1S

Image Processing and Analys

Stan Birchfield

Image Processing and Analysis

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

Image Processing and Analysis

Stan Birchfield

Clemson University

~ ¢+ CENGAGE
1% Learning

Australia « Brazil « Mexico « Singapore « United Kingdom « United States

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

i

CENGAGE
Learning®

Image Processing and Analysis,
First Edition

Stan Birchfield

Product Director, Global Engineering:
Timothy L. Anderson

Senior Content Developer: Mona Zeftel

Associate Media Content Developer:
Ashley Kaupert

Product Assistant: Teresa Versaggi
Marketing Manager: Kristin Stine

Director, Higher Education Production:
Sharon L. Smith

Content Project Manager: D. Jean Buttrom

Production Service: RPK Editorial Services,
Inc.

Copyeditor: Shelly Gerger-Knechtl
Proofreader: Lori Martinsek

Indexer: Shelly Gerger-Knechtl
Compositor: SPi Global

Senior Art Director: Michelle Kunkler

Cover and Internal Designer: Ramsdell
Design, LLC

Cover Image: Jessica Birchfield

Chapter Opener Images: Jessica Birchfield
and Stan Birchfield

Intellectual Property
Analyst: Christine Myaskovsky
Project Manager: Sarah Shainwald

Text and Image Permissions Researcher:
Kristiina Paul

Manufacturing Planner: Doug Wilke

Printed in Canada

Print Number: 01

Print Year: 2016

© 2018 Cengage Learning®

ALL RIGHTS RESERVED. No part of this work covered by the copyright
herein may be reproduced or distributed in any form or by any means,
except as permitted by U.S. copyright law, without the prior written
permission of the copyright owner.

For product information and technology assistance, contact us at
Cengage Learning Customer & Sales Support, 1-800-354-9706.
For permission to use material from this text or product,
submit all requests online at www.cengage.com/permissions.
Further permissions questions can be emailed to
permissionrequest@cengage.com.

Library of Congress Control Number: 2016952392
ISBN: 978-1-285-17952-0

Cengage Learning

20 Channel Center Street
Boston, MA 02210

USA

Cengage Learning is a leading provider of customized learning
solutions with employees residing in nearly 40 different countries
and sales in more than 125 countries around the world. Find your local
representative at www.cengage.com.

Cengage Learning products are represented in Canada by
Nelson Education Ltd.

To learn more about Cengage Learning Solutions, visit
www.cengage.com/engineering.

Purchase any of our products at your local college store or at our
preferred online store www.cengagebrain.com.

Unless otherwise noted, all items © Cengage Learning.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

BRIEF CONTENTS

Preface xiii

CHAPTER 1
Introduction 1

CHAPTER 2
Fundamentals of Imaging 20

CHAPTER 3
Point and Geometric Transformations 69

CHAPTER 4
Binary Image processing 131

CHAPTER 5
Spatial-Domain Filtering 215

CHAPTER 6
Frequency-Domain Processing 272

CHAPTER 7
Edges and Features 328

CHAPTER 8
Compression 359

CHAPTER 9
Color 401

CHAPTER 10
Segmentation 443

CHAPTER 11
Model Fitting 512

CHAPTER 12
Classification 560

CHAPTER 13
Stereo and Motion 621

Bibliography 690
Index 703

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

CONTENTS

Preface xiii

CHAPTER 1
Introduction 1

1.1 Image Processing and Analysis 2
1.2 History and Related Fields 4
1.3 Sample Applications 6

1.4 Image Basics 8
1.4.1 Accessing Image Data 9
14.2 Image Types 10
143 Conceptualizing Images 13

144 Mathematical Prerequisites
and Notation 15

1.4.5 Programming 16

1.5 Looking Forward 16

1.6 Further Reading 17
1.7 Problems 17

CHAPTER 2

Fundamentals of Imaging 20

2.1 \Vision in Nature 20
211 A Single Photoreceptor 21
2.1.2 Human Visual System 21
2.1.3 AnimalVision 28

2.2 Image Formation 32

221 Light and the Electromagnetic
Spectrum 33

222 Plenoptic Function 34

223 Pinhole Camera 35

224 Camera with Lens 38

225 ASimplified Imaging Model 42

2.3 Image Acquisition 43
2.3.1 Sampling and Quantization 43

23.2 Gamma Compression 43
233 CCDand CMOS Sensors 48
234 Transmission and Storage 52

24 Other Imaging Modalities 53

2.4.1 Consumer Imaging: Catadioptric, RGBD,
and Light-Field 54

242 Medical Imaging: CAT, PET, MRI,
and Sonar 54

243 Remote Sensing: SAR
and Multispectral 55

244 Scientific Imaging: Microscopy 56

2.5 A Detailed Look at Electromagnetic
Radiation 56

251 Transverse Electromagnetic Waves 57
2.5.2 Radiometry and Photometry 58

253 Blackbody Radiators 60

254 Interaction with a Surface 61

2.6 Further Reading 65
2.7 Problems 66

CHAPTER 3

Point and Geometric

Transformations 69

3.1 Simple Geometric Transformations 69
3.1.1 Flipping and Flopping 69
3.1.2 Rotating by a Multiple of 90 Degrees 72
3.1.3 Cropping anlmage 74
3.14 Downsampling and Upsampling 74

3.2 Graylevel Transformations 76
3.2.1 Arithmetic Operations 77
322 Linear Contrast Stretching 80
3.23 Analytic Transformations 82
324 Thresholding 83
325 OtherTransformations 83
32,6 LookupTables 85

vii

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

viii
3.3 Graylevel Histograms 86
3.3.1 Interpreting Histograms 87
3.3.2 Histogram Equalization 87
3.3.3 Histogram Matching 91
3.4 Multispectral Transformations 92
341 RGB Transformations 93
342 Pseudocolor 95
343 Chromakey 97
3.5 Multi-lmage Transformations 98
3.5.1 Arithmetic Operations 99
3.5.2 Logical Operations 100
3.6 Change Detection 101
3.6.1 Frame Differencing 101
3.6.2 Background Subtraction 102
3.7 Compositing 105
371 Dissolving 105
3.7.2 Compositing with Binary Masks 105
3.73 Compositing with Alpha Channels 107
3.74 Using Premultiplied Alphas 109
3.8 Interpolation 109
3.8.1 Nearest Neighbor Interpolation 110
3.8.2 Bilinear Interpolation 110
3.83 Bicubic Interpolation 110
3.84 KeysFilters 115
3.8.5 Lanczos Interpolation 118
3.9 Warping 120
3.9.1 Downsampling and Upsampling
Revisited 121
3.9.2 Euclidean Transformations 122
393 Similarity Transformations 123
394 AffineTransformations 124
3.95 Projective Transformations 124
3.9.6 Arbitrary Warps 125
397 Image Registration and Morphing 126
3.10 Further Reading 126
3.11 Problems 127
CHAPTER 4

Binary Image Processing 131
4.1 Morphological Operations 131
4.1.1 Binary Image as a Set 132

4.1.2 Minkowski Addition and Subtraction 134

413 Dilation and Erosion 138

Contents

4.1.5 Opening and Closing 145
4.1.6 Hit-Miss Operator 147
4.1.7 Thinning 148
4.1.8 Thickening 150
4.2 Labeling Regions 152
4.2.1 Neighbors and Connectivity 152
4.2.2 Floodfill 154
423 Connected Components 157
424 BoundaryTracing 161
425 HoleFilling 164
4.3 Computing Distance in a Digital
Image 164
4.3.1 Distance Functions 164
432 Path Length 166
433 Chamfering 166
434 Exact Euclidean Distance 169
4.4 Region Properties 174
4.4 Moments 174
442 Area 178
443 Perimeter 179
444 Orientation 179
445 Best-Fitting Ellipse 182
44,6 Compactness 185
447 Eccentricity 185
448 ConvexHull 187
449 Euler Number 189
4.5 Skeletonization 194
4.5.1 Skeletonization by Thinning 195
452 Sigma-Psi Algorithm 197
453 Zhang-Suen Algorithm 198
454 NF2 Algorithm 199
4.6 Boundary Representations 201
4.6.1 Chain Code 201
4.6.2 Minimum-Perimeter Polygon 202
46.3 Signature 203
4,64 Fourier Descriptor 204
4.6.5 B-Spline 205
4.7 Further Reading 207
4.8 Problems 209
CHAPTER S

Spatial-Domain Filtering 215

5.1

Convolution 215

5.1.1

1D Convolution 215

414 o%gi/lr(njgirngol’lg r(%ggsaggtcegvﬂpggAﬁllggmgases;rf}éd May not be copied, sc%‘rJn‘gd, or &8@5’8!},45!%0‘?‘? Mﬂ'iﬁ’éw&' 94'%%9 219

Contents

5.1.3 Convolution as Fourier
Multiplication 219
5.1.4 Linear Versus Nonlinear Systems 220
5.1.5 2D Convolution 221
5.2 Smoothing by Convolving
with a Gaussian 222
5.2.1 Gaussian Kernels 222
522 Computing the Variance of a Smoothing
Kernel 223
523 Separability 224
524 Constructing Gaussian Kernels 226
5.2.5 Evaluating Gaussian Kernels 229
52.6 Smoothing with Large Gaussians 230
52.7 Integral Image 233
5.3 Computing the First Derivative 234
5.3.1 Gaussian Derivative Kernels 234
532 Image Gradient 237
5.4 Computing the Second Derivative 240
54.1 Laplacian of Gaussian (LoG) 242
5.4.2 Difference of Gaussians (DoG) 245
5.5 Nonlinear Filters 247
55.1 Median Filter 247
552 Non-Local Means 248
553 Bilateral Filtering 249
5.5.4 Bilateral Filtering for Large
Windows 251
55.5 Mean-Shift Filter 257
5.5.6 Anisotropic Diffusion 260
5.5.7 Adaptive Smoothing 262
5.6 Grayscale Morphological Operators 262
5.6.1 Grayscale Dilation and Erosion 263
5.6.2 Grayscale Opening and Closing 264
56.3 Top-HatTransform 265
564 Beucher Gradient 266
5.7 Further Reading 266
5.8 Problems 268
CHAPTER 6

