
Dr Takfarinas Saber
takfarinas.saber@universityofgalway.ie

CT213
Computing System
& Organisation

Lecture 7: Memory Management

Content
1. Memory management

2. Address space of a process

3. Segmentation

4. Paging

2

3

Memory Management

Memory Management
• In multiprogramming systems, the user part of memory is subdivided to

accommodate multiple processes
• The task of subdivision is carried out by the operating system and is known

as memory management
• Memory needs to be allocated efficiently to pack as many processes into

memory as possible

4

Memory Management Requirements

• Relocation
• Loading dynamically the program into an arbitrary memory space, whose

address limits are known only at execution time

• Protection
• Each process should be protected against unwanted interference from other

processes

• Sharing
• Any protection mechanism should be flexible enough to allow several processes

to access the same portion in the main memory

5

Memory Organisation

• Logical organisation
• Most programs are organised in modules

• Some modules are un-modifiable (read only and/or execute only)
• Others contain data that can be modified

• The operating system must take care of the possibility of sharing modules across
processes

• Physical organisation
• Memory is organised as at least a two-level hierarchy.
• The OS should hide this fact and should perform the data movement between

the main memory and secondary memory without the programmer’s concern

6

Memory Hierarchy Review

• It is a tradeoff between size, speed and cost

• Register
• Fastest memory element; but small storage; very expensive

• Cache
• Fast and small compared to main memory; acts as a buffer between the CPU and main memory: it

contains the most recent used memory locations (address and contents are recorded here)

• Main memory is the RAM of the system
• Disk storage - HDD

7

Registers
(CPU)

Cache
(Hardware
controlled)

Main
Memory

Disk
Storage

Specialized bus
(internal or external

to CPU)

Memory bus I/O bus

Caching
• Reading from cache is faster than recomputing a result or reading from a

slower data store
• thus, the more requests that can be served from the cache, the faster the system

performs.

• When reading data from a lower memory, also store a copy in the cache
• Future requests for that data can be served faster

• A cache hit occurs when the requested data can be found in a cache,
while a cache miss occurs when it cannot.

8

https://commons.wikimedia.org/w/index.php?curid=27652294

• Typical computer applications access data with a high degree
of locality of reference:
• Temporal locality: data is requested that has been recently

requested already
• Spatial locality: data is requested that is stored physically close

to data that has already been requested

• When a system writes data to cache, it must at some point
write that data to the main memory as well following the
Write policies:
• Write-through: write is done synchronously both to the cache and to

main memory
• Write-back: initially, writing is done only to the cache. The write to main

memory is postponed until the modified content is about to be replaced
by another cache block.

Cache review

Process Address Space

10

Process Address Space

• When accessing memory, a process is said to operate within an address
space (data items are accessible within the range of addresses available
to the process)

• The number of bits allocated to specify the address is an architectural
decision
• Many early computers had:

• 16 bits for address (thus allowing for a space of 64KB of direct addressing -> 216)
• Then, 32 bits, which allows for 4GB of direct addressing memory space

• Now most computers had 64 bits for addresses
• We say that such a system gives a virtual address space of 16 ExaBytes (16 billion

gigabytes)
• Although, the amount of physical memory in such a system is likely to be less than this)

11

Address Binding

• An address used in an instruction can point anywhere in the virtual
address space of the process
• It still must be bound to a physical memory address

• Programs are made of modules.
• Compilers or assemblers do not know where the module will be

loaded in the physical memory
ØVirtual addresses must be translated to physical addresses

ØAddress translation can be dynamic or static.

12

Not available

Not available

Not available

Not available

Virtual Address Space Physical
Address Space

Static Address Binding

• OS is responsible for managing the memory, so it will give the loader a base
address where to load the module
• The loader converts each virtual addresses in the module to absolute physical addresses

by adding the the base address
• This is called static binding

• Simple/Easy to Implement
• But,

• Once loaded, the code or data of the program cannot be moved into another part of
memory without change in the static binding

• All the processes executing in such a system would share the same physical address space
• no protection from one another if addressing errors occur
• even the OS code is exposed to addressing errors

13

Dynamic Address Binding
• Dynamic address binding:

• Keeps loaded addresses relative to the start of a process

• Advantages of dynamic address binding:

• A given program can run anywhere in the physical memory and can be moved around by the
operating system

• All of the addresses that it is using are relative to its own virtual address space, so it is unaware of
the physical locations at which it happens to have been placed

