CT404/CT336 Marking Scheme, 2021-22

Q.1. (Graphics)

(i)

If using Canvas2D:	
Use of context.translate(x,y).	[3]
Display of some graphics in this transformed coordinate system	[1]
Use of context.rotate(angle)	[2]
Display of some graphics in this transformed coordinate system	[1]
Use of context.scale(x,y).	[2]
Display of some graphics in this transformed coordinate system.	[1]

or

If using Threejs:

Instantiation of a mesh object (or properly explained assumption that it exists)	[3]
object.position.set(x,y,z) or direct assignment of values to object.position.x etc.	[3]
object.rotation.set(x,y,z) or direct assignment of values to object.rotation.x etc.,	or use
of object.rotateOnAxis(axis, angle).	[2]
object.scale.set(x,y,z) or direct assignment of values to object.scale.x etc.	[2]

(ii)

Draw grey box with context.fillRect	[1]
Identification of highest data value in array	[2]
Calculation of x axis scale by dividing canvas width by array length.	[1]
Calculation of y axis scale by dividing canvas height by highest data value	[1]
Calculation of correct x,y position for each data value on the canvas.	[2]
Use of context.beginPath	[0.5]
Use of context.moveTo for the 1 st data value.	[1]
Use of context.lineTo for the subsequent data values.	[1]
Use of context.stroke.	[0.5]

Q.2. (Graphics)

 (i) Definition of surface normal [2] Relevance to calculation of incident light rays angle to surface [2] Explanation of lambert shading, with diagram and explicit reference to surface normal [2]
Explanation of gourard shading, with diagram and explicit reference to surface normal [2]

(ii)

	. 1
Radiosity as brute-force ray tracing approach starting from patches of emitted ligh	it and
involving interaction with surfaces	[1]
Radiosity: relevance of surface reflection properties (bouncing and scattering)	and
materials (alteration of light colour)	[1]
Radiosity: pre-runtime calculation of baked texture/shadow map	[1]
Ambient occlusion as a simulation of light occlusion via amount of nearby geome	etry
	[1]
Ambient occlusion: to include the notion of raycasting/raytracing against world	d (or
local) geometry	[1]
Ambient occlusion: pre-runtime calculation of baked AO map	[1]

(iii)

Specular colour: colour of specularly reflected light	[1]
Definition of specularly reflected light (bouncing on a shiny surface) via diagram	[1]
Diffuse colour: colour of diffusely reflected light	[1]
Definition of diffuse reflection (scattering on non-shiny surface) via diagram	[1]
Ambient lighting: estimation of complex realtime lighting via a summation of	
'ambient' values per light source	[1]
Ambient light diagram	[1]

Q.3. (Graphics)

(i)

Frustum Culling:

Explanation of viewing frustum, with field of view and near/far clipping planes	[2]
Helping the polygon budget by only rendering if inside viewing frustum	[1]
Bump Mapping:	
Mention of Lambertian lighting (angle of light incidence to surface normal), and	ł
modification of surface normal from data in raster image	[1]
Mention of mapping via raster image to pixels on a polygonal surface	[1]
Helping the polygon budget by faking (via lighting) a complex surface	[1]
Back Face Culling:	
Do not render polygons that face away from the camera	[1]
Applicable to Convex objects	[0.5]
Method of calculation via vector dot product.	[0.5]
Helping the polygon budget by only rendering those that can be seen.	[1]
Billboards:	
Single polygons always facing the camera	[1]
Textures with opacity.	[1]
Helping the polygon budget by being just 1 polygon which looks like something	, more
complex	[1]
Levels-of-Detail (LODs):	
Reduced polygon-count versions of a mesh.	[1]
Selected at runtime according to size of object on screen	[1]
Helps the polygon budget by using less polygons for distant objects	[1]

(ii)

Flat Shading: Lambertian calculations (cosine of angle of incident ray to surface
normal)[1]Gourard Shading: Bilinear interpolation of shading across surface, from Lambertian
calculations performed from normal at vertices[1.5]Phong Shading: Interpolation of normal across surface, with a separate shading
calculation at each interpolated normal[1.5]Diagrams[1.5]

Q.4. (Image Processing)

(i)

At least one example of an erosion template	[1]
Explanation of how an erosion template is applied to each pixel in the input in	nage, to
produce an output image	[2]
Erosion effect on binary images	[1]
Dilation as the inverse of erosion	[1]
Dilation effect on binary images	[1]
Opening as a concatenation of erosion+dilation, and effect on binary images	[1]
Closing as a concatenation of dilation+erosion, and effect on binary images	[1]

(ii)

Dealing with noise: why and how	[3]
Isolation using (edge detection, thresholding, Hough Transform: why and how) or	
using (morphology approaches: why and how – to include shine in centres)	[6]
Final counting	[3]

Q.5. (Image Processing)

(i)

Reference image definition as an image with known objects on	[1]
Identification of these known objects as control points in reference image as capt	ured
by camera	[2]
Explanation that we can define the movement (translation) of pixels from input to)
output	[1]
Interpolation of all other pixels in captured image, via nearest control points	[1]
Explanation of pixel carry-over/pixel filling to construct geometrically corrected	
image of the real world	[1]
Interpolation of values during construction of corrected image	[1]
Specific explanation of the relevance of high contrast markings to the image	
processing algorithm that will segment the reference image	[3]

(ii)

Hough Transform: accumulation of votes for simple shapes, using an edge map (including definition of an edge map) [2] The specific process of casting votes from each edge pixel, given a range of candidate circle radii [2] How the accumulator array is queried, to produce output circles – including dealing with circles of different radius requiring different acceptance thresholds [2] Why this approach is robust to noise, occlusion, and low contrast as indicated in the supplied image [2] Specifically why other approaches (such as edge tracing) would fail in these situations [2]