Dynamic Hashing

Dynamic Hashing 1/20



Introduction
®00000

Introduction




Introduction
O@0000

|
m Can we improve upon logarithmic searching?

m Hashing is a technique that attempts to provide constant time for searching and
insertion, i.e O(K)

m The basic idea for both searching and insertion is to apply a hash function to the
search field of the record.

m The return value of the hash function is used to reference a location in the hash
table

Dynamic Hashing 3/20



Introduction
[e]e] lele]e}

Different approaches

m Create a hash table containing N addressable ‘slots’
m Each “slot’ may contain one record
m Create a hash function that returns a value to be used in insertion and searching

m The value returned by the hash function must be in the correct range, i.e, the
address space of the hash table

m If the range of the keys is that of the address space of the table, we can guarantee
constant time lookup

m Usually, this is not the case as the address space of the table is much smaller than
that of the search field

Dynamic Hashing 4/20



Introduction
[e]e]e] le]e}

|
m With numeric keys can use modulo-division or truncation

m With character keys must first convert to integer value. Can achieve this by
multiplying ASCII code of characters together and then applying modulo-division

m Cannot guarantee constant time performance as collisions will occur i.e., two
records with different search values being hashed to the same location in the table

m we require a collision resolution policy

Dynamic Hashing 5/20



Introduction
O000e0

|
Efficiency then depends on the number of collisions. Number of collisions depends
mainly on the load factor, A, of the file:

__no of records
no of slots

Dynamic Hashing 6/20



Introduction
[e]e]e]e]e] ]

Collision Resolution Policy

Chaining: if location is full, add item to a linked list

performance degrades if load factor is high.

lookup time is, on average, 1 + \ (average case)

Linear Probing: if location is full, check in a linear manner for next free space.
This can degrade to a linear scan: performance:

if successful: 0.5(1 + 1)

if unsuccessful: 0.5(1 + ﬁ )

one big disadvantage is that this leads to the formation of clusters
Quadratic probing: if location is full, check location x + 1, location x + 4, ...
(x + n)?

less clustering

Double hashing: if location x occupied, then apply second hash function can
help guarantee even distribution (a fairer hash function)

Dynamic Hashing



Dynamic Hashing
@000000000

Dynamic Hashing




Dynamic Hashing
0O®@00000000

m Care should be taken in designing hash function. Usually require fair hash
function.

m Difficult to guarantee if no/limited information available about the type of data to be
stored.

m Often heuristics can be used if domain knowledge available

m Can have both internal (some data structure in memory) or external hashing (to
file locations)

m Size of original table or file?

Dynamic Hashing 9/20



Dynamic Hashing
00@0000000

_______________________________________________________________________________|]
m We considered hashing to an array (in memory).

= In reality, in database systems, we are typically hashing to a disk block (bucket)
each of which can contain a fixed number of records.

m If a block is full, then we have a collision.
m Typically dealt with using overflow buckets (chaining).

Dynamic Hashing



Dynamic Hashing
O00@000000

m The cases we've considered thus far deal with the idea of a fixed hash table; this
is referred to as static hashing.

m Problems arise if the database grows larger than planned; too many overflow
buckets and performance degrades.

= A more suitable approach is dynamic hashing, where the table/file can be resized
as needed.

Dynamic Hashing 11/20



Dynamic Hashing
0000@00000

General Approach

m use a family of hash functions hg, hy, ho, etc.

m hjyq is a refinement of h;

m For example, Kmod?2!

m Develop a base hash function that maps key to a positive integer

m Then use, hg(x) = xmod2® for a chosen b. There will be 2° buckets initially.
m Can effectively double the size of the table by incrementing b

Dynamic Hashing 12/20



Dynamic Hashing
00000e0000

|
m Common dynamic hashing approaches: extendible hashing and linear hashing.

m Conceptually double the number of buckets when re-organising. From an
implementation perspective, we do not actually double size as it may not be
needed.

m Extendible hashing - reorganise buckets when and where needed
m Linear hashing - reorganise buckets when but not where needed.

Dynamic Hashing 13/20



Dynamic Hashing
0000008000

Extendible Hashing

m When a bucket overflows, split that bucket in two.

m Conceptually, split all the buckets in two A directory (a form of index) is use to
achieve this conceptual doubling.

Dynamic Hashing 14/20



Dynamic Hashing
0000000800

Extendible Hashing

m If a collision or overflow occurs, we don’t re-organise the file by doubling the
number of buckets; too expensive.

= Instead we maintain a directory of pointers to buckets, we can effectively double
the number of buckets by doubling the directory, splitting just the bucket that
overflowed.

m As the directory is much smaller than file, so doubling it is much cheaper.

Dynamic Hashing 15/20



Dynamic Hashing
0000000080

|
= On overflow, we split the bucket (allocate new bucket and re-distribute contents).
m We double the directory size if necessary.

m For each bucket, we maintain a local depth (effectively the number of bits needed
to hash an item here).

m Also maintain a global depth for the directory; the number of bits used in indexing
items.

m These values can be used to determine when to split the directory.

Dynamic Hashing 16/20



Dynamic Hashing
000000000

m If overflow in bucket with local depth = global depth, then split bucket, re-distribute
contents, double the directory.

m If overflow into bucket with local depth < global depth, then split bucket,
re-distribute contents. Increase local depth.

m |f directory can fit in memory, then retrieval for point queries can be achieved with
one disk read.

Dynamic Hashing



Linear Hashing
@00

Linear Hashing

Dynamic Hashing 18/20



Linear Hashing
oeo

m Another approach to indexing to a dynamic file. Similar idea in that a family of
hash functions are used (h = K mod 2'), but differs in that no index is needed.

m Initially, create a file of M buckets. K mod M is a suitable hash function.

m We will use a family of such functions K mod (2/ x M), i = 0 initially.

m Can view the hashing as comprising a sequence of phases.

m For phase j, the hash functions K mod 2/ x M and K mod 2/*1 x M are used.

Dynamic Hashing 19/20



Linear Hashing
[e]e] J

m Splitting a bucket means to redistribute the records into two buckets: the original
one and a new one.

u In phase j, to determine which ones go into the original while the others go into
the new one, we use h;1(K) = Kmod2/*! x M to calculate their address.

m Irrespective of the bucket which causes the overflow, we always split the next
bucket in a linear order.

= We begin with bucket 0, and keep track of which bucket to split next, p.

m At the end of a phase when p is equal to the number of buckets present at the
start of the phase, we reset p and a new phase begins (j incremented).

Dynamic Hashing



	Introduction
	Dynamic Hashing
	Linear Hashing

