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Hierarchy of 3D Transformations

Transformation Matrix # DoF Preserves Icon

translation [ 1 ‘ t ]3}:4 3 orientation

rigid (Euclidean) [ R ‘ t ]sm 6 lengths Q

similarity [ s ‘ t ]3}{4 7 angles O

affine A ]324 12 parallelism D

projective { H } 15 straight lines U
44
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3D Rotation Matrices

* Rotations about Principal Axes

cosd -sin@ 0 O 1 O 0 0|| cosp O sing
sihnd cosd O O [0 cosy —siny O 0 1 0
0 0 1 0| |0 siny cosy Of|-sing 0 cosp
0 0 0 1|0 O 0 1 0 0 O

About origin, in right-handed coordinate system, counter
clockwise when looking towards origin from positive axis

* Rotation matrix is orthonormal with
Determinant of +1 and 3 dof

* Inverse of a rotation matrix is its
transpose

* Concatenation of Rotations is also a
rotation

* IMP: A rotation matrix transforms its
own rows onto the principal axes
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* Any 3D rotation matrix can be described
as rotation about an axis n by an angle 6

* To rotate about given axis n by &:

* Rotate axes onto a principal axis

* by composing appropriate matrix through
cross products

* Rotate about principal axes and then
undo the earlier transformation

* OR use Rodriguez formula

* To compute n and &from a 3D rotation
matrix

* n is the eigenvector corresponding to the
real eigenvalue of 1

* @ can be computed by the other 2
eigenvalues, which are
cos @t isinf

* To disambiguate angle values, check for
consistency with Rodriguez formula



Camera Mode|

Part-1
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First described by Ibn Al-Haytham
. M‘Cﬁ&“")‘(}?&“’d“d\"ﬁ?‘
PIﬂhO|e camerd in his 7-volume work
‘).Ell.oﬂ ul:‘S
He termed it
olasdl o Al-beit Al-muzlim
which was later translated into Latin as “camera

obscura”
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Pinhole Camera

* Lens is assumed to be single point
* Infinitesimally small aperture

* Has infinite depth of field i.e. everything is in focus

T

image /\ =

plane M
/ , e
pinhole - .- virtual

S
8.8

[UNIVERSITY 0F GALWAY | |




The first photograph on record
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THE FIRST PHOTOGRAPH

The world's first photograph was made in 1826
by Ncaphore Neepce from a window in his es-
tate in France. For “film" Niepce used a sensitiz-
ed pewter plate and he got a blurred image of
the rooftops outlined above. This photograph
is usually retouched to make it legible, but the
version shown at left is what it really looks like



Pinhole Camera Properties: Distant objects are smaller

Slide Credit: Forsyth/Ponce http://www.cs.berkeley.edu/~daf/bookpages/slides.html
and Khurram Shafique, Object Video
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http://www.cs.berkeley.edu/~daf/bookpages/slides.html

Pinhole Camera Properties

* Lines map to lines
* Polygons map to polygons

* Parallel lines meet

Common to draw film plane
in front of the focal point.
Moving the film plane merely
scales the image.
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Pinhole Camera

*Pinhole is considered the
center of projection, camera
center or optical center

*Let center of projection be
at the origin of Euclidean
space

*Plane Z R7is the imaging
plane, or focal plane

*Line from camera center,
perpendicular to imaging
plane is the principal axis or
principal ray
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Pinhole Camera in Canonical Configuration

eCamera center C is at

‘Y

Euclidean origin
*Principal axis aligned with _—"

Z-axis T Ax

. . . . . C = Z
*Principal point p is the point \ /:’/ \ incipal axi
) . . ) principal axis
where principal axis cuts e Ageplm
the imaging plane

*Imaging plane is often
taken by convention to be
in front of the camera
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Pinhole Camera in Canonical Configuration

*Camera maps point
(X, ¥ Z)"to (x,p)'

*By similar triangles

Y _y

Z f

__ 1Y

Yy="7
*Similarly — f7X

*Thus, the camera maps
*This mapping is from
SCOILNA GAILLIMHE

L -
Y
Y1 ( )
Z
A
I
........._.-.; ~ :........
: Ifoz
oo | F
— f iy |

]
(X.Y,2)" = (55, 5)

R3 — R?



Central Projection

*We can write this as a matrix using the homogeneous
coordinates _ _

el T1 0 0 07 );
1
h | oo ro]|]

*Verify that since
_ X
- Z
_ 1Y
Y=z

XT
*Hence




Central Projection

eCamera in canonical view (centered at origin with optical axis
aligned with world Z axis, image axes aligned with X and Y)

[ hx | 1 0 0 0| i/(
hy | =10 1 0 0 >
A | [0 0 3 O :
*Since any scaling of a homogeneous eqguatiorn is valid, it is often
written as
[ ha | £ 0 0 0] i/(
hy | =10 f 0 O 7
b 0 0 1 0 | |




Central Projection

*The camera can be more compactly written as

X = PX

*where Pis a 3x4 matrix that maps from P — P2

*P may also be written as:
P = diag(f, f,1)[T | O]




Principal Point Offset

*The expression P = diag(f, f,1)[I | O] assumes that image
origin is at the principal point.
*This may not be the case in general. For example:

T ycam

Yo pe ———»
X cam

- '
X X..

