
Join Sorting

Joins and Sorts

Joins and Sorts 1 / 12



Join Sorting

Join

Joins and Sorts 2 / 12



Join Sorting

Quite a few approaches/algorithms can be used

Nested Loop Join

To perform the join r ./ s:

for each tuple t_r in r do
for each tuple t_s in s do

if t_r and t_s satisfy join condition
add (t_r,t_s) to result

end
end

Performance ..

expensive approach

every pair of tuples is checked to see if they satisfy join condition

If one of the relations fits in memory, it is beneficial to use this in the inner loop.
(known as the inner relation).

Joins and Sorts 3 / 12



Join Sorting

Block Nested Loop Join

Variation on the nested loop-join. Increases efficiency by reducing number of block
accesses.

for each block B_r in r do
for each block B_s in s do

for each tuple t_r in B_r do
for each tuple t_s in B_s do

if t_r and t_s satisfy join condition
add (t_r,t_s) to result

end
end

end
end

Joins and Sorts 4 / 12



Join Sorting

Indexed Nested Loop Join

If in a nested loop join, there is an index available for the inner table, replace file scans
with index accesses

Joins and Sorts 5 / 12



Join Sorting

Merge Join

If both relations are sorted on the joining attribute, then merge relations.

Technique is identical to merging two sorted lists (like the merge step in a
merge-sort algorithm)

Much more efficient that a nested join

Can also be computed for relations not ordered on a joining attribute, but have
indexes on joining attribute

Efficiency?

Joins and Sorts 6 / 12



Join Sorting

Hash Join

Create a hashing function which maps the join attribute(s) to partitions in a range
1 . . .N

For all tuples in r , hash the tuples to Hri

For all tuples in s, hash the tuples to Hsi

For i = 1 to N, join partitions Hri = Hsi

Joins and Sorts 7 / 12



Join Sorting

Sorting

Joins and Sorts 8 / 12



Join Sorting

Sorting

Important operation because:

if a query specifies ORDER BY

used prior to relational operators (e.g. Join) to allow more efficient processing of
operation

Joins and Sorts 9 / 12



Join Sorting

Can sort a relation:

physically: - actual order of tuples re-arranged on disk

logically: - build an index and sort index entries

Two main cases:

where relation to be sorted fits in memory- can then use standard sorting
techniques (e.g. quicksort)

where relation doesn’t fit in memory. The most common approach is to use
external sort-merge

Joins and Sorts 10 / 12



Join Sorting

External Sort Merge - Step 1

i := 0;
repeat

read M blocks of the relation
sort M blocks in memory
write sorted data to file Ri

until end of relation

M = number of page frames in main memory buffer

Joins and Sorts 11 / 12



Join Sorting

External Sort Merge - Step 2

Wish to merge the files from each run in step 1

read first block of each Ri into memory

repeat
choose first (in sort order) from pages
write tuple to output
remove tuple from buffer
if any buffer Ri if empty and not eof(Ri)

read next block from Ri into memory
until all pages empty

effectively a N-way merge (extension of idea in the merge step of the merge sort
algorithm)

Joins and Sorts 12 / 12


	Join
	Sorting

