
University
ofGalway.ie

CT2106
Object Oriented

Programming

Dr. Frank Glavin
Room 404, IT Building

Frank.Glavin@UniversityofGalway.ie

School of Computer Science

University
ofGalway.ie

• In the last session, you wrote your first class and created several objects from it

• You were introduced to the notion of state
• Every object has its own state

• An object’s state is generally defined by the values it holds

• Multiple objects can be created from a single class. Each object can have its own state.

Last Lecture - First Java Code

2

University
ofGalway.ie

By the end of this lecture you will be able to implement the following in Java:

• Correct class and method structure

• Define and initialise an int variable

• Use accessor and mutator methods

• Explain the concept of encapsulation

• Print out the object state

• Use the Java conditional statement (if else)

Topics

3

University
ofGalway.ie

In Blue J:
• Create a Bicycle class and a Car class
• Each Bicycle object should its own speed, gear and cadence (e.g. 1st, 2nd, 3rd etc) state
• What type of variable in Java could be used to represent speed, gear and cadence (look it up on the

Web)?
• Create setSpeed, setGear and setCadence method that can set the speed /gear state of a bicycle and a

car object and print out the current speed of each
• Then Create 3 Bicycle and 3 Car objects
• Using the methods above set and print different speed, gear and cadence values for each

Today’s Learning exercise

4

University
ofGalway.ie

Every class has the following structure

Class Structure:

5

public class ClassName
{

Fields
Constructors
Methods

}

University
ofGalway.ie

• Fields store values for an object.
• They are also known as instance variables.
• Fields define the state of an object.
• Use Inspect in BlueJ to view the state.
• Some values change often.
• Some change rarely (or not at all).

Fields

6

public class Bicycle
{

private int speed;
private int gear;
private int cadence;

Further details omitted.
}

private int speed;

visibility modifier
type

variable name

University
ofGalway.ie

Data Type: int

7

University
ofGalway.ie

In encapsulation, the variables of a class will be hidden from other classes
and can be accessed only through the methods of their current class,
therefore it is also known as data hiding.
• Why?
• Basic OOP philosophy: each object is responsible for its own data
• This allows an object to have much greater control
o Which data is available to be viewed externally
o How external objects may change (mutate) the object’s state

Principle 1 of OOP: Encapsulation

8

University
ofGalway.ie

• Making the fields private encapsulates their values inside each object

• No external class or object can access them.

Encapsulation Type: Private

9

public class Bicycle
{

private int speed;
private int gear;
private int cadence;

Further details omitted.
}

University
ofGalway.ie

• Initialize an object.
• Have the same name as their class.
• Close association with the fields:
o Initial values stored into the fields.
o Parameter values often used for these.

Constructors (1)

10

public Bicycle(int spd, int gr, int cad)
{

speed = spd;
gear = gr;
cadence = cad;

}

University
ofGalway.ie

• If input parameter variables have the same name as your fields
• Then you must use the this keyword to distinguish between the two
• this = “belonging to this object”

Constructors (2)

11

public Bicycle(int speed, int gear, int cadence)
{

this.speed = speed;
this.gear = gear;
this.cadence = cadence;

}

University
ofGalway.ie

• There is a lot of freedom over choice of names. Use it wisely!
• Choose expressive names to make code easier to understand:

o price, amount, name, age, etc.
• Avoid single-letter or cryptic names:

o w, t5, xyz123

Choosing Variable Names

12

University
ofGalway.ie

• Methods implement the behaviour of an object.
• Methods have a consistent structure comprised of a header and a body.

• Accessor methods provide information about the state of an object.
• Mutator methods alter the state of an object.
• Other sorts of methods accomplish a variety of tasks.

Methods

13

University
ofGalway.ie

• The header:
o public int getSpeed ()

• The header tells us:
o the visibility to objects of other classes;
o whether the method returns a result;
o the name of the method;
o whether the method takes parameters.

• The body encloses the method’s statements.

Method structure

14

University
ofGalway.ie

Accessor (get) methods

15

public int getSpeed ()
{

return speed;
}

return type
method name

parameter list
(empty)

start and end of method body (block)

return statement

visibility modifier

University
ofGalway.ie

• An accessor method always has a return type that is not void.
• An accessor method returns a value (result) of the type given in the

header.
• The method will contain a return statement to return the value.
• NB: Returning is not printing!

