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[From textbook, p184]. Here is a map of the (fictional) country “Euleria”.
Colour it so that adjacent regions are coloured differently. What is the fewest
colours required?
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There are maps that can be coloured with

A single colour:

Two colours (e.g., the island of Ireland):

Three colours:

Four colours:
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It turns out that the is no map that needs more than 4 colours. This is the
famous Four Colour Theorem, which was originally conjectured by the
British/South African mathematician and botanist, Francis Guthrie who at the
time was a student at University College London.

He told one of his mathematics lecturers, Augustus de Morgan, who, on 23
October, 1852, wrote to friend William Rowan Hamilton, who was in Dublin:

https://en.wikipedia.org/wiki/Four_color_theorem
https://en.wikipedia.org/wiki/Francis_Guthrie
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From https://en.wikipedia.org/wiki/Four_color_theorem
de Morgan writes to Hamilton, 23 October, 1852..

https://en.wikipedia.org/wiki/Four_color_theorem
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From https://en.wikipedia.org/wiki/Four_color_theorem
de Morgan writes to Hamilton, 23 October, 1852..

A student of mine asked me to day to give him a reason for a fact which I
did not know was a fact and do not yet. He says that if a figure be any how
divided and the compartments differently coloured so that figures with any
portion of common boundary line are differently coloured-four colours may
be wanted, but not more-the following is his case in which four are wanted.
Query: cannot a necessity for five or more be invented... What do you say?
And has it, if true been noticed?
My pupil says he guessed it in colouring a map of England... The more I
think of it, the more evident it seems. If you retort with some very simple
case which makes me out a stupid animal, I think I must do as the Sphynx
did...

De Morgan needn’t have worried: a proof was not produced until 1976. It is
very complicated, and relies heavily on computer power.

https://en.wikipedia.org/wiki/Four_color_theorem
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To get a sense of why it might be true, try to draw a map that needs 5
colours.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Our interest is not in trying to prove the Four Colour Theorem, but in how it is
related to Graph Theory.
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Our interest is not in trying to prove the Four Colour Theorem, but in how it is
related to Graph Theory
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If we think of a map as a way of showing which regions share borders, then we
can represent it as a graph, where

A vertex in the graph corresponds to a region in the map;
There is an edge between two vertices in the graph if the corresponding
regions share a border.

Example:

GY
MO

RN
SO

LM
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Colouring regions of a map corresponds to colouring vertices of the graph.
Since neighbouring regions in the map must have different colours, so too
adjacent vertices in the graph must have different colours.

More precisely

Vertex Colouring: An assignment of colours to the vertices of a graph is called
a VERTEX COLOURING .

Proper Colouring: If the vertex colouring has the property that adjacent
vertices are coloured differently, then the colouring is called
PROPER.

Lots of different proper colourings are possible. If the graph has v vertices,
then clearly at most v colours are needed. However, usually, we need far fewer.
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Examples:



Part 2: Colouring Graphs Chromatic Number (14/48)

CHROMATIC NUMBER
The smallest number of colours needed to get a proper vertex colouring of a
graph G is called the CHROMATIC NUMBER of the graph, written χ(G).

Example: Determine the Chromatic Number of the graphs C2, C3, C4 and C5.
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Example: Determine the Chromatic Number of the Kn and Kp,q for any n, p, q.
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In general, calculating χ(G) is not easy. There are some ideas that can help.
For example, it is clearly true that, if a graph has v vertices, then

1 ≤ χ(G) ≤ v .

If the graph happens to be complete, then χ(G) = v . If it is not complete the
we can look at cliques in the graph.

Clique: A CLIQUE is a subgraph of a graph all of whose vertices are
connected to each other.
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The CLIQUE NUMBER of a graph, G , is the number of vertices in the largest
clique in G .

From the last example, we can deduce that

LOWER BOUND: The chromatic number of a graph is at least its
clique number.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We can also get a useful upper bound. Let ∆(G) denote the largest degree of
any vertex in the graph, G ,

UPPER BOUND: χ(G) ≤ ∆(G) + 1.

