
Dr Waqar Shahid Qureshi
Waqarshahid.qureshi@universityofgalway.ie

Revision from Tranformation

Hierarchy of 3D Transformations

3D Rotation Matrices

• Rotations about Principal Axes

About origin, in right-handed coordinate system, counter
clockwise when looking towards origin from positive axis

• Rotation matrix is orthonormal with
Determinant of +1 and 3 dof

• Inverse of a rotation matrix is its
transpose

• Concatenation of Rotations is also a
rotation

• IMP: A rotation matrix transforms its
own rows onto the principal axes

• Any 3D rotation matrix can be described
as rotation about an axis n by an angle

• To rotate about given axis n by :
• Rotate axes onto a principal axis

• by composing appropriate matrix through
cross products

• Rotate about principal axes and then
undo the earlier transformation

• OR use Rodriguez formula

• To compute n and from a 3D rotation
matrix

• n is the eigenvector corresponding to the
real eigenvalue of 1

• can be computed by the other 2
eigenvalues, which are
cos i sin

• To disambiguate angle values, check for
consistency with Rodriguez formula

 −

1000

0100

00cossin

00sincos

−

1000

0cossin0

0sincos0

0001

−

1000

0cos0sin

0010

0sin0cos

Camera Model
Part-1

Pinhole camera

http://www.ibnalhaytham.com/discover/who-was-ibn-al-haytham/

First described by Ibn Al-Haytham
 الھیثم بن الحسن بن الحسن ،علی ابو

in his 7-volume work
المناظر کتاب

He termed it
Al-beit Al-muzlim المظلم بیت

which was later translated into Latin as “camera
obscura”

Pinhole Camera
• Lens is assumed to be single point

• Infinitesimally small aperture

•Has infinite depth of field i.e. everything is in focus

The first photograph on record

Pinhole Camera Properties: Distant objects are smaller

Slide Credit: Forsyth/Ponce http://www.cs.berkeley.edu/~daf/bookpages/slides.html
and Khurram Shafique, Object Video

http://www.cs.berkeley.edu/~daf/bookpages/slides.html

Pinhole Camera Properties

• Lines map to lines

• Polygons map to polygons

• Parallel lines meet

Pinhole Camera

•Pinhole is considered the
center of projection, camera
center or optical center

•Let center of projection be
at the origin of Euclidean
space

•Plane Z = f is the imaging
plane, or focal plane

•Line from camera center,
perpendicular to imaging
plane is the principal axis or
principal ray

Pinhole Camera in Canonical Configuration

•Camera center C is at
Euclidean origin

•Principal axis aligned with
Z-axis

•Principal point p is the point
where principal axis cuts
the imaging plane

•Imaging plane is often
taken by convention to be
in front of the camera

Pinhole Camera in Canonical Configuration

•Camera maps point
(X, Y, Z)T to (x,y)T

•By similar triangles

•Similarly

•Thus, the camera maps

•This mapping is from

(X,Y,Z)

Z

f

Y

y

Central Projection

•We can write this as a matrix using the homogeneous
coordinates

•Verify that since

•Hence

Central Projection

•Camera in canonical view (centered at origin with optical axis
aligned with world Z axis, image axes aligned with X and Y)

•Since any scaling of a homogeneous equation is valid, it is often
written as

Central Projection

•The camera can be more compactly written as

•where is a 3x4 matrix that maps from

• may also be written as:

Principal Point Offset

•The expression assumes that image
origin is at the principal point.

•This may not be the case in general. For example:

•If the image coordinates of the principal point are (px, py)T,
then the camera mapping will be

Central Projection with Principal Point Offset

•In matrix form, this mapping becomes

•Sometimes, for convenience, it is also written as

•Or

• is called the camera calibration matrix, which is a 3x3 matrix
of internal camera parameters

CCD Camera

•We have assumed same units for world & image coordinates

•In a CCD camera, image coordinates are measured in pixels

•Some CCD cameras also have non-square pixels

•We can convert to pixel units as

where mx and my are scale factors of pixels per unit length,
needed to convert to pixel dimension
• mx = #of pixels in x direction / size of CCD array in x direction

• my = #of pixels in y direction / size of CCD array in y direction

•(x0, y0) is principal point offset in pixel dimensions

Pinhole camera in general view

•This is for the case when the camera’s optical axis is aligned
with the world z-axis

•What if that is not the case?

