
P a g e | 1

Semester 1 Examinations 2022-2023 MARKING SCHEME

Course Instance
Code(s)

4BCT, 4BS, 4BMS

Exam(s)

B.Sc. (CS&IT)
B.Sc.
B.Sc. (Biomedical Sc.)

Module Code(s) CT404, CT336
Module(s)

Graphics and Image
Processing

Paper No. 1

External Examiner(s) Dr. R. Trestian
Internal Examiner(s) Prof. M. Madden

*Dr. S. Redfern

Instructions: Answer any three questions.
All questions carry equal marks.

Duration 2 hours

No. of Pages 7
Discipline(s) Computer Science
Course Co-ordinator(s) Dr. C. O’Riordan

Requirements:
Release in Exam Venue Yes [x] No []
MCQ Answersheet Yes [] No [x]
Handout None
Statistical/ Log Tables None
Cambridge Tables None
Graph Paper None
Log Graph Paper None
Other Materials None
Graphic material in colour Yes [x] No []

 PTO

P a g e | 2

Q.1. (Graphics)

(i) Provide short sections of code illustrating translation, rotation, and scaling in either
Canvas2D or Threejs. Note that the final page of this exam paper lists some commonly
used functions in Canvas2D and Threejs. [8]

If using Canvas2D:
Use of context.translate(x,y). [2]
Display of some graphics in this transformed coordinate system [1]
Use of context.rotate(angle) [2]
Display of some graphics in this transformed coordinate system [1]
Use of context.scale(x,y). [1]
Display of some graphics in this transformed coordinate system. [1]

 or

If using Threejs:
Instantiation of a mesh object (or properly explained assumption that it exists) [2]
object.position.set(x,y,z) or direct assignment of values to object.position.x etc. [2]
object.rotation.set(x,y,z) or direct assignment of values to object.rotation.x etc., or use
of object.rotateOnAxis(axis, angle). [2]
object.scale.set(x,y,z) or direct assignment of values to object.scale.x etc. [2]

(ii) Using the code below as a starting point, write Javascript/Canvas2D code for use in
the draw() function which will draw a bar chart from the data contained in the data[]
array. Note that each entry in the data[] array is an object containing both a value and a
colour. The chart should apply appropriate scales on the x and y axes, bearing in mind
that the number of entries in data[] as well as their values may change, i.e. you should
not hard-code the scales. There is no requirement to label the axes. [12]

Grey background ctx.fillRect() 1
Calculation of highest bar 2
Correct iteration 1
Correct bar widths 1
Correct bar heights 2
Flip the y axis 1
ctx.fillStyle() for each bar colour 2
Correct ctx.fillRect() for each bar 2

P a g e | 3

<html>
 <head>
 <script>
 function draw() {
 var canvas = document.getElementById("canvas");
 var ctx = canvas.getContext("2d");
 var data = [
 {val:5, color:"#880000"}, {val:8, color:"#000088"},
 {val:7, color:"#008800"}, {val:2, color:"#888800"},
 {val:12, color:"#008888"}, {val:8, color:"#883388"},
];
 // to do: write code here to draw a bar chart using Canvas2D

 }
 </script>
 </head>

<body onload='draw();'>
 <canvas id="canvas" width="600" height="450"></canvas>
</body>
</html>

P a g e | 4

Q.2. (Graphics)

Examine the Javascript/Threejs code provided below (and on the next page), which
sets up a display of a sun, planet, and moon as in the picture below.

(i) In order for the program to provide an animation whereby the blue planet rotates
around the yellow sun, while at the same time the grey moon rotates around the blue
planet, it will be necessary to nest their coordinate systems using pivots. Explain what
this means and why it is necessary. [7]

 Rotation is on local coordinate system 2
 Local coordinate system specifies difference from parent coord system 2
 So to effect rotation around a point away from an object’s centre, we nest in a

pivot 2
 Planet pivot nests in sun; moon pivot nests in planet 1

(ii) Provide the code changes that are needed in the draw() function to establish this
nesting. Note that the final page of this exam paper lists some commonly used functions
in Threejs. [7]

 Instantiate planetPivot as empty Three.Object3D() 1
 Make planet as a child of planetPivot, and planetPivot as child of the scene (or of

the sun) 2
 Instantiate moonPivot 1
 Make moon as a child of moonPivot, and moonPivot as a child of planet 1
 Adjust local coordinate of moon to (3, 0, 0) 2

