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Revision from Tranformation



Hierarchy of 3D Transformations



3D Rotation Matrices

• Rotations about Principal Axes 

About origin, in right-handed coordinate system, counter 
clockwise when looking towards origin from positive axis

• Rotation matrix is orthonormal with 
Determinant of +1 and 3 dof

• Inverse of a rotation matrix is its 
transpose

• Concatenation of Rotations is also a 
rotation

• IMP:  A rotation matrix transforms its 
own rows onto the principal axes

• Any 3D rotation matrix can be described 
as rotation about an axis n by an angle 

• To rotate about given axis n by  :
• Rotate axes onto a principal axis

• by composing appropriate matrix through 
cross products

• Rotate about principal axes and then 
undo the earlier transformation

• OR use Rodriguez formula

• To compute n and  from a 3D rotation 
matrix

• n is the eigenvector corresponding to the 
real eigenvalue of 1

•  can be computed by the other 2 
eigenvalues, which are 
cos   i sin

• To disambiguate angle values, check for 
consistency with Rodriguez formula

















 −

1000

0100

00cossin

00sincos























−

1000

0cossin0

0sincos0

0001























−

1000

0cos0sin

0010

0sin0cos







Camera Model
Part-1



Pinhole camera

http://www.ibnalhaytham.com/discover/who-was-ibn-al-haytham/

First described by Ibn Al-Haytham
 الھیثم بن الحسن بن الحسن ،علی ابو

in his 7-volume work 
المناظر کتاب

He termed it
Al-beit Al-muzlim المظلم بیت 

which was later translated into Latin as “camera 
obscura” 



Pinhole Camera
• Lens is assumed to be single point 

• Infinitesimally small aperture

•Has infinite depth of field i.e. everything is in focus



The first photograph on record



Pinhole Camera Properties: Distant objects are smaller

Slide Credit: Forsyth/Ponce http://www.cs.berkeley.edu/~daf/bookpages/slides.html
and Khurram Shafique, Object Video

http://www.cs.berkeley.edu/~daf/bookpages/slides.html


Pinhole Camera Properties

• Lines map to lines

• Polygons map to polygons

• Parallel lines meet



Pinhole Camera

•Pinhole is considered the 
center of projection, camera 
center or optical center

•Let center of projection be 
at the origin of Euclidean 
space 

•Plane Z = f is the imaging 
plane, or focal plane

•Line from camera center, 
perpendicular to imaging 
plane is the principal axis or 
principal ray



Pinhole Camera in Canonical Configuration

•Camera center C is at 
Euclidean origin

•Principal axis aligned with 
Z-axis 

•Principal point p is the point 
where principal axis cuts 
the imaging plane

•Imaging plane is often 
taken by convention to be 
in front of the camera



Pinhole Camera in Canonical Configuration

•Camera maps point 
(X, Y, Z)T to (x,y)T

•By similar triangles

•Similarly

•Thus, the camera maps 

•This mapping is from 

(X,Y,Z)

Z

f

Y

y



Central Projection

•We can write this as a matrix using the homogeneous 
coordinates

•Verify that since

•Hence



Central Projection

•Camera in canonical view (centered at origin with optical axis 
aligned with world Z axis, image axes aligned with X and Y )

•Since any scaling of a homogeneous equation is valid, it is often 
written as



Central Projection

•The camera can be more compactly written as

•where   is a 3x4 matrix that maps from 

•     may also be written as:



Principal Point Offset

•The expression       assumes that image 
origin is at the principal point.

•This may not be the case in general. For example:

•If the image coordinates of the principal point are (px, py)T, 
then the camera mapping will be



Central Projection with Principal Point Offset

•In matrix form, this mapping becomes

•Sometimes, for convenience, it is also written as

•Or

•     is called the camera calibration matrix, which is a 3x3 matrix 
of internal camera parameters



CCD Camera

•We have assumed same units for world & image coordinates

•In a CCD camera, image coordinates are measured in pixels

•Some CCD cameras also have non-square pixels

•We can convert to pixel units as

where mx and my are scale factors of pixels per unit length, 
needed to convert to pixel dimension
• mx = #of pixels in x direction / size of CCD array in x direction

• my = #of pixels in y direction / size of CCD array in y direction

•(x0, y0) is principal point offset in pixel dimensions





Pinhole camera in general view

•This is for the case when the camera’s optical axis is aligned 
with the world z-axis

•What if that is not the case?



