

School of Computer Science

Final Year Project

Formal Report

Submitted in fulfilment of the requirements for the BSc (Hons) Degree in

Computer Science & Information Technology

Madra agus Cairde App

 2

 3

Table of Contents

Madra agus Cairde App 1
Table of Contents 3
Acknowledgements 1
Glossary 2
Chapter 1. Introduction 3
1.1. Problem Statement 3
1.2. Background 3
1.3. Stakeholders 4
1.4. Project Management 4

Trello 6
Git 6
Plan 9

Chapter 2. Requirements 11
2.1. Introduction 11
2.2. Functional Requirements 11
2.3. Non-Functional Requirements 18
2.4. Use Cases 20
2.5. Data 22
2.6. Constraints 22
Chapter 3. Design 25
3.1. Introduction 25
3.2. Development Method 25
3.3. System Architecture 25
3.4. Data 28
3.5. UX/UI 32
Chapter 4. Implementation 39
4.1. Introduction 39
4.2. Development Tools 39
4.3. Development Considerations 43
Chapter 5. Code Quality 45
5.1. Introduction 45
5.2. User Testing 45
5.3. System Testing 46
5.4. Continuous Integration/Testing 49
Chapter 6. Website 52
6.1. Introduction 52
6.2. Hosting 52
6.3. SSL Certificate 53
6.4. User Interface 54
6.5. Contact Form 56
6.6. CAPTCHA 57
Chapter 7. Conclusion 62
7.1. Challenges 62

COVID-19 62
Testing 62
New Environment 62
Technical Difficulties: 63

7.2. Lessons Learned 64

 4

Technical Skills 64
User Testing 65
Project Management 65
Design Prototyping 65

7.3. Future Work 65
7.4. Final Conclusion 66
Appendix 68
References 69

Acknowledgements

I would like to express my gratitude to my supervisor, Karen Young, who helped me
complete this Final Year Project. Her continuous support throughout final year was crucial for
the completion of this project. I would also like to thank my user testers who helped me at
each iteration of the process with their feedback. Lastly, I would like to thank my family and
friends who encouraged me to give it my all. They also participated in numerous user tests for
me, which contributed enormously to the overall project

 2

Glossary

FYP Final Year Project
UX User Experience
UI User Interface
CI Continuous Integration
CD Continuous Development
MVC Model-View-Controller

 3

Chapter 1. Introduction

 1.1. Problem Statement

This Final Year Report provides the context, description and documentation of the mobile
application and website developed for the Final Year Project (FYP) as part of the Computer
Science and Information Technology degree. This report will cover the entire lifecycle of the
project – from start to finish. It will provide information and details on the background
research involved; the design elements used as well as the functional requirements of the
application. The skills that were required to manage such a big undertaking will be discussed.
Any implementation details will be analysed in a comprehensive manner so the reader will
gain a full understanding of the project. To draw the report to a close, an overall perspective
of the FYP completed will be given and any downfalls or future plans for the project will be
reviewed.
The title of this FYP is ‘Madra & Cairde’. The dominant part of this project is a mobile
application for iOS. A website also was created to support and promote the ‘Madra & Cairde’
application. The main goal of Madra & Cairde is to allow people to look for dogs in their
locale and organise a play date with them.
The project will address the need of a significant cohort of Dog Owners and Dog Minders,
and will provide an interface appropriately designed for each of the two categories. A mobile
app will be iteratively designed with the help of user feedback, to ensure the best possible
product is produced.

 1.2. Background

This project idea came about after lots of thinking and research. A niche mobile application
idea was sought as it was felt that a new and interesting idea would provide motivation for
the effort required. The process began by identifying interests, identifying related problems
that could be solved, and looking at similar applications/businesses in the public realm.

One big area of interest and passion is animals. Experience shows that some people have
never had a pet but love going to family and friends’ houses where pets live. Social media
feeds are filled with animals; from Instagram’s explore page to TikTok’s video queue, much
of which concerns one type of animal in particular – dogs.

One problem easily identified from experience is missing sufficient interaction with dogs.
This struggle was confirmed by friends, even those with pets, because being away from home
at college means only rare visits to pets.

From this sprang the idea that it would be good for people to be able to borrow dogs for play
dates. It would be a good service for both the borrower and the dog owner for a number of
reasons. Lots of owners do not have the time to walk their dog or keep it company while
they’re working.

The main target audience for the dog borrower user (i.e. Dog Minder) is college students as
they are likely to avail of such a service and would benefit greatly from it. College students

 4

these days are very tech-savvy and are well versed in social media and social networking
apps. This means that in offering such an intriguing service, the app could be easily adopted
by them as they are already used to using an abundance of apps.

A high number of college students suffer from mental health issues. According to a report
done by The Union of Students in Ireland, ‘Students are experiencing extremely severe levels
of anxiety (38.4%), depression (29.9%) and stress (17.3%)’. There is a great number of
students who do not have a proper outlet to discuss or vent about these personal difficulties.
[1]

It is scientifically proven that exposure to a dog, or ‘puppy love’ as many people refer to it,
can help reduce stress and anxiety as well as many other things. The love and warmth from a
dog can ‘buffer depressive tendencies, quell anxious feelings, and mitigate loneliness’.[2]
Walking a dog is a great way to encourage exercise, especially if the person is unlikely to go
for a walk for any other reason. Exercise is another proven way of improving one's mental
health and mood. [3]

The main target audience for the Dog Owner user would be adults/couples with a pet dog
who may not have the time to walk their dog or are anxious about leaving their dog home
alone while they go somewhere/go to work.

There has been a huge increase in separation anxiety in pets, especially since the beginning of
the pandemic which has had most people working from home. Most pets have now become
used to and reliant on their owner being with them all of the time. Because of this, it will be
extra tough on pets when their owner has to return to their workplace and leave them
unaccompanied for hours on end. This will inevitably cause a lot of stress and anxiety in
most pets. [3] As with humans, pets benefit a lot from daily exercise. A healthy dog is a
happy dog. [4] Unfortunately, some Dog Owners do not have enough time to walk their dog;
this may be due to work commitments or other life stresses. [5]

The Madra & Cairde app will facilitate both the mental and physical well-being of the Dog
Lover and the dog, as well as providing a helpful service for Dog Owners so they can have
peace of mind to know that their dog is not lonely while they are busy.

 1.3. Stakeholders

The sole stakeholders in this app are the end users. Madra agus Cairde’s end users are separated
into two categories, the Dog Owner and the Dog Minder. Other types of stakeholders could
conceivably be catered for if the project were to be developed further.
However, as of now, all the work that has been put into the project has been done with these
end users in mind. The entire project has been consistently iterated over the course of the
development process to fit better with results of user tests and user feedback. After all, without
end user feedback being incorporated into the design, the author would not have identified the
full list of requirements the app needed.

 1.4. Project Management

Good project management is essential to ensure that required features are delivered in a
timely manner. The project needs to be planned in outline to get an estimate of the effort

 5

required, then tracked against the resultant timeline to make adjustments to the plan. If tasks
proceed more quickly than expected, some of the additional non-core tasks can be tackled.
Conversely, if tasks take longer than expected, they can be revised in scope or relegated to
non-core requirements.
Despite being a single-developer project, the Agile development process was originally
applied. This entailed grouping tasks into a series of “sprints” (time periods of a fixed
duration; usually a couple of weeks). However, the tasks proved unpredictable in duration
because of the learning required for many of them, and commitments to other parts of the
degree course, like assignments.
Accordingly, the project evolved into a test-driven development cycle, where each task was
worked on until it passed a set of tests, then the next task was started. This still required a
periodic assessment of the project’s progress, with refinements of the goals a frequent
occurrence.

 6

Trello

Trello was chosen to keep track of tasks at various stages. It was used to group tasks into:
● those yet to done
● those in review
● those that were completed
● bug triage
● bugs that were fixed
● extras
● not doing

Figure 1: Trello Board

Trello was chosen because of familiarity with it from having used it during professional
placement, where different boards were used to keep track of work done in different sprints
and tech debt. Trello ensured that particular tasks were not forgotten about so the size of
the project was always apparent. It proved very useful in getting back onto the project
when breaks needed to be taken to complete other college work.

Git

Git was used for version control, commits and pull requests (PR). A private repository was
created in GitHub to connect to the local git repository on a working computer. Git and
GitHub were used while on professional placement so the author had grown accustomed
and familiar with them. Git is a very good tool which can be used seamlessly to keep track
of any iterations done on blocks of code. If any big mistakes are made, it is possible to
revert to a commit where the code is not broken.

