
CT420 REAL-TIME SYSTEMS

CYCLIC EXECUTIVE SCHEDULING

Dr. Michael Schukat

Lecture Overview
2

 Overview RTS scheduling approaches

 Cyclic Executive Approach

 Dealing with Interrupts

Recap: Quality Requirements for RTSCS

 RTSCS must be time responsive

 RTSCS must be reliable

 The ability to behave in accordance with its specification

 RTSCS must be safe

 Conditions that lead to hazards do not occur

 RTSCS must be secure

 Protect itself against intentional or accidental access, use, modification or
destruction

 RTSCS must be usable

 Easy to learn, understand, and use

 RTSCS must be maintainable

 Return swiftly to an operational state after receiving repairs or
modification (e.g. plug in-and-forget)

Which Programming Languages are

(not) suitable to implement hard RTS?
4

 Unsuitable programming languages include:

 Java, Python, Ruby, JS

◼ Their garbage collection can introduce non-deterministic behavior,

as it can pause the execution of the program at unpredictable

times, causing delays

◼ Dynamic typing can lead to unpredictable performance

 Suitable programming languages include:

 C, C++, Ada, Real-Time Java

 Using C as an implementation language we now look into

implementing synchronous tasks, starting with the cyclic

executive approach

Cyclic Executive Approach

 Single Process
while(1){

 Task 1;

 Task 2;

 ..

 ..

 Task n;

}

 No Operating System ➔ No scheduler
 Manually construct cycle schedule

 Encapsulate all tasks within single infinite loop
 Tasks in this context are simply functions with or without function

arguments

Trivial Arduino Example: Blinking LED
6

Example for poorly programmed

Scheduler
7

1 ms →
1000 ms →

1 ms →
1000 ms →

• Total execution time per loop: 2002 ms 

• Also, the execution time of digitalWrite() could vary, resulting in variable loop

execution times

• Therefore, we need to consider a better approach to program such schedulers

Cyclic Executive

 Used for very well defined / periodic tasks with bounded
execution times

 Need to ensure that tasks cannot block and halt all others

 Tasks may run at different frequencies

 E.g. they control different parameters with different
physical characteristics (like temperature, pressure,

voltage in power station)

 Overall cycle either

 will run as fast as processor can handle tasks

 is slowed down by delay() function, i.e. may need to slow tasks down to
meet particular RTS requirements (e.g. measure steam pressure
every 50 ms)

Cyclic Executive

 Used for very well defined / periodic tasks with
bounded execution times

 Need to ensure that tasks cannot block others
 Tasks may run at different frequencies

 Possible Strategies
◼ Run as fast as required by highest frequency task
◼ Use lower harmonics for remaining tasks

◼ Possible use of counters to control sequence

 Use of major and minor cycles
◼ E.g. Highest frequency task is 100 Hz

◼ Other tasks at 50Hz, 25 Hz, etc.

◼ Use of timers/interval timers (rather than delay() function) to correctly
‘schedule’ tasks → different to Arduino example

Cyclic Executive

 Task Set
 Major Cycle = 40 Hz

 Minor Cycle = 10 Hz

 Use interval timer
interrupts to enable
scheduler to loop through
minor cycles

 Manually construct
schedule to meet criteria

 Note: For now we just
assume that task exec
times are bounded!

Task Period p

[ms]

Exec Time

[ms]

A 25 10

B 25 8

C 50 5

D 50 4

E 100 2
Execution

time

Deadlines Software

size

Software

complexity

Hard - Fast ⚫⚫⚫⚫ ⚫⚫⚫⚫ ⚫ ⚫

Hard - Slow ⚫ ⚫⚫⚫⚫ ⚫ → ⚫⚫⚫ ⚫ → ⚫⚫⚫⚫

Soft - Fast ⚫⚫⚫⚫ ⚫⚫
⚫ → ⚫⚫⚫

⚫ → ⚫⚫⚫

Soft - Slow ⚫⚫ ⚫⚫ ⚫ → ⚫⚫⚫⚫ ⚫ → ⚫⚫⚫⚫

Attribute rating

⚫ Low ⚫⚫⚫⚫ high

CE Time Line

Interrupts generated every 25 ms via an interval timer

→ Tasks are launched every 25 ms (different to Arduino example)