*|f the image coordinates of the principal point are (p_, py)T,
then the camera mapping will be

T
o Kt (X,Y,2)" — (f7X + Dz, f7Y + py)




Central Projection with Principal Point Offset

*In matrix form, this mapping becomes

 hx | i f 0 ps O | i,(
hy (=10 f py O 7
I h ] I O 0 1 O ] 1
*Sometimes, for convenience, it is also written as
 hx | i f 0 pg 171 0 0 0] i/(
hy | = 0 f Dy O 1 0 O 7
I h ] I 0O 0 1 1L O 0 1 O ] 1
o x =K|[I]|0]X

*K is called the camera calibration matrix, which is a 3x3 matrix
) sofititernal camera parameters |




CCD Camera

*We have assumed same units for world & image coordinates
*In a CCD camera, image coordinates are measured in pixels
*Some CCD cameras also have non-square pixels

*We can convert to pixel units as

i m:cf 0 L0
K= 0 myf Yo
0 0 1
where m_and my_are scale factors of |5ixels per unit length,

needed to convert to pixel dimension
* m, = #of pixels in x direction / size of CCD array in x direction

* m, = #of pixels in y direction / size of CCD array in y direction
*(xo, Vo) is principal point offset in pixel dimensions
& e Lo = MePey Yo = MyPy




Example
If you had a camera where:
e The CCD array is 2000 pixels wide and 1500 pixels tall.
e The physical size of the CCD sensor is 20 mm by 15 mm.

e The focal length f = 50 mm.

You would calculate:

o m, = PPHPXE — 100 pixels/mm
_ 1500 pixels .
o my “1hmm 100 plXGlS/mm

Thus, your matrix K would have the scale factors m,. f and myf, and the principal point offset

(mﬂa yﬂ)
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Pinhole camera in general view

*This is for the case when the camera’s optical axis is aligned
with the world z-axis

\What if that is not the case?




Pinhole camera in general view

*|f the camera center is at coordinates C in the world, i.e. the
camera is moved C from the origin, we should move the
world point by C-

*Then the perspective transform equation will be applicable

eSame holds for rotations




Example

*Translation by 10 units to the right

7
N

§@ [10, 0, 10]" J 0 0

0 f 0

0O 0 1

) . f 0 0

X 0 f 0

10 0O 0 1

LT
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Pinhole camera in general view

In general, the camera center is at a rotation of R, followed by
a translation of C from the world origin

*Then R'
/xCamera Axes
World Axes
i 11 12 13 0 17T 1 O O —Ca; 17T X ]
Zx . mgf mof Lo 8 21 22 23 0 0 1 O —Cy Y
hy 0 0 ylo 0 rai 732 733 0 00 1 —C; 4
|0 0 0O 1]]1000 L [ 1]
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Pinhole camera in general view

hx
Canonical View hy
e h —
]
General View hy
- h —
x =K[R|T] X

S O

x = KR [ngg | —é} X
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0 ps 1
J py 0
0O 1 | _O
Px | _7“11
Py 21
1 i _7“31

X —image point
X — world point

[

12
292
32

-]

-]

13
23
33

K — 3x3 matrix of internal camera parameters
[R | T] —3x4 matrix of external camera parameters

R - rotation needed to align camera to world axes

— N

— N <

T — Translation needed to bring camera to world origin
T = -RC where C is the vector of camera center




Camera Model
Example

*Think that the camera was
originally at the origin
looking down Z axis

*Then it was translated by (ry,
r,, r;)', rotated by @along X,
@along Z, then translated by
(X0 Yor Z0)"

*This is the scenario in the
figure on right

=

X

Figure Reference: Gonzales and Woods,
“Digital Image Processing”



Camera Model

Example
(€100 x U i 1T 17T
e mf 0 x, O Ul 0 | Cf)S@ -sing 0 O |1 O O 0| (1 0 0
€ Ulgo 1 0 v, (jsing cos¢ O O |0 cosg —sing 0| |0 1 O r,
g 0 mf Yy, 0320012030 0 1 0||0 sing cosg 0| |0 0 1
@0 0 10g€000 18 O 0 0 1] |10 O 0 1] ([0 0 0 1
\
€ mf 0 x, O ufr 0 0 —-n |l 0 0 O0]|cosd sing 0 0|1 0 0 -X,
€ Ulo 1 0 -r,||0 cosp sing 0O||-sin@ cosd# 0 0||0 1 0 -Y,
e 0 myf y, 01U :
5 Y i 0 01 —r||0 —sing cosg O 0 0O 1 0|0 0 1 -2,
B 0 0 1 OQ_OOO 1110 0 o 1] O 0O 0 1j][0 0 0 1 |
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Camera Model
Example

(X — Xg)cos@+(Y —Yg)sin@ —
—(X — Xg)sinfsino+ (Y — Yg)cosfsined — (7 — Zg)cosp+ra+ [
—(X = Xg)sinfeosd+ (Y = Yy)eosfecoso+ (7 = Zp)singd — 1,
—(X — Xg)sinfsin ¢+ (Y = Yy)cosbsing — (7 — Zg)cosd+ra+ [

r=f
y=J

* This camera model is applicable in many situations

* For example, this is the typical surveillance camera scenario
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Aircraft Example

OTTER system_id

TV sensor_type

0001 serial_number
9.400008152666640300e+08 image_time
3.813193746469612200e+01 vehicle_latitude
-7.734523185193877700e+01 vehicle_longitude
9.949658409987658800e+02 vehicle_height
9.995171174441039900e-01 vehicle_pitch
1.701626418113209000e+00 vehicle_roll
1.207010551753029400e+02 vehicle_heading
1.658968732990974800e-02 camera_focal_length
-5.361314389557259100e+01 camera_elevation
-7.232969433546705000e+00 camera_scan_angle
480 number_image_lines

640 number_image_samples

cameraMat = perspective_transform * gimbal_rotation_y * gimbal_rotation_z *

gimbal_translation * vehicle_rotation_x * vehicle_rotation_y * vehicle_rotation_z *

vehicle_translation ;

mf 0 x, 0] cosw 0 —sinw 0 cost sint 0 0 | cosg 0 -sing O 1 0 .0 0 cosa sina 0 O 1o