• It is possible to protect processes from each other and protect the operating system from application
processes by a mechanism we employ for isolating the addresses seen by the processes

• Disadvantage:
• A mechanism is needed to bind the virtual addresses within the loaded instructions to physical

addresses when the instructions are executed

14

Hardware Assisted Relocation and Protection

• Dynamic binding must be implemented in hardware, since it introduces
translation as part of every memory access

• If the basic requirement for modules is to be held contiguously in
physical memory and contain addresses relative to their first location:
• The first location is called the base of the process

• Suppose that an instruction is fetched and decoded and contains an
address reference
• This address reference is relative to the base, so the value of the base must be

added to it (base + address reference) in order to obtain the correct physical
address to be sent to the memory controller

15

Hardware Relocation and Protection

• The simplest form of dynamic binding hardware is a
base register and a memory management unit (MMU)
to perform the translation
• The operating system must load the base register as part of

setting up the state of a process before passing control to it

• Problem: This approach does not provide any protection
between processes:
• We cannot be sure that a process does not use an address

that is not in its space.

16

base
register

Hardware Relocation and Protection

• Solution: combine the relocation and
protection functions in one unit
• By adding a second register (the limit register)

that delimits the upper bound of the program in
the physical memory

17

base
register

Segmentation

18

Segmented Virtual Memory
• In practice, it is not very useful for a program to occupy a single

contiguous range of physical addresses

• Such as scheme would prevent two processes from sharing the code
• i.e., using this scheme, it is difficult to arrange two executions of same

program (two processes) to access different data while still being able to
share same code

• This can be achieved if the system has two base registers and two
limit registers, thus allowing two separate memory ranges or
segments per process

19

Segmented Virtual Memory

Two processes sharing a
code segment but having
private data segments

Segmented Virtual Memory

21

Most significant bit of the virtual
address is taken as a segment
identifier, with 0 for data segment
and 1 for code segment

Segmented Virtual Memory

• Within a single program, it is usual to have
separate areas for code, stack and heap;

• Language systems have conventions on how the
virtual address space is arranged
• Code segment will not grow in size
• Heap (may be growing)
• Stack at the top of virtual memory, growing in

opposite direction than Heap

• In order to realize the relocation (and
protection), three segments would be
preferable

22

Segmented Virtual Addresses
• The segment is the unit of protection and sharing
• the more we have, the more flexible

• 2 ways to organise segmented address:

23

Segment number
X bits

Byte offset in segment
Y bits

Virtual Address : address field of an instruction

Maximum number
of segments is 2x Maximum segment size is 2y1. Virtual address space is split into a segment

number and a byte number within a segment
• The number of bits used for segment addressing

is usually fixed by the CPU designer

2. The segment number is supplied separated from the offset portion of the address.
• This is done in X86 processors

Segmented Address Translation
• For dynamic address translation in the operating system

• Hardware must keep a segment table for each process in which
the location of each segment is recorded

• A process can have many segments, only those currently
being used for instruction fetch and operand access
need to be in main memory
• other segments could be held on backing store until they are

needed.

• If an address is presented for a segment that is not
present in main memory, then the address
translation hardware generates an addressing
exception.
• This is handled by the operating system, causing the segment to

be fetched into main memory and the mechanism restarted

24

Address Translation in Segmentation System

25

s = number of bits to represent the segment
d = number of bits to represent the size of the segment
limit = length of the segment
base add = initial physical address in memory

Segmentation Summary

• A process is divided into a number of segments that do not need to be equal in size

• When a process is brought into the main memory, all of its segments are usually brought into the main
memory and a process segment table is setup.

• Advantages:
• The virtual address space of a process is divided into logically distinct units which correspond to constituent

parts of a process
• Segments are the natural units of access control

• Rrocesses may have different access rights for different segments and sharing code/data with other
processes

• Disadvantages:
• Inconvenient for operating system to manage storage allocation for variable-sized segments
• After the system has been running for a while, the free memory available can be fragmented
• External fragmentation: sometimes, even though the total free memory might be far greater than the size of

some segment that must be loaded, there is no single area large enough to load it

26

Paging

27

Paged Virtual Memory

• The need to keep each loaded segment contiguous
in the physical memory poses a significant
disadvantage:
• It leads to fragmentation
• It complicates the physical storage allocation problem

• Solution: paging, where blocks of a fixed size are
used for memory allocation (so that if there is any
free space, it is of the right size)

• Memory is divided into page frames, and the user
program is divided into pages of the same size

