CT326 Programming III

Sy

AT OLLSCOILNAGAILLIMHUE
- ﬁ ="

EI-I? UNIVERSITY OF GALWAY
L

O\ A
Lw

Collections Framework

- What Is a Collection?
- A collection (sometimes called a container) is simply an object that
groups multiple elements into a single unit.

- Collections are used to store, retrieve and manipulate data, and to
transmit data from one method to another.
- Collections typically represent data items that form a natural group:

- Like a poker hand (a collection of cards), a mail folder (a collection of letters),
or a telephone directory (a collection of name-to-phone-number mappings).

WU L,
U\r_ﬁ%}_«g QLLSCOILNA GAILLIMUE
sl - UNIVERSITY OF GALWAY

.(\‘
0 vav A
4w

Collections Framework

- If you've used Java -- or just about any other programming
language -- you're already familiar with collections.

- Collection implementations in earlier versions of Java included
Vector , Hashtable , and array.
- Vector and Hashtable are part of the java.util package and are
widely used in existing code.
- While earlier versions of Java contained collection
implementations, they did not contain a full collections
framework.

Interfaces

« The core collection interfaces are the interfaces used to

manipulate collections, and to pass them from one method to
another.

- The basic purpose of these interfaces is to allow collections to
be manipulated independently of the details of their
representation.

« The core collection interfaces are the main foundation of the
collections framework.

Core Collections Interfaces

Collection

SortedSet

SortedMap

WU L,
U\r_ﬁ%}_«g QLLSCOILNA GAILLIMUE
sl - UNIVERSITY OF GALWAY
L

.(\‘
0 va A
4w

Core Collections Interfaces

- The core collection interfaces form a hierarchy:

- A Set is a special kind of Collection, and a SortedSet is a special
kind of Set, and so forth.

- Note also that the hierarchy consists of two distinct trees: a Map is not a
true Collection.

- To keep the number of core collection interfaces manageable,
the JDK doesn't provide separate interfaces for each variant of
each collection type.

- Among the possible variants are immutable, fixed-size, and
append-only.

WU L,
U\r_ﬁ%}_«g QLLSCOILNA GAILLIMUE
sl - UNIVERSITY OF GALWAY
L

.(\‘
0 vav A
4w

Collections Framework

- Instead, the modification operations in each interface are
designated optional:
- A given implementation may not support some of these operations.

- If an unsupported operation is invoked, a collection throws an
UnsupportedOperationException.

- Implementations are responsible for documenting which of the
optional operations they support.

- All of the JDK's general purpose implementations support all of the
optional operations.

Collection Interface

« The Collection interface is the root of the collection
hierarchy.

- ACollection represents a group of objects, known as its
elements.

- Some Collection implementations allow duplicate elements
and others do not.
« Some are ordered and others unordered.

- The JDK doesn't provide any direct implementations of this
interface: It provides implementations of more specific sub-
interfaces like Set and List.

WU L,
U\r_ﬁ%}_«g QLLSCOILNA GAILLIMUE
sl - UNIVERSITY OF GALWAY

o Vo o
e’

Collection Interface

- This interface is the lowest common denominator that all
collections implement.

- Collection is used to pass collections around and
manipulate them when maximum generality is desired.

public interface Collection {
// Basic Operations
int size();
boolean isEmpty ()
boolean contains (Object element);
boolean add(Object element); // Optional
boolean remove (Object element); // Optional

Iterator iterator () ;

\LLy

J_@‘ﬁ%ﬁ’: QLLSCOILNA GAILLIMUE
sl - UNIVERSITY OF GALWAY
L

L~ Uy
4w

Collection Interface

// Bulk Operations

boolean containsAll (Collection c);

boolean addAll (Collection c); // Optional
boolean removeAll (Collection c); // Optional
boolean retainAll (Collection c); // Optional
void clear () ; // Optional

// Array Operations
Object[] toArray();
Object[] toArray (T[] a);

SL Ly
U"Kﬁx’z QOLLSCOILNA GAILLIMHE

L=

. §lils -
ojlnlf* UNIVERSITY oF GALWAY
LW

Type-Wrapper classes

- Collections manipulate and store Objects (not primitive types)
- Each Java primitive type as a corresponding type-wrapper
class in java.lang

- enable primitives to be manipulated as objects
- Boolean, Byte, Character, Double, Float, Integer, Long, Short
- numeric type-wrapper classes extend the Number class

- Methods related to primitive types are contained in the type-
wrapper classes

- e.g.,, parselInt islocated in class Integer.

