CT3536 (Games Programming using Unity3D)

Section 10

Pathfinding C# Threads using "Thread Ninja"

Pathfinding in Unity using NavMesh and NavMeshAgent

- See demo project on Canvas "NavMeshDemo"
- This is loosely based on:

https://www.red-gate.com/simple-talk/dotnet/c-programming/pathfinding-unity-c/

- Use Window>Navigation to open the Navigation tab.
- Here we're creating a NavMesh attached to Floor

Pathfinding in Unity using NavMesh and NavMeshAgent

- In the 'Bake' settings you have various options
- The 'Bake' button creates the mesh
- This sparse navmesh has far fewer nodes than the gridbased approach we take below => more efficient to use

🖑 🕂 🖫 🛄 🔍 Center 🔯 Local		🖉 Collab 🔻	Account - Layers - Layout -
🗄 Hierarchy 🔒 📲 🗰 Scene 🗳 Asset S	ore 😤 Animator 📲	🟮 Inspector 🛛 🔀 Navig	gation
Create ▼ Q▼All Shaded ▼ 2D ※ ④) ■ ▼	Gizmos * Q*All	Agents	Areas Bake Object
▼ 🕄 Main* 📲	у 🔒		Jucus Burc Object
Main Camera		Learn instead about the cor	mponent workflow.
Directional Light ▼ Floor		Baked Agent Size	
Wall			R = 0.5
Wall			
Wall	Persp		
Wall			H = 2
Wall		0.4	
Wall CleverCube			45°
CleverCube			
		Agent Radius	0.5
		Agent Height	2
		Max Slope	0 45
		Step Height	0.4
		Generated Off Mesh Links	;
		Drop Height	0
		Jump Distance	0
		► Advanced	
			Clear Bake
	Navmesh Display		
	Show NavMesh		
	Show HeightMesh		
Project 🗄 Console			
Create 7	(Q) ▲ ♥ ★		

The CleverCube Object

	Collab 🔹 🛆	Account	Layout 🔹
ore 💏 Animator 📲	0 Inspector 🛛 🔀 Navigation	1	<u></u>
Gizmos * Q*All	👕 🖌 CleverCube		🗌 🗌 Static 🔻
У 🔒	Tag Untagged	+ Layer Default	 +
	►↓ Transform		[] \$,
	Cube (Mesh Filter)		
	Mesh	Cube	•••
< Persp	► 🜍 🗹 Box Collider		[] \$,
< Persp	Box Conder		uu ** [] \$,
	▼ → ✓ Nav Mesh Agent		
	Agent Type	Humanoid	÷
	Base Offset	0.5	
	C		
	Steering Speed	3.5	
	Angular Speed	120	
	Acceleration	8	
	Stopping Distance	0	
	Auto Braking		
	-	.	
	Obstacle Avoidance		
	Radius	0.5	
	Height Quality	Z High Quality	+
	Priority	50	•
		30	
	Path Finding		
	Auto Traverse Off Mesh Link		
Q 4 V *	Auto Repath		
	Area Mask	Everything	+
	▼ 👍 🗹 Pathfinder (Script)		[] * ,
	Script	a Pathfinder	0

- Has a NavMeshAgent component added
- Has a new custom script added: 'Pathfinder'

GameManager class

// attached to the Camera (a simple 'follow cam')

```
public class GameManager : MonoBehaviour {
    void Start () {
        Camera.main.transform.position = new Vector3(0f, 20f, 20f);
        Camera.main.transform.LookAt(Vector3.zero);
    }
}
```

Pathfinder Class

```
using UnityEngine.AI;
```

```
public class Pathfinder : MonoBehaviour {
    private NavMeshAgent nav;
    void Start () {
        nav = GetComponent<NavMeshAgent>();
        nav.destination = transform.position;
    }
    void Update () {
        if (Input.GetMouseButtonDown(0)) {
            Ray ray = Camera.main.ScreenPointToRay(Input.mousePosition);
            RaycastHit hitInfo;
            if (Physics.Raycast(ray, out hitInfo, 500f)) {
                nav.destination = hitInfo.point;
            }
        }
    }
}
```