Frequency-Domain Processing 272

6.1

Fourier Transform 272

6.1.1
6.1.2

Forward Transform 273
Inverse Transform 275

6.1.3 Sampling and Aliasing 275

6.14 Four Versions of the Fourier

Copyright 201T8régnsgé%gp

6.2 Discrete Fourier Transform (DFT) 277
6.2.1 Forward Transform 277
6.2.2 Inverse Transform 278
6.2.3 Properties 279
6.24 Zero Padding 283
6.2.5 Magnitude and Phase 285
6.2.6 Interpreting Discrete Frequencies 285
6.2.7 Basis Functions 287
6.2.8 DFT as Matrix Multiplication 288
6.3 Two-Dimensional DFT 289
6.3.1 Separability 289
6.3.2 Projection-Slice Theorem 291
6.3.3 Displaying the 2D DFT 293
6.3.4 Linear Image Transforms 294
6.4 Frequency-Domain Filtering 296
6.4.1 Lowpass Filtering 296
6.4.2 Highpass Filtering 302
6.43 Bandpass Filtering 303
6.44 Homomorphic Filtering 307
6.5 Localizing Frequencies In Time 308
6.5.1 Gabor Limit 308
6.5.2 Short-Time Fourier Transform
(STFT) 309
6.6 Discrete Wavelet Transform (DWT) 309
6.6.1 Haar Wavelets 311
6.6.2 DWT as Matrix Multiplication 314
6.6.3 Fast Wavelet Transform (FWT) 314
6.6.4 Inverse Wavelet Transform 317
6.6.5 Daubechies Wavelets 319
6.6.6 2D Wavelet Transform 320
6.6.7 GaborWavelets 321
6.7 Further Reading 324
6.8 Problems 324
CHAPTER 7
Edges and Features 328
7.1 Multiresolution Processing 328
7.1.1 Gaussian Pyramid 329
7.1.2 Laplacian Pyramid 331
713 Scale Space 332
7.2 Edge Detection 334

276
earning. All Rights Reserved. May not be copied, scanned, or d

7.2.1
7.2.2
7.2.

Canny Edge Detector 335
Marr-Hildreth Operator 339

uplicated, inm’ﬁgfgggnnpgg.g\ﬁ&leotfﬁdg& 340

X
7.3 Approximating Intensity Edges with
Polylines 341
7.3.1 Douglas-Peucker Algorithm 341
73.2 Repeated Elimination of the Smallest
Area 341
7.4 Feature Detectors 342
741 Moravec Interest Operator 342
7.4.2 Harris Corner Detector 343
743 Tomasi-Kanade Feature Detector 345
744 Beaudet Detector 345
74.5 Kitchen-Rosenfeld 347
7.4.6 SIFT Feature Detection 347
7.5 Feature Descriptors 348
7.5.1 SIFT Feature Descriptor 348
7.5.2 Gradient Location and Orientation
Histogram (GLOH) 349
7.5.3 Shape Context 350
7.54 Histogram of Oriented Gradients (HOG) 350
7.6 Further Reading 351
7.7 Problems 352
CHAPTER 8
Compression 355
8.1 Basics 355
8.1.1 Redundancy in an Image 357
8.1.2 Graphic Drawings Versus Photographs 358
8.1.3 Information Theory 359
8.2 Lossless Compression 364
8.2.1 Huffman Coding 364
8.2.2 Lempel-Ziv Encoding 366
823 Lempel-Ziv-Welch Algorithm 368
824 Arithmetic Coding 374
8.2.5 Run-Length Encoding 374
8.2.6 Predictive Coding 375
8.2.7 Example: PNG Compression 377
8.3 Lossy Compression 378

8.3.1 Measuring the Quality of Lossy
Compression 379

83.2 Transform Coding 379

833 Discrete Fourier Transform (DFT) 382
834 Walsh-Hadamard Transform (WHT) 383
8.3.5 Discrete Cosine Transform (DCT) 386
8.3.6 Karhunen-Loéve Transform (KLT) 389
83.7 Example: JPEG Compression 390

8.3.8 Wavelet-Based Compression 394

Contents

8.4 Compression of Videos 396
8.4.1 M-JPEG Compression 396
8.4.2 MPEG Compression 397
8.5 Further Reading 397
8.6 Problems 398
CHAPTER 9
Color 401
9.1 Physics and Psychology of Color 402
9.1.1 The Rainbow and the Color Wheel 402
9.1.2 Spectral Power Distributions (SPDs) 403
9.1.3 Additive and Subtractive Colors 404
9.2 Trichromacy 404
9.2.1 Spectral Sensitivity Functions (SSFs) 405
9.22 Color Matching Functions (CMFs) 405
9.23 Grassmann's Law 407
9.24 Luminous Efficiency Function (LEF) 408
9.2.5 Psychological Primaries 408
9.3 Designating Colors 411
9.3.1 Hue, Chroma, and Lightness 411
9.3.2 Munsell Color System 411
933 Natural Color System (NCS) 412
9.3.4 ISCC-NBS System 412
9.3.5 CIE Chromaticity Diagram 412
9.4 Linear Color Transformations 415
9.4.1 Transforming Between CMFs 415
9.4.2 Transforming between Cameras and
Displays 416
9.43 White Balancing 419
944 ICCProfiles 419
94,5 CAMsand CATs 420
9.5 Color Spaces 420
9.5.1 RGB and R'G'B’ 420
952 YPP, 425
953 YCC, 427
9.54 YUV 427
9.5.5 Y’1Q 428
9.5.6 Converting from R'G'B" to Grayscale 428
9.5.7 Opponent Colors 429
9.58 HSVand HSL 429
9.59 CIEXYZ L*u*v* and L* a* b* 435
9.5.10 CMYK 437
9.6 Further Reading 438
9.7 Problems 439

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

Contents

CHAPTER 10

Segmentation 443

10.1 Thresholding 444
10.1.1 Global Thresholding 444
10.1.2 Adaptive Thresholding 449
10.1.3 Hysteresis Thresholding 450
10.1.4 Multilevel Thresholding 452

10.2 Deformable Models 453
10.2.1 Active Contours (Snakes) 453
10.2.2 Gradient Vector Flow 461
10.2.3 Level Set Method 463
10.24 Geodesic Active Contours 468
10.2.5 Chan-Vese Algorithm 469

10.3 Image Segmentation 474
10.3.1 Gestalt Psychology 475
10.3.2 Splitting and Merging 477
10.3.3 Region Growing 478

10.3.4 Hierarchical Clustering Scheme
(HCS) 481

10.3.5 Watershed Method 483
10.3.6 Mean-Shift Segmentation 489

10.4 Graph-Based Methods 490

10.4.1 Felzenszwalb-Huttenlocher (FH)
Algorithm 490

10.4.2 Normalized Cuts 495
10.4.3 Minimum s-t Cut 501
1044 Semantic Segmentation 506

10.5 Further Reading 507
10.6 Problems 508

11.4

Xi

11.2.5 Fitting a Filled Square 530
11.2.6 Fitting a Filled Rectangle 531
11.2.7 Fitting a 3D Geometric Model 532

Fitting Point Cloud Models 532
11.3.1 Procrustes Analysis 533
11.3.2 Iterative Closest Point (ICP) 535

Robustness to Noise 536
11.4.1 Maximum Likelihood Estimators 537
11.4.2 Generalized Least Squares 538

11.4.3 Iteratively Reweighted Least Squares
(IRLS) 538

1144 M-Estimators 540

11.4.5 Random Sample Consensus
(RANSACQ) 544

11.4.6 Hough Transform 546

Fitting Multiple Models 549
11.5.1 K-Means Clustering 549
11.5.2 Expectation-Maximization (EM) 551

Further Reading 554
Problems 555

CHAPTER 11
Model Fitting 512
11.1 Fitting Lines and Planes 512
11.1.1 Ordinary Least Squares 513
11.1.2 Normalization 515
11.1.3 Total Least Squares 516
11.1.4 Fittinga Plane 519
11.1.5 Singular Value Decomposition (SVD) 520

11.2 Fitting Curves 523
11.2.1 Fitting a Circle 523
11.2.2 Fitting a Conic Section 526
11.2.3 Fitting an Ellipse 527
11.2.4 Fitting a Filled Ellipse 529

CHAPTER 12
Classification 560

12.1

12.2

Fundamentals 560

12.1.1 Detection, Recognition, and
Verification 561

12.1.2 Classifiers, Discriminant Functions, and
Decision Boundaries 562

12.1.3 Error, Loss, and Risk 563

12.1.4 Training Error, Test Error, and
True Error 563

12.1.5 Bias-Variance Tradeoff, Overfitting, and
Occam’s Razor 565

12.1.6 Holdout Method and
Cross-Validation 566

12.1.7 Model Selection and Regularization 567

12.1.8 Curse of Dimensionality and the Peaking
Phenomenon 568

12.1.9 Evaluating Classification Results 568

Statistical Pattern Recognition 571
12.2.1 Bayes'Rule 572
12.2.2 Bayesian Decision Theory 574

12.2.3 Parametric Versus Nonparametric
Representations 577

12.2.4 Gaussian Densities 580

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

Xii
12.3 Generative Methods 582
12.3.1 Histograms 582
12.3.2 Kernel Density Estimation (KDE) 584
12.3.3 Nearest Neighbors 587
12.3.4 Naive Bayes 588
12.3.5 Principal Components Analysis (PCA) 589
12.4 Discriminative Methods 594
12.4.1 Linear Discriminant Functions 594
12.4.2 Fisher’s Linear Discriminant (FLD) 596
12.4.3 Perceptrons 597
1244 Maximum-Margin Classifiers 600
12.4.5 Support Vector Machine (SVM) 602
124.6 Neural Networks 608
12.4.7 Random Forests 611
12.4.8 Attentional Cascade 612
12.49 Deformable Part-Based Model (DPM) 613
12.4.10 Deep Learning 614
12.5 Further Reading 615
12.6 Problems 617
CHAPTER 13
Stereo and Motion 621
13.1 Human Stereopsis 621
13.2 Matching Stereo Images 623

13.2.1 Correspondence 624

13.2.2 Stereo Constraints 625

13.2.3 Block Matching 628

13.2.4 Dissimilarity Measures 632
13.2.5 Dynamic Programming 634
13.2.6 Energy Minimization in 2D 636
13.2.7 Active Stereo 637

