
CS4423-W02-1

January 23, 2025

Table of Contents

1 News:

1.1 Labs

1.2 Website

2 networkx

2.1 Check basic properties:

2.2 Adding and removing nodes and edges

3 Neighbours and degree

4 Important Graphs

4.1 Complete Graphs

4.2 Bipartite Graphs

4.3 Complete Bipartite Graphs

4.4 Path Graphs

5 Exercises

CS4423 : Week 02 - Lecture 1 - Networks # More on Graphs, and networkx

Niall Madden, School of Mathematical and Statistical Sciences
University of Galway

(These notes are adapted from Angela Carnevale’s work)

This notebook is at https://www.niallmadden.ie/2425-CS4423/W02/CS4423-W02-1.ipynb You can
read the HTML version at https://www.niallmadden.ie/2425-CS4423/W02/CS4423-W02-1.html

This version of this notebook was written by Niall Madden, adapted from notebooks by Angela
Carnevale.

0.1 News:
0.1.1 Labs

Labs start next week, and an (reintroduction) to Python. This will run: * Tuesday at 4 in AC215
(slight chance this might get moved to Tuesday at 3), and * Wednesday at 10am in CA116a.

1

These rooms are not labs: BYoD! (Bring Your Own Device)

0.1.2 Website

I now plan to post all notes to https://www.niallmadden.ie/2425-CS4423/ as well as to Canvas.

0.2 networkx

Last week we learned a little about the networkx package. We’ll return to that now, while also
revisiting some key ideas about graphs.

As ever, we’ll start with importing the networkx module, as well as numpy: more about that later.
And we’ll define the opts option dictionary.

[]: import networkx as nx
import numpy as np
opts = { "with_labels": True, "node_color": 'y' } # show labels; yellow noodes

To create a graph with nodes 1, 2, 3, 4, 5, and edges between all even and odd labelled nodes:

[]: K32 = nx.Graph() # makes THE empty graph
K32.add_edges_from([(1, 2), (1,4), (2,3), (2,5), (3,4), (4,5)])

We’ll later learn this is the graph 𝐾3,2. Now draw it:

[]: nx.draw(K32, **opts)

We can also be lazy, and just give 2-letter strings for the edges: this implicitly defines the nodes
too.

[]: K33 = nx.Graph(["A1", "A2", "A3", "B1", "B2", "B3", "C1", "C2", "C3"])
nx.draw(K33, **opts)

0.2.1 Check basic properties:

[]: print(f"K33 has {K33.number_of_nodes()} nodes and {K33.number_of_edges()}␣
↪edges")

[]: print(f"This is the same as saying K33 order {K33.order()} and size {K33.
↪size()}")

To list the nodes and edges (as lists)

[]: list(K33.nodes)

[]: list(K33.edges)

A loop over a graph G will effectively loop over G’s nodes. As an example, (recall?) that the degree
of a node is the number of edges incident to it (or, if you prefer, the number of neighbours).

[]: for node in K33:
print(f"node {node} has neighbours {list(K33.neighbors(node))}")

2

0.2.2 Adding and removing nodes and edges

We say that * G.add_node('v') adds a node to 𝐺 called ‘v’ * G.add_nodes_from([2, 3,
5]) adds all the nodes from a list * G.add_nodes_from(H]) adds all the nodes from Graph
𝐻 to Graph 𝐺 * G.add_edge('x','y') add edge from Node 𝑥 to Node 𝑦, adding one or
both nodes, if needed. * G.add_edges_from([(1,5), (2,5), (3,5)]) add edges from a list *
G.add_edges_from(H.edges) add edges from another graph * G.remove_edge('x','y') remove
edge from 𝑥 to 𝑦, but keep the nodes * G.remove_node('x') remove node 𝑥 and any edge it was
incident to.

0.3 Neighbours and degree
(As we’ve seen) * The neighbours of a node are those that it shares an edge with; * If nodes 𝑎
and 𝑏 are neighbours, we say they are adjacent. * the degree of a node is the number of edges
incident to it (or, if you prefer, the number of neighbours).

Let’s look at an example:

[]: Edges1 = [('Aoife', 'Brian'), ('Aoife', 'Ciara'), ('Aoife', 'Daire'), ('Aoife',␣
↪'Ella'),

('Aoife', 'Finn'), ('Brian', 'Ciara'), ('Brian', 'Finn'), ('Ciara',␣
↪'Daire'),

('Daire', 'Ella'), ('Ella', 'Finn')]
G1 = nx.Graph(Edges1)

[]: nx.draw(G1, **opts)

This is example, which is known as a wheel graph is chosen because it exhibits a famous concept in
Network Science: The Friendship Paradox: your friends (probably) have more friends, on average,
than you do!

Explanation:

[]: #pos = nx.nx_agraph.graphviz_layout(G1)
#nx.draw(G1, pos=pos,**opts)

0.4 Important Graphs
In this section we’ll discuss some important examples of graphs, which we’ll return to later as key
examples of networks. These include * Complete Graphs * Bipartite and complete bipartite graphs
* Path graphs

0.4.1 Complete Graphs

The complete graph on a vertex set 𝑋 is the graph with edge set all of (𝑋
2). That is: every node

is a neighbour of every other node. It is denoted 𝐾𝑛 where 𝑛 = |𝑋|. E.g., if 𝑋 = {0, 1, 2, 3}, then
𝐾4 (“the complete graph on 4 nodes”) has edges 𝐸 = {01, 02, 03, 12, 13, 23}.