Pinhole camera in general view

•If the camera center is at coordinates C in the world, i.e. the
camera is moved C from the origin, we should move the
world point by C-1

•Then the perspective transform equation will be applicable

•Same holds for rotations

Example

•Translation by 10 units to the right

10

X

Z

[10, 0, 10]T

Pinhole camera in general view

•In general, the camera center is at a rotation of RT, followed by
a translation of C from the world origin

•Then

World Axes

Camera Axes

C

RT

Pinhole camera in general view

25

Canonical View

General View

x – image point
X – world point
K – 3x3 matrix of internal camera parameters
[R | T] – 3x4 matrix of external camera parameters
 R – rotation needed to align camera to world axes
 T – Translation needed to bring camera to world origin
 T = -RC where C is the vector of camera center

Camera Model
Example

•Think that the camera was
originally at the origin
looking down Z axis

•Then it was translated by (r1,
r2, r3)T, rotated by along X,
 along Z, then translated by
(x0, y0, z0)T

•This is the scenario in the
figure on right

Figure Reference: Gonzales and Woods,
“Digital Image Processing”

Camera Model
Example

1000

100

010

001

3

2

1

r

r

r

−

1000

0cossin0

0sincos0

0001

 −

1000

0100

00cossin

00sincos

1 0 0 X0

0 1 0 Y0

0 0 1 Z0

0 0 0 1

é

ë

ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú

mx f 0 x0 0

0 my f y0 0

0 0 1 0

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

-1

−

−

−

1000

100

010

001

3

2

1

r

r

r

−

1000

0cossin0

0sincos0

0001

−

1000

0100

00cossin

00sincos

−

−

−

1000

100

010

001

0

0

0

Z

Y

Xmx f 0 x0 0

0 my f y0 0

0 0 1 0

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

Camera Model
Example

• This camera model is applicable in many situations

• For example, this is the typical surveillance camera scenario

Aircraft Example

cameraMat = perspective_transform * gimbal_rotation_y * gimbal_rotation_z *

gimbal_translation * vehicle_rotation_x * vehicle_rotation_y * vehicle_rotation_z *

vehicle_translation ;

OTTER system_id

 TV sensor_type

 0001 serial_number

 9.400008152666640300e+08 image_time

 3.813193746469612200e+01 vehicle_latitude

 -7.734523185193877700e+01 vehicle_longitude

 9.949658409987658800e+02 vehicle_height

 9.995171174441039900e-01 vehicle_pitch

 1.701626418113209000e+00 vehicle_roll

 1.207010551753029400e+02 vehicle_heading

 1.658968732990974800e-02 camera_focal_length

 -5.361314389557259100e+01 camera_elevation

 -7.232969433546705000e+00 camera_scan_angle

 480 number_image_lines

 640 number_image_samples

c(1,1) = (cos(c_scn)*cos(v_rll)-sin(c_scn)*sin(v_pch)*sin(v_rll))*cos(v_hdg)-sin(c_scn)*cos(v_pch)*sin(v_hdg);

c(1,2) = -(cos(c_scn)*cos(v_rll)-sin(c_scn)*sin(v_pch)*sin(v_rll))*sin(v_hdg)-sin(c_scn)*cos(v_pch)*cos(v_hdg);

c(1,3) = -cos(c_scn)*sin(v_rll)-sin(c_scn)*sin(v_pch)*cos(v_rll);

c(1,4) = -((cos(c_scn)*cos(v_rll)-sin(c_scn)*sin(v_pch)*sin(v_rll))*cos(v_hdg)-sin(c_scn)*cos(v_pch)*sin(v_hdg))*vx-(-(cos(c_scn)*cos(v_rll)-
sin(c_scn)*sin(v_pch)*sin(v_rll))*sin(v_hdg)-sin(c_scn)*cos(v_pch)*cos(v_hdg))*vy-(-cos(c_scn)*sin(v_rll)-sin(c_scn)*sin(v_pch)*cos(v_rll))*vz;

c(2,1) = (-sin(c_elv)*sin(c_scn)*cos(v_rll)+(-sin(c_elv)*cos(c_scn)*sin(v_pch)+cos(c_elv)*cos(v_pch))*sin(v_rll))*cos(v_hdg)+(-
sin(c_elv)*cos(c_scn)*cos(v_pch)-cos(c_elv)*sin(v_pch))*sin(v_hdg);

c(2,2) = -(-sin(c_elv)*sin(c_scn)*cos(v_rll)+(-sin(c_elv)*cos(c_scn)*sin(v_pch)+cos(c_elv)*cos(v_pch))*sin(v_rll))*sin(v_hdg)+(-
sin(c_elv)*cos(c_scn)*cos(v_pch)-cos(c_elv)*sin(v_pch))*cos(v_hdg);

c(2,3) = sin(c_elv)*sin(c_scn)*sin(v_rll)+(-sin(c_elv)*cos(c_scn)*sin(v_pch)+cos(c_elv)*cos(v_pch))*cos(v_rll);

c(2,4) = -((-sin(c_elv)*sin(c_scn)*cos(v_rll)+(-sin(c_elv)*cos(c_scn)*sin(v_pch)+cos(c_elv)*cos(v_pch))*sin(v_rll))*cos(v_hdg)+(-
sin(c_elv)*cos(c_scn)*cos(v_pch)-cos(c_elv)*sin(v_pch))*sin(v_hdg))*vx-(-(-sin(c_elv)*sin(c_scn)*cos(v_rll)+(-
sin(c_elv)*cos(c_scn)*sin(v_pch)+cos(c_elv)*cos(v_pch))*sin(v_rll))*sin(v_hdg)+(-sin(c_elv)*cos(c_scn)*cos(v_pch)-
cos(c_elv)*sin(v_pch))*cos(v_hdg))*vy-(sin(c_elv)*sin(c_scn)*sin(v_rll)+(-sin(c_elv)*cos(c_scn)*sin(v_pch)+cos(c_elv)*cos(v_pch))*cos(v_rll))*vz;