INT INTINTINT

A

B

C

D

E

CE Pseudocode

loop

wait_for_INT

task_A

task_B

task_C

wait_for_INT

task_A

task_B

task_D

task_E

wait_for_INT

task_A

task_B

task_C

wait_for_INT

task_A

task_B

task_D

end loop

volatile int timerFlag = 0;

…

void wait_for_INT() {

 while timerFlag == 0) {}

 timerFlag = 0;

}

void interrupt timer_ISR() {

 timerFlag = 1;

}

Case Study NAS-Box

 Enclosure that provides space, power and control options for

many (12- 60) hard disks (Network Attached Storage)

 Enclosure controller must handle a few crucial management

tasks, including optimised temperature control (overheating

of disks) while minimising cooling fan noise emissions

Example NAS Box Controller CE

Task Period p [ms] Exec Time [ms]

1 X = ReadTempSensorA() 70 10

2 Y = ReadTempSensorB() 70 10

3 Z = Voter(X, Y) 70 5

4 SetFan(Z) 70 15

5 CheckDrives() 140 20

6 SetDriveLeds() 140 5

7 SelfTest() 140 15

Task Dependencies (i.e. tasks are simply ordered):

- #1 + #2 → #3 → #4

- #5 → #6

In-Class Activity

loop

wait_for_INT

A…

wait_for_INT

B…

end loop

Tasks:

1. Construct a suitable CE for the SAN example, i.e.

Determine the sequence of tasks for A and B

(e.g. “A125B213”)

1. Determine timer settings, i.e. how often is

the timer ISR invoked?

CE Example – My Solution

loop

wait_for_INT (70 ms)

#1 (10 ms)

#2 (10 ms)

#3 (05 ms)

#4 (15 ms)

#5 (20 ms)

#6 (05 ms)

wait_for_INT (70ms)

#1 (10 ms)

#2 (10 ms)

#3 (05 ms)

#4 (15 ms)

#7 (15 ms)

end loop

Tasks:

1. Construct a suitable CE for the SAN example

2. Determine timer settings, i.e. how often is

the timer ISR invoked?

Example Code

volatile int timerFlag;

main() {

 int X, Y, Z, state = 0;

 StartTimer();

 while (1) {
 timerFlag = 0;
 X = ReadTempSensorA();

 Y = ReadTempSensorB();

 Z = Voter(X, Y);

 SetFan(Z);

 switch(state) {

 case 0:

 SelfTest();

 break;

 case 1:

 CheckDrives();

 SetDriveLeds();

 break;

 default:

 break;

 }

 if (timerFlag ==1) {

 TimeoutError(state);

 }

 else {

 while (timerFlag == 0) ;

 }

 state ^= 1;

 }

}

void interrupt TimerISR() {

 timerFlag = 1;

}

void StartTimer(void) {

 /* Set hardware timer to 70 ms interval. */

 /* ... */

}

Keyword volatile

 volatile is a qualifier that is applied to a variable

when it is declared

 It tells the compiler that the value of the variable

may change at any time-without any action being

taken by the code the compiler finds nearby

 Why is timerFlag in the previous example a volatile

variable?

18

Cyclic Executive

 Major cycle must be multiple of minor cycle

 All tasks share common address space

 Can pass data easily

 Little/no need for data protection (e.g. via semaphores /
mutex)

◼ Only one task operates at any time

◼ ➔No concurrent access possible

 Large tasks may need to be subdivided to
facilitate/meet overall schedule ➔ adds to complexity

 Inflexible
 Adding a new task may involve a lot of work

 Hardware specific ➔ very limited portability

Cyclic Executive and ISRs

 Management of

asynchronous events

(interrupts) tricky

 Only workable, if:

 ISR is decoupled from

other tasks (no

dependencies like

blocking)

 Maximum number of

ISR executions does

not cause task overrun

Task Period p

[ms]

Exec Time

[ms]

A 25 10

B 25 8

C 50 5

D 50 4

E 100 2

CE Time Line: Slack for asynchronous

Interrupts

Synchronous interrupts generated every 25 ms, e.g. via interval timer

INT INTINTINT

A

B

C

D

E

Example Code with Overrun Check

volatile int timerFlag;

main() {

 int X, Y, Z, state = 0;

 StartTimer();

 while (1) {
 timerflag = 0;
 X = ReadTempSensorA();

