Building Your 1st Microservices

We will create a simple Spring Boot microservice that mimics a Netflix-like
feature—let's say an API that manages a list of movies. It will expose RESTful
endpoints for operations like retrieving a list of movies and adding a new movie.

¥ Spring Boot Setup
o Create a new Spring Boot project using Spring Initializr.
o Add the following dependencies:
o Spring Web for building RESTful services.
o Spring Data JPA for database interaction (if needed).

o H2 Database for a simple in-memory database (or any database you
prefer).

Example pom.xml Dependencies:

dependencies
<!-- Spring Web -->
dependency
groupId>org.springframework.boot</groupId
artifactId>spring-boot-starter-web</artifactId

dependency

Building Your 1st Microservices

<!-- Spring Data JPA -->
dependency
groupId>org.springframework.boot</groupId
artifactId>spring-boot-starter-data-jpa</artifa
ctIld
dependency

<!-- H2 Database -->
dependency
groupId>com.h2database</groupId
artifactId>h2</artifactId
dependency
dependencies

e Add Swagger Dependencies:

o You can add the following dependencies for springdoc-openapi
(which is the library for integrating OpenAPI 3 with Spring Boot):

o Inyour pon.xm1 file (if you're using Maven):

<!-- Swagger-0penAPI Integration for Spring Boot
3.X -->
<dependency>
<groupId>org.springdoc</groupId>
<artifactId>springdoc-openapi-starter-
webmvc-ui</artifactId>
<version>2.1.0</version>
</dependency>

<!-- Optional: Springdoc OpenAPI Security
(for OAuth2 or Security integrations) -->
<dependency>
<groupId>org.springdoc</groupId>
<artifactId>springdoc-openapi-starter-
common</artifactId>
<version>2.1.0</version>
</dependency>

Building Your 1st Microservices

« Configure Swagger (OpenAPI)

o Once you've added the dependencies, you can configure Swagger
automatically. The springdoc-openapi library automatically
generates API documentation for your REST controllers and provides
a Swagger Ul.

o If you want to customize your Swagger Ul or OpenAPI configuration,
create a springbocconfig class:

import org.springdoc.core.models.GroupedOpenApi;
import org.springframework.context.annotation.Bea
n;

import org.springframework.context.annotation.Conf
iguration;

@Configuration
public class SpringDocConfig {

@Bean
public GroupedOpenApi publicApi() {
return GroupedOpenApi.builder()
.group("public-api")
.pathsToMatch("/api/**") // Adjust ba
sed on your API path
Lbuild();

¥ Create a Simple REST Controller

In this step, create a controller that exposes the movie catalog. This will
allow you to GET a list of movies and POST a new movie.

Example MovieController.java :
@RestController

@RequestMapping("/api/movies")
public class MovieController {

Building Your 1st Microservices

private final List<Movie> movies = new ArraylList<>

();

// Get all movies

@GetMapping

public List<Movie> getMovies() {
return movies;

// Add a new movie

@PostMapping

public Movie addMovie(@RequestBody Movie movie) {
movies.add(movie);
return movie;

Example movie.java Entity:

public class Movie {
private String title;
private String genre;
private int releaseYear;

// Constructors, getters, and setters

v Configure Swagger in Spring Boot

e Spring Boot automatically configures Swagger when you include the
springdoc-openapi-ui dependency.

o To customise the documentation, you can add the following
Configuration in application.properties :

springdoc.api-docs.enabled=true
springdoc.swagger-ui.path=/swagger-ui.html

Building Your 1st Microservices

» When you start the Spring Boot application, you can access the API
documentation at http://localhost:8080/swagger-ui.html .

e This provides a visual interface where developers can see the API
endpoints, test them interactively, and view response details.

V¥ Create a pockerfile

Now that we have a functional microservice, we will containerize it using
Docker.

In the root of your project, create a nockerfile to define how the application
will be containerized.

Example Dockerfile :

Use an official OpenJDK runtime as a parent image
FROM openjdk:17-jdk

Set the working directory inside the container
WORKDIR /app

Copy the packaged Spring Boot app to the container
COPY target/movie-service-0.0.1-SNAPSHOT.jar /app/movie-

service.jar

Run the application
ENTRYPOINT ["java", "-jar", "movie-service.jar"]

Expose the port on which the app will run
EXPOSE 8080

v Build and Run the Docker Image

1. Build the Docker image:

docker build -t movie-service

2. Run the Docker container:

Building Your 1st Microservices

docker run -p 8080:8080 movie-service

At this point, your microservice is running inside a Docker container, and
you cah access it at nttp://localhost:8080/api/movies .

v Deploy the Service and Test the API

» Now that the service is running in Docker, you can test it using the
Swagger Ul that we set up earlier. Open your browser and go to

http://localhost:8080/swagger-ui.html .