c(3,1) = (cos(c_elv)*sin(c_scn)*cos(v_rll)+(cos(c_elv)*cos(c_scn)*sin(v_pch)+sin(c_elv)*cos(v_pch))*sin(v_rll))*cos(v_hdg)+(cos(c_elv)*cos(c_scn)*cos(v_pch)-
sin(c_elv)*sin(v_pch))*sin(v_hdg);

c(3,2) = -(cos(c_elv)*sin(c_scn)*cos(v_rll)+(cos(c_elv)*cos(c_scn)*sin(v_pch)+sin(c_elv)*cos(v_pch))*sin(v_rll))*sin(v_hdg)+(cos(c_elv)*cos(c_scn)*cos(v_pch)-
sin(c_elv)*sin(v_pch))*cos(v_hdg);

c(3,3) = -cos(c_elv)*sin(c_scn)*sin(v_rll)+(cos(c_elv)*cos(c_scn)*sin(v_pch)+sin(c_elv)*cos(v_pch))*cos(v_rll);

c(3,4) = -
((cos(c_elv)*sin(c_scn)*cos(v_rll)+(cos(c_elv)*cos(c_scn)*sin(v_pch)+sin(c_elv)*cos(v_pch))*sin(v_rll))*cos(v_hdg)+(cos(c_elv)*cos(c_scn)*cos(v_pch)-
sin(c_elv)*sin(v_pch))*sin(v_hdg))*vx-(-
(cos(c_elv)*sin(c_scn)*cos(v_rll)+(cos(c_elv)*cos(c_scn)*sin(v_pch)+sin(c_elv)*cos(v_pch))*sin(v_rll))*sin(v_hdg)+(cos(c_elv)*cos(c_scn)*cos(v_pch)-
sin(c_elv)*sin(v_pch))*cos(v_hdg))*vy-(-cos(c_elv)*sin(c_scn)*sin(v_rll)+(cos(c_elv)*cos(c_scn)*sin(v_pch)+sin(c_elv)*cos(v_pch))*cos(v_rll))*vz;

c(4,1) =
(1/fl*cos(c_elv)*sin(c_scn)*cos(v_rll)+(1/fl*cos(c_elv)*cos(c_scn)*sin(v_pch)+1/fl*sin(c_elv)*cos(v_pch))*sin(v_rll))*cos(v_hdg)+(1/fl*cos(c_elv)*cos(c_s
cn)*cos(v_pch)-1/fl*sin(c_elv)*sin(v_pch))*sin(v_hdg);

c(4,2) = -
(1/fl*cos(c_elv)*sin(c_scn)*cos(v_rll)+(1/fl*cos(c_elv)*cos(c_scn)*sin(v_pch)+1/fl*sin(c_elv)*cos(v_pch))*sin(v_rll))*sin(v_hdg)+(1/fl*cos(c_elv)*cos(c_sc
n)*cos(v_pch)-1/fl*sin(c_elv)*sin(v_pch))*cos(v_hdg);

c(4,3) = -1/fl*cos(c_elv)*sin(c_scn)*sin(v_rll)+(1/fl*cos(c_elv)*cos(c_scn)*sin(v_pch)+1/fl*sin(c_elv)*cos(v_pch))*cos(v_rll);

c(4,4) = -
((1/fl*cos(c_elv)*sin(c_scn)*cos(v_rll)+(1/fl*cos(c_elv)*cos(c_scn)*sin(v_pch)+1/fl*sin(c_elv)*cos(v_pch))*sin(v_rll))*cos(v_hdg)+(1/fl*cos(c_elv)*cos(c_s
cn)*cos(v_pch)-1/fl*sin(c_elv)*sin(v_pch))*sin(v_hdg))*vx-(-
(1/fl*cos(c_elv)*sin(c_scn)*cos(v_rll)+(1/fl*cos(c_elv)*cos(c_scn)*sin(v_pch)+1/fl*sin(c_elv)*cos(v_pch))*sin(v_rll))*sin(v_hdg)+(1/fl*cos(c_elv)*cos(c_sc
n)*cos(v_pch)-1/fl*sin(c_elv)*sin(v_pch))*cos(v_hdg))*vy-(-
1/fl*cos(c_elv)*sin(c_scn)*sin(v_rll)+(1/fl*cos(c_elv)*cos(c_scn)*sin(v_pch)+1/fl*sin(c_elv)*cos(v_pch))*cos(v_rll))*vz+1;