13.3 Computing Optical Flow 638

13.3.1 Motion Field 638
13.3.2 Optical Flow 640
13.3.3 Lucas-Kanade Algorithm 642

Contents

13.3.4 Generalized Lucas-Kanade 647
13.3.5 Horn-Schunck Algorithm 650

13.4 Projective Geometry 654
13.4.1 Homogeneous Coordinates 654
13.4.2 Points at Infinity (Ideal Points) 657
13.43 Conics 658
13.4.4 Transformations of Lines and Conics 659
13.4.5 Hierarchy of Transformations 659
13.4.6 Absolute Points 660

13.4.7 Projective Geometry in Other
Dimensions 661

13.4.8 Perspective Imaging 661
1349 Lens Distortion 663

13.5 Camera Calibration 663

13.5.1 Normalized Direct Linear Transform (DLT)
Algorithm 664

13.5.2 Mosaicking 666
13.5.3 Zhang's Calibration Algorithm 667
13.5.4 Image of the Absolute
Conic (IAC) 671
13.6 Geometry of Multiple Views 673
13.6.1 Epipolar Geometry 673
13.6.2 Fundamental Matrix 674
13.6.3 Essential Matrix 676

13.6.4 Relationship with Camera Projection
Matrices 678

13.6.5 Estimating the Essential and
Fundamental Matrices 679

13.6.6 Decomposing the Essential Matrix 681
13.6.7 Computing 3D Point Coordinates 682

13.6.8 Homography Resulting From Two Stereo
Images of a Plane 683

13.7 Further Reading 685
13.8 Problems 686

Bibliography 690
Index 703

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

PREFACE

The seeds of this book were sown two decades ago when, as a graduate student, I took a
course in digital image processing and a separate course in computer vision. The former
course was taught in the electrical engineering department, whereas the latter was taught in the
computer science department. The former followed the traditional approach of beginning with
1D signal processing, then moving to 2D image processing, Fourier transforms, filtering, and
compression. The latter, on the other hand, began with image formation and edge detection,
then covered segmentation, classification, stereo, and motion. Not only did the two courses
from different departments cover distinct topics, but they also relied upon different underlying
mathematical foundations, and they seemed to have non-overlapping goals: one course was
more concerned with manipulating images as they existed, whereas the other course focused
more on how the images were formed and how they related to the world. Overall, the experi-
ence left me with the distinct impression that the two fields have little in common.

Nothing could be further from the truth. Despite the fact that the fields of digital image
processing and computer vision have traditionally been taught as separate courses—
sometimes in separate departments—with little attention paid to their relationship, the two
are in fact inseparable. Just as electricity and magnetism are taught together, or statics and
dynamics, or algorithms and data structures, so too should image processing and computer
vision. Over the past decade or so, it has become increasingly apparent that the overlap
between these two fields can no longer be ignored, regardless of their distinct histories.

The title of this book was deliberately chosen to emphasize the seamless overlap between
the two fields. Instead of Image Processing and Computer Vision, which could lead to the
false impression that the two fields have little in common, the present title suggests that the
two topics are intertwined and interrelated—two sides of the same coin. The term Image
Processing is self-explanatory and carries the well-understood meaning, whereas the term
Image Analysis is used to encompass all of computer vision while relaxing the often implicit
restriction upon input modality (images taken by an optical camera). Together they form the
dual field of Image Processing and Analysis.

Purpose

This book offers a comprehensive introduction to both of these exciting fields, in a format
that is as accessible as possible. The text is designed for use in a senior-level undergraduate
or first-year graduate course in computer science, electrical engineering, or related field
of study. It should also serve as a useful reference for researchers and practitioners due to
its emphasis upon real-world problems, practical algorithms, and implementation issues.
The book covers hundreds of algorithms and techniques that are used every day in research
and industry. It presents both the underlying mathematical concepts and principles behind
these techniques, as well as detailed descriptions of the actual steps involved (in the form of
pseudocode) in implementing the most commonly used algorithms. Throughout, an attempt

xiii

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

Xiv

Preface

has been made to keep the presentation accessible to all levels of readers by keeping the
explanations as simple as possible and focusing on the core concepts. The book assumes
some knowledge of probability, linear algebra, signal processing, programming, and algo-
rithms and data structures. However, even readers deficient in these areas should be able to
digest the essentials of the material without too much additional effort.

Selecting material for a book of this scope has been no easy task. In a rapidly-changing
field such as computer vision, it is possible for a book to be obsolete even before it is
published. Therefore, to help to maximize the relevance of the book, topics were selected
according to the following criteria. First, any topic described in a research paper receiving
at least a thousand citations was considered important enough to be included. Secondly, any
algorithm or method that is widely used in industry, regardless of publication status, was
deemed worthy of inclusion due to its practical relevance. Finally, foundational material
was selected when it seemed necessary (or at least helpful) to understand other concepts. No
doubt these principles were not applied perfectly: space limitations did not permit all topics
to receive the attention they deserve, and some topics or papers may have been inadvertently
overlooked. Nevertheless, it is hoped that this principled approach has resulted in a text that
remains relevant for years to come (or at least until the ink dries on the page—or whatever
is the digital equivalent).

The twin goals of comprehensiveness and accessibility are in tension with one another.
Comprehensiveness involves both breadth of topics and depth of coverage. Some readers
will no doubt find fault with my attempt to cover as many topics as I could with as much
detail as I could. I confess to being guilty as charged. Indeed, I have intentionally painted
both with a broad brush that covers tremendous ground for such a short book, as well as
with a fine brush that insists upon mathematical and intellectual rigor wherever possible.
To make the fire hose drinkable, however, I have tried my best to provide gentle introduc-
tions, to introduce topics in a graduated manner from simple to complex, to motivate the
work with real-world examples, and to frequently bring the reader back to the “big picture”
so as not to get lost in all the details. Nevertheless, my working assumption has been that,
when in doubt, more information is better than less information, since the reader can always
skip over material but cannot easily insert new material; I hope readers will agree with this
philosophy.

One unique feature of the text is its approach to mathematical derivations and proofs.
A common practice is to follow a long derivation with the result. By the time the result is
reached, however, the reader has often become hopelessly lost in the details so as to forget
the importance of the problem being addressed, and oftentimes readers are not even inter-
ested in the cumbersome process required to obtain the result, desiring only the result itself.
To address this problem, I have, for the most part, followed the approach of presenting the
result first, followed by the derivation later. This inversion of order serves both types of
readers: anyone not interested in the derivation can simply skip it, whereas anyone curious
about the details has access to them either at the time of reading or later for reference.

Organization

Two approaches for teaching image processing and computer vision are common: one
begins with convolution and filtering, whereas the other starts with image formation, and in
particular projective geometry. Neither of these approaches, however, is easiest for students:
convolution and filtering are not the first operations that one considers when using an image
editing program, and projective geometry involves abstract mathematical concepts that are
intimidating for first timers. Moreover, these topics do not provide an underlying foundation
for later topics, thus sometimes leaving students disappointed when they realize that their

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

Preface

XV

effort to master the math early in the course does not pay off when they encounter later
topics that do not leverage the same mathematical concepts.

In this book a different approach is used. After the first two introductory chapters, stu-
dents are presented immediately with extremely simple algorithms that allow them to appre-
ciate the process of manipulating 2D image data. In other words, students are not asked to
wade through complicated mathematics before experiencing the joy and wonder of seeing
the result of image transformations, and no pretense is made that a single underlying math-
ematical theory will guide them through the rest of the book. Rather, the math is woven
through the chapters as necessary.

For example, converting an RGB image to grayscale is something that everyone should
learn in the first week, and simple approximate algorithms are sufficient for nearly all prac-
tical applications. In contrast, the correct formula for conversion requires a great deal of
math and several advanced concepts in order to properly describe the process. A judgment
call must be made therefore, whether to burden the reader up front with all the details, or
to delay introducing such an important topic until halfway through the book. In this book,
the dilemma is resolved by presenting the simple algorithm up front, then delaying the
more advanced algorithm until the proper prerequisite material has been covered. While the
resulting fragmentation is admittedly suboptimal, it far surpasses the alternatives. To help
minimize the impact of such fragmentation, footnotes are liberally sprinkled throughout the
text to point out connections between topics as an aid to the reader.

Another reason it is so difficult to organize this material is that these fields are non-
linear webs of knowledge rather than a linear sequence of topics building on one another.
Neither image processing nor computer vision easily lends itself to a linear progression,
and neither field requires a single underlying mathematical foundation. A technique like
graph cuts, for example, can be used to solve a variety of problems, so a judgment call
must be made as to which problem with which to associate it, or whether to assign it a
separate section. Mean-shift filtering is closely related to bilateral filtering, but mean-
shift segmentation belongs with other segmentation algorithms that have no relationship
to bilateral filtering. Grayscale morphology is closely related to binary morphology, but
there are many other algorithms for binary images that do not have analogs with grayscale
imagery. The approach taken here is to make the math subservient to the problems being
solved, with chapters and sections organized (with few exceptions) by problems to be
solved rather than by the tools used to solve them. Again, footnotes help to connect the
material in different sections.

Roughly speaking, the book begins with image processing and ends with computer
vision, but I have deliberately tried to avoid introducing any artificial barriers between sec-
tions due simply to differences in their respective histories or communities. The book can
be divided into three major areas:

e Basic Concepts (Chapters 1-2). An overview of the field, including motivating appli-
cations, along with some basic concepts in storing and accessing image data (Chapter
1). Natural vision systems, followed by image formation and acquisition, and a fairly
detailed look at imaging modalities and electromagnetic radiation (Chapter 2).

e Image Processing (Chapters 3-9). A variety of practical, easy-to-understand algorithms
requiring little to no mathematical background for transforming images (Chapter 3) and
processing binary images (Chapter 4). Spatial- and frequency-domain filtering (Chapters
5 and 6), along with approaches for detecting edges and features (Chapter 7). Finally,
compression (Chapter 8) and color representations (Chapter 9).

e Image Analysis (Chapter 10-13). The three core problems of computer vision / image
analysis. First, techniques for segmenting dense pixels and fitting models to sparse data
(Chapters 10 and 11). Then, methods for classifying pixels and images (Chapter 12).

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

XVi

Preface

Finally, problems involving multiple images, such as stereopsis, optical flow, camera
calibration, and 3D reconstruction, along with the mathematics of projective geometry
(Chapter 13).

