

JAVA RMI

 Remote Method Invocation (RMI)
– This is a Java-Based mechanism for distributed
object computing.
– RMI enables the distribution of work to other
Java objects residing in other processes or on
other machines.
– The objects in one Java Virtual Machine (JVM)
are allowed to seamlessly invoke methods on
objects in a remote JVM.
– To call a method of a remote object we must
first get a reference to that object.

Distributed Systems Lectures 1 University of Galway

JAVA RMI

– This reference may be obtained:
 From the registry name facility.
 By receiving the reference as an argument or return
value of a method call.

– Clients can call a remote object in a server that
itself is a client of another server.
– Parameters of method calls are passed as
serialised objects.
 Types are not truncated - therefore, object-oriented
polymorphism is supported

 Parameters are passed by value (deep copy) -
therefore object behaviour can be passed

Distributed Systems Lectures 2 University of Galway

JAVA RMI

– The Java Object Model is still supported with
distributed (remote) objects.
– A reference to a remote object can be passed
to or returned from local and remote objects.
– Remote object references are passed by
reference - therefore the whole object is not
always downloaded:
 Objects that implement the Remote interface are
passed as a remote reference.

 Other objects are passed by value (using object
serialisation).

Distributed Systems Lectures 3 University of Galway

JAVA RMI

Distributed Systems Lectures 4 University of Galway

JAVA RMI

– The client obtains a reference for a remote
object by calling:
 Naming.lookup(//URL/registered name)
 A method which returns a reference to another
remote object.

–Methods of the remote object may then be
called by the client:
 This call is actually to the stub which represents the
remote object.

 The stub packages the arguments (marshalling) into
a data stream (to be sent across the network).

Distributed Systems Lectures 5 University of Galway

JAVA RMI

–On the implementation side:
 The skeleton unmarshals the argument, calls the
method, marshals the return value and sends it back.

 The stub unmarshals the return value and returns it
to the caller.

– The RMI layer sits on top of the JVM and this
allows it to use the following functionality:
 Java Garbage Collection of Remote Objects.
 Java Security - a security manager may be set for
the server.

 Java Class Loading.

Distributed Systems Lectures 6 University of Galway

JAVA RMI

» Steps to creating an RMI application
 Define the interfaces to your remote objects.
 Implement the remote object classes.
 Write the main client and server programs (some
examples follow).

 Create the stub & skeleton classes by running the
rmic compiler on the remote implementation classes.

 Start the rmiregistry (if not already started).
 Start the server application.
 Start client (which obtains some initial object refs.)
 The client application/applet may then call object
methods in the remote (server) program.

Distributed Systems Lectures 7 University of Galway

JAVA RMI

» Example Program

// Remote Object has a single method that is passed
// the name of a country and returns the capital city.
import java.rmi.*;

public interface CityServer extends Remote
{
String getCapital(String Country) throws

RemoteException;
}

Distributed Systems Lectures 8 University of Galway

JAVA RMI

» Server Implementation
import java.rmi.*;
import java.rmi.server.*;
public class CityServerImpl

extends UnicastRemoteObject
implements CityServer

{
// constructor is required in RMI
CityServerImpl() throws RemoteException
{
super(); // call the parent constructor

}

Distributed Systems Lectures 9 University of Galway

JAVA RMI

// Remote method we are implementing!
public String getCapital(String country) throws

RemoteException
{

System.out.println("Sending return string now
- country requested: " + country);
if (country.toLowerCase().compareTo(“usa")
== 0)
return "Washington";

else if
(country.toLowerCase().compareTo(“ireland")
== 0)
return "Dublin";

Distributed Systems Lectures 10 University of Galway

JAVA RMI

else if
(country.toLowerCase().compareTo(“france")
== 0)
return "Paris";
return "Don't know that one!";

}

// main is required because the server is standalone
public static void main(String args[])
{
try
{

Distributed Systems Lectures 11 University of Galway

JAVA RMI

// First reset our Security manager
System.setSecurityManager(new
RMISecurityManager());
System.out.println("Security manager set");

// Create an instance of the local object
CityServerImpl cityServer = new
CityServerImpl();
System.out.println("Instance of City Server

created");

// Put the server object into the Registry

Distributed Systems Lectures 12 University of Galway

JAVA RMI

Naming.rebind("Capitals", cityServer);
System.out.println("Name rebind completed");
System.out.println("Server ready for
requests!");

}
catch(Exception exc)
{
System.out.println("Error in main - " +
exc.toString());

}
}

}

Distributed Systems Lectures 13 University of Galway

JAVA RMI

» Client Implementation
public class CityClient
{
public static void main (String args[])
{

CityServer cities = (CityServer)
Naming.lookup(“//localhost/Capitals”);

try {
String capital = cities.getCapital(“USA”);
System.out.println(capital); }

catch (Exception e) {}
} }

Distributed Systems Lectures 14 University of Galway

JAVA RMI

» Class RemoteException
– No distributed system can mask
communication failures:
 Method semantics should include failure possibilities.
 Every RMI remote method must declare the
exception RemoteException in its throw clause.

 This exception is thrown when method invocation or
return fails.

