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Recall: Planar graph

If you can sketch a graph so that none of its edges cross, then it is
a PLANAR graph.
When a planar graph is drawn without edges crossing, the edges
and vertices of the graph divide the plane into regions. We will
call each region a FACE . The “exterior” of the graph is considered
a face.

Euler’s formula for planar graphs

For any (connected) planar graph with v vertices, e edges and f
faces, we have

v − e + f = 2
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Example

Give a planar representation of the following graph, and verify that Eu-
ler’s Formula Holds.

a

b

c

d

e

f
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Of course, most graphs do not have a planar representation. We have already
met two that (we think) cannot be drawn so no edges cross: K5 and K3,3:

However, it takes a little work to prove that these are non-planar. While,
through trial and error, we can convince ourselves these graphs are not planar,
a proof is still required.

For this, we can use Euler’s formula for planar graphs to prove they are not
planar.
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Theorem (Theorem 4.3.1 in textbook)
K5 is not planar. (The proof is by contradiction).
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Theorem (K3,3 is not planar)
This is Theorem 4.2.2 in the text-book. Please read the proof there.

The proof for K3,3 is somewhat similar to that for K5, but also uses the fact
that a bipartite graph has no 3-edge cycles.

This also means we have solved (negatively) the Utilities (Water-Power-Gas)
problem from Week 7.



Part 1: Non-planar graphs Every other non-planar graph (8/46)

The understand the importance of K5 and K3,3, we first need the concept of
homeomorphic graphs.

Recall that a graph G1 is a subgraph of G if it can be obtained by deleting
some vertices and/or edges of G .

A SUBDIVISION of an edge is obtained by “adding” a new vertex of degree 2
to the middle of the edge.

A SUBDIVISION of a graph is obtained by subdividing one or more of its edges.

Example:
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Closely related: SMOOTHING of the pair of edges {a, b} and {b, c}, where b
is a vertex of degree 2, means to remove these two edges, and add {a, c}.

Example:
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The graphs G1 and G2 are HOMEOMORPHIC if there is some subdivision of
G1 is isomorphic to some subdivision of G2.

Examples:
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There is a celebrated theorem due to Kazimierz Kuratowski. The proof is
beyond what we can cover in this module. But if you are interested in
Mathematics, read up in it: it really is a fascinating result.

Theorem (Kuratowski’s theorem)
A graph is planar if and only if it does not contain a subgraph that is
homeomorphic to K5 or K3,3.

What this really means is that every non-planar graph has some smoothing
that contains a copy of K5 or K3,3 somewhere inside it.

Example
The Petersen graph is not planar https:
//upload.wikimedia.org/wikipedia/commons/0/0d/Kuratowski.gif

http://www-history.mcs.st-and.ac.uk/Biographies/Kuratowski.html
https://upload.wikimedia.org/wikipedia/commons/0/0d/Kuratowski.gif
https://upload.wikimedia.org/wikipedia/commons/0/0d/Kuratowski.gif
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A polyhedron is a geometric solid made up of flat polygonal faces joined at
edges and vertices.
A convex polyhedron, is one where any line segment connecting two points on
the interior of the polyhedron must be entirely contained inside the polyhedron.

Examples:

Source: WikiMedia Uniform polyhedron-43-s012.png, Truncatedhexahedron.jpg and
Excavated truncated cube.png
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A remarkable, and important fact, is that every convex polyhedron can be
projected onto the plane without edges crossing.

Example:
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Example:
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Example: the dodecahedron
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Exercise

Give a planar projection of each of the following polyhedra.
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Now that we know every convex polyhedron can be represented as a planar
graph, we can apply Euler’s formula.

Euler’s formula for polyhedra

If a convex polyhedron has v vertices, e edges and f faces, then

v − e + f = 2

Example: the tetrahedron.
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Example: the cube

Example: the octahedron
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We now have two very powerful tools for studying convex polyhedra:

Euler’s formula: If a convex polyhedron has v vertices, e edges and f
faces, then v − e + f = 2
(The Handshaking Lemma) The sum of the vertex degrees is 2|E |: let
G = (V ,E) be a graph, with vertices V = v1, v2, . . . , vn. Let deg(vi ) be
the “degree of vi ”. Then

deg(v1) + deg(v2) + · · ·+ deg(vn) = 2|E |.

Example (See textbook, Section 4.2 (Polyhedra))
Show that there is no convex polyhedron with 11 vertices, all of degree 3?
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See textbook, Example 4.2.3

Show that there is no convex polyhedron consisting of
3 triangles,
6 pentagons, and
5 heptagons (7-sided polygons).
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Regular polyhedra - they are surprisingly few of them!
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A POLYGON is a two-dimensional object. It is regular if all its sides are the
same length:
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A polyhedron with the following properties is called REGULAR if

All its faces are identical regular polygons.
All its vertices have the same degree.

The convex regular polyhedra are also called Platonic Solids. Examples:
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There are exactly 5 regular polyhedra

This fact can be proven using Euler’s formula.
For full details, see the proof in the text book.
Here is the basic idea: we will only look at the case of polyhedra with
triangular faces.
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[All images here courtesy of Wikipedia]
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[From textbook, p184]. Here is a map of the (fictional) country “Euleria”.
Colour it so that adjacent regions are coloured differently. What is the fewest
colours required?
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There are maps that can be coloured with

A single colour:

Two colours (e.g., the island of Ireland):

Three colours:

Four colours:
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It turns out that the is no map that needs more than 4 colours. This is the
famous Four Colour Theorem, which was originally conjectured by the
British/South African mathematician and botanist, Francis Guthrie who at the
time was a student at University College London.

