

$\frac{OLLSCOIL NA GAILLIMHE}{UNIVERSITY OF GALWAY}$

Dr Waqar Shahid Qureshi Waqarshahid.qureshi@universityofgalway.ie

Revision from Tranformation

Hierarchy of 3D Transformations

Transformation	Matrix	# DoF	Preserves	Icon
translation	$\left[egin{array}{c c} I & t \end{array} ight]_{3 imes 4}$	3	orientation	
rigid (Euclidean)	$\left[egin{array}{c c} R & t \end{array} ight]_{3 imes 4}$	6	lengths	\Diamond
similarity	$\left[\begin{array}{c c} sR & t \end{array} \right]_{3 imes 4}$	7	angles	\diamond
affine	$\left[egin{array}{c} A \end{array} ight]_{3 imes 4}$	12	parallelism	
projective	$\left[egin{array}{c} ilde{H} \end{array} ight]_{4 imes 4}$	15	straight lines	

3D Rotation Matrices

• Rotations about Principal Axes

$\cos\theta$	$-\sin\theta$	0	0	[1	0	0	0]	$\int \cos \beta$	0	$\sin \beta$	0]
$\sin \theta$	$\cos\theta$	0	0	0	$\cos \gamma$	$-\sin\gamma$	0	0	1	0	0
0	0	1	0	0	$\sin \gamma$	$\cos \gamma$	0	$-\sin\beta$	0	$\cos\beta$	0
0	0	0	1	0	0	0	1	$\begin{bmatrix} \cos \beta \\ 0 \\ -\sin \beta \\ 0 \end{bmatrix}$	0	0	1

About origin, in right-handed coordinate system, counter clockwise when looking towards origin from positive axis

- Rotation matrix is orthonormal with Determinant of +1 and 3 dof
- Inverse of a rotation matrix is its transpose
- Concatenation of Rotations is also a rotation
- IMP: A rotation matrix transforms its own rows onto the principal axes

- Any 3D rotation matrix can be described as rotation about an axis \mathbf{n} by an angle θ
- To rotate about given axis \mathbf{n} by θ :
 - Rotate axes onto a principal axis
 - by composing appropriate matrix through cross products
 - Rotate about principal axes and then undo the earlier transformation
 - OR use Rodriguez formula
- To compute ${\bf n}$ and ${\boldsymbol \theta}$ from a 3D rotation matrix
 - **n** is the eigenvector corresponding to the real eigenvalue of 1
 - θ can be computed by the other 2 eigenvalues, which are $\cos \theta \pm i \sin \theta$
 - To disambiguate angle values, check for consistency with Rodriguez formula

Camera Model

Part-1

Pinhole camera

First described by Ibn Al-Haytham ابو على، الحسن بن الحسن بن الهيثم in his 7-volume work كتاب المناظر

He termed it

بيت المظلم Al-beit Al-muzlim which was later translated into Latin as "camera obscura"

http://www.ibnalhaytham.com/discover/who-was-ibn-al-haytham/

Pinhole Camera

- Lens is assumed to be single point
- Infinitesimally small aperture
- Has infinite depth of field i.e. everything is in focus

The first photograph on record

THE FIRST PHOTOGRAPH

The world's first photograph was made in 1826 by Nicéphore Niepce from a window in his estate in France. For "film" Niepce used a sensitized pewter plate and he got a blurred image of the rooftops outlined above. This photograph is usually retouched to make it legible, but the version shown at left is what it really looks like.

Pinhole Camera Properties: Distant objects are smaller

Slide Credit: Forsyth/Ponce <u>http://www.cs.berkeley.edu/~daf/bookpages/slides.html</u> and Khurram Shafique, Object Video

OLLSCOIL NA GAILLIMHE UNIVERSITY OF GALWAY

Pinhole Camera Properties

- Lines map to lines
- Polygons map to polygons
- Parallel lines meet

Pinhole Camera

- Pinhole is considered the center of projection, camera center or optical center
- Let center of projection be at the origin of Euclidean space
- Plane $Z = \mathbb{R}^3$ is the *imaging* plane, or focal plane
- Line from camera center, perpendicular to imaging plane is the *principal axis* or principal ray

Pinhole Camera in Canonical Configuration

- •Camera center **C** is at Euclidean origin
- Principal axis aligned with Z-axis
- Principal point p is the point where principal axis cuts the imaging plane
- Imaging plane is often taken by convention to be in front of the camera

Pinhole Camera in Canonical Configuration

Central Projection

•We can write this as a matrix using the homogeneous coordinates

$$\begin{bmatrix} hx \\ hy \\ h \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \frac{1}{f} & 0 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

$$hx = X, \quad hy = Y, \quad h = \frac{Z}{f}$$

• Verify that since

•Hence
$$x = \frac{fX}{Z}$$

 $y = \frac{fY}{Z}$

Central Projection

•Camera in canonical view (centered at origin with optical axis aligned with world Z axis, image axes aligned with X and Y)

$$\begin{bmatrix} hx \\ hy \\ h \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \frac{1}{f} & 0 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

•Since any scaling of a homogeneous equation is valid, it is often written as

$$\begin{bmatrix} hx \\ hy \\ h \end{bmatrix} = \begin{bmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

Central Projection

•The camera can be more compactly written as $\mathbf{x}=\mathbf{P}\mathbf{X}$

•where P is a 3x4 matrix that maps from $\mathbb{P}^3 \mapsto \mathbb{P}2$

• P may also be written as:

$\mathbf{P} = \operatorname{diag}(f, f, 1) \left[\mathbf{I} \mid \mathbf{0} \right]$

Principal Point Offset

- •The expression P = diag(f, f, 1) [I | 0] assumes that image origin is at the principal point.
- •This may not be the case in general. For example:

• If the image coordinates of the principal point are (p_x, p_y) T, then the camera mapping will be

OLLSCOIL NA GAILLIMHE UNIVERSITY OF GALWAY

$$(X, Y, Z)^\top \mapsto \left(\frac{fX}{Z} + p_x, \frac{fY}{Z} + p_y\right)^\top$$