Another way that good project management was sustained through the project was by
using clear branching strategies. Branching is a very important concept in Git. The very
core requirement necessary for the Github flow to work correctly is that the main branch
should always be working and deployable. This means that code on main should never be

 7

broken as this would stunt future work. To ensure this was always the case, a set of branch
rules was devised. This required all new PRs to pass the unit tests that were put in place,
before the option to merge would appear. This stopped poor/broken code from making its
way into main.

Figure 2: Git Branch Rules

New branches were always derived from main to start off as base code, and clear and
descriptive titles were given so the author was clear about what concept/feature was being
worked on.
Examples of these titles which made it clear to the author what the branch should do, are:

Figure 3: Branch names

In Git, when making a commit, there is an option ‘-m’ to add a comment to the commit.
This was another good management practice used throughout the development of the
application as it meant the author could tell from a PR what exact work was done in that
PR.

 8

Figure 4: Commit captions

Another strategy that was used by the author was the use of a template for PRs. The format of
the template was simple yet effective:

What does this PR do?

Major:

Minor:

Screenshots (if any)

An example of this in play is:

Figure 5: PR Template

 9

Although there was only one developer working on this project, it was still a good practice to
have in place. This was a large project with many different components which meant it would
be easy to lose track of work completed if good project management was not in place.

Plan

A Gantt chart was originally made to be followed and was included in the project definition
document. However, as more Swift and iOS development experience was gained, the original
timeline had to change. The original ordering of the tasks was used (more or less) as it made
the most logical sense to develop the application that way. A big aspect of starting out in a
new development environment is that things cannot be estimated easily. Features that were
expected to take a few hours could end up dragging on for weeks because inexperience made
it harder to deal with errors and bugs, and just in general, having to learn new things makes
the development process a lot longer. Also, the original Gantt chart did not account for
challenges that could arise, such as technical difficulties and database complications etc.
As will be discussed in Chapter 3, a Test-Driven Development approach was used when
developing this project. In simple terms, this meant that features were focussed on for as long
as was necessary to make them work, and then the next feature was tackled. Once each main
feature was completed, notes were kept to record the work that was completed and lessons
that were learned. To record these notes in a safe and secure environment (i.e., where it won’t
accidentally be lost), an account was created with Notion.

 10

 11

Chapter 2. Requirements

 2.1. Introduction

The project as originally envisaged proved overly ambitious for the amount of learning
required, not to mention technical difficulties which arose, some of which were
insurmountable. Therefore, the list of core requirements was gradually pruned. This chapter
describes which tasks remained in the core list, and those which were relegated to a secondary,
non-core, list.

 2.2. Functional Requirements

Figure 6: Dog Minder Storyboard

 12

Figure 7: Dog Owner Storyboard

The core requirements of the app are:

● Profile Set-up
● Messaging Service
● Add Friends
● Accept Friends
● Search

The non-core requirements are not essential to the basic functionality of the app but they do
add features which contribute a lot to the overall appeal of the app. Those are:

● Onboarding Screens
● Map View (Location Sharing & Search)
● Card View (i.e., Swiping)
● Photo Upload (Select from Gallery & Camera Use)

● AutoLogin

Profile Set-Up
This was a core requirement as a user must be able to set up a profile in order to use the app.
There is a process for initial set up when a user account is first created. Extra information can
be added via the Edit Profile page, which is accessed through the edit button on the profile
page. Information that is expected to change, such as location and ‘about’ can be edited.
However, information supplied at the beginning, such as name and breed etc, cannot be
modified.

 13

Figure 8: Example of Dog Owner Profile

Messaging Service

Another core requirement necessary in the app for full function is the messaging service.
Users need to have the ability to communicate with each other – that is the main purpose of
the app.

 14

Figure 9: Example of messaging Figure 10: Messages between users (including picture message)

Add Friends
Conversations can only occur between users that are friends, so in order to become friends, a
Dog Minder must be able to send a friend request to the Dog Owner. There are two ways of
adding friends in the app. The main way is by clicking the heart button that appears on user
profiles. The alternative is by swiping the user card left if searching is taking place via the
card deck (accessed via the random search button).

Figure 11: Example of profile with accept/reject buttons

 15

Accept Friends
Once a friend request from a Dog Minder has been sent to the Dog Owner, the owner needs
to have the ability to accept (or reject) this request. The Dog Owner may accept the message
by similarly pressing the heart button on a user’s profile. Once a Dog Owner does this, the
friendship is formed and both users appear on one another’s home screens/chat list.

Figure 12: Friend requests

Search
Search an essential element of this app. The user must be able to search through users in the
database, and filtering by location if necessary. The search may done via the random search,
as previously mentioned, or the location search.
These are the requirements necessary for the app to function at a basic level. In order to
improve the user experience and overall quality of the app, another of other features were
implemented.

 16

Onboarding
Onboarding is important for a user to get a sense about what is involved in the app. It is a chance
to educate the users about the features they will get to use in the app.
A key to ensuring a good onboarding experience is to keep the messaging clear and concise. It
is also important that a user has a chance to opt out of the onboarding, i.e., to skip past the
onboarding screens if they wish.

Figure 13: Dog Search View

Figure 14: Dog Search View after county search for
‘Galway’

Figure 15, 16, 17: Onboarding Screens that appear when app is first opened

 17

The onboarding screens in Madra agus Cairde help give users a glimpse as to what the app is
like. Firstly, the screens are white with the signature green button. Each view has a skip
button which may be pressed at any stage to fast forward to the login screen. This is very
important because if the user has no way to skip past these screens, they may be more inclined
to just exit the app. There is a page controller (the circles) which is used to indicate to the user
what page they are on. This is very important for an onboarding experience as it signifies to
the user how long is left for the onboarding. If the user knows that there are only three views
until the end, then they will be less likely to skip it.
These three onboarding screens only appear the first time the user opens the app. This way,
the user will only see it when they are first signing up, or if they had previously deleted the
app.

Map View (Location Sharing & Search)

An additional feature that adds to the complexity of the app is the map view. On the map
view there is a search bar in which specific locations may be searched and the map will be
repositioned to show you that area. The app also displays the users current location. The map
view is filled with dummy user dogs, which replicate the users that would have been
retrieved from the database, had the correct database been used. More detail on this in the
Challenges section.

Figure 18: Map View

 18

Card View (i.e., Swiping)

The ability to swipe through a deck of cards which contained dogs in them, similar to the
Tinder functionality, was implemented.

Figure 19: Dog Card View

 2.3. Non-Functional Requirements

Non-functional requirements are aspects of the system which are necessary to incorporate, but
which do not directly refer to specific user stories developed to define the system. They are
general qualities which need to be borne in mind as specific functional requirements are
implemented. Examples of non-functional requirements are:

Usability

Each aspect of the user interaction needs to be simple, but cover a comprehensive set of
possibilities. The user experience should be pleasant so that users are not deterred from using
the app. User experience was considered greatly in terms of the design of the application, which
will be discussed in more detail in the next chapter.

Reliability

Also related to the user experience is the reliability of the app. It needs to be available when
needed, and do what it is supposed to do. This requires extensive testing under a wide range of
possible situations, including some which might appear unlikely. Edge cases were tested in the
app to ensure reliable function still works. For example, if there are no dogs in the database
when a Dog Minder is searching for one, the app does not crash.

 19

Performance

The role performance has in an app is vital for the app's success. An app is expected to meet
the user’s expectations in terms of performance, or else it will deter a lot of users from
continuing to use it. To ensure performance was as good as possible, only the libraries that
needed to be implemented were implemented. The larger the project, the slower it would run,
so libraries needed to be carefully considered before implementation. However, even still, the
performance of the app cannot be judged properly when running on the simulator, as the Intel
based MacBook Pro used is not very powerful.

Maintainability

If the maintainability of the code is not kept under consideration, it can become impossible or
very expensive to change it in any way, whether for adding new features or fixing bugs.
In this system, the project source code is kept in a version control repository (Git), so is
straightforward to share with any additional developers. Changes committed to the repository
are annotated clearly to explain what they do.
The source code contains comments to explain the thinking behind any code which is not
obvious in its function. Additionally, there is a text file outlining the structure of the app to
serve as a starting point for understanding where changes might need to be made.

Security

The security of a system is a key requirement as it ensures protection against vulnerabilities
and threats. The use of Firebase’s verification and authentication service meant that security of
the application is left to Google, a trusted provider.
Another form of in-house security that was implemented was that, as a requirement, users must
be friends with each other in order to exchange messages. This is in a bid to prevent unsolicited
messages.
Sensitive data like emails and passwords are kept private and not shown anywhere in the app.