There is enough material in the book for a two-course sequence on image processing and
computer vision. The chapters follow a logical progression from simpler to more advanced
topics, and there is inevitably some dependence between them. Nevertheless, the book has
been designed to support a variety of different course types and academic schedules. Each
chapter is relatively self-contained, so that it should be easy to select the chapters of inter-
est without worrying whether important prerequisite material has been skipped. Within
each chapter, the simple concepts are presented first, followed by more advanced ones,
thus providing flexibility in picking and choosing which topics to cover, depending on the
goals of the course. In fact, in many cases the chapters can even be covered out of order, as
necessitated by the interests of the instructor or the needs of the practitioner.

Instructor Resources

A variety of resources are available to instructors via Cengage Learning’s secure, password-
protected Instructor Resource Center. These resources include the Instructor’s Solution
Manual, providing complete solutions to all problems from the text, as well as Lecture
Note PowerPoint slides, algorithmic pseudocode and processed images in PowerPoint
slides. To access these resources, please visit https://login.cengage.com.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

ACKNOWLEDGMENTS

I am deeply indebted to Carlo Tomasi, my Ph.D. advisor at Stanford, who introduced me
to computer vision as only he could and at a time when the field was transitioning from the
old world of running handcrafted algorithms on a handful of images to the new world of
running machine-learned algorithms on millions of images. He taught me the importance
of paying attention to detail and of always striving for excellence. Without his wise counsel
and guidance, it is doubtful that I would ever have gotten involved in this field in the first
place. Thanks are also in order to Robert Gray, who introduced me to the world of image
processing at Stanford.

Many individuals read early versions of the manuscript and provided extremely valuable
feedback. In particular, I wish to thank the following reviewers: Zekeriya Aliyazicioglu
(California Polytechnic State University at Pomona), Saeid Belkasim (Georgia State
University), Eliza Y. Du (Indiana University-Purdue University Indianapolis), Roger
S. Gaborski (Rochester Institute of Technology), Arthur A. Goshtasby (Wright State
University), Artyom Grigoryan (University of Texas at San Antonio), K. R. Rao (University
of Texas at Arlington), Michael C. Roggemann (Michigan Technological University),
Ezzatollah Salari (University of Toledo), Min C. Shin (University of North Carolina at
Charlotte), and Jane Zhang (California Polytechnic State University at San Luis Obispo),
as well as Serge Belongie (Cornell Tech and Cornell University), Raffay Hamid, Ashley
Feniello, Greg Shirakyan, and several anonymous reviewers.

Some details of the algorithms were influenced by discussions with Yujie Dong,
Satyajeet Bhide, and Michael Gillam. Zhengyou Zhang provided helpful discussions regard-
ing calibration, and long-ago discussions with Chris Bregler shaped my presentation of
Lucas-Kanade. Thanks to Ross Girshick for contributing one of the figures. Some of the
problems at the end of the chapters were writted by Xueting Yu and Edwin Weill, whose
assistance is greatly appreciated. Many thanks to all my former students, especially Neeraj
Kanhere, Guang Zeng, Shrinivas Pundlik, Zhichao Chen, Vidya Murali, Bryan Willimon,
Xiaoxia Huang, Ninad Pradhan, Brian Peasley, J. P. Kwon, Douglas Dawson, and Kalaivani
Sundararajan, from whom I learned a great deal. Without the encouragement of Joshua
Tarbutton to continue and complete this work when I was ready to give up, this book would
likely not have happened. Thanks also to Olaf Hall-Holt, who has always been ready to
provide encouragement when needed.

It has been a joy to work with the folks at Cengage Learning. I wish to express my grati-
tude for all the hard work of the Global Engineering team at Cengage Learning for their
dedication to this new book: Timothy Anderson, Product Director; Mona Zeftel, Senior
Content Developer; D. Jean Buttrom, Content Project Manager; Kristin Stine, Marketing
Manager; Elizabeth Brown and Brittany Burden, Learning Solutions Specialists; Ashley
Kaupert, Associate Media Content Developer; Teresa Versaggi and Alexander Sham,
Product Assistants; Kristiina Paul, Text and Image Permissions Researcher, and Rose
Kernan of RPK Editorial Services, Inc. They have skillfully guided every aspect of this

Xvii

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

xviii Acknowledgments

text’s development and production to successful completion. In addition, both Clemson and
Microsoft provided extremely supportive environments.

Finally, this book would not have been possible without the loving support of my patient
wife, MeMe, who, along with our children, sacrificed a great deal to allow me the time to
work on this project. I hope I can make it up to them one day.

Stan Birchfield
Redmond, Washington

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

CHAPTER. 1
Introduction

=
;
:
.
!
I

ision is, without a doubt, our most dominant sense. With our eyes, we are able to navigate through complicated
environments, detect and recognize the faces of our friends, and identify items to purchase on a shelf at a store. We
see an object and reach for it, without even appreciating the immense complexity of the sensing task we have just
performed to determine not only what object we are looking at but also where it is located. Indeed, it is nothing short of
amiracle that we are able to process the signals resulting from visual stimuli on our retinas in order to make sense of the
world around us. This pervasive reliance on vision has formed metaphors that permeate our daily vocabulary, such as:

“Seeing is believing.”“A picture is worth a thousand words.”“Our company needs a vision statement.”
“Don’t you see what this means?”“They are like the blind leading the blind.”

Inspired by the success of natural vision systems such as our own, it has long been the goal of scientists and engi-
neers to harness the power of imagery to accomplish otherwise impossible tasks. Achieving this goal requires program-
ming a computer to extract meaningful information from images, or, more generally, to use a computer to manipulate
images in order to make the data that they contain more useful. The aim of this book is to introduce the basic concepts
and algorithms necessary to prepare you to understand and use the algorithms for accomplishing this ambitious goal.

This s truly an exciting time to be studying this field. Not that long ago, such manipulation was restricted to research-
ers and specialists in the field, but nowadays any of us can acquire and manipulate digital imagery, given the ease with
which we can snap a digital photograph or scan a document, and given the increasing levels of computational perfor-
mance available. The fact that you are reading this indicates that you probably have at least some desire to understand in
a deeper way the underlying principles and techniques for taking advantage of this newfound opportunity, so welcome
to the fascinating world of images!

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

Chapter 1« Introduction

1.1 Image Processing and Analysis

This book covers both digital image processing and digital image analysis, where the adjec-
tive “digital” can safely be omitted these days since essentially all images are now available
in digital form. In this chapter we will discover what exactly is meant by these two terms,
how they relate to one another, and how their principles and algorithms are used every day
in real-world systems. We will also cover some basic concepts regarding images, such as
the representations used and the different types of images.

Since the fields of image processing and image analysis overlap significantly in their
concepts, methods, and aims, it is difficult to know exactly where to draw the line between
them. Nevertheless, a view that many have found helpful is to distinguish algorithms based
on the type of output they produce. According to this view, image processing is the field
of study in which algorithms operate on input images to produce output images, whereas
image analysis is the field of study in which algorithms operate on images to extract
higher-level information. In other words, an image processing algorithm outputs another
image, whereas an image analysis algorithm outputs a nonimage type of data structure.
Another way to think about the division is to consider image processing algorithms to be
low-level in nature, whereas image analysis algorithms are more high-level, although not
all algorithms are easily classified in this manner.

Three primary problems of image processing are shown in Figure 1.1. The first, known as
enhancement, involves transforming an input image into another image so as to improve
its visual appearance. An example of enhancement is to brighten an originally dark image,
or to increase the contrast of an image to make the details more visible. Another example is
to detect the intensity edges of an image in order to highlight the boundaries of objects, or
to colorize a grayscale image (usually with false colors, known as pseudocolors) to make
the different data values more distinguishable to a human observer. Restoration, the second
problem, has as its purpose to restore an image that has been corrupted by some type of
noise. The corruption may have been caused by noise introduced by the sensor, noise added
during the transmission of the signal, or noise introduced by some external process. The
third problem, compression, involves storing an image with fewer bits than are required
by the original signal, while affecting viewing quality of the decompressed image as little

Figure 1.1: Three
example problems

of image processing.
Top: A dark image, an
image corrupted by
noise, and a clean image.
Bottom: the results of
contrast enhancement,
image restoration, and
compression. The latter
shows intentionally poor
quality to better illustrate
the effects of the operation.

=
S
S
s
g
£
B
=
5
=
%
2
2

Restoration

Enhancement

Compression

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

1.1 Image Processing and Analysis 3

as possible. Compression algorithms can be applied either to a still image or to a video
sequence. To solve these three types of problems, image processing utilizes concepts such
as image transformations, linear and nonlinear filtering, and frequency-domain processing.

Three primary problems of image analysis are shown in Figure 1.2. Segmentation is the
process of determining which pixels in an image belong together, that is, which pixels are
projections of the same object in the scene. Segmentation can be viewed as a bottom-up pro-
cess in which pixels are grouped together based upon low-level, local properties of the pixels
and their neighbors, without any model of the particular object in the scene that produced
the group of pixels. In contrast, the problem of classification involves determining which
pixels in an image belong to a model that has been created beforehand. Classification is
a top-down process, relying upon a human trainer or some other system to facilitate the
creation of the model to which the pixels will be compared. If you have ever seen the display
on a digital camera outlining the faces of all the people, that is the result of classification.
The third problem, shape from X, aims to recover the three-dimensional (3D) structure
of the scene using any of a variety of techniques (hence the “X”), such as stereo, video,
shading, or texture. To solve these three types of problems, image analysis utilizes concepts
such as linear algebra, statistical analysis, projective geometry, and function optimization.

The goal of image analysis is for the computer to be able “to see,” because algorithms
analyze images in order to extract useful information about the world. In this sense,
image analysis is nearly synonymous with both machine vision and computer vision.
Machine vision typically refers to systems in an industrial setting in which the placement
of the camera and lighting conditions can be controlled, and the scene being viewed by
the camera is, for the most part, two-dimensional (2D), such as parts on a conveyor belt.
Computer vision, on the other hand, refers to systems operating on images taken in
unstructured settings, such as those taken by ordinary people in everyday life using their
personal digital cameras, or by a mobile robot navigating through unknown territory. We
will often use these three terms interchangeably, since the distinction between them is too
subtle to be important in most contexts. Nevertheless, as summarized in Table 1.1, it is
proposed here to use the term image analysis to encompass techniques applicable to images
from any type of sensor, optical or otherwise, whereas machine and computer vision refer to
techniques that are applied to images obtained by a traditional camera capturing visible light.