Autoboxing and Auto-unboxing

- automatic conversions between primitive types and type-
wrapper objects

- A boxing conversion converts a value of a primitive type to an
object of the corresponding type-wrapper class

- An unboxing conversion converts an object of a type-
wrapper class to a value of the corresponding primitive type

- Consider the following code:

Double[] myDoubles = new Double[10];
myDoubles [0] = 22.7;
double firstDoubleValue = myDoubles[0];

WU L,
U\r_ﬁ%}_«g QLLSCOILNA GAILLIMUE
sl - UNIVERSITY OF GALWAY
L

.(\‘
0 vav A
4w

Collections Framework

- J2SE 5.0 leaves the conversion required to transition to an Integer and
back to the compiler.

- Before

ArrayList<Integer> list = new ArrayList<Integer>();
list.add (0, new Integer(42));
int total = (list.get(0)) .intValue();

- After

ArrayList<Integer> list = new ArrayList<Integer>();
list.add (0, 42);
int total = list.get(0);

<

ANITA OLLSCOILNAGAILLIMUE

> Ll

ojlv-;.lfﬂ UNIVERSITY oF GALWAY
L W

Tterator Interface

- The object returned by the Collection iterator ()
method deserves special mention.

- ltisan Iterator, which is very similar to an Enumeration,
but differs in two respects:

- Tterator allows the caller to remove elements from the underlying
collection during the iteration with well-defined semantics.

- Method names have been improved.

- The first point is important. There was no safe way to remove

elements from a collection while traversing it with an
Enumeration.

WU L,
U\r_ﬁ%}_«g QLLSCOILNA GAILLIMUE
sl - UNIVERSITY OF GALWAY

.(\‘
0 vav A
4w

Tterator Interface

- The semantics of this operation were ill-defined, and differed
from implementation to implementation.

- The lterator interface is shown below:

public interface Iterator {
boolean hasNext () ;
Object next();

void remove () ; // Optional

<

ANITA OLLSCOILNAGAILLIMUE

> Ll

ojlv-;.lfﬂ UNIVERSITY oF GALWAY
L W

Tterator Interface

« The hasNext method is identical in function to

Enumeration.hasMoreElements, and the next method is
identical in function to Enumeration.nextElement.

- The remove method removes from the underlying
Collection the last element that was returned by next.
- The remove method may be called only once per call to next, and throws
an exception if this is violated.

- Note that Tterator.remove is the only safe way to modify a collection

during iteration; the behaviour is unspecified if the underlying collection is
modified in any other way while the iteration is in progress.

WU L,
U\r_ﬁ%}_«g QLLSCOILNA GAILLIMUE
sl - UNIVERSITY OF GALWAY

.(\‘
0 vav A
4w

Using Iterator

- The following sample shows you how to use an Iterator to
filtlera Collection, thatis, to traverse the collection,
removing every element that does not satisfy some condition:

static void filter (Collection<?> c) {
for (Iterator<?> 1 = c.iterator(); i.hasNext();)
1if (!'cond(i.next()))
i.remove () ;
}
// cond() 1s some other related method which checks

// the element for some condition ...

SL Ly
U"Kﬁx’c QOLLSCOILNA GAILLIMHE

L=

. §lils -
ojlnlf* UNIVERSITY oF GALWAY
LW

Using Iterator

- Two things should be kept in mind when looking at this simple
piece of code:
- The code is polymorphic: it works for any Collection that supports
element removal, regardless of implementation.

- This example shows how easy it is to write a polymorphic algorithm under
the collections framework!

- It would have been impossible to write this using Enumeration instead
of Iterator, because there's no safe way to remove an element from a
collection while traversing it with an Enumeration.

