
Dr Takfarinas Saber 
takfarinas.saber@universityofgalway.ie

CT213 
Computing System 
& Organisation

Lecture 6: Process Synchronisation



Concurrent Programming

• Concurrent programs: interleaving sets of sequential atomic instructions.
• i.e., interacting sequential processes run at same time, on same/different 

processor(s)
• processes interleaved, i.e. at any time each processor runs one of instructions of 

the sequential processes

2



Correctness

If all the math is done in registers, then the results 
depend on interleaving (indeterminate computation).
• This dependency on unforeseen circumstances is 

known as a Race Condition.
Generalisation: a program is correct when its 
preconditions hold then its post conditions will hold.

3

Program1: load reg, N
Program2: load reg, N
Program1: add reg, #1
Program2: add reg, #1
Program1: store reg, N
Program2: store reg, N

A concurrent program must be correct under all possible interleavings.



Lets Look at this in Practice: Race Conditions

• A race condition occurs when a program output is dependent on the 
sequence or timing of code execution
• if multiple processes of execution enter a critical section at about the same time; 

both attempt to update the shared data structure
Øleads to surprising results (undesirable) 
vYou must work to avoid this with concurrent code

• Critical section = parts of the program where a shared resource is 
accessed
• It needs to be protected in ways that avoid the concurrent access

4



Example Bank Transaction

Int withdraw(account, amount){
int balance = account.balance;
balance = balance – amount ;
account.balance = balance;
return balance;

}

5



Example Bank Transaction

//account.balance = 100
Int withdraw(account, amount = 10){

int balance = account.balance; //100
balance = balance – amount ; //90

Int withdraw(account, amount = 20){
int balance = account.balance; //80
balance = balance – amount ; //80
account.balance = balance; //80
account.balance = balance; //90
return balance; //90

}
return balance; //80

}
//account.balance = 90! 

6

Process 1

Process 2

Process 1

Process 2

Two processes:
• Process 1: withdraw 10 from account
• Process 2: withdraw 20 from account



Race Condition Consequences

We can get different results every time we run the code
Ø result is indeterminate

Deterministic computations have the same result each time
• We want deterministic concurrent code
ØWe can use synchronisation mechanisms

7



Handling Race Conditions

• We need a mechanism to control access to shared resources in 
concurrent code
Ø Synchronisation is necessary for any shared data structure

Idea:
• Focus on critical sections of code 
• i.e., bits that access shared resources

• We want critical sections to run with mutual exclusion
Øonly one process can execute that code at the same time

8



Example: Bank Transactions
What code should be within the critical section?
1 int withdraw(account, amount){
2 int balance = account.balance; 
3 balance = balance – amount ; 
4 account.balance = balance; 
5 return balance; 
6}

9

Cr
iti

ca
l s

ec
tio

n

Q: Why is this not critical?



Critical Section Properties

• Mutual exclusion: only 1 process can access at a time
• Guarantee of progress: processes outside the critical section cannot 

stop another from entering it
• Bounded waiting: a process waiting to enter a critical section will 

eventually enter
• Processes in the critical section will eventually leave

• Performance: the overhead of entering/exiting should be small 
• Especially compared to amount of work done in there – why?

• Fair: don’t make some processes wait much longer than others

10



Synchronisation Solutions

Ways to protect critical sections
• Option 1: Atomicity
• Atomic operations cannot be interrupted, in order to avoid illogical outcomes

• Option 2: Conditional synchronisation (ordering)
• Making sure that one process runs before another

11



Atomicity

• Basic atomicity is provided by the hardware
• E.g., References and assignments (i.e., read & write operations) are 

atomic in all CPUs 

• However higher-level constructs (i.e., any sequence of two or 
more CPU instructions ) are not atomic in general
• Some languages (e.g., Java) have mechanisms to specify multiple 

instructions as atomic

12



Conditional Synchronisation

• Strategy: Person A writes a rough draft 
and then Person B edits it.
• A and B cannot write at the same time (as 

they are working on different versions of 
the paper)
• Must ensure that Person B cannot start 

until Person A is finished

13

Person A Person B



What Might Conditional Synchronisation Look 
Like?

