C13536
(Games Programming using

Unity3D)

Section 10

Pathfinding
C# Threads using “Thread Ninja”

Pathfinding in Unity using NavMesh
and NavMeshAgent

. See demo project on Canvas “NavMeshDemo”

. This is loosely based on:
https:/ /www.red-gate.com/simple-talk/dotnet/c-programming/pathfinding-unity-c/

. Use Window>Navigation to open the Navigation tab.
. Here we're creating a NavMesh attached to Floor

Navigation

dddddd

Learn instead about the component workflow.

. Floor (Mesh Renderer)

Navigation Static 4
Generate OffMeshLinks -
) (w

https://www.red-gate.com/simple-talk/dotnet/c-programming/pathfinding-unity-c/

Pathfinding in Unity using NavMesh
and NavMeshAgent

. In the "Bake’ settings you have various options

. The ‘Bake’ button creates the mesh
. This sparse navmesh has far fewer nodes than the grid-

based approach we take below => more efficient to use

> | 11| M | @ Coliab - i &] Account =
¥ Insp¢

dddddd

Agent Height

2
Max Slope O 45

Step Height 0.4

Generated Off Mesh Links
Drop Height 0
Jump Distance 0

D | &% %]

The CleverCube Object

Gizmos ~

< Persp

@

D &%

, 0=

& Collab ~ E Account ~ Layers v Layout v
© Inspector
[« [CleverCube | [] Static *
Tag [Untagged 4| Layer| Default ¢]
» . Transform &,
V|| Cube (Mesh Filter) *,
Mesh [l Cube]e
» & [/ Box Collider #*,
» . [¥ Mesh Renderer #*,
v - [V Nav Mesh Agent L %
Agent Type [Humanoid &
Base Offset 0.5]
Steering
Speed 3.5
Angular Speed 120
Acceleration 8
Stopping Distance 0
Auto Braking 4
Obstacle Avoidance
Radius 0.5
Height 2
Quality [High Quality
Priority 150
Path Finding
Auto Traverse Off Mesh Link [«
Auto Repath 4
Area Mask [Everything m
v | [V Pathfinder (Script)) %
|« Pathfinder]

Script

 Has a NavMeshAgent component added
* Has a new custom script added: ‘Pathfinder’

GameManager class

// attached to the Camera (a simple ‘follow cam’)

public class GameManager : MonoBehaviour ({
void Start () {
Camera.main.transform.position = new Vector3(0f, 20f, 20f);
Camera.main.transform.LookAt (Vector3.zero);

Pathfinder Class

using UnityEngine.AI;
public class Pathfinder : MonoBehaviour {
private NavMeshAgent nav;

void Start () {
nav = GetComponent<NavMeshAgent>();
nav.destination = transform.position;

}
void Update () {
if (Input.GetMouseButtonDown(0)) {
Ray ray = Camera.main.ScreenPointToRay(Input.mousePosition);
RaycastHit hitInfo;
if (Physics.Raycast(ray, out hitInfo, 500f)) {
nav.destination = hitInfo.point;
}
}
}

A* Pathfinding
(The next few slides are from CT255)

known cost
from start to
this node

est. cost from
this node to
goal

TL f=g+h

est. cost from
start to goal
via this node

images from: http://www.policyalmanac.org/games/aStarTutorial.htm

A* Pathfinding

. The fundamental operation of the A* algorithm is to traverse a map
by exploring promising positions (nodes) beginning at a starting
location, with the goal of finding the best route to a target location.

. Each node has four attributes other than its position on the map:
g is the cost of getting from the starting node to this node
h is the estimated (heuristic) cost of getting from this node to the
target node. It is a best guess, since the algorithm doesn't (yet)
know the actual cost

. fis the sum of ¢ and h, and is the algorithm's best current estimate

as to the total cost of travelling from the starting location to the
target location via this node
parent is the identity of the node which connected to this node
along a potential solution path

A* Pathfinding

The algorithm maintains two lists of nodes, the open list and the closed
list.