 The Java compiler requires failures to be handled
(no choice here).

Distributed Systems Lectures 15 University of Galway

JAVA RMI

» Implementing a Remote Object
– Implementation class usually extends the RMI
class UnicastRemoteObject:
 This indicates that the implementation class is used
to create a single (nonreplicated) remote object that
uses RMI's default sockets based transport for
communication.

– If you choose to extend a remote object from a
nonremote class:
 You need to explicitly export the remote object by
calling the method
UnicastRemoteObject.exportObject().

Distributed Systems Lectures 16 University of Galway

JAVA RMI

» Security Manager
– The main method of the service first needs to
create and install a security manager:
 Either the RMISecurityManager or one that you have
defined yourself.

 A security manager needs to be running so that it
can guarantee that the classes loaded do not
perform "sensitive" operations.

– If no security manager is specified, no class
loading for RMI classes, local or otherwise, is
allowed.

Distributed Systems Lectures 17 University of Galway

JAVA RMI

» Making Code Available
–Make classes available via a web server (or
your classpath):
 E.g. copy them into your public html directory.

– Alternatively, you could have compiled your
files directly into your public html directory:
 javac -d ~des/public_html City*.java
 rmic -d ~des/public_html CityServerImpl

– The files generated by rmic (in this case) are:
 CityServerImpl_Stub.class
 CityServerImpl_Skel.class

Distributed Systems Lectures 18 University of Galway

JAVA RMI

» Poylmorphic Distributed Computing
– Ability to recognise (at runtime) the actual
implementation type of a particular interface.
–We will use example of a remote object that is
used to compute arbitrary tasks:
 Client sends task object to compute server.
 Compute server runs task and returns result.
 RMI loads task code dynamically in server.

– This example shows polymorphism on the
server - it will also work on the client e.g.:
 Server returns a particular interface implementation.

Distributed Systems Lectures 19 University of Galway

JAVA RMI

» The Task
– Simple interface that defines an arbitrary task
to compute:

public interface Task extends Serializable
{

Object run();
}

Distributed Systems Lectures 20 University of Galway

JAVA RMI

» Define a Remote Interface

import java.rmi.*;

public interface Compute extends Remote
{

Object runTask(Task t)
throws RemoteException;

}

Distributed Systems Lectures 21 University of Galway

JAVA RMI

» Notes on the Compute Interface
– A task may create a Remote object on the
server and return a reference to that object:
 The Remote object will be garbage collected when
the returned reference is dropped (assuming no one
else is handed a copy of the reference).

– A task may create a Serializable object and
return a copy of that object:
 The original object will be locally garbage collected
when the Task ends.

– If the task creates an object that is neither a
marshalling exception will be thrown.

Distributed Systems Lectures 22 University of Galway

JAVA RMI

» Implementation
– As in the previous example, for the peer-to-
peer compute server implementation:
 Extend the UnicastRemoteObject class.
 Implement methods of remote interface.
 Create and install a security manager.
 Create remote object and bind in a name facility.

–On the client side:
 Create tasks to be executed.
 Lookup the compute service by name.
 Send tasks to compute service and print results.

Distributed Systems Lectures 23 University of Galway

JAVA RMI

» The Compute Server
import java.rmi.*;
import java.rmi.server.*;
public class ComputeServer extends
UnicastRemoteObject implements Compute

{
public ComputeServer()

throws RemoteException {}
public Object runTask(Task t) {

return t.run();
}
// …

Distributed Systems Lectures 24 University of Galway

JAVA RMI

» The main Method

public static void main(String args[])
{

System.setSecurityManager(
new RMISecurityManager());

try {
ComputeServer cs = new ComputeServer();
Naming.rebind(“Computer”, cs);

} catch (Exception e) { // Exception Handling }
}

Distributed Systems Lectures 25 University of Galway

JAVA RMI

» Task to Compute PI
public class Pi implements Task
{

private int places;
public Pi (int places) {

this.places = places;
}
public Object run() {

// Compute Pi
return result;

}
}

Distributed Systems Lectures 26 University of Galway

JAVA RMI

» Task to Compute a FFT
public class FFT implements Task
{

public FFT (args …) {
// set FFT args …

}
public Object run() {

// Compute the FFT
return result;

}
}

Distributed Systems Lectures 27 University of Galway

JAVA RMI

» The Client
Compute comp = (Compute) Naming.Lookup(
“//www.it.nuigalway.ie/Computer);

Pi pi = new Pi(100);
FFT fft = new FFT(args…);

Object piResult = comp.runTask(pi);
Object fftResult = comp.runTask(fft);

// Print Results ...

Distributed Systems Lectures 28 University of Galway

www.it.nuigalway.ie/Computer

JAVA RMI

» Conclusion
– RMI is flexible and allows us to:

 Pass objects (both Remote and Serializable) by
exact type rather than declared type

 Download code to introduce extended functionality in
both client and server

 However…it is Java only and it has been superseded
by REST and SOAP as the de-facto standards for
communicating with remote services

 But…RMI is still worth learning to help understand
concepts around distributed objects and distributed
systems architecture

Distributed Systems Lectures 29 University of Galway