P-| 0 mf y, O 0 1 0 0] -sint cost 0 0 0 1 0 0|0 cosp sinf 0 | —sina cosa 0 0 | 0 1
i sinw 0 cosw O 0 0 1 0 sinp 0 cosep O 0 -sinff cosf O 0 0 1 0 00

o 0 10 0 0 0 1 0 0 0 1 o o o 11lo o 0 1 0 0 0114 o
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¢(1,1) = (cos(c_scn)*cos(v_rll)-sin(c_scn)*sin(v_pch)*sin(v_rll))*cos(v_hdg)-sin(c_scn)*cos(v_pch)*sin(v_hdg);

¢(1,2) = -(cos(c_scn)*cos(v_rll)-sin(c_scn)*sin(v_pch)*sin(v_rll))*sin(v_hdg)-sin(c_scn)*cos(v_pch)*cos(v_hdg);

¢(1,3) = -cos(c_scn)*sin(v_rll)-sin(c_scn)*sin(v_pch)*cos(v_rll);

¢(1,4) = -((cos(c_scn)*cos(v_rll)-sin(c_scn)*sin(v_pch)*sin(v_rll))*cos(v_hdg)-sin(c_scn)*cos(v_pch)*sin(v_hdg))*vx-(-(cos(c_scn)*cos(v_rll)-
sin(c_scn)*sin(v_pch)*sin(v_rll))*sin(v_hdg)-sin(c_scn)*cos(v_pch)*cos(v_hdg))*vy-(-cos(c_scn)*sin(v_rll)-sin(c_scn)*sin(v_pch)*cos(v_rll))*vz;

¢(2,1) = (-sin(c_elv)*sin(c_scn)*cos(v_rll)+(-sin(c_elv)*cos(c_scn)*sin(v_pch)+cos(c_elv)*cos(v_pch))*sin(v_rll))*cos(v_hdg)+(-
sin(c_elv)*cos(c_scn)*cos(v_pch)-cos(c_elv)*sin(v_pch))*sin(v_hdg);

¢(2,2) = -(-sin(c_elv)*sin(c_scn)*cos(v_rl)+(-sin(c_elv)*cos(c_scn)*sin(v_pch)+cos(c_elv)*cos(v_pch))*sin(v_rll))*sin(v_hdg)+(-
sin(c_elv)*cos(c_scn)*cos(v_pch)-cos(c_elv)*sin(v_pch))*cos(v_hdg);

¢(2,3) = sin(c_elv)*sin(c_scn)*sin(v_rll)+(-sin(c_elv)*cos(c_scn)*sin(v_pch)+cos(c_elv)*cos(v_pch))*cos(v_rll);

¢(2,4) = -((-sin(c_elv)*sin(c_scn)*cos(v_rll)+(-sin(c_elv)*cos(c_scn)*sin(v_pch)+cos(c_elv)*cos(v_pch))*sin(v_rll))*cos(v_hdg)+(-
sin(c_elv)*cos(c_scn)*cos(v_pch)-cos(c_elv)*sin(v_pch))*sin(v_hdg))*vx-(-(-sin(c_elv)*sin(c_scn)*cos(v_rll)+(-
sin(c_elv)*cos(c_scn)*sin(v_pch)+cos(c_elv)*cos(v_pch))*sin(v_rll))*sin(v_hdg)+(-sin(c_elv)*cos(c_scn)*cos(v_pch)-
cos(c_elv)*sin(v_pch))*cos(v_hdg))*vy-(sin(c_elv)*sin(c_scn)*sin(v_rll)+(-sin(c_elv)*cos(c_scn)*sin(v_pch)+cos(c_elv)*cos(v_pch))*cos(v_rll))*vz;

¢(3,1) = (cos(c_elv)*sin(c_scn)*cos(v_rll)+(cos(c_elv)*cos(c_scn)*sin(v_pch)+sin(c_elv)*cos(v_pch))*sin(v_rll))*cos(v_hdg)+(cos(c_elv)*cos(c_scn)*cos(v_pch)-
sin(c_elv)*sin(v_pch))*sin(v_hdg);

¢(3,2) = -(cos(c_elv)*sin(c_scn)*cos(v_rll)+(cos(c_elv)*cos(c_scn)*sin(v_pch)+sin(c_elv)*cos(v_pch))*sin(v_rll))*sin(v_hdg)+(cos(c_elv)*cos(c_scn)*cos(v_pch)-
sin(c_elv)*sin(v_pch))*cos(v_hdg);

¢(3,3) = -cos(c_elv)*sin(c_scn)*sin(v_rll)+(cos(c_elv)*cos(c_scn)*sin(v_pch)+sin(c_elv)*cos(v_pch))*cos(v_rll);

c(3,4) =-
((cos(c_elv)*sin(c_scn)*cos(v_rll)+(cos(c_elv)*cos(c_scn)*sin(v_pch)+sin(c_elv)*cos(v_pch))*sin(v_rll))*cos(v_hdg)+(cos(c_elv)*cos(c_scn)*cos(v_pch)-
sin(c_elv)*sin(v_pch))*sin(v_hdg))*vx-(-
(cos(c_elv)*sin(c_scn)*cos(v_rll)+(cos(c_elv)*cos(c_scn)*sin(v_pch)+sin(c_elv)*cos(v_pch))*sin(v_rll))*sin(v_hdg)+(cos(c_elv)*cos(c_scn)*cos(v_pch)-
sin(c_elv)*sin(v_pch))*cos(v_hdg))*vy-(-cos(c_elv)*sin(c_scn)*sin(v_rll)+(cos(c_elv)*cos(c_scn)*sin(v_pch)+sin(c_elv)*cos(v_pch))*cos(v_rll))*vz;

