
CT255
Introduction to Cyber-Security

Lecture 8

Block Ciphers and Stream Ciphers

Dr. Michael Schukat, 2019-2022

BLOCK CIPHERS

Encryption Algorithms based
on Block Ciphers

 In a block cipher the message is broken into blocks M1, M2, etc. of
K bits length, each of which is then encrypted

◼ Most ciphers we saw before process blocks of just one character

 Claude Shannon suggested to use the two primitive cryptographic
operations as building blocks for such ciphers:

◼ substitution

◼ permutation

encoding

decoding

The Permutation Operation

 A binary word (i.e. block) has its
bits reordered (permuted)

 The re-ordering forms the key

 Operation represented by a P-box

 The example allows for 15! =
1,307,674,368,000
combinations

 The key describes the
combination used

CT255 - Cyber-Security Introduction

Lecture 8: Block Ciphers and Stream Ciphers

Page 4

The Substitution Operation

 A binary word is replaced by some other binary word

 The whole substitution function forms the key

 Operation represented by an S-box

 The box below allows

for 8! = 40320

combinations

 The key describes the

combination used

CT255 - Cyber-Security Introduction

Lecture 8: Block Ciphers and Stream Ciphers

Page 5

Substitution-Permutation
Network

encoding

decoding

 The key describes the

internal wiring of all

S-boxes and P-boxes

 The same key can be

used for encoding and

decoding, hence it is a

private key

encryption algorithm

 The direction of the

process determines

encoding / decoding
CT255 - Cyber-Security Introduction

Lecture 8: Block Ciphers and Stream Ciphers

Page 6

Confusion and Diffusion

 A cipher needs for obvious reasons to completely
obscure statistical properties of original message

 Shannon introduced two terms to describe this:
◼ Diffusion seeks to make the statistical relationship between

the plaintext and ciphertext as complex as possible

◼ Confusion seeks to make the relationship between the
statistics of the ciphertext and the value of the encryption key
as complex as possible

 Both thwart attempts to deduce the key used via a
cryptanalysis (as seen before)

CT255 - Cyber-Security Introduction

Lecture 8: Block Ciphers and Stream Ciphers

Page 7

Confusion and Diffusion in
Practice

 Example DES (→later):

A swap of a single

bit either in the key

or in the plaintext

result in a significant

change in the

ciphertext

 Note that DES encrypts

a message over 16

iterations (rounds)

Important Block Cipher Principle:
Reversible Transformation

 Transformations must be reversible or non-singular, e.g.

Plaintext Ciphertext Plaintext Ciphertext
00 11 00 11
01 10 01 10
10 00 vs. 10 00
11 01 11 00

 There must be a 1:1 association between a n-bit plaintext
and an-bit ciphertext, otherwise mapping (encryption) is
irreversible

?

CT255 - Cyber-Security Introduction

Lecture 8: Block Ciphers and Stream Ciphers

Page 9

Features of Private-Key
Cryptography / Ciphers

 Traditional private/secret/single key cryptography uses
one key, shared by only sender and receiver

 The algorithm / cipher itself is public, i.e. not a secret

 If the key is disclosed, communications are compromised

 The key is also symmetric, parties are equal

 Hence methods does not protect sender from receiver
forging a message & claiming is sent by sender

 Examples include DES (Data Encryption Standard) and
AES (Advanced Encryption Standard)

CT255 - Cyber-Security Introduction

Lecture 8: Block Ciphers and Stream Ciphers

Page 10

Examples AES

 Advanced Encryption Standard, successor of DES

 Modern block cipher with 128 bits block length

 Uses 128, 192 or 256 bit long keys

 The de-facto standard for secure encryption

 Widely used for

◼ File / data encryption

◼ Secure network (e.g. Internet) Communication

CT255 - Cyber-Security Introduction

Lecture 8: Block Ciphers and Stream Ciphers

Page 11

Why does Block and Key
Length matter?

