
CT420 REAL-TIME SYSTEMS

CYCLIC EXECUTIVE SCHEDULING

Dr. Michael Schukat 



Lecture Overview
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 Overview RTS scheduling approaches 

 Cyclic Executive Approach

 Dealing with Interrupts



Recap: Quality Requirements for RTSCS

 RTSCS must be time responsive

 RTSCS must be reliable

 The ability to behave in accordance with its specification

 RTSCS must be safe

 Conditions that lead to hazards do not occur

 RTSCS must be secure

 Protect itself against intentional or accidental access, use, modification or 
destruction

 RTSCS must be usable

 Easy to learn, understand, and use 

 RTSCS must be maintainable

 Return swiftly to an operational state after receiving repairs or 
modification (e.g. plug in-and-forget)



Which Programming Languages are 

(not) suitable to implement hard RTS?
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 Unsuitable programming languages include:

 Java, Python, Ruby, JS

◼ Their garbage collection can introduce non-deterministic behavior, 

as it can pause the execution of the program at unpredictable 

times, causing delays

◼ Dynamic typing can lead to unpredictable performance

 Suitable programming languages include:

 C, C++, Ada, Real-Time Java 

 Using C as an implementation language we now look into 

implementing synchronous tasks, starting with the cyclic 

executive approach



Cyclic Executive Approach

 Single Process
while(1){

 Task 1;

 Task 2;

 ..

 ..

 Task n;

}

 No Operating System ➔ No scheduler
 Manually construct cycle schedule

 Encapsulate all tasks within single infinite loop
 Tasks in this context are simply functions with or without function 

arguments



Trivial Arduino Example: Blinking LED
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Example for poorly programmed 

Scheduler
7

1 ms →
1000 ms →

1 ms →
1000 ms →

• Total execution time per loop: 2002 ms 

• Also, the execution time of digitalWrite() could vary, resulting in variable loop

execution times

• Therefore, we need to consider a better approach to program such schedulers   



Cyclic Executive

 Used for very well defined / periodic tasks with bounded 
execution times

 Need to ensure that tasks cannot block and halt all others

 Tasks may run at different frequencies

 E.g. they control different parameters with different 
physical characteristics (like temperature, pressure, 

voltage in power station)

 Overall cycle either

 will run as fast as processor can handle tasks 

 is slowed down by delay() function, i.e. may need to slow tasks down to 
meet particular RTS requirements (e.g. measure steam pressure 
every 50 ms)



Cyclic Executive

 Used for very well defined / periodic tasks with 
bounded execution times

 Need to ensure that tasks cannot block others
 Tasks may run at different frequencies

 Possible Strategies
◼ Run as fast as required by highest frequency task
◼ Use lower harmonics for remaining tasks

◼ Possible use of counters to control sequence

 Use of major and minor cycles
◼ E.g. Highest frequency task is 100 Hz 

◼ Other tasks at 50Hz, 25 Hz, etc.

◼ Use of timers/interval timers (rather than delay() function) to correctly 
‘schedule’ tasks → different to Arduino example



Cyclic Executive

 Task Set
 Major Cycle = 40 Hz

 Minor Cycle = 10 Hz

 Use interval timer 
interrupts to enable 
scheduler to loop through 
minor cycles

 Manually construct 
schedule to meet criteria

 Note: For now we just 
assume that task exec 
times are bounded! 

Task Period p 

[ms]

Exec Time 

[ms]

A 25 10

B 25 8

C 50 5

D 50 4

E 100 2
Execution

time

Deadlines Software

size

Software

complexity

Hard - Fast ⚫⚫⚫⚫ ⚫⚫⚫⚫ ⚫ ⚫

Hard - Slow ⚫ ⚫⚫⚫⚫ ⚫ → ⚫⚫⚫ ⚫ → ⚫⚫⚫⚫

Soft - Fast ⚫⚫⚫⚫ ⚫⚫
⚫ → ⚫⚫⚫

⚫ → ⚫⚫⚫

Soft - Slow ⚫⚫ ⚫⚫ ⚫ → ⚫⚫⚫⚫ ⚫ → ⚫⚫⚫⚫

Attribute rating

⚫ Low    ⚫⚫⚫⚫  high



CE Time Line

Interrupts generated every 25 ms via an interval timer

→ Tasks are launched every 25 ms (different to Arduino example)

