N

CT417 SOFTWARE ENGINEERING Il

BUFFER OVERFLOW CASE STUDY — THE HEARTBLEED BUG

Dr. Michael Schukat

A Bug with its own Website (heartbleed.com) and Icon

The Heartbleed Bug

The Heartbleed Bug is a serious vulnerability in the popular Open35L cryptographic software library. This weakness

allows stealing the information protected, under normal conditions, by the SSL/TLS encryption used to secure the
Internet. SSL/TLS provides communication security and privacy over the Internet for applications such as web, email,

instant messaging (IM) and some virtual private networks (VPNs).

The Heartbleed bug allows anyoene on the Intemnet to read the memory of the systems protected by the vulnerable
versions of the CpenSSL software. This compromises the secret keys used to identify the service providers and to
encrypt the traffic, the names and passwords of the users and the actual content. This allows attackers o eavesdrop on
communications, steal data directly from the services and users and to impersonate services and users.

What leaks in practice?

We have tested some of our own services from attacker's perspective. We attacked
ourselves from outside, without leaving a trace. Without using any privileged information
or credentials we were able steal from ourselves the secret keys used for our X.509
certificates, user names and passwords, instant messages, emails and business critical
documents and communication.

How to stop the leak?

As long as the vulnerable version of OpenSSL is in use it can be abused. Fixed OpenSSL
has been released and now it has to be deployed. Operating system vendors and
distribution, appliance vendors, independent software vendors have to adopt the fix and
notify their users. Service providers and users have to install the fix as it becomes
available for the operating systems, networked appliances and software they use.

XXX

TLS Overview
N

0 Based on the SSL protocol, which was originally
developed in the 1990s to secure ecommerce
transaction on the web, i.e.

O encryption to protect customers’ personal data
O authentication and integrity check of transactions

0 To achieve this, the SSL protocol was implemented
at the application layer, directly on top of TCP,

enabling (application layer) protocols above it (e.g.
HTTP) to operate unchanged

TLS Overview
N

TLS location in

protocol stack

Application (HTTP...) Application
Session (TLS) > % Alert
ChangeCipherSpec
Transport (TCP) Handshake
Network (IP) Fragmentation
= Integrity
Data Link —> —
e= Authentication
Physical Encryption

Encryption, Authentication and Integrity
B

0 The TLS protocol provides three essential services to all
application layer protocols running above it

0 Encryption

o A mechanism to obfuscate what is sent from one host to another
(typically between a client and a server)

0 Authentication

O A mechanism to verify the validity of provided identification
material (i.e. (mutual) authentication using digital certificates)
O Integrity

O A mechanism to detect message tampering and forgery
(messages cannot be manipulated in transit, and messages cannot
be forged by a threat actor)

HTTPS

e £
0 “HTTP over TLS”

0 HTTPS protects the integrity of the website

O Encryption prevents intruders from tampering with
transmitted data

0 HTTPS protects the privacy and security of the user

O Encryption prevents intruders from eavesdropping and
abusing the exchanged data

0 HTTPS enables new features on the web

0 Necessary to safely use new web platform features, such as
accessing users geolocation, VolP and videoconferencing

TLS Handshake

Sender Receiver

g T ST P PR[STH ACK

| 56 ms g

L A[K S e S)
— T e Serverfiell
(IIE"tHEIID FAERRE L] L1 L] * L] FHE * L] L] FAERRE FRERRE L] FRERRE L] FHE * L] {Ertiﬁcate

Eq.ms T R R TP EETE PRI T TEEEEEET

) . 4—”/‘ _ ServerHelloDone |

[ClientKeyEXChange Joeee.e...d & e essmsr e eenenssnsenn] 112105

ChangeCipherSpec \ , : \
o] 1685 ")