 Cryptographic algorithms with short block

length can be tackled as seen with substitution

cipher

 Large keys and long blocks prevent brute-force

attacks / searches

◼ Take the ciphertext and try all possible key

combinations (or block permutations), until the

decoded text makes sense
CT255 - Cyber-Security Introduction

Lecture 8: Block Ciphers and Stream Ciphers

Page 12

Brute Force Search / Attacks

 A 56-bit key has a key space that contains 256 keys

◼ A prominent early day symmetric cipher called DES

(Data Encryption Standard) used 56 bit keys… it is

deemed unsafe since the 1990s

 A 128-bit key has 3.4E38 possible combinations

◼ Generally accepted minimum key length today

CT255 - Cyber-Security Introduction

Lecture 8: Block Ciphers and Stream Ciphers

Page 13

Brute Force Search

 Always possible to simply try every key

 Most basic attack, effort proportional to key size

 Assume that you either know or recognise plaintext
Key Size (bits) Number of

Alternative Keys

Time required at 1

decryption/µs

Time required at 106

decryptions/µs

32 232 = 4.3  109 231 µs = 35.8 minutes 2.15 milliseconds

56 256 = 7.2  1016 255 µs = 1142 years 10.01 hours

128 2128 = 3.4  1038 2127 µs = 5.4  1024

years

5.4  1018 years

168 2168 = 3.7  1050 2167 µs = 5.9  1036

years

5.9  1030 years

26 characters

(permutation)

26! = 4  1026 2  1026 µs = 6.4  1012

years

6.4  106 years

The Feistel Cipher

 In practice we need to be able to decrypt messages, as
well as to encrypt them, hence either:

◼ have to define inverses for each of the S & P-boxes, but this
doubles the code/hardware needed, or

◼ define a structure that is easy to reverse, so can use basically
the same code or hardware for both encryption and decryption

 A Feistel cipher is such a structure

◼ It is based on concept of the invertible product cipher

◼ Most symmetric block ciphers are based on a Feistel Cipher
structure

CT255 - Cyber-Security Introduction

Lecture 8: Block Ciphers and Stream Ciphers

Page 15

The Feistel Cipher

 Horst Feistel, working at IBM Thomas J Watson

Research Labs, devised a suitable invertible cipher

structure in early 70's

 One of Feistel's main contributions was the invention

of a suitable structure which adapted Shannon's S-P

network in an easily invertible structure

 Essentially the same hardware or software is used for

both encryption and decryption, with just a slight

change in how the keys are used

The Feistel Cipher – A Single
Round

 The idea is to partition the input block into two halves, L(i-1)
and R(i-1), and use only R(i-1) in the ith round (part) of the
cipher

 The function g incorporates one stage of the S-P network,
controlled by part of the key K(i) known as the ith subkey

The Feistel Cipher – A single
Round

 A round of a Feistel cipher can be described functionally
as:
◼ L(i) = R(i-1)
◼ R(i) = L(i-1) EXOR g(K(i), R(i-1))

Symmetry of Bitwise EXOR

 A EXOR B = C
A EXOR C = B
C EXOR B = A

0 1

0 0 1

1 1 0

Example

 Encoding of 01011110:

◼ L(i - 1) = 0101 R(i - 1) = 1110

◼ g(K(i), R(i-1)) = 1001 L(i) = 1110

◼ R(i) = 0101 XOR 1001 = 1100

◼ Therefore 01011110 becomes 11101100

 Decoding of 11101100:

◼ L(i) = 1110 R(i) = 1100

◼ g(K(i), R(i-1)) = 1001 R(i - 1) = 1110

◼ L(i - 1) = 1100 XOR 1001 = 0101

◼ Therefore 1110 1100 becomes 01011110

A Feistel Network

 Perform multiple

transformations (single

rounds) sequentially, whereby

output of ith round becomes

the input of the (i+1)th round

 Every round gets is own

subkey, which is derived from

master key

 Decryption process goes from

bottom to top

Feistel Cipher Design Elements

 Block size

 Key size

 Number of rounds

 Subkey generation algorithm

 Round function

 Fast software encryption/decryption

Simple Methods for Subkey
Generation

 Multiple subkeys are based on a bigger master key

 Method 1:

◼ MK: 010100010100011110101001

◼ SKs:010100010100011110101001

 Method 2:

◼ MK: 0101000101000111

◼ SKs:0101000101000111

Example for private Key
Block Cipher: Simple DES

 An educational version of DES
(Data Encryption Standard), the
first widely used private key
encryption algorithm:

◼ 8 bit blocks and 10 bit keys

◼ IP, IP-1 = (initial) permutation

◼ P10 = 10 bit permutation

◼ P8 = 8 bit permutation
and selection.

◼ SW = swap 2 halves

FYI: Simple DES – Key
Generation

 P10: Permutation
3 5 2 7 4 10 1 9 8 6

 LS-1: Left-shift 1
Circular shift by 1 bit.

 P8: Permutation
6 3 7 4 8 5 10 9

 LS-2: Left Shift 2
Circular shift by 1 bit.

 P8: Permutation
6 3 7 4 8 5 10 9

FYI: Example for Sub-Key
Generation

 10-bit key: 0110010110

 P10 permutation: 3|5|2|7|4|10|1|9|8|6

10100 00111

 Circular left shift: 01001 01110

 P8 Permutation: 6|3|7|4|8|5|10|9
K1: 00101101

 Circular left shift: 10010 11100

 P8 Permutation: 6|3|7|4|8|5|10|9
K2: 10111000

FYI: Structure of fK

 E/P expansion permutation
4 1 2 3 2 3 4 1

 2 S-boxes S0 and S1
0 1 2 3 0 1 2 3

0 1 0 3 2 0 0 1 2 3
1 3 2 1 0 1 2 0 1 3
2 0 2 1 3 2 3 0 1 2
3 3 1 3 2 3 2 1 0 3

The 1st and 4th input bits
specify a row, the 2nd and 3rd

input bits represent a column.
The corresponding entry in a
table represents the output

 P4 permutation 2 4 3 1

FYI: Example for fK

 Input after IP: 01001101
 Left part: 0100
 E/P: 4|1|2|3|2|3|4|1

11101011
 EX-OR K1: 00101101

11000110
 S0 and S1: See previous page

1011
 P4 permutation: 2|4|3|1

0111
 EX-OR left part: 0100

0011
 Concatenate right block: 1101

00111101
 Swap: 11010011

DES

◼ 64 bit plain text

◼ 56 bit key and 48

bit sub-keys

◼ 16 rounds

Strength of DES – Key
Length?

 56-bit keys have 256 = 7.2 x 1016 possible values

 Brute force search looks hard …

 But advances in 1990s have shown that it is possible:

◼ In 1997 on Internet in a few months (using a PC cluster)

◼ In 1998 on dedicated hardware in a few days

◼ In 1999 above combined in 22 hrs!

 As a result, alternatives to DES had to be considered

The DES Cracking Machine

 Developed by
Electronic Frontier
Foundation (EFF)

 Image shows a single
circuit board.

 The entire machine
consisted of 1,536
custom chips

Triple DES

 Based on 2 (56-bit each) keys and three stages

 Symmetry preserved, therefore same concatenation

is used for encoding and decoding

Modes of Operation: Electronic
Codebook (EBC) Mode

Modes of Operation: Cipher
Block Chaining (CBC) Mode

STREAM CIPHERS

Stream Ciphers

 So far we have examined block ciphers that process n-bytes at a time

 Stream ciphers in contrast process the message bit by bit (as a stream)

 They require a stream key K that is a pseudo-random sequence of 0s
and 1s

 This bit-stream K is combined (EXORed) with the plaintext M bit by
bit to generate the cipher text C:

Ci = Mi EXOR Ki
 The randomness of the stream key completely destroys any

statistically properties in the message

 The receiver generates the identical bit stream K and decodes the
message C:

Mi = Ci EXOR Ki
 Vernam Cipher or One-Time Pad is a famous stream cipher

Vernam Cipher

 Vernam cipher requires as many (random) key bits as
message is long
◼ Every message requires a new key, as reusing a stream key may

allow an attacker to recover it!