14

A Doc B

Open (doc)

Finished (doc)
Open(doc)

Open refused

Open(doc)

Finished (doc)

Process finished/terminated



Code Constructs to Support Defining Critical 
Sections

• Locks
• Very primitive, just provide mutual exclusion, minimal semantics, useful as a 

building block for other methods

• Semaphores
• Basic, easy to understand

• Monitors
• Higher level abstraction, requires language support, implicit operations

15



Mutual Exclusion solutions: 
Locks

16



Locks: Basic idea

• Lock = a token you need to enter a critical 
section of code

• If a process wants to execute a critical 
section…it must have the lock:
• Need to ask for lock
• Need to release lock 

• No restrictions on executing other code

17

A B C

D

Critical section

Processes

Token/Lock



Lock States and Operation

• Locks have 2 states:
• Held: some process is in the critical section
• Not held: no process is in the critical section

• Locks have 2 operations:
• Acquire:

• mark lock as held or wait until released
• If not held => execute immediately

• Release:
• mark lock as not held

If many processes call acquire, only 1 process can get the lock

18



Using Lock

• Locks are declared like variables:
Lock myLock;

• A program can use multiple locks – why?
Lock myDataLock, myIoLock;

• To use a lock:
• Surround critical section as follows:

• Call acquire() at start of critical section
• Call release() at end of critical section

• Remember our general pattern for mutex

19

while (true)
// Non_Critical_Section

myLock.acquire();

// Critical_Section

myLock.release();

// Non_Critical_Section
end while

Surround critical 
section of code



Lock Benefits

• Only 1 process can execute the critical section code at a time
• When a process is done (and calls release) another process can enter 

the critical section
ØAchieves requirements of mutual exclusion and progress for 

concurrent systems

20



Lock Limitations

• Acquiring a lock only blocks processes trying to acquire the same lock
• i.e., processes can acquire other locks

• Must use the same lock for all critical sections accessing the same 
data (or resource)
• E.g., withdraw() and deposit() for a bank account

• Q: What does this mean for code complexity?
• E.g., Add a new process that accesses same data

21



Lock in Use Example: Bank Transactions

int withdraw(account, amount){

int balance = account.balance; 
balance = balance – amount ; 
account.balance = balance}; 

return balance; 

}

22

Cr
iti

ca
l s

ec
tio

n

acquire(myBalanceLock);

release(myBalanceLock);

The local variable, does not need to be protected

See our old code:



E.g., Bank Transaction with Locks
//account.balance = 100

23

P1
P2 Int withdraw(account, amount = 20){

acquire(myBalanceLock);     // Process STALLED

P1

balance = balance – amount ; //90
account.balance = balance; //90
release(myBalanceLock);    // NOW P2 can start

P2
Int withdraw(account, amount = 10){

acquire(myBalanceLock);
int balance = account.balance; //100

int balance = account.balance; //90
balance = balance – amount ; //70
account.balance = balance; //70
release(myBalanceLock); 
return balance; //70

}
return balance; //90

}

//account.balance = 70

P1



Impacts

• We can run the processes in any order:
• We will have the correct final balance

ØWe no longer have a race condition

24



Software Implementation of Locks (v1)

Struct lock {
bool held; //initially FALSE

}
void acquire(lock) {

while(lock->held)
; //just wait

lock->held = TRUE;
}
void release(lock) {

lock->held = FALSE;
}

25



How does it run?

26

a:Account lock

acquire ()

acquire()
acquire()

held = FALSE

UML notation for instance a 
of class Account

b:Account

While lock->held; //FALSE

UML comment

acquire ()

While lock->held; //FALSE

lock->held- TRUE;

lock->held- TRUE;
held = TRUE

return;

Now both processes think they have the lock
=> This solution does not work



Solve via Hardware Support

//c code for test and set behaviour
bool test_and_set (bool *flag) {

bool old = *flag;
*flag = true;
return old;

}

Processor has a special instruction called “test and set”
• Allows atomic read and update

27



Hardware-based Spinlock

struct lock {
bool held; //initially FALSE

}
void acquire(lock) {

while(test_and_set(&lock->held))
; //just wait

return;
}

void release(lock) {
lock->held = FALSE;

}

28Q: Why is this called a spin lock?



Drawbacks of Spinlocks

• Spinlocks are a form of busy waiting
=> burn CPU time

• Once acquired they are held until explicitly released
• What about other processes?