Scalability

No limitations should be imposed on the app which could turn out to be bottlenecks when it is
scaled to have a larger number of users or be deployed over a wider geographic region. Any
assumptions the system makes should be reasonable in all situations, otherwise significant
portions of code might have to be rewritten and retested later, potentially at greater expense
than if they had been anticipated during the initial development.
The basis of a fully scalable app is developed already. The Firestore database used allows for
large projects to be scaled. The system is designed in a manner which will allow for it to be
scaled to a larger cohort of users, if necessary. Any pieces of code which refine the scale of the
app, e.g. the county search can be rectified easily if necessary as it is implemented as part of a
view and therefore distinct from the model and controller.
The website (which will be discussed in chapter 6), is hosted professionally therefore it can
cope with all likely levels of traffic. It may also be deployed to a higher capacity service if
necessary for scaling. The necessary foundation of the website is already implemented so there
is scope for including additional features without undue effort.

 20

 2.4. Use Cases

Use cases describe the expected behaviour of users while carrying out a specific task. The
following use cases capture the system interactions of the Madra agus Cairde App.

Use Case #1 (Using the Website)
Goal: Person wants to look at/use the Madra agus Cairde Website

Actor: Any person
Steps:
1. Visit https://madraaguscairde.ie/ (or the non secure version – will switch to the secure
connection)
2. View website contents, i.e., look at app demonstration
3. Send contact form with any questions/concerns

Use Case #1 (Registration)

Goal: Person would like to register an account for Madra agus Cairde
Actor: Any person
Steps:
1. Register with email and password
2. Accept verification email
3. Login using email and password

Use Case #2 (Onboarding & User Set Up)
Goal: User wants to finish their initial account set up for Madra agus Cairde

Actor: Dog Owner, Dog Minder
Steps:
1. Choose account type
2. Fill in user details
3. Upload a photo of their dog and/or dog

Use Case #3 (Profile - Dog Minder)

Goal: Set up profile
Actor: Dog Minder
Steps:
1. Edit profile

 21

2. Fill in details
3. Upload avatar/more pictures

Use Case #4 (Dog Searching - Dog Minder)
Goal: Search for dogs on Madra agus Cairde

Actor: Dog Minder
Steps:
1. Swipe through dog cards
- Left to skip over the dog
- Right to send a friend request
Or
1. Search for dogs based on location
2. Choose county

3. Press search button

Use Case #5 (Map View - Dog Minder)
Goal: Use the map view to see dogs nearby/search on the map to check out different locations
Actor: Dog Minder
Steps:
1. Move around on map to see pinpoints nearby
2. Use the search box to zoom into a specified location, e.g., Limerick, to see the dogs near
there

Use Case #6 (Profile - Dog Owner)
Goal: Set up profile
Actor: Dog Owner
Steps:

1. Edit profile
2. Fill in details
3. Upload avatar/more pictures

Use Case #7 (Friend Requests - Dog Owner)
Goal: Accept/reject friend requests
Actor: Dog Owner
Steps:

 22

1. Click onto request
2. Scan the profile
3. Accept/reject request
4. If accepted, send a message

Use Case #8 (Messaging Service)
Goal: Send messages – including picture message
Actor: Dog Owner, Dog Minder
Steps:
1. Type message
2. Send message
3. Attach a picture message

 2.5. Data

A detailed description of the data required for this app is given elsewhere in this document, but
essentially the app needs basic information about the two types of person (Dog Owner and Dog
Minder), the dogs, and interactions between them (e.g. Friendships and Messages).

 2.6. Constraints

In developing this project, certain constraints limited what could be achieved.

Cost and resources:

A wide variety of development tools are available for producing iOS apps, most of which are
free. However, membership of the Apple Developer Programme is required for publishing
and sharing apps, as well as having access to advanced capabilities within the app. When
beginning this project, a membership to the iOS Developer University Program was acquired
through NUIG. This was expected to have the same capabilities as the professional version of
the Apple Developer Programme, the only difference being the price. Unfortunately,
however, it was discovered to be as limited as the free solo developer program. This
restricted the project greatly as advanced capabilities such as Push Notifications could not be
implemented, unless the USD 99 fee (annual) was paid. The decision was made to avoid this
cost and therefore this feature could not be implemented.

 23

Figure 20: Push notification permission denied

Scope:

This was a major constraint in terms of developing the application. It is easy to get carried
away and be overly ambitious with the features you want to implement; however, it is
arguably more important to focus on a smaller scope and do it well. This project was a
balancing act of developing new and exciting features to show off a more diverse skill set,
and ensuring the solid core requirements were done to a high standard. The scope did have to
be narrowed as it was discovered that some expectations had been too unrealistic. The list of
requirements was carefully ordered and prioritised in a way that anything cut from the project
would not negatively impact the project as a whole. It was also ensured that, where possible,
development techniques that would have been used to develop certain features that were cut,
were already visible elsewhere in the program. For example, the review section could not be
implemented as time would not allow for it, but the underlying logic would have been similar
to the message function because it links pairs of users together.

Quality:

Ensuring a high quality and standard, particularly in the UI and UX, was always going to be a
tight constraint. As this project required the full development of the app i.e., front and back
end, it was expected from the beginning that getting a quality product overall would be
tough. It was important to dedicate a good amount of time into the front end, however, this
would be worthless if the backend was completely neglected.

Risks:

Many risks were involved as this project was such a large undertaking, especially for one
person. Running out of time, being unable to get certain features working and neglecting
other modules/exams while trying to focus on getting this project done were the main risks
that needed to be kept in mind. The best way to minimise risk is through the use of good
project management strategies. If things are researched and planned out, then it will be

 24

harder to misjudge them. Obviously, some risks are unavoidable, so where possible, extra
time should be found in the timeline and allocated for contingency.

Time:

The main constraint this project faced was time. The workload of a final year student is very
heavy so finding enough time between assignments and lectures was nearly impossible. Time
was a big factor this year in particular with exams taking place after Christmas instead of
before, as the Christmas holidays could not be dedicated to FYP, it needed to be dedicated to
exam preparation instead.

 25

Chapter 3. Design

 3.1. Introduction

This section will describe the design approaches taken for this project. It will outline the
structure of the data, as well as the overall architecture of the project. It will provide a detailed
description of how the user experience/user interface evolved over the course of the project.

 3.2. Development Method

The development methodology used in a project is very important as it informs the developers
about how a project should be split up and worked on. While all methodologies have their
advantages and disadvantages, a project's nature should be adequately assessed before
choosing a method. With a sole developer working on this project, finding the right
development method suited to the type of work was essential. After investigating a number of
methods, it was decided that the best approach to this type of development, bearing in mind
the unpredictability of the work (due to inexperience), would be an agile approach. The agile
method involves developing solutions for an evolving list of requirements informed by end
user feedback. This seemed like the perfect approach for this project as it was going to be
heavily influenced by user testing. As there was only one developer, the decision was made to
avoid sprints and stick to a Test-Driven Development (TDD) type of approach where a single
feature would be worked on until it passed its tests. A feature would be verified through a
number of manual tests, including edge case testing, to ensure that it had been built solidly.
Soft deadlines were enforced, informed by earlier planning. Sticking to a loose timeline was
difficult but important as it would be very easy for feature creep to ruin the project.

 3.3. System Architecture

This app consists of an iOS application communicating with a cloud-based database, Google
Firestore. Before detailing the architecture, the design decisions around choosing the iOS
platform will be summarised.

Platform

Having used iOS devices and apps for a few years, it was felt that their familiarity
would make it easier to design and develop an app for that platform. iOS
encourages an intuitive user experience and overall, aesthetically pleasing
appearance. After doing some research and comparing iOS and Android, iOS
also seems to come out on top for a lot of reasons.
These include, but are not limited to:

• Apple is a closed ecosystem which allows developers a lot more control and
stability with their apps.

 26

• Most iPhone users stay up-to-date with iOS updates so it is also easier to
guess what most users will see/what my app will be able to do on their phones.

• There are themes and design principles adhered to by all iOS apps which
make them stand out and maintain their integrity and standards above those of
other operating systems’ apps.

For these reasons, the app was built and targeted for iOS.

Model-View-Controller (MVC)

A widely used software design pattern is Model-View-Controller (MVC). It separates three
aspects of the program to keep them easier to understand and permit replacement of one
without requiring changes to the other two.
Model is the internal representation of the data. View is the presentation layer; how
information is presented to the user or obtained from the user. Controller is the code
implementing the logic of the application, taking data from the model to pass to the view
after any required processing, and passing any changes to the data back to the model.
If one of these areas needs to be updated, it can be done independently, as long as the pattern
has been followed correctly. This offers greater flexibility in terms of device independence,
for example. Devices with different display types or different update mechanisms can be
accommodated with the same data model and controller. Similarly, different data stores can
be used with the same view and controller.
In Swift, it is relatively straightforward to implement MVC because it stores views as one
type of object, models as another and controllers as yet another class.

