CT255
Introduction to Cybersecurity

|_ecture Overview

+ Practical approaches to recover hashed
passwords, I.e. hash cracking, and their
characteristics / limitations

m Dictionary attacks

m Look-up table-based attacks

m Hash chains

= Rainbow tables

+ Defense mechanisms against hash crackmg

CT255 - Cybersecurity
Lecture 6: Crack me if you can

Page 2

Version 2

Authentication Protocol
over secure connection

Claimant
User

The claimant enters user id and password (i.e.
Instagram login)

User id and hashed password are sent to the verifier
using the authentication protocol

The verifier checks if the transmitted user id and
hashed password against the stored values in the table
The verifier notifies the claimant via the

authentication protocol if the authentication was
successful

CT255 - Cybersecurity
Lecture 6: Crack me if you can
Page 3

Recap: Putting It all together —

(e.g. Instagram)

Verifier

User ID

ksl@outlook.com | 628749afdb&3...

Password Hash

Lvi
A (OLLSCOILNAGAILLIMHE
UNIVERSITY oF GALWAY

Hash Cracking

* Reverse-Engineer passwords?

= One-way function, ergo not User ID Password Hash

pOSSi b | a ms@gmail.com 1d8922d005733...
k51@outlook.com | 628749afdb83...

m But hash functions are public bd@yahoocom | 980ade3671e93...

CT255 - Cybersecurity
Lecture 6: Crack me if you can
Page 4

S,
VAR OLLSCOILNAGAILLIMHE
8N UNIVERSITY OF GALWAY

DEFUSE: A Online Text &
File Checksum Calculator

Online Text & File Checksum Calculator
’ [] This page lets you hash ASCI| text or a file with many different hash algorithms. Checksums are commonly used
D S e u S e . C a C e C to verify the integrety of data. The most common use is to verify that a file has been downloaded without error.
1 - The data you enter here is 100% private, neither the data nor hash values are ever recorded.

Enter some ASCII or UNICODE text...

IRemove line endings
Calculate checksums..

File (5MB MAX)

Chaoose File No file chosen Calculate checksums...

Supported Hash Algorithms

md5 LM NTLM sha1 sha256 sha384 sha512 md5(md5()) MySQL4.1+ ripemd160 whirlpool adler32 crc32 cre32b
friv1a32 fnv1a64 fnv132 fnv164 gost gost-crypto haval128,3 haval128,4 haval128,5 haval160,3 haval160,4
haval160,5 haval192,3 haval192,4 haval192,5 haval224,3 haval224,4 haval224,5 haval256,3 haval256,4

haval2586,5 joaat md2 md4 ripemd128 ripemd256 ripemd320 sha224 snefru snefru256 tiger128,3 tiger128,4
tiger160,3 tiger160,4 tiger192,3 tiger192,4

CT255 - Cybersecurity
Lecture 6: Crack me if you can
Page 5

QOLLSCOILNAGAILLIMHE
UNIVERSITY oF GALWAY

https://defuse.ca/checksums.htm

Dictionary-Based Brute-Force
Search

+ Dictionary search can be used to systematically identify a
match for a given hash value
m The underlying hash function must be known

+ Dictionaries are based on large word, phrase or password
collections
* ©:
m Straight forward process
* B
m Significant computational effort to find match
m No guaranteed result

A B EL
VAT OLLSCOILNAGAILLIMHE
IS UNIVERSITY oF GALWAY

Example

+ Assume a hash code and the underlying hash function H
are known

+ The dictionary for H contains 10%° entries (i.e., password
candidates)

+ A single computer can compute 10° hash values per second

+ |t takes 10° seconds (~29 hours) to search the entire
dictionary for a match

+ Need for performance improvements!

