram

for visualisation of results, and determine WCET, possibly also BCET and ACET

• Note: Light bars represent obtained results, black bars represent a (hypothetical) exhaustive test

Limitations of empirical WCET Analysis

 Measuring all different execution traces of a real size

program is intractable in practice

 e.g., even a mid-size task may have millions of different

paths

 Selected task inputs and task states may fail to trigger

the longest execution trace

 Rare execution scenarios may be missed (see example

on slide 4)

9

CFG-based WCET Analysis
10

 For hard RTS we can’t effort to miss only a single deadline, so
we need to make sure to capture a task’s WCET

 Starting point is to implement tasks with a low complexity

 i.e. limit the number of nested loops, if-then-else statements, etc.

 Software testing tools like Cobertura (a Java tool) allow
measuring method complexity

 Subsequently, flow analysis techniques using control flow
graphs (CFG) are used to identify possible ways a program
can execute

 These are combined with the execution times of programme
blocks

 Both used in tandem allow the calculation of a task’s WCET

Steps of a CFG-based WCET Analysis

11

Create the CFG

 Draw nodes for each basic block of code

 Connect nodes with directed edges to represent control flow (including if
statements and loops)

Annotate execution times

 Annotate each node with the execution time of the corresponding basic
block

Identify possible paths

 Traverse the graph to identify all possible paths from the entry node to the
exit node; incorporate maximum number of loop iterations

 Calculate the total execution time for each path by summing up the
execution times of the nodes along that path

Determine WCET

 The WCET is the maximum execution time among all possible paths in the
CFG

Example for a CFG-based WCET

Analysis
for (…) { // A

 if (…) { // B

 … // C

 }

 else {

 … // D

 }

 if (…) { // E

 … // F

 }

 else {

 … // G

 }

 … // H

}

Acquiring Execution Times of Building

Blocks: From C to Assembly Language

 Each instruction requires a set amount of CPU cycles for its
execution (CPU spec will tell)

 CPU cycle length is derived from a CPU’s clock rate

 E.g.

 4 MHz CPU clock ➔ 4 x 10-6 [s] cycle length (4 microseconds)

 An instruction that requires 10 CPU cycles has an execution time of 4 x
10-5 [s] (40 microseconds)

Pitfalls when calculating Execution

Paths
14

Recall: Two’s Complement Integer

Representation
15

 C and other programming

languages do not check for

numeric (signed and

unsigned integer) overflows

 E.g., with 4-bit signed int

“7 + 1” =

“0111 + 0001” =

“1000” = -8

WCET and SOTA CPUs

 Modern processors increase performance by using caches, pipelines, and

branch prediction

 These features make WCET computation difficult, as execution times of

instructions vary widely

 Best case - everything goes smoothly: no cache miss, operands ready, needed
resources free, branch correctly predicted

 Worst case - everything goes wrong: all loads miss the cache, resources needed
are occupied, operands are not ready

◼ Span may be several hundred cycles

 This makes it very problematic to use such CPUs for empirical WCET

analysis

 In CFG-based WCET analysis, performance optimising features are
simply ignored

Summary
19

 The determination of reliable WCET estimates is
fundamental for hard, and even soft RTS

 WCET analysis can be done via empirical methods
or flow analysis, with both options having their pros,
cons, and limitations

 A good starting point, particularly when dealing
with hard RTS, is the implementation of tasks with
low cyclomatic complexity, that are executed on
CPU / hardware with constant instruction execution
times, and with no timing accidents

	Slide 1: CT420 Real-Time Systems WCET Analysis
	Slide 2: Lecture Overview
	Slide 3: Recall: CE and Task Execution Times
	Slide 4: Estimating Worst-Case Execution Times
	Slide 5: Empirical WCET Analysis
	Slide 7: Example empirical WCET Analysis
	Slide 8: Empirical WCET Analysis in Practice
	Slide 9: Limitations of empirical WCET Analysis
	Slide 10: CFG-based WCET Analysis
	Slide 11: Steps of a CFG-based WCET Analysis
	Slide 12: Example for a CFG-based WCET Analysis
	Slide 13: Acquiring Execution Times of Building Blocks: From C to Assembly Language
	Slide 14: Pitfalls when calculating Execution Paths
	Slide 15: Recall: Two’s Complement Integer Representation
	Slide 16: WCET and SOTA CPUs
	Slide 19: Summary