Although the set of six core problems above is not necessarily exhaustive, it is truly
remarkable how many problems that arise in practice are instances of one of them.

Figure 1.2: Three
example problems of
image analysis. Top:
input images. Bottom:
From left to right, the
results of color-based
segmentation, human
face detection (a type of
classification), and 3D
reconstruction.

sketball game on TV, Stan Birchfield

Segmentation Classification Shape from X

=
=
&

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

TABLE 1.1: Comparison
between image processing
and analysis, machine

and computer vision.

Chapter 1« Introduction

environment sensor algorithm output
image processing any any low-level (2D) another image
image analysis any any low- to high-level nonimage
machine vision industrial camera low-level (2D) nonimage
computer vision everyday camera mid- to high-level = nonimage

For example, thresholding an image is really a segmentation problem, because the goal is
to determine regions in the image whose pixels belong together. Edge detection is a type of
classification problem, because the goal is to determine whether each pixel is an edge pixel
or not. Tracking involves matching a query set of pixels in the current image to a model of
the target captured in previous images, which is an inherent classification problem.” Image
inpainting is a type of image restoration because it aims to reconstruct missing data in the
image, and computed tomography is a type of shape from X because its goal is to determine
the 3D structure of the object being viewed. And so on.

1.2 History and Related Fields

Some perspective can be gained by looking at a brief history. Image processing was born in
the mid-1960s due to the convergence of two phenomena: First, the space program began
to transmit priceless images of the moon back to earth, which happened to be distorted;
and secondly, digital computers were becoming powerful enough to perform useful tasks
such as removing that distortion. Before the decade was over, a wave of other applications
of image processing began to assert themselves, such as medical imaging, remote sensing,
and document image analysis. In the 1970s commercially viable machine vision systems
were introduced to inspect manufactured parts for defects, a thriving industry that contin-
ues today. The 1980s saw the expansion of machine vision systems into the transportation
industry, among other areas, as images were processed automatically to detect vehicles
on the highway in a variety of weather and lighting conditions. Meanwhile, researchers in
computer vision were laying the foundation of solutions to many problems in the field in
the 1970s and 1980s. Although fundamental breakthroughs were achieved throughout the
1990s, it was not until the mid-2000s that computer vision began to impact commercial
products, thanks to the convergence of faster processing, inexpensive sensors, and the avail-
ability of large amounts of training data. Today the computer vision market is booming, with
application areas multiplying faster than developers are able to tackle them.

Interwoven throughout this history is a rich interplay between image processing, image
analysis, and several closely related fields, such as those illustrated in Figure 1.3:

Vision science. Scientists in psychophysics study the relationship between physical
stimuli and the resulting perceptual sensations that they cause. Since the mid-19th cen-
tury, such scientists have spent considerable effort to understand how the human visual
system operates by studying its reaction to different types of scenes and environmental
conditions. This has given rise to heated debates between schools of thought like structur-
alism, gestalt psychology, ecological optics, and constructivism. Some of the more well-
known figures are Hermann von Helmholtz (1821-1894), who conducted some of the first
psychophysical experiments, Max Wertheimer (1880-1943), one of the main proponents
of gestalt psychology which emphasized grouping as the key to visual perception, and
J. J. Gibson (1904-1979), one of the most influential researchers in visual perception of

T This connection is particularly evident in the recent interest in “tracking by detection” approaches. (Note that
detection is a type of classification.)

1.2 History and Related Fields

Figure 1.3: Image
processing and analysis,
along with related fields
(bottom rectangles) and
sample applications (top
ovals).

Entertainment I ndustr.lal
nspection
. Medical
Robotics . edl.ca
imaging
Scientific Image Image Remote
imaging processing : analysis sensing
Slgna.l Photogrammetry
processing
Machine Computer Vision
learning graphics science

the 20th century who contributed to the training of airplane pilots, in which they learned
to orient themselves via visual cues on the ground. More recently, there has been a flurry
of activity in cross-disciplinary work, in which psychophysical researchers apply compu-
tational models to more precisely characterize the operations of the human visual system,
while computer scientists use techniques inspired by psychophysical models to propose
new computational algorithms. The field at the intersection between these two approaches,
known as vision science, has been important in establishing principles regarding perceptual
quality for applications such as image compression. Nevertheless, while much progress
has been made, the actual workings of the human vision system remain largely a mystery.

Photogrammetry. As its name suggests, photogrammetry involves making metric mea-
surements from photographs. Starting in the mid-19th century, sophisticated techniques
were developed to facilitate the creation of accurate, detailed 3D terrain maps using images
captured by cameras mounted on kites, balloons, and aircraft. Before the advent of digital
computers, such calculations were carried out meticulously by hand by carefully measuring
the image coordinates of points on high-resolution photographs, then using the machinery of
projective geometry to infer 3D coordinates. Many of these techniques, such as triangulation
and bundle adjustment, are still widely used today in automated 3D reconstruction systems.

Signal processing. With the advent of electronic forms of communication near the turn
of the 20th century, such as radio, telephone, radar, and television, the need to process these
one-dimensional (1D) electronic signals became important. The field of signal processing,
and later digital signal processing, is concerned with filtering signals in order to reduce the
effects of noise, enhance the information that is present, or make better use of the available
bandwidth. The origins of image processing lie in the extension of one-dimensional digital
signal processing techniques to two-dimensional images.

Computer graphics. While the goal of computer vision is to infer a model of the world
from sensor data, the goal of computer graphics is the exact opposite: to create an image
from a model of the world. As such, the two fields overlap in their shared use of the math-
ematics of geometric optics, in particular projective geometry. In recent years, there has
been a surge of interest in applications that intersect both fields, such as augmented reality,
urban and archaeological site modeling, medical visulization, facial animation, teleimmer-
sion, and telecollaboration. Motion capture of actors, as well as the automatic computation
of optical flow, is used to produce a variety of special effects for movies, such as retiming,
artificial motion blur, image-based animation, and non-photorealistic rendering.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

6 Chapter 1« Introduction

Machine learning. Machine learning is a branch of artificial intelligence concerned
with developing systems whose output improves as more empirical data are provided; that
is, a learning algorithm is able to generalize from its experience. A tight connection exists
between machine learning and image analysis since two of the main areas of machine
learning map directly into two of the main problems in image analysis. Image segmentation
is an example of unsupervised learning, which aims to find clusters in data, whereas clas-
sification is an example of supervised learning, which makes decisions based upon labeled
training data.” Since the introduction of the first successful face detection algorithms in the
mid-1990s, the field of computer vision has been heavily influenced by the paradigm of
machine learning. Many long-standing elusive problems are now beginning to be tractable
by providing large amounts of training data to sophisticated machine learning algorithms
that extract the desired underlying properties of the signals.

1.3 Sample Applications

Due to the explosion in the use of image processing and analysis over the past several
decades, it is not difficult to find a myriad of real-world applications in which these
technologies are used every day. Chances are pretty good, for example, that you or some-
one you know snapped a picture or video with your smartphone recently, which was
subsequently compressed using techniques from image processing. In the same manner,
machine vision is a thriving, mature, and growing multibillion dollar industry that is used
to improve the quality of manufactured products. Although computer vision has only
recently begun to find profitable niches, these application areas will inevitably multiply
over the coming decades as the technology matures to handle the difficult issues that arise
in unstructured settings. Some of the more important application areas of these fields are
highlighted in Figure 1.4.

Industrial inspection. Machine vision systems are commonly used to inspect manufac-
tured parts for defects, particularly in the semiconductor industry where the sensed semicon-
ductor wafer is compared with a model template to detect defects. Similar systems are also
used to identify missing components or broken traces on printed circuit boards, missing pills
in pharmaceutical packaging, defects in fiber bundles, errors in packaging labels, or missing
tamper bands on consumer products. Other systems inspect and measure machined parts
such as automotive engines to ensure alignment and tolerance specifications are met, while
yet others inspect food to identify foreign objects accidentally dropped in bread loaves,
diseased corn, or blemishes in fried potatoes.

Document image analysis. Another mature application area is the automated analysis
of documents. The postal service routinely uses optical character recognition (OCR) tech-
nology to automatically read the characters and numerals printed on envelopes to sort the
mail. Similar methods have been used to build reading machines for the blind and automated
license plate recognition (ALPR) systems to read the license plate numbers of vehicles from
high-resolution cameras controlled by an external trigger. Comparing the captured image
with a template is also one way that vending machines are able to verify that a dollar bill
inserted in the machine is genuine. Using similar techniques, the now ubiquitous QR (quick
response) codes are two-dimensional bar codes that are capable of being quickly read by
smartphones to reveal product data or other information.

Transportation. Cameras mounted on poles on the side of the road are used to automati-
cally determine the volume of traffic and occupancy of the roadway by measuring pixel

"The third area of machine learning, reinforcement learning, is not as obviously related, although it has been used
in tracking and interactive systems.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

1.3 Sample Applications

Figure 1.4: Sample
applications. From left
to right, top to bottom:
industrial inspection,
optical character
recognition, tracking
vehicles on a highway,
detecting a drowning
person at the bottom of
a pool, photgrammetry,
detecting tree roots

in an underground
image, medical imaging,
robotic assembly,
moviemaking.

plane: SAYAM TRIRATTANAPAIBOON / Shutterstock.com,
.com

hutterstock.com, Neeraj Kanhere, Poseidon Technolog

Christina E. Wells, beerkoff / Shutterstock.com, wellphoto / Shutterstock.com, Don Pablo / Shu

servickuz / Shutterstock.com, astudi

changes in the video relative to a background image. Cameras installed at intersections are
used to determine the presence of vehicles in individual lanes in order to control the traffic
signal or to automatically take a snapshot of any driver who illegally runs a red light. Other
systems count the number of vehicles passing through an intersection, inspect railroad
tracks for fatigue or corrosion, or detect stray, fallen parts on an airport runway for safety
purposes. Thermal infrared cameras are increasingly being used for their insensitivity to
shadows, rain, glare, or other environmental conditions. Cameras are also being deployed
on vehicles themselves, with integrated computer vision algorithms automatically detecting
the headlights of oncoming vehicles, pedestrians in front of the vehicle, and inadvertent lane
departure. They are also used to automate parallel parking.

