
CT420 REAL-TIME SYSTEMS

THE NTP PROTOCOL

Dr. Michael Schukat

2

Recall: Computer Clock Options

 Option A:
 Stick to crystals
 Precision manufacturing ➔ costly

 Temperature Compensated Crystal Oscillator (TCXO)

 Oven Controlled Crystal Oscillator (OCXO)

 Works indoors

 Option B:
 Buy an Atomic Clock ($50,000 - $100,000)

 .. or GNSS Receiver (based on atomic clock), but doesn’t work indoors

 .. or time signal radio receiver, e.g. DCF77, if you are based in central
Europe

 Option C:
 Software based approach to discipline cheap crystal clocks

 Lesser quality but useful for certain applications

 Works indoors too!

Distributed Master Clocks

 Such clock(s) provide a time reference to hosts that are interconnected via a network

 Underlying time-synchronisation protocols combine aspects of

 Cristian’s algorithm, i.e. RTD calculation

 Berkely’s algorithm, i.e. combining multiple reference time sources

 Good time synchronisation requires

 good time references – that’s easy (GPS, atomic clocks, etc.)

 predictable / symmetric / deterministic network latencies – that’s doable in LAN setups,
but not guaranteed in Internet data communication

 2 main protocols

 Network Time Protocol (NTP) (www.ntp.org)

◼ RFC 5905 (www.ietf.org)

◼ Originally Unix-based NTP daemon, now ported to most OS

◼ Version 4 standardised in 2010

◼ One of the first Internet protocols that evolved

 Precision Time Protocol (PTP)

◼ IEEE 1588-2008, with most recent update as IEEE 1588-2019 (also called PTP 2.1)

◼ Designed for managed networks, e.g. LAN

http://www.ntp.org/
http://www.ietf.org/

NTP and PTP Characteristics
4

Clock Synchronisation Error

Uni-Directional Synchronisation

Round-Trip Synchronisation (RTS)
6

𝛿 is eliminated, assuming

symmetric uplink-downlink

delay

(1)

(2)
𝜃 = Τ𝑇𝑖+1 − 𝑇𝑖 + (𝑇𝑖+2 − 𝑇𝑖+3) 2

𝛿 = 𝑇𝑖+3 − 𝑇𝑖 − (𝑇𝑖+2 − 𝑇𝑖+1)

• A Host request message, followed

by a Reference response message,

with known (local) submission and

arrival times, allow for the

calculation of

• round-trip delay (1)

• host clock error, i.e. phase offset (2)

• Variations of RTS form basis of

NTP and PTP

Example RTD and Offset Calculation
7

 Assume

 the Host clock is +2 [ms] ahead in relation to the Reference clock

 a one-way delay of 1 [ms], and a RTD of 2 [ms]

 a Reference processing time of 3 [ms]

 We name the 4 timestamps T1, T2, T3 and T4

 Therefore, with T1 = 00:00:00:005

 T1 = 5 (skip leading 0s)

 T2 = 5 + 1 – 2 = 4

 T3 = 4 + 3 = 7

 T4 = 5 + 1 + 3 + 1 = 10

 RTD = (T4 – T1) – (T3 – T2) = (10 – 5) – (7 - 4) = 2 [ms]

 OFF = ((T2 - T1) + (T3 – T4)) / 2 = ((4 - 5) + (7 - 10)) / 2
 = ((-1) + (-3)) / 2 = -2 [ms] (that’s the Host clock correction required)

Host Clock Synchronisation Errors due

to Asymmetric Delays
8

8

Example Incorrect Offset Calculation
9

 Assume

 the Host clock is +2 [ms] ahead in relation to the Reference clock

 asymmetric delays of 1 [ms] H->R, and 4 [ms] R->H, resulting in a RTD of 5 [ms]

 a Reference processing time of 3 [ms]

 Therefore, with T1 = 00:00:00:005

 T1 = 5 (skip leading 0s)

 T2 = 5 + 1 – 2 = 4

 T3 = 4 + 3 = 7

 T4 = 5 + 1 + 3 + 4 = 13

 RTD = (T4 – T1) – (T3 – T2) = (13 – 5) – (7 - 4) = 8 – 3 = 5 [ms] (correct)

 OFF = ((T2 - T1) + (T3 – T4)) / 2 = ((4 - 5) + (7 - 13)) / 2
 = ((-1) + (-6)) / 2 = -3.5 [ms] (that’s obviously not correct)

10

NTP

 The NTP architecture, protocol and algorithms have evolved over the
last 40 years to the latest NTP Version 4