, Application Data

Swas -4l

WLl - Sl

196 [A S e GLLLLEEEL

-
- -
-

-
-

Overview Heartbleed

I I ——
0 Discovered in 2014
0 Exploits a bug in the OpenSSL

implementation of the TLS
“heartbeat hello” extension

0 Can affect both client and server
side

X X

OpenSSL

0 OpenSSL is an open-source library (=2 GitHub) that
contains routines / algorithms / protocol
implementations / ciphers used for secure network
communication

O Including SSL (depreciated) and TLS implementations

0 It is written in C and widely used in Linux
distributions

O Linux is a widely used server-side OS

Heartbleed Impact

I
0 Reported via CVE-2014-0160 (later)
0 The following operating system distributions were
potentially affected:
O Debian Wheezy (stable)
o Ubuntu 12.04.4 LTS
0 CentOS 6.5
O Fedora 18
0 OpenBSD 5.3
o FreeBSD 10.0
0 NetBSD 5.0.2
0 OpenSUSE 12.2

TLS Heartbeat Extension

0 Originally TLS had no provisions to keep a client /
server connection alive without continuous data
transfer
O ldle connections would timeout instead and a

computationally expensive reconnect would have to
take place (224 ms in example)

0 The heartbeat extension provides a new protocol
for “keep-alive” messages
0 One endpoint could send out a HeartbeatRequest

message, which would be immediately responded with
a HeartbeatResponse message

Heartbeat with incoming Message

‘correc’rlm buffered

Tz

SERVER, ARE YOU STiLL THERE?

rso' N mm‘ (6 M)‘

The Heartbleed Attack

Heartbeat Request / Response Message
B

* The Heartbeat protocol messages consist of their type and an
arbitrary payload and padding.

heartbeat_request or heartbeat_response

* struct {
HeartbeatMessageType type;
uintl6 payload_length;
opaque payload[HeartbeatMessage.payload length];

opaque padding[padding_length]; 16+ bytes of random
} HeartbeatMessage; content, ignored by receiver

0 The sender composes a request message containing a payload with a specified
length (i.e. payload_length)

0 The receiver returns a response message containing a copy of the sender’s payload
(with length payload_length)

0 “opaque” seems to be a typdef (i.e. unsigned char)

Pseudo-Code Example (correct)
N

Sender (constructs correct request message):

struct HeartbeatMessage msg;

msg.HeartbeatMessageType = heartbeat_request;

msg.payload_length = 2;

alloc(msg.payload, 2); // Note that the payload array is dynamically allocated

msg.payload = “AB”;

Receiver (receives above incoming msg) embedded in TCP/IP/TLS packet and constructs response
s_msg:

struct HeartbeatMessage s_msg;
s_msg.HeartbeatMessageType = heartbeat_response;
s_msg.payload_length = msg.payload_length;

alloc (s_msg.payload, msg.payload_length);
memcpy(s_msg.payload, msg.payload, msg.payload_length);

Other data msg.payload Other data

A
v

msg.payload_length

Heartbleed Exploit
B

0 The server receives a request message and stores in in
(stack and heap) memory

0 Memory also contains other sessions-related information
including tokens, keys, session IDs etc. from other sessions

0 If (unint16) payload_length is actually larger than (opaque)
payload]..], the server will copy heap memory content
beyond the payload array into the response message
payload array (e.g. ret_payload), which is then sent back
to the sender:
memcpy (ret_payload, payload, payload_length);

memcpy(s_msg.payload, msg.payload, msg.payload_length);

Pseudo-Code Example (Heartbleed

EXEloi’rt

Sender (constructs correct request message):
struct HeartbeatMessage msg;
msg.HeartbeatMessageType = heartbeat_request;
msg.payload_length = OxFFFF;

—_ L7
pu— .

msg.payload ;

Receiver (receives above incoming msg) embedded in TCP/IP/TLS packet and constructs response
s_msg:

struct HeartbeatMessage s_msg;
s_msg.HeartbeatMessageType = heartbeat_response;
s_msg.payload_length = msg.payload_length;
alloc(s_msg.payload, msg.payload_length);
memcpy(s_msg.payload, msg.payload, msg.payload_length);

msg.payload

Other data Other data

O bytes long!