28

pages frames

Paged Virtual Memory

• Typical page size is small (1 to 4KB)
• In paged systems, a process would require many pages

• The limited size of physical memory can cause problems. Therefore,
• a portion of the disk storage could be used as extension to the main memory (backing store)
• and the pages of a process may be in the main memory and/or in this backing store

• The operating system must manage the two levels of storage and the transfer of
pages between them

• It must keep a page table for each process to record information about the pages
• A present bit is needed to indicate whether the page is in main memory or not

• A modify bit indicates if the page has been altered since last loaded into main memory
• If not modified, the page does not have to be written to the disk when swapped out

29

Paging Example

30

All the processes (A, B, C and D) are stored on disk
and are about to be loaded in the memory (by the
operating system)

• Process A has four pages
• Process B has three pages
• Process C has four pages
• Process D has five pages

Paging Example

• Various page tables at the time
• Each Page Table Entry (PTE) contains the number of the frame

in main memory (if any) that holds that page
• In addition, typically, the operating system maintains a list of all

frames in main memory that are currently unoccupied and
available for pages

31

Paged Virtual Memory Address Translation

• Translation of a virtual address (page + offset)
into a physical address (frame + offset)
• using a page table

• Page table is stored in the main memory
• Each process maintains a pointer in one of its

registers, to the page table

• The page number is used to index that table
and lookup the corresponding frame number

• Combining the frame number with the offset
from the virtual address gives the real
physical address

32

Paged Virtual Memory Address Translation

33

10244 User Page Tables
Each with 1024 PTE

Root Page Table
1024 PTE

• Processes could occupy huge amounts of virtual memory
• E.g., in a 32bit addressing system with pages of size 4KB:

• 12 bits for offset
• 20 bits for number of pages

• This means 220 entries could be in each page table
• If each entry occupies 4Bytes (32bit address)
• Then each page table would take 4MB

Ø Unacceptably high!

• Solution: a two-level scheme to organise large page tables
• Root Page Table with 210 (1024 entries, 4 Bytes each) entries

occupying 4KB of main memory
• Root page always remains in the main memory

• User Page Tables can reside in either the main memory or in
disk

Paged Virtual Memory Address Translation

34

• The first 10 bits of a virtual address are used
to find a PTE to the user page table

• The next 10 bits of the virtual memory
address are used find the PTE for the page
that is referenced by the virtual address

• Every virtual memory reference causes two
physical memory accesses:
• one to fetch the appropriate User Page Table entry
• the other to fetch the desired page

• To overcome this, most of the virtual memory
schemas make use of a special high-speed
cache for page entries

Translation Lookaside Buffer (TLB)

35

• A kind of cache memory: it
contains the page entries that have
been most recently used

• TLB is searched for each address
reference

• TLB is nearly always present in any
processor that utilizes paged or
segmented virtual memory
• Including in most desktops, laptops,

and servers.

Translation Lookaside Buffer (TLB)
• The virtual page number is extracted from the virtual address and a lookup is initiated

• If multiple processes, then special care needs to be taken, so the page from one process would not be confused
with another’s

• If a match is found (TLB hit), then an access check is made, based on the information stored in the
flags
• The physical page base, taken form TLB is appended to the offset from the virtual address to form the complete

physical address
• The flags field will indicate the access rights and other information (i.e. if a write is being attempted to a page that

is read only etc)

• If an address reference is made to a page that is in the main memory but not in the TLB, then
address translation fails (TLB miss) and a new entry in the TLB needs to be created for that page

• If an address reference is made to a page that is not in the main memory, the address translation
will fail again. No match will be found in the address table and the addressing hardware will raise an
exception, called page fault
• The operating system will handle this exception

36

Paging Summary

• Advantages – by using fixed size pages in virtual address space and fixed size pages
in physical address space, it addresses some of the problems with segmentation:
• External fragmentation is no longer a problem (all frames in physical memory are same size)
• Transfers to/from disks can be performed at granularity of individual pages

• Disadvantages
• The page size is a choice made by CPU or OS designer

• It may not fit the size of program data structures and lead to internal fragmentation in which storage
allocation request must be rounded to an integral number of pages

• There may be no correspondence between page protection settings and application data
structures
• If two processes are to share data structures, they may do so at the level of sharing entire pages

• Requiring page tables per process , it is likely that the OS require more storage for its internal
data structures

37

References

• “Operating Systems”, William Stallings, ISBN 0-13-032986-X
• “Operating Systems”, Jean Bacon and Tim Harris, ISBN 0-321-11789-1

38