• Inefficient if lock is held for long periods
• OS overhead of context switching
• If Process Scheduler makes processes sleep while lock is held

ØAll other processes use their CPU time to spin while the process with the lock makes no 
progress

29



Do Locks give us sufficient safety?

1. Check Safety properties: these must always be true
• Mutual exclusion: Two processes must not interleave certain sequences of 

instructions
• Absence of deadlock: Deadlock is when a non-terminating system cannot respond 

to any signal

2. Check Liveness properties: These must eventually be true
• Absence of starvation: Information sent is delivered
• Fairness: That any contention must be resolved

• If you can demonstrate any cases in which these properties do not hold
Ø then, the system is not correct

30
Q: What do you think?



Lock Deadlock Scenario
• 2+ processes, 2 shared resources, 2 locks

31

a:Process lock1

acquire ()

acquire()

held = FALSE

lock2

acquire ()

held = TRUE

b:Process

held = FALSE

held = TRUE

acquire()
Blocked

Blocked

No more progress is possible!



Protocols to avoid deadlock

• Add a timer to lock.request() method
ØCancel job and attempt it another time

• Add a new lock.check() method to see if a lock is already held before 
requesting it
Øyou can do something else and come back and check again

• Avoid hold and wait protocol 
Ønever hold onto 1 resource when you need 2

But these all lead to problems too!

32



Livelock by trying to avoid deadlock

• 2 processes, 2 resources, locks with checking

33

a:Process lock1

check ()

check()

held = FALSE

lock2

acquire ()

held = TRUE

b:Process

held = FALSE

held = TRUE
acquire ()

check()

Set timer

check()

check()



Starvation

• More general case of livelock
• 1 or more processes do not get to run as another process is locking the 

resource
• Example:
• 2 processes

• Process A runs for 99ms, releases lock for 1ms
• Process B runs for 1ms, releases lock for 90ms

ØA sends many more requests for resource
ØB hardly ever gets allocated the resource

34



Locks/Critical Sections and Reliability

• What if a process is interrupted, is suspended, or crashes inside its 
critical section? 
• In the middle of the critical section, the system may be in an 

inconsistent state
• Not only that: the process is holding a lock and if it dies no other 

process waiting on that lock can proceed!

• Developers must ensure critical regions are very short and always 
terminate.

35



Beyond Locks

• Locks only provide mutual exclusion
• Ensure only 1 process is in the critical section at a time
• Good for protecting our shared resource to prevent race conditions and avoid 

nondeterministic execution
• E.g., bank balance We want more! 

• What about fairness, avoiding starvation, and livelock?
ØWe need to be able to place an ordering on the scheduling of processes

36



Take Home Message

• Race conditions, deadlock, livelock, fairness, and reliability are all 
concerns when writing concurrent code
• Several mechanisms exist to ensure the orderly execution of 

cooperating processes 

37



Higher Level Support for Mutual Exclusion: 
Semaphores

38



Example Scenario: we want to place an order 
on when processes execute
• Producer- Consumer:
• Producer: creates a resource (data)
• Consumer: Uses a resource (data)
• E.g. ps | grep “gcc” | wc

• Don’t want producers and consumers to operate in lockstep (i.e., 
atomicity)
• Each command must wait for the previous output
• Implies lots of context switching (i.e., very expensive)

• Solution: place a fixed size buffer between producers and consumers
• Synchronise access to buffer 
• Producer waits of buffer full; consumer waits if buffer empty

39



Semaphores

• Semaphore = higher level synchronisation 
primitive 
• Invented by Dijkstra in 1965 as part of THE OS 

project

• Semaphores are a kind of generalized lock
• Main synchronisation primitive used in original UNIX 

• Implement with a counter that is 
manipulated atomically via 2 operations 
signal and wait

40

wait(semaphore): A.K.A., down() or P()
decrement counter
if counter is zero then block until semaphore is 
signalled

signal(semaphore): A.K.A., up() or V()
increment counter
wake up one waiter, if any

sem_init(semaphore, counter): 
set initial counter value



Semaphore Pseudocode
struct semaphore {

int value;
queue L; // list of processes

}
wait (S) {

if (s.value > 0)
s.value = s.value -1;

else {
add this process to s.L;
block;