Central Projection with Principal Point Offset

•In matrix form, this mapping becomes

$$\begin{bmatrix} hx \\ hy \\ h \end{bmatrix} = \begin{bmatrix} f & 0 & p_x & 0 \\ 0 & f & p_y & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

•Sometimes, for convenience, it is also written as

$$\begin{bmatrix} hx \\ hy \\ h \end{bmatrix} = \begin{bmatrix} f & 0 & p_x \\ 0 & f & p_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$
• Or
$$\mathbf{x} = \mathbf{K} \begin{bmatrix} \mathbf{I} & \mathbf{0} \end{bmatrix} \mathbf{X}$$
• K is called the same radiibration matrix, which is a 2x2

• K is called the camera calibration matrix, which is a 3x3 matrix

CCD Camera

- •We have assumed same units for world & image coordinates
- •In a CCD camera, image coordinates are measured in pixels
- •Some CCD cameras also have non-square pixels
- •We can convert to pixel units as

$$\mathbf{K} = \begin{bmatrix} m_x f & 0 & x_0 \\ 0 & m_y f & y_0 \\ 0 & 0 & 1 \end{bmatrix}$$

where m_x and m_y are scale factors of pixels per unit length, needed to convert to pixel dimension

- m_x = #of pixels in x direction / size of CCD array in x direction
- m_y = #of pixels in y direction / size of CCD array in y direction
- (x_0 , y_0) is principal point offset in pixel dimensions

Ollscoil NA (University o $x_0 = m_x p_x, \quad y_0 = m_y p_y$

Example

If you had a camera where:

- The CCD array is 2000 pixels wide and 1500 pixels tall.
- The physical size of the CCD sensor is 20 mm by 15 mm.
- The focal length $f=50~{
 m mm.}$

You would calculate:

- $m_x = \frac{2000 \text{ pixels}}{20 \text{ mm}} = 100 \text{ pixels/mm}$
- $m_y = rac{1500 ext{ pixels}}{15 ext{ mm}} = 100 ext{ pixels/mm}$

Thus, your matrix K would have the scale factors $m_x f$ and $m_y f$, and the principal point offset (x_0, y_0) .

Pinhole camera in general view

- •This is for the case when the camera's optical axis is aligned with the world z-axis
- •What if that is not the case?

Pinhole camera in general view

- If the camera center is at coordinates \mathbf{C} in the world, i.e. the camera is moved C from the origin, we should move the world point by C⁻¹
- •Then the perspective transform equation will be applicable
- Same holds for rotations

Example

•Translation by 10 units to the right

Pinhole camera in general view

• In general, the camera center is at a rotation of R^T , followed by a translation of C from the world origin

Pinhole camera in general view

Canonical View

$$\begin{bmatrix} hx \\ hy \\ h \end{bmatrix} = \begin{bmatrix} f & 0 & p_x \\ 0 & f & p_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

$$\text{General View} \begin{bmatrix} hx \\ hy \\ h \end{bmatrix} = \begin{bmatrix} f & 0 & p_x \\ 0 & f & p_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_X \\ r_{21} & r_{22} & r_{23} & t_Y \\ r_{31} & r_{32} & r_{33} & t_Z \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

 $\mathbf{x} = \mathtt{K} \left[\mathtt{R} \mid \mathtt{T}
ight] \mathbf{X}$

$$\mathbf{x} = \mathtt{KR} \left[\mathtt{I}_{3 imes 3} \mid - ilde{\mathbf{C}}
ight] \mathbf{X}$$

- x image point
- X world point
- K 3x3 matrix of internal camera parameters
- $[\mathbf{R} \mid \mathbf{T}]$ 3x4 matrix of external camera parameters
 - **R** rotation needed to align camera to world axes
 - $\mathbf{T}-\mathsf{Translation}$ needed to bring camera to world origin
 - $\mathbf{T} = -\mathbf{R}\mathbf{C}$ where \mathbf{C} is the vector of camera center

Camera Model Example

- •Think that the camera was originally at the origin looking down Z axis
- Then it was translated by $(r_1, r_2, r_3)^T$, rotated by ϕ along X, θ along Z, then translated by $(x_0, y_0, z_0)^T$
- •This is the scenario in the figure on right

Figure Reference: Gonzales and Woods, "Digital Image Processing"

Camera M Example	odel			-1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$\begin{array}{c c} X_0 & \overset{\grave{U}}{\underset{U}{\overset{U}}} \begin{bmatrix} \cos\theta & -\sin\theta \\ -\sin\theta & \cos\theta \\ \sin\theta & \cos\theta \\ Z_0 & \overset{\check{U}}{\underset{U}{\overset{U}{\overset{U}}}} & 0 & 0 \\ 1 & \overset{\check{U}}{\underset{U}{\overset{U}}{\overset{U}{\overset{U}{\overset{U}{\overset{U}{\overset{U}{\overset{U}{\overset{U}{\overset{U}{\overset{U}{\overset{U}{\overset{U}}{\overset{U}{\overset{U}{\overset{U}{\overset{U}{\overset{U}{\overset{U}{\overset{U}{\overset{U}}}}}}}}}$	$ \begin{array}{cccc} $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$u \mid 0 1 0 -n$			$\begin{bmatrix} 9 & 0 & 0 \\ 9 & 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & -X_0 \\ 0 & 1 & 0 & -Y_0 \\ 0 & 0 & 1 & -Z_0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

Camera Model Example

$$x = f \frac{(X - X_0)\cos\theta + (Y - Y_0)\sin\theta - r_1}{-(X - X_0)\sin\theta\sin\phi + (Y - Y_0)\cos\theta\sin\phi - (Z - Z_0)\cos\phi + r_3 + f},$$

$$y = f \frac{-(X - X_0)\sin\theta\cos\phi + (Y - Y_0)\cos\theta\cos\phi + (Z - Z_0)\sin\phi - r_2}{-(X - X_0)\sin\theta\sin\phi + (Y - Y_0)\cos\theta\sin\phi - (Z - Z_0)\cos\phi + r_3 + f}.$$