* You'll be able to interact with the API, test the endpoints, and view the
generated documentation.

v Set Up CI/CD with GitHub Actions

e The goal here is to set up continuous integration and deployment so that
every code change is automatically built, tested, and deployed.

o This automation allows teams to ship changes more quickly and reduces
the risk of errors or delays caused by manual deployments.

e GitHub Actions provides a native way to automate tasks in a CI/CD
pipeline, such as running tests, building Docker images, and pushing
them to Docker Hub.

Example ci.ym1 Workflow:

Create a GitHub Actions workflow file in the .github/workfiows directory of
your project. This file defines the steps needed to build, test, and deploy the
microservice.

name: CI/CD Pipeline

on:
push:

branches:

- main

jobs:

build-and-deploy:
runs-on: ubuntu-latest

Building Your 1st Microservices

steps:
Step 1: Check out the code (v4)
- name: Checkout code
uses: actions/checkout@v4

Step 2: Set up JDK (Java Development Kit) - v4 a
nd set to Java 17
- name: Set up JDK 17
uses: actions/setup-java@v4
with:
java-version: '17'

Step 3: Build the Spring Boot application using
Maven
- name: Build with Maven
run: mvn clean package

Step 4: Build the Docker image
- name: Build Docker image
run: docker build -t your-dockerhub-username/mov
ie-service

Step 5: Log in to Docker Hub
- name: Log in to Docker Hub
run: echo "${{ secrets.DOCKERHUB_PASSWORD }}" |
docker login -u "${{ secrets.DOCKERHUB_USERNAME }}" --pa
ssword-stdin

Step 6: Push the Docker image to Docker Hub
- name: Push Docker image to Docker Hub
run: docker push your-dockerhub-username/movie-s
ervice

This workflow automatically triggers on every push to the nain branch and
pushes the Docker image to Docker Hub.

Building Your 1st Microservices

v Automate Deployment with Docker Hub and Kubernetes
(Optional)

» After building the Docker image and pushing it to Docker Hub, we can
deploy the microservice to a container orchestration platform like
Kubernetes for scalability.

« If you're using Kubernetes, here's how you can deploy your Dockerized
microservice.

1. Create a Kubernetes Deployment YAML.:
Create a
deployment.yanl file that defines how Kubernetes will run the
microservice.

apivVersion: apps/v1l
kind: Deployment
metadata:
name: movie-service
spec:
replicas: 3
selector:
matchLabels:
app: movie-service
template:
metadata:
labels:
app: movie-service
spec:
containers:
- name: movie-service
image: your-dockerhub-username/movie-service:lat
est
ports:
- containerPort: 8080
resources:
limits:
memory: "512Mi"
cpu: "500m"
requests:

Building Your 1st Microservices

memory: "256Mi"
cpu: "250m"
apivVersion: vi1
kind: Service
metadata:
name: movie-service

spec:
selector:
app: movie-service
ports:
- protocol: TCP
port: 80 # The port to expose externally

targetPort: 8080 # The port your container is list

ening on
type: LoadBalancer # Exposes the service externally

(can use NodePort for internal testing)

1. Deploy to Kubernetes:
» If you have a Kubernetes cluster running (e.g., on Google
Kubernetes Engine or a local Minikube cluster), deploy the
microservice using kubectl .

kubectl apply -f deployment.yaml

v Using Docker Compose:
Alternatively, if Kubernetes is too complex for your use case, Docker
Compose can help orchestrate multiple containers, such as running the
microservice alongside a database.

1. Create a docker -compose.yml File:

Example
docker-compose.yml 1O run the movie-service and an H2 database together.

version: '3’
services:

movie-service:
image: your-dockerhub-username/movie-service:latest

Building Your 1st Microservices

ports:
"8080:8080" # Expose movie-service on port 808

environment:
SPRING_DATASOURCE_URL: jdbc:h2:tcp://h2db:9092/~/t
est # Connect movie-service to H2 DB
SPRING_DATASOURCE_USERNAME: sa
SPRING_DATASOURCE_PASSWORD:
SPRING_DATASOURCE_DRIVER_CLASS_NAME: org.h2.Driver
depends_on:

- h2db
h2db:
image: oscarfonts/h2
ports:
"8081:8081" # H2 console exposed on port 8081
environment:

H2_OPTIONS: '-tcp -tcpAllowOthers -web -webAllowOt
hers' # Allow remote connections
command: java -jar /opt/h2/bin/h2.jar # Run H2 data
base as a service

1. Run the Docker Compose setup:
Start the services using Docker Compose.

docker-compose up

This will run both the microservice and the H2 database in containers and
expose the microservice on http://localhost:8080 .

Building Your 1st Microservices