Security and surveillance. Biometric devices are used to read fingerprints, recog-
nize irises, and identify faces for contact-free access control. X-ray security scanners at
airports are able to detect banned objects in luggage, while full body scanners utilize the
backscatter X-ray or millimeter waves. Security cameras installed around the perimeter of
high-security areas, within public areas, or around places of business are primarily used
for manual viewing either during an incident or afterward, although efforts have been made
to automate the detection of intruders. Such cameras are also used to track people through
shopping areas to determine purchasing habits and product interest. Underwater video
cameras continuously watch for motionless people at the bottom swimming pools to alert
lifeguards to save them from drowning.

Remote sensing. Information regarding the earth is collected by acquiring and process-
ing data from multiple spectral bands obtained by sensors on aircraft flying over specific
locations or satellites orbiting the planet. Some of the goals of remote sensing are to identify
land features, measure the amount of vegetation, locate ore deposits, measure the tem-
perature of land and water, and estimate changes in sea level. The large number of images
collected continuously from orbiting satellites over the past several decades provides a
long-term record of changes to the natural landscape due to either natural or human causes.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

8 Chapter 1« Introduction

Scientific imaging. Scientists in a variety of fields use imaging to study and measure
phenomena of interest. Biologists track live cells in time-lapse microscopy images, bio-
image informaticists analyze cells using light or electron microscopy, and horticultural-
ists estimate tree health by measuring the growth of roots using cameras in underground
minirhizotron tubes. Space scientists use triangulation from cameras that are miles apart to
estimate wind direction, while astronomers use speckle imaging techniques to increase the
resolution of ground-based telescopes for viewing faint stars and other distant phenomena.
Chemists use atomic force microscopes (AFMs) to view extremely fine details such as the
chemical bonds linking atoms in a molecule. For studying the flow of liquids or gases, par-
ticle imaging velocimetry (PIV) provides scientists with the instantaneous velocity profile
of the flow field. Most scientific imaging is still done manually, with basic low-level image
processing and analysis routines aiding the human viewer in conducting measurements.

Medical imaging. One of the largest areas of active research is medical imaging, in
which images of the human body are captured using a variety of imaging modalities to
detect tumors, diagnose diseases, verify whether a bone has been broken, and view neural
activity in the brain to identify the region that is responsible for a certain type of processing.
These different types of images are registered so that they may be overlaid on one another
to create 3D models to aid visualization. Medical imaging is also used to guide surgery, and
images captured from tiny images on the end of a catheter allow physicians to see the block-
age of arteries and other phenomena that would be difficult to sense otherwise. Although
much effort has been spent automating medical image analysis, the images are primarily
interpreted by a trained professional, as in scientific imaging.

Robotics. Commercial industrial robotic systems use machine vision for quality inspec-
tion during operations such as parts feeding, manufacturing assembly, arc welding, and
automatic wire bonding. Computer vision also plays an important role in mobile robotics
systems that navigate an environment, follow a certain person, or build a map of a building.
Computer vision systems are just now beginning to reach levels of robustness that allow
them to be deployed in real unmanned systems operating in unstructured environments,
whether in smaller robotic systems or larger autonomous vehicles.

Entertainment. With the proliferation of cameras on smart phones, an emerging area
is that of computational photography, in which specialized optics and image processing
can be used to produce high dynamic range images, all-focus images, or high-resolution
mosaics and panoramas. Another application area is human-computer interaction, in which
natural user interfaces allow a user to control a computer by sending the user’s gestures from
a camera. With the increasing availability of inexpensive depth sensors, such applications
are becoming mainstream. In the sports world, cameras are used to display the location of
first down markers in American football, the pitch speed in baseball, the angle of the shot
in basketball, the location of the puck in hockey, the identities of boats in sailing races, and
other metadata to enhance the visual experience for viewers. In the moviemaking industry,
computer vision techniques are now the standard way of combining computer generated
imagery (CGI) with live action footage by tracking features in the video to determine the
camera motion.

1.4 Image Basics

In preparation for the material in the rest of the book, we now consider some of the basic
concepts in storing and representing images, as well as some of the conventions that we will
use. When a camera (or alternative imaging device like those we will see in the next chapter)
forms an image of the scene, it captures in some way a likeness of the scene. In fact, the
word image comes from the Latin word (imago) meaning “likeness,” which is why when

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

1.4 Image Basics 9

we look in the mirror we say that we see an image of ourselves, because the person inside
the mirror looks just like us. Because the image captured by a camera is usually a digitized
version of some two-dimensional sensory input, it is appropriately called a digital image.

1.4.1 Accessing Image Data

At its most basic level, then, a digital image is simply a discrete two-dimensional array of
values, much like a matrix. We use width to refer to the number of columns in the image,
and height to refer to the number of rows, so that the dimensions of the image are width by
height, represented as width X height, and the aspect ratio is width divided by height, or
width | height. Each element of the array is known as a pixel, which is short for “picture ele-
ment.” Pixel values are accessed by a pair of coordinates (x, y), where x and y are nonnegative
integers. For a grayscale image /, the value v of the pixel at coordinates (x, y) is given by

v=1I(x7y) (1.1)

Sometimes we will find it more convenient to represent pixel coordinates using a vector.
According to the standard convention, each vector is vertically oriented, while its transpose
is horizontally oriented:

=1 =T = (1.2
y

where the boldface indicates a vector, and the superscript | indicates the transpose opera-

tor. We will use the vector and coordinate notation interchangeably, so that I(x, y) = I(x).

In the case of a color image, each pixel contains multiple values, which we represent

as another vector, v = I(x), that contains the values of the different color channels,

c.g,v= (Vred’ vgreen» Vblue)°

For accessing the pixels we adopt the convention that the positive x axis points to the
right and the positive y axis points down, so that x specifies the column and y specifies the
row, as depicted in Figure 1.5. We also assume [SIonDasgd indexing, so that the top-left pixel
is at (0, 0). Other conventions are possible, but this coordinate system has the advantage
that it is closely tied to the way images are typically stored in memory, and, although in 2D
this is a left-handed coordinate system, in 3D the right-hand rule causes the z axis to point
toward the scene along the camera’s optical axis, which is convenient when performing 3D
reconstruction.

Despite the fact that an image is actually a 2D array, it is stored in memory as a 1D
array. Sometimes images are stored in column major order, that is, the first column is
stored, then the second column, then the third column, and so on until the last column. More
commonly, however, they are stored in row major order, also known as raster scan order.
Hearkening back to the days when images were displayed on a cathode ray tube (CRT) by
an electron gun scanning the tube one row at a time, a scanline is one row of an image;
raster scan order therefore refers to storing the first row, then the second row, then the
third row, and so on until the final row. Since a CRT display always begins its scan at the
top-left corner of the image and proceeds downward, this is the historical basis for setting
the origin at the top-left pixel.

The elements of this 1D array have indices 0, 1,2, ..., n — 1, where n = width-height
is the number of pixels in the image, and the dot () indicates ordinary multiplication. If
we let i refer to the index of this 1D array, then the first pixel at (x, y) = (0, 0) has the 1D
index i = 0. Assuming row major order, the second pixel at (1, 0) has the index i = 1, the
third pixel at (2, 0) has the index i = 2, and so on. If the pixels are stored contiguously, then
the last pixel of the first row at (width — 1, 0) has the index i = width — 1, while the first

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

光栅

Figure 1.5: Top:Image as
a 2D array, showing the 1D
index of each pixel. Bottom:
Internal representation of
image as a 1D array using
row major order.

Chapter 1« Introduction

0| 1| 2 w—1 x
w |w+l|w+2 2w—1
2w Rw+12w+2 S3w—1
(h—=1)|(h—=1)|(h—1) wh—1
w |w+l|w+2
yyY
0 1 2 oo lw=1{ w |wH+l|w+2| ... 2w—1| 2w | ... wh—1
0,0) (1,0) (2,0) w-1,0) (0,1) (1,1) (2,1 (w-1,1) (0,2) (W—l,h—l)

1.4.2 Image Types

pixel of the second row at (0, 1) has the index i = width. From this, it is easy to see that the
1D index can be obtained from the 2D coordinates as follows:

i=y-width + x (1.3)
and the inverse relationship is given by

x = mod (i, width) = i — y - width (1.4)

y = |i / width) (1.5)

where mod (a, b) is the modulo operator that returns the remainder of a divided by b, and
the floor operator |c| returns the largest integer that is less than or equal to c.

Several types of images exist. In a grayscale image, the value of each pixel is a scalar
indicating the amount of light captured. These values are quantized into a finite number of
discrete levels called gray levels. If b is the number of bits used to store each pixel value
(called the bit depth), then 2” is the number of gray levels, which we shall refer to as
ngray. Usually there are eight bits (one byte) per pixel, so that ngray = 2" = 28 = 256.
Therefore, in an 8-bit grayscale image, a pixel whose value is O represents black, whereas
a pixel whose value is 255 represents white. All the bits of a black pixel are 0, whereas all
the bits of a white pixel are 1, so using heﬁz}_fiiﬁeﬁaiqmal notation these values are 00 and FF,
respectively. Some specialized applications suc%h as medical imaging require more quantiza-
tion levels (e.g., 12 or 16 bits per pixel) to increase the dynamic range that can be captured,
but we will generally assume 8 bits per pixel to simplify the presentation; the extension to
larger bit depths is straightforward.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

十六进制的

1.4 Image Basics

In an RGB color image, the pixel values are triples containing the amount of light
captured in the three color channels: red, green, and blue. Color images, therefore,
usually require 24 bits per pixel, or one byte for each of the three color channels. For an
RGB color image, a black pixel has hexadecimal value 000000, while a white pixel
has value FFFFFF. Although the bytes could be stored in the order of red-green-blue
(RGB), with blue as the lowest-order byte, most frame buffers and frame grabbers adopt
the reverse convention in which the order is blue-green-red (BGR), so that red is stored as
OOOOFFEF. The values for the different color channels are usually stored in an interleaved
manner, that is, all three values for one pixel are stored before the three values of the next
pixel, as in ByGoRoB1GRB,G,R, - - - B,_1G, R, _, where the subscript is the pixel
index. An alternate approach is to store the color channels in a planar manner, so that
the red, green, and blue channels are stored as separate one-byte-per-pixel images, as in
ByBB, - B,_1GyG1G, ‘- - G,,_1RyR R - - - R,,_ ;. Either way, sometimes a fourth value
is associated with each pixel, called the alpha value or the opacity, which is used for
blending multiple images, as in BoGoRqAgBG|R|A|B,G,RA> - B, 1G,,— R, _ 1A, —1,
in which case 32 bits are associated with each pixel; an alpha value of 00 indicates complete
transparency, whereas an alpha value of FF indicates that the color is fully opaque.