mx f 0 x0 0

0 my f y0 0

0 0 1 0

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

cosw 0 -sinw 0

0 1 0 0

sinw 0 cosw 0

0 0 0 1

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

cost sint 0 0

-sint cost 0 0

0 0 1 0

0 0 0 1

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

cosj 0 -sinj 0

0 1 0 0

sinj 0 cosj 0

0 0 0 1

é

ë

ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú

1 0 0 0

0 cosb sinb 0

0 -sinb cosb 0

0 0 0 1

é

ë

ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú

cosa sina 0 0

-sina cosa 0 0

0 0 1 0

0 0 0 1

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

1 0 0 -DTx

0 1 0 -DTy

0 0 1 -DTz

0 0 0 1

é

ë

ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú

hx

hy

h

é

ë

ê
ê
ê

ù

û

ú
ú
ú

=

mx f 0 x0 0

0 my f y0 0

0 0 1 0

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

X

Y

Z

1

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

Pinhole camera in general view

31

Canonical View

Aircraft Example

−

1000

0cossin0

0sincos0

0001

cosq sinq 0 0

-sinq cosq 0 0

0 0 1 0

0 0 0 1

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

−

−

−

1000

100

010

001

0

0

0

Z

Y

X

Surveillance Camera Example (Small gimbal translation ignored)

Translation by Inverse
of Camera Center

Rotation needed to align
camera with world axes

Perspective Transform
for Canonical View

mx f 0 x0 0

0 my f y0 0

0 0 1 0

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

Summary: Perspective Camera Model

•The perspective camera model can be written as

3x3 matrix of internal
camera parameters

(intrinsic parameters)

3x4 matrix of external
camera parameters

(extrinsic parameters)
World point

Image
point

Special Case 1:
Perspective Camera Looking at a Plane
•Consider the case of camera looking at a plane

•This scenario occurs frequently in imaging applications

Special Case 1:
Perspective Camera Looking at a Plane
•Without loss of generality, we can assume that the plane has
equation Z = 0

•The third column of does not matter in this case
and can be dropped. So we can rewrite the system as:

•Conclusion: The 3D points lying on a plane are related to the
image points by a homography.

Special Case 1:
Perspective Camera Looking at a Plane

•Now consider relationship between two images of a plane

•Two images of a plane taken by a perspective camera are
related by a homography

Plane

Camera 1 Camera 2

H1 H2

H2 H1
-1

Special Case 1:
Perspective Camera Looking at a Plane
•It is no surprise that these
projective transformations
look like images of a plane
taken from different
angles

Application: Rectification

•A perspective image of a plane can be transformed into one
in which the plane is fronto-parallel, i.e. the optical axis
coincides with the plane normal

Satellite image

Rectified image

Application: Rectification

Road Segment, covered by three cameras

Merged view of the road

Another Example of Rectification

•Measuring crowd density as persons per square meter

Special Case 2:
Rotation about Camera Center (Pure Rotation)

•Consider the case of camera
that does not translates but
only rotates about its optical
center

•This scenario also occurs
frequently in imaging
applications

Special Case 2:
Rotation about Camera Center (Pure Rotation)

•x and x' are images of a point X before and after rotation of
the camera respectively.

•Then

•Hence

•This type of homography is called a conjugate rotation
homography

Special Case 2:
Rotation about Camera Center (Pure Rotation)

• The relative motion of objects in two images which are at different distances in
the world is termed parallax

•A homography will not generate any parallax.

•Hence pure rotation of camera does not generate parallax

Camera Calibration

Recall: Perspective Camera Model

•The perspective camera model can be written as

3x3 matrix of internal
camera parameters

(intrinsic parameters)

3x4 matrix of external
camera parameters

(extrinsic parameters)
World point

Image
point

Camera Calibration

•In general, the camera model looks like:

•P is a 3x4 matrix of rank 3
•Calibration is the process of finding the parameters
[p11…p34]
•If x and X are known, then we can solve for the unknown
parameters in P

Camera Calibration

•Camera model

•In inhomogeneous from

•Multiplying both sides by denominator and rearranging

Camera Calibration

•These equations have 12 unknowns

•Each correspondence between a world point and an image
point yields two equations

•If 6 correspondences are known, we can solve for the
unknowns

Camera Calibration

•Separating out the known and the unknown terms

Camera Calibration

•Given n correspondences…

Camera Calibration

•This system Ap = 0 is a homogeneous system.

•A is rank deficient: rank(A) = 11 (at most)

•Solution?

• The null vector of A represents the p which is the
solutions to the system Ap = 0

• How to find null space?
1. null(A) in MATLAB, or

2. Take SVD of A, as svd(C) = USVT. The column of V
corresponding to the singular value of zero represents the
solution

(in practice, you will have to take the smallest singular value)

Camera Calibration: Summary

•Given a set of world points (in 3D coordinates) and their
corresponding image points, we solve for the 3x4 camera
matrix that relates them.

•This transforms into a problem of the form Ap = 0, which can
be solved by finding the null vector of A.