CT255 - Cybersecurity
Lecture 6: Crack me if you can
Page 7

A B EL
VAT OLLSCOILNAGAILLIMHE
N 'n UNIVERSITY oF GALWAY

CrackStation's Password
Cracking Dictionary

CrackStation's Password Cracking Dictionary
L
’ https . //C raC kstatl O n I am releasing CrackStation's main password cracking dictionary (1,493,677,782 words, 15GB) for download.
t / k t t- What's in the list?
. n e C raC S a' I O n The list contains every wordlist, dictionary, and password database leak that I could find on the internet (and I spent a LOT of time looking). It also
- contains every word in the Wikipedia databases (pages-articles, retrieved 2010, all languages) as well as lots of books from Project Gutenberg. It
WO rd I I St DaSSWO rd also includes the passwords from some low-profile database breaches that were being sold in the underground years ago.

The format of the list is a standard text file sorted in non-case-sensitive alphabetical order. Lines are separated with a newline "\n" character.

- You can test the list without downloading it by giving SHA256 hashes to the free hash cracker. Here's a tool for computing_hashes easily. Here are
C raC I n q - the results of cracking LinkedIn's and eHarmony's password hash leaks with the list.

The list is responsible for cracking about 30% of all hashes given to CrackStation's free hash cracker, but that figure should be taken with a grain of
- - salt because some people try hashes of really weak passwords just to test the service, and others try to crack their hashes with other online hash

I Ctl O n arv. tl I l crackers before finding CrackStation. Using the list, we were able to crack 49.98% of one customer's set of 373,000 human password hashes to
motivate their move to a better salting scheme.

Download

Note: To download the torrents, you will need a torrent client like Transmission (for Linux and Mac), or uTorrent for Windows.

Torrent (Fast)

GZIP-compressed (level 9). 4.2 GiB compressed. 15 GiB uncompressed.

HTTP Mirror (Slow)

Checksums (crackstation.txt.gz)

MDS: 4748a7270611934a17662446862ca4f8
SHA1: efa3fsecbfba®3df523418a78871ec59757b6d3f
SHA256: a6dc17d27d@a34f57¢989741acdd485b8aeed5a6e9796dafB8c9435370dc61612

CT255 - Cybersecurity
Lecture 6: Crack me if you can
Page 8

QOLLSCOILNAGAILLIMHE
UNIVERSITY oF GALWAY

https://crackstation.net/crackstation-wordlist-password-cracking-dictionary.htm

Lookup Table-Based Attacks

+ For a given hash function and dictionary
m Calculate hash value for all dictionary entries
m Add both values to a table (i.e. one line per entry)

m Sort table (e.g. in ascending order of hash values)
® Also called lookup table

+ Example table (assuming 44-bit hash values):

Hash value Password
0x00000000354 gangster
0x00000001003 Bluemoon

A B EL
VAT OLLSCOILNA GAILLIMHE
o .:; UNIVERSITY oF GALWAY

Lookup Table-Based Attacks

+ The matching password for a given hash value can be recovered by
systematically searching for it in the dictionary

* ©:
m Such a table can be generated offline

m The search process itself is fast (~log,(# of entries)) with
binary search

® A table containing 1.8x10*° entry would require just 64 guesses to find
(or not) the correct password for a given hash value

*®:
m Huge table, with no guaranteed result
= Different table required for every hash function @ ouconcrun

i) UNIVERSITY Or GALWAY

Lookup Table-Based Attacks:
Example

+ Assume a hash function that generates 16 byte (128 bit)
hash values, e.g. MD5

+ \We calculate a lookup table for all possible 6 character
long passwords composed of 64 possible characters A-Z,
a-z, 0-9, “.” and *“/”

+ A table would consist of 64° (= 68,719,476,736) entries,

with every entry consisting of a 6 byte password and a 16
bytes hash

¢ Total size of table ~ 1.4 Terabyte

CT255 - Cybersecurity
Lecture 6: Crack me if you can

Page 11

Crackstation’s free Password
Hash Cracker

Free Password Hash Cracker
‘ h . k Enter up to 20 non-salted hashes, one per line:
DS n C raC S a d9295ddbbeofd599a8c8849d14d0186eaBb6d998a4e70335bd8b712831b74Fa8
-
t I O n n et/ . I'm not a robot
n

Crack Hashes

Supports: LM, NTLM, md2, md4, md5, md5(md5_hex), md5-half, shal, sha224, sha256, sha384, sha512, ripeMD160, whirlpool, MySQL 4.1+ (shal(shal_bin)),
QubesV3.1BackupDefaults

Hash Type Result

Color Codes: Gf@end Exact match, Yellow: Partial match, [llll Mot found.