}
}
signal (S) {

if (S.L != EMPTY){
remove a process P from S.L;
wakeup(P);

} else
s.value = s.value + 1;

}

wait()and signal()are critical sections!
Ø Hence, they must be executed atomically with 

respect to each other

• Each semaphore has an associated queue of 
processes
• When wait()is called by a process

• If semaphore is available => process continues
• If semaphore is unavailable => process blocks, 

waits on queue
• signal()opens the semaphore

• If processes are waiting on a queue => one 
process is unblocked

• If no processes are on the queue => the signal is 
remembered for the next time wait() is called

Note: Blocking processes are not spinning, they 
release the CPU to do other work



Semaphore Initialisation

• If semaphore initialised to 1
• First call to wait goes through

• Semaphore value goes from 1 to 0
• Second call to wait() blocks

• Semaphore value stays at zero, process goes on queue
• If first process calls signal()

• Semaphore value stays at 0
• Wakes up second process

ÞActs like a mutex lock
ÞCan use semaphores to implement locks
This is called a binary semaphore

42



What happens if we initialise to 2?
struct semaphore {

int value;

queue L; // list of processes

}

wait (S) {

if (s.value > 0)

s.value = s.value -1;

else {

add this process to s.L;
block;

}

}

signal (S) {

if (S.L != EMPTY){

remove a process P from 
S.L;

wakeup(P);
} else

s.value = s.value + 1;

}

Consider multiple processes:
• Process1: wait(sem)

• value=1,L=[],  P1 executes

• Process2: wait(sem)
• value=0, L[], P2 executes

• Process3: wait(sem)
• value=0, L[P3], P3 blocks

Initial value of semaphore = number of 
processes that can be active at once:
• Sem_init(sem, 2) 

• value=2, L =[]



Uses of Semaphores

• Allocating a number of resources
• Shared buffers: each time you want to access a buffer, call wait() => you are 

queued if there is no buffer available

• Counter is initialised to N = number of resources
• Called a counting semaphore
• Useful for conditional synchronisation
• i.e., one process is waiting for another process to finish a piece of work before 

it continues

44



Semaphores for Mutual Exclusion
With semaphores: 
• guaranteeing mutual exclusion for ! processes is trivial

45

semaphore mutex = 1;

void Process(int i) {
while (1) {

// Non Critical Section Bit
wait(mutex) // grab the mutual exclusion semaphore
// Do the Critical Section Bit
signal(mutex) //grab the mutual exclusion semaphore

}
}

int main ( ) {
cobegin {

Process(1); Process(2);
}

}



Bounded Buffer Problem

• Producer-consumer problem
• Buffer in memory 

• Finite size of N entries
• A producer process inserts an entry into it
• A consumer process removes an entry from it

• Processes are concurrent
ØWe must use a synchronisation mechanism to control access to shared 

variables describing buffer state

46



Producer-Consumer Single Buffer
• Simplest case
• Single producer process, single consumer process
• Single shared buffer between the Producer and the Consumer

• Requirements
• Consumer must wait for Producer to fill buffer
• Producer must wait for Consumer to empty buffer (if filled)

47

Some Buffer of 
Resource

E.g., Video Stream
Producer Consumer



Semaphores can be Hard to Use

• Complex patterns of resource usage
• Cannot capture relationships with semaphores alone 
• Need extra state variables to record information

Þ Produce buggy code that is hard to write
- If one coder forgets to do V()/signal()after critical section, the whole 
system can deadlock

48



Monitors
• Need a higher level construct: 

• Groups the responsibility for correctness
• Supports controlled access to shared data

• Monitors: an extension of the monolithic monitor used in OS to allocate 
memory. 
• A programming language construct that supports controlled access to shared data
• Synchronisation code added by compiler, enforced at runtime (Less work for 

programmer!)
• Monitors keep track of who is allowed to access the shared data and when

they can do it

• Monitors Encapsulate 
• Shared data structures
• Procedures that operate on shared data
• Synchronisation between concurrent processes that invoke these procedures

4949



Detection and Protection of 
Deadlock

50



Requirements for Deadlock

1. Mutex: at least one held resource must be non-shareable
2. No pre-emption: resources cannot be pre-empted (no way to 

break priority or take a resource away once allocated
• Locks have this property

3. Hold and wait: there exists a process holding a resource and 
waiting for another resource

4. Circular wait: there exists a set of processes P1, P2,…,PN such that 
P1 is waiting for P2, P2 is waiting for P3,… and PN is waiting for P1