Accessor methods

16

University
ofGalway.ie

C vs. Java

17

• Unlike a C program, an OOP program will not have a pool of
global variables that each method can access

• Instead, each object has its own data – and other objects rely
upon the accessor methods of the object to access the data

University
ofGalway.ie

…

• The instance variables
(or fields) are declared
private

• Cannot be accessed
directly

• accessor/mutator methods
used to access the data

• These are often called
getter/setter methods

18

University
ofGalway.ie

What is wrong here?

Test:

19

public class Bicycle
{
private speed;

public Bicycle()
{

speed = 300
}

public int getSpeed
{

return Speed;
}

(there are five errors!)

University
ofGalway.ie

• Have a similar method structure: header and body.

• Used to mutate (i.e., change) an object’s state.

• Achieved through changing the value of one or more fields.
They typically contain one or more assignment statements.
Often receive parameters.

Mutator Methods (1)

20

University
ofGalway.ie

Mutator Methods (2)

21

public void speedUp(int amount)
{

speed = speed + amount;
}

return type method name
formal parameter

visibility modifier

assignment statementfield being mutated

University
ofGalway.ie

• Each field may have a dedicated set mutator method.

• These have a simple, distinctive form:
void return type
method name related to the field name
single formal parameter, with the same type as the type of the field
a single assignment statement

Mutator Methods: ‘set’

22

University
ofGalway.ie

Mutator Methods: ‘set’

23

public void setGear(int number)
{

gear = number;
}

• We can easily infer that gear is a field of type ‘int’,
• private int gear;

• A typical ‘set’ method

University
ofGalway.ie

• A set method does not have to always assign unconditionally to the
field.

• The parameter may be checked for validity and rejected if inappropriate.

• Mutators thereby protect fields.

• Mutators support encapsulation.

Protective Mutators

24

University
ofGalway.ie

Printing From Methods

25

public void printState()
{

// Simulates output from a bike computer.
System.out.println("##################");
System.out.println("# Speed: " + speed);
System.out.println("# Gear : " + gear);
System.out.println("# Cadence: " + cadence);
System.out.println("##################");
System.out.println();

}

University
ofGalway.ie

Printing From Methods 2

26

public void printState()
{

// Simulates output from a bike computer.
System.out.println("##################");
System.out.printf("# Speed: %d \n ”, speed);
System.out.printf("# Gear : %d \n ”, gear);
System.out.printf("# Cadence: %d \n”, cadence);
System.out.println("##################");
System.out.println();

}

University
ofGalway.ie

Conditional Statement

27

• It has the same format that you have seen in C

if(I have enough money left) {
I will go out for a meal;

} else {
I will stay home and watch a movie;

}

University
ofGalway.ie

Making choices in Java

28

if(perform some test) {
Do these statements if the test gave a true result

}
else {

Do these statements if the test gave a false result
}

‘if’ keyword

boolean condition to be tested

actions if condition is true

actions if condition is false
‘else’ keyword

University
ofGalway.ie

Protecting a Field (1)

29

public void setGear(int gearing)
{

if(gearing <= 18) {
gear = gearing;

}
else {

System.out.println(
”Exceeds maximum gear ratio.

Gear not set”);
}

}
This conditional statement avoids an inappropriate action. It
protects the gear field from too large values

University
ofGalway.ie

public void setGear(int gearing)
{

if(gearing >= 1 && gearing <= 18) {
gear = gearing;

}
else {

System.out.println(
”gear input value not in the

correct range”);
}

} This conditional statement avoids an inappropriate action. It
protects the gear field from too large AND too small values

Protecting a Field (2)

30

University
ofGalway.ie

Summary

31

• You have encountered some of the fundamental ideas in OOP
• A class has fields, a constructor(s) and methods
• Encapsulation - each object’s data (fields) is protected by its

accessor/mutator methods
• If you want to access/change an object’s state, you must use

its accessor/mutator methods
• The use of the ‘private’ keyword prevents external access to an

object’s data