Download CrackStation's Wordlist

How CrackStation Works

CrackStation uses massive pre-computed lookup tables to crack password hashes. These tables store a mapping between the hash of a password,
and the correct password for that hash. The hash values are indexed so that it is possible to quickly search the database for a given hash. If the
hash is present in the database, the password can be recovered in a fraction of a second. This only works for "unsalted" hashes. For information on
password hashing systems that are not vulnerable to pre-computed lookup tables, see our hashing_security page.

Crackstation's lookup tables were created by extracting every word from the Wikipedia databases and adding with every password list we could
find. We also applied intelligent word mangling (brute force hybrid) to our wordlists to make them much more effective. For MD5 and SHA1 hashes,
we have a 190GB, 15-billion-entry lookup table, and for other hashes, we have a 19GB 1.5-billion-entry lookup table.

You can download CrackStation's dictionaries here, and the lookup table implementation (PHP and C) is available here.

CT255 - Cybersecurity
Lecture 6: Crack me if you can
Page 12

QOLLSCOILNAGAILLIMHE
UNIVERSITY oF GALWAY

https://crackstation.net/

In-Class Activity: Password
recovery

+ 5 minutes only, work alone or in a group

+ \What to do:

m Pick a password and calculate its MD5 or SHA1 hash using
https.//defuse.ca/checksums.htm

m Copy and paste the hash value into https://crackstation.net/ to
see If it Is can be recovered

m Repeat the above and keep a list of all passwords
® that can be cracked
® that cannot be cracked

CT255 - Cybersecurity
Lecture 6: Crack me if you can
Page 13

SALE
VAT OLLSCOILNA GAILLIMHE
-'....:J UNIVERSITY OF GALWAY

https://defuse.ca/checksums.htm
https://crackstation.net/

Rainbow Tables

* Uses less computer processing time and more
storage than a brute-force attack

+ Uses more processing time and less storage than
a simple lookup table

* Practical example of a space—time trade-off

CT255 - Cybersecurity

Lecture 6: Crack me if you can VATNA OLLSCOILNAGAILLIMHE

Page 14

Pre-Computed Hash Chains

¢ Calculate long chains of hash values (using a hash function “-=>” and

a reduction function “-=2”, e.g.
aaaaaa—>173bdfede2ee3ab3 - jdjkuo - 9fdde3a0027fbb36 - ... = k3rtol
m In the example we only consider passwords that are 6 characters long
m Each chain starts with a random password and has a fixed length, e.g. 10,000
segments

m Here “=” converts the 64 bit hash value into an arbitrary 6 byte long string
again, i.e. its not an inverted hash function!

+ We only store the first and the last value (starting point and end
point), 1.e. “aaaaaa” and “k3rtol”

CT255 - Cybersecurity
Lecture 6: Crack me if you can
Page 15

A B EL
WA (OLLSCOILNAGAILLIMHE
$:; UNIVERSITY oF GALWAY

Hash Functions, Reduction
Functions and Chains

CT255 - Cybersecurity
Lecture 6: Crack me if you can

Page 16

Pseudo-Code to create a single
Chain

+ This example creates a chain with the start value
“abcdefg” and a length of 10,000 elements

+ Note that the last value of this chain is a hash value (i.e.
CipherteXt) String plaintext, first, ciphertext:;

plaintext = first = "abcdefg":

for (int i=0; i<10000; i++) 1
ciphertext = hash it (plaintext):
plaintext = reduce it (ciphertext):

¥

System.out.printf ("%3:%3\n", first, ciphertext):;

CT255 - Cybersecurity
Lecture 6: Crack me if you can
Page 17

SALE
VAT OLLSCOILNA GAILLIMHE
-'....:J UNIVERSITY OF GALWAY

Chain Lookup

Assume we have a table with just 2 chains (with start and end values), i.e.