Set Interface

- A Set Is a collection that cannot contain duplicate elements.

- As you might expect, this interface models the mathematical
set abstraction.

- It is used to represent sets like the cards comprising a poker

hand, the courses making up a student's schedule, or the
processes running on a machine.

- The Set interface has the same methods as the Collection
interface.

WU L,
U\r_ﬁ%}_«g QLLSCOILNA GAILLIMUE
sl - UNIVERSITY OF GALWAY
L

.(\‘
0 vav A
4w

Set Implementations

- The JDK contains two general-purpose Set implementations.

-« HashSet, which stores its elements in a hash table, is the best-
performing implementation.

- TreeSet, Which stores its elements in a tree format, and guarantees the
order of iteration.

- There follows a program that takes the words in its argument
list and prints out:
- Any duplicate words.
- The number of distinct words.
- Alist of the words with duplicates eliminated.

Anhg
AT OLLSCOILNAGAILLIMHUE
o
5'-" UNIVERSITY OF GALWAY

C vaw

Using Set

import java.util.*;

public class FindDups {
public static void main(String args|[]) {
Set s = new HashSet () ;
for (int 1=0,; i<args.length; i++)
if (!s.add(argsf[il]))

System.out.println ("Duplicate
detected: "+args([i]);

System.out.println(s.size()+" distinct
words detected: "+s);

WU L,
U\r_ﬁ%}_«g QLLSCOILNA GAILLIMUE
sl - UNIVERSITY OF GALWAY

.(\‘
0 vav A
4w

Using Set

- Running the program produces the following:

% java FindDups i came i saw i left
Duplicate detected: i

Duplicate detected: i

4 distinct words detected: [came, left, saw, i]

- Note that the example code always refers to the collection by
its interface type (Set), rather than by its implementation type

(HashSet).

SL Ly
U"Kﬁx’c QOLLSCOILNA GAILLIMHE

L=

. §lils -
ojlnlf* UNIVERSITY oF GALWAY
LW

Using Set

- Using an interface data type (like Set) is a strongly
recommended programming practice:
- It gives you the flexibility to change implementations merely by changing
the constructor.
- If the variables used to store a collection, or the parameters
used to pass it around, are declared to be of the collection's
implementation type rather than its interface type:

- Then all such variables and parameters must be changed to change the
collection's implementation type.

WU L,
U\r_ﬁ%}_«g QLLSCOILNA GAILLIMUE
sl - UNIVERSITY OF GALWAY

.(\‘
0 vav A
4w

L.ist Interface

- AList is an ordered collection (sometimes called a
sequence).

- Lists can contain duplicate elements.

- The user of a List generally has precise control over where in
the List each element is inserted.

- The user can access elements by their integer index (position).

- If you've used vVector, you're already familiar with the general
flavour of List.

\LLy

J_@‘ﬁ%ﬁ’: QLLSCOILNA GAILLIMUE
sl - UNIVERSITY OF GALWAY
L

L~ Uy
4w

L.ist Interface

« The List interface is shown below:

public interface List extends Collection {
// Positional Access
Object get (int index);

Object set (int index, Object element);
// Optional

void add(int index, Object element);
// Optional

Object remove (int index);
// Optional

abstract boolean addAll (int index, Collection c);
// Optional

// Continued on next slide

Anhg
U"Kﬁx’: QOLLSCOILNA GAILLIMHE
. &|lmals -
‘Inl’ UNIVERSITY oF GALWAY

D~

Lw

L.ist Interface

// Search
int indexOf (Object o0);
int lastIndexOf (Object o)

// Iteration
ListIterator listIterator();

ListIterator listIterator(int index);

// Range-view

List sublList (int from, int to);

SL Ly
U"Kﬁx’c QOLLSCOILNA GAILLIMHE

L=

. §lils -
ojlnlf* UNIVERSITY oF GALWAY
LW

List Implementations

- The JDK contains two general-purpose List implementations.

- ArrayList, which is generally the best-performing implementation.
- LinkedList which offers better performance under certain

circumstances.
- Also, the standard java.util.Vector class has been
retrofitted to implement List in new versions of the JDK (1.2
and higher).