Pinhole camera in general view

•If the camera center is at coordinates C in the world, i.e. the 
camera is moved C from the origin, we should move the 
world point by C-1

•Then the perspective transform equation will be applicable

•Same holds for rotations



Example

•Translation by 10 units to the right

10

X

Z

[10, 0, 10]T



Pinhole camera in general view

•In general, the camera center is at a rotation of RT, followed by 
a translation of C from the world origin

•Then

World Axes

Camera Axes

C

RT



Pinhole camera in general view

25

Canonical View

General View

x – image point
X – world point
K – 3x3 matrix of internal camera parameters
[R | T] – 3x4 matrix of external camera parameters
   R – rotation needed to align camera to world axes
   T – Translation needed to bring camera to world origin
   T = -RC where C is the vector of camera center



Camera Model 
Example

•Think that the camera was 
originally at the origin 
looking down Z axis

•Then it was translated by (r1, 
r2, r3)T, rotated by  along X, 
 along Z, then translated by 
(x0, y0, z0)T

•This is the scenario in the 
figure on right 

Figure Reference: Gonzales and Woods, 
“Digital Image Processing”



Camera Model 
Example
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Camera Model
Example

• This camera model is applicable in many situations

• For example, this is the typical surveillance camera scenario



Aircraft Example

cameraMat = perspective_transform * gimbal_rotation_y * gimbal_rotation_z * 

gimbal_translation * vehicle_rotation_x * vehicle_rotation_y *  vehicle_rotation_z *  

vehicle_translation ;

OTTER                         system_id

                         TV                       sensor_type

                       0001                     serial_number

   9.400008152666640300e+08                          image_time

   3.813193746469612200e+01                    vehicle_latitude

  -7.734523185193877700e+01                 vehicle_longitude

   9.949658409987658800e+02                      vehicle_height

   9.995171174441039900e-01                       vehicle_pitch

   1.701626418113209000e+00                          vehicle_roll

   1.207010551753029400e+02                  vehicle_heading

   1.658968732990974800e-02           camera_focal_length

  -5.361314389557259100e+01                camera_elevation

  -7.232969433546705000e+00            camera_scan_angle

                        480           number_image_lines

                        640     number_image_samples



c(1,1) = (cos(c_scn)*cos(v_rll)-sin(c_scn)*sin(v_pch)*sin(v_rll))*cos(v_hdg)-sin(c_scn)*cos(v_pch)*sin(v_hdg);

c(1,2) = -(cos(c_scn)*cos(v_rll)-sin(c_scn)*sin(v_pch)*sin(v_rll))*sin(v_hdg)-sin(c_scn)*cos(v_pch)*cos(v_hdg);

c(1,3) = -cos(c_scn)*sin(v_rll)-sin(c_scn)*sin(v_pch)*cos(v_rll);

c(1,4) = -((cos(c_scn)*cos(v_rll)-sin(c_scn)*sin(v_pch)*sin(v_rll))*cos(v_hdg)-sin(c_scn)*cos(v_pch)*sin(v_hdg))*vx-(-(cos(c_scn)*cos(v_rll)-
sin(c_scn)*sin(v_pch)*sin(v_rll))*sin(v_hdg)-sin(c_scn)*cos(v_pch)*cos(v_hdg))*vy-(-cos(c_scn)*sin(v_rll)-sin(c_scn)*sin(v_pch)*cos(v_rll))*vz;

c(2,1) = (-sin(c_elv)*sin(c_scn)*cos(v_rll)+(-sin(c_elv)*cos(c_scn)*sin(v_pch)+cos(c_elv)*cos(v_pch))*sin(v_rll))*cos(v_hdg)+(-
sin(c_elv)*cos(c_scn)*cos(v_pch)-cos(c_elv)*sin(v_pch))*sin(v_hdg);

c(2,2) = -(-sin(c_elv)*sin(c_scn)*cos(v_rll)+(-sin(c_elv)*cos(c_scn)*sin(v_pch)+cos(c_elv)*cos(v_pch))*sin(v_rll))*sin(v_hdg)+(-
sin(c_elv)*cos(c_scn)*cos(v_pch)-cos(c_elv)*sin(v_pch))*cos(v_hdg);