A
v

msg.payload_length

Heartbleed Exploit Extract (Python
Code

O https://qist.github.com/eelsivart /10174134

Heartbleed (CVE-2014-0160) Test & Exploit Python Script

E heartbleed.py Raw

1 #!Y/usr/bin/python

Modified by Traviz Lee
Last Updated: 4/21/14
version 1.16

-changed output to display text only instead of hexdump and made it easier to read

-added option to specify number of times to connect to server (to get more data)

-added option to send STARTTLS command for use with SMTP/POP/IMAP/FTP/etc...

-added option to specify an input file of multiple hosts, line delimited, with or without a port specified (host:port}

#
#
#
#
#
#
#
#

11 # -added option to have verbose output
-added capability to automatically check if STARTTLS/STLS/AUTH TLS is supported when smtp/pop/imap/ftp ports are entered and automaticall;
-added option for hex output
-added option to output raw data to a file
-added option to output ascii data to a file
-added option to not display returned data on screen (good if doing many iterations and outputting to a file)

-added tls version auto-detection
-added an extract rsa private key mode (orig code from epixoip. will exit script when found and enables -d (do not display returned data «
#

-requires following modules: gmpy, pyasnl

[
#*

Quick and dirty demonstration of CVE-2814-816@ by Jared Stafford (jspenguing@jspenguin.org)

r
dt

The author disclaims copyright to this source code.

24 dimport sys
25 import struct
26 import socket
2 import time
28 import select

20 import re

https://gist.github.com/eelsivart/10174134

What can be leaked?

38 20 3t 4€ 45 R 2.0.50727: .NE 63 63 6k 30 (direct) utmcon= S 30 CINET CLR 2.0.%0
30 37 32 » T CLR 3.5.30729: 63 00 &4 30 (direct) winied- 3 X 727 JNET CLR).
i€ 30 2¢ 33 ~NLY CLR 3.0.30 64 3L TA & SIS . . 3 AC S.30729: .NET CL Server Gatells
43 65 ¢ T4 729; redia cente 42 48 42 34 S 64 R 31.0,30729; Med -
6L 66 & S0 r e 3 ora > 41 30 30 £ 3 13 Center & 6.0
2¢ 30 43 38 th.2; . N 3§ 39 7¢ D3 69 " eees TS o E 48 : inforath,.2; .N
48 6 73 T4 SHETE.0C) . . HOSL: 30 41 37 47 -.)uBz.foken-ATG D 4% ET74.0C; . NET&E,.DE
6c 63 79 7T 45 4A 38 46 3-SaxS O8I0 0 4 89). . Accept -Encoot
gL 65 63 T4 Ry o T T 62 64 32 |252%5dfalsse’ A 74 ng: grip, Jar
€9 76 65 O on: xeep-Alfve.. 38 33 66 38 GT249TTDLIOLESITS 2 61 e..HOST:
20 73 69 o4 cookle: doc-side 38 20 A Mara2s8e Vin: D 0 h'e
60 79T & Dar =24 5px; 3 AU Te IT [SN s 70 Co on: Keep
30 68 81 & A 20 AMIVE, . (AW'I"F " wuranma wn s sesna o
:: 1 :g :2 : g.‘gcm:‘mﬁ € vA wseleesds T =
TLEOIDAOTDS '
36 33 37 3® 20) ©9728COLASE: 37 Keys? — :
71 69 A4 AS —— ¢
i1 B J0 2¢ ar.wiothesys; /p ane
0 1’)0 00 (7)o .
| Y 00 /Y OF Bk O/ &3 tm‘uw«n% 5 ,: 52 l‘ t:em_?cs-zaat
* 25 37 34 25 32 30 €F 20amN2F peets 7 65 63 36 33 OBID-OIXF | 7echas
P64 61 79 2¢ 23 32 30 MROThUCSAAY.R20 G Gy Gy G5 a2 2 5MDIS7 18 566
£ 38 8- 8.8 3.0 ~ o« ERE B A €317 79698901115
| 33 32 30 74 str ing: 11%20t 34338 37 e :
2 30 79 O Ot 344 31 34 37 I8 ABOSEIDABA D148
. 30 6 72 2% 1 12 93 24 €6 SO0F0....1.A...S.
:) B OR DR O cooasiviesll: s
| 2% 32 30 o4 3 >
s 74 &2 78 35 c 63 6F GO JC m
$ 30 77 89 & cRXNeS Bk
A\l i - -
Bk 3 o
&1 79 25 32 CSRF tokens
oD & 72 72
. 70 78 g: g 22%20EXCEPTRIONA
‘ 7
1 30 20 6% 31 30 3% I0 day.N20.C0-¢10%=
53 53 35 44 0A 63 30 STring:PASSED. CO 3 7 ’ ‘s
' 62 65 72 3A 31 32 OA -ellt-numderill, 35 72 ton: clese..user