• This camera model is applicable in many situations

• For example, this is the typical surveillance camera scenario

Aircraft Example

cameraMat = perspective_transform * gimbal_rotation_y * gimbal_rotation_z * gimbal_translation * vehicle_rotation_x * vehicle_rotation_y * vehicle_rotation_z * vehicle_translation;

$$\mathbf{P} = \begin{bmatrix} m_x f & 0 & x_0 & 0 \\ 0 & m_y f & y_0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} \cos \omega & 0 & -\sin \omega & 0 \\ 0 & 1 & 0 & 0 \\ \sin \omega & 0 & \cos \omega & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \tau & \sin \tau & 0 & 0 \\ -\sin \tau & \cos \tau & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} \cos \varphi & 0 & -\sin \varphi & 0 \\ 0 & 1 & 0 & 0 \\ \sin \varphi & 0 & \cos \varphi & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \beta & \sin \beta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \alpha & \sin \alpha & 0 & 0 \\ -\sin \alpha & \cos \alpha & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & -\Delta T_x \\ 0 & 1 & 0 & -\Delta T_y \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

 $c(1,1) = (\cos(c_scn)*\cos(v_rll)-\sin(c_scn)*\sin(v_pch)*\sin(v_rll))*\cos(v_hdg)-\sin(c_scn)*\cos(v_pch)*\sin(v_hdg);$

 $c(1,2) = -(\cos(c_scn)*\cos(v_rll)-\sin(c_scn)*\sin(v_pch)*\sin(v_rll))*\sin(v_hdg)-\sin(c_scn)*\cos(v_pch)*\cos(v_hdg);$

 $c(1,3) = -\cos(c_scn)*\sin(v_rll)-\sin(c_scn)*\sin(v_pch)*\cos(v_rll);$

- $c(1,4) = -((\cos(c_scn)*\cos(v_rll)-\sin(c_scn)*\sin(v_pch)*\sin(v_rll))*\cos(v_hdg)-\sin(c_scn)*\cos(v_pch)*\sin(v_hdg))*vx-(-(\cos(c_scn)*\cos(v_rll)-\sin(c_scn)*\sin(v_pch)*\sin(v_rll))*vz;$
- $c(2,1) = (-\sin(c_elv)*\sin(c_scn)*\cos(v_rll)+(-\sin(c_elv)*\cos(c_scn)*\sin(v_pch)+\cos(c_elv)*\cos(v_pch))*\sin(v_rll))*\cos(v_hdg)+(-\sin(c_elv)*\cos(c_scn)*\cos(v_pch)-\cos(c_elv)*\sin(v_pch))*\sin(v_hdg);$
- $c(2,2) = -(-\sin(c_elv)*\sin(c_scn)*\cos(v_rll)+(-\sin(c_elv)*\cos(c_scn)*\sin(v_pch)+\cos(c_elv)*\cos(v_pch))*\sin(v_rll))*\sin(v_hdg)+(-\sin(c_elv)*\cos(c_scn)*\cos(v_pch)-\cos(c_elv)*\sin(v_pch))*\cos(v_hdg);$

 $c(2,3) = sin(c_elv)*sin(c_scn)*sin(v_rll) + (-sin(c_elv)*cos(c_scn)*sin(v_pch) + cos(c_elv)*cos(v_pch))*cos(v_rll);$

 $c(2,4) = -((-sin(c_elv)*sin(c_scn)*cos(v_rll)+(-sin(c_elv)*cos(c_scn)*sin(v_pch)+cos(c_elv)*cos(v_pch))*sin(v_rll))*cos(v_hdg)+(-sin(c_elv)*cos(c_scn)*cos(v_pch)-cos(c_elv)*sin(v_pch))*sin(v_hdg))*vx-(-(-sin(c_elv)*sin(c_scn)*cos(v_rll)+(-sin(c_elv)*cos(c_scn)*sin(v_pch)+cos(c_elv)*cos(v_pch))*sin(v_rll))*sin(v_hdg)+(-sin(c_elv)*cos(c_scn)*cos(v_pch)-cos(v_pch))*sin(v_rll))*sin(v_rll)+(-sin(c_elv)*cos(c_scn)*cos(v_pch)-cos(v_pch))*sin(v_rll))*sin(v_rll)+(-sin(c_elv)*cos(c_scn)*cos(v_pch)-cos(v_pch))*cos(v_rll))*vy-(sin(c_elv)*sin(c_scn)*sin(v_rll)+(-sin(c_elv)*cos(c_scn)*sin(v_pch)+cos(v_pch))*cos(v_rll))*vz;$

 $c(3,1) = (\cos(c_elv)*\sin(c_scn)*\cos(v_rll) + (\cos(c_elv)*\cos(c_scn)*\sin(v_pch) + \sin(c_elv)*\cos(v_pch))*\sin(v_rll))*\cos(v_hdg) + (\cos(c_elv)*\cos(v_pch) - \sin(c_elv)*\sin(v_pch))*\sin(v_ndg);$

 $c(3,2) = -(\cos(c_elv)*\sin(c_scn)*\cos(v_rll)+(\cos(c_elv)*\cos(c_scn)*\sin(v_pch)+\sin(c_elv)*\cos(v_pch))*\sin(v_rll))*\sin(v_hdg)+(\cos(c_elv)*\cos(c_scn)*\cos(v_pch)-\sin(c_elv)*\sin(v_pch))*\sin(v_pch))*\sin(v_pch))*\sin(v_pch))*\sin(v_pch)$