 Such keys must be distributed securely between end-
points
◼ Very complicated, tedious and uneconomic, as a single stream

key may consist of millions of bits

 For practical reasons stream ciphers based on pseudo-
random generators (PRG) are used
◼ PRGs are often based on Linear Feedback Shift Registers

(LFSRs)

◼ Only a seed value to initialise the PRG must be
shared

Linear Feedback Shift
Registers (LFSR)

 Consist a binary shift register of some length along with a linear
feedback function that operates on some of those bits

 Each time a bit is needed, all bits are shifted right by one position

 The bit bumped out is the bit used as (pseudo-random) output from the
LFSR

 A new bit is formed from the linear feedback function of some bits

 Correctly designed LFSRs generate a very long pseudo-random
sequence before repeating

 LFSRs require an initialisation vector (i.e., seed) for their shift register

Example for an 8-Bit LFSR

 Initialisation vector: 10100110 (B7 … B0)

 Feedback Function: B7 EXOR B4 EXOR B1
 Right shift after each cycle (B0 shifted out)

 Iteration 0: 10100110

 Iteration 1: 01010011 >> 0

 Iteration 2: 00101001 >> 1

 Iteration 3: 00010100 >> 1

 Iteration 4: 10001010 >> 0

 … …

The feedback func-

tion returns a “1”, if

an odd number of

inputs is set to “1”

Example VoIP (Voice over the
Internet Protocol)

 The sender’s voice is digitised and the resulting bit stream

is encrypted using a stream cipher before being sent to the

receiver over a network link

 Sender and receiver share the same seed value for their

PRG

Stream Ciphers in Mobile
Communication (early 2000s)

 Mobile phone conversations are sent as sequences of
frames between both end points

◼ Voice samples are collected and digitised by the mobile phone

 Every 4.6 milliseconds a 228-bits long frame consisting
of digitised voice is processed and send out

 A5/1 is an LFSR-based algorithm that was used to
produce 228 bits of key stream which is EXORed with
the frame

 A5/1 is initialised using a 64-bit key

A5/1

 3 independent LFSRs:

◼ 19 bits

◼ 22 bits

◼ 23 bits

 The majority bit is the
XORed output of all 3 LFSRs

 Each register is only shifted to
the left, if their clocking bits
(B8, B10, and B10
respectively) match the
majority bit

A5/1

 A5/1 was originally introduced in 1987

 It was protected as a "trade secret“, but has
subsequently been reverse engineered during the
90s

 As a result A5/2 was introduced, which has been
broken as well

 A5/3 (KASUMI) was released in late 2002

◼ Block-cipher based on Feistel network

RC4

 RC4 is a PRG designed by Ron Rivest of RSA
Security in 1987

 RC4 was initially a trade secret, but 1994 a
description of it was anonymously posted in the
Internet

 It consists of a

◼ key-scheduling algorithm (KSA) and a

◼ pseudo-random generation algorithm (PRGA)

RC4: The Key-Scheduling
Algorithm (KSA)

 Requires a keyword (stored in key[]) with a
specific keylength

 An 256 byte long permutation vector S[] is
generated:
for i from 0 to 255

S[i] := i;
j := 0;
for i from 0 to 255

j := (j + S[i] + key[i mod keylength])
mod 256;

swap(S[i],S[j]);

RC4: The Pseudo-Random
Generation Algorithm (PRGA)

 PRGA returns one byte at a time:

i := 0;
j := 0;
while GeneratingOutput:

i := (i + 1) mod 256;
j := (j + S[i]) mod 256;
swap(S[i],S[j]);
output S[(S[i] + S[j]) mod 256];

RC4

 Not an LFSR-based design, but rather a more
general pseudo-random number generator design

 Can be efficiently implemented in software

 Broken and not used any
more!