- The operations inherited from Collection all do what you'd
expect them to do.

WU L,
U\r_ﬁ%}_«g QLLSCOILNA GAILLIMUE
sl - UNIVERSITY OF GALWAY
L

.(\‘
0 vav A
4w

List Implementations

- Inserting (or removing) an element between existing elements
of an ArrayList or Vector is an inefficient operation

- for insertion, all elements at and after the index of the new one must be
shifted out of the way, which could be an expensive operation in a
collection with a large number of elements

- for removal, any elements after the index of the one removed must be
shifted to the left (subtracting one from their indices)

- ALinkedList enables efficient insertion (or removal) of
elements in the middle of a collection

« ALinkedList is much less efficient than an ArravyIList for
jumping to a specific element in the collection

WU L,
U\r_ﬁ%}_«g QLLSCOILNA GAILLIMUE
sl - UNIVERSITY OF GALWAY

.(\‘
0 vav A
4w

Oueue Interface

- A collection for holding elements prior to processing

- Includes all basic Collection operations as well as additional
Insertion, removal, and inspection operations

public interface Queue<E> extends Collection<E> {
E element () ;
boolean offer (E e);
E peek();
E poll();

E remove () ;

WU L,
U\r_ﬁ%}_«g QLLSCOILNA GAILLIMUE
sl - UNIVERSITY OF GALWAY

.(\‘
0 vav A
4w

Oueue Interface

- Typically but not necessarily order elements in FIFO (first in
first out) manner

- Head of queue is the element removed with remove or poll
- All new elements inserted at tail

Deque Interface

- A deque is a double-ended-queue

- Methods are provided to insert, remove, and examine the
elements

- can be used both as last-in-first-out stacks and first-in-first-out
queues

- supports the insertion and removal of elements at both end
points

Deque Interface

Deque Methods

Anhg
U"Kﬁx’: QOLLSCOILNA GAILLIMHE
. &|lmals -

‘Inl’ UNIVERSITY oF GALWAY

o> A
4w

Type of Operation | First Element (Beginning of the Deque instance) | Last Element (End of the Deque instance)
Insert addFirst(e) addLast(e)
offerFirst(e) offerLast(e)
removeFirst() removelLast()
R
emove pollFirst() pollLast()
. getFirst(Q) getLast(Q)
Examine peekFirst() peekLast()

VL,
AT XA OLLSCOILNAGAILLIMHE

> =
© Lj=Af=

. §lils -
c.jl-lﬂ UNIVERSITY oF GALWAY
LW

Map Interface

- AMap is an object that maps keys to values.

- Maps cannot contain duplicate keys:
- Each key can map to at most one value.
- If you've used Hashtable, you're already familiar with the general
flavour of Map.
- Includes methods for basic operations (such as put, get,
remove, containsKey, containsValue, size, and empty)

- Also bulk operations (such as putAll and clear)

- And collection views (such as keySet, entrySet, and values).

- The last two core collection interfaces (SortedSet and
SortedMap) are merely sorted versions of Set and Map.

- In order to understand these interfaces, you have to know how order is
maintained among objects.

ALl
U"Kﬁx’: QOLLSCOILNA GAILLIMUE

° Ll ™
oflv-.-.lfﬂ UNIVERSITY oF GALWAY
LW

Map example

- Example generating frequency table of words in argument list

import java.util.*;
public class Freq {
public static void main(String[] args) {
Map<String, Integer> m = new HashMap<String, Integer>();
// Initialize frequency table from command line
for (String a : args) {

Integer freqg = m.get(a);
m.put (a, (freq == null) ? 1 : freqg + 1);

System.out.println(m.size() + " distinct words:");
System.out.println (m) ;

java Freq if it is to be it is up to me to delegate

8 distinct words: {to=3, delegate=1, be=1, it=2, up=1, if=1, me=1, is=2}

WU L,
U\r_ﬁ%}_«g QLLSCOILNA GAILLIMUE
sl - UNIVERSITY OF GALWAY
L

.(\‘
0 va A
4w

Object Ordering

- There are two ways to order objects:

- The Comparable interface provides automatic natural order on classes
that implement it.

