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• In the last session, you wrote your first class and created several objects from it

• You were introduced to the notion of state
• Every object has its own state

• An object’s state is generally defined by the values it holds

• Multiple objects can be created from a single class. Each object can have its own state.

Last Lecture - First Java Code
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By the end of this lecture you will be able to implement the following in Java:

• Correct class and method structure

• Define and initialise an int variable

• Use accessor and mutator methods

• Explain the concept of encapsulation

• Print out the object state

• Use the Java conditional statement (if else)

Topics
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In Blue J:
• Create a Bicycle class and a Car class
• Each Bicycle object should its own speed, gear and cadence (e.g. 1st, 2nd, 3rd etc) state
• What type of variable in Java could be used to represent speed, gear and cadence (look it up on the

Web)?
• Create setSpeed, setGear and setCadence method that can set the speed /gear state of a bicycle and a

car object and print out the current speed of each
• Then Create 3 Bicycle and 3 Car objects
• Using the methods above set and print different speed, gear and cadence values for each

Today’s Learning exercise
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Every class has the following structure

Class Structure:
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public class ClassName
{

Fields
Constructors
Methods

} 
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• Fields store values for an object.
• They are also known as instance variables.
• Fields define the state of an object.
• Use Inspect in BlueJ to view the state.
• Some values change often.
• Some change rarely (or not at all).

Fields
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public class Bicycle
{

private int speed;
private int gear;
private int cadence;

Further details omitted.
} 

private int speed;

visibility modifier
type

variable name
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Data Type: int
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In encapsulation, the variables of a class will be hidden from other classes
and can be accessed only through the methods of their current class,
therefore it is also known as data hiding.
• Why?
• Basic OOP philosophy: each object is responsible for its own data
• This allows an object to have much greater control
o Which data is available to be viewed externally
o How external objects may change (mutate) the object’s state

Principle 1 of OOP: Encapsulation
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• Making the fields private encapsulates their values inside each object

• No external class or object can access them.

Encapsulation Type: Private
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public class Bicycle
{

private int speed;
private int gear;
private int cadence;

Further details omitted.
} 
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• Initialize an object.
• Have the same name as their class.
• Close association with the fields:
o Initial values stored into the fields.
o Parameter values often used for these.

Constructors (1)
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public Bicycle(int spd, int gr, int cad)
{

speed = spd;
gear = gr;
cadence = cad;

} 
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• If input parameter variables have the same name as your fields
• Then you must use the this keyword to distinguish between the two
• this = “belonging to this object”

Constructors (2)
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public Bicycle(int speed, int gear, int cadence)
{

this.speed = speed;
this.gear = gear;
this.cadence = cadence;

} 



University
ofGalway.ie

• There is a lot of freedom over choice of names. Use it wisely!
• Choose expressive names to make code easier to understand:

o price, amount, name, age, etc.
• Avoid single-letter or cryptic names:

o w, t5, xyz123

Choosing Variable Names
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• Methods implement the behaviour of an object.
• Methods have a consistent structure comprised of a header and a body.

• Accessor methods provide information about the state of an object.
• Mutator methods alter the state of an object.
• Other sorts of methods accomplish a variety of tasks.

Methods
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• The header:
o public int getSpeed ()

• The header tells us:
o the visibility to objects of other classes;
o whether the method returns a result;
o the name of the method;
o whether the method takes parameters.

• The body encloses the method’s statements.

Method structure
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Accessor (get) methods
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public int getSpeed ()
{

return speed;
} 

return type
method name

parameter list 
(empty)

start and end of method body (block)

return statement

visibility modifier
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• An accessor method always has a return type that is not void.
• An accessor method returns a value (result) of the type given in the 

header.
• The method will contain a return statement to return the value.
• NB: Returning is not printing!

Accessor methods
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C vs. Java
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• Unlike a C program, an OOP program will not have a pool of 
global variables that each method can access

• Instead, each object has its own data – and other objects rely 
upon the accessor methods of the object to access the data  
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…

• The instance variables 
(or fields) are declared 
private

• Cannot be accessed 
directly

• accessor/mutator methods 
used to access the data 

• These are often called 
getter/setter methods
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What is wrong here?

Test:
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public class Bicycle
{
private speed;

public Bicycle()
{

speed = 300
}

public int getSpeed
{

return Speed;
}

(there are five errors!)
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• Have a similar method structure: header and body.

• Used to mutate (i.e., change) an object’s state.

• Achieved through changing the value of one or more fields.
They typically contain one or more assignment statements.
Often receive parameters.

Mutator Methods (1)
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Mutator Methods (2)
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public void speedUp(int amount)
{

speed = speed + amount;
} 

return type method name
formal parameter

visibility modifier

assignment statementfield being mutated
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• Each field may have a dedicated set mutator method.

• These have a simple, distinctive form:
void return type
method name related to the field name
single formal parameter, with the same type as the type of the field
a single assignment statement

Mutator Methods: ‘set’
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Mutator Methods: ‘set’
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public void setGear(int number)
{

gear = number;
}

• We can easily infer that gear is a field of type ‘int’, 
• private int gear;

• A typical ‘set’ method
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• A set method does not have to always assign unconditionally to the 
field.

• The parameter may be checked for validity and rejected if inappropriate.

• Mutators thereby protect fields.

• Mutators support encapsulation.

Protective Mutators
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Printing From Methods
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public void printState()
{

// Simulates output from a bike computer.
System.out.println("##################");
System.out.println("# Speed: " + speed);
System.out.println("# Gear : " + gear);
System.out.println("# Cadence: " + cadence);
System.out.println("##################");
System.out.println();

} 



University
ofGalway.ie

Printing From Methods 2
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public void printState()
{

// Simulates output from a bike computer.
System.out.println("##################");
System.out.printf("# Speed: %d \n ”, speed);
System.out.printf("# Gear : %d \n ”, gear);
System.out.printf("# Cadence: %d \n”, cadence);
System.out.println("##################");
System.out.println();

} 
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Conditional Statement
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• It has the same format that you have seen in C

if(I have enough money left) {
I will go out for a meal;

} else {
I will stay home and watch a movie;

}



University
ofGalway.ie

Making choices in Java
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if(perform some test) {
Do these statements if the test gave a true result

}
else {

Do these statements if the test gave a false result
} 

‘if’ keyword

boolean condition to be tested

actions if condition is true

actions if condition is false
‘else’ keyword
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Protecting a Field (1)
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public void setGear(int gearing)
{

if(gearing <= 18) {
gear = gearing;

}
else {

System.out.println(
”Exceeds maximum gear ratio. 

Gear not set”);
}

}
This conditional statement avoids an inappropriate action. It 
protects the gear field from too large values
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public void setGear(int gearing)
{

if(gearing >= 1 && gearing <= 18) {
gear = gearing;

}
else {

System.out.println(
”gear input value not in the 

correct range”);
}

} This conditional statement avoids an inappropriate action. It 
protects the gear field from too large AND too small values

Protecting a Field (2)
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Summary
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• You have encountered some of the fundamental ideas in OOP
• A class has fields, a constructor(s) and methods
• Encapsulation - each object’s data (fields) is protected by its

accessor/mutator methods
• If you want to access/change an object’s state, you must use

its accessor/mutator methods
• The use of the ‘private’ keyword prevents external access to an

object’s data