Although grayscale and RGB color images are used for capture and display, the
processing of images leads to several additional types. First, there is the binary image,
which arises from applying a propositional test to each pixel. The most common test is that
of thresholding, in which case each pixel in the output image receives the logical value on
or off (or equivalently TRUE or FALSE, respectively) depending upon whether the value of the
input pixel is above or below a given threshold. These logical values can be stored using
one bit per pixel, (0 for ofr or 1 for on), or they can be stored using one byte per pixel,
where their values are usually 0 (hexadecimal 00) or 255 (hexadecimal FF). Although
this latter practice is somewhat wasteful, it is often more convenient for both display and
processing. We adopt the convention that ofr is displayed as black, whereas on is displayed
as white, when the binary image is displayed as an image; we reverse this convention when
graphically depicting algorithms, where ofr is displayed as white, and a color such as blue or
orange is used for on. This minor inconsistency arises naturally from the fact that, although
black is the color of a blank screen, white is the color of a blank piece of paper.

Another type of image is the real-valued image, or floating-point image, in which
each pixel contains a real number, at least conceptually. In practice, the number is stored in
the computer as an IEEE single- or double-precision floating point number, in which case the
number requires 32 or 64 bits, respectively, to be stored. A single-precision number can repre-
sent any integer in the range [—2%*, 224] exactly, and it can represent any real number in the
approximate range [— 108, 103®] with an accuracy of about 10~". A double-precision num-
ber can represent any integer in the range [—23, 2°%] exactly, and it can represent any real
number in the approximate range [—103%%, 10°%®] with an accuracy of about 10~ !¢, Unlike
signal processing, which often involves numerically delicate operations that require double-
precision, for image processing it is difficult to find situations for which single-precision is
not sufficient. In fact, an increasingly common format stores images using half-precision,
which requires just 16 bits per pixel. A half-precision number can represent any integer in the
range [—2'!, 2! exactly, and it can represent any real number in the range [—65535, 65535]
with an accuracy of about 0.001. These numbers, which are summarized in Table 1.2, arise
from the general rule that if e and s are the number of exponent and significand bits, respec-
tively, then the range of exact integers is [—2"!, 2°*1], the entire range is [—2%" , 2% '],
and the accuracy is s log;o 2. Floating-point images are useful not only to store the results of
arithmetic operations, but also for high dynamic range images and radiance maps.

Some image processing algorithms output an integer-valued image in which the value
of each pixel is an integer. Integer-valued images arise whenever it is necessary to store

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

Chapter 1« Introduction

number of bits range
precision sign exponent significand total integers reals accuracy
half 1 5 10 16 [—2!1, 211] [—10% 10%] 1073
single 1 8 23 32 [—2%4 224] [—10°8, 10%8] 1077
double 1 11 52 64 [—233,23] [-107%8 10%%%] 10°10

TABLE 1.2: Half-, single-, and double-precision floating point representations.

negative numbers or somewhat arbitrarily large numbers. For example, to label each pixel
with the region to which it belongs, we obviously cannot store the result in a grayscale
image if there are more than 256 regions. Similarly, the subtraction of two images, which
will in general contain negative numbers, cannot be stored in a grayscale image. Although
in practice an integer-valued image uses a finite number of bits per pixel (usually 32 or
64), these values are large enough that the chance of overflowing the buffer is usually not a
practical concern. A 32-bit integer, for example, can represent all integers between approxi-
mately —10° and 10°, and a 64-bit integer can represent the integers from approximately
—10" to 10!, both of which are extremely large ranges.

Finally, images can have multiple channels. We have already seen, for example, that an
RGB color image is an 8-bit image with three channels. Similarly, after transforming from
RGB color space to another color space, the result can be stored as a multichannel image,
either real-valued or 8-bit. Another common multichannel image type is a complex-valued
image, which arises from computing the Fourier transform of an image. A complex-valued
image contains two floating-point values for each pixel, one for the real component and
one for the imaginary component. Similarly, a multichannel integer-valued image might
store the (x, y) coordinates of another pixel associated with each pixel, or a set of regions
to which the pixel might belong.

These image types are summarized in Table 1.3. In this book we shall exercise care to
maintain the distinction between the different types in order to support applications for
which speed and memory considerations warrant this extra level of detail. Real-time appli-
cations tend to squeeze the result into as few bits as possible, so that grayscale and RGB
color images are commonly used not only for capture and display, but also for holding
results that may conceptually be considered integers or real values. The reason for this is
that, although memory itself is cheap, processing time is greatly affected by the amount of
memory used, due to the relatively high cost of cache misses and page swaps. Although the
type of image should either be clear from the context or mentioned explicitly, when in doubt
it will always be safe to assume (if computation is not an issue) the most general model,
namely that of a multichannel floating-point image. Such a model is flexible enough to hold
all of the image types mentioned (grayscale, RGB color, binary, integer, real, complex, and
other color spaces), as well as any others that you will ever encounter.

grayscale RGB color binary integer-valued real-valued complex-valued
channels 1 3 1 1 1 2
bit depth 8 24 1 32/64 32/64 64/128
valuerange {0, ...,255} {0,...,255} {0,1} Z R R?

TABLE 1.3: Common image types, shown with the number of channels, the most commonly encountered bit depth
(number of bits per pixel), and the set of possible values. In the final three columns this set is conceptual
only, since the integers Z and real numbers R are infinite sets.

1.4 Image Basics 13

1.4.3 Conceptualizing Images

We normally think of an image as a picture. That is, if we display the image so that the
brightness of each tiny region on the screen or page is proportional to the value of a pixel,
then the representation is easily interpreted by viewing it. There are several other ways to
conceptualize an image, however, as shown in Figure 1.6, each of which provides additional
insight into the algorithmic processing of images.

At its most basic level a digital image is stored in the computer as a discrete array of
values, which can be visualized either by considering the raw pixel values themselves
arranged in a 2D lattice, or equivalently as a height map, or 3D surface plot, where the
height of each point is the value of the pixel. Alternatively, an image can be considered
as a function that returns the value given the coordinates of a pixel. In this case, I(x, y)
means to evaluate the function at the position (x, y). If x and y are restricted to nonnega-
tive integers in the domain of the image, then the function is equivalent to accessing a
2D array. However, if we expand the domain of each axis of the function to the entire set
of real numbers, then it allows us to capture the values of the image even when accessed
out of bounds. For example, / (—1, —1) makes no sense when I is viewed as a 2D array,
because (—1, —1) would cause a memory access violation; but when viewed as a func-
tion, I(—1, —1) yields a value that is computed from the nearby pixels, e.g., the value of
the nearest pixel. Similarly, the parameters to (2.5, 3.5) would have to be rounded if the
image were accessed as an array, but as a function we can define an appropriate interpola-
tion function to compute values between pixels.

Another way to conceptualize an image is as a set of pixels. In its most general form,
this set contains triplets of values capturing both the coordinates and values of the pixels.
For example, the grayscale image

,_[3 80 1)
12 9 4)

can be represented as {(0,0,3),(1,0,8),(2,0,0),(0,1,2),(1,1,9), (2,1,4)}.
However, this representation is most commonly used for binary images, where the set is

Figure 1.6: Different ways to visualize an image: as a picture, as a height map, as an array of values, as a function, as a set, as a graph,
and as a vector. The 5 X 4 array is a small portion of the image; the set contains the coordinates of all pixels in the array whose value is
greater than 80; and the weights of the edges in the graph are the absolute differences between values in the array.

75 | 81 | 83 | 96 | 94 75

62 | 74 | 76 | 87 [100 | [81
86 | 90 [105 | 53 | 67 | |33

96
60 | 77 | 90 115
90 | 99 -

62
74
76
87

CD T 10,0, 0,0).6,0), 4,0,

(3. 1), (4,1),(0,2), (1,2),
(2,2),(2,3),(3,3), (4, 3)}

115

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

Chapter 1« Introduction

usually simplified to contain just the coordinates of those pixels whose value is on, that is,
{(x,y) : I(x,y) = on}. For example, the binary image

1 0 1
I=|1 1 1 (1.7)
1 0 1
can be represented as the set
{(0,0), (2,0), (0, 1), (1,1), (2, 1), (0,2), (2,2) }. (1.8)

An image can also be viewed as a graph, where each pixel of the image is a vertex in the
graph, and each edge in the graph connects two pixels that are adjacent in the image. The
weight associated with each edge is usually some measure of the similarity or dissimilarity
in value between the two pixels. For example, the image in Equation (1.6) can be repre-
sented as a graph with 6 vertices and 7 edges, where the weights of the edges are given by
the absolute difference between neighboring pixels:

Occasionally it is useful to view an image as a matrix. Since a matrix is a 2D array
of values, this representation is easy to imagine. The only difficulty is that, for historical
reasons, the conventions for matrices and images are different. Matrix entries are accessed
using one-based indexing, so the top-left entry is at position (1, 1) rather than (0, 0). Also,
matrices are indexed first by their row, then by their column, so the entry just to the right of
the top-left entry is at position (1, 2), and an m X n matrix has m rows and n columns (as
opposed to a w X h image, which has w columns and % rows). To avoid confusion, we will
use boldface to indicate matrices, and we will access matrix entries using subscripts. Thus,

if A is an m X n matrix whose (i, /)™ entry is given by a;, we will write

apy dp o Ay
azy dpp *°° dyy

Appsny = | 0 A : (1.9)
A [£%) e Ain

where the braces in the subscript of the matrix indicate its dimensions.