c(2,3) = sin(c_elv)*sin(c_scn)*sin(v_rll)+(-sin(c_elv)*cos(c_scn)*sin(v_pch)+cos(c_elv)*cos(v_pch))*cos(v_rll);

c(2,4) = -((-sin(c_elv)*sin(c_scn)*cos(v_rll)+(-sin(c_elv)*cos(c_scn)*sin(v_pch)+cos(c_elv)*cos(v_pch))*sin(v_rll))*cos(v_hdg)+(-
sin(c_elv)*cos(c_scn)*cos(v_pch)-cos(c_elv)*sin(v_pch))*sin(v_hdg))*vx-(-(-sin(c_elv)*sin(c_scn)*cos(v_rll)+(-
sin(c_elv)*cos(c_scn)*sin(v_pch)+cos(c_elv)*cos(v_pch))*sin(v_rll))*sin(v_hdg)+(-sin(c_elv)*cos(c_scn)*cos(v_pch)-
cos(c_elv)*sin(v_pch))*cos(v_hdg))*vy-(sin(c_elv)*sin(c_scn)*sin(v_rll)+(-sin(c_elv)*cos(c_scn)*sin(v_pch)+cos(c_elv)*cos(v_pch))*cos(v_rll))*vz;

c(3,1) = (cos(c_elv)*sin(c_scn)*cos(v_rll)+(cos(c_elv)*cos(c_scn)*sin(v_pch)+sin(c_elv)*cos(v_pch))*sin(v_rll))*cos(v_hdg)+(cos(c_elv)*cos(c_scn)*cos(v_pch)-
sin(c_elv)*sin(v_pch))*sin(v_hdg);

c(3,2) = -(cos(c_elv)*sin(c_scn)*cos(v_rll)+(cos(c_elv)*cos(c_scn)*sin(v_pch)+sin(c_elv)*cos(v_pch))*sin(v_rll))*sin(v_hdg)+(cos(c_elv)*cos(c_scn)*cos(v_pch)-
sin(c_elv)*sin(v_pch))*cos(v_hdg);

c(3,3) = -cos(c_elv)*sin(c_scn)*sin(v_rll)+(cos(c_elv)*cos(c_scn)*sin(v_pch)+sin(c_elv)*cos(v_pch))*cos(v_rll);

c(3,4) = -
((cos(c_elv)*sin(c_scn)*cos(v_rll)+(cos(c_elv)*cos(c_scn)*sin(v_pch)+sin(c_elv)*cos(v_pch))*sin(v_rll))*cos(v_hdg)+(cos(c_elv)*cos(c_scn)*cos(v_pch)-
sin(c_elv)*sin(v_pch))*sin(v_hdg))*vx-(-
(cos(c_elv)*sin(c_scn)*cos(v_rll)+(cos(c_elv)*cos(c_scn)*sin(v_pch)+sin(c_elv)*cos(v_pch))*sin(v_rll))*sin(v_hdg)+(cos(c_elv)*cos(c_scn)*cos(v_pch)-
sin(c_elv)*sin(v_pch))*cos(v_hdg))*vy-(-cos(c_elv)*sin(c_scn)*sin(v_rll)+(cos(c_elv)*cos(c_scn)*sin(v_pch)+sin(c_elv)*cos(v_pch))*cos(v_rll))*vz;

c(4,1) = 
(1/fl*cos(c_elv)*sin(c_scn)*cos(v_rll)+(1/fl*cos(c_elv)*cos(c_scn)*sin(v_pch)+1/fl*sin(c_elv)*cos(v_pch))*sin(v_rll))*cos(v_hdg)+(1/fl*cos(c_elv)*cos(c_s
cn)*cos(v_pch)-1/fl*sin(c_elv)*sin(v_pch))*sin(v_hdg);

c(4,2) = -
(1/fl*cos(c_elv)*sin(c_scn)*cos(v_rll)+(1/fl*cos(c_elv)*cos(c_scn)*sin(v_pch)+1/fl*sin(c_elv)*cos(v_pch))*sin(v_rll))*sin(v_hdg)+(1/fl*cos(c_elv)*cos(c_sc
n)*cos(v_pch)-1/fl*sin(c_elv)*sin(v_pch))*cos(v_hdg);

