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BLOCK CIPHERS



Encryption Algorithms based 
on Block Ciphers

 In a block cipher the message is broken into blocks M1, M2, etc. of 
K bits length, each of which is then encrypted 

◼ Most ciphers we saw before process blocks of just one character

 Claude Shannon suggested to use the two  primitive cryptographic 
operations as building blocks for such ciphers: 

◼ substitution 

◼ permutation 

encoding

decoding



The Permutation Operation

 A binary word (i.e. block) has its 
bits reordered (permuted)

 The re-ordering forms the key 

 Operation represented by a P-box

 The example allows for 15! = 
1,307,674,368,000 
combinations

 The key describes the 
combination used
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The Substitution Operation 

 A binary word is replaced by some other binary word 

 The whole substitution function forms the key 

 Operation represented by an S-box

 The box below allows 

for 8! = 40320 

combinations

 The key describes the 

combination used

CT255 - Cyber-Security Introduction

Lecture 8: Block Ciphers and Stream Ciphers

Page 5



Substitution-Permutation 
Network

encoding

decoding

 The key describes the 

internal wiring of all 

S-boxes and P-boxes

 The same key can be 

used for encoding and 

decoding, hence it is a 

private key 

encryption algorithm

 The direction of the 

process determines 

encoding / decoding  
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Confusion and Diffusion

 A cipher needs for obvious reasons to completely 
obscure statistical properties of original message

 Shannon introduced two terms to describe this:
◼ Diffusion seeks to make the statistical relationship between 

the plaintext and ciphertext as complex as possible 

◼ Confusion seeks to make the relationship between the 
statistics of the ciphertext and the value of the encryption key 
as complex as possible

 Both thwart attempts to deduce the key used via a 
cryptanalysis (as seen before)
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Confusion and Diffusion in 
Practice

 Example DES (→later):

A swap of a single 

bit either in the key 

or in the plaintext 

result in a significant 

change in the 

ciphertext

 Note that DES encrypts 

a message over 16 

iterations (rounds) 



Important Block Cipher Principle: 
Reversible Transformation

 Transformations must be reversible or non-singular, e.g.

Plaintext Ciphertext Plaintext Ciphertext
00 11 00 11
01 10 01 10
10 00 vs. 10 00
11 01 11 00

 There must be a 1:1 association between a n-bit plaintext 
and an-bit ciphertext, otherwise mapping (encryption) is 
irreversible

?
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Features of Private-Key 
Cryptography / Ciphers

 Traditional private/secret/single key cryptography uses 
one key, shared by only sender and receiver

 The algorithm / cipher itself is public, i.e. not a secret 

 If the key is disclosed, communications are compromised

 The key is also symmetric, parties are equal

 Hence methods does not protect sender from receiver 
forging a message & claiming is sent by sender

 Examples include DES (Data Encryption Standard) and 
AES (Advanced Encryption Standard)
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Examples AES

 Advanced Encryption Standard, successor of DES

 Modern block cipher with 128 bits block length

 Uses 128, 192 or 256 bit long keys

 The de-facto standard for secure encryption

 Widely used for 

◼ File / data encryption 

◼ Secure network (e.g. Internet) Communication

CT255 - Cyber-Security Introduction

Lecture 8: Block Ciphers and Stream Ciphers

Page 11



Why does Block and Key 
Length matter?

 Cryptographic algorithms with short block 

length can be tackled as seen with substitution 

cipher

 Large keys and long blocks prevent brute-force 

attacks / searches

◼ Take the ciphertext and try all possible key 

combinations (or block permutations), until the 

decoded text makes sense
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Brute Force Search / Attacks

 A 56-bit key has a key space that contains 256 keys

◼ A prominent early day symmetric cipher called DES 

(Data Encryption Standard) used 56 bit keys… it is 

deemed unsafe since the 1990s 

 A 128-bit key has 3.4E38 possible combinations

◼ Generally accepted minimum key length today
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Brute Force Search

 Always possible to simply try every key

 Most basic attack, effort proportional to key size 

 Assume that you either know or recognise plaintext
Key Size (bits) Number of 

Alternative Keys

Time required at 1 

decryption/µs

Time required at 106

decryptions/µs

32 232 = 4.3  109 231 µs = 35.8 minutes 2.15 milliseconds

56 256 = 7.2  1016 255 µs = 1142 years 10.01 hours

128 2128 = 3.4  1038 2127 µs = 5.4  1024

years

5.4  1018 years

168 2168 = 3.7  1050 2167 µs = 5.9  1036

years

5.9  1030 years

26 characters 

(permutation)

26! = 4  1026 2  1026 µs = 6.4  1012

years

6.4  106 years



The Feistel Cipher 

 In practice we need to be able to decrypt messages, as 
well as to encrypt them, hence either: 

◼ have to define inverses for each of the S & P-boxes, but this 
doubles the code/hardware needed, or 

◼ define a structure that is easy to reverse, so can use basically 
the same code or hardware for both encryption and decryption

 A Feistel cipher is such a structure

◼ It is based on concept of the invertible product cipher

◼ Most symmetric block ciphers are based on a Feistel Cipher 
structure
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The Feistel Cipher