 $c(3,3) = -\cos(c_elv) * \sin(c_scn) * \sin(v_rll) + (\cos(c_elv) * \cos(c_scn) * \sin(v_pch) + \sin(c_elv) * \cos(v_pch)) * \cos(v_rll);$

c(3,4) = -

 $((\cos(c_elv)*\sin(c_scn)*\cos(v_rll)+(\cos(c_elv)*\cos(c_scn)*\sin(v_pch)+\sin(c_elv)*\cos(v_pch))*\sin(v_rll))*\cos(v_hdg)+(\cos(c_elv)*\cos(c_scn)*\cos(v_pch)-\sin(c_elv)*\sin(v_pch))*\sin(v_hdg))*vx-(-$

```
(\cos(c\_elv)*\sin(c\_scn)*\cos(v\_rll)+(\cos(c\_elv)*\cos(c\_scn)*\sin(v\_pch)+\sin(c\_elv)*\cos(v\_pch))*\sin(v\_rll))*\sin(v\_hdg)+(\cos(c\_elv)*\cos(c\_scn)*\cos(v\_pch)-\sin(c\_elv)*\sin(v\_pch))*\cos(v\_hdg))*vy-(-\cos(c\_elv)*\sin(c\_scn)*\sin(v\_rll)+(\cos(c\_elv)*\cos(c\_scn)*\sin(v\_pch)+\sin(c\_elv)*\cos(v\_pch))*vz;
```

c(4,1) =

 $(1/f1*cos(c_elv)*sin(c_scn)*cos(v_rll)+(1/f1*cos(c_elv)*cos(c_scn)*sin(v_pch)+1/f1*sin(c_elv)*cos(v_pch))*sin(v_rll))*cos(v_hdg)+(1/f1*cos(c_elv)*cos(c_scn)*sin(v_pch)+1/f1*sin(c_elv)*sin(v_pch))*sin(v_rll))*sin(v_hdg);$

c(4,2) = -

 $(1/fl*cos(c_elv)*sin(c_scn)*cos(v_rll)+(1/fl*cos(c_elv)*cos(c_scn)*sin(v_pch)+1/fl*sin(c_elv)*cos(v_pch))*sin(v_rll))*sin(v_hdg)+(1/fl*cos(c_elv)*cos(c_scn)*sin(v_pch)+1/fl*sin(c_elv)*sin(v_pch))*sin(v_rll))*$

 $c(4,3) = -1/fl*cos(c_elv)*sin(c_scn)*sin(v_rll) + (1/fl*cos(c_elv)*cos(c_scn)*sin(v_pch) + 1/fl*sin(c_elv)*cos(v_pch))*cos(v_rll);$

c(4,4) = -

 $((1/fl*cos(c_elv)*sin(c_scn)*cos(v_rll)+(1/fl*cos(c_elv)*cos(c_scn)*sin(v_pch)+1/fl*sin(c_elv)*cos(v_pch))*sin(v_rll))*cos(v_hdg)+(1/fl*cos(c_elv)*cos(c_scn)*sin(v_pch)+1/fl*sin(c_elv)*sin(v_rll))*cos(v_hdg)+(1/fl*cos(c_elv)*cos(c_scn)*sin(v_pch)+1/fl*sin(c_elv)*sin(v_rll))*cos(v_hdg)+(1/fl*cos(c_elv)*cos(c_scn)*sin(v_pch)+1/fl*sin(c_elv)*cos(v_pch))*sin(v_rll))*cos(v_hdg)+(1/fl*cos(c_elv)*cos(c_scn)*sin(v_pch)+1/fl*sin(c_elv)*cos(v_pch))*sin(v_rll))*cos(v_hdg)+(1/fl*cos(c_elv)*cos(c_scn)*sin(v_pch)+1/fl*sin(c_elv)*cos(v_pch))*sin(v_rll))*cos(v_hdg)+(1/fl*cos(c_elv)*cos(c_scn)*sin(v_pch)+1/fl*sin(c_elv)*cos(v_pch))*sin(v_rll))*cos(v_hdg)+(1/fl*cos(c_elv)*cos(v_pch))*sin(v_pch))*sin(v_hdg))*vx-(-$

 $(1/fl*cos(c_elv)*sin(c_scn)*cos(v_rll)+(1/fl*cos(c_elv)*cos(c_scn)*sin(v_pch)+1/fl*sin(c_elv)*cos(v_pch))*sin(v_rll))*sin(v_hdg)+(1/fl*cos(c_elv)*cos(c_scn)*sin(v_pch)+1/fl*sin(c_elv)*sin(v_pch))*sin(v_rll))*$

 $1/fl^*\cos(c_elv)^*\sin(c_scn)^*\sin(v_rll) + (1/fl^*\cos(c_elv)^*\cos(c_scn)^*\sin(v_pch) + 1/fl^*\sin(c_elv)^*\cos(v_pch))^*\cos(v_rll))^*vz + 1;$

Pinhole camera in general view

Canonical View
$$\begin{array}{c} \stackrel{\acute{e}}{e} hx \stackrel{\grave{u}}{u} \\ \stackrel{\acute{e}}{e} hy \stackrel{\grave{u}}{u} \\ \stackrel{\acute{e}}{e} h \stackrel{\acute{u}}{u} \\ \stackrel{\acute{e}}{e} h \stackrel{\acute{e}}{u} \\ \stackrel{\acute{e}}{e} h \stackrel{\acute{e}}{e} h \stackrel{\acute{e}}{e} \\ \stackrel{\acute{e}}{e} h \stackrel{\acute{e}}{e} \\ \stackrel{\acute{e}}{e} h \stackrel{\acute{e}}{e} \\ \stackrel{\acute{e}}{e} \stackrel{\acute{e}}{e}$$

Surveillance Camera Example (Small gimbal translation ignored)

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$0 \\ \cos\phi \\ -\sin\phi \\ 0$	0 sin ϕ $\cos \phi$ 0	0 é 0 ê 0 ê 1 ê	cos q - sin q 0 0 0		0 0 1 0	0 0 0 1	1 0 0 0	0 1 0 0	0 0 1 0	$ \begin{array}{c} -X_{0} \\ -Y_{0} \\ -Z_{0} \\ 1 \end{array} $
--	-----------------------------------	-------------------------------------	--------------------------	---------------------	--	------------------	------------------	------------------	------------------	------------------	--