aaaaaa—~>173bdfede2ee3ab3 - ... 2 8995tg -9fdde3a0027fbb36 - ... =>|k3rtol
htk391—>856385934954950 - ... - delphi >759858fde66e8aa8 - ... > |prp56e

... and a hash value “759858fde66e8aa8” we’d like to crack
We apply consecutively “—>” and “—>”, until we

- hit a known end value (k3rtol or prp56e in the example), or
- have repeated the operation x times (with x being the length of the chain)

If we hit the known end value “prp56e” we repeat the transformation starting with
its start value “hfk39f, until we hit “759858fde66e8aa8” again

The password “delphi * that led to this hash is the solution

CT255 - Cybersecurity
Lecture 6: Crack me if you can
Page 18

A B EL
VAT OLLSCOILNAGAILLIMHE
:; UNIVERSITY oF GALWAY

Chain Lookup Pseudocode

Input: Hash value H
Reduce H into another plaintext P

Look for the plaintext P in the list of final plaintexts (i.e. end
values), if it is there, break out of the loop and go to step 6.

If it isn't there, calculate the hash H of the plaintext P
Goto 2., unless you’ve done the maximum amount of iterations

If P matches one of the final plaintexts, you’ve got a matching
chain; in this case walk through the chain again starting with
the corresponding start value, until you find the text that

translates into H

CT255 - Cybersecurity
Lecture 6: Crack me if you can
Page 19

SALE
VAT OLLSCOILNA GAILLIMHE
o .:; UNIVERSITY oF GALWAY

Chain Collisions

Consider the following scenario:

aaaaaa—> ... » 173bdfede2ee3ab3 - delphi - 759858fde66e8aa8 - ... - prp56e
hfk39f-> ... - 856385934954950 - delphi - 759858fde66e8aa8 - ... = prp56e

2 chains merge, because

+ the reduction function translates two different hashes into the
same password, or

+ the hash function translates two different passwords into the
same hash (which should not happen)

Because of collisions there is no guarantee that your
chains will ever cover all possible passwords

CT255 - Cybersecurity
Lecture 6: Crack me if you can
Page 20

A B EL
VAT OLLSCOILNAGAILLIMHE
N 'n UNIVERSITY oF GALWAY

Chain Loops

+ Here you find repetitions of hashes in a single
chain

CT255 - Cybersecurity
Lecture 6: Crack me if you can

Page 21

Rainbow Tables

+ Rainbow tables effectively solve the problem of
collisions with ordinary hash chains by replacing the
single reduction function R with a sequence of related
reduction functions R, through R, (one reduction
function per column)

+ |n this way, for two chains to collide and merge they
must hit the same value on the same Iiteration, which is
rather unlikely

CT255 - Cybersecurity
Lecture 6: Crack me if you can

Page 22

Example Rainbow Table
(Source: Wikipedia)

+ Assume a Rainbow table consisting of n chains with 3 reduction functions R;, R,
and R, per chain and a hash function H

¢ Each rainbow table entry stores the leftmost and the rightmost password candidate
as calculated by the chain (e.g., wikipedia and rootroot)

............ H o R e B2 I R
taliiil l:::} iuu-lll:d l::'..'? l::,,"')r itpm‘n l::? jirnl:u l::} uﬂl:lh l:.'} rootroot -
ST | I— R H gasaaee F2 gy H e 1 J——
: abedefgh: > lunfs c=> > holscx (> zurich |:,"} Hntpy ==}- mynimt
saaay H ocicec, R H Rz i, o H aniaas, 5 S
passwd 0> dlomd =0 =i redxes (= Cypto -l LD =00 linui23
CT255 - Cybersecurity |
Lecture 6: Crack me if you can) OLLSCOILNAGAILLIMHE
UNIVERSITY oF GALWAY

Page 23

Example Rainbow Table
Processing (Source: Wikipedia)

[\ eeeeeeans ? 3 @
wﬂ:l:h'j rootroot <= rambo | <=
OK Rs H e @

l. 1 :---I!r‘--++++++. '] -
: abedefgh | myname <= linux23 {::{:: crypto 1‘;‘,,=
T T e LT