 Internet standard protocol for time synchronisation and coordinated
UTC time distribution

 Fault tolerant protocol – automatically selects the best of several
available time sources to synchronise with

 Highly scalable – nodes form a hierarchical structure with reference
clock(s) at the top

 Stratum 0: Time Reference Source
◼ GPS / TAI atomic clocks / DCF 77

 Stratum 1: Primary Time Server

 Applies some general principles (as discussed before)
 Avoid setting clocks backward

 Avoid large step changes
◼ Amortise the required change (+/-) over a series of short intervals (e.g. over

multiple ticks)

NTP
11

 NTP is the longest running and continuously operating

Internet protocol (since around 1979)

 Government agencies in many other countries and on all

continents (including Antarctica) operate public NTP

primary servers

 National and regional service providers operate public

NTP secondary servers synchronised to the primary servers

 Many government agencies, private and public institutions,

including universities, broadcasters, financial institutions and

corporations operate their own NTP networks

12

Client / Server Mode

 UDP is used for data transfer (no TCP), i.e., NTP over UDP
 UDP port 123

 Optionally use of broadcasting or multicasting (not covered here)

 Several packet exchanges between NTP client and Stratum
server take place to determine client offset (see also next slide)
 Client

◼ Sends packet with originate timestamp A

 Server receives such a packet and returns response containing A as well
as:
◼ receive timestamp B

◼ transmit timestamp C

 Client receives this packet and
◼ processes A, B, C as well as (this) packet arrival time D

◼ Determines offset and Round-Trip Delay (RTD)

14

NTP Operation

C 3.59.022

D 3.59.032

B 3.59.020

A 3.59.000

15 ms 15 ms

Symmetric Network : 15 ms delay each way

The client’s clock lags 5 ms behind the server’s clock

RTD = (D - A) – (C – B) = 32 – 2 = 30 msec

Offset = ((B - A) + (C - D)) / 2 = (20 + (-10)) / 2 = 10 / 2 = 5 msec

Client

Server

Problem again: Network Delay

Asymmetry

C 3.59.017

D 3.59.032

B 3.59.015

A 3.59.000

10 ms 20 ms

The client’s clock still lags 5 ms behind the server’s clock …

But there is an asymmetric network latency, i.e., 10 ms vs 20 ms

RTD = (D - A) – (C – B) = 32 – 2 = 30 msec

Offset = ((B - A) + (C - D)) / 2 = (15 + (-15)) / 2 = 0 / 2 = 0 msec

Typical NTP Performance
16

 Small LAN

 ~10 microseconds best case ever on 2-node LAN

 ~220 microseconds on real-world small LAN

 Typical large-building LAN

 ~2 ms

 Internet with few hops

 10 – 20 ms

 Long distance and/or slow or busy link

 100 ms – 1 s

 Accuracy further degraded on networks with asymmetric
traffic delays

 Some of these configurations are further explored in
assignment 1

NTP Time Format
17

 Reference scale is UTC

 Time parameters are 64 bits long:

 Seconds since January 1, 1900 (32 bits, unsigned)

 Fraction of a second (32 bits, unsigned)

 Dynamic range: 136+ years

 rollover in 2036

 Resolution: 2-32 seconds ~232 picoseconds

NTP Protocol Header

19

 LI Leap Indicator: 2-bit

 0 = no warning

 1 = last minute of the day has 61 seconds

 2 = last minute of the day has 59 seconds

 VN Version number: 2-bit

 currently 4

 Mode: 3-bit integer, including

 3 = client

 4 = server

 Stratum: 8-bit integer for Stratum server hierarchy level,
including

 1 = primary server (i.e. stratum 1)

 2-15 = secondary server

secondary server

NTP Protocol Header

20

 Poll: 8-bit signed integer representing the maximum interval
between successive messages, in log2 seconds

 This field indicates the interval at which the client will poll the NTP
server for time updates

 The client dynamically adjusts this interval based on its clock's stability
and the network conditions to balance accuracy and network load

 Precision: 8-bit signed integer representing the resolution of the
system clock (the tick increment), in log2 seconds

 E.g., a value of -18 corresponds to a resolution of about one
microsecond, i.e. 2-18 seconds

 Root Delay: Round-trip packet delay from a client to a stratum 1
server

 It gives a crude estimate of the worst-case time transfer error between
a client and a stratum 1 server due to network asymmetry, i.e. if all of
the round-trip delay was in one direction and none in the other
direction

NTP Protocol Header

Example Root Dispersion and Root

Delay
21

22

 For a single client clock the dispersion is a measure of how much the client's clock
might drift during a synchronisation cycle:

 Dispersion = DR * (D – A) + TS, with

◼ (D - A) = Duration of a synchronisation cycle

◼ A = First timestamp, see previous example

◼ D = 4th (last) timestamp, see previous example

◼ DR = Local clock skew, i.e., déviation of actual clock tick frequency to nominal tick frequency

◼ TS = Timestamping errors due to the finite resolution of the clock, and delays in reading the clock
when fetching a timestamp

 The root dispersion of a client’ clock is the combined dispersions of all stratum
servers along the path to a Stratum 1 server

 The root distance

 is the sum of root dispersion and half the root delay

 provides a comprehensive measure of the maximum error in time synchronization is the
total worse case timing error accumulated between the stratum 1 server and the client.

Dispersion, Root Dispersion

Common Synchronisation Source Time

Reference Identifier Codes
23

refid Clock Source

GPS Global Positioning System

GAL Galileo Positioning System

PPS Generic pulse-per-second

DCF LF Radio DCF77 Mainflingen, DE 77.5 kHz

WWV HF Radio WWV Fort Collins, Colorado

GOOG Unofficial Google Refid used by Google NTP servers as time4.google.com

 Reference ID (refid): 32-bit code (4 ASCII bytes)

identifying the particular server or reference clock, see

examples below

A

B

C

This is the local time at

which the system clock

was last set or corrected

NTP Protocol Header

25

Recall: NTP Operation

C 3.59.022

D 3.59.032

B 3.59.020

A 3.59.000

15 ms 15 ms

Symmetric Network : 15 ms each way (actual delay)

RTD = (D - A) – (C – B) = 32 – 2 = 30 msec

Offset = ((B - A) + (C - D)) / 2 = (20 + (-10)) / 2 = -10 / 2 = -5 msec

Client

Server

Architectural Overview
26

 An NTP client synchronises with multiple stratum servers

 It uses a range of algorithms to deal with variable and asymmetric non-deterministic
network delays and to determine its most likely offset, thereby running a series of
processes:

 Peer process runs when a packet is received

 Poll process sends packets at intervals determined by the clock discipline process and remote
server

 System process runs when a new update is received

 Clock discipline process implements clock time adjustments

 Clock adjust process implements periodic clock frequency (VFO) adjustments (FYI only)

Remote

Servers

Server 1

Server 2

Peer/Poll

1

Server 3

Peer/Poll

2

Peer/Poll

3

Selection, Clustering

and Mitigation

Algorithms

(System Process)

Loop Filter

VFO

Clock Discipline

 Process

Peer/Poll

Processes Clock Adjust

 Process

NTP Operation Overview
27

 For each stratum server there is a Poll process that sends NTP

packets at intervals ranging from 8 s to 36 hr

 The corresponding Peer processes receive NTP packets and

after performing some packet sanity tests, T1 - T4 are

determined / extracted

 The NTP daemon calculates offset and delay as seen before

 The time series of offset and delay values calculated by

multiple peer processes are processed by a sequence of

algorithms

 Eliminate servers with long RTD, or servers that show “strange”

offsets, which for example are the result of network asymmetries

Clock Filter Algorithm
28

 For each stratum server it uses a sliding window of
eight samples and picks out the sample with the least
expected error

 I.e. choose sample with minimum roundtrip delay (RTD)

 Effective at removing spikes resulting from intermittent
network congestions

Motivation Clock Filter Algorithm
29

 The wedge scattergram plots sample points of offset versus delay (RTD) collected over a 24-
hr period by a client clock communicating with a single stratum server

 For this experiment the client clock is externally synced to the stratum server, so the offset should be
zero

 However, as the (network) roundtrip delay increases, the offset variability increases, resulting
in increasingly larger offset errors

 Therefore, the best samples are those at the lowest delay

 This is taken into account by the clock filter algorithm

Mitigation Algorithms: Intersection

Algorithm

Clocks 1, 2 ,3 are truechimers

4 is a falseticker3

2

1

4

 Selects a subset of peers, i.e. stratum servers

 Based on intersection of confidence (offset) intervals

 i.e. min / max offsets of a clock over recent x readings determine its
interval

 Identifies truechimers & falsetickers

 Here: plot range of offsets calculated by each peer with 1, 2,
3 overlapping

Based on Marzullo’s Algorithm (1984)
31

 Agreement protocol for
estimating accurate time
from a number of noisy
time sources

 If we have offset intervals

 10 +/- 2, 12 +/- 1, 11
+/- 1, then interval
intersection is 11.5 +/- 0.5

 If some intervals don’t
intersect, consider
intersection of majority of
intervals