 Y = ReadTempSensorB();

 Z = Voter(X, Y);

 SetFan(Z);

 switch(state) {

 case 0:

 SelfTest();

 break;

 case 1:

 CheckDrives();

 SetDriveLeds();

 break;

 default:

 break;

 }

 if (Timerflag ==1) {

 TimeoutError(state);

 }

 else {

 while (TimerFlag == 0) ;

 }

 state ^= 1;

 }

}

void interrupt TimerISR() {

 timerFlag = 1;

}

void StartTimer(void) {

 /* Set hardware timer to 70 ms interval. */

 /* ... */

}

Example Code with Overrun Check

and ISR Limitation
24

 The previous example allows detecting task overruns, using the
TimerFlag variable

 However, it does not prevent it from happening, i.e. the scheduler
gives ISR execution priority over timeliness of tasks

 Alternatively, one can give timeliness of task execution over ISR
execution, assuming that limiting the number of ISR calls doesn’t
break the system

 I.e. it’s a bad idea if all events/ISRs have an impact on system safety
(→ airbag deployment)

 In the next example, intCounter represents the CPU time used for
ISR execution, while ISR_LONG and ISR_SHORT are an upper
boundary for the ISR execution times; the total sum of these over
a single cycle must not exceed MAX_INTCOUNT

Example Code with Overrun Check

and ISR Limitation

#define MAX_INTCOUNT 4 // Max value for ISR execution times

#define ISR_LONG 4 // Relative execution time of ISR

#define ISR_SHORT 2 // Relative execution time of ISR

volatile int timerFlag, intCounter;

main() {

 int X, Y, Z, state = 0;

 StartTimer();

 while (1) {
 timerflag = 0;

 intCounter = 0;
 X = ReadTempSensorA();

 Y = ReadTempSensorB();

 Z = Voter(X, Y);

 SetFan(Z);

 switch(state) {

 case 0:

 SelfTest();

 break;

 case 1:

 CheckDrives();

 SetDriveLeds();

 break;

 default:

 break;

 }

 if (Timerflag ==1) {

 TimeoutError(state);

 }

 else {

 while (TimerFlag == 0) ;

 }

 state ^= 1;

 }

}

/* void interrupt TimerISR() and void StartTimer(void) as seen before */

void interrupt OtherISRLong(void){

 if (intCounter + ISR_LONG > MAX_INTCOUNT) {

 /* Do nothing and exit */ } else {

 intCounter += ISR_LONG;

 /* Execute ISR code and exit */

 … }

}

void interrupt OtherISRShort(void){

 if (intCounter + ISR_SHORT <= MAX_INTCOUNT) {

 intCounter += ISR_SHORT;

 // Execute ISR code and exit

 … }

 }

Next Topic: Benchmarking and WCET

 Principal question:

How do we

determine (worst

case) execution times

of tasks?

27

Task Period p

[ms]

Exec Time

[ms]

A 25 10

B 25 8

C 50 5

D 50 4

E 100 2

	Slide 1: CT420 Real-Time Systems Cyclic Executive scheduling
	Slide 2: Lecture Overview
	Slide 3: Recap: Quality Requirements for RTSCS
	Slide 4: Which Programming Languages are (not) suitable to implement hard RTS?
	Slide 5: Cyclic Executive Approach
	Slide 6: Trivial Arduino Example: Blinking LED
	Slide 7: Example for poorly programmed Scheduler
	Slide 8: Cyclic Executive
	Slide 9: Cyclic Executive
	Slide 10: Cyclic Executive
	Slide 11: CE Time Line
	Slide 12: CE Pseudocode
	Slide 13: Case Study NAS-Box
	Slide 14: Example NAS Box Controller CE
	Slide 15: In-Class Activity
	Slide 16: CE Example – My Solution
	Slide 17: Example Code
	Slide 18: Keyword volatile
	Slide 19: Cyclic Executive
	Slide 21: Cyclic Executive and ISRs
	Slide 22: CE Time Line: Slack for asynchronous Interrupts
	Slide 23: Example Code with Overrun Check
	Slide 24: Example Code with Overrun Check and ISR Limitation
	Slide 25: Example Code with Overrun Check and ISR Limitation
	Slide 27: Next Topic: Benchmarking and WCET