[]: nodes = range(4)
list(nodes)

3

https://en.wikipedia.org/wiki/Complete_graph

[]: E4 = [(x, y) for x in nodes for y in nodes if x < y]
print(E4)

[]: K4 = nx.Graph(E4)
nx.draw(K4, **opts)

While it is somewhat straightforward to find all 2-element subsets of a given set 𝑋 with a short
python program, it is probably more convenient (and possibly efficient) to use a function from the
itertools package for this purpose.

[]: from itertools import combinations
nodes5 = range(5)
combinations(nodes5, 2)

[]: print(list(combinations(nodes5, 2)))

[]: K5 = nx.Graph(combinations(nodes5, 2))

[]: nx.draw(K5, **opts)

networkx has a built-in function to create complete graphs: complete_graph [doc]

[]: nx.draw(nx.complete_graph("NETWORKS"), **opts)

[]: nx.draw(nx.complete_graph(22), **opts)

0.4.2 Bipartite Graphs

A graph is bipartite if we can divide the node set, 𝑋, into two subsets 𝑋1 and 𝑋2 such that *
𝑋1 ∩ 𝑋2 = ∅ (the sets have no edge in common) * 𝑋1 ∪ 𝑋2 = 𝑋 * For any edge (𝑢1, 𝑢2) we have
𝑢1 ∈ 𝑋1 and 𝑢2 ∈ 𝑋2. That is we only ever have edges between nodes from different sets.

Such graphs are very common in Network Science, where nodes in the network represent two
different types of entities. For example, we might have a graph where nodes represent students and
modules, with edges between students and modules they are enrolled in, often called an affiliation
network.

[]: Edges2 = [('Aoife', 'CS4423'), ('Aoife', 'CS319'), ('Aoife', 'MA432'),
('Brian', 'CS4423'), ('Brian', 'CS319'),
('Ciara', 'CS319'), ('Ciara', 'MA432'),
('Daire', 'MA432')]

G2 = nx.Graph(Edges2)
nx.draw(G2, **opts)

Somehow that previous graph did not catch the essence of the network: there are two different
types of node. We could make that clearer, by colouring the nodes. Here we’ll do it manually
(later, automatically).

[]: print(G2.nodes)
color_list= ['c','y','y','y','c', 'c','c'] # y=yellow; c=cyan

4

https://networkx.org/documentation/stable//reference/generated/networkx.generators.classic.complete_graph.html

nx.draw(G2, node_color=color_list, with_labels=True)

0.4.3 Complete Bipartite Graphs

A complete bipartite graph is a particular bipartite graph where there is an edge between every
node in 𝑋1 and every node in 𝑋2. Such graphs are denoted 𝐾𝑚,𝑛 where |𝑋1| = 𝑚 and |𝑋2| = 𝑛.
(We met 𝐾2,2 and 𝐾3,3 earlier).

As usual, there is a built-in generator: complete_bipartite_graph [doc]

[]: K33 = nx.complete_bipartite_graph(3,3)
nx.draw(K33,**opts)

0.4.4 Path Graphs

The Path Graph with 𝑛 nodes, denoted 𝑃𝑛, is one where two nodes have degree 1, and the other
𝑛 − 2 have degree 2:

[]: P4 = nx.Graph(["ab", "bc", "cd", "de"])
nx.draw(P4)

The built-in nerworkxgenerator is called path_graph [doc]

[]: P10 = nx.path_graph(10)
nx.draw(P10)

0.5 Exercises
1. For what values of 𝑛 is 𝐾𝑛 bipartite?

2. For what values of 𝑚 and 𝑛 is 𝐾𝑚,𝑛 bipartite?

3. For what values of 𝑛 is 𝑃𝑛 bipartite?

4. (Based on Q2(a) from the 2023/2024 CS4423 Exam paper) Let 𝐺 be the graph on the set of
nodes {1, 2, 3, 4, 5, 6} with edges 1 − 2, 1 − 3, $2-$4, 3 − 4, 3 − 6, 4 − 5, 4 − 6. Draw the graph
𝐺. Is 𝐺 bipartite? Justify your answer. (Note saying 𝑎 − 𝑏 is an edge in 𝐺 is the same as
saying (𝑎, 𝑏) is an element of its edge set).

5. (Based on Q1(b) of the 2019/2019 CS4423 paper) At a party with 𝑛 = 5 people, some people
know each other already while others don’t. Each of the 5 guests is asked how many friends
they have at this party. Two report that they have one friend each. Two other guests have
two friends each, and the fifth guest has three friends at the party. Understanding friendship
as a symmetric relation, is this network possible? Why, or why not? (Hint: recall that the
sum of all node degrees is twice the number of edges in the graph).

Finished here Wednesday

5

https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.bipartite.generators.complete_bipartite_graph.html
https://networkx.org/documentation/stable/reference/generated/networkx.generators.classic.path_graph.html

	News:
	Labs
	Website

	networkx
	Check basic properties:
	Adding and removing nodes and edges

	Neighbours and degree
	Important Graphs
	Complete Graphs
	Bipartite Graphs
	Complete Bipartite Graphs
	Path Graphs

	Exercises