c(4,3) = -1/fl*cos(c_elv)*sin(c_scn)*sin(v_rll)+(1/fl*cos(c_elv)*cos(c_scn)*sin(v_pch)+1/fl*sin(c_elv)*cos(v_pch))*cos(v_rll);

c(4,4) = -
((1/fl*cos(c_elv)*sin(c_scn)*cos(v_rll)+(1/fl*cos(c_elv)*cos(c_scn)*sin(v_pch)+1/fl*sin(c_elv)*cos(v_pch))*sin(v_rll))*cos(v_hdg)+(1/fl*cos(c_elv)*cos(c_s
cn)*cos(v_pch)-1/fl*sin(c_elv)*sin(v_pch))*sin(v_hdg))*vx-(-
(1/fl*cos(c_elv)*sin(c_scn)*cos(v_rll)+(1/fl*cos(c_elv)*cos(c_scn)*sin(v_pch)+1/fl*sin(c_elv)*cos(v_pch))*sin(v_rll))*sin(v_hdg)+(1/fl*cos(c_elv)*cos(c_sc
n)*cos(v_pch)-1/fl*sin(c_elv)*sin(v_pch))*cos(v_hdg))*vy-(-
1/fl*cos(c_elv)*sin(c_scn)*sin(v_rll)+(1/fl*cos(c_elv)*cos(c_scn)*sin(v_pch)+1/fl*sin(c_elv)*cos(v_pch))*cos(v_rll))*vz+1;
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Pinhole camera in general view
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Canonical View

Aircraft Example
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Surveillance Camera Example (Small gimbal translation ignored)

Translation by Inverse 
of Camera Center

Rotation needed to align 
camera with world axes

Perspective Transform 
for Canonical View
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Summary: Perspective Camera Model

•The perspective camera model can be written as 

3x3 matrix of internal 
camera parameters

(intrinsic parameters)

3x4 matrix of external 
camera parameters

(extrinsic parameters)
World point       

Image 
point



Special Case 1:
Perspective Camera Looking at a Plane
•Consider the case of camera looking at a plane

•This scenario occurs frequently in imaging applications



Special Case 1:
Perspective Camera Looking at a Plane
•Without loss of generality, we can assume that the plane has 
equation Z = 0

•The third column of   does not matter in this case 
and can be dropped. So we can rewrite the system as:

•Conclusion: The 3D points lying on a plane are related to the 
image points by a homography.



Special Case 1:
Perspective Camera Looking at a Plane

•Now consider relationship between two images of a plane

•Two images of a plane taken by a perspective camera are 
related by a homography

Plane

Camera 1 Camera 2

H1 H2

H2 H1
-1



Special Case 1:
Perspective Camera Looking at a Plane
•It is no surprise  that these 
projective transformations 
look like images of a plane 
taken from different 
angles



Application: Rectification

•A perspective image of a plane can be transformed into one 
in which the plane is fronto-parallel, i.e. the optical axis 
coincides with the plane normal

Satellite image

Rectified image



Application: Rectification



Road Segment, covered by three cameras





Merged view of the road





Another Example of Rectification

•Measuring crowd density as persons per square meter



Special Case 2:
Rotation about Camera Center (Pure Rotation)

•Consider the case of camera 
that does not translates but 
only rotates about its optical 
center

•This scenario also occurs 
frequently in imaging 
applications



Special Case 2:
Rotation about Camera Center (Pure Rotation)

•x and x' are images of a point X before and after rotation  of 
the camera respectively.

•Then

•Hence

•This type of homography is called a conjugate rotation 
homography



Special Case 2:
Rotation about Camera Center (Pure Rotation)

• The relative motion of objects in two images which are at different distances in 
the world is termed parallax

•A homography will not generate any parallax. 