 Horst Feistel, working at IBM Thomas J Watson 

Research Labs, devised a suitable invertible cipher 

structure in early 70's

 One of Feistel's main contributions was the invention 

of a suitable structure which adapted Shannon's S-P 

network in an easily invertible structure

 Essentially the same hardware or software is used for 

both encryption and decryption, with just a slight 

change in how the keys are used



The Feistel Cipher – A Single 
Round

 The idea is to partition the input block into two halves, L(i-1)
and R(i-1), and use only R(i-1) in the ith round (part) of the 
cipher

 The function g incorporates one stage of the S-P network, 
controlled by part of the key K(i) known as the ith subkey



The Feistel Cipher – A single 
Round

 A round of a Feistel cipher can be described functionally 
as: 
◼ L(i) = R(i-1) 
◼ R(i) = L(i-1) EXOR g(K(i), R(i-1)) 



Symmetry of Bitwise EXOR

 A EXOR B = C
A EXOR C = B
C EXOR B = A

0 1

0 0 1

1 1 0



Example

 Encoding of 01011110:

◼ L(i - 1) = 0101 R(i - 1) = 1110

◼ g(K(i), R(i-1)) = 1001 L(i) = 1110

◼ R(i) = 0101 XOR 1001 = 1100

◼ Therefore 01011110 becomes 11101100

 Decoding of 11101100:

◼ L(i) = 1110 R(i) = 1100

◼ g(K(i), R(i-1)) = 1001 R(i - 1) = 1110

◼ L(i - 1) = 1100 XOR 1001 = 0101

◼ Therefore 1110 1100 becomes 01011110



A Feistel Network

 Perform multiple 

transformations (single 

rounds) sequentially, whereby 

output of ith round becomes 

the input of the (i+1)th round 

 Every round gets is own 

subkey, which is derived from 

master key

 Decryption process goes from 

bottom to top



Feistel Cipher Design Elements

 Block size 

 Key size 

 Number of rounds 

 Subkey generation algorithm

 Round function 

 Fast software encryption/decryption



Simple Methods for Subkey 
Generation

 Multiple subkeys are based on a bigger master key

 Method 1:

◼ MK: 010100010100011110101001

◼ SKs:010100010100011110101001

 Method 2:

◼ MK: 0101000101000111

◼ SKs:0101000101000111



Example for private Key 
Block Cipher: Simple DES

 An educational version of DES 
(Data Encryption Standard), the 
first widely used private key 
encryption algorithm:

◼ 8 bit blocks and 10 bit keys

◼ IP, IP-1 = (initial) permutation

◼ P10 = 10 bit permutation

◼ P8  = 8 bit permutation
and selection.

◼ SW = swap 2 halves



FYI: Simple DES – Key 
Generation

 P10: Permutation                              
3  5  2  7  4  10  1  9  8  6

 LS-1: Left-shift 1
Circular shift by 1 bit.

 P8: Permutation
6  3  7  4  8  5  10  9

 LS-2: Left Shift 2
Circular shift by 1 bit.

 P8: Permutation
6  3  7  4  8  5  10  9



FYI: Example for Sub-Key 
Generation

 10-bit key: 0110010110

 P10 permutation: 3|5|2|7|4|10|1|9|8|6

10100 00111

 Circular left shift: 01001 01110

 P8 Permutation: 6|3|7|4|8|5|10|9
K1: 00101101

 Circular left shift: 10010 11100

 P8 Permutation: 6|3|7|4|8|5|10|9
K2: 10111000



FYI: Structure of fK

 E/P expansion permutation
4 1 2 3 2 3 4 1

 2 S-boxes S0 and S1
0 1 2 3 0 1 2 3

0 1 0 3 2          0 0 1 2 3 
1 3 2 1 0          1 2 0 1 3
2 0 2 1 3          2 3 0 1 2
3 3 1 3 2          3 2 1 0 3

The 1st and 4th input bits
specify a row, the 2nd and 3rd

input bits represent a column.
The corresponding entry in a
table represents the output

 P4 permutation     2  4  3  1



FYI: Example for fK

 Input after IP: 01001101
 Left part: 0100
 E/P: 4|1|2|3|2|3|4|1

11101011
 EX-OR K1:          00101101

11000110
 S0 and S1:         See previous page

1011
 P4 permutation:    2|4|3|1

0111
 EX-OR left part:   0100

0011
 Concatenate right block:       1101

00111101
 Swap:              11010011



DES

◼ 64 bit plain text

◼ 56 bit key and 48 

bit sub-keys

◼ 16 rounds



Strength of DES – Key 
Length?

 56-bit keys have 256 = 7.2 x 1016 possible values

 Brute force search looks hard …

 But advances in 1990s have shown that it is possible:

◼ In 1997 on Internet in a few months (using a PC cluster)

◼ In 1998 on dedicated hardware in a few days

◼ In 1999 above combined in 22 hrs!

 As a result, alternatives to DES had to be considered



The DES Cracking Machine

 Developed by 
Electronic Frontier 
Foundation (EFF)

 Image shows a single 
circuit board.