A* Pathfinding (The next few slides are from CT255)

images from: http://www.policyalmanac.org/games/aStarTutorial.htm

a.	60 Q	54		
4 60	10 50	14 40		
0 0 0 50		₩F G H		
4	50 	54		
14 60	10 50	14 40		

108	94	80	74				
Q	্	Ŷ	Ŷ				
28 80	24 70	20 60	24 50				
9.4	74	60	54				
9	Q.	Ŷ	<u>, 0</u>				
24 70	14 60	10 50	14 40				
80	60		40		82	68	82
0	<u> </u>		0		Q	Ŷ	Q
20 60	10 50		10 30		72 10	58 00	72 10
94	74	60	54		74	68	88
6	्	6	6		Ŷ	$^{\circ}$	0
24 - 20	11.4.S 60	10° 50	314 <u>(</u> 40		54 20	58 10	68 20
108	94	80	74	74	74	74	102
6	6	6	ł	< ∞	<u> </u>	<u> </u>	6
28 80	24 70	ZO 60	24 50	34 40	44 30	54 20	72 30
		108	94	88	88	88	
		6	6	6	6	6	
		38 70	34 60	38 50	48 40	58 30	

A* Pathfinding

- The fundamental operation of the A* algorithm is to traverse a map by exploring promising positions (nodes) beginning at a starting location, with the goal of finding the best route to a target location.
- Each node has four attributes other than its position on the map:
 - *g* is the cost of getting from the starting node to this node
 - *h* is the estimated (heuristic) cost of getting from this node to the target node. It is a best guess, since the algorithm doesn't (yet) know the actual cost
 - *f* is the sum of *g* and *h*, and is the algorithm's best current estimate as to the total cost of travelling from the starting location to the target location via this node
 - *parent* is the identity of the node which connected to this node along a potential solution path

A* Pathfinding

- The algorithm maintains two lists of nodes, the *open* list and the *closed* list.
- The OPEN LIST consists of nodes to which the algorithm has already found a route (i.e, one of its connected neighbours has been evaluated or *expanded*) but which have not themselves, yet, been expanded.
- The CLOSED LIST consists of nodes that have been expanded and which therefore should not be revisited.
- Progress is made by identifying the most promising node in the open list (i.e., the one with the lowest *f* value) and expanding it by adding each of its connected neighbours to the open list, unless they are already closed.
- As nodes are expanded, they are moved to the closed list.
- As nodes are added to the open list, their *f*, *g*, *h* and *parent* values are recorded.
- The *g* value of a node is, of course, equal to the *g* value of its parent plus the cost of moving from the parent to the node itself.

https://qiao.github.io/PathFinding.js/visual/

(PathFinding.js.html)

Implementing A* Pathfinding..

What data do we need? How might we structure the data?

• Start loc, target loc

•

•

•

٠

٠

- Nodes to map the game area (2D array of nodes)
- Walkable/unwalkable map (2Darray of booleans)
- Open list (as linked list of nodes?)
- Storage of final path (as a stack of nodes?)
- What are the initial conditions for this data?
 - Each wall node is unwalkable -> 'closed'
 - All the rest are not open and not closed
 - Calculate f,g,h for starting node and set to 'open'
- What is the general algorithmic step?
 - Find open node with lowest f (call it X)
 - Look at its neighbours: any not closed and not open should become opened: calculate f,g,h and record parent position (i.e. position of X)
 - Close node X
- How will we know when we're finished?
 - If a neighbour is the target, we're done searching
 - If there are no open nodes, the maze is unsolvable
- How will we use what we found in order to have an AI-controlled *'badguy'* chase after a *'player'*?
 - Push target onto stack,
 - Push its parent onto stack
 - Push its parent onto stack
 - Etc.. Until we have pushed start node

Pathfinding in Demon Pit (1/2)

- Since the DemonPit arena periodically reconfigures (floors drop and rise back, walls rise and drop back), pathfinding can't be performed on a static mesh
- Whenever walls/floor have finished moving, a set of raycasts (at 1x1m intervals) is used to re-determine the walkability of each grid cell. This is carried out by the AStarMesh script, attached to the arena object
- The AI-controlled monsters have the AStarAgent script attached to them, which share use of the single AStarMesh in order to calculate paths

Pathfinding in Demon Pit (2/2)

- A* pathfinding is performed by the AStarAgent in a thread, using the free asset "Thread Ninja" from the asset store, which simplifies C# threads
- The AStarMesh is locked while an agent is using it, so other agents will potentially be delayed waiting for it, for a few frames
- In another game I'm working on (with much larger maps than Demon Pit), I have implemented a pool of AStarMeshes, each having their own set of Nodes. This allows multiple agents to simultaneously calculate paths

Pathfinding in Demon Pit

- See separate document for code:
 - AStarMesh.cs
 - AStarAgent.cs
 - Relevant code from Monster.cs
 - NB this is relatively advanced so don't be concerned if you can't follow it. It's definitely not examinable material for this module, but hopefully it's a useful example nevertheless.