INT INTINTINT

A

B

C

D

E



CE Pseudocode

loop

wait_for_INT

task_A

task_B

task_C

wait_for_INT

task_A

task_B

task_D

task_E

wait_for_INT

task_A

task_B

task_C

wait_for_INT

task_A

task_B

task_D

end loop

volatile int timerFlag = 0;

…

void wait_for_INT() {

   while timerFlag == 0) {}

   timerFlag = 0;

}

void interrupt timer_ISR() {

   timerFlag = 1; 

} 



Case Study NAS-Box

 Enclosure that provides space, power and control options for 

many (12- 60) hard disks (Network Attached Storage)

 Enclosure controller must handle a few crucial management 

tasks, including optimised temperature control (overheating 

of disks) while minimising cooling fan noise emissions 



Example NAS Box Controller CE 

# Task Period p [ms] Exec Time [ms]

1 X = ReadTempSensorA() 70 10

2 Y = ReadTempSensorB() 70 10

3 Z = Voter(X, Y) 70 5

4 SetFan(Z) 70 15

5 CheckDrives() 140 20

6 SetDriveLeds() 140 5

7 SelfTest() 140 15

Task Dependencies (i.e. tasks are simply ordered): 

- #1 + #2 → #3 → #4

- #5 → #6 



In-Class Activity

loop

wait_for_INT

A…

wait_for_INT

B…

end loop

Tasks:

1. Construct a suitable CE for the SAN example, i.e. 

Determine the sequence of tasks for A and B

(e.g. “A125B213”)

1. Determine timer settings, i.e. how often is 

the timer ISR invoked?



CE Example – My Solution

loop

wait_for_INT (70 ms) 

#1 (10 ms)

#2 (10 ms)

#3 (05 ms)

#4 (15 ms)

#5 (20 ms)

#6 (05 ms)

wait_for_INT (70ms)

#1 (10 ms)

#2 (10 ms)

#3 (05 ms)

#4 (15 ms)

#7 (15 ms)

end loop

Tasks:

1. Construct a suitable CE for the SAN example

2. Determine timer settings, i.e. how often is 

the timer ISR invoked?



Example Code

volatile int timerFlag;

main() {

 int X, Y, Z, state = 0;

 StartTimer(); 

 while (1) {
  timerFlag = 0;
 X = ReadTempSensorA();

  Y = ReadTempSensorB();

  Z = Voter(X, Y);

  SetFan(Z);

  switch(state) {

  case 0:

   SelfTest(); 

   break;

  case 1:

   CheckDrives();

   SetDriveLeds();

   break;

   

 default:

   break;

  }

  if (timerFlag ==1) {

   TimeoutError(state);

  }

  else {

   while (timerFlag == 0) ;

  }

 state ^= 1;

 }

}

void interrupt TimerISR() {

 timerFlag = 1;

}

void StartTimer(void) {

 /* Set hardware timer to 70 ms interval. */

 /* ... */

} 



Keyword volatile

 volatile is a qualifier that is applied to a variable 

when it is declared 

 It tells the compiler that the value of the variable 

may change at any time-without any action being 

taken by the code the compiler finds nearby

 Why is timerFlag in the previous example a volatile 

variable?

