
Building Your 1st Microservices 1

�
Building Your 1st Microservices
We will create a simple Spring Boot microservice that mimics a Netflix-like
feature—let's say an API that manages a list of movies. It will expose RESTful
endpoints for operations like retrieving a list of movies and adding a new movie.

Spring Boot Setup
Create a new Spring Boot project using Spring Initializr.

Add the following dependencies:

Spring Web for building RESTful services.

Spring Data JPA for database interaction (if needed).

H2 Database for a simple in-memory database (or any database you
prefer).

Example pom.xml Dependencies:

<dependencies>

 <!-- Spring Web -->

 <dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-web</artifactId>

 </dependency>

Building Your 1st Microservices 2

 <!-- Spring Data JPA -->

 <dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-data-jpa</artifa

ctId>

 </dependency>

 <!-- H2 Database -->

 <dependency>

 <groupId>com.h2database</groupId>

 <artifactId>h2</artifactId>

 </dependency>

</dependencies>

Add Swagger Dependencies:

You can add the following dependencies for springdoc-openapi
(which is the library for integrating OpenAPI 3 with Spring Boot):

In your pom.xml file (if youʼre using Maven):

<!-- Swagger-OpenAPI Integration for Spring Boot

3.x -->

<dependency>

<groupId>org.springdoc</groupId>

<artifactId>springdoc-openapi-starter-

webmvc-ui</artifactId>

<version>2.1.0</version>

</dependency>

<!-- Optional: Springdoc OpenAPI Security

(for OAuth2 or Security integrations) -->

<dependency>

<groupId>org.springdoc</groupId>

<artifactId>springdoc-openapi-starter-

common</artifactId>

<version>2.1.0</version>

</dependency>

Building Your 1st Microservices 3

Configure Swagger OpenAPI

Once you've added the dependencies, you can configure Swagger
automatically. The springdoc-openapi library automatically
generates API documentation for your REST controllers and provides
a Swagger UI.

If you want to customize your Swagger UI or OpenAPI configuration,
create a SpringDocConfig class:

import org.springdoc.core.models.GroupedOpenApi;

import org.springframework.context.annotation.Bea

n;

import org.springframework.context.annotation.Conf

iguration;

@Configuration

public class SpringDocConfig {

 @Bean

 public GroupedOpenApi publicApi() {

 return GroupedOpenApi.builder()

 .group("public-api")

 .pathsToMatch("/api/**") // Adjust ba

sed on your API path

 .build();

 }

}

Create a Simple REST Controller
In this step, create a controller that exposes the movie catalog. This will
allow you to GET a list of movies and POST a new movie.

Example MovieController.java :

@RestController

@RequestMapping("/api/movies")

public class MovieController {

Building Your 1st Microservices 4

 private final List<Movie> movies = new ArrayList<>

();

 // Get all movies

 @GetMapping

 public List<Movie> getMovies() {

 return movies;

 }

 // Add a new movie

 @PostMapping

 public Movie addMovie(@RequestBody Movie movie) {

 movies.add(movie);

 return movie;

 }

}

Example Movie.java Entity:

public class Movie {

 private String title;

 private String genre;

 private int releaseYear;

 // Constructors, getters, and setters ...

}

Configure Swagger in Spring Boot
Spring Boot automatically configures Swagger when you include the
springdoc-openapi-ui dependency.

To customise the documentation, you can add the following
configuration in application.properties :

springdoc.api-docs.enabled=true

springdoc.swagger-ui.path=/swagger-ui.html

Building Your 1st Microservices 5

When you start the Spring Boot application, you can access the API
documentation at http://localhost:8080/swagger-ui.html .

This provides a visual interface where developers can see the API
endpoints, test them interactively, and view response details.

Create a Dockerfile
Now that we have a functional microservice, we will containerize it using
Docker.

In the root of your project, create a Dockerfile to define how the application
will be containerized.

Example Dockerfile :

Use an official OpenJDK runtime as a parent image

FROM openjdk:17-jdk

Set the working directory inside the container

WORKDIR /app

Copy the packaged Spring Boot app to the container

COPY target/movie-service-0.0.1-SNAPSHOT.jar /app/movie-

service.jar

Run the application

ENTRYPOINT ["java", "-jar", "movie-service.jar"]

Expose the port on which the app will run

EXPOSE 8080

Build and Run the Docker Image
� Build the Docker image:

docker build -t movie-service .

� Run the Docker container:

Building Your 1st Microservices 6

docker run -p 8080:8080 movie-service

At this point, your microservice is running inside a Docker container, and
you can access it at http://localhost:8080/api/movies .

Deploy the Service and Test the API
Now that the service is running in Docker, you can test it using the
Swagger UI that we set up earlier. Open your browser and go to
http://localhost:8080/swagger-ui.html .