He told one of his mathematics lecturers, Augustus de Morgan, who, on 23
October, 1852, wrote to friend William Rowan Hamilton, who was in Dublin:

https://en.wikipedia.org/wiki/Four_color_theorem
https://en.wikipedia.org/wiki/Francis_Guthrie
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From https://en.wikipedia.org/wiki/Four_color_theorem
de Morgan writes to Hamilton, 23 October, 1852..

https://en.wikipedia.org/wiki/Four_color_theorem
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From https://en.wikipedia.org/wiki/Four_color_theorem
de Morgan writes to Hamilton, 23 October, 1852..

A student of mine asked me to day to give him a reason for a fact which I
did not know was a fact and do not yet. He says that if a figure be any how
divided and the compartments differently coloured so that figures with any
portion of common boundary line are differently coloured-four colours may
be wanted, but not more-the following is his case in which four are wanted.
Query: cannot a necessity for five or more be invented... What do you say?
And has it, if true been noticed?
My pupil says he guessed it in colouring a map of England... The more I
think of it, the more evident it seems. If you retort with some very simple
case which makes me out a stupid animal, I think I must do as the Sphynx
did...

De Morgan needn’t have worried: a proof was not produced until 1976. It is
very complicated, and relies heavily on computer power.

https://en.wikipedia.org/wiki/Four_color_theorem
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To get a sense of why it might be true, try to draw a map that needs 5
colours.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Our interest is not in trying to prove the Four Colour Theorem, but in how it is
related to Graph Theory.
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If we think of a map as a way of showing which regions share borders, then we
can represent it as a graph, where

A vertex in the graph corresponds to a region in the map;
There is an edge between two vertices in the graph if the corresponds
regions share a border.

Example:

GY
MO

RN
SO

LM
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Colouring regions of a map corresponds to colouring vertices of the graph.
Since neighbouring regions in the map must have different colours, so too
adjacent vertices in the graph must have different colours.

More precisely

Vertex Colouring: An assignment of colours to the vertices of a graph is called
a VERTEX COLOURING .

Proper Colouring: If the vertex colouring has the property that adjacent
vertices are coloured differently, then the colouring is called
PROPER.

Lots different proper colourings are possible. If the graph as v vertices, the
clearly at most v colours are needed. However, usually, we need far fewer.
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Examples:
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CHROMATIC NUMBER
The smallest number of colours needed to get a proper vertex colouring if a
graph G is called the CHROMATIC NUMBER of the graph, written χ(G).

Example: Determine the Chromatic Number of the graphs C2, C3, C4 and C5.
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Example: Determine the Chromatic Number of the Kn and Kp,q for any n, p, q.
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In general, calculating χ(G) is not easy. There are some ideas that can help.
For example, it is clearly true that, if a graph has v vertices, then

1 ≤ χ(G) ≤ v .

If the graph happens to be complete, then χ(G) = v . If it is not complete the
we can look at cliques in the graph.

Clique: A CLIQUE is a subgraph of a graph all of whose vertices are
connected to each other.
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The CLIQUE NUMBER of a graph, G , is the number of vertices in the largest
clique in G .

From the last example, we can deduce that

LOWER BOUND: The chromatic number of a graph is at least its
clique number.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We can also get a useful upper bound. Let ∆(G) denote the largest degree of
any vertex in the graph, G ,

UPPER BOUND: χ(G) ≤ ∆(G) + 1.

Why? This is called Brooks’ Theorem, and is Thm 4.5.5 in the text-book:
http://discrete.openmathbooks.org/dmoi3/sec_coloring.html

http://discrete.openmathbooks.org/dmoi3/sec_coloring.html
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Most of these questions are taken from Levin’s Discrete Mathematics.

Q1. Try to prove that K3,3 is non-planar using exactly the same reasoning as that
used to prove K5 is non-planar. What does wrong? (The purpose of this exercise
is to show that noting that K3,3 has no 3-cycles is key. Also, we want to know
that K5 and K3,3 are non-planar for different reasons).

Q2. Is it possible for a planar graph to have 6 vertices, 10 edges and 5 faces? Explain.

Q3. The graph G has 6 vertices with degrees 2,2,3,4,4,5. How many edges does G
have? Could G be planar? If so, how many faces would it have. If not, explain.

Q4. Euler’s formula (v − e + f = 2) holds for all connected planar graphs. What if a
graph is not connected? Suppose a planar graph has two components. What is
the value of v − e + f now? What if it has k components?

Q5. Prove that any planar graph with v vertices and e edges satisfies e ≤ 3v − 6.

Q6. Which of the graphs below are bipartite? Justify your answers.

Q7. For which n ≥ 3 is the graph Cn bipartite?

http://discretetext.oscarlevin.com
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Q8. For each of the following, try to give two different unlabeled graphs with the
given properties, or explain why doing so is impossible.

(a) Two different trees with the same number of vertices and the same number
of edges. (A tree is a connected graph with no cycles).

(b) Two different graphs with 8 vertices all of degree 2.
(c) Two different graphs with 5 vertices all of degree 4.
(d) Two different graphs with 5 vertices all of degree 3.

Q9. Give a planar projection of each of the following polyhedra.

Q10. Show that there is only one regular convex polygon with square faces.

Q11. Show that there is only one regular convex polygon with pentagonal faces.

Q12. Could there be a regular polygon with faces that have more than 5 sides? Explain
your answer.
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