P a g e | 5

(iii) Write suitable code for the animate() function to apply a small amount of rotation
per frame, to the planet pivot so that the planet orbits the sun, and to the moon pivot so
that the moon orbits the planet. [6]

 New global vars for pivots and current rotation angles 3
 Update rotation angles a little each frame 1
 Set the rotation of each pivot on each frame e.g.

planetPivot.rotation.set(0,planetRot,0) 2

<html>
 <head>

 <script src="three.js"></script>
 <script>
 'use strict'

 var renderer, scene, camera;
 var sun, planet, moon;

 function draw() {
 // create renderer attached to HTML Canvas object
 var c = document.getElementById("canvas");
 renderer = new THREE.WebGLRenderer({ canvas: c, antialias: true });

 // create the scenegraph
 scene = new THREE.Scene();
 scene.background = new THREE.Color(0x333333);

 // create a camera
 var fov = 75;
 var aspect = 600/600;
 var near = 0.1;
 var far = 1000;
 camera = new THREE.PerspectiveCamera(fov, aspect, near, far);
 camera.position.set(0, 0, 20);
 camera.lookAt(new THREE.Vector3(0,0,0));

 // add a light to the scene (at the location of the sun)
 var light = new THREE.PointLight(0xFFFFFF);
 light.position.set(0, 0, 0);
 scene.add(light);

 // create the sun, planet, and moon
 sun = new THREE.Mesh(
 new THREE.SphereBufferGeometry(3,60,60),
 new THREE.MeshBasicMaterial({color: 0xffff00}));
 sun.position.set(0, 0, 0);
 scene.add(sun);

 planet = new THREE.Mesh(
 new THREE.SphereBufferGeometry(1.5,60,60),
 new THREE.MeshLambertMaterial({color: 0x0000AA}));

P a g e | 6

 planet.position.set(10, 0, 0);
 scene.add(planet);

 moon = new THREE.Mesh(
 new THREE.SphereBufferGeometry(0.5,60,60),
 new THREE.MeshLambertMaterial({color: 0x888888}));
 moon.position.set(13, 0, 0);
 scene.add(moon);

 animate();
 }

 function animate() {
 setTimeout(animate, 20);

 renderer.render(scene, camera);
 }
 </script>
 </head>

 <body onload="draw();">
 <canvas id="canvas" width="600" height="600"></canvas>
 </body>
</html>

P a g e | 7

Q.3. (Graphics)

(i) Many of the techniques used in real-time 3D graphics programming attempt to
maximise the realism of the rendered scene while processing a minimal number of
polygons. With specific reference to the so-called ‘polygon budget’, and using diagrams
where appropriate, discuss each of the following techniques: [12]

a) Frustum Culling
 Explanation of viewing frustum, with field of view and near/far clipping planes

2
 Helping the polygon budget by only rendering if inside viewing frustum

1

b) Back Face Culling

 Do not render polygons that face away from the camera 1
 Applicable to Convex objects 0.5
 Method of calculation via vector dot product. 0.5
 Helping the polygon budget by only rendering those that can be seen. 1

c) Portal Culling
 Indoor scenes are best 0.5
 Definition of sectors and portals 1
 View between sectors is considered occluded unless passing through portal 1
 Helps the polygon budget by culling geometry assigned to a sector 0.5

d) Levels-of-Detail (LODs)

 Reduced polygon-count versions of a mesh. 1
 Selected at runtime according to size of object on screen 1
 Helps the polygon budget by using less polygons for distant objects 1

(ii) Real time graphics algorithms are categorised as operating in either world space or
in image space. Explain the meaning of world space algorithms and image space
algorithms from the point of view of the rendering pipeline. List one algorithm which
could operate in world space (and explain why world space is appropriate to it) and list
one algorithm which could operate in image space (and explain why image space is
appropriate to it). [8]

 World space: operates on vertices prior to projecting them onto the camera plane
2

 Image space: operates on pixels after they have been projected and drawn into
the pixel buffer 2

 Example world space alg. – must benefit from accuracy of world space, or use
the data which is lost following projection, e.g. individual surfaces 2

P a g e | 8

 Example image space alg. – must benefit from the efficiency of image space, or
of the data which doesn’t exist prior, e.g. colour/brightness 2

Q.4. (Image Processing)

(i) With respect to morphological image processing, outline the following operations:
erosion, dilation, opening, and closing, as applied to binary images. What are these
operations useful for? [10]