Youʼll be able to interact with the API, test the endpoints, and view the
generated documentation.

 Set Up CI/CD with GitHub Actions
The goal here is to set up continuous integration and deployment so that
every code change is automatically built, tested, and deployed.

This automation allows teams to ship changes more quickly and reduces
the risk of errors or delays caused by manual deployments.

GitHub Actions provides a native way to automate tasks in a CI/CD
pipeline, such as running tests, building Docker images, and pushing
them to Docker Hub.

Example ci.yml Workflow:
Create a GitHub Actions workflow file in the .github/workflows directory of
your project. This file defines the steps needed to build, test, and deploy the
microservice.

name: CI/CD Pipeline

on:

 push:

 branches:

 - main

jobs:

 build-and-deploy:

 runs-on: ubuntu-latest

Building Your 1st Microservices 7

 steps:

 # Step 1: Check out the code (v4)

 - name: Checkout code

 uses: actions/checkout@v4

 # Step 2: Set up JDK (Java Development Kit) - v4 a

nd set to Java 17

 - name: Set up JDK 17

 uses: actions/setup-java@v4

 with:

 java-version: '17'

 # Step 3: Build the Spring Boot application using

Maven

 - name: Build with Maven

 run: mvn clean package

 # Step 4: Build the Docker image

 - name: Build Docker image

 run: docker build -t your-dockerhub-username/mov

ie-service .

 # Step 5: Log in to Docker Hub

 - name: Log in to Docker Hub

 run: echo "${{ secrets.DOCKERHUB_PASSWORD }}" |

docker login -u "${{ secrets.DOCKERHUB_USERNAME }}" --pa

ssword-stdin

 # Step 6: Push the Docker image to Docker Hub

 - name: Push Docker image to Docker Hub

 run: docker push your-dockerhub-username/movie-s

ervice

This workflow automatically triggers on every push to the main branch and
pushes the Docker image to Docker Hub.

Building Your 1st Microservices 8

Automate Deployment with Docker Hub and Kubernetes
Optional)

After building the Docker image and pushing it to Docker Hub, we can
deploy the microservice to a container orchestration platform like
Kubernetes for scalability.

If you're using Kubernetes, here's how you can deploy your Dockerized
microservice.

� Create a Kubernetes Deployment YAML:
Create a
deployment.yaml file that defines how Kubernetes will run the
microservice.

apiVersion: apps/v1

kind: Deployment

metadata:

 name: movie-service

spec:

 replicas: 3

 selector:

 matchLabels:

 app: movie-service

 template:

 metadata:

 labels:

 app: movie-service

 spec:

 containers:

 - name: movie-service

 image: your-dockerhub-username/movie-service:lat

est

 ports:

 - containerPort: 8080

 resources:

 limits:

 memory: "512Mi"

 cpu: "500m"

 requests:

Building Your 1st Microservices 9

 memory: "256Mi"

 cpu: "250m"

apiVersion: v1

kind: Service

metadata:

 name: movie-service

spec:

 selector:

 app: movie-service

 ports:

 - protocol: TCP

 port: 80 # The port to expose externally

 targetPort: 8080 # The port your container is list

ening on

 type: LoadBalancer # Exposes the service externally

(can use NodePort for internal testing)

� Deploy to Kubernetes:

If you have a Kubernetes cluster running (e.g., on Google
Kubernetes Engine or a local Minikube cluster), deploy the
microservice using kubectl .

kubectl apply -f deployment.yaml

Using Docker Compose:
Alternatively, if Kubernetes is too complex for your use case, Docker
Compose can help orchestrate multiple containers, such as running the
microservice alongside a database.

� Create a docker-compose.yml File:
Example
docker-compose.yml to run the movie-service and an H2 database together.

version: '3'

services:

 movie-service:

 image: your-dockerhub-username/movie-service:latest

Building Your 1st Microservices 10

 ports:

 - "8080:8080" # Expose movie-service on port 808

0

 environment:

 SPRING_DATASOURCE_URL: jdbc:h2:tcp://h2db:9092/~/t

est # Connect movie-service to H2 DB

 SPRING_DATASOURCE_USERNAME: sa

 SPRING_DATASOURCE_PASSWORD:

 SPRING_DATASOURCE_DRIVER_CLASS_NAME: org.h2.Driver

 depends_on:

 - h2db

 h2db:

 image: oscarfonts/h2

 ports:

 - "8081:8081" # H2 console exposed on port 8081

 environment:

 H2_OPTIONS: '-tcp -tcpAllowOthers -web -webAllowOt

hers' # Allow remote connections

 command: java -jar /opt/h2/bin/h2.jar # Run H2 data

base as a service

� Run the Docker Compose setup:
Start the services using Docker Compose.

docker-compose up

This will run both the microservice and the H2 database in containers and
expose the microservice on http://localhost:8080 .