Aircraft Example

							_	F				-			-	г			-	F			F			
- mf	0	r	0	cos₩	0	- sin W	0	cos t	sin t	0	0	cosj	0	- sin <i>j</i>	0	1	0	0	0	cosa	sin a	0 0	1	0	0	$-DT_x$
<i>m_xj</i>	0	<i>n</i> ₀	0	0	1	0	0	- sin <i>t</i>	$\cos t$	0	0	0	1	0	0	0	cos b	sin b	0	$\begin{array}{c} \cos a \\ -\sin a \\ 0 \\ 0 \end{array}$	cos a	0 0	0	1	0	$-DT_v$
0	$m_{y}J$	${\mathcal{Y}}_0$	0	sin W	0	cosW	0	0	0	1	0	sin/	0	cos/	0	0	- sin b	cos b	0	0	0	1 0	0	0	1	-DT
0	0	1	0	0	0	0	1	0	0	0	1		0	0 0	1	0	0	0	1	0	0	0 1	0	0	0	1
							-	L			-	- 0	0	0			0	0	· -	F			- 0	U	U	1

Perspective Transform for Canonical View

Rotation needed to align camera with world axes

Translation by Inverse of Camera Center

Summary: Perspective Camera Model

OLLSCOIL NA GAILLIMHE UNIVERSITY OF GALWAY $x_0 = m_x p_x, \quad y_0 = m_y p_y$

- •Consider the case of camera looking at a plane
- This scenario occurs frequently in imaging applications

•Without loss of generality, we can assume that the plane has equation Z = 0

$$\begin{bmatrix} hx \\ hy \\ h \end{bmatrix} = \begin{bmatrix} m_x f & 0 & x_0 \\ 0 & m_y f & y_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} r_1 & r_2 & r_3 & T_x \\ r_4 & r_5 & r_6 & T_y \\ r_7 & r_8 & r_9 & T_z \end{bmatrix} \begin{bmatrix} X \\ Y \\ 0 \\ 1 \end{bmatrix}$$

•The third column of [R | T] does not matter in this case and can be dropped. So we can rewrite the system as:

$$\begin{bmatrix} hx \\ hy \\ h \end{bmatrix} = \begin{bmatrix} a_1 & a_2 & a_3 \\ a_4 & a_5 & a_6 \\ a_7 & a_8 & a_9 \end{bmatrix} \begin{bmatrix} X \\ Y \\ 1 \end{bmatrix}$$

• Conclusion: The 3D points lying on a plane are related to the

•Now consider relationship between *two* images of a plane

 Two images of a plane taken by a perspective camera are related by a homography

 It is no surprise that these projective transformations look like images of a plane taken from different angles

Application: Rectification

 A perspective image of a plane can be transformed into one in which the plane is fronto-parallel, i.e. the optical axis coincides with the plane normal

Satellite image

Application: Rectification

Road Segment, covered by three cameras

Merged view of the road

Another Example of Rectification

•Measuring crowd density as persons per square meter

Special Case 2: Rotation about Camera Center (Pure Rotation)

- Consider the case of camera that does not translates but only rotates about its optical center
- This scenario also occurs frequently in imaging applications

Special Case 2: Rotation about Camera Center (Pure Rotation)

- •x and x' are images of a point X before and after rotation of R the camera respectively.
- •Then

 $\mathbf{x} = K \begin{bmatrix} \mathbf{I} & | & \mathbf{0} \end{bmatrix} \mathbf{X}$ $\mathbf{x}' = K \begin{bmatrix} \mathbf{R} & | & \mathbf{0} \end{bmatrix} \mathbf{X}$ $= KR \begin{bmatrix} \mathbf{I} & | & \mathbf{0} \end{bmatrix} \mathbf{X}$ $= KRK^{-1}K \begin{bmatrix} \mathbf{I} & | & \mathbf{0} \end{bmatrix} \mathbf{X}$ $= KRK^{-1}K$

•Hence $\mathbf{x}' = \mathtt{KR}\mathtt{K}^{-1}\mathbf{x}$

$$\mathbf{x}' = \mathtt{H}\mathbf{x}$$

•This type of homography is called a *conjugate rotation*

Special Case 2: Rotation about Camera Center (Pure Rotation)

Rotation + Translation

Pure Rotation

- The relative motion of objects in two images which are at different distances in the world is termed parallax
- A homography will not generate any parallax.

• Hence pure rotation of camera does not generate parallax

Recall: Perspective Camera Model

•The perspective camera model can be written as

$$\mathbf{X} = \mathbf{K} \begin{bmatrix} \mathbf{R} \mid -\mathbf{R}\tilde{\mathbf{C}} \end{bmatrix} \mathbf{X}$$

$$\begin{array}{c} \text{Image} \\ \text{point} \in \mathbf{P}^2 \end{array}$$

$$\begin{array}{c} \text{3x3 matrix of internal} \\ \text{camera parameters} \\ (intrinsic parameters) \end{array}$$

$$\begin{array}{c} \text{3x4 matrix of external} \\ \text{camera parameters} \\ (extrinsic parameters) \end{array}$$

$$\begin{array}{c} \text{World point} \in \mathbf{P}^3 \end{array}$$

$$\mathbf{K} = \begin{bmatrix} m_x f & 0 & x_0 \\ 0 & m_y f & y_0 \\ 0 & 0 & 1 \end{bmatrix}$$

Ollscoil na Gaillimhe University of Galway $x_0 = m_x p_x, \quad y_0 = m_y p_y$

•In general, the camera model looks like:

$$\begin{bmatrix} hx \\ hy \\ h \end{bmatrix} = \begin{bmatrix} p_{11} & p_{12} & p_{13} & p_{14} \\ p_{21} & p_{22} & p_{23} & p_{24} \\ p_{31} & p_{32} & p_{33} & p_{34} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$
$$\mathbf{x} = \mathbf{P}\mathbf{X}$$

- •P is a 3x4 matrix of rank 3
- •Calibration is the process of finding the parameters $[p_{11}...p_{34}]$
- •If x and X are known, then we can solve for the unknown parameters in P

Camera model

$$\begin{bmatrix} hx \\ hy \\ h \end{bmatrix} = \begin{bmatrix} p_{11} & p_{12} & p_{13} & p_{14} \\ p_{21} & p_{22} & p_{23} & p_{24} \\ p_{31} & p_{32} & p_{33} & p_{34} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$
• In inhomogeneous from
$$x = \frac{hx}{h} = \frac{p_{11}X + p_{12}Y + p_{13}Z + p_{14}}{p_{31}X + p_{32}Y + p_{33}Z + p_{34}} \quad y = \frac{hy}{h} = \frac{p_{21}X + p_{22}Y + p_{23}Z + p_{24}}{p_{31}X + p_{32}Y + p_{33}Z + p_{34}}$$