•Hence pure rotation of camera does not generate parallax



Camera Calibration



Recall: Perspective Camera Model

•The perspective camera model can be written as 

3x3 matrix of internal 
camera parameters

(intrinsic parameters)

3x4 matrix of external 
camera parameters

(extrinsic parameters)
World point       

Image 
point



Camera Calibration

•In general, the camera model looks like:

•P is a 3x4 matrix of rank 3
•Calibration is the process of finding the parameters 
[p11…p34]
•If x and X are known, then we can solve for the unknown 
parameters in P



Camera Calibration

•Camera model

•In inhomogeneous from

•Multiplying both sides by denominator and rearranging



Camera Calibration

•These equations have 12 unknowns

•Each correspondence between a world point and an image 
point yields two equations

•If 6 correspondences are known, we can solve for the 
unknowns



Camera Calibration

•Separating out the known and the unknown terms



Camera Calibration

•Given n correspondences…



Camera Calibration

•This system Ap = 0 is a homogeneous system.

•A is rank deficient: rank(A) = 11 (at most)

•Solution?

• The null vector of A represents the p which is the 
solutions to the system Ap = 0

• How to find null space?
1. null(A) in MATLAB, or

2. Take SVD of A, as svd(C) = USVT. The column of V 
corresponding to the singular value of zero represents the 
solution

(in practice, you will have to take the smallest singular value)



Camera Calibration: Summary

•Given a set of world points (in 3D coordinates) and their 
corresponding image points, we solve for the 3x4 camera 
matrix that relates them.

•This transforms into a problem of the form Ap = 0, which can 
be solved by finding the null vector of A.

•A more robust solution is through Direct Linear Transform, 
DLT (not covered in this class)

55



Camera Calibration: Solving for Extrinsic and 
Intrinsic Parameters

•After finding p, we end up with a 3x4 camera matrix relating 
world points to image points

•How can I find camera rotation, translation and intrinsic 
parameters?

•Note that P has 12 terms and 11 degrees of freedom.

56



Camera Calibration: Solving for Extrinsic and 
Intrinsic Parameters

•Solving for Camera Center C:

•Consider P times C

 

•Hence, camera center C is a null vector of P

•Note that PC = (0, 0, 0)T is undefined in image plane, which is 
exactly what we should expect, since image of camera center is 
undefined.

57



Camera Calibration: Solving for Extrinsic and 
Intrinsic Parameters

•Solving for K and R

•Note that P = [KR | -KRC]

•Hence first 3x3 block of P i.e. M3x3 = KR

•K is an upper triangular matrix, R is an orthonormal matrix

•Solved through RQ decomposition 
RQ decomposition decomposes a matrix into an upper 
triangular matrix times an orthonormal matrix

58



Camera Calibration Example



Take Image of a Calibration Target



Select Image Points



Choose world coordinate system



0     1     2     3     0     1     2     3     0     1
     0     0     0     0     0     0     0     0     0     0
     0     0     0     0     1     1     1     1     2     2

2     3     0     1     2     3     3     3     3     3
     0     0     0     0     0     0     1     2     3     1
     2     2     3     3     3     3     0     0     0     1

3     3     3     3     3     3     3     3     2     2
     2     3     1     2     3     1     2     3     1     2
     1     1     2     2     2     3     3     3     3     3 

2     1     1     1     0     0     0
     3     1     2     3     1     2     3
     3     3     3     3     3     3     3

Specify World Points

Vertices on the cube (in same order as image points)

Cube height = 57mm
One box side = 19mm

Therefore, scale each 
coordinate by 19 mm

0 19 38 57  0 19 38 57  0 19 38 57  0 19 38 57 57 57 57 57 57 57 57 57 57 57 57 57 38 38 38 19 19 19  0  0  0
  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 19 38 57 19 38 57 19 38 57 19 38 57 19 38 57 19 38 57 19 38 57
  0  0  0  0 19 19 19 19 38 38 38 38 57 57 57 57  0  0  0 19 19 19 38 38 38 57 57 57 57 57 57 57 57 57 57 57 57



Specify World Points

Vertices on the cube (in same order as image points)

0 19 38 57  0 19 38 57  0 19 38 57  0 19 38 57 57 57 57 57 57 57 57 57 57 57 57 57 38 38 38 19 19 19  0  0  0
  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 19 38 57 19 38 57 19 38 57 19 38 57 19 38 57 19 38 57 19 38 57
  0  0  0  0 19 19 19 19 38 38 38 38 57 57 57 57  0  0  0 19 19 19 38 38 38 57 57 57 57 57 57 57 57 57 57 57 57



•Set up matrix A and find its right null vector through SVD
•warning: null(A) is unlikely to work! (WHY?)