In the project, the storyboards hold the views. A combination of manual and programmatic
design was used to create the views.
The controllers are the Swift files that implement the logic of the app, such as the
The model of the project are files that are linked to the database, for example, the
FirebaseUser file.

Figure 21: MVC Diagram

 27

Firebase

Google Firebase was selected for hosting the application. Firebase offers a multitude of
services under the umbrella of a single platform. As well as hosting, it was used as the
database, file storage and authentication provider for the app.
Firebase keeps data in sync across client apps through real time listeners and
offers offline support for mobile and web so it can be used to build responsive
apps which work regardless of network latency or internet connectivity.
Firebase is a very convenient way to build a secure authentication system. It
provides support for email and password accounts, as well as social logins. It
deals with the necessary requirements for email and password accounts, such as
email verification and error handling, e.g. checking if a password is strong
enough.

Figure 22,23,24,25: Error Handling by Firebase

This application implemented the email and password account style login, and efforts were
made to implement the Google sign-in feature. However, the latter feature was not made to
work correctly by the deadline. Nevertheless, it still appears on the login screen as an example
of the social login style that could be implemented in future.

Firebase Storage was used to store images uploaded by users for their profiles. Users could
choose to upload pictures from their device if they allowed the necessary permissions, or they
could use their camera to take a photo in real time while using the app.

The following rule was added to Firebase Storage to add further protection by restricting
access to authenticated accounts.

Figure 26: Storage Rules for the Firebase Storage

 28

For the application’s database, the Cloud Firestore was selected to store necessary
information. Cloud Firestore was chosen over Firebase’s other database option, Realtime
Database, as early research seemed to suggest it was the more appropriate option of the two.
It was discovered too late into the project that the Realtime Database, had it been
implemented, would have made it possible for the map feature to work properly. Had better
investigation been done in the beginning, this flaw in decision making could have been
avoided. However, prior to beginning the project, the author had very little understanding of
mobile development and databases, and naivety clouded judgement. Hindsight is a great
teacher, and if future projects are to be undertaken, this mistake will not be made again.
The following rule, similar to the rule for the Storage, was added to the Cloud Firestore.

Figure 27: Database Rules for the Firebase Database

The way in which the data was stored in the database is detailed further in the next section.

 3.4. Data

This application is very dependent on a readily available database. It contains information
about the users, some of which is supplied directly by the user when they create their profile,
and the rest is gathered indirectly as a result of actions they take when using the app.
For example, when setting up their profile, a user is required to supply an email address, their
name and birthday. This information can be entered through various input fields, such as text
boxes and date pickers.
While using the app, the user may become friends with other users and exchange messages
with them. This automatically generates new documents in the database which contain
information related to the friend requests sent and accepted, i.e, Like contains information such
as the date and the users involved (e.g., who sent the friend request to who) and Friend contains
information about two users and their friendship, once they become friends.
The new documents also contain information related to conversations between friends, i.e.,
Messages contains information about the senders and contents of the message itself, Chat
Room indicates the id that matches both users in the conversation, Recent contains information
related to the most recent message sent, so it can be displayed before viewing the entire
conversation and Typing enables the app to show that the other user is actively typing a reply.

A clearer way to visualise the layout of the database is through this entity relationship diagram:

 29

Figure 28: Madra agus Cairde Entity Relationship Diagram

 30

Figure 29: Structure of Typing and User in the Database

Figure 30: Structure of Friend and Like in the Database

 31

Figure 31: Structure of Messages and Recent in the Database

According to the General Data Protection Regulation (GDPR), only information needed for the
app should be collected and maintained. Therefore, Madra agus Cairde made an effort to collect
as little information about the users as possible, to preserve their privacy.
While the surname is not being displayed to other users, it is a safety precaution to know
everyone’s true identity in case of safety concerns arising.
The first name and age of users is displayed on their profiles and it helps to personalise their
profiles and give other users enough information about them. The age of someone may play a
factor into whether a Dog Owner is happy to let them mind their dog or not. There is currently
no age restriction for the app, however, further down the line, if any safety concerns were to
arise, an age limit of either 16+ or 18+ would be implemented.

 32

 3.5. UX/UI

For applications in general, but mobile apps in particular, the user experience (UX) is a vital
component. The user interface (UI) is a fundamental part of the UX. Without a meaningful
user experience, an app will not be successful.
A particular operating system, like iOS, adopts its own particular style of user interaction which
needs to be respected by developers creating apps for it. Otherwise, the app will not “feel” right
and risks being rejected by users as difficult to use. Some of the style will arise automatically
by making use of operating system resources, while some app-specific operations need to be
implemented in a way consistent with the way other apps implement comparable features.

Prototyping:

Prototyping is a great tool for UX research. A variety of prototypes were developed for this
project, ranging from low fidelity to high fidelity.

Figure 32: Example of Low Fidelity Prototypes for Madra agus Cairde

The figure above depicts some of the low fidelity design prototypes that were among the hand
sketched drawings from the early stages of the project.
Initial concepts were inspired by apps of similar nature on websites such a Dribble.com or
Behance.com. Being able to browse through many aesthetically pleasing app concepts and
ideas there really helped inspire and stimulate imagination. Research was also done into other
apps which have two user account types, such as Airbnb (host and guest). In terms of design
and functionality, this research was important as it ensured that this app would work in a
logically sound way.
There was a lot of toying around with the sketches until more solid ideas formed. Then, these
we transferred to higher-fidelity prototypes, using helpful technologies such as Miro, for really
minimal and grey scaled concepts.

 33

Figure 33: Grey Scale Wireframes created in Miro

When the idea of colour was introduced into the prototypes, Miro was switched out for Adobe
XD as Adobe XD is more heavily focused on colour and more advanced prototyping
components.

Figure 34: High Fidelity Prototypes Designed in Adobe XD

Using an Agile methodology to develop really helped with the transition from the hand drawn
sketches (Figure 32) to the very basic grey scale prototypes (Figure 33), to the coloured
prototypes (Figure 34) to what the end result is (Figure 35 & 36), because of the focus it puts
on user feedback and input.

 34

Figure 35: UI of Home screen for Dog Minder Figure 36: UI of Home screen for Dog Owner

Figure 37: Example of how Adobe XD was used for making graphical components

 35

User Testing
User Testing is a very important aspect of app development. It gives invaluable feedback which
can be used when iterating upon a given design to improve. It can help ensure the effectiveness
of a certain implementation and ensure there is a common understanding between developer
and users. As a developer, oftentimes it is hard to see the pitfalls of something you have built
because it may seem so straightforward to you. It is vital to get other people’s perspectives to
ensure that the design is as well thought out as you believe it to be.

User testing was a fundamental necessity when it came to building this project. User testing
was first implemented in the early days of this project, when trying to scope out the idea for the
project. A huge amount of feedback from friends and family was used, to gauge how good of
an idea this was.
User testing was then used on the range of prototypes that were mentioned above. This feedback
was accepted and translated into improvements in the design and flow of the app. User testing
was the best way to ensure that the end product would be stakeholder feedback focused, because
the user testers that were used are all perfect candidates for the app.

Design Choices

As much as possible, when a design choice had to be made, it was checked with a panel of
potential app users. This feedback proved invaluable in coming up with an attractive design.
The appearance of an app needs to be distinct enough to make it stand out, but similar enough
to other apps to make new users feel comfortable. One way to achieve this is by using particular
colour palettes. There are basic design rules which apply to colour selection.
White was picked as the background colour because it provides contrast with other visual
features. This makes elements stand out for all users, but particularly those with poor vision,
including colour-blindness.
The main thematic colour used in the app is a shade of green. This was chosen because it
mirrors the outdoor nature of the app and because it was liked by most of the testing panel. The
particular shade was chosen based on a range of options shown to the panel.

The layout of each screen was kept as simple as possible, to avoid overloading the users with
information and to keep it usable by people with limited vision problems.

Graphic Elements

CANVA pro was accessed for the duration of the project. It was extremely useful for the many
assets it has.

Photoshop:
Photoshop was used for a variety of reasons during this final year project. The main reason for
using it was for drawing the three pieces of art that are used throughout the app.

 36

Figure 38: Dog walker with dog on lead (Drawn by Jennifer Murray)

Figure 39: Two dogs playing (Drawn by Jennifer Murray)

3 Figure 40: Dog (Drawn by Jennifer Murray)

 37

An iPad and Apple pencil were borrowed from a friend for a week to draw these pictures. Any
extra editing needed over the course of the development process (e.g., changing the colour of
the dog’s collar) was done in Photoshop Elements on a laptop. Being able to personally draw
these images for the app was important as it would mean that the artwork would be unique and
royalty free. It also ensures a cohesive aesthetic throughout the app. Had there been more time,
more images similar to the above would have been drawn and integrated into the app.