- While the Comparator interface gives the programmer complete control
over object ordering.

- Note that these are not core collection interfaces, but
underlying infrastructure.
- E.g. the Comparable interface is implemented by classes like Byte,
Float, Integer etc
- This interface imposes a total ordering on the objects of each
class that implements it.

\LLy

J_@‘ﬁ%ﬁ’: QLLSCOILNA GAILLIMUE
sl - UNIVERSITY OF GALWAY
L

o Vo A
4 L W |

- Comparable
public class Person i1mplements Comparable {

public int compareTo (Person otherPerson) {

}
- Comparator

public class PersonAgeComparator implements Comparator (

public int compare (Person aPerson, Person otherPerson)

SL Ly
U"Kﬁx’c QOLLSCOILNA GAILLIMHE

L=

. §lils -
ojlnlf* UNIVERSITY oF GALWAY
LW

SortedSet and SortedMap Interfaces

« A SortedSet is a Set that maintains its elements in
ascending order.

- Several additional operations are provided to take advantage of the
ordering.

- The SortedsSet interface is used for things like word lists and
membership rolls.
- A SortedMap is a Map that maintains its mappings in
ascending key order.
- It is the Map analogue of SortedSet.

- The SortedMap interface is used for apps like dictionaries and telephone
directories.

Collection Implementation Classes

- The general-purpose JDK implementation classes are
summarised in the table below:

Interface Class Underlying Data Structure
Set HashSet Hash Table
TreeSet Balanced Tree
List ArrayList Resizable Array
LinkedList Linked List
Map HashMap Hash Table
TreeMap BalancedTree
Queue PriorityQueue Heap
LinkedList Linked List
Deque LinkedList Linked List
ArrayDeque Resizable Array

SL Ly
U"Kﬁx’z QOLLSCOILNA GAILLIMHE

L=

. §lils -
c.jl-lﬂ UNIVERSITY oF GALWAY
LW

<

ANITA OLLSCOILNAGAILLIMUE
> Ll

ojlv-;.lfﬂ UNIVERSITY oF GALWAY
L W

Collections Framework

- All of the classes implement all the optional operations
contained in their interfaces.

- All permit null elements, keys and values.

- Each one is unsynchronised:

- If you need a synchronised collection, so called synchronisation

wrappers, allow any collection to be transformed into a synchronised
collection.

- All have fail-fast iterators, which detect illegal concurrent
modification during iteration and fail quickly and cleanly.

- Rather than risking arbitrary, non-deterministic behaviour at an
undetermined time in the future.

Collection Algorithms

- Polymorphic algorithms are pieces of reusable functionality
provided by the JDK.

- All of them come from the java.util.Collections class.

- All take the form of static methods whose first argument is the
collection on which the operation is to be performed.

- The great majority of the algorithms provided by the Java
platform operate on List objects, but a couple of them (min

and max) operate on arbitrary Collection objects.

Sorting

- The sort algorithm reorders a List so that its elements are in
ascending order according to some ordering relation.

- Two forms of the operation are provided.

- The simple form just takes a List and sorts it according to its
elements’ natural ordering.

- The sort operation uses a slightly optimised merge sort
algorithm.

SL Ly
U"Kﬁx’c QOLLSCOILNA GAILLIMHE

L=

. §lils -
ojlnlf* UNIVERSITY oF GALWAY
LW

Sorting

- The important things to know about the merge sort algorithm
are that it is:

- Fast. This algorithm is guaranteed to run in n log(n) time, and
runs substantially faster on nearly sorted lists.
- Empirical studies showed it to be as fast as a highly optimised quicksort.

- Quicksort is generally regarded to be faster than merge sort, but isn't
stable, and doesn't guarantee n log(n) performance.

WU L,
U\r_ﬁ%}_«g QLLSCOILNA GAILLIMUE
sl - UNIVERSITY OF GALWAY
L

.(\‘
0 va A
4w

Sorting

- Stable: That is to say, it doesn't reorder equal elements.

- This is important if you sort the same list repeatedly on different
attributes.