A 20 -Agent: Jakarta

What happened next?
.oy
0 The Heartbleet bug was fixed (of course)

0 Further checks and balances were added to validate
that payload length was correct

struct {

HeartbeatMessageType type;
uintl6é payload_length;%
opaque payload[HeartbeatMessage.payload“length];

opaque padding[padding length];
} HeartbeatMessage,;

Pseudo-Code Example (Heartbleed

EXEloi’r Fixed'
o]

Sender (constructs correct request message):
struct HeartbeatMessage msg;
msg.HeartbeatMessageType = heartbeat_request;
msg.payload_length = OxFFFF;

p— 11
ju— .

msg.payload ;

Receiver (receives above incoming msg) embedded in TCP/IP/TLS packet and constructs response
s_msg:

struct HeartbeatMessage s_msg;

int correctPayloadlLen = len(msg.payload);
s_msg.HeartbeatMessageType = heartbeat_response;
s_msg.payload_length = correctPayloadLen;
alloc(s_msg.payload, correctPayloadLlen);

memcpy(s_msg.payload, msg.payload, correctPayloadLen);

msg.payload

Other data Other data

O bytes long!

A
v

msg.payload_length

Recall (Menti Question): Attack

__ SRFC2828E Internet Securi’rz Glossorm

0 An assault on system security that derives from an intelligent
threat, i.e. a deliberate attempt

0 An "active attack” attempts to alter system resources or affect
their operation

0 A "passive attack” attempts to learn or make use of
information from the system, but does not affect system

resources
- - - - - - - - - - - - T S e +
| An Attack: | |Counter- | | A System Resource: |
| i.e., A Threat Action | | measure | | Target of the Attack |
R || I
| | Attacker |<======s============||{========= | | | |
| i.e., | Passive | | | | | vulnerability | |
| | A Threat |<=sss=ss=s=s========3||<{========> | |
| | Agent | or Active | oo L ------- + |
| +----------%+ Attack | | M
| | |

Lessons learnt
T

0 OpenSSL core developer Ben Laurie claimed that a security
audit of OpenSSL would have caught Heartbleed

0 Some other quotes from the security community:

0 “Think about it, OpenSSL only has two fulltime people to write,
maintain, test, and review 500,000 lines of business critical code”

O “The mystery is not that a few overworked volunteers missed this
bug; the mystery is why it hasn't happened more often”

0 “There should be a continuous effort to simplify the code, because
otherwise just adding capabilities will slowly increase the software
complexity. The code should be refactored over time to make it
simple and clear, not just constantly add new features. The goal
should be code that is “obviously right”, as opposed to code that is
so complicated that “I can’t see any problems”