51

All 4 conditions must hold for deadlock to occur:

If only 3 conditions hold then:
• you can get starvation 
• but not deadlock

Need to avoid circular 
wait

Make code more efficient,
hence, we want them



Sample Deadlock

• Acquire locks in different orders
• Example:

Process 1 Process 2
lock(x); lock(y);
A=A+10; B=B+10;
lock(y); lock(x);
B=B+20; A=A+20;
A=A+30; B=B+30;
unlock(y); unlock(x);
unlock (x) unlock(y);

52



Sample Deadlock – Check for Deadlock

• Example:
Process 1 Process 2
lock(x); lock(y);
A=A+10; B=B+10;
lock(y); lock(x);
B=B+20; A=A+20;
A=A+30; B=B+30;
unlock(y); unlock(x);
unlock (x) unlock(y);

53

1. Do we have mutex?

2. Do we have hold and wait?

3. Do we have no pre-emption?

4. Do we have a circular wait?



Deadlocks without Locks

• Deadlocks can occur for any resource or any time a process waits, e.g.
• Messages: waiting to receive a message before sending a message 

• i.e., hold and wait
• Allocation: waiting to allocate resources before freeing another resource 

• i.e., hold and wait

54



Testing for Real World Deadlock

• How do cars do it? 
• We have rules to avoid it/recover from it 
• E.g.,

• Never block an intersection
• Must backup if you find yourself doing so (a form of pre-emption)

• Why does this work?
• Breaks a “hold and wait”
• Shows that refusing to hold a resource while waiting for something else is a 

key element of avoiding deadlock

55



Dealing With Deadlocks: Ignore

• Strategy 1: Ignore the fact that deadlocks may occur
• Write code, put nothing special in
• Sometimes you have to re-boot the system
• May work for some unimportant or simple applications where deadlock does 

not occur often

• Quite a common approach!

56



Dealing with Deadlock: Reactive

• Periodically check for evidence of deadlock
• E.g., add timeouts to acquiring a lock, if you timeout then it implies deadlock 

has occurred and you must do something

• Recovery actions:
• Blue screen of death and reboot computer
• Pick a process to terminate, e.g., a low priority one

• Only works with some types of applications
• May corrupt data so process needs to do clean-up when terminated

57



Dealing with Deadlock: Proactive

• Prevent 1 of the 4 necessary conditions for deadlock 
• No single approach is appropriate (or possible) for all circumstances
• Need techniques for each of the four conditions

58



Solution 1: No Mutual Exclusion

• Make resources shareable
• Example: read-only files
• No need for locks

• Example: per-process variables
• Counters per process instead of global counter

• Not possible for all bits of code/applications

59



Fixing our Sample Deadlock Code

60

Original code:
Process 1 Process 2
lock(x); lock(y);
A=A+10; B=B+10;
lock(y); lock(x);
B=B+20; A=A+20;
A=A+30; B=B+30;
unlock(y); unlock(x);
unlock (x) unlock(y);



Solution 1: Avoid Hold and Wait

Only request a resource when you have none
• I.e., release a resource before requesting another

Process 1 Process 2
lock(x); lock(y);
A=A+10; B=B+10;
unlock(x); unlock(y);
lock(y); lock(x);
B=B+20; A=A+20;
unlock(y); unlock(x);
lock(x); lock(y);
A=A+30; B=B+30;
unlock (x); unlock(y);

Never hold x when want y: 
• Works in many cases
• But you cannot maintain a relationship between x and y

61

Original code:
Process 1 Process 2
lock(x); lock(y);
A=A+10; B=B+10;
lock(y); lock(x);
B=B+20; A=A+20;
A=A+30; B=B+30;
unlock(y); unlock(x);
unlock (x) unlock(y);



Solution 2: Avoid Hold and Wait

Acquire all resources at once
• E.g., use a single lock to protect all data
• Having fewer locks is called lock coarsening 

Process 1 Process 2
lock(z); lock(z);
A=A+10; B=B+10;
B=B+20; A=A+20;
A=A+30; B=B+30;
unlock (z); unlock(z);

Problem: low concurrency
• All processes accessing A or B cannot run at the same time 
• Even if they don’t access both variables!