18



Cyclic Executive

 Major cycle must be multiple of minor cycle

 All tasks share common address space

 Can pass data easily

 Little/no need for data protection (e.g. via semaphores / 
mutex) 

◼ Only one task operates at any time 

◼ ➔No concurrent access possible

 Large tasks may need to be subdivided to 
facilitate/meet overall schedule ➔ adds to complexity

 Inflexible 
 Adding a new task may involve a lot of work

 Hardware specific ➔ very limited portability 



Cyclic Executive and ISRs

 Management of 

asynchronous events 

(interrupts) tricky

 Only workable, if:

 ISR is decoupled from 

other tasks (no 

dependencies like 

blocking)

 Maximum number of 

ISR executions does 

not cause task overrun

Task Period p 

[ms]

Exec Time 

[ms]

A 25 10

B 25 8

C 50 5

D 50 4

E 100 2



CE Time Line: Slack for asynchronous 

Interrupts

Synchronous interrupts generated every 25 ms, e.g. via interval timer

INT INTINTINT

A

B

C

D

E



Example Code with Overrun Check

volatile int timerFlag;

main() {

 int X, Y, Z, state = 0;

 StartTimer(); 

 while (1) {
  timerflag = 0;
 X = ReadTempSensorA();

  Y = ReadTempSensorB();

  Z = Voter(X, Y);

  SetFan(Z);

  switch(state) {

  case 0:

   SelfTest(); 

   break;

  case 1:

   CheckDrives();

   SetDriveLeds();

   break;

   

 default:

   break;

  }

  if (Timerflag ==1) {

   TimeoutError(state);

  }

  else {

   while (TimerFlag == 0) ;

  }

 state ^= 1;

 }

}

void interrupt TimerISR() {

 timerFlag = 1;

}

void StartTimer(void) {

 /* Set hardware timer to 70 ms interval. */

 /* ... */

} 



Example Code with Overrun Check 

and ISR Limitation
24

 The previous example allows detecting task overruns, using the 
TimerFlag variable

 However, it does not prevent it from happening, i.e. the scheduler 
gives ISR execution priority over timeliness of tasks

 Alternatively, one can give timeliness of task execution over ISR 
execution, assuming that limiting the number of ISR calls doesn’t 
break the system

 I.e. it’s a bad idea if all events/ISRs have an impact on system safety 
(→ airbag deployment)

 In the next example, intCounter represents the CPU time used for 
ISR execution, while ISR_LONG and ISR_SHORT are an upper 
boundary for the ISR execution times; the total sum of these over 
a single cycle must not exceed MAX_INTCOUNT



Example Code with Overrun Check 

and ISR Limitation

#define MAX_INTCOUNT    4 // Max value for ISR execution times

#define ISR_LONG             4 // Relative execution time of ISR

#define ISR_SHORT            2 // Relative execution time of ISR

volatile int timerFlag, intCounter;

main() {

 int X, Y, Z, state = 0;

 StartTimer(); 

 while (1) {
  timerflag = 0;

   intCounter = 0;
 X = ReadTempSensorA();

  Y = ReadTempSensorB();

  Z = Voter(X, Y);

  SetFan(Z);

  switch(state) {

  case 0:

   SelfTest(); 

   break;

  case 1:

   CheckDrives();

   SetDriveLeds();

   break;

 default:

   break;

  }

  if (Timerflag ==1) {

   TimeoutError(state);

  }

  else {

   while (TimerFlag == 0) ;

  }

 state ^= 1;

 }

}

/* void interrupt TimerISR() and void StartTimer(void) as seen before */

void interrupt OtherISRLong(void){

 if (intCounter + ISR_LONG > MAX_INTCOUNT) {

  /* Do nothing and exit */ } else {

   intCounter += ISR_LONG;

  /* Execute ISR code and exit */

 …                                            }

} 

void interrupt OtherISRShort(void){

 if (intCounter + ISR_SHORT <= MAX_INTCOUNT) {

   intCounter += ISR_SHORT;

  // Execute ISR code and exit

  …              }

 }



Next Topic: Benchmarking and WCET

 Principal question: 

How do we 

determine (worst 

case) execution times 

of tasks? 

27

Task Period p 

[ms]

Exec Time 

[ms]

A 25 10

B 25 8

C 50 5

D 50 4

E 100 2
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