
CT255
Introduction to Cyber-Security

Lecture 8

Block Ciphers and Stream Ciphers

Dr. Michael Schukat, 2019-2022

BLOCK CIPHERS

Encryption Algorithms based
on Block Ciphers

 In a block cipher the message is broken into blocks M1, M2, etc. of
K bits length, each of which is then encrypted

◼ Most ciphers we saw before process blocks of just one character

 Claude Shannon suggested to use the two primitive cryptographic
operations as building blocks for such ciphers:

◼ substitution

◼ permutation

encoding

decoding

The Permutation Operation

 A binary word (i.e. block) has its
bits reordered (permuted)

 The re-ordering forms the key

 Operation represented by a P-box

 The example allows for 15! =
1,307,674,368,000
combinations

 The key describes the
combination used

CT255 - Cyber-Security Introduction

Lecture 8: Block Ciphers and Stream Ciphers

Page 4

The Substitution Operation

 A binary word is replaced by some other binary word

 The whole substitution function forms the key

 Operation represented by an S-box

 The box below allows

for 8! = 40320

combinations

 The key describes the

combination used

CT255 - Cyber-Security Introduction

Lecture 8: Block Ciphers and Stream Ciphers

Page 5

Substitution-Permutation
Network

encoding

decoding

 The key describes the

internal wiring of all

S-boxes and P-boxes

 The same key can be

used for encoding and

decoding, hence it is a

private key

encryption algorithm

 The direction of the

process determines

encoding / decoding
CT255 - Cyber-Security Introduction

Lecture 8: Block Ciphers and Stream Ciphers

Page 6

Confusion and Diffusion

 A cipher needs for obvious reasons to completely
obscure statistical properties of original message

 Shannon introduced two terms to describe this:
◼ Diffusion seeks to make the statistical relationship between

the plaintext and ciphertext as complex as possible

◼ Confusion seeks to make the relationship between the
statistics of the ciphertext and the value of the encryption key
as complex as possible

 Both thwart attempts to deduce the key used via a
cryptanalysis (as seen before)

CT255 - Cyber-Security Introduction

Lecture 8: Block Ciphers and Stream Ciphers

Page 7

Confusion and Diffusion in
Practice

 Example DES (→later):

A swap of a single

bit either in the key

or in the plaintext

result in a significant

change in the

ciphertext

 Note that DES encrypts

a message over 16

iterations (rounds)

Important Block Cipher Principle:
Reversible Transformation

 Transformations must be reversible or non-singular, e.g.

Plaintext Ciphertext Plaintext Ciphertext
00 11 00 11
01 10 01 10
10 00 vs. 10 00
11 01 11 00

 There must be a 1:1 association between a n-bit plaintext
and an-bit ciphertext, otherwise mapping (encryption) is
irreversible

?

CT255 - Cyber-Security Introduction

Lecture 8: Block Ciphers and Stream Ciphers

Page 9

Features of Private-Key
Cryptography / Ciphers

 Traditional private/secret/single key cryptography uses
one key, shared by only sender and receiver

 The algorithm / cipher itself is public, i.e. not a secret

 If the key is disclosed, communications are compromised

 The key is also symmetric, parties are equal

 Hence methods does not protect sender from receiver
forging a message & claiming is sent by sender

 Examples include DES (Data Encryption Standard) and
AES (Advanced Encryption Standard)

CT255 - Cyber-Security Introduction

Lecture 8: Block Ciphers and Stream Ciphers

Page 10

Examples AES

 Advanced Encryption Standard, successor of DES

 Modern block cipher with 128 bits block length

 Uses 128, 192 or 256 bit long keys

 The de-facto standard for secure encryption

 Widely used for

◼ File / data encryption

◼ Secure network (e.g. Internet) Communication

CT255 - Cyber-Security Introduction

Lecture 8: Block Ciphers and Stream Ciphers

Page 11

Why does Block and Key
Length matter?

