
CT255
Introduction to Cybersecurity

Lecture 5

„Crack me if you can”

Dr. Michael Schukat, 2019-2022

Lecture Overview

 Practical approaches to recover hashed

passwords, i.e. hash cracking, and their

characteristics / limitations

◼ Dictionary attacks

◼ Look-up table-based attacks

◼ Hash chains

◼ Rainbow tables

 Defense mechanisms against hash cracking
CT255 - Cybersecurity

Lecture 6: Crack me if you can

Page 2

Recap: Putting it all together –
Version 2

CT255 - Cybersecurity

Lecture 6: Crack me if you can

Page 3

Claimant

(User)

Verifier

(e.g. Instagram)
Authentication Protocol

over secure connection

Hash Function

User ID Password Hash

ms@gmail.com 1d8922d005733…

k51@outlook.com 628749afdb83…

abd@yahoo.com 980ade367fc93…

1. The claimant enters user id and password (i.e.

Instagram login)

2. User id and hashed password are sent to the verifier

using the authentication protocol

3. The verifier checks if the transmitted user id and

hashed password against the stored values in the table

4. The verifier notifies the claimant via the

authentication protocol if the authentication was

successful

Hash Function

Hash Cracking

CT255 - Cybersecurity

Lecture 6: Crack me if you can

Page 4

User ID Password Hash

ms@gmail.com 1d8922d005733…

k51@outlook.com 628749afdb83…

abd@yahoo.com 980ade367fc93…

 Reverse-Engineer passwords?

◼ One-way function, ergo not

possible

◼ But hash functions are public

DEFUSE: A Online Text &
File Checksum Calculator

 https://defuse.ca/check

sums.htm

CT255 - Cybersecurity

Lecture 6: Crack me if you can

Page 5

https://defuse.ca/checksums.htm

Dictionary-Based Brute-Force
Search

 Dictionary search can be used to systematically identify a

match for a given hash value

◼ The underlying hash function must be known

 Dictionaries are based on large word, phrase or password

collections

 ☺ :

◼ Straight forward process

  :

◼ Significant computational effort to find match

◼ No guaranteed result

Example

 Assume a hash code and the underlying hash function H

are known

 The dictionary for H contains 1010 entries (i.e., password

candidates)

 A single computer can compute 105 hash values per second

 It takes 105 seconds (~29 hours) to search the entire

dictionary for a match

 Need for performance improvements!

CT255 - Cybersecurity

Lecture 6: Crack me if you can

Page 7

CrackStation's Password
Cracking Dictionary

 https://crackstation

.net/crackstation-

wordlist-password-

cracking-

dictionary.htm

CT255 - Cybersecurity

Lecture 6: Crack me if you can

Page 8

https://crackstation.net/crackstation-wordlist-password-cracking-dictionary.htm

Lookup Table-Based Attacks

 For a given hash function and dictionary

◼ Calculate hash value for all dictionary entries

◼ Add both values to a table (i.e. one line per entry)

◼ Sort table (e.g. in ascending order of hash values)

⚫Also called lookup table

 Example table (assuming 44-bit hash values):

Hash value Password

0x00000000354 gangster

0x00000001003 Bluemoon

… …

Lookup Table-Based Attacks

 The matching password for a given hash value can be recovered by

systematically searching for it in the dictionary

 ☺ :

◼ Such a table can be generated offline

◼ The search process itself is fast (~log2(# of entries)) with

binary search

⚫A table containing 1.8x1019 entry would require just 64 guesses to find

(or not) the correct password for a given hash value

  :

◼ Huge table, with no guaranteed result

◼ Different table required for every hash function

Lookup Table-Based Attacks:
Example

 Assume a hash function that generates 16 byte (128 bit)

hash values, e.g. MD5

 We calculate a lookup table for all possible 6 character

long passwords composed of 64 possible characters A-Z,

a-z, 0-9, “.” and “/”

 A table would consist of 646 (= 68,719,476,736) entries,

with every entry consisting of a 6 byte password and a 16

bytes hash

 Total size of table ~ 1.4 Terabyte
CT255 - Cybersecurity

Lecture 6: Crack me if you can

Page 11

Crackstation’s free Password
Hash Cracker

 https://cracksta

tion.net/

CT255 - Cybersecurity

Lecture 6: Crack me if you can

Page 12

https://crackstation.net/

In-Class Activity: Password
recovery

 5 minutes only, work alone or in a group

 What to do:

◼ Pick a password and calculate its MD5 or SHA1 hash using

https://defuse.ca/checksums.htm

◼ Copy and paste the hash value into https://crackstation.net/ to

see if it is can be recovered

◼ Repeat the above and keep a list of all passwords

⚫ that can be cracked

⚫ that cannot be cracked

CT255 - Cybersecurity

Lecture 6: Crack me if you can

Page 13

https://defuse.ca/checksums.htm
https://crackstation.net/

Rainbow Tables

 Uses less computer processing time and more

storage than a brute-force attack

 Uses more processing time and less storage than

a simple lookup table

 Practical example of a space–time trade-off

CT255 - Cybersecurity

Lecture 6: Crack me if you can

Page 14

Pre-Computed Hash Chains

 Calculate long chains of hash values (using a hash function “→” and

a reduction function “→”, e.g.
aaaaaa→173bdfede2ee3ab3 → jdjkuo→9fdde3a0027fbb36 →… → k3rtol

◼ In the example we only consider passwords that are 6 characters long

◼ Each chain starts with a random password and has a fixed length, e.g. 10,000

segments

◼ Here “→” converts the 64 bit hash value into an arbitrary 6 byte long string

again, i.e. its not an inverted hash function!

 We only store the first and the last value (starting point and end

point), i.e. “aaaaaa” and “k3rtol”

CT255 - Cybersecurity

Lecture 6: Crack me if you can

Page 15

Hash Functions, Reduction
Functions and Chains

CT255 - Cybersecurity

Lecture 6: Crack me if you can

Page 16

Pseudo-Code to create a single
Chain

CT255 - Cybersecurity

Lecture 6: Crack me if you can

Page 17

 This example creates a chain with the start value

“abcdefg” and a length of 10,000 elements

 Note that the last value of this chain is a hash value (i.e.

ciphertext)

Chain Lookup

Assume we have a table with just 2 chains (with start and end values), i.e.

aaaaaa→173bdfede2ee3ab3 →… → 8995tg→9fdde3a0027fbb36 →…→ k3rtol

hfk39f→856385934954950 →… → delphi→759858fde66e8aa8 →… → prp56e

… and a hash value “759858fde66e8aa8” we’d like to crack

We apply consecutively “→” and “→”, until we

- hit a known end value (k3rtol or prp56e in the example), or

- have repeated the operation x times (with x being the length of the chain)

If we hit the known end value “prp56e” we repeat the transformation starting with

its start value “hfk39f”, until we hit “759858fde66e8aa8” again

The password “delphi ” that led to this hash is the solution

CT255 - Cybersecurity

Lecture 6: Crack me if you can

Page 18

Chain Lookup Pseudocode

1. Input: Hash value H

2. Reduce H into another plaintext P

3. Look for the plaintext P in the list of final plaintexts (i.e. end

values), if it is there, break out of the loop and go to step 6.

4. If it isn't there, calculate the hash H of the plaintext P

5. Goto 2., unless you’ve done the maximum amount of iterations

6. If P matches one of the final plaintexts, you’ve got a matching

chain; in this case walk through the chain again starting with

the corresponding start value, until you find the text that

translates into H
CT255 - Cybersecurity

Lecture 6: Crack me if you can

Page 19

Chain Collisions

Consider the following scenario:
aaaaaa→ … → 173bdfede2ee3ab3 → delphi→ 759858fde66e8aa8 →…→ prp56e

hfk39f→ … → 856385934954950 → delphi→ 759858fde66e8aa8 →…→ prp56e

2 chains merge, because

 the reduction function translates two different hashes into the

same password, or

 the hash function translates two different passwords into the

same hash (which should not happen)

Because of collisions there is no guarantee that your

chains will ever cover all possible passwords
CT255 - Cybersecurity

Lecture 6: Crack me if you can

Page 20

Chain Loops

 Here you find repetitions of hashes in a single

chain

CT255 - Cybersecurity

Lecture 6: Crack me if you can

Page 21

Rainbow Tables

 Rainbow tables effectively solve the problem of

collisions with ordinary hash chains by replacing the

single reduction function R with a sequence of related

reduction functions R1 through Rk (one reduction

function per column)