•Reshape into a 3x4 matrix

P =

  -0.00010835   4.3034e-05    0.0047453     -0.68373

   -0.0019211   -0.0044849   0.00023615      -0.7297

   4.1144e-07  -3.5796e-07   1.1421e-07  -0.00028537

Find the solution 



C =

    375.89

   -315.53

    155.53

         1

Find camera center from P

x

z

x

y

y

z

x

z

y



K =

   -8376.2     66.191    1552.4

         0    -8336.6      2712

         0                    1

R =

  -0.16524    0.12231    0.97864

  -0.65379   -0.75651   -0.01584

  -0.73842    0.64244   -0.20497

Compute K and R by RQ Factorization



Principal Point

K =

   -8376.2     66.191    1552.4

         0    -8336.6      2712

         0                    1

R =

  -0.16524    0.12231    0.97864

  -0.65379   -0.75651   -0.01584

  -0.73842    0.64244   -0.20497



Focal Length

K =

   -8376.2     66.191    1552.4

         0    -8336.6      2712

         0                    1

R =

  -0.16524    0.12231    0.97864

  -0.65379   -0.75651   -0.01584

  -0.73842    0.64244   -0.20497

mxf = 8376.2   myf = 8336.6

• Image was taken by Canon 600D

•Canon 600D uses APS-C format 
CMOS sensor*

• Size of APS-C sensor is 
23.6mm x 15.7mm

• Image size is 5184 x 3456

* https://www.ephotozine.com/article/complete-guide-to-image-sensor-pixel-size-29652

• Hence

• mx = 3456/15.7 = 220.13 pix/mm

• my = 5184/23.6 = 219.66 pix/mm

• f = [38.051, 37.952] mm

• Verification from EXIF data: 37mm

• Angle between x & y axis = 90.455o



Back-project World Points into Image



Camera Anatomy:
Column Vectors of P   

•Let the columns of P be pi , i = 1,…,4

•Then p1, p2, p3 are the points at infinity of the world X, Y and Z 
axes respectively. 

•Consider the point at infinity along X-axis:  D = (1, 0, 0, 0)T

•This will be imaged at 

•Hence, 
• The first column of P is the image of the point at infinity along X-axis
• The second column of P is the image of the point at infinity along Y-axis
• The third column of P is the image of the point at infinity along Z-axis

•Similarly, p4 the fourth column of P is …

• the image of world origin (0,0,0,1)
T



P =

  -0.00010835   4.3034e-05    0.0047453     -0.68373

   -0.0019211   -0.0044849   0.00023615      -0.7297

   4.1144e-07  -3.5796e-07   1.1421e-07  -0.00028537

Camera Anatomy:
Column Vectors of P 

-263.35

      -4669.2

            1



P =

  -0.00010835   4.3034e-05    0.0047453     -0.68373

   -0.0019211   -0.0044849   0.00023615      -0.7297

   4.1144e-07  -3.5796e-07   1.1421e-07  -0.00028537

Camera Anatomy:
Column Vectors of P 

-263.35

      -4669.2

            1

-120.22

  12529

      1



Camera Anatomy:
Column Vectors of P 

2396

         2557

            1

P =

  -0.00010835   4.3034e-05    0.0047453     -0.68373

   -0.0019211   -0.0044849   0.00023615      -0.7297

   4.1144e-07  -3.5796e-07   1.1421e-07  -0.00028537



Camera Anatomy:
Column Vectors of P 

41550

       2067.7

            1

P =

  -0.00010835   4.3034e-05    0.0047453     -0.68373

   -0.0019211   -0.0044849   0.00023615      -0.7297

   4.1144e-07  -3.5796e-07   1.1421e-07  -0.00028537



Camera Anatomy:
Column Vectors of P 

P =

  -0.00010835   4.3034e-05    0.0047453     -0.68373

   -0.0019211   -0.0044849   0.00023615      -0.7297

   4.1144e-07  -3.5796e-07   1.1421e-07  -0.00028537



Camera Anatomy:
Column Vectors of P 

P =

  -0.00010835   4.3034e-05    0.0047453     -0.68373

   -0.0019211   -0.0044849   0.00023615      -0.7297

   4.1144e-07  -3.5796e-07   1.1421e-07  -0.00028537





Camera Anatomy:
Row Vectors of P 

•Row vectors are 4-vectors, which may be interpreted as 
planes.