c(4,1) =
(1/f1*cos(c_elv)*sin(c_scn)*cos(v_rll)+(1/fI*cos(c_elv)*cos(c_scn)*sin(v_pch)+1/fl*sin(c_elv)*cos(v_pch))*sin(v_rll))*cos(v_hdg)+(1/fl*cos(c_elv)*cos(c_s
cn)*cos(v_pch)-1/fl*sin(c_elv)*sin(v_pch))*sin(v_hdg);

c(4,2) =-
(1/f1*cos(c_elv)*sin(c_scn)*cos(v_rll)+(1/fI*cos(c_elv)*cos(c_scn)*sin(v_pch)+1/fl*sin(c_elv)*cos(v_pch))*sin(v_rll))*sin(v_hdg)+(1/fl*cos(c_elv)*cos(c_sc
n)*cos(v_pch)-1/fl*sin(c_elv)*sin(v_pch))*cos(v_hdg);

c(4,3) = -1/fI*cos(c_elv)*sin(c_scn)*sin(v_rll)+(1/fl*cos(c_elv)*cos(c_scn)*sin(v_pch)+1/fl*sin(c_elv)*cos(v_pch))*cos(v_rll);

c(4,4) =-
((1/f1*cos(c_elv)*sin(c_scn)*cos(v_rll)+(1/fl*cos(c_elv)*cos(c_scn)*sin(v_pch)+1/fl*sin(c_elv)*cos(v_pch))*sin(v_rll))*cos(v_hdg)+(1/fI*cos(c_elv)*cos(c_s
cn)*cos(v_pch)-1/fl*sin(c_elv)*sin(v_pch))*sin(v_hdg))*vx-(-
(1/f1*cos(c_elv)*sin(c_scn)*cos(v_rll)+(1/fI*cos(c_elv)*cos(c_scn)*sin(v_pch)+1/fl*sin(c_elv)*cos(v_pch))*sin(v_rll))*sin(v_hdg)+(1/fl*cos(c_elv)*cos(c_sc
n)*cos(v_pch)-1/fl*sin(c_elv)*sin(v_pch))*cos(v_hdg))*vy-(-
1/fl*cos(c_elv)*sin(c_scn)*sin(v_rll)+(1/fl*cos(c_elv)*cos(c_scn)*sin(v_pch)+1/fl*sin(c_elv)*cos(v_pch))*cos(v_rll))*vz+1;
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Pinhole camera in general view

¢ 10 0/0% x!
€ hx U A mf 0 x5 0 ue U
Canomical View & v 1= 0 mf y o@% 1 00 Yy
anonica lew @ U= 0 /A ’
o : ’ 00 1|0 Zu
e O 0 1 O0koo0o0 18y
Surveillance Camera Example (Small gimbal translation ignored)
¢ r 0 xool?l 0 _0 ogcosq sianOlf100
g 0 mf OH 0 CO-S¢ sing O & -sing cosq 0 0 010
80 0 1 03 0 -—sing cos¢ Og 0 0 1 040 0 1
0 0 0o 1j6 O 0 0 1j0 0 0
Aircraft Example
mf O x, Off cosw 0 -sinw 0 | cost sint 0 0 | cosf O -sinf O 1 0O 0 0| cosa sina 0 0
6 mf 0 1 0 0] -sint cost 0 0 0 1 0 0|0 cosb sinb 0| -sina cosa 0 O
») o sinw 0 cosw O 0 0 1 0| sing O cosj O | O -sinb cosb 0O 0 0 10
0 0 1 O0f o o o 1 o o0 01| o o o 1l0 o 0 1 0 0 01

1 1
o O O B+
o O +» O
o » O O

Perspective Transform Rotation needed to align
for Canonical View camera with world axes
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Summary: Perspective Camera Model

*The perspective cantera model can he written as

x =K|R| -RC| X

=

Y

3x4 matrix of external
camera parameters World point & P3
(extrinsic parameters)

3x3 matrix of internal
camera parameters
(intrinsic parameters)

m:z:f 0 L0

K = 0 myf Yo
0 0 1

’i OLLSCOILNA GAILLIMHE xO p— mxpw , yo p— mypy
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Special Case 1:
Perspective Camera Looking at a Plane

*Consider the case of camera looking at a plane

*This scenario occurs frequently in imaging applications




Special Case 1:
Perspective Camera Looking at a Plane

*Without loss of generality, we can assume that the plane has

equation Z=0

 hx | My f
hy | = 0

- h 0

*The third column of

hax
hy
h

0 L
myf Yo
0 1

R | T| does not matter in this case
and can be dropped. So we can rewrite the system as:

aj
a4
ay

an
as
as

r7

a3
a6
ag

rs

9

X
Y
1

B
Y
0
1

*Conclusion: The 3D points lying on a plane are related to the

(1LY o
N4T® OLLs
j -

ge points by a homography.



Special Case 1:
Perspective Camera Looking at a Plane

*Now consider relationship between two images of a plane
Camera 1 f Camera 2

- .

Plane
*Two images of a plane taken by a perspective camera are

related by a homography




Special Case 1:
Perspective Camera Lookin

It is no surprise that these
projective transformations
look like images of a plane
taken from different
angles




Application: Rectification

* A perspective image of a plane can be transformed into one
in which the plane is fronto-parallel, i.e. the optical axis
comudes W|th the plane normal

Rectified im%ge

VARA  OLLSCOILNA GAILLIMHE
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Satellite image



Application: Rectification
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ROSEEK Snart CameraMain (P26 ' frean

2016-12-27 10;32326 Aue day

wslgs @ v
Summit Library
aadll 2o
X University 0
asolzl plo
ATM Ahli
NBC sVl él,0
wivlb usse Q
J e dloll acb a R
)bl osell =
Brunchys 4815 uii» &
&ynzal] @l 83loc @
Google /

Road Segment, covered by three cameras

©



rt CameraMain (P26 - fréan

10:32:28 Tue day




Merged view of the road
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Another Example of Rectification

*Measuring crowd density as persons per square meter

D o e e ol O R e £ I8 (8 iy it (R, NS U T E R 5 . 3

E AL AT AL S LR LR P B UeE | RS o e W ] W 2Ny gy S R h 20 AT AL TR 1 UL WAk b I

- e i W 5]

-t L ) i- 5 .' "'.':-\

OLLSCOILNAGAILLIMHE
UNIVERSITY 0F GALWAY




Special Case 2:
Rotation about Camera Center (Pure Rotation)

*Consider the case of camera
that does not translates but
only rotates about its optical
center

*This scenario also occurs
frequently in imaging
applications




RN Un
LV

Special Case 2:
Rotation about Camera Center (Pure Rotation)

*x and x' are images of a point X before and after rotation of R
the camera respectively.