• Multiplying both sides by denominator and rearranging $p_{11}X + p_{12}Y + p_{13}Z + p_{14} - p_{31}Xx - p_{32}Yx - p_{33}Zx - p_{34}x = 0$ $p_{21}X + p_{22}Y + p_{23}Z + p_{24} - p_{31}Xy - p_{32}Yy - p_{33}Zy - p_{34}y = 0$

 $p_{11}X + p_{12}Y + p_{13}Z + p_{14} - p_{31}Xx - p_{32}Yx - p_{33}Zx - p_{34}x = 0$ $p_{21}X + p_{22}Y + p_{23}Z + p_{24} - p_{31}Xy - p_{32}Yy - p_{33}Zy - p_{34}y = 0$

- •These equations have 12 unknowns
- •Each correspondence between a world point and an image point yields two equations
- If 6 correspondences are known, we can solve for the unknowns

$$p_{11}X + p_{12}Y + p_{13}Z + p_{14} - p_{31}Xx - p_{32}Yx - p_{33}Zx - p_{34}x = 0$$

$$p_{21}X + p_{22}Y + p_{23}Z + p_{24} - p_{31}Xy - p_{32}Yy - p_{33}Zy - p_{34}y = 0$$

•Given n correspondences...

 p_{11}

 $A\mathbf{p} = \mathbf{0}$

- •This system Ap = 0 is a homogeneous system.
- •A is rank deficient: rank(A) = 11 (at most)
- •Solution?
- The null vector of A represents the p which is the solutions to the system Ap = 0
- How to find null space?
 - null(A) in MATLAB, or 1.
 - Take SVD of A, as $svd(C) = USV^{T}$. The column of V 2. corresponding to the singular value of zero represents the solution

(in practice, you will have to take the smallest singular value)

Camera Calibration: Summary

- •Given a set of world points (in 3D coordinates) and their corresponding image points, we solve for the 3x4 camera matrix that relates them.
- •This transforms into a problem of the form Ap = 0, which can be solved by finding the null vector of **A**.
- •A more robust solution is through Direct Linear Transform, DLT (not covered in this class)

Camera Calibration: Solving for Extrinsic and Intrinsic Parameters

 After finding p, we end up with a 3x4 camera matrix relating world points to image points

$$\mathbf{x} = \mathbf{P}\mathbf{X}$$
 $\mathbf{P} = \mathtt{K}\mathtt{R}\left[\mathtt{I}| - \tilde{\mathbf{C}}
ight]$

- •How can I find camera rotation, translation and intrinsic parameters?
- •Note that P has 12 terms and 11 degrees of freedom.

$$= \begin{bmatrix} p_{11} & p_{12} & p_{13} & p_{14} \\ p_{21} & p_{22} & p_{23} & p_{24} \\ p_{31} & p_{32} & p_{33} & p_{34} \end{bmatrix}$$

Camera Calibration: Solving for Extrinsic and Intrinsic Parameters

- Solving for Camera Center C:
- Consider P times C

$$\mathbf{PC} = \mathbf{KR} \begin{bmatrix} \mathbf{I} & -\tilde{\mathbf{C}} \end{bmatrix} \mathbf{C} = ?$$
$$\mathbf{PC} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Hence, camera center C is a null vector of P

•Note that PC = $(0, 0, 0)^T$ is undefined in image plane, which is exactly what we should expect, since image of camera center is undefined.

Camera Calibration: Solving for Extrinsic and Intrinsic Parameters

- •Solving for **K** and **R**
- •Note that **P** = [**KR** | -**KRC**]
- •Hence first 3x3 block of P i.e. $M_{3x3} = KR$
- •K is an upper triangular matrix, R is an orthonormal matrix
- Solved through RQ decomposition
 RQ decomposition decomposes a matrix into an upper triangular matrix times an orthonormal matrix

Camera Calibration Example

Take Image of a Calibration Target

Select Image Points

Choose world coordinate system

Specify World Points

Vertices on the cube (in same order as image points)

0 1	23	0 1	. 2	3	0	1	2	3	0	1	2	3	3	3	3	3	3	3	3	3	3	3	3	3	2	2	2	1	1	1	0	0	0
0 0	0 0	0 0	0 (0	0	0	0	0	0	0	0	0	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
0 0	0 0	1 1	. 1	1	2	2	2	2	3	3	3	3	0	0	0	1	1	1	2	2	2	3	3	3	3	3	3	3	3	3	3	3	3

Cube height = 57mm One box side = 19mm

Therefore, scale each coordinate by 19 mm

Specify World Points

Vertices on the cube (in same order as image points)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 19 38 57 19 38 57 19 38 57 19 38 57 19 38 57 19 38 57 19 38 57 19 38 57 19 38 57

Set up matrix A and find its right null vector through SVD warning: null(A) is unlikely to work! (WHY?)

• Reshape into a 3x4 matrix

P =

-0.00010835	4.3034e-05	0.0047453	-0.68373
-0.0019211	-0.0044849	0.00023615	-0.7297
4.1144e-07	-3.5796e-07	1.1421e-07	-0.00028537

Find camera center from P

OLLSCOIL NA GAILLIMHE UNIVERSITY OF GALWAY

К =			R =	R =								
-8376.2	66.191	1552.4	-0.16524	0.12231	0.97864							
0	-8336.6	2712	-0.65379	-0.75651	-0.01584							
0		1	-0.73842	0.64244	-0.20497							

Principal Point

Focal Length

- Image was taken by Canon 600D
- Canon 600D uses APS-C format CMOS sensor*
- Size of APS-C sensor is 23.6mm x 15.7mm
- Image size is 5184 x 3456