•A more robust solution is through Direct Linear Transform,
DLT (not covered in this class)

55

Camera Calibration: Solving for Extrinsic and
Intrinsic Parameters

•After finding p, we end up with a 3x4 camera matrix relating
world points to image points

•How can I find camera rotation, translation and intrinsic
parameters?

•Note that P has 12 terms and 11 degrees of freedom.

56

Camera Calibration: Solving for Extrinsic and
Intrinsic Parameters

•Solving for Camera Center C:

•Consider P times C

•Hence, camera center C is a null vector of P

•Note that PC = (0, 0, 0)T is undefined in image plane, which is
exactly what we should expect, since image of camera center is
undefined.

57

Camera Calibration: Solving for Extrinsic and
Intrinsic Parameters

•Solving for K and R

•Note that P = [KR | -KRC]

•Hence first 3x3 block of P i.e. M3x3 = KR

•K is an upper triangular matrix, R is an orthonormal matrix

•Solved through RQ decomposition
RQ decomposition decomposes a matrix into an upper
triangular matrix times an orthonormal matrix

58

Camera Calibration Example

Take Image of a Calibration Target

Select Image Points

Choose world coordinate system

0 1 2 3 0 1 2 3 0 1
 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 1 1 1 1 2 2

2 3 0 1 2 3 3 3 3 3
 0 0 0 0 0 0 1 2 3 1
 2 2 3 3 3 3 0 0 0 1

3 3 3 3 3 3 3 3 2 2
 2 3 1 2 3 1 2 3 1 2
 1 1 2 2 2 3 3 3 3 3

2 1 1 1 0 0 0
 3 1 2 3 1 2 3
 3 3 3 3 3 3 3

Specify World Points

Vertices on the cube (in same order as image points)

Cube height = 57mm
One box side = 19mm

Therefore, scale each
coordinate by 19 mm

0 19 38 57 0 19 38 57 0 19 38 57 0 19 38 57 57 57 57 57 57 57 57 57 57 57 57 57 38 38 38 19 19 19 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 19 38 57 19 38 57 19 38 57 19 38 57 19 38 57 19 38 57 19 38 57
 0 0 0 0 19 19 19 19 38 38 38 38 57 57 57 57 0 0 0 19 19 19 38 38 38 57 57 57 57 57 57 57 57 57 57 57 57

Specify World Points

Vertices on the cube (in same order as image points)

0 19 38 57 0 19 38 57 0 19 38 57 0 19 38 57 57 57 57 57 57 57 57 57 57 57 57 57 38 38 38 19 19 19 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 19 38 57 19 38 57 19 38 57 19 38 57 19 38 57 19 38 57 19 38 57
 0 0 0 0 19 19 19 19 38 38 38 38 57 57 57 57 0 0 0 19 19 19 38 38 38 57 57 57 57 57 57 57 57 57 57 57 57

•Set up matrix A and find its right null vector through SVD
•warning: null(A) is unlikely to work! (WHY?)

•Reshape into a 3x4 matrix

P =

 -0.00010835 4.3034e-05 0.0047453 -0.68373

 -0.0019211 -0.0044849 0.00023615 -0.7297

 4.1144e-07 -3.5796e-07 1.1421e-07 -0.00028537

Find the solution

C =

 375.89

 -315.53

 155.53

 1

Find camera center from P

x

z

x

y

y

z

x

z

y

K =

 -8376.2 66.191 1552.4

 0 -8336.6 2712

 0 1

R =

 -0.16524 0.12231 0.97864

 -0.65379 -0.75651 -0.01584

 -0.73842 0.64244 -0.20497

Compute K and R by RQ Factorization

Principal Point

K =

 -8376.2 66.191 1552.4

 0 -8336.6 2712

 0 1

R =

 -0.16524 0.12231 0.97864

 -0.65379 -0.75651 -0.01584

 -0.73842 0.64244 -0.20497

Focal Length

K =

 -8376.2 66.191 1552.4

 0 -8336.6 2712

 0 1

R =

 -0.16524 0.12231 0.97864

 -0.65379 -0.75651 -0.01584

 -0.73842 0.64244 -0.20497

mxf = 8376.2 myf = 8336.6

• Image was taken by Canon 600D

•Canon 600D uses APS-C format
CMOS sensor*

• Size of APS-C sensor is
23.6mm x 15.7mm

• Image size is 5184 x 3456

* https://www.ephotozine.com/article/complete-guide-to-image-sensor-pixel-size-29652

• Hence

• mx = 3456/15.7 = 220.13 pix/mm

• my = 5184/23.6 = 219.66 pix/mm

• f = [38.051, 37.952] mm

• Verification from EXIF data: 37mm

• Angle between x & y axis = 90.455o

Back-project World Points into Image

Camera Anatomy:
Column Vectors of P

•Let the columns of P be pi , i = 1,…,4

•Then p1, p2, p3 are the points at infinity of the world X, Y and Z
axes respectively.