These three images are displayed on the onboarding screens as well as the home page of the
app.

Photoshop was also used to generate the favicon.ico for the website. (This is the icon shown by
a web browser, usually on the tab associated with the site.)

An app icon generator was used to turn one of the art pieces drawn for the project into the app
icon that appears on a user’s device.

Figure 41: Example of how Adobe XD was used for making graphical components

Ease of use features

Key elements present in applications with a good user experience are what are known as
‘ease-of-use’ features. These features aim to remove impediments which might detract from
the user experience. Operations should be as smooth as possible while having the required
effect. This application strove to implement many accessible and easy to use features to help
encourage a good user experience among users.

• Keyboard Types:

Keyboards may seem like a very trivial aspect of UX design. However, they are an
extremely important feature for ensuring the ease and satisfaction of a user’s experience
with an application. Madra agus Cairde ensures that the correct keyboard for a specific
need is triggered at the right time. For example, when the user taps on the email text field
when they wish to register/login, the keyboard pops up immediately, and the keyboard is
set to the ‘email’ type, i.e., it has the @ symbol in an easy and accessible place for the
user. As soon as the user taps out of a text field or a button to continue, the keyboard
immediately disappears. This kind of detail orientation is widespread throughout the app.

 38

• Input Fields:

Another seemingly trivial aspect of UX design is the area of input fields, such as text
fields. It may seem like something small, but offering a user a selection of options to
choose from instead of having to type unnecessarily greatly improves user experience.
This was found to be true in the number of user tests carried out for this project. A
common answer among user testers was that they are often ‘lazy’ when signing up to
apps and do not like filling in a huge amount of writing. This was taken on board when
implementing the user details set up pages. Any answer that could be made into a
selection was made so, e.g., the size of a dog. This sentiment also carried through to date
pickers. The users tested preferred the look and use of the date picker, compared to
having to type in their date of birth from scratch.

Obtaining the user’s actual date of birth instead of just their age was also very important for
data accuracy too, as a static age will become outdated very quickly which will require
unnecessary extra effort from the user to rectify.

 39

Chapter 4. Implementation

 4.1. Introduction

To complete this project, an iOS mobile application must be developed. This project has a
number of different aspects related to it and therefore will require a number of different
components to be implemented. Implementation should fulfil the design specifications while
matching the requirements, both functional and non-functional, which were mentioned in
chapter 2. This chapter will outline the development tools which were used in the
implementation of this app, as well as any necessary development considerations that needed
to be made.

 4.2. Development Tools

iOS

At the start of this project, with no prior knowledge of iOS development, suitable tools had to
be chosen. For the language to use, the principal choice was between Swift and Objective C,
although other languages could have been used, including high level ones like Delphi
(Pascal). Investigation was done and Objective C appeared to be very similar to C++, which
is a notoriously difficult language to read. Swift, on the other hand, appeared to more closely
resemble the English language, and therefore closer to Java/JavaScript etc.

Being able to easily understand the code that would be written, preserving its maintainability,
was considered very important. Swift seemed like a good choice but before final decisions
were made, more research was carried out to make sure development would not be hindered
by this choice. Luckily, in pretty much every aspect, Swift came up as the preferred language
over Objective C; it is faster and requires a smaller amount of code.

Another early decision made was to use UIKit. Even after choosing Swift, there are options
when it comes to developing an app. UIKit can be used. This is a built-in framework in iOS
which implements important UI elements such as views and controls.

The alternative would have been SwiftUI, which is essentially HTML and CSS. However,
previous experience with CSS (on work placement) had proved frustrating, particularly in
positioning controls exactly where they needed to be. In an attempt to avoid this, UIKit’s
drag-and-drop approach seemed preferable.

Later on, it emerged that UIKit does have some drawbacks. Auto layout constraints proved to
be quite challenging. Their job is to ensure that elements of the UI always stay in the correct
position, even when switching between different iPhone models (different screen
resolutions). It took a long time to get used to it and be able to correctly position elements
when developing new pages.

UIKit is also not ideal for developing complex and aesthetically pleasing user interfaces.
Unfortunately, all the tutorials demonstrating how to get a clean and pretty looking app tend

 40

to use SwiftUI instead of UIKit. Therefore, it made the later stages of development a lot more
challenging as UIKit was not sufficiently flexible for the desired designs. Were the final year
project to be restarted, it would be worthwhile learning SwiftUI and using that to define the
app’s visual elements.

As UIKit was the layout tool selected, it is worth noting some observations on its use. When
starting an Xcode project from scratch, to use UIKit, the ‘storyboard’ option is picked so that
the project opens with the necessary support files.

The storyboard itself is where the UI is implemented. There are many elements and tools
offered by Xcode when designing the screens of the app. They allow elements to be dragged
and dropped onto the storyboard to give a representation of how the app will look.

Dragging and dropping is not the only approach possible; in some cases it makes more sense
to add items programmatically. In this app, examples are the search bar and zoom slider on
the map view.

Figure 42: View Controller of Map View Figure 43: Actual UI of Map View

Using both approaches was worthwhile for the knowledge and experience.

CocoaPods

 41

The project utilises the CocoaPods tool. CocoaPods makes project management easier by
centralising the management of third-party SDKs providing useful additions to Swift (and
Objective-C) projects.

For the project, the following CocoaPods were used:

SKPhotoBrowse

This library allowed a user to view photos as a gallery. An example of it being used in the app
is demonstrated in the figure below.

Figure 44: Photo Browser Display for Dog Minder Figure 45: Photo Browser Display for Dog Owner

Firebase:

Core, Auth, Firestore, Storage, Messaging
A number of Firebase pods were required for the full use of Firebase in the application.

Gallery

The Gallery pod was utilised in the app whenever a user was uploading a photo for their profile.
Gallery has a variety of different uses. The way it was implemented in this project was to allow
a user to upload one picture as their avatar, a limit of up to 10 photos could be uploaded for the
user’s profile or the user had the option to use their camera to take a photo. The option to
upload a picture is displayed by an alert controller that pops up after the camera button was
pressed.

 42

NVActivityIndicatorView/AppExtension

This library was used for displaying loading animations throughout the app, whenever the app
was waiting on information from the database.

ProgressHUD

This was an incredibly helpful library to use during the development of this project. These
progress indicators were used at various stages of the app, whenever information needed to be
relayed to the user relating to progress.

Shuffle-iOS

This library was used in a video tutorial that was followed. The idea of a card swipe for users
was popularised by Tinder and related apps. It seemed like this may be a good way to swipe
through the dogs in the app and it was an alternative to the location-based search that was
already implemented.

Figure 46: Alert controller of
Upload options

Figure 47: Multiple Photo
Selection option

Figure 48: Camera Option

 43

 4.3. Development Considerations

Modern operating systems like iOS and Android are privacy aware, which means that users
must grant explicit permission for access to particular resources. Applications which want to
use these resources need to request each permission explicitly and ideally supply a reason for
seeking permission. Providing a reason for the request is called “permission priming” and
makes it more likely that the user will grant permission.

This project was required to seek permission for several resources; the media library, the
camera, and the device location.

The application required a user to upload media for their profile picture, which meant access
to their camera roll and camera was needed. This request is displayed to the user by the
operating system the first time the user attempts to upload a picture. This request can be
accepted or rejected; however, if it is rejected and the user wishes to upload a picture in
future, the permission must be granted from the operating system settings.
For the map feature to display the user’s current location, explicit permission must be
granted. This is requested by the app the first time the user clicks onto the map page. They
have the option to either decline, allow only once or allow while using the app. If a user
chooses to decline, then the location feature can not be used and the map of Ireland is just
displayed instead of their precise location. If the user chooses to allow once, then the feature
will work correctly, i.e., showing the user's current location. However, the next time the user
logs into the app, it will not show their precise location again. If a user chooses the ‘allow
while using app’ option, another alert is sent to the user. This prompt asks if they want to
change it to allow always or keep to just while using the app.

Regardless of what option is chosen by the user, my app will remember their response and
the alert is not shown to the user again. If a user changes their mind in future and wants to
change the permission settings they originally gave, then changes can be made in the privacy
part of their iPhone settings.

For the app to use device cameras, the NSCameraUsageDescription key was included in the
app's Info.plist file.

For the app to have access to a devices media library, the NSPhotoLibraryUsageDescription
key was also added to the Info.plist file.