Why? This is called Brooks’ Theorem, and is Thm 4.5.5 in the text-book:
http://discrete.openmathbooks.org/dmoi3/sec_coloring.html

http://discrete.openmathbooks.org/dmoi3/sec_coloring.html
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In general, finding a proper colouring of a graph is hard .

There are some algorithms that are efficient, but not optimal. We’ll look at
two:

1. The Greedy algorithm.
2. The Welsh-Powell algorithm.

The Greedy algorithm is simple and efficient, but the result can depend on the
ordering of the vertices.

Welsh-Powell is slightly more complicated, but can give better colourings.
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The GREEDY ALGORITHM
1. Number all the vertices. Number your colours.
2. Give a colour to vertex 1.
3. Take the remaining vertices in order. Assign each one the lowest numbered

colour, that is different from the colours of its neighbours.

Example: Apply the GREEDY ALGORITHM to colouring the following graph
(the cubical graph, Q3):

https://en.wikipedia.org/wiki/Cube
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Welsh-Powell Algorithm
1. List all vertices in decreasing order of their degree (so largest degree is first).

If two or more have the same degree, list those any way.
2. Colour the first listed vertex (with first unused colour).
3. Work down the list, giving that colour to all vertices not connected to one

previously coloured.
4. Cross coloured vertices off the list, and return to the start of the list.

Example: Colour this graph using both GREEDY and WELSH-POWELL:

2
4

3

5

1
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Example
Seven one-hour exams, e1, e2, . . . e7, must be timetabled. There are students
who must sit

(i) e1 and e5,
(ii) e1 and e7,

(iii) e2, e3, and e6,
(iv) e2, e4, and e7,

(v) e3, e5, and e6,
(vi) e4 and e5

Model this situation as a vertex colouring problem, and find a scheduling that
avoids timetable clashes and uses the minimum number of hours.
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We originally motivated the study of Graph Theory with the Königsberg
bridges problem: find a route through the city that crosses every bridge once
and only once:

We’ll now return to this problem, and show that there is no solution. First we
have to re-phrase this problem in the setting of graph theory.
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Recall (from Week 8) that a PATH in a graph is a sequence of adjacent
vertices in a graph.

Eulerian Path
An EULERIAN PATH (also called an Euler Path and an Eulerian trail) in a
graph is a path which uses every edge exactly once.

Example:

a

b

e

c

f

d
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Recall from Week 8 that a circuit is a path that begins and ends at that same
vertex, and no edge is repeated...

Eulerian Circuit
An EULERIAN CIRCUIT (also called an Eulerian cycle) in a graph is an
Eulerian path that starts and finishes at the same vertex.
If a graph has such a circuit, we say it is Eulerian.

Example 1 (K5):
a

b

c

d

e
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Example 2: Find an Eulerian circuit in this graph:

a

b

c

d

e

f
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Of course, not every graph as an Eulerian circuit, or, indeed, and Eulerian path.

Here are some extreme examples:
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It is possible to come up with a condition that guarantee that a graph has an
Eulerian path, and, addition, one that ensures that it has an Eulerian circuit.

To begin with, we’ll reason that the following graph could not have an Eulerian
circuit, although it does have an Eulerian path:

abc

df

g h
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Suppose, first, the we have a graph that does have an Eulerian circuit. Then
for every edge in the circuit that “exits” a vertex, there is another that “enters”
that vertex. So every vertex must have even degree.
Example (W3)
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In fact, a stronger statement is possible.

A graph has an EULERIAN CIRCUIT if and only if every vertex has even
degree.

Example: Show that the following graph has an Eulerian circuit

a d

e

f

g

b

c
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Next suppose that a graph does not have an Eulerian circuit, but does have
an Eulerian Path. Then the degree of the “start” and “end” vertices must be
odd, and every other vertex has even degree.
Example:

c

b d

a
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To summarise:

Eulerian Paths and Circuits
A graph has an EULERIAN CIRCUIT if and only if the degree of every
vertex is even.
A graph has an EULERIAN PATH if and only if it has either zero or two
vertices with odd degree.