•Consider the point at infinity along X-axis: D = (1, 0, 0, 0)T

•This will be imaged at

•Hence,
• The first column of P is the image of the point at infinity along X-axis
• The second column of P is the image of the point at infinity along Y-axis
• The third column of P is the image of the point at infinity along Z-axis

•Similarly, p4 the fourth column of P is …

• the image of world origin (0,0,0,1)
T

P =

 -0.00010835 4.3034e-05 0.0047453 -0.68373

 -0.0019211 -0.0044849 0.00023615 -0.7297

 4.1144e-07 -3.5796e-07 1.1421e-07 -0.00028537

Camera Anatomy:
Column Vectors of P

-263.35

 -4669.2

 1

P =

 -0.00010835 4.3034e-05 0.0047453 -0.68373

 -0.0019211 -0.0044849 0.00023615 -0.7297

 4.1144e-07 -3.5796e-07 1.1421e-07 -0.00028537

Camera Anatomy:
Column Vectors of P

-263.35

 -4669.2

 1

-120.22

 12529

 1

Camera Anatomy:
Column Vectors of P

2396

 2557

 1

P =

 -0.00010835 4.3034e-05 0.0047453 -0.68373

 -0.0019211 -0.0044849 0.00023615 -0.7297

 4.1144e-07 -3.5796e-07 1.1421e-07 -0.00028537

Camera Anatomy:
Column Vectors of P

41550

 2067.7

 1

P =

 -0.00010835 4.3034e-05 0.0047453 -0.68373

 -0.0019211 -0.0044849 0.00023615 -0.7297

 4.1144e-07 -3.5796e-07 1.1421e-07 -0.00028537

Camera Anatomy:
Column Vectors of P

P =

 -0.00010835 4.3034e-05 0.0047453 -0.68373

 -0.0019211 -0.0044849 0.00023615 -0.7297

 4.1144e-07 -3.5796e-07 1.1421e-07 -0.00028537

Camera Anatomy:
Column Vectors of P

P =

 -0.00010835 4.3034e-05 0.0047453 -0.68373

 -0.0019211 -0.0044849 0.00023615 -0.7297

 4.1144e-07 -3.5796e-07 1.1421e-07 -0.00028537

Camera Anatomy:
Row Vectors of P

•Row vectors are 4-vectors, which may be interpreted as
planes.

Camera Anatomy:
Row Vectors of P

•Principal plane: Plane through camera center, parallel to
image plane, consisting of set of points X imaged on, line at
infinity of image,

• i.e. PX = (x,y,0)T

•Thus, a point lies on principal plane iff P3TX = 0

•Thus, P3 is the vector representing the principal plane

•Also, C lies on P3 (verify)

Camera Anatomy:
Row Vectors of P

P3 = [4.1144e-07 -3.5796e-07 1.1421e-07 -0.00028537]T

Verify P3TC = 1.3212e-14

P =

 -0.00010835 4.3034e-05 0.0047453 -0.68373

 -0.0019211 -0.0044849 0.00023615 -0.7297

 4.1144e-07 -3.5796e-07 1.1421e-07 -0.00028537

Camera Anatomy:
Row Vectors of P

•Axis planes: Consider the set of points X in P1

•They must satisfy P1TX = 0

•Hence, they will be imaged at PX = (0, y, w)T, i.e. they are points
on the y-axis of the image

•Also, C lies on P1 (verify)

•Hence, P1 is defined by
the join of C and line x = 0
in the image

•Similarly, P2 is defined by
the join of C and line y = 0

Camera Anatomy:
Row Vectors of P

•Axis planes are dependent on the choice of image axes, but
principal plane is not.

•Intersection of planes P1 and P2 is the line joining the camera
center and the image origin, i.e. the back projection of image
origin
•Not the optical axis in general…

•Camera center lies on all three planes P1, P2, P3

Camera Anatomy:
Principal Point and Principal Axis

•The principal axis is the ray through the camera center
perpendicular to the principal plane P3, which will intersect the
imaging plane at the principal point.

•In general, the normal of a plane π=(π1, π2, π3, π4)T is given by
(π1, π2, π3)T

•Thus principal axis is given by (p31, p32, p33)T

•Consider the point at infinity in the direction of principal axis,
i.e. (p31, p32, p33, 0)T =

•We can project this point back to the image to get the
coordinates of the principal point as

•This involves only the first 3x3 block of P. Hence

•where m3T is the last row of M, and M the first 3x3 block of P

Summary: Camera Anatomy

Camera Center
PC=0

Image of point at
infinity in X-axis

direction

Image of point at
infinity in Y-axis

direction

Image of point at
infinity in Z-axis

direction

Image of
World Origin

Principal
Plane

Axis Plane
from join of
C and y = 0

Axis Plane
from join of
C and x = 0

Principal
Axis
m3

Intrinsic matrix K
and Rotation R by
RQ decomposition

Principal Point
Mm3

Action of Camera on Points, Lines and
Planes

Action of Camera on Points

•Action of camera on points is familiar to us

•In canonical view

Vanishing Points

C

d

X1

X2

X3

X4

Image of X∞?

v

Action of Camera on Lines

•A line in 3-space will project to a line in
the image.