- Hence
- m_x = 3456/15.7 = 220.13 pix/mm
- m_v = 5184/23.6 = 219.66 pix/mm
- f = [38.051, 37.952] mm
- Verification from EXIF data: 37mm
- Angle between x & y axis = 90.455°

www.ephotozine.com/article/complete-guide-to-image-sensor-pixel-size-29652

Back-project World Points into Image

Camera Anatomy: Column Vectors of P

- Let the columns of P be p_i, i = 1,...,4
- Then p₁, p₂, p₃ are the points at infinity of the world X, Y and Z axes respectively.
- Consider the point at infinity along X-axis: $D = (1, 0, 0, 0)^T$
- This will be imaged at

$$\mathbf{P}\mathbf{D}=\mathbf{p}_1$$

- •Hence,
 - The first column of P is the image of the point at infinity along X-axis
 - The second column of P is the image of the point at infinity along Y-axis
 - The third column of P is the image of the point at infinity along Z-axis
- Similarly, p_4 the fourth column of P is ...
- the image of world origin $(0,0,0,1)^{T}$

Camera Anatomy: Column Vectors of **P**

JNIVERSITY OF GALWAY

- -0.0019211 -0.0044849
- 4.1144e-07 -3.5796e-07 1.1421e-07

Ρ	=
---	---

-0.00010835	4.3034e-05	0.0047453	-0.68373
-0.0019211	-0.0044849	0.00023615	-0.7297
4.1144e-07	-3.5796e-07	1.1421e-07	-0.00028537

P =	
-----	--

-0.00010835	4.3034e-05	0.0047453	-0.68373
-0.0019211	-0.0044849	0.00023615	-0.7297
4.1144e-07	-3.5796e-07	1.1421e-07	-0.00028537

• Row vectors are 4-vectors, which may be interpreted as planes.

$$\mathbf{P} = \begin{bmatrix} p_{11} & p_{12} & p_{13} & p_{14} \\ p_{21} & p_{22} & p_{23} & p_{24} \\ p_{31} & p_{32} & p_{33} & p_{34} \end{bmatrix} = \begin{bmatrix} \mathbf{P}^{1\top} \\ \mathbf{P}^{2\top} \\ \mathbf{P}^{3\top} \end{bmatrix}$$

- **Principal plane**: Plane through camera center, parallel to image plane, consisting of set of points X imaged on, line at infinity of image,
- •i.e. PX = (x,y,0)^T
- •Thus, a point lies on principal plane iff $P^{3T}X = 0$
- •Thus, P³ is the vector representing the principal plane
- •Also, C lies on P³ (verify)

P =

-0.00010835	4.3034e-05	0.0047453	-0.68373
-0.0019211	-0.0044849	0.00023615	-0.7297
4.1144e-07	-3.5796e-07	1.1421e-07	-0.00028537

$P^3 = [4.1144e-07 - 3.5796e-07 1.1421e-07 - 0.00028537]^T$

Verify $P^{3T}C = 1.3212e-14$

•Axis planes: Consider the set of points X in P¹

- •They must satisfy $P^{1T}X = 0$
- Hence, they will be imaged at PX = (0, y, w)^T, i.e. they are points on the y-axis of the image
- •Also, C lies on P¹ (verify)
- Hence, P¹ is defined by the join of C and line x = 0 in the image
- Similarly, P² is defined by the join of C and line y = 0

- •Axis planes are dependent on the choice of image axes, but principal plane is not.
- Intersection of planes P¹ and P² is the line joining the camera center and the image origin, i.e. the back projection of image origin
 - Not the optical axis in general...
- Camera center lies on all three planes P¹, P², P³

Camera Anatomy: Principal Point and Principal Axis

- •The principal axis is the ray through the camera center perpendicular to the principal plane P³, which will intersect the imaging plane at the principal point.
- In general, the normal of a plane $\pi = (\pi_1, \pi_2, \pi_3, \pi_4)^T$ is given by $(\pi_1, \pi_2, \pi_3)^T$
- •Thus principal axis is given by $(p_{31}, p_{32}, p_{33})^T$
- •Consider the point at infinity in the direction of principal axis, i.e. $(p_{31}, p_{32}, p_{33}, 0)^T = \hat{\mathbf{P}}^3$
- We can project this point back to the image to get the coordinates of the principal point as $x_0 = P\hat{P}^3$
- •This involves only the first 3x3 block of P. Hence

$$\mathbf{x}_0 = M\mathbf{m}^3$$

UNIVERSITY OF GALEWY where m^{3T} is the last row of M, and M the first 3x3 block of P

Summary: Camera Anatomy

OLLSCOIL NA GAILLIMHE UNIVERSITY OF GALWAY

Action of Camera on Points, Lines and Planes

Action of Camera on Points

Action of camera on points is familiar to us

$$\mathbf{x} = \mathtt{K} \left[\mathtt{R} \mid -\mathtt{R} \tilde{\mathbf{C}}
ight] \mathbf{X}$$

• In canonical view

 $\mathbf{x} = \mathtt{K} \left[\mathtt{I} \mid \mathbf{0} \right] \mathbf{X}$

UNIVERSITY OF GALWAY

Action of Camera on Lines

- •A line in 3-space will project to a line in the image.
- •Geometric Proof: The join of the line L in 3-space and the camera center C forms a plane, and this plane will intersect the imaging plane in a line.

•Algebraic Proof:

Consider two points **A** and **B** in 3-space. The line formed by their join can be parameterized as $\mathbf{X}(\mu) = \mathbf{A} + \mu \mathbf{B}$. $\mathbf{X}(\mu)$ will project in the image to

$$\mathbf{x}(\mu) = \mathbf{P}(\mathbf{A} + \mu \mathbf{B}) = \mathbf{P}\mathbf{A} + \mu \mathbf{P}\mathbf{B}$$
$$= \mathbf{a} + \mu \mathbf{b}$$

which is the line joining image points \mathbf{a} and \mathbf{b} .