Camera Anatomy:
Row Vectors of P 

•Principal plane: Plane through camera center, parallel to 
image plane, consisting of set of points X imaged on, line at 
infinity of image, 

• i.e. PX = (x,y,0)T

•Thus, a point lies on principal plane iff P3TX = 0

•Thus, P3 is the vector representing the principal plane

•Also, C lies on P3 (verify)



Camera Anatomy:
Row Vectors of P 

P3 = [4.1144e-07  -3.5796e-07   1.1421e-07  -0.00028537]T

Verify P3TC = 1.3212e-14

P =

  -0.00010835   4.3034e-05    0.0047453     -0.68373

   -0.0019211   -0.0044849   0.00023615      -0.7297

   4.1144e-07  -3.5796e-07   1.1421e-07  -0.00028537



Camera Anatomy:
Row Vectors of P 

•Axis planes: Consider the set of points X in P1

•They must satisfy P1TX = 0

•Hence, they will be imaged at PX = (0, y, w)T, i.e. they are points 
on the y-axis of the image

•Also, C lies on P1 (verify)

•Hence, P1 is defined by 
the join of C and line x = 0 
in the image

•Similarly, P2 is defined by 
the join of C and line y = 0



Camera Anatomy:
Row Vectors of P 

•Axis planes are dependent on the choice of image axes, but 
principal plane is not. 

•Intersection of planes P1 and P2 is the line joining the camera 
center and the image origin, i.e. the back projection of image 
origin
•Not the optical axis in general…

•Camera center lies on all three planes P1, P2, P3



Camera Anatomy:
Principal Point and Principal Axis

•The principal axis is the ray through the camera center 
perpendicular to the principal plane P3, which will intersect the 
imaging plane at the principal point.

•In general, the normal of a plane π=(π1, π2, π3, π4)T is given by 
(π1, π2, π3)T 

•Thus principal axis is given by (p31, p32, p33)T

•Consider the point at infinity in the direction of principal axis, 
i.e. (p31, p32, p33, 0)T = 

•We can project this point back to the image to get the 
coordinates of the principal point as 

•This involves only the first 3x3 block of P. Hence

•where m3T is the last row of M, and M the first 3x3 block of P





Summary: Camera Anatomy

Camera Center
PC=0

Image of point at 
infinity in X-axis 

direction

Image of point at 
infinity in Y-axis 

direction

Image of point at 
infinity in Z-axis 

direction

Image of 
World Origin

Principal 
Plane

Axis Plane 
from join of 
C and y = 0

Axis Plane 
from join of 
C and x = 0

Principal 
Axis
m3

Intrinsic matrix K 
and Rotation R by 
RQ decomposition

Principal Point
Mm3



Action of Camera on Points, Lines and 
Planes



Action of Camera on Points

•Action of camera on points is familiar to us

•In canonical view



Vanishing Points

C

d

X1

X2

X3

X4

Image of X∞?

v



Action of Camera on Lines

•A line in 3-space will project to a line in 
the image.

•Geometric Proof: The join of the line L in 
3-space and the camera center C forms a 
plane, and this plane will intersect the 
imaging plane in a line.

•Algebraic Proof:



Back Projection of Points to Rays

•Given a point x in the image of a camera with matrix P, we want 
to determine set of points in the world that map to this point

• i.e. the ray in the world that this point back-projects to.

•Note that camera center C always lies along the ray.

•Claim: P+x also lies along the ray, where P+ = PT(PPT)-1

•Proof:

 The image of P+x will be at

        PP+x

      = PPT(PPT)-1x

     = x

 Therefore P+x must be along the ray



Back Projection of Points to Rays

•Since we know two points along the ray, C and P+x 

•Therefore, points along the ray can be written in parametric 
form as



Back Projection of Points to Rays

• In canonical view, relationship is even more simpler

•Consider the back-projected ray which is given by a direction d 

•All points on this ray can be written as the join of camera center and 
the ray vector

•The image of such a point in canonical view will be at 

•So, given x, the ray direction in canonical view can be computed 
simply as

•Camera calibration matrix K relates the image point to a ray direction



Back Projection of Lines

•Lines in image will back project to planes in the world.