 Algorithm eliminates false
tickers

 See also
https://en.wikipedia.org/w
iki/Marzullo%27s_algorith
m

https://en.wikipedia.org/wiki/Marzullo%27s_algorithm
https://en.wikipedia.org/wiki/Marzullo%27s_algorithm
https://en.wikipedia.org/wiki/Marzullo%27s_algorithm

FYI: Clustering (Clock Selection) and

Combining Algorithm

 This clock cluster algorithm processes the truechimers
returned by the clock intersection algorithm

 It produces a list of survivors by eliminating truechimers
that have a comparably large root delay and root
dispersion

 Finally, the clock combining algorithm averages the time
offsets of survivors using their root dispersions as a weight

 I.e., survivors with a small root dispersion have a higher weight

Clock Discipline

 The Combining Algorithm provides a final offset, so the client clock can be adjusted

 Recall (important when setting the clock):

 No time reversal (clocks don’t go back)

 Avoid step changes (clocks do not change time abruptly)

 Instead, make the clock ticking slower or faster

 The Unix Clock Model provides the Kernel variable tickadj

 It amortises required change gradually by making adjustment every tick, for
example every 10 msec

 Example (see last lecture)

__interrupt void clock_handler() {

 Master_clock.tv_nsec += CLOCK_TICK_INCREMENT + tickadj;

 while (Master_clock.tv_nsec > ONE_SECOND_IN_NANO_SEC) {

 Master_clock.tv_nsec -= ONE_SECOND_IN_NANO_SEC;

 Master_clock.tv_sec++;

 }

}

Outline Assignment 1: NTP

Benchmarking
38

 Setup NTP client

 Identify and configure Stratum servers from various

geographic areas

 Use ntpq to collect NTP offset, delay and jitter

concurrently for all chosen time servers over 8-12

hours

 Analyse, compare and contrast data

The ntpq Tool

41

 Time difference

Server Details

 (st)ratum level, with 0 == Stratum 1 server

 (t)ypes: l = local (e.g. GPS), u = unicast (i.e. networked)

 when: number of seconds since last response

 poll: interval in seconds between queries

 reach: Reachability in octal, e.g.

 11111111 = 3778 = max

 11101110 = 3568 ➔ last + 5th probe lost

 Symbol prefix of server name

 * : Synch Source – survivor with smallest dispersion

 + : other candidates included in final combination algorithm

 - : Discarded by clustering algorithm

 x : Falseticker identified by intersection algorithm

 delay: RTD

 jitter: A measure of the variability in the time offset between the client and the
server; it indicates the stability of the clock offset over time

ntp-galway.hea.net

 GPS receiver

 DCF 77 Radio

 Operational since 2002

 > 2,000,000 different

clients

 50,000 requests per

hour

43

	Slide 1: CT420 Real-Time Systems The NTP Protocol
	Slide 2: Recall: Computer Clock Options
	Slide 3: Distributed Master Clocks
	Slide 4: NTP and PTP Characteristics
	Slide 5: Uni-Directional Synchronisation
	Slide 6: Round-Trip Synchronisation (RTS)
	Slide 7: Example RTD and Offset Calculation
	Slide 8: Host Clock Synchronisation Errors due to Asymmetric Delays
	Slide 9: Example Incorrect Offset Calculation
	Slide 10: NTP
	Slide 11: NTP
	Slide 12
	Slide 13: Client / Server Mode
	Slide 14: NTP Operation
	Slide 15
	Slide 16: Typical NTP Performance
	Slide 17: NTP Time Format
	Slide 18
	Slide 19: NTP Protocol Header
	Slide 20: NTP Protocol Header
	Slide 21: Example Root Dispersion and Root Delay
	Slide 22: Dispersion, Root Dispersion
	Slide 23: Common Synchronisation Source Time Reference Identifier Codes
	Slide 24
	Slide 25: Recall: NTP Operation
	Slide 26: Architectural Overview
	Slide 27: NTP Operation Overview
	Slide 28: Clock Filter Algorithm
	Slide 29: Motivation Clock Filter Algorithm
	Slide 30
	Slide 31: Based on Marzullo’s Algorithm (1984)
	Slide 32: FYI: Clustering (Clock Selection) and Combining Algorithm
	Slide 37: Clock Discipline
	Slide 38: Outline Assignment 1: NTP Benchmarking
	Slide 39
	Slide 41
	Slide 42: Server Details
	Slide 43: ntp-galway.hea.net
	Slide 44