•Geometric Proof: The join of the line L in
3-space and the camera center C forms a
plane, and this plane will intersect the
imaging plane in a line.

•Algebraic Proof:

Back Projection of Points to Rays

•Given a point x in the image of a camera with matrix P, we want
to determine set of points in the world that map to this point

• i.e. the ray in the world that this point back-projects to.

•Note that camera center C always lies along the ray.

•Claim: P+x also lies along the ray, where P+ = PT(PPT)-1

•Proof:

 The image of P+x will be at

 PP+x

 = PPT(PPT)-1x

 = x

 Therefore P+x must be along the ray

Back Projection of Points to Rays

•Since we know two points along the ray, C and P+x

•Therefore, points along the ray can be written in parametric
form as

Back Projection of Points to Rays

• In canonical view, relationship is even more simpler

•Consider the back-projected ray which is given by a direction d

•All points on this ray can be written as the join of camera center and
the ray vector

•The image of such a point in canonical view will be at

•So, given x, the ray direction in canonical view can be computed
simply as

•Camera calibration matrix K relates the image point to a ray direction

Back Projection of Lines

•Lines in image will back project to planes in the world.

•Result: The set of points in the world mapping to a line l via
the camera matrix P is the plane PTl

•Proof
A point x lies on l iff xTl = 0.
A world point X maps to a point PX, which will lie on l iff

 XTPTl = 0

Thus if PTl is taken to represent a plane, then X lies on this plane iff
X maps to a point on the line l

Hence, PTl is the plane which is the back projection of line l.

Relationship between Image Line and Plane
Normal

•Result: An image line l defines a plane
through the camera center with normal
direction n = KTl in the camera
canonical coordinate system

•Proof:
Points x on line l back-project to directions d = K-1x
Since these direction vectors lie on the plane, they are orthogonal to the
plane normal n.
Thus, dTn = 0
 xTK-Tn = 0
Since points on l satisfy xTl = 0, it follows that
 l = K-Tn
Hence n = KTl

Vanishing Line

•The vanishing line of a plane is
the image of the line at infinity of
the plane

•The vanishing line will depend
only on the orientation of the
plane, and not on its absolute
position

•Parallel planes have the same
vanishing line

Vanishing Line

•If camera calibration matrix K is
known, a scene plane’s vanishing
line can be used to find the
plane’s orientation relative to the
camera.

•In the canonical coordinate
system, the orientation of the
plane having the vanishing line l
in the image is given by

 n = KTl

•The vanishing line as a function of
plane normal is given by

 l = K-Tn

Orthographic Cameras

Cameras at Infinity

•Consider the image sequence in which the camera moves
away from an object but zooms in to keep the size of the
object the same.

Cameras at Infinity
•If the camera center moves back from the scene to infinity, then
all rays entering the camera will be parallel

Another Type of Camera: Orthographic
Camera

•Parallel Lines remain parallel and do not converge
 (also termed parallel projection)

Type of Projection?

Type of Projection?

Type of Projection?

Type of Projection?

Type of Projection?

Perspective Distortion
•Perspective distortion: the effect that
further away objects appear smaller
in size

•As focal length increases (more zoom),
perspective distortion becomes less

•Orthographic camera can be
considered as being very far away so
there is no variation in Z, and having
very long focal length. Hence it has no
perspective distortion.

•Equal lengths in the world will appear
of equal size in the image

107

Orthographic Projection

•In canonical view:

•The relationship between image coordinates and scene
coordinates is:

x = X, y = Y

•In matrix form

M (first 3x3 block of P) is
now a singular matrix

Last row is [0, 0, 0, 1]T, so
this is also termed as an

affine camera

Camera center is given by
null(P) = [0 0 1 0]T is a point

at infinity

Orthographic Projection

•In general view:

•This can also be written as

Or

•Note that 3rd row of R|T does not matter

Relationship between Orthographic and
Perspective Projection

•Consider a pinhole camera which is very far away and
zoomed into the scene.

•Since the depth variation of the scene is small compared to
the distance of the camera, it may be approximated by a
constant value.

•Hence

•Since is now a constant, we can write

•which is scaled orthographic projection

Some properties of Orthographic Projection

•Parallel lines remain parallel

•There is no perspective distortion. Equal lengths in the world
appear as equal lengths in the image.

•Images of a plane taken by an orthographic camera are
related by an affine transformation [Proof?]