•Result: The set of points in the world mapping to a line l via 
the camera matrix P is the plane PTl

•Proof
A point x lies on l iff xTl = 0. 
A world point X maps to a point PX, which will lie on l iff

    XTPTl = 0

Thus if PTl is taken to represent a plane, then X lies on this plane iff 
X maps to a point on the line l

Hence, PTl is the plane which is the back projection of line l.



Relationship between Image Line and Plane 
Normal

•Result: An image line l defines a plane 
through the camera center with normal 
direction n = KTl in the camera 
canonical coordinate system

•Proof:
Points x on line l back-project to directions d = K-1x
Since these direction vectors lie on the plane, they are orthogonal to the 
plane normal n.
Thus,  dTn = 0
    xTK-Tn = 0
Since points on l satisfy xTl = 0, it follows that
    l = K-Tn
Hence  n = KTl



Vanishing Line

•The vanishing line of a plane is 
the image of the line at infinity of 
the plane

•The vanishing line will depend 
only on the orientation of the 
plane, and not on its absolute 
position

•Parallel planes have the same 
vanishing line



Vanishing Line

•If camera calibration matrix K is 
known, a scene plane’s vanishing 
line can be used to find the 
plane’s orientation relative to the 
camera.

•In the canonical coordinate 
system, the orientation of the 
plane having the vanishing line l 
in the image is given by

  n = KTl

•The vanishing line as a function of 
plane normal is given by

   l = K-Tn



Orthographic Cameras



Cameras at Infinity

•Consider the image sequence in which the camera moves 
away from an object but zooms in to keep the size of the 
object the same.



Cameras at Infinity
•If the camera center moves back from the scene to infinity, then 
all rays entering the camera will be parallel



Another Type of Camera: Orthographic 
Camera

•Parallel Lines remain parallel and do not converge
 (also termed parallel projection)



Type of Projection?



Type of Projection?



Type of Projection?



Type of Projection?



Type of Projection?



Perspective Distortion
•Perspective distortion: the effect that 
further away objects appear smaller 
in size

•As focal length increases (more zoom), 
perspective distortion becomes less

•Orthographic camera can be 
considered as being very far away so 
there is no variation in Z, and having 
very long focal length. Hence it has no 
perspective distortion.

•Equal lengths in the world will appear 
of equal size in the image

107



Orthographic Projection

•In canonical view:

•The relationship between image coordinates and scene 
coordinates is:

x = X, y = Y

•In matrix form

M  (first 3x3 block of P) is 
now a singular matrix

Last row is [0, 0, 0, 1]T, so 
this is also termed as an 

affine camera

Camera center is given by 
null(P) = [0 0 1 0]T is a point 

at infinity



Orthographic Projection

•In general view: 

•This can also be written as

Or

•Note that 3rd row of R|T does not matter



Relationship between Orthographic and 
Perspective Projection

•Consider a pinhole camera which is very far away and 
zoomed into the scene.

•Since the depth variation of the scene is small compared to 
the distance of the camera, it may be approximated by a 
constant value.

•Hence

•Since     is now a constant, we can write

•which is scaled orthographic projection



Some properties of Orthographic Projection

•Parallel lines remain parallel

•There is no perspective distortion. Equal lengths in the world 
appear as equal lengths in the image.

•Images of a plane taken by an orthographic camera are 
related by an affine transformation [Proof?]



Practical Cases of Orthographic Camera

•A camera which is actually very 
far away compared to the depth 
variation in the scene can be 
approximated by an orthographic 
camera

•Orthographic projection is often 
used in computer games

•Scanner is provides an 
orthographic projection of a 
document image

•Also used in some algorithms as 
an approximation for 
mathematical simplicity (e.g. 
Tomasi / Kanade Structure for 
Motion Algorithm)



Satellite Cameras

• Satellite images are typically taken by 
a line scan pushbroom camera, which 
is orthographic along the direction of 
motion and perspective in the line-
scan direction
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