UNIVERSITY OF (

Back Projection of Points to Rays

- •Given a point x in the image of a camera with matrix **P**, we want to determine set of points in the world that map to this point
- i.e. the ray in the world that this point back-projects to.
- •Note that camera center C always lies along the ray.
- •Claim: P^+x also lies along the ray, where $P^+ = P^T(PP^T)^{-1}$

• Proof:

The image of P⁺x will be at

PP⁺x

```
= \mathsf{P}\mathsf{P}^{\mathsf{T}}(\mathsf{P}\mathsf{P}^{\mathsf{T}})^{-1}\mathsf{x}
```

```
= x
```


OLLSCOIL NA GAILLIM

Back Projection of Points to Rays

- •Since we know two points along the ray, ${\bf C}$ and ${\sf P}^{\scriptscriptstyle +} x$
- •Therefore, points along the ray can be written in parametric form as

$$\mathbf{X}(\lambda) = \mathbf{P}^+ \mathbf{x} + \lambda \mathbf{C}$$

Back Projection of Points to Rays

- In canonical view, relationship is even more simpler
- Consider the back-projected ray which is given by a direction d
- All points on this ray can be written as the join of camera center and the ray vector

$$\tilde{\mathbf{X}}(\lambda) = \mathbf{0} + \lambda \mathbf{d} = \lambda \mathbf{d}$$

• The image of such a point in canonical view will be at

$$\mathbf{x} = \mathbf{K} \begin{bmatrix} \mathbf{I} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \lambda \mathbf{d} \\ 1 \end{bmatrix}$$
$$\mathbf{x} = \mathbf{K} \mathbf{d}$$

• So, given x, the ray direction in canonical view can be computed simply as $\mathbf{d} = \mathbf{K}^{-1}\mathbf{x}$

Camera calibration matrix K relates the image point to a ray direction

Back Projection of Lines

- •Lines in image will back project to planes in the world.
- •Result: The set of points in the world mapping to a line I via the camera matrix P is the plane $P^{T}I$
- Proof

A point x lies on I iff $x^T I = 0$.

A world point X maps to a point PX, which will lie on I iff

 $X^T P^T I = 0$

Thus if P^TI is taken to represent a plane, then X lies on this plane iff X maps to a point on the line I

Hence, $P^{T}I$ is the plane which is the back projection of line I.

Relationship between Image Line and Plane Normal

 Result: An image line I defines a plane through the camera center with normal direction n = K^TI in the camera canonical coordinate system

• Proof:

Points x on line I back-project to directions $d = K^{-1}x$ Since these direction vectors lie on the plane, they are orthogonal to the plane normal n.

```
Thus, d^{T}n = 0
x^{T}K^{-T}n = 0
Since points on I satisfy x^{T}I = 0, it follows that
I = K^{-T}n
Hence n = K^{T}I
```


Vanishing Line

- The vanishing line of a plane is the image of the line at infinity of the plane
- •The vanishing line will depend only on the *orientation* of the plane, and not on its absolute position
- Parallel planes have the same vanishing line

Vanishing Line

- If camera calibration matrix K is known, a scene plane's vanishing line can be used to find the plane's orientation relative to the camera.
- In the canonical coordinate system, the orientation of the plane having the vanishing line I in the image is given by

 The vanishing line as a function of plane normal is given by

Orthographic Cameras

Cameras at Infinity

•Consider the image sequence in which the camera moves away from an object but zooms in to keep the size of the object the same.

Cameras at Infinity

• If the camera center moves back from the scene to infinity, then all rays entering the camera will be parallel

Another Type of Camera: Orthographic Camera

• Parallel Lines remain parallel and do not converge (also termed parallel projection)

The Colonnade 401 Jettersen Avs., Scranton, PA SPRING 2007 JEFFERSON AVENUE ELEVATION

leonori**muller**davis

Perspective Distortion

- Perspective distortion: the effect that further away objects appear smaller in size
- •As focal length increases (more zoom), perspective distortion becomes less
- Orthographic camera can be considered as being very far away so there is no variation in Z, and having very long focal length. Hence it has no perspective distortion.
- Equal lengths in the world will appear of equal size in the image

Orthographic Projection

- •In canonical view:
- •The relationship between image coordinates and scene coordinates is:

Orthographic Projection

• In general view:

$\begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} r \\ r \\ r \\ r \end{bmatrix}$	$r_{21} r_{31} r_{31}$	$r_{12} \\ r_{22} \\ r_{32} \\ 0$	r_{13} r_{23} r_{33} 0	t_X t_Y t_Z 1		$\begin{array}{c} X \\ Y \\ Z \\ 1 \end{array}$
--	------------------------	-----------------------------------	---------------------------------------	------------------------------	--	---

•This can also be written as

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_X \\ r_{21} & r_{22} & r_{23} & t_Y \\ r_{31} & r_{32} & r_{33} & t_Z \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$
Or
$$\tilde{\mathbf{x}} = \mathbf{K}_o \begin{bmatrix} \mathbf{R} \mid \mathbf{T} \end{bmatrix} \mathbf{X}$$

•Note that 3rd row of R|T does not matter

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix} + \begin{bmatrix} t_X \\ t_Y \end{bmatrix}$$

Relationship between Orthographic and Perspective Projection

- •Consider a pinhole camera which is very far away and zoomed into the scene.
- •Since the depth variation of the scene is small compared to the distance of the camera, it may be approximated by a constant value.
- •Hence

$$x = \frac{fX}{\bar{Z}} \qquad y = \frac{fY}{\bar{Z}}$$

•Since $\frac{f}{Z}$ is now a constant, we can write x = mX y = mY

which is scaled orthographic projection

Some properties of Orthographic Projection

- Parallel lines remain parallel
- •There is no perspective distortion. Equal lengths in the world appear as equal lengths in the image.
- Images of a plane taken by an orthographic camera are related by an affine transformation [Proof?]

Practical Cases of Orthographic Camera

- A camera which is actually very far away compared to the depth variation in the scene can be approximated by an orthographic camera
- Orthographic projection is often used in computer games
- Scanner is provides an orthographic projection of a document image
- Also used in some algorithms as an approximation for mathematical simplicity (e.g. Tomasi / Kanade Structure for Motion Algorithm)

VERSITY OF GALWAY

Satellite Cameras

 Satellite images are typically taken by a line scan pushbroom camera, which is orthographic along the direction of motion and perspective in the linescan direction