- If a user of a mail program sorts his in-box by mailing date, and then sorts
it by sender, the user naturally expects that the now-contiguous list of
messages from a given sender will (still) be sorted by mailing date.

- This is only guaranteed if the second sort was stable.

WU L,
U\r_ﬁ%}_«g QLLSCOILNA GAILLIMUE
sl - UNIVERSITY OF GALWAY
L

.(\‘
0 va A
4w

Sorting

- Here's a small program that prints out its arguments in
lexicographic (alphabetical) order.

import Java.util.*;

public class Sort {
public static void main(String args|[]) {
List 1 = Arrays.aslList (args):;
Collections.sort (1) ;

System.out.println(l);

WU L,
U\r_ﬁ%}_«g QLLSCOILNA GAILLIMUE
sl - UNIVERSITY OF GALWAY

.(\‘
0 vav A
4w

Sorting

- Running the program produces the following:

% java Sort i walk the line

[i, line, the, walk]

- The second form of sort takes a Comparator in addition to a
List and sorts the elements with the Comparator.

- Comparators can be passed to a sort method (such as
Collections.sort) to allow precise control over the sort order.

WU L,
U\r_ﬁ%}_«g QLLSCOILNA GAILLIMUE
sl - UNIVERSITY OF GALWAY
L

.(\‘
0 vav A
4w

Shuffling

- The shuffle algorithm does the opposite of what sort does: it
destroys any trace of order that may have been presentin a
List.

- That is to say, it reorders the List, based on input from a source of

randomness, such that all possible permutations occur with equal
likelihood (assuming a fair source of randomness).

- This algorithm is useful in implementing games of chance.

- For example, it could be used to shuffle a List of Card objects
representing a deck.

WU L,
U\r_ﬁ%}_«g QLLSCOILNA GAILLIMUE
sl - UNIVERSITY OF GALWAY

-0
C vav
e’

Shuffling

- Shuffle can also be useful for generating test cases.

- There are two forms of this operation.

- The first just takes a L.i st and uses a default source of
randomness.

- The second requires the caller to provide a Random object to
use as a source of randomness.

Routine Data Manipulation

- The Collections class provides three algorithms for doing
routine data manipulation on List objects.

- All of these algorithms are pretty straightforward:
- reverse: Reverses the order of the elements in a List.

- fill. Overwrites every element in a List with the specified value.
- This operation is useful for re-initialising a List.

WU L,
U\r_ﬁ%}_«g QLLSCOILNA GAILLIMUE
sl - UNIVERSITY OF GALWAY
L

.(\‘
0 vav A
4w

Routine Data Manipulation

- copy: Takes two arguments, a destination List and a source
List, and copies the elements of the source into the
destination, overwriting its contents.

- The destination L.i st must be at least as long as the source.

- If it is longer, the remaining elements in the destination List are
unaffected.

Searching

- The binarySearch algorithm searches for a specified element
In a sorted List using the binary search algorithm.

- There are two forms of this algorithm.

- The first takes a List and an element to search for (the
"search key").

- This form assumes that the List is sorted into ascending
order according to the natural ordering of its elements.

SL Ly
U"Kﬁx’c QOLLSCOILNA GAILLIMHE

L=

. §lils -
ojlnlf* UNIVERSITY oF GALWAY
LW

Searching

- The second form of the call takes a Comparator in addition to
the List and the search key, and assumes that the List is

sorted into ascending order according to the specified
Comparator.

- The sort algorithm (described already) can be used to sort the
List priorto calling binarySearch.

- The return value is the same for both forms:
- If the List contains the search key, its index is returned.
- Otherwise, the return value is (-(insertion point) - 1).

WU L,

U\r_ﬁ%}_«g QLLSCOILNA GAILLIMUE

sl - UNIVERSITY OF GALWAY
L

.(\‘
0 vav A
4w

Searching

- In the negative case, the insertion point is defined as the point
at which the value would be inserted into the List:

- The index of the first element greater than the value, or 1ist.size () if
all elements in the List are less than the specified value.

- This admittedly ugly formula was chosen to guarantee that the return
value will be >= 0 if and only if the search key is found.