62

Original code:
Process 1 Process 2
lock(x); lock(y);
A=A+10; B=B+10;
lock(y); lock(x);
B=B+20; A=A+20;
A=A+30; B=B+30;
unlock(y); unlock(x);
unlock (x) unlock(y);



Prevention: Adding Pre-emption

• Locks cannot be pre-empted but other pre-emptive methods are possible

• Strategy: pre-empt resources

• Example:
• If process A is waiting for a resource held by process B, then take the resource from B 

and give it to A

• Problems:
• Only works for some resources

• E.g., CPU and memory (using virtual memory)
• Not possible if a resource cannot be saved and restored

• Otherwise, taking away a lock causes issues
• Also, there is an overhead cost for “pre-empt” and “restore”

63



Prevention: Eliminate Circular Waits

Strategy: Impose an ordering on resources
• Processes must acquire the highest ranked resource first

Process 1 Process 2
lock(x); lock(x);
lock(y); lock(y);
A=A+10; B=B+10;
B=B+20; A=A+20;
A = A+B; A=A+B;
unlock(y); unlock(x);
A=A+30; B=B+30;
unlock (x); unlock(y);

Locks are always acquired in the same order
• We have eliminated the circular dependency
• Means you will need to lock a resource for a longer period

64

Original code:
Process 1 Process 2
lock(x); lock(y);
A=A+10; B=B+10;
lock(y); lock(x);
B=B+20; A=A+20;
A=A+30; B=B+30;
unlock(y); unlock(x);
unlock (x) unlock(y);



Preventing Circular Wait: Lock Hierarchy
Strategy: Define an ordering of all locks in your 
program

• Always acquire locks in that order
Problem: Sometimes you do not know the order 
that the events will be used

• Recall our code for transferring money from 1 
account to another

How do we know the global order?
ØNeed extra code to find this out and then acquire

them In the right order
ØIt could get worse

65

transfer(acc1, acc2, amount){
acquire(acc1.a_lock); 
acquire(acc2.a_lock); 
acc1.balance -= amount; 
acc2.balance += amount;
release(acc1.a_lock);
release(acc2.a_lock);

}



Lock Hierarchy Problems

Solution 1.1: 
• Order based on hash code of variable

Problem?
• What about same account with the 

same hash code?

66

transfer(acc1, acc2, amount){
acc1Hash = hashCode(acc1);
acc2Hash = hashCode(acc2);
if (acc1Hash < acc2Hash) { 

acquire(acc1.a_lock); 
acquire(acc2.a_lock);
acc1.balance -= amount; 
acc2.balance += amount;
release(acc1.a_lock);
release(acc2.a_lock);

}else{ 
acquire(acc2.a_lock); 
acquire(acc1.a_lock);
acc1.balance -= amount; 
acc2.balance += amount;
release(acc2.a_lock);
release(acc1.a_lock);

}



lock tieLock; // a global lock 

transfer(acc1, acc2, amount){
acc1Hash = hashCode(acc1);
acc2Hash = hashCode(acc2);
if (acc1Hash < acc2Hash) { 

acquire(acc1.a_lock); 
acquire(acc2.a_lock);
acc1.balance -= amount; 
acc2.balance += amount;
release(acc1.a_lock);
release(acc2.a_lock);

}else if (acc1Hash > acc2Hash) { 
acquire(acc2.a_lock); 
acquire(acc1.a_lock);
acc1.balance -= amount; 
acc2.balance += amount;
release(acc2.a_lock);
release(acc1.a_lock);

} else {
acquire(tieLock);
acquire(acc1.a_lock); 
acquire(acc2.a_lock);
acc1.balance -= amount; 
acc2.balance += amount;
release(acc1.a_lock);
release(acc2.a_lock);
release(tieLock);

}
}

Lock Hierarchy Problems

Solution 1.2:
• Order based on hash code of the locked 

variable
• Deal with ties



Extra Resources:

Mike Swift Concurrency videos:
• https://www.youtube.com/channel/UCBRYU9uye8e-ZuWQMPBAoYA/videos

68

https://www.youtube.com/channel/UCBRYU9uye8e-ZuWQMPBAoYA/videos