For the user’s current location, NSLocationAlwaysUsageDescription was also added.

For each key, the user is provided with a clear message in which an explanation is given as to
why the app would like to have access to whichever permission it is requesting they grant the
app access to.

 44

Figure 49: Info.plist which displays permission requests

Figure 50: Example of permission request from the OS

 45

Chapter 5. Code Quality

 5.1. Introduction

The quality of code is a very important factor when it comes to software development
projects. Having a high quality of code will make the project more sustainable and
maintainable. It minimises a build-up of technical debt and makes continuous development in
the project much easier. This chapter will detail how a good standard of code was maintained
during this project. The use of testing, both user and system, as well as continuous
integration/continuous development (CI/CD) will also be discussed.

 5.2. User Testing

User testing is the process of evaluating the design and user experience of a system. This is
done by getting participants to try it out. The people involved in user tests must be separate
from those involved in the development. The developers can of course have an opinion and
be involved in their own personal testing of the application, however, for proper user testing,
it is important to get unbiased opinions. User testing requires people to be able to speak their
mind, so that the results can be accurate and reliable. This is important as results from user
tests are often used as justification for certain design choices.
User testing has been implemented at every stage of the development process of this app.
User feedback from these tests was what paved the path for the design and flow of this app.
This has already been described in the Design chapter (chapter 3). Once the main
development work of the app had been completed, user testing was conducted to see how a
user would respond to the app as a whole, not just a subsection of it, e.g a single view or
colour scheme.
Time was set aside in the project management plan to allow for changes to be implemented
based on the final user testing results. The end-stage user testing was important to gain an
understanding of the overall experience that the users feel.
Alternative arrangements had to be made for most user tests (bar the several people who were
living in the same house as the developer). There was a relocation during the development
process, which did have the advantage of being able to do in-person tests with more users.
Users who took part were asked to speak aloud as they navigated through the app. They
shared their opinions about certain choices and explained their likes and dislikes. They were
asked to describe the overall feel of the app and what improvements (if any) they would like
made.
The alternative tests that were held among people who were not in the developer’s bubble,
were captured through Zoom. As they did not have access to the app, the developer came up
with another way to test them, which would provide invaluable feedback. These users were
specifically testing the workflow of the app. Meaning, during testing, a question would be
asked in relation to specific buttons or symbols. The applications workflow and design could
be deemed successful if the user tests could prove that every symbol could be correctly
identified and if every feature or control is correctly interpreted.

 46

A lot of very useful information was gained during the user testing of the app. These results
were taken on board and greatly contributed to the finished product. User testing helped ensure
that the design was stakeholder feedback focused.

 5.3. System Testing

System testing is the process of searching for software errors or bugs. The goal of system
testing is to actively search for bugs so solutions to fix them can be put in place. System
testing can be achieved in a number of ways, for example, through scripts, but another good
way to discover bugs is to manually use the app, testing normal features and edge cases, to
see if any bugs can be noticed. System testing really enhances the quality of a system, as
bugs that may have otherwise been left unnoticed can be noted and fixed.
A large number of system tests were done on a regular basis, on new features and in some
cases, the app as a whole was testing to make sure no new bugs were introduced. Any errors
or bugs were noted by the author and efforts to resolve these bugs were taken.
The table below depicts the type of bugs that were caught during system testing. The status of
the bugs is denoted by their key (the legend describes the meaning of each key).

The majority of bugs were managed to be resolved by the deadline, however some may have
been more complicated and time consuming to resolve properly, so a work around was put in
place. This means that a course of action to stop a certain bug from happening was put in
place, however this solution is not the best one and could be improved, which the author
admits. Some errors represented features that were incomplete and this is why they were left
unfixed.

K
e
y

Fixed

Work-
aroun
d
made

Not
fixed

Issue S
t
a

 47

t
u
s

Login Page

Google Sign in not hooked up
properly

Home Page

Display dog picture on home
page not working

Not going to correct home
screen after login

Buttons to pages does not
change the tab bar item to the
correct one (i.e., clicking map
view button will still show that
you are on ‘home’ on the tab
bar)

Not displaying today's date
correctly

Tab Bar

Tab bar items are not desired
colour

Chat View

Tab bar items are not desired
colour

Back button not available from
the chat screen

Card View Page

Empty View when all cards are
swiped

Cannot click into profile from
card

Dog Profile Page

 48

Age not displaying properly

Showing age of the owner, not
the dog

Asks for location when
uploading a picture

Search Page

Dogs not showing when search
button is pressed

Where field for location not
working

Map View

Display dogs on map view

Polyline not being drawn but
pinpoint is appearing

Website

Not going to the secure part of
the website

Footer not staying at the
bottom of the website

Misc

If there's no picture uploaded
then it looks bad – needs a
placeholder picture

Keyboard not showing
correctly

 49

 5.4. Continuous Integration/Testing

Continuous Integration is a widespread practice in software development. It is a practice used
when programmers are developing and integrating code into a repository. It ensures a
consistent working version is always maintained on the main branch in the repository.

To ensure broken code does not slip through and cause the main branch of code to fail, any
attempts at integration are verified by tests and builds that are automated upon any pull
requests (PR).
The importance of continuous integration and development was learned while on professional
placement in third year. It is vital – particularly in cases where multiple people are working
on the same code – that automated testing and builds occur to ensure the integrity of the main
branch.

To implement continuous integration into the project, GitHub actions was used to set up
an automated test that must past in order for a PR to be merged. Branch rules were also set
up to make it impossible for direct pushes to main. Therefore, to integrate new code onto the
main branch, a separate branch must be pushed up and it must pass the automated test (i.e.,
have no failures on it).

To set this up, the following steps were taken:

● Created a YAML file to define the environment for the test to run in, the test
pre build steps and the test build steps.
● Configured the project with a unit test bundle and set up a new target.
● Added the workflow on GitHub actions.

While doing this, there were several errors occurring. It took several iterations to get
the YAML file correct. Available simulators had to be searched through to find the correct
one so it could be specified in the YAML file. Also, an extra step had to be added to
download the device pre-set up.

 50

Figure 51: Swift.yml file from project, for CI/CD

Figure 52: Screenshot of Tests Passing on branches

Figure 53: Example of Job Workspace in GitHub actions

 51

However, unfortunately a number of large changes were made to the application, for
example, the addition of new CocoaPods. This led to extremely long durations of these tests
and this used up the private repository limit that GitHub sets. This means that the unit test no
longer runs on new PRs .

Figure 54: Workspace tests in GitHub actions that have passed

Figure 55: Email about GitHub usage being exceeded

 52

Chapter 6. Website

 6.1. Introduction

A website was created to accompany the app. The website does not have the same
functionality as the app; however, it has all the set up done so that it could potentially be
developed further in the future. For the scope of this project, it was kept simple but effective
– to demonstrate a variety of skills acquired.

 6.2. Hosting

To begin, the domain madraaguscairde.ie was registered through LetsHost, with its
nameservers set to those of an existing hosting account. At the backend, the cPanel interface
was used to add the domain to the hosting account, which set up the folders for the web
server and added the domain to the Domain Name System (DNS). Via cPanel, a file transfer
protocol (FTP) account was created. The FTP account credentials were added to WinSCP on
the development computer to transfer files to the web server.

The DNS configuration was checked by looking the name up on the specified name servers
(NS5.DNSIRELAND.COM, NS6.DNSIRELAND.COM, NS7.DNSIRELAND.IE), then
confirmed by entering the domain name into a web browser.

Figure 56: Login for WinSCP

Figure 57: Files from Madra agus Cairde on WinSCP

 53

 6.3. SSL Certificate

When setting up madraaguscairde.ie, security was a key concern. To provide a trustworthy
connection, an SSL certificate was created for the domain by Let’s Encrypt. The SSL
certificate ensures users can connect securely to visit the website. This means that no
malicious website can fraudulently pretend to be madraaguscairde.ie. SSL certificates are a
way of proving that the connection is to the right site. It works by getting the certificate from
the website and ensuring that it matches the name of the requested website. SSL certificates
also allow web traffic to be encrypted to avoid eavesdropping. Pages on the website contain
scripts to redirect browsers to the secure (HTTPS) version if the plain (HTTP) version is
requested.

Figure 58: Domain for Madra agus Cairde from
Lets Host

Figure 59: Namesevers for managing Madra
agus Cairde

Figure 60: Madra agus Cairde Domain

Figure 61: Details of SSL certificates for Madra agus Cairde

 54

 6.4. User Interface

The importance of a good user interface (and UX) was described in the Design chapter
(Chapter 3). Although the website does not have the same functionality of the app, it was felt
necessary that it be as closely related to the app as possible, in terms of design. It needed to
be obvious that they were aspect of the same brand, Madra & Cairde. This meant that when it
came time to design the UI of the website, elements that were used to design the application’s
UI would similarly be implemented for the website.