Finally, it is sometimes useful to view the image as a vector, which is obtained by either
concatenating the columns of the image or by concatenating the rows and transposing the
result. Adopting the latter approach, if we let v; = I(x, y) be the value of the pixel at (x, y)
according to the 1D indexing of Equation (1.3), then the resulting vector is given by

vV = [VO Vi Vo Vn,I]T (1.10)
where 7 is the number of pixels in the image. This vector is a point in an n-dimensional
space, so if we let each pixel take on a real value for simplicity, then v € R". The vector

notation allows us to imagine linear transformations of the image that involve multiplying
the vector by an m X n matrix T on the left-hand side to produce a new vector v/ = Tv:

V‘,{le} = T{an}V{nXl} (111)

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

1.4 Image Basics

If T is the n X n identity matrix Iy, then the input is unchanged: v’ = v. More inter-
estingly, T may be defined appropriately to translate or rotate the image, perform bilinear
interpolation, downsample, upsample, crop, or extend past the borders as needed. Other
linear operations, such as convolution and the Fourier transform, can also be represented in
this way, as we shall see later in the book.

1.4.4 Mathematical Prerequisites and Notation

To successfully master the material in this book, it is necessary to be at least somewhat
familiar with three areas of mathematical study. First, it is important to be comfortable
with the basic concepts of linear algebra, such as matrices, vectors, matrix multiplication,
and solving linear systems. Secondly, it is helpful to have some familiarity with probability
and statistics, so that you know what is meant by joint probability, conditional probability,
or a probability distribution function (PDF). Finally, the work will be easier if you already
have been exposed to signal processing, so that discrete signals, convolution, and the Fou-
rier transform are not entirely new concepts. Having said that, this book aims to ease the
transition as much as possible by explaining concepts at an elementary level, so that having
some deficiencies in these areas should not prevent anyone from progressing through the
material and digesting most of it.

Because image processing and analysis are at the intersection of a number of different
mathematical traditions, developing a clear and consistent notation is a challenge. The goal
of this book has been to strike a balance between using notation that is internally consistent
on the one hand, while at the same time maintaining consistency with existing conventions
whenever possible. The result is the following set of notational conventions, which are
used throughout the book almost everywhere. This list may not be interesting upon first
reading, but you may find it helpful to refer to it from time to time as you progress through
the book. On a few occasions these conventions are violated in order to adhere to existing
widely established conventions, but the context should make the meaning clear wherever
this occurs.

g Lowercase Latin or Greek characters indicate scalars

g, U Lowercase Latin or Greek characters also indicate functions of one
variable

G,V Uppercase Latin or Greek characters indicate functions of more than one
variable

A Uppercase calligraphic Latin characters indicate sets

g(x) Either the 1D function g evaluated at x, or the function g itself

G(x,y) Either the 2D function G evaluated at (x, y) or the function G itself

g(+) The function evaluated at some value, where the variable name is unim-
portant or obvious

G(-, ") The function evaluated at some pair of values, where the variable names
are unimportant or obvious

g[x] Brackets indicate a discrete array indexed by nonnegative integers

8,8 First and second derivatives of function

a=>b The variable a is equal to b

a= The variable a is defined to be equal to b

gy Boldface lowercase Latin or Greek characters indicate vectors

G,V Boldface uppercase Latin or Greek characters indicate matrices

G = [g;] The ij™ element of matrix G is given by g;;

g Transpose of vector g

FG Matrix multiplication
. Central dot indicates ordinary multiplication (also used for divergence)

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

16 Chapter 1« Introduction

Colon means either a range, as in 1:10, or “such that,” as in {x:x < 0}

® Asterisk with a circle indicates convolution

R, R™, R™*" Set of real numbers, set of vectors of n real numbers, set of m X n real
matrices

Ly Loyt Set of integers, set of integers from a to b, inclusive

o(-) Big O notation for asymptotic running time of algorithms

* Asterisk indicates ordinary multiplication (only used in pseudocode)

= Long equal sign indicates test for equality (pseudocode)

“«— Assignment (pseudocode)

“— Assignment with addition; same as += in C/C++/Java (pseudocode)

“—_ Assignment with subtraction; same as — = in C/C++/Java (pseudocode)

1.4.5 Programming

It has been said that a person does not really know anything until he or she is able to write
it down. In a similar way, a person does not really understand an algorithm until he or she
is able to implement it. Therefore, the best way to learn image processing and analysis is by
programming real algorithms on real images. To aid the reader in this endeavor, this book
provides detailed pseudocode for many of the algorithms presented. Although the pseudo-
code may not be very interesting upon first reading, you will likely find it indispensable
when you desire to acquire a deeper understanding of any given technique by implementing
it yourself. The pseudocode has been written to balance between precision on the one hand
and readability on the other. If you are proficient at a programming language, it should not
be difficult to translate the pseudocode into actual working code.

By far the most common language used in learning image processing and analysis is
MATLAB, or its open-source alternative, Octave. MATLAB has a clean syntax, is very easy
to use, is interpreted rather than compiled, and comes with built-in visualization capabilities,
an editor, and a debugger. In industry, however, the need for efficient computation requires
the use of a lower-level language like C or C++, for which the most widely used library
is OpenCV. OpenCV has extensive capabilities for loading and displaying images, con-
necting to cameras, and performing basic operations, as well as advanced algorithms like
face detection and camera calibration. OpenCV also has bindings to other languages such
as Python and Java for more rapid prototyping. Other libraries include CImg, vxI, Imagel,
and dozens of others. More information about these tools and libraries can easily be found
by searching online.

1.5 Looking Forward

With these basics under our belt, we are now ready to begin tackling the topics of image pro-
cessing and analysis. As we do so, one word of caution is in order. In other fields of study,
we are accustomed to dealing with convergent problems. A convergent problem is one
in which there is a single unique solution, and the more one studies the problem the more
one learns about it. In contrast, as pointed out by a well-known economist [Schumacher,
1973], a divergent problem has no correct solution, and the more it is studied the more
the answers seem to contradict one another. Image analysis, and to a lesser extent image
processing, are full of divergent problems for which there is not a single unique solution but
rather a variety of different solutions, each with its own merits and shortcomings. Therefore,
do not be surprised if, when faced with a particular problem, you try the leading algorithms,
only to discover that they fail miserably and that a completely different (and oftentimes far
simpler) approach outperforms them all in the particular context in which you are working.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

1.6 Further Reading

Image analysis is a young field, and the solutions are elusive. While progress will undoubt-
edly continue over the coming decades to produce practical systems that process imagery to
provide useful information, this will happen by continually questioning existing techniques
and exploring new ones. Therefore whether you are a student, researcher, or practitioner,
put on your creativity cap and be ready to think outside the box and try new approaches.
After all, image analysis is for the most part a bag of tricks, so feel free to select whatever
tricks you find in the bag, as well as any new tricks you develop on your own, in order to
solve the problems that you encounter.

1.6 Further Reading

This chapter has presented an overview of image pro-
cessing and analysis, along with their relationship to
machine and computer vision. A variety of alternative
overviews of one or more of these fields can be found
in various textbooks. Burger and Burge [2008] provide
an easy-to-read introduction to the field of image
processing, while Gonzalez and Woods [2008] present
a more detailed treatment of the subject. For computer
vision, Shapiro and Stockman [2001] provide an intro-
duction, whereas Forsyth and Ponce [2012] cover the
subject at an advanced level, and Szeliski [2010] pro-
vides a readable treatment with a helpful summary of
the latest research. Machine vision is covered thor-
oughly by Davies [2005]. A combined treatment of the
fields can be found in the introductory text of Umbaugh
[2010] or the more comprehensive book of Sonka et al.
[2008]. For more historical texts, the classic books of
Rosenfeld and Kak [1982], Jain [1989], Pratt [1991],
Jain et al. [1995], or Castleman [1995] on image pro-
cessing; or the classic works of Marr [1982], Ballard
and Brown [1982], Horn [1986], or Nalwa [1993] on

computer vision can be consulted. For learning about
3D computer vision, Trucco and Verri [1998] provide
an easy-to-read treatment, while Hartley and Zisserman
[2003] is the definitive resource. A myriad of mono-
graphs or edited works on more specialized topics can
also be found but are too numerous to list here.

The latest research can be found in a variety of con-
ferences and journals. The leading conferences in image
processing are International Conference on Image
Processing (ICIP) and International Conference on Pat-
tern Recognition (ICPR), while the leading journal is
IEEFE Transactions on Image Processing. The leading
conferences in computer vision are Computer Vision
and Pattern Recognition (CVPR), International Confer-
ence on Computer Vision (ICCV), and European Con-
ference on Computer Vision (ECCV), while the leading
journals are IEEE Transactions on Pattern Analysis and
Machine Intelligence (PAMI) and International Journal
of Computer Vision (IJCV). The leading venues for medi-
cal imaging research are IEEE Transactions on Medical
Imaging and Medical Image Analysis.

PROBLEMS

1-1 Define image processing and image analysis.

1-2 Even though machine vision and computer vision are nearly synonymous, there are
some subtle distinctions between them. List at least two of these differences.

1-3 Image analysis, as defined in this book, is very closely related to computer vision.

What is the key difference?

- Image processing, as defined in this book, produces an output image from an input
image. What are the two primary purposes for such output images?

1-5 Another way to categorize the information in this book would be in terms of low-,
mid-, and high-level vision. Explain how you would map image processing, image analysis,
machine vision, and computer vision into these alternative categories.

1-6 List three basic image processing problems and three basic problems in image analysis.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

18

Problems

1-7 Skim the table of contents to identify at least one topic for each of the six basic prob-
lems mentioned in the previous question (list the chapter and/or section number for each,
along with the title). Can you identify a topic that overlaps more than one basic problem?
Can you identify a topic that does not fit into any of the basic categories?

- Explain the statement, “Computer vision is the inverse of computer graphics.”

1-9 The three main problems in machine learning are unsupervised learning, supervised
learning, and reinforcement learning. Relate any two of these to the main problems in image
analysis.

1-10 Provide the make and model of an automobile that processes images from one or more
cameras permanently mounted on the vehicle, and explain the purpose of the processing.
Search the Web if needed.

1-11 Give an example of an application that you have used personally in the past month
that involves image processing and/or analysis.

1-12 List three psychologists whose work has been influential in understanding the human
visual system.

1-13 Give a real-world example of technology using each of the following fields: (a) pho-
togrammetry, (b) signal processing, (c) computer graphics, and (d) machine learning.

1-14 Search the Web for job openings in computer vision. List three jobs that you found,
along with the qualifications needed to apply.

. [] m l]le convention ()'
S g S

this book, what are the values of 1(0, 1), I(1, 1), and 