*Then
x=K|I|0]X
x' =K[R|0]X
—KR[I|0]X
— KRK 'K [I | 0] X
— KRK ™ 'x
*Hence x' = KRK 'x x' = Hx

*This type of homography is called a conjugate rotation
a .nomography |




Special Case 2:
Rotation about Camera Center (Pure Rotation)

Rotation + Translation

Pure Rotation

* The relative motion of objects in two images which are at different distances in
the world is termed parallax

* A homography will not generate any parallax.

. *Hence pure rotation of camera does not generate parallax

AR  OLLSCOILNA GAILLIMHE
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Camera Calibration




Recall: Perspective Camera Model

*The perspective camera model can be written as

x =K |R| —RC| X

‘ ]

3x4 matrix of external
camera parameters World point & P3
(extrinsic parameters)

3x3 matrix of internal
camera parameters
(intrinsic parameters)

mxf 0 L0

K= 0 myf Yo
0 0 1

ri OLLSCOILNA GAILLIMHE CL’O p— mxpx7 yo — mypy
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Camera Calibration

*In general, the camera model looks like:

- - - - X
hx P11 Pi2 P13 DPi4a %
hy = | P21 P22 P23 P24 A

i h il | P31 P32 P33 P34 | 1

X = PX

*P is a 3x4 matrix of rank 3

*Calibration is the process of finding the parameters

[Py P34l
If xand X are known, then we can solve for the unknown
parametersin P




Camera Calibration

eCamera model

- - - - X
hx P11 P12 P13 Di4 %
hy = | P21 P22 P23 P24 7
b | P31 P32 P33 P34 | 1
*In inhomogeneous from R
T — hr _ p11X+p12Y+pisZ+pia y = hy _ p21X+p2a2Y +pa3Z+poy
h P31 X+p32Y +p33Z+p3a h P31 X+p32Y +p33Z+p3a

* Multiplying both sides by denominator and rearranging
p11X +p12Y +p13Z4 +pra — p31Xx — p32Yx — p33Zx — pagx =0
p21X + p22Y + pa3Z + pos — p31 Xy — p32Yy — p33Zy — p3ay = 0

NATA OLLSCOILNA GAILLIMHE |
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Camera Calibration

p11X +p12Y +p13Z4 +pra — p31Xx — p32Yx — p3sZr — pagx =0
P21 X + p22Y +pasZ + paa — p31 XY — p32Yy — p33sdy — paay =0

*These equations have 12 unknowns

*Each correspondence between a world point and an image
point yields two equations

*If 6 correspondences are known, we can solve for the
unknowns




Camera Calibration

p11X + p12Y +p134 +pra — p31Xx — p32Yx — p3sZr — p3ax =0
P21 X + p22Y + pasZ + pag — p31 Xy — p32Yy — p33Zy — p3ay =0

*Separating out the known and the unknown terms _
P11

P12
Pb13
P14
b21
X1 Yl Zl 1 0 0 0 0 —5131X1 —LU1Y1 —33121 — I P22

O 0 0 0 X4 Y1 &1 1 —yuXa —-uyY1 —wns —y1] P23 [
P24

P31

P32

P33

| P34 |




Camera Calibration

*Given n correspondences...

S
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O = O =

—_ ..

0 —x»1 X9y -9 —x147 —x
I -y Xh —ywYi —wnZi —wn
0 —QCQXz —$2Y2 —$QZQ — T2
1 —yeXo —y2Ys —y2Z2 —y2
0 TnXn —TnYn —Tnln —Tnp
I —ynXn —UnYn —YnZn —VYn

Ap =

P11
P12
P13
P14
P21
P22
P23
P24
P31
P32
b33
P34

o O OO




Camera Calibration

*This system Ap = 0 is a homogeneous system.
*A is rank deficient: rank(A) = 11 (at most)
*Solution?

The null vector of A represents the p which is the
solutions to the system Ap =0

. How to find null space?
1. null(A) in MATLAB, or

2. Take SVD of A, as svd(C) = USV'. The column of V
corresponding to the singular value of zero represents the
solution

(in practice, you will have to take the smallest singular value)

NATA OLLSCOILNA GAILLIMHE
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Camera Calibration: Summary

*Given a set of world points (in 3D coordinates) and their
corresponding image points, we solve for the 3x4 camera
matrix that relates them.

*This transforms into a problem of the form Ap = 0, which can
be solved by finding the null vector of A.

* A more robust solution is through Direct Linear Transform,
DLT (not covered in this class)




Camera Calibration: Solving for Extrinsic and
Intrinsic Parameters

 After finding p, we end up with a 3x4 camera matrix relating
world points to image points

x = PX
P = KR [I| — C}
*How can | find camera rotation, translation and intrinsic

parameters?
*Note that P has 12 terms and 11 degrees of freedom.

P11 P12 P13 DPi4
P= | p21 P22 D23 P24
P31 P32 P33 P34
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Camera Calibration: Solving for Extrinsic and
Intrinsic Parameters

*Solving for Camera Center C:
*Consider P times C

PC:KR{I|—(~3}C:?
e

PC=| 0

0

*Hence, camera center Cis a null vector of P

*Note that PC=(0, 0, 0)" is undefined in image plane, which is
exactly what we should expect, since image of camera center is
undefined.