@ H o STOP !
.................................... o 1 peeennns
passwd T linu23 IZ:) passwd Eﬁ}:“dlcmﬂf —> > redxes @
\,
CT255 - Cybersecurity

AL Ly 5
VAT OLLSCOILNAGAILLIMHE

Lecture 6: Crack me if you can dihls
- UNIVERSITY oF GALWAY

Page 24

Example Rainbow Table
Processing (Source: Wikipedia)

* The hash we want to crack Is re3xes

* Step 1: Calculate R3(re3xes) and determine if the
result matches any of the chain end values;

m 1f there 1s a match, then you’ve 1dentified the hash
chain; go through the hash chain from the beginning
to find the matching password (as seen before) and
exit;

m else goto Step 2

CT255 - Cybersecurity
Lecture 6: Crack me if you can

Page 25

Example Rainbow Table
Processing (Source: Wikipedia)

+ Step 2: Calculate R3(H(R2(re3xes))) and
determine If the result matches any of the chain
end values;

m if there is a match, then you’ve identified the hash
chain; go through the hash chain from the beginning
to find the matching password (as seen before) and
exit;

m else goto Step 3

CT255 - Cybersecurity
Lecture 6: Crack me if you can

Page 26

Example Rainbow Table
Processing (Source: Wikipedia)

* Step 3: Calculate R3(H(R2(H(R1(re3xes))))) and
determine If the result matches any of the chain
end values;

m if there is a match, then you’ve identified the hash
chain; go through the hash chain from the beginning
to find the matching password (as seen before) and
exit;

m else exit with no match found

CT255 - Cybersecurity
Lecture 6: Crack me if you can

Page 27

Perfect and non-perfect
Rainbow Tables

* |n a perfect rainbow table passwords do not appear in
more than one chain

+ Non-perfect rainbow tables do not have this

requirement

m They are easier to compute, but less memory-efficient
because of repeating passwords (note that these usually do
not cause collisions because of the reduction functions Ry)

+ The longer the password, the more complex a rainbow
table becomes

CT255 - Cybersecurity
Lecture 6: Crack me if you can
Page 28

SALE
VAT OLLSCOILNA GAILLIMHE
-'....:J UNIVERSITY OF GALWAY

Defense against Rainbow
Tables

¢ |dea:

m Increase the (required) length of a password

m By doing so there are many more potential passwords to
be considered by a rainbow table ...

® ... up to a point where such tables are simply no more
economical to generate

m Increasing the password length can be either done by the
password owner (i.e. the claimant), or algorithmically

CT255 - Cybersecurity
Lecture 6: Crack me if you can
Page 29

Defense against Rainbow
Tables

The following approaches make rainbow tables less economical any
1. Long passwords (enforce users to use long passwords)

2. Passwords salts (algorithmic approach)

= A unique and random, but known string is appended to each password
before its hash is calculated:

User ID Salt Password Hash Password (not part of table)
ms@gmail.com 12367 1d8922d005733... 12367KenSentme!
k51@outlook.com | 56f87 628749afdb83... 56f87Fluffybear

abd@yahoo.com 465d0 980ade367{c93... 46d05Limerick

m A (potentially short) user password is thereby extended

CT255 - Cybersecurity
Lecture 6: Crack me if you can
Page 30

ALl
AR OLLSCOILNAGAILLIMUHE
r; UNIVERSITY oF GALWAY

Defense against Rainbow
Tables

3. Pepper (algorithmic approach)

m Like salt, but a unigue secret string is added to all passwords before they
are hashed

4. Multiple iterations (algorithmic approach)
m A password p is hashed multiple (> 1000) times before stored in the
database, e.g. HH(H(H(..(H(p))..))))
5. Combination methods (algorithmic approach), e.g.,
m NewHash(password) = H(H(password) || salt)

m NewHash(password) = H,(H,(password) || salt), with hash functions H,
and H,

CT255 - Cybersecurity
Lecture 6: Crack me if you can
Page 31

A B EL
VAT OLLSCOILNAGAILLIMHE
o 'n UNIVERSITY oF GALWAY