The OPEN LIST consists of nodes to which the algorithm has already
found a route (i.e, one of its connected neighbours has been evaluated
or expanded) but which have not themselves, yet, been expanded.

The CLOSED LIST consists of nodes that have been expanded and
which therefore should not be revisited.

Progress is made by identifying the most promising node in the open
list (i.e., the one with the lowest f value) and expanding it by adding
each of its connected neighbours to the open list, unless they are
already closed.

As nodes are expanded, they are moved to the closed list.

As nodes are added to the open list, their f, g, h and parent values are
recorded.

The g value of a node is, of course, equal to the g value of its parent
plus the cost of moving from the parent to the node itself.

https://qiao.github.io/PathFinding.js/visual/

Instructions Select Algorithm

Click within the white grid and drag your mouse to draw obstacles. -\
Drag the node to set the start position.

Drag the red node to set the end position. Heuristic
Choose an algorithm from the right-hand panel. O Manhattan
Click Start Search in the lower-right comer to start the animation. ® Euclidean
® Octile
® Chebyshev
Options
¥ Allow Diagonal
B Bidirectional
B Don't Cross Comners

Weight

IDA*

Breadth-First-Search
Best-First-Search
Dijkstra

Jump Point Search
Orthogonal Jump Point
Search

Trace

length: 24 97
time: 1.2650ms
operations: 349

(PathFinding.js.html)

Implementing A* Pathfinding..

What data do we need? How might we structure the data?
Start loc, target loc
Nodes to map the game area (2D array of nodes)
Walkable/unwalkable map (2Darray of booleans)
Open list (as linked list of nodes?)
Storage of final path (as a stack of nodes?)

What are the initial conditions for this data?
Each wall node is unwalkable -> “closed’
All the rest are not open and not closed
Calculate £,g,h for starting node and set to ‘open’

What is the general algorithmic step?
Find open node with lowest £ (call it X)
Look at its neighbours: any not closed and not open should become opened: calculate f,g,h and record
parent position (i.e. position of X)
Close node X

How will we know when we’re finished?
If a neighbour is the target, we're done searching
If there are no open nodes, the maze is unsolvable

How will we use what we found in order to have an Al-controlled ‘badguy’ chase after a
‘player’?
. Push target onto stack,
Push its parent onto stack
Push its parent onto stack
Etc.. Until we have pushed start node

Pathfinding in Demon Pit (1/2)

Since the DemonPit arena periodically reconfigures
(floors drop and rise back, walls rise and drop back),
pathfinding can’t be performed on a static mesh
Whenever walls/floor have finished moving, a set of
raycasts (at Ix1m intervals) is used to re-determine
the walkability of each grid cell. This is carried out by
the AStarMesh script, attached to the arena object
The Al-controlled monsters have the AStarAgent
script attached to them, which share use of the single
AStarMesh in order to calculate paths

Pathfinding in Demon Pit (2/2)

. A* pathfinding is performed by the AStarAgent in a thread, using the free
asset “Thread Ninja” from the asset store, which simplifies C# threads

. The AStarMesh is locked while an agent is using it, so other agents will
potentially be delayed waiting for it, for a few frames

. In another game I'm working on (with much larger maps than Demon
Pit), have implemented a pool of AStarMeshes, each having their own
set of Nodes. This allows multiple agents to simultaneously calculate
paths

Thread Ninja - Multithread Coroutine FREE

41 user reviews Add to My Assets

A simple script helps you write multithread coroutines.
Ninja.JumpToUnity; Unity's coroutine is great, but it's not a real thread. And a background thread is not
allowed to access Unity's API.

Thread Ninja combines coroutine & background thread, make a method both a
coroutine and a background thread, makes your life easy with multithread
programming.

linja.JumpBack;

Pathfinding in Demon Pit

See separate document for code:
AStarMesh.cs
AStarAgent.cs
Relevant code from Monster.cs

NB this is relatively advanced so don’t be
concerned if you can’t follow it. It's definitely not
examinable material for this module, but
hopetully it’s a useful example nevertheless.