- It's basically a hack to combine a boolean ("found") and an integer
("index") into a single int return value.

WU L,
U\r_ﬁ%}_«g QLLSCOILNA GAILLIMUE
sl - UNIVERSITY OF GALWAY

-0
C vav
e’

Searching

- The following idiom, usable with both forms of the
binarySearch operation, looks for the specified search key,

and inserts it at the appropriate position if it's not already
present:

int pos = Collections.binarySearch(l, key);
if (pos < 0)
l.add (-pos-1, key);

WU L,

U\r_ﬁ%}_«g QLLSCOILNA GAILLIMUE

sl - UNIVERSITY OF GALWAY
L

.(\‘
0 va A
4w

Finding Extreme Values

- The min and max algorithms return, respectively, the minimum
and maximum element contained in a specified Collection.

- Both of these operations come in two forms.

- The simple form takes only a Collection, and returns the minimum (or
maximum) element according to the elements' natural ordering.

- The second form takes a Comparator in addition to the Collection and
returns the minimum (or maximum) element according to the specified
Comparator.

Finding Extreme Values

- These are the only algorithms provided by the Java platform
that work on arbitrary Collection objects, as opposed to List
objects.

- Like the fill algorithm, described earlier, these algorithms are
quite straightforward to implement.

- They are included in the Java platform solely as a convenience
to programmers.

- Most programmers will probably never need to implement their
own collections classes, but this can be done if necessary.

WU L,
U\r_ﬁ%}_«g QLLSCOILNA GAILLIMUE
sl - UNIVERSITY OF GALWAY
L

.(\‘
0 va A
4w

Unmodifiable collections

- Collections class provides a set of static methods that create
unmodifiable wrappers for collections

- throw UnsupportedOperationExceptions if attempts are made to
modify the collection

- references stored in the collection are not modifiable, but the
objects they refer are modifiable (unless they belong to an
immutable class like String)

<T> Collection<T> unmodifiableCollection(Collection<T> c)

<T> List<T> unmodifiableList(List<T> alList)

<T> Set<T> unmodifiableSet(Set<T> s)

<T> SortedSet<T> unmodifiableSortedSet(SortedSet<T> s)

<K, V> Map<K, V> unmodifiableMap(Map<K, V> m)

<K, V> SortedMap<K, V> unmodifiableSortedMap(SortedMap<K, V> m)

WU L,
U\r_ﬁ%}_«g QLLSCOILNA GAILLIMUE
sl - UNIVERSITY OF GALWAY

-0
C vav
e’

Generic Types

- The Collections API provides common functionality like
LinkedLists, ArrayLists and HashMaps that can be used by
more than one Java type.

- The next example uses the 1.4.2 libraries and the default javac
compile mode:

ArraylList list = new ArrayList();
list.add (0, new Integer(42));
int total = ((Integer)list.get(0)) .intValue();

Sy

AT OLLSCOILNAGAILLIMHUE
- ﬁ ="

1'..'5, UNIVERSITY OF GALWAY
LW

ooy L
4

Collections Framework

- The cast to Integer on the last line is an example of the
typecasting issues that generic types aim to prevent.

- The issue is that the 1.4.2 Collection API uses the Object class
to store the Collection objects, which means that it cannot pick
up type mismatches at compile time.

- The same example with the generified Collections library is
written as follows:

ArraylList<Integer> list = new ArraylList<Integer>();
list.add (0, new Integer(42));
int total = list.get(0).intValue()

Collections Framework

- The user of a generified API has to simply declare the type
used at compile type using the <> notation.

- No casts are needed and in this example trying to add a
String object to an Integer typed collection would be caught
at compile time.

- Generic types therefore enable an API designer to provide
common functionality that can be used with multiple data types
and which also can be checked for type safety at compile time.

- Designing your own Generic APls is a little more complex than
simply using them. To get started look at the
java.util.Collection source and also the API guide.

SL Ly
U"Kﬁx’c QOLLSCOILNA GAILLIMHE

L=

. §lils -
c.jl-lﬂ UNIVERSITY oF GALWAY
LW

Next time...

- Graphical User Interfaces