 At least one example of a morphological template 1
 Explanation of how a template is applied to each pixel in the input image, to

produce an output image 2
 Detailed explanation of the template’s effect on binary images 1
 Dilation as the inverse of erosion 1
 Opening as a concatenation of erosion+dilation 1
 Opening effect on binary images 1
 Closing as a concatenation of dilation+erosion, 1
 Uses: low-level cleaning up, low level topological analysis 2

(ii) The image below is of blood cells, and it is required that a fully automated system is
developed to accurately count the number of cells in images such as this. Present a
suitable and robust set of image processing algorithms for this task. Explain why each
step you have chosen is appropriate. [10]

 Dealing with noise: why and how 3
 Isolation using (edge detection, thresholding, Hough Transform: why and how)

or using (morphology approaches: why and how – to include shine in centres)
4

 Final counting 3

P a g e | 9

P a g e | 10

Q.5. (Image Processing)

(i) Many automatic image analysis algorithms begin by smoothing an image, and then
applying an edge detection filter in order to ascertain the evidence for the edges of
objects in the image.

a) Discuss the use of smoothing and edge detection for these purposes. [5]

 Edge detection: what is it? 2
 Effect of noise 1
 Smoothing: dampens high frequency noise with little damage to larger objects 2

b) Discuss two approaches that might be used to deal with problems such as
fragmentary edges and occluded edges. [5]

 Explanation of a template matching technique e.g. Hough Transform 2
 Explanation of a line linking technique e.g. relaxation 1
 Why they’re robust 1
 How they move us towards successful segmentation 1

(ii)
a) Discuss the image processing technique called active contours. In your
answer, explain in simple terms the algorithmic concept of optimisation. [5]

 Snaxels 2
 Forming a closed loop / perimeter 1
 Constraints and concept of ‘minimum energy’ 1
 Optimisation: problem space search: local, global, random, directed 1

b) Describe a suitable set of optimisation constraints (sometimes called energy
factors) for accurately tracing the outline of a hand in an image such as the one
shown below, using active contours. What purpose does each constraint have?

 [5]
 These seem like good candidates; others may be acceptable..

o Edge strength + purpose 1
o Centroid + purpose 1
o Angular continuity + purpose 1
o Brightness + purpose 1
o Distance continuity + purpose 1

P a g e | 11

P a g e | 12

 Some useful methods/properties of the Canvas 2D Context object:
Method/Property Arguments/Values Notes
fillRect (Left, Top, Width, Height) Draw a filled rectangle
beginPath None Start a stroked path
moveTo (X, Y) Move the graphics cursor
lineTo (X, Y) Draw a line from graphics

cursor
stroke None End a stroked path
fillStyle ="rgb(R,G,B)" Set fill colour
strokeStyle ="rgb(R,G,B)" Set line colour
save None Save the current coordinate

system
restore None Restore the last saved coord

system
translate (X,Y) Translate the coordinate

system
rotate (angle) Rotate the coordinate system

clockwise, with angle in
radians

scale (X,Y) Scale the coordinate system
independently on the X and Y
axes

Some useful objects/methods from the Threejs library:
Object/Method Notes
new THREE.WebGLRenderer({canvas:c}) Constructs a renderer, attached

to the Canvas object c

new THREE.PerspectiveCamera(fov,aspect,near,far) Constructs a camera, with the
specified field-of-view, aspect
ratio, near clipping distance,
far clipping distance

new THREE.Scene(); Constructs a scene

new THREE.PointLight(0xffffff); Constructs a white point light

object.position.set(x,y,z) Sets an object’s x,y,z position
relative to its parent

object.rotation.set(x,y,z) Sets an object’s x,y,z rotation
(using Euler angles) relative to
its parent

object.rotateOnAxis(new THREE.Vector3(0,1,0), 0.1) Rotates object by 0.1 radians on
the y axis

object1.add(object2) Sets object2 as a child of
object1

object.parent Obtains a reference to the
parent of object

camera.lookAt(new THREE.Vector3(0,0,0)); Turns a camera object to face the
world coordinate 0,0,0

new THREE.BoxGeometry(20, 20, 20) Constructs Box geometry, with
specified width, height, depth

new THREE.MeshLambertMaterial({color: 0xfd59d7}) Constructs a Lambert (Phong)
material of the specified colour

new THREE.Mesh(geometry, material) Constructs a mesh using the
specified geometry and material

renderer.render(scene, camera) Uses a renderer to draw a scene
as seen by a camera, onto the
renderer’s Canvas