The Madra agus Cairde logo is emphasised at the top of the website, which helps promote the
brand design and bridge the gap between the website and the app. The same colour scheme
was used which meant the website has the same advantages for user accessibility, particularly
those with poor vision. The artwork that was drawn for the application also makes an
appearance on the website, so ensure a cohesive and aesthetic appearance of the UI.

The UI of the website was based on an a YouTube tutorial [6] which demonstrated the
creation of a website. This tutorial was closely followed as the look of the website was
exactly what had been envisioned for the site. It was adapted to suit the specific needs that the
Madra agus Cairde website needed. The website makes use of several useful web
development libraries, including Bootstrap, which contribute greatly to the overall user
experience.

To further adapt the website, to make it more unique, extra desirable features were added.
The carousel on the website's second page was added to the website when the application
development part of the project was complete. This seemed like a great way to make the
website more unique and is a great way of demoing the app, seeing as it has not been
published on the App store.

 55

In order to access the demo (or preview) of the app on the website, the ‘View App’ button
should be clicked on the main screen. Screenshots from the app are organised into a carousel
that can be scrolled through to view all the sample screens. This carousel was adapted from a
tutorial found online [8].

Figure 62, 63, 64: Madra agus Cairde index.html

Figure 65: Madra agus Cairde demo.html

 56

If the mouse hovers over an image, the image is enlarged and made to contrast with the other
images, to highlight that specific one. The title of the image can be read; this describes the
image briefly e.g., ‘Dog Minder Home Page’ so it is clear which page it represents in the app.

The favicon was kept in line with the signature Madra agus Cairde logo.

 6.5. Contact Form

As an extra feature, a support email account was set up for the domain
(support@madraaguscairde.ie), linked to the author’s personal gmail account. With this
support email address created, a contact form could be added to the website. In theory, it can
be used by anyone who has questions about Madra agus Cairde. The contact form was a
good way to add an interactive section to the website to demonstrate more web development
skills. The contact form was based on an online tutorial [7]. An HTML contact form using
the Bootstrap 4 framework uses AJAX to send contact details to a PHP script on the server.
The benefit of using AJAX is that the whole page does not need to be reloaded when a person
submits the contact form. The outline of the PHP file provided in the tutorial needed to be
customised to work with the particular contact form created for the website. It needed to be
hooked up to the support email and include the various form fields. There were several
options for sending an email with PHP, such as PHPMailer, but the regular PHP mail()
function worked adequately. After some trial and error, the contact form worked as desired.

Figure 66: Demo of the Carousel

Figure 67: Madra agus Cairde fav.ico

 57

 6.6. CAPTCHA

However, shortly after setting up the support email, it began to receive spam emails.

Figure 68: Contact form on Madra agus Cairde website

Figure 69: Response from the contact form

 58

The emails kept arriving and proved an annoyance and distraction. There are spam bots
which crawl the web to find contact forms like the one on this website and fill them with
spam. The most common type of spam received via this address related to crypto-currencies.
After researching possible ways to deal with spam, the most promising approach appeared to
be to add a CAPTCHA to the contact form.

Figure 70: Spam email example

Figure 71: Spam email example

 59

CAPTCHA stands for ‘Completely Automated Public Turing test to tell Computers and
Humans Apart’. It is basically an extra form of security and verification to ensure that a
visitor to a website is probably not a robot.

Adding this to the website was done by following example code [9] but a few problems were
encountered as some things did not work as expected.

Google reCAPTCHA has two ways to use it; v2 and v3, with v2 being considered the most
suitable for this project. Google reCAPTCHA v3 does not actually challenge people on
whether they are a robot, but just assesses various parameters, such as movement on the
website, to give a score based on how likely the user is to be a human. Having a more explicit
CAPTCHA was felt to be a better deterrent to bots filling in the form. For human users, a
simple checkbox is normally all that is offered, but if there is doubt, it will offer a picture-
challenge, as seen below.

To use the Google reCAPTCHA service, a Google Developer account had to be created.
Then a pair of keys (one public, one secret) could be created for madraaguscairde.ie. Adding
the CAPTCHA to the HTML contact form was done simply by including a Google
JavaScript file and adding a <div> element with a particular class name and the public key.

Figure 72: Google reCAPTCHA implemented

Figure 73: reCAPTCHA picture test

 60

<div class="g-recaptcha col-md-6" data-
sitekey="6LfqPv8aAAAAAChsjFLz7b3hiCdOpxqhT5FSpYSe"></div>

This was enough on the client side to get it to appear, and the rest of the work was done
server side. While the public key can be accessed by anyone looking at the page source, the
secret key is only used in the server code, to verify the CAPTCHA’s authenticity with
Google.
A few problems were found when trying to implement the CAPTCHA. First, the CAPTCHA
was never being verified. This turned out to be because the PHP function ‘file_get_contents’
was being used to get the JSON document from Google containing CAPTCHA status. After
some investigation, it became apparent that by default that function does not work on URLs,
only local files. However, the Google documentation says that calls to the reCAPTCHA API
need to use the POST method, not GET which is what ‘file_get_contents’ uses. The problem
was resolved by using ‘cURL’ instead.

Now, the contact form requires the user to satisfy Google that it is not a robot, otherwise the
form will not send an email.

(Secret key is blacked out as a safety measure – as learned in Computer Security module)

On the Google Developer control panel for the reCAPTCHA settings, there is a slider to
adjust the security preference between least intrusive and most secure. This site now uses the
most secure one because it results in the fewest spam emails.

Figure 74: PHP code for sending emails after CAPTCHA verification

 61

 Figure 75: Security preference setting for reCAPTCHA

 62

Chapter 7. Conclusion

 7.1. Challenges

This project was a very big undertaking and it did present a number of challenges along the
way, some of which were more complicated than others. A number of solutions were
implemented to combat several of these challenges. However, other challenges were too big
to tackle in the available time frame, and these will be detailed below. Overall, a lesson was
learned from each of the challenges and a lot could be avoided in future if a similar project
were to be undertaken.

COVID-19

As with everyone’s Final Year Project, COVID-19 did present as an enormous challenge
during the development of this project. Firstly, the lack of study space in college made it
quite challenging to be able to do FYP work. It took several weeks to organise a proper desk
and work-from-home set up, which definitely hindered progress on FYP from the beginning.
It also meant that the in-person support like DISC was not as accessible as it would have been
had students been on campus. Lastly, the frequent lengthy lock-downs meant it was hard to
ask friends or family for feedback. Luckily, housemates were more than willing to be user
testers and Zoom became useful for getting feedback from other friends.

Testing

Due to COVID-19 and the continuous lockdowns over the semester, it was quite challenging
to arrange thorough user testing. A lot of acceptance testing therefore had to be run by the
author, to ensure any logical changes to the code worked as expected. Where possible, Zoom
meetings were hosted and user testing was done this way. It was not ideal, but the only way
around it in the midst of a pandemic.

New Environment
It is difficult to pinpoint a principal reason leading to insufficient time to complete all of the
desired features. Perhaps it was overly ambitious to plan for so many features in a project while
working in a completely new environment. There was a very difficult learning curve when it
came to developing in Xcode. A lot of things that are almost second nature now were
completely new at first and took months to comprehend. One thing that has still not gotten any
easier with practice is using the auto-layout constraints for view controllers. It makes it very
difficult to set items in the precise location the item is needed.

 63

Database:
Originally, when researching what databases to use, it seemed to be suggested that Cloud
Firestore was the better alternative to the Realtime Database. However, it was discovered too
late that the map feature that was planned to be implemented, needed the Realtime Database to
work. GeoFire is a library that allows the storage and querying of keys based on geographic
location. This would have been exactly what was needed to implement the map feature which
would work by showing the Dog Minder dogs in their area. GeoFire uses Realtime Database
not Cloud Firestore, so it was not possible to do this feature. A prototype version of this was
made for the app for demo purposes. For this, a set of ‘dummy’ dogs were created and their
locations represented by pinpoints on the map.

Technical Difficulties:

Unfortunately, technical difficulties accounted for a large number of the challenges faced
during this project. Xcode is very demanding in terms of computer resources and energy and
would often crash out and be unusable for hours. iOS development with Xcode and Swift
requires use of an Apple Mac. The MacBook Pro available was not a very advanced model as
it was purchased on student resources with just one year of college left in mind. Therefore,
the more powerful (and expensive) versions were not an option. This was by far the greatest
impediment to development as the only way to resolve the issue was to switch the laptop off
for hours, which clearly hindered work on this project, and other college work which needed
to be done.