Camera Calibration: Solving for Extrinsic and
Intrinsic Parameters

*Solving for Kand R

*Note that P = [KR | -KRC]

*Hence first 3x3 block of P i.e. M;,; = KR

*K is an upper triangular matrix, R is an orthonormal matrix

*Solved through RQ decomposition
RQ decomposition decomposes a matrix into an upper
triangular matrix times an orthonormal matrix




Camera Calibration Example




Take Image of a Calibration Target

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
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Select Image Points

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
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Choose world coordinate system

| | u | | | =
.
8| = JE.
VS 9 S

1
ool L e

1500

2000

2500

3000

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
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Specify World Points

Vertices on the cube (in same order as image points)

0 1 2 3 01 2 3 0 1 2 3 01 2 3 3 3 3 3 33 3 3 3 3 3 3 2 2 2 1.1 1 0 0 O
0 0 0O OO O O O OO 0 0 00O 0O O 1 2 3 1 2 31 2 3 1 2 3 1 2 3 1 2 3 1 2 3
0 0 00O 1 1 1 1 2 2 2 2 3 3 3 3 00 0 1 11 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3

Cube height = 57mm
One box side = 19mm

Therefore, scale each
coordinate by 19 mm

0193857 0193857 0193857 0193857575757575757575757575757383838191919 00 0
0000000000000000193857193857193857193857193857193857193857
0000191919193838383857575757 0 0 0191919383838575757575757575757575757



Specify World Points

Vertices on the cube (in same order as image points)

0193857 0193857 0193857 01938575757 57575757575757575757383838191919 00 0
000O0O000000O000000193857193857193857193857193857193857193857
0000191919193838383857575757 0 0 0191919383838575757575757575757575757

50 |

40 |

20

40
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Find the solution

*Set up matrix A and find its right null vector through SVD
e warning: null(A) is unlikely to work! (WHY?)

*Reshape into a 3x4 matrix

];) =
-0.00010835 4.3034e-05 0.0047453 -0.68373
-0.0019211 -0.0044849 0.00023615 =0.7297
4.1144e-07 -3.5796e-07/ 1.1421e-07 -0.00028537

NATA OLLSCOILNA GAILLIMHE
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Find camera center from P

Z y O% » o :
150 . 50
100 -100
-150
50' L] & 8
C = e -200
375.89 % 100 200 300 X -250
-300

-315.53 0 100 200 300
155.53
1 VA yA

150
100
50 D
%30 200 100 0 y
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Compute K and R by RQ Factorization

K = R =
-8376.2 066.191 1552.4 -0.16524
0 -8336.6 2712 -0.65379
0 1 -0.73842

QLLSCOILNs GAILLIMHE
UNIVERSITY OF GALWAY

0.12231
-0.75651
0.04244

0.978604
-0.01584
-0.20497




Principal Point

K =

-8376.2

s00—

1000

1500 o

2000

2500

3000

NATR  OLLSCOILNAGAILL
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0
0

066.191
-8336.6

R

-0.16524
-0.65379
-0.73842

0.12231
-0.75651
0.04244

0.978604
-0.01584
-0.20497



Focal Length

K =

-8376.2 66.191 1552.4

0 ~-8336.6 2712

0 1
* Image was taken by Canon 600D .
e Canon 600D uses APS-C format .
CMOS sensor* .
* Size of APS-C sensor is .
23.6mm x 15.7mm .
* I[mage size is 5184 x 3456 .

R =
-0.16524 0.12231 0.978604
-0.65379 -0.75651 -0.01584
-0.73842 0.04244 -0.20497

R m,f=8376.2 m,f=28336.6

Hence

m, = 3456/15.7 = 220.13 pix/mm
m, = 5184/23.6 = 219.66 pix/mm
f=[38.051, 37.952] mm
Verification from EXIF data: 37mm
Angle between x & y axis = 90.455°

%ﬁé%/vww.ephotozine.com/article/compIete—guide—to—image-sensor-pixel-iize-29654



Back-project World Points into Image

ST VS -—a
Loy A :E.\-v P g

1 | 1 ! | |
: f B
| < i

1000

1500 -

2000

2500

3000

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
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Camera Anatomy:
Column Vectors of P

*Let the columns of Pbe p,,i=1,...,4

*Then p,, p,, p; are the points at infinity of the world X, Y and Z
axes respectively.

* Consider the point at infinity along X-axis: D=(1, 0, 0, 0)T
*This will be imaged at

PD = p;

*Hence,
* The first column of P is the image of the point at infinity along X-axis
* The second column of P is the image of the point at infinity along Y-axis
* The third column of P is the image of the point at infinity along Z-axis

*Similarly, p, the fourth column of P is ...
*the image of world origin (0,0,0,1)T

NATA OLLSCOILNA GAILLIMHE
BN UNIVERSITY oF GALWAY
J




Camera Anatomy:

P

-0.00010835
-0.0019211
4.1144e-07

-263.35
-4669.2
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Column Vectors of P

4.3034e-05 0.0047453 -0.68373
-0.0044849 0.00023615 -0.7297
-3.5796e-07 1.1421e-07 -0.00028537
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Camera Anatomy:
Column Vectors of P

P

-0.00010835
-0.0019211
4.1144e-07

-263.35
-4669.2
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4.3034e-05 0.0047453 -0.68373
-0.0044849 0.00023615 -0.7297
-3.579%96e-07 1.1421e-07 -0.00028537
4000 -
-120.22 -2000 |
12529
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2000 |
4000 |
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8000 |
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Camera Anatomy:
Column Vectors of P

P

-0.00010835
-0.0019211
4.1144e-07
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Camera Anatomy:

P

-0.00010835
-0.0019211
4.1144e-07
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4.3034e-05
-0.0044849
-3.5796e-07

41550
20067.7

Column Vectors of P

0.0047453
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1.1421e-07
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-0.00028537
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Camera Anatomy:
Column Vectors of P

P

-0.00010835 4.3034e-05 0.0047453 -0.68373
-0.0019211 -0.0044849 0.00023615 -0.7297
4.1144e-07 -3.5796e-07 1.1421e-07 -0.00028537

4000

-2000

2000 |

4000

6000 -

8000

1 1 1 1 1 1 1 1 1
<4000  -2000 0 2000 4000 6000 8000 10000 12000
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Camera Anatomy:
Column Vectors of P

P

-0.00010835 4.3034e-05 0.0047453 -0.68373
-0.0019211 -0.0044849 0.00023615 -0.7297
4.1144e-07 -3.5796e-07 1.1421e-07 -0.00028537

4000 -

-2000

2000 -

4000 -

6000 -

8000 |-

1 1 1 1 1 1 1 1 1
000 -2000 0 2000 4000 6000 8000 10000 12000

QTR  OLLSCOIL ¥ GAILLIMHE
.ﬁil’ UNIVERSITY OF GALWAY




—-4000

—-2000

2000

4000

6000

8000

-4000 -2000 0 2000 4000 6000 8000 10000 12000



Camera Anatomy:
Row Vectors of P

*Row vectors are 4-vectors, which may be interpreted as

planes. ~ ) ) _
P11 P12 P13 DPi4 P’
P=| po1 pa2 P23 p2a | = | P?'

| P31 D32 P33 D34 P




Camera Anatomy:
Row Vectors of P

*Principal plane: Plane through camera center, parallel to
image plane, consisting of set of points X imaged on, line at
infinity of image,

*i.e. PX=(x,y,0)"
*Thus, a point lies on principal plane iff P3TX =0
*Thus, P3 is the vector representing the principal plane

principal plane

*Also, C lies on P3 (verify)




Camera Anatomy:
Row Vectors of P

P

-0.00010835 4.3034e-05 0.0047453 -0.68373
-0.0019211 -0.0044849 0.00023615 -0.7297
4.1144e-07 -3.5796e-07 1.1421e-07 -0.00028537

P3=1[4.1144e-07 -3.5796e-07 1.1421e-07 -0.00028537]"

Verify PPTC = 1.3212e-14




Camera Anatomy:
Row Vectors of P

* Axis planes: Consider the set of points X in P!

*They must satisfy P™X =0

*Hence, they will be imaged at PX = (0, y, w)', i.e. they are points
on the y-axis of the image

*Also, C lies on P! (verify)

*Hence, P! is defined by
the joinof Cand linex=0
in the image -

Similarly, P? is defined by
the join of Cand liney =0




Camera Anatomy:
Row Vectors of P

* Axis planes are dependent on the choice of image axes, but
principal plane is not.

*Intersection of planes P! and P? is the line joining the camera
center and the image origin, i.e. the back projection of image
origin

* Not the optical axis in general...

*Camera center lies on all three planes P?, P, P3




Camera Anatomy:
Principal Point and Principal Axis

*The principal axis is the ray through the camera center
perpendicular to the principal plane P3, which will intersect the
imaging plane at the principal point.

*In general, the normal of a plane n=(r,, m,, m,, ;)" is given by
(10, 10y, T5)"

*Thus principal axis is given by (ps;, Py, P33)’

*Consider the point at infinity in the direction of principal axis,
i.e. (P31, P3y P33, 0)' = P?

*We can project this point back to the image to get the
coordinates of the principal point as xg = PP?

*This involves only the first 3x3 block of P. Hence
Xog = Mm? ‘

TR OLLsc

o OIL NA GAILLIMHE
w ey here m3T is the last row of M, and M the first 3x3 block of ID
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Summary: Camera Anatomy

Intrinsic matrix K
and Rotation R by

Camera Center
PC=0

NATRA  OLLSCOILNA GAILLIMHE
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o o Axis Plane
Principal RQ decomposition \/— from join of
Ar‘r)](;s - - — e Candx=0
\ P11| |P12| |P13| |P14|V” Axis Plane
P — Il from join of
M% P21] P22/ P23 P24 | candy-0
Principal Point :{ 2?31 Ap32 1?33 pS{L =4~ Principal
Mm3 //// //\‘\\ /'\\ - \\\‘ Plane
Image of point at Image of point at Image of point at Image (_)f_
infinity in X-axis infinity in Y-axis infinity in Z-axis World Origin
direction direction direction




Action of Camera on Points, Lines and
Planes




Action of Camera on Points

* Action of camera on points is familiar to us

X = K

*In canonical view

R | —-RC

x =K|I|0]X

BN UNIVERSITY oF GALWAY
J

X



Vanishing Points

Image of X7

\"

C
v =PX
. el
V:K[I\O][




Action of Camera on Lines

*Aline in 3-space will project to a line in L
the image.

*Geometric Proof: The join of the line Lin 1 ™
3-space and the camera center C forms a =
plane, and this plane will intersect the e

imaging plane in a line.

* Algebraic Proof:

Consider two points A and B in 3-space. The line formed by their join can be
parameterized as X(u) = A + uB. X(u) will project in the image to

x(u) =P(A + uB) =PA + uPB
=a+ ub

which is the line joining image points a and b.