Example: The Königsberg bridge graph does not have an Eulerian path:
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Example (MA284, 2020/21 Semester 1 Exam)
Let G = (V ,E), where V = {a, b, c, d , e, f , g}, and
E = {{a, b}, {a, g}, {b, c}, {b, d}, {b, g}, {c, d}, {d , e}, {e, f }, {e, g}, {f , g}.
Does G admit an Eulerian Path and/or Circuit? If it does, exhibit one. If not,
explain why.
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Next we’ll look at a closely related problem: finding paths through a graph that
visit every vertex exactly once.

These are called HAMILTONIAN PATH, and are named after the (very
famous) William Rowan Hamilton, the Irish mathematician, who invented a
board-game based on the idea.

Hamilton’s Icosian Game (Library of the Royal Irish Academy)

Try playing online: https://www.geogebra.org/m/u3xggkcj

https://www.geogebra.org/m/u3xggkcj
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Definition (HAMILTONIAN PATH)
A path in a graph that visits every vertex exactly once is called a
HAMILTONIAN PATH.



Part 5 Hamiltonian Paths and Cycles (41/48)

Hamiltonian Cycles
Recall that a CYCLE is a path that starts and finishes at the same vertex, but
no other vertex is repeated.
A HAMILTONIAN CYCLE is a cycle which visits the start/end vertex twice,
and every other vertex exactly once.
A graph that has a Hamiltonian cycle is called a HAMILTONIAN GRAPH.

Examples:
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This is the graph based on Hamilton’s Icosian game. We’ll find a Hamilton
path. Can you find a Hamilton cycle?
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Important examples of Hamiltonian Graphs include:

cycle graphs;
complete graphs;
graphs of the platonic solids.
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In general, the problem of finding a Hamiltonian path or cycle in a large graph
is hard (it is known to be NP-complete). However, there are two relatively
simple sufficient conditions to testing if a graph is Hamiltonian.

1. Ore’s Theorem
A graph with v vertices, where v ≥ 3, is Hamiltonian if, for every pair of
non-adjacent vertices, the sum of their degrees ≥ v .

http://www-history.mcs.st-andrews.ac.uk/Biographies/Ore.html
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2. Dirac’s Theorem
A (simple) graph with v vertices, where v ≥ 3, is Hamiltonian if every vertex
has degree ≥ v/2.

Example
Determine whether or not the graph illustrated below is Hamiltonian, and if so,
give a Hamiltonian cycle:

a

bc

ef

d

https://en.wikipedia.org/wiki/Gabriel_Andrew_Dirac


Part 5 Hamiltonian Paths and Cycles (46/48)

MA284
Week 10: Colouring Graphs; Eulerian and Hamiltonian Graphs

END OF PART 5



Exercises (47/48)

Q1. (Textbook) What is the smallest number of colors you need to properly color the
vertices of K4,5? That is, find the chromatic number of the graph.

Q2. Determine the chromatic number of each of the following graphs, and give a
colouring for that achieves it.

(i) (ii) (iii)

Q3. For each of the following graphs, determine if it has an Eulerian path and/or
circuit. If not, explain why; otherwise give an example.

(a) Kn, with n even.
(b) G1 = (V1,E1) with V1 = {a, b, c, d , e, f },

E1 = {{a, b}, {a, f }, {c, b}, {e, b}, {c, e}, {d , c}, {d , e}, {b, f }}.
(c) G2 = (V2,E2) with V2 = {a, b, c, d , e, f },

E2 = {{a, b}, {a, f }, {c, b}, {e, b}, {c, e}, {d , c}, {d , e}, {b, f }, {b, d}}.
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Q4. For each of the following graphs, determine if it has an Eulerian path and/or
Eulerian circuit. If so, give an example; if not, explain why.

G1 = G2 =

a

b h

c

e

f

d

g

ji

Q5. Given a graph G = (V ,E), its compliment is the graph that has the same vertex
set, V , but which has an edge between a pair of vertices if and only if there is no
edge between those vertices in G.
Sketch of of the following graphs, and their complements:

(i) K4, (ii) C4, (iii) P4, (iv) P5.

Q6. Which of the following graphs are isomorphic to their own complement
(“self-complementary”)?

(i) K4, (ii) C4, (iii) P4, (iv) P5.

Q7. Show that K3,3 has Hamiltonian, but K2,3 is not.
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