 Cryptographic algorithms with short block

length can be tackled as seen with substitution

cipher

 Large keys and long blocks prevent brute-force

attacks / searches

◼ Take the ciphertext and try all possible key

combinations (or block permutations), until the

decoded text makes sense
CT255 - Cyber-Security Introduction

Lecture 8: Block Ciphers and Stream Ciphers

Page 12

Brute Force Search / Attacks

 A 56-bit key has a key space that contains 256 keys

◼ A prominent early day symmetric cipher called DES

(Data Encryption Standard) used 56 bit keys… it is

deemed unsafe since the 1990s

 A 128-bit key has 3.4E38 possible combinations

◼ Generally accepted minimum key length today

CT255 - Cyber-Security Introduction

Lecture 8: Block Ciphers and Stream Ciphers

Page 13

Brute Force Search

 Always possible to simply try every key

 Most basic attack, effort proportional to key size

 Assume that you either know or recognise plaintext
Key Size (bits) Number of

Alternative Keys

Time required at 1

decryption/µs

Time required at 106

decryptions/µs

32 232 = 4.3 109 231 µs = 35.8 minutes 2.15 milliseconds

56 256 = 7.2 1016 255 µs = 1142 years 10.01 hours

128 2128 = 3.4 1038 2127 µs = 5.4 1024

years

5.4 1018 years

168 2168 = 3.7 1050 2167 µs = 5.9 1036

years

5.9 1030 years

26 characters

(permutation)

26! = 4 1026 2 1026 µs = 6.4 1012

years

6.4 106 years

The Feistel Cipher

 In practice we need to be able to decrypt messages, as
well as to encrypt them, hence either:

◼ have to define inverses for each of the S & P-boxes, but this
doubles the code/hardware needed, or

◼ define a structure that is easy to reverse, so can use basically
the same code or hardware for both encryption and decryption

 A Feistel cipher is such a structure

◼ It is based on concept of the invertible product cipher

◼ Most symmetric block ciphers are based on a Feistel Cipher
structure

CT255 - Cyber-Security Introduction

Lecture 8: Block Ciphers and Stream Ciphers

Page 15

The Feistel Cipher

 Horst Feistel, working at IBM Thomas J Watson

Research Labs, devised a suitable invertible cipher

structure in early 70's

 One of Feistel's main contributions was the invention

of a suitable structure which adapted Shannon's S-P

network in an easily invertible structure

 Essentially the same hardware or software is used for

both encryption and decryption, with just a slight

change in how the keys are used

The Feistel Cipher – A Single
Round

 The idea is to partition the input block into two halves, L(i-1)
and R(i-1), and use only R(i-1) in the ith round (part) of the
cipher

 The function g incorporates one stage of the S-P network,
controlled by part of the key K(i) known as the ith subkey

The Feistel Cipher – A single
Round

 A round of a Feistel cipher can be described functionally
as:
◼ L(i) = R(i-1)
◼ R(i) = L(i-1) EXOR g(K(i), R(i-1))

Symmetry of Bitwise EXOR

 A EXOR B = C
A EXOR C = B
C EXOR B = A

0 1

0 0 1

1 1 0

Example

 Encoding of 01011110:

◼ L(i - 1) = 0101 R(i - 1) = 1110

◼ g(K(i), R(i-1)) = 1001 L(i) = 1110

◼ R(i) = 0101 XOR 1001 = 1100

◼ Therefore 01011110 becomes 11101100

 Decoding of 11101100:

◼ L(i) = 1110 R(i) = 1100

◼ g(K(i), R(i-1)) = 1001 R(i - 1) = 1110

◼ L(i - 1) = 1100 XOR 1001 = 0101

◼ Therefore 1110 1100 becomes 01011110

A Feistel Network

 Perform multiple

transformations (single

rounds) sequentially, whereby

output of ith round becomes

the input of the (i+1)th round

 Every round gets is own

subkey, which is derived from

master key

 Decryption process goes from

bottom to top

Feistel Cipher Design Elements

 Block size

 Key size

 Number of rounds

 Subkey generation algorithm

 Round function

 Fast software encryption/decryption

Simple Methods for Subkey
Generation

 Multiple subkeys are based on a bigger master key

 Method 1:

◼ MK: 010100010100011110101001

◼ SKs:010100010100011110101001

 Method 2:

◼ MK: 0101000101000111

◼ SKs:0101000101000111

Example for private Key
Block Cipher: Simple DES

 An educational version of DES
(Data Encryption Standard), the
first widely used private key
encryption algorithm:

◼ 8 bit blocks and 10 bit keys

◼ IP, IP-1 = (initial) permutation

◼ P10 = 10 bit permutation

◼ P8 = 8 bit permutation
and selection.

◼ SW = swap 2 halves

FYI: Simple DES – Key
Generation

 P10: Permutation
3 5 2 7 4 10 1 9 8 6

 LS-1: Left-shift 1
Circular shift by 1 bit.

 P8: Permutation
6 3 7 4 8 5 10 9

 LS-2: Left Shift 2
Circular shift by 1 bit.

 P8: Permutation
6 3 7 4 8 5 10 9

FYI: Example for Sub-Key
Generation

 10-bit key: 0110010110

 P10 permutation: 3|5|2|7|4|10|1|9|8|6

10100 00111

 Circular left shift: 01001 01110

 P8 Permutation: 6|3|7|4|8|5|10|9
K1: 00101101

 Circular left shift: 10010 11100

 P8 Permutation: 6|3|7|4|8|5|10|9
K2: 10111000

FYI: Structure of fK

 E/P expansion permutation
4 1 2 3 2 3 4 1

 2 S-boxes S0 and S1
0 1 2 3 0 1 2 3

0 1 0 3 2 0 0 1 2 3
1 3 2 1 0 1 2 0 1 3
2 0 2 1 3 2 3 0 1 2
3 3 1 3 2 3 2 1 0 3

The 1st and 4th input bits
specify a row, the 2nd and 3rd

input bits represent a column.
The corresponding entry in a
table represents the output

 P4 permutation 2 4 3 1

FYI: Example for fK

 Input after IP: 01001101
 Left part: 0100
 E/P: 4|1|2|3|2|3|4|1

11101011
 EX-OR K1: 00101101

11000110
 S0 and S1: See previous page

1011
 P4 permutation: 2|4|3|1

0111
 EX-OR left part: 0100

0011
 Concatenate right block: 1101

00111101
 Swap: 11010011

DES

◼ 64 bit plain text

◼ 56 bit key and 48

bit sub-keys

◼ 16 rounds

Strength of DES – Key
Length?

 56-bit keys have 256 = 7.2 x 1016 possible values

 Brute force search looks hard …

 But advances in 1990s have shown that it is possible:

◼ In 1997 on Internet in a few months (using a PC cluster)

◼ In 1998 on dedicated hardware in a few days

◼ In 1999 above combined in 22 hrs!

 As a result, alternatives to DES had to be considered

The DES Cracking Machine

 Developed by
Electronic Frontier
Foundation (EFF)

 Image shows a single
circuit board.

 The entire machine
consisted of 1,536
custom chips

Triple DES

 Based on 2 (56-bit each) keys and three stages

 Symmetry preserved, therefore same concatenation

is used for encoding and decoding

Modes of Operation: Electronic
Codebook (EBC) Mode

Modes of Operation: Cipher
Block Chaining (CBC) Mode

STREAM CIPHERS

Stream Ciphers

 So far we have examined block ciphers that process n-bytes at a time

 Stream ciphers in contrast process the message bit by bit (as a stream)

 They require a stream key K that is a pseudo-random sequence of 0s
and 1s

 This bit-stream K is combined (EXORed) with the plaintext M bit by
bit to generate the cipher text C:

Ci = Mi EXOR Ki
 The randomness of the stream key completely destroys any

statistically properties in the message

 The receiver generates the identical bit stream K and decodes the
message C:

Mi = Ci EXOR Ki
 Vernam Cipher or One-Time Pad is a famous stream cipher

Vernam Cipher

 Vernam cipher requires as many (random) key bits as
message is long
◼ Every message requires a new key, as reusing a stream key may

allow an attacker to recover it!