NATA OLLSCOILNA GAILLIMIE
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Back Projection of Points to Rays

*Given a point x in the image of a camera with matrix P, we want
to determine set of points in the world that map to this point

*i.e. the ray in the world that this point back-projects to.
*Note that camera center C always lies along the ray.
*Claim: P*x also lies along the ray, where P*= PT(PPT)!
*Proof:
The image of P*x will be at
PP*x
= PPT(PPT)1x
= X

Therefore P*x must be along the ray

LSCOILNA GA
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Back Projection of Points to Rays

*Since we know two points along the ray, C and P*x
*Therefore, points along the ray can be written in parametric

form as
X(A) =PTx+ \C




Back Projection of Points to Rays

*In canonical view, relationship is even more simpler
* Consider the back-projected ray which is given by a direction d

* All points on this ray can be written as the join of camera center and
the ray vector

~

X(\) =0+ =X

*The image of such a point in canonical view will be at
Ad

x =K|[I| O] [ ) ]

x = Kd

*So, given X, the ray direction in canonical view can be computed
simply as d = k1x

wCatiiera calibration matrix K relates the image point to a ray difection




Back Projection of Lines

*Lines in image will back project to planes in the world.

*Result: The set of points in the world mapping to a line | via
the camera matrix P is the plane Pl

*Proof
A point x lies on | iff x"l = 0.
A world point X maps to a point PX, which will lie on | iff
X"PTI=0
Thus if PTl is taken to represent a plane, then X lies on this plane iff
X maps to a point on the line |
Hence, Pl is the plane which is the back projection of line I.

NATA OLLSCOILNA GAILLIMHE
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Relationship between Image Line and Plane
Normal .a

*Result: An image line | defines a plane
through the camera center with normal
direction n = K"l in the camera
canonical coordinate system

* Proof:
Points x on line | back-project to directions d = K'1x
Since these direction vectors lie on the plane, they are orthogonal to the
plane normal n.

Thus, d'n=0
X'"K'™n=0

Since points on | satisfy x'l = 0, it follows that
| =K Tn

Hence n = KTl

NATA OLLSCOILNA GAILLIMHE
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Vanishing Line

*The vanishing line of a plane is
the image of the line at infinity of
the plane

*The vanishing line will depend
only on the orientation of the
plane, and not on its absolute
position

Parallel planes have the same
vanishing line




Vanishing Line

*|f camera calibration matrix K is
known, a scene plane’s vanishing
line can be used to find the
plane’s orientation relative to the
camera.

*In the canonical coordinate
system, the orientation of the
plane having the vanishing line |
in the image is given by

n = KTl
*The vanishing line as a function of
plane normal is given by

| =KTn

NATA OLLSCOILNA GAILLIMHE ‘
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Orthographic Cameras




Cameras at Infinity

*Consider the image sequence in which the camera moves
away from an object but zooms in to keep the size of the
object the same.

increasing focal length

increasing d from -
1

G OLLSCOIL N GAILLIMHE
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Cameras at Infinity

*If the camera center moves back from the scene to infinity, then
all rays entering the camera will be parallel




Another Type of Camera: Orthographic
Camera

*Parallel Lines remain parallel and do not converge
(also termed parallel projection)

N
YNVIN

The Colonnade JEFFERSON AVENUE ELEVATION lecncrimullerdavis
101 JoMersen Ave,, Scranton, PA
SPRING 2007
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Type of Projection?
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Type of Projection?




Type of Projection?




Type of Projection?




Type of Projection?




Perspective Distortion

*Perspective distortion: the effect that
further away objects appear smaller
in size

As focal length increases (more zoom),
perspective distortion becomes less

*Orthographic camera can be
considered as being very far away so
there is no variation in Z, and having
very long focal length. Hence it has no
perspective distortion.

*Equal lengths in the world will appear
of equal size in the image




Orthographic Projection

*In canonical view:

*The relationship between image coordinates and scene

coordinates is:

*In matrix form -

=

>+—\©©

/\

/r—\N%N

M (first 3x3 block of P) is
now a singular matrix

Last row is [0, O, O, 1]7, so
this is also termed as an
affine camera

Camera center is given by
null(P) =[00 1 0]"is a point
at infinity




Orthographic Projection

*In general view:

. 10 0 0 _:11 77:12 :13 ix
y _ O 1 0 0 ,r21 T22 ,r23 tY
31 32 33 7
1 0 0 0 1 0 0 0 1
*This can also be written as

. 1 0 0 ri1 T2 T3 tx
[y]:[ 10} ro1 T2 To3 ly

or % =%, [R|T|X

*Note that 3" row of R|T does not matter

21 T22 T23 7

LT
NATA OLLSCOILNA GAILLIMHE
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X
[33]_[7“11 r12 7“13] v _|_[tX

— N <

— N <




Relationship between Orthographic and
Perspective Projection

*Consider a pinhole camera which is very far away and
zoomed into the scene.

*Since the depth variation of the scene is small compared to
the distance of the camera, it may be approximated by a
constant value.

*Hence

X Y
v="7 y="z

: J . :
*Since ~ 1S NOwW a constant, we can write
r=mX y=mY

*which is scaled orthographic projection




Some properties of Orthographic Projection

*Parallel lines remain parallel

*There is no perspective distortion. Equal lengths in the world
appear as equal lengths in the image.

*Images of a plane taken by an orthographic camera are
related by an affine transformation [Proof?]




Practical Cases of Orthographic Camera

* A camera which is actually very
far away compared to the depth
variation in the scene can be
approximated by an orthographic
camera

* Orthographic projection is often
used in computer games

*Scanner is provides an
orthographic projection of a
document image

* Also used in some algorithms as
an approximation for
mathematical simplicity (e.g.
Tomasi / Kanade Structure for
Motion Algorithm)

_.‘::;‘n:'{‘:‘; OLLSCOILNA GAILLIMHE
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Satellite Cameras

« Satellite images are typically taken by

Line of motion

a line scan pushbroom camera, which >
is orthographic along the direction of ,/Image plane
motion and perspective in the line- X
. : Orthographic
scan direction i
»
Perspective
axis
Instantaneous

view plane

S
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