Practical Cases of Orthographic Camera

•A camera which is actually very
far away compared to the depth
variation in the scene can be
approximated by an orthographic
camera

•Orthographic projection is often
used in computer games

•Scanner is provides an
orthographic projection of a
document image

•Also used in some algorithms as
an approximation for
mathematical simplicity (e.g.
Tomasi / Kanade Structure for
Motion Algorithm)

Satellite Cameras

• Satellite images are typically taken by
a line scan pushbroom camera, which
is orthographic along the direction of
motion and perspective in the line-
scan direction

	Slide 1
	Slide 2: Revision from Tranformation
	Slide 3: Hierarchy of 3D Transformations
	Slide 4: 3D Rotation Matrices
	Slide 5: Camera Model
	Slide 6: Pinhole camera
	Slide 7: Pinhole Camera
	Slide 8: The first photograph on record
	Slide 9: Pinhole Camera Properties: Distant objects are smaller
	Slide 10: Pinhole Camera Properties
	Slide 11: Pinhole Camera
	Slide 12: Pinhole Camera in Canonical Configuration
	Slide 13: Pinhole Camera in Canonical Configuration
	Slide 14: Central Projection
	Slide 15: Central Projection
	Slide 16: Central Projection
	Slide 17: Principal Point Offset
	Slide 18: Central Projection with Principal Point Offset
	Slide 19: CCD Camera
	Slide 20
	Slide 21: Pinhole camera in general view
	Slide 22: Pinhole camera in general view
	Slide 23: Example
	Slide 24: Pinhole camera in general view
	Slide 25: Pinhole camera in general view
	Slide 26: Camera Model Example
	Slide 27: Camera Model Example
	Slide 28: Camera Model Example
	Slide 29: Aircraft Example
	Slide 30
	Slide 31: Pinhole camera in general view
	Slide 32: Summary: Perspective Camera Model
	Slide 33: Special Case 1: Perspective Camera Looking at a Plane
	Slide 34: Special Case 1: Perspective Camera Looking at a Plane
	Slide 35: Special Case 1: Perspective Camera Looking at a Plane
	Slide 36: Special Case 1: Perspective Camera Looking at a Plane
	Slide 37: Application: Rectification
	Slide 38: Application: Rectification
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43: Another Example of Rectification
	Slide 44: Special Case 2: Rotation about Camera Center (Pure Rotation)
	Slide 45: Special Case 2: Rotation about Camera Center (Pure Rotation)
	Slide 46: Special Case 2: Rotation about Camera Center (Pure Rotation)
	Slide 47: Camera Calibration
	Slide 48: Recall: Perspective Camera Model
	Slide 49: Camera Calibration
	Slide 50: Camera Calibration
	Slide 51: Camera Calibration
	Slide 52: Camera Calibration
	Slide 53: Camera Calibration
	Slide 54: Camera Calibration
	Slide 55: Camera Calibration: Summary
	Slide 56: Camera Calibration: Solving for Extrinsic and Intrinsic Parameters
	Slide 57: Camera Calibration: Solving for Extrinsic and Intrinsic Parameters
	Slide 58: Camera Calibration: Solving for Extrinsic and Intrinsic Parameters
	Slide 59: Camera Calibration Example
	Slide 60
	Slide 61: Select Image Points
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71: Camera Anatomy: Column Vectors of P
	Slide 72: Camera Anatomy: Column Vectors of P
	Slide 73: Camera Anatomy: Column Vectors of P
	Slide 74: Camera Anatomy: Column Vectors of P
	Slide 75: Camera Anatomy: Column Vectors of P
	Slide 76: Camera Anatomy: Column Vectors of P
	Slide 77: Camera Anatomy: Column Vectors of P
	Slide 78
	Slide 79: Camera Anatomy: Row Vectors of P
	Slide 80: Camera Anatomy: Row Vectors of P
	Slide 81: Camera Anatomy: Row Vectors of P
	Slide 82: Camera Anatomy: Row Vectors of P
	Slide 83: Camera Anatomy: Row Vectors of P
	Slide 84: Camera Anatomy: Principal Point and Principal Axis
	Slide 85
	Slide 86: Summary: Camera Anatomy
	Slide 87: Action of Camera on Points, Lines and Planes
	Slide 88: Action of Camera on Points
	Slide 89: Vanishing Points
	Slide 90: Action of Camera on Lines
	Slide 91: Back Projection of Points to Rays
	Slide 92: Back Projection of Points to Rays
	Slide 93: Back Projection of Points to Rays
	Slide 94: Back Projection of Lines
	Slide 95: Relationship between Image Line and Plane Normal
	Slide 96: Vanishing Line
	Slide 97: Vanishing Line
	Slide 98: Orthographic Cameras
	Slide 99: Cameras at Infinity
	Slide 100: Cameras at Infinity
	Slide 101: Another Type of Camera: Orthographic Camera
	Slide 102: Type of Projection?
	Slide 103: Type of Projection?
	Slide 104: Type of Projection?
	Slide 105: Type of Projection?
	Slide 106: Type of Projection?
	Slide 107: Perspective Distortion
	Slide 108: Orthographic Projection
	Slide 109: Orthographic Projection
	Slide 110: Relationship between Orthographic and Perspective Projection
	Slide 111: Some properties of Orthographic Projection
	Slide 112: Practical Cases of Orthographic Camera
	Slide 113: Satellite Cameras