 Such keys must be distributed securely between end-
points
◼ Very complicated, tedious and uneconomic, as a single stream

key may consist of millions of bits

 For practical reasons stream ciphers based on pseudo-
random generators (PRG) are used
◼ PRGs are often based on Linear Feedback Shift Registers

(LFSRs)

◼ Only a seed value to initialise the PRG must be
shared

Linear Feedback Shift
Registers (LFSR)

 Consist a binary shift register of some length along with a linear
feedback function that operates on some of those bits

 Each time a bit is needed, all bits are shifted right by one position

 The bit bumped out is the bit used as (pseudo-random) output from the
LFSR

 A new bit is formed from the linear feedback function of some bits

 Correctly designed LFSRs generate a very long pseudo-random
sequence before repeating

 LFSRs require an initialisation vector (i.e., seed) for their shift register

Example for an 8-Bit LFSR

 Initialisation vector: 10100110 (B7 … B0)

 Feedback Function: B7 EXOR B4 EXOR B1
 Right shift after each cycle (B0 shifted out)

 Iteration 0: 10100110

 Iteration 1: 01010011 >> 0

 Iteration 2: 00101001 >> 1

 Iteration 3: 00010100 >> 1

 Iteration 4: 10001010 >> 0

 … …

The feedback func-

tion returns a “1”, if

an odd number of

inputs is set to “1”

Example VoIP (Voice over the
Internet Protocol)

 The sender’s voice is digitised and the resulting bit stream

is encrypted using a stream cipher before being sent to the

receiver over a network link

 Sender and receiver share the same seed value for their

PRG

Stream Ciphers in Mobile
Communication (early 2000s)

 Mobile phone conversations are sent as sequences of
frames between both end points

◼ Voice samples are collected and digitised by the mobile phone

 Every 4.6 milliseconds a 228-bits long frame consisting
of digitised voice is processed and send out

 A5/1 is an LFSR-based algorithm that was used to
produce 228 bits of key stream which is EXORed with
the frame

 A5/1 is initialised using a 64-bit key

A5/1

 3 independent LFSRs:

◼ 19 bits

◼ 22 bits

◼ 23 bits

 The majority bit is the
XORed output of all 3 LFSRs

 Each register is only shifted to
the left, if their clocking bits
(B8, B10, and B10
respectively) match the
majority bit

A5/1

 A5/1 was originally introduced in 1987

 It was protected as a "trade secret“, but has
subsequently been reverse engineered during the
90s

 As a result A5/2 was introduced, which has been
broken as well

 A5/3 (KASUMI) was released in late 2002

◼ Block-cipher based on Feistel network

RC4

 RC4 is a PRG designed by Ron Rivest of RSA
Security in 1987

 RC4 was initially a trade secret, but 1994 a
description of it was anonymously posted in the
Internet

 It consists of a

◼ key-scheduling algorithm (KSA) and a

◼ pseudo-random generation algorithm (PRGA)

RC4: The Key-Scheduling
Algorithm (KSA)

 Requires a keyword (stored in key[]) with a
specific keylength

 An 256 byte long permutation vector S[] is
generated:
for i from 0 to 255

S[i] := i;
j := 0;
for i from 0 to 255

j := (j + S[i] + key[i mod keylength])
mod 256;

swap(S[i],S[j]);

RC4: The Pseudo-Random
Generation Algorithm (PRGA)

 PRGA returns one byte at a time:

i := 0;
j := 0;
while GeneratingOutput:

i := (i + 1) mod 256;
j := (j + S[i]) mod 256;
swap(S[i],S[j]);
output S[(S[i] + S[j]) mod 256];

RC4

 Not an LFSR-based design, but rather a more
general pseudo-random number generator design

 Can be efficiently implemented in software

 Broken and not used any
more!