Below are just two (of several) types of errors that would often occur.

Figure 76, 77: Auto Layout Constraints in Xcode

 64

Often, if an error appeared and seemed untraceable after investigation, the only way to solve
it was to delete the ‘derived data’ folder. A clean build was needed after this was done and
could take several hours, depending on how slow the computer was working at the time. This
proved a great nuisance, not to mention the days wasted when first trying to track down the
cause of the error.

These technical difficulties were unavoidable with the computer used so no real lesson could
have been learned from this challenge.

 7.2. Lessons Learned

This project has been a great learning experience. The lessons learned have inspired
confidence in working on any similar future project. Even if it is not in the same realm as the
scope of this project, many lessons learned are universally applicable, such as user testing and
project management. Also, having to learn new tools from scratch will be less daunting after
doing so much of that here.

Technical Skills

iOS mobile development was a completely new territory when this project began. Technical
skills and knowledge have come a long way. Competency in Swift has been gained as well as
familiarity and comfort with XCode. Also, debugging skills have majorly improved as they
proved necessary for fixing bugs experienced during development.

The skills needed for publishing and securing a website were also acquired. Bootstrap
framework was made use of to develop a responsive webpage. A good understanding of
AJAX was gained for adding interactive elements to the web page. PHP was learned and used
for server side scripts.

Figure 78: Warning that simulator was unable to boot Figure 79: Warning of a Force Quit in Xcode

 65

Overall, a deeper knowledge of the inner workings of mobile applications and how to
develop them, as well as what it takes to build and publish a website was gained.

User Testing

Throughout the course of this project, many user tests were held. These proved invaluable in
improving user experience. It was necessary to develop the ability to interpret results from
these tests and translate them into improvements to the design and code. User testing
provided feedback which led to a greater understanding of what makes a good user
experience.

Project Management

The importance of good project management was made clear by this project. This project
highlighted the importance of sticking to good project management strategies and
demonstrated how they benefit projects as a whole. Project management demonstrated that
the scope of the project needed to be limited in order to be able to achieve the deadlines. It
still ensured a viable project was left at the end because proper prioritisation of tasks was
done. Using project management tools such as Trello became second nature after growing
familiar with them and they became essential elements of the project.

Design Prototyping

Useful tools such as Adobe XD and Miro were used for UX research. The need for good
design prototyping became apparent early on as it was necessary to have a good idea of what
the screens would look like when developing the basis for the app. Prototyping helps ensure
that the functional requirements of the app will be met. It is also a great way to trial the
positions of buttons and colour schemes until a pleasing and functional design is found. It is
much easier and less time consuming to test these ideas out on a program used for
prototyping compared to building one from scratch each time in Xcode.

 7.3. Future Work

Madra agus Cairde is an exciting new idea which could lead to an extremely viable product,
if it were to go to market. Through the designing and implementing of Madra agus Cairde, a
lot of lessons have been learned and these have fuelled the way forward. There are a number
of different avenues which would be good to expand on which will be outlined next.

Android:

Originally the iOS platform was chosen for Madra agus Cairde. However, the next logical
step, if Madra agus Cairde was going to expand, would be to develop it out to be used on
Android devices as well.

Website:

A lot of the groundwork for the website has already been done, including the hosting and the
SSL certificates. As of now, it is just a simple set up with information about the app and a
contact form. Eventually, the plan would be to add the same functionality from the app onto
the website. This would make Madra agus Cairde more universal and accessible, as older

 66

generations tend to find websites easier to use than apps. It would expand the reach of Madra
agus Cairde.

Unit Tests:

A unit test is already set up to ensure failing code cannot be merged onto the main branch.
However, when there is time in the future, to ensure the integrity of the code more tests
would need to be implemented to test specific functionality throughout the app.

GeoFire (Realtime Database):
As mentioned in the Challenges section, GeoFire would be an ideal way of implementing the
Map Feature correctly. If the database that is supporting the app could be switched over to a
Realtime Database in future, then the GeoFire library could be utilised and the feature
implemented correctly.

International:

The target audience for this app was Ireland. The app only allows for counties on the island
of Ireland to be set as the location. This would be an area that would be very beneficial to
extend. If the app was scaled in this way it would allow the app to be used internationally.

Social Logins:
Social login is a software design pattern that enables users to authenticate themselves on
different applications and sites by linking through a social networking site rather than
inputting a separate ID and password for each application/website.
Having a social login extension on the Madra & Cairde App/ website would benefit the app
greatly. Along with enhancing the user’s experience on the site, it would also encourage users
to engage more. Another benefit to the social login extension being included on Madra
& Cairde is that it would allow marketers to gather more accurate information, including
age, relationship status and interests.
An attempt at implementing a Google login to app was made, although the attempt
was unsuccessful, and time did not allow for further attempts.

Review Section:

Another feature that should be considered in future for the app is a review
section. Having originally planned for it to be part of the app, it unfortunately had to be cut
from the feature list due to lack of time availability.
Online reviews offer many benefits, including free advertising, improved search engine
results and constructive criticism and suggestions.

 7.4. Final Conclusion

This report aimed to outline the project and describe how it was planned and executed. It
provides a summary of what was achieved in the time available and details of the main fruits
of the effort.

 67

Valuable insights into the software development process were learned. In managing the
process, the need for constantly revising achievable goals was realised.

The result is an app and basic website with the potential to be developed further into a real
product. Developing it was time well spent, despite the occasional frustration and
disappointment.

 68

Appendix

GitHub Repository:
- Madra agus Cairde App: https://github.com/jennyy13/FYPUI

- Madra agus Cairde Website: https://github.com/jennyy13/WebsiteMAC/settings

Security key was accidentally uploaded to GitHub so these repositories cannot be made
public as it can still be seen as deleted.

File have been uploaded to a Google Drive instead

Google Drive Link:

https://drive.google.com/drive/folders/1gSPYOqPdaV0hc2dxRmQ-
eMB0jqpwXyA0?usp=sharing

Trello:
- FYP Board:
https://trello.com/invite/b/QEMReL2C/04713d7b8b77eaa4770276396b19ec8a/fyp-to-do

Website:
- https://madraaguscairde.ie/

 69

References

[1] Dorfman MSW, Ph.D., D., 2020. The Health Benefits Of Pet Love. [online] Psychology
Today. Available at: <The Health Benefits of Pet Love> [Accessed 29 November 2020].

[2]Sharma, Ashish et al, 2006. Exercise for Mental Health. [online] The Primary Care
Companion to the
Journal of Clinical Psychiatry. Available at: <Exercise Improves Mental Health> [Accessed 29
November 2020]

[3] Bailey, L., 2020. Coping With Separation Anxiety In Dogs During COVID-19. [online]
Psychology Today. Available at: <Coping With Separation Anxiety in Dogs During
COVID-19> [Accessed 29 November 2020].

[4] Run Those Dogs. 2020. How Exercise Improves Pet Behavior - Run Those Dogs. [online]
Available at: <How Exercise Improves Pet Behavior> [Accessed 29 November 2020].

[5] Tilda.tcd.ie. 2020. [online] Available at: <Report on Pet Ownership>[Accessed 29
November 2020].

Additional Resources

Website Resources:

[6] Foundations of the Website:
https://www.youtube.com/watch?v=RTIueV7zERY&t=2786s

[7] Contact Form: https://bootstrapious.com/p/how-to-build-a-working-bootstrap-contact-
form

[8] Carousel: https://codepen.io/joshhunt/pen/LVQZRa

[9] reCAPTCHA tutorial: https://codeforgeek.com/google-recaptcha-tutorial/

Google reCAPTCHA: https://developers.google.com/recaptcha

Application Resources:

A lot of the learning and basis for the app was learned from the following videos:
- https://www.udemy.com/course/ios14-tinder-like-dating-application-

with-firebase-swift/

 70

- https://www.udemy.com/course/programmatic-uber-clone-swift-firebase-

no-storyboards/

- https://www.udemy.com/course/build-full-realtime-chat-tinder-app/

- https://makeappicon.com/

**Code was adapted to suit the needs of the app. Proper referencing of work
is done in the source code.**

CocoaPod Libraries:

SKPhotoBrowse: https://github.com/suzuki-0000/SKPhotoBrowser
Firebase: https://firebase.google.com/docs/ios/setup
Gallery: https://cocoapods.org/pods/Gallery
NVActivityIndicatorView/AppExtension:
https://cocoapods.org/pods/NVActivityIndicatorView
ProgressHUD: https://cocoapods.org/pods/ProgressHUD
Shuffle-iOS: https://cocoapods.org/pods/Shuffle-iOS