 The entire machine 
consisted of 1,536 
custom chips



Triple DES

 Based on 2 (56-bit each) keys and three stages

 Symmetry preserved, therefore same concatenation 

is used for encoding and decoding



Modes of Operation: Electronic 
Codebook (EBC) Mode



Modes of Operation: Cipher 
Block Chaining (CBC) Mode



STREAM CIPHERS



Stream Ciphers

 So far we have examined block ciphers that process n-bytes at a time

 Stream ciphers in contrast process the message bit by bit (as a stream)

 They require a stream key K that is a pseudo-random sequence of 0s 
and 1s

 This bit-stream K is combined (EXORed) with the plaintext M bit by 
bit to generate the cipher text C: 

Ci = Mi EXOR Ki
 The randomness of the stream key completely destroys any 

statistically properties in the message

 The receiver generates the identical bit stream K and decodes the 
message C:

Mi = Ci EXOR Ki
 Vernam Cipher or One-Time Pad is a famous stream cipher



Vernam Cipher

 Vernam cipher requires as many (random) key bits as 
message is long
◼ Every message requires a new key, as reusing a stream key may 

allow an attacker to recover it!

 Such keys must be distributed securely between end-
points
◼ Very complicated, tedious and uneconomic, as a single stream 

key may consist of millions of bits

 For practical reasons stream ciphers based on pseudo-
random generators (PRG) are used
◼ PRGs are often based on Linear Feedback Shift Registers 

(LFSRs)

◼ Only a seed value to initialise the PRG must be
shared



Linear Feedback Shift 
Registers (LFSR)

 Consist a binary shift register of some length along with a linear 
feedback function that operates on some of those bits

 Each time a bit is needed, all bits are shifted right by one position

 The bit bumped out is the bit used as (pseudo-random) output from the 
LFSR

 A new bit is formed from the linear feedback function of some bits

 Correctly designed LFSRs generate a very long pseudo-random 
sequence before repeating

 LFSRs require an initialisation vector (i.e., seed) for their shift register



Example for an 8-Bit LFSR

 Initialisation vector: 10100110 (B7 … B0)

 Feedback Function: B7 EXOR B4 EXOR B1
 Right shift after each cycle (B0 shifted out)

 Iteration 0: 10100110 

 Iteration 1: 01010011 >> 0

 Iteration 2: 00101001 >> 1

 Iteration 3: 00010100 >> 1

 Iteration 4: 10001010 >> 0

 … …

The feedback func-

tion returns a “1”, if

an odd number of

inputs is set to “1” 



Example VoIP (Voice over the 
Internet Protocol)

 The sender’s voice is digitised and the resulting bit stream 

is encrypted using a stream cipher before being sent to the 

receiver over a network link

 Sender and receiver share the same seed value for their 

PRG



Stream Ciphers in Mobile 
Communication (early 2000s)

 Mobile phone conversations are sent as sequences of 
frames between both end points

◼ Voice samples are collected and digitised by the mobile phone

 Every 4.6 milliseconds a 228-bits long frame consisting 
of digitised voice is processed and send out

 A5/1 is an LFSR-based algorithm that was used to 
produce 228 bits of key stream which is EXORed with 
the frame

 A5/1 is initialised using a 64-bit key



A5/1

 3 independent LFSRs:

◼ 19 bits

◼ 22 bits 

◼ 23 bits

 The majority bit is the 
XORed output of all 3 LFSRs

 Each register is only shifted to 
the left, if their clocking bits 
(B8, B10, and B10 
respectively) match the 
majority bit



A5/1

 A5/1 was originally introduced in 1987

 It was protected as a "trade secret“, but has 
subsequently been reverse engineered during the 
90s

 As a result A5/2 was introduced, which has been 
broken as well

 A5/3 (KASUMI) was released in late 2002

◼ Block-cipher based on Feistel network



RC4

 RC4 is a PRG designed by Ron Rivest of RSA 
Security in 1987

 RC4 was initially a trade secret, but 1994 a 
description of it was anonymously posted in the 
Internet

 It consists of a 

◼ key-scheduling algorithm (KSA) and a

◼ pseudo-random generation algorithm (PRGA)



RC4: The Key-Scheduling 
Algorithm (KSA) 

 Requires a keyword (stored in key[]) with a 
specific keylength

 An 256 byte long permutation vector  S[] is 
generated:
for i from 0 to 255

S[i] := i;
j := 0;
for i from 0 to 255

j := (j + S[i] + key[i mod keylength])
mod 256;

swap(S[i],S[j]);



RC4: The Pseudo-Random 
Generation Algorithm (PRGA)

 PRGA returns one byte at a time:

i := 0;
j := 0;
while GeneratingOutput:

i := (i + 1) mod 256;
j := (j + S[i]) mod 256;
swap(S[i],S[j]);
output S[(S[i] + S[j]) mod 256];



RC4

 Not an LFSR-based design, but rather a more 
general pseudo-random number generator design

 Can be efficiently implemented in software

 Broken and not used any 
more!