 In this way, for two chains to collide and merge they

must hit the same value on the same iteration, which is

rather unlikely

CT255 - Cybersecurity

Lecture 6: Crack me if you can

Page 22

Example Rainbow Table
(Source: Wikipedia)

 Assume a Rainbow table consisting of n chains with 3 reduction functions R1, R2

and R3 per chain and a hash function H

 Each rainbow table entry stores the leftmost and the rightmost password candidate

as calculated by the chain (e.g., wikipedia and rootroot)

CT255 - Cybersecurity

Lecture 6: Crack me if you can

Page 23

Example Rainbow Table
Processing (Source: Wikipedia)

CT255 - Cybersecurity

Lecture 6: Crack me if you can

Page 24

Example Rainbow Table
Processing (Source: Wikipedia)

 The hash we want to crack is re3xes

 Step 1: Calculate R3(re3xes) and determine if the

result matches any of the chain end values;

◼ if there is a match, then you’ve identified the hash

chain; go through the hash chain from the beginning

to find the matching password (as seen before) and

exit;

◼ else goto Step 2
CT255 - Cybersecurity

Lecture 6: Crack me if you can

Page 25

Example Rainbow Table
Processing (Source: Wikipedia)

 Step 2: Calculate R3(H(R2(re3xes))) and

determine if the result matches any of the chain

end values;

◼ if there is a match, then you’ve identified the hash

chain; go through the hash chain from the beginning

to find the matching password (as seen before) and

exit;

◼ else goto Step 3

CT255 - Cybersecurity

Lecture 6: Crack me if you can

Page 26

Example Rainbow Table
Processing (Source: Wikipedia)

 Step 3: Calculate R3(H(R2(H(R1(re3xes))))) and

determine if the result matches any of the chain

end values;

◼ if there is a match, then you’ve identified the hash

chain; go through the hash chain from the beginning

to find the matching password (as seen before) and

exit;

◼ else exit with no match found

CT255 - Cybersecurity

Lecture 6: Crack me if you can

Page 27

Perfect and non-perfect
Rainbow Tables

CT255 - Cybersecurity

Lecture 6: Crack me if you can

Page 28

 In a perfect rainbow table passwords do not appear in

more than one chain

 Non-perfect rainbow tables do not have this

requirement

◼ They are easier to compute, but less memory-efficient

because of repeating passwords (note that these usually do

not cause collisions because of the reduction functions RK)

 The longer the password, the more complex a rainbow

table becomes

Defense against Rainbow
Tables

 Idea:

◼ Increase the (required) length of a password

◼ By doing so there are many more potential passwords to

be considered by a rainbow table …

◼ … up to a point where such tables are simply no more

economical to generate

◼ Increasing the password length can be either done by the

password owner (i.e. the claimant), or algorithmically
CT255 - Cybersecurity

Lecture 6: Crack me if you can

Page 29

Defense against Rainbow
Tables

The following approaches make rainbow tables less economical any

1. Long passwords (enforce users to use long passwords)

2. Passwords salts (algorithmic approach)

◼ A unique and random, but known string is appended to each password

before its hash is calculated:

◼ A (potentially short) user password is thereby extended

CT255 - Cybersecurity

Lecture 6: Crack me if you can

Page 30

User ID Salt Password Hash Password (not part of table)

ms@gmail.com 12367 1d8922d005733… 12367KenSentme!

k51@outlook.com 56f87 628749afdb83… 56f87Fluffybear

abd@yahoo.com 465d0 980ade367fc93… 46d05Limerick

Defense against Rainbow
Tables

3. Pepper (algorithmic approach)

◼ Like salt, but a unique secret string is added to all passwords before they

are hashed

4. Multiple iterations (algorithmic approach)

◼ A password p is hashed multiple (> 1000) times before stored in the

database, e.g. H(H(H(H(..(H(p))..))))

5. Combination methods (algorithmic approach), e.g.,

◼ NewHash(password) = H(H(password) || salt)

◼ NewHash(password) = H1(H2(password) || salt), with hash functions H1

and H2

CT255 - Cybersecurity

Lecture 6: Crack me if you can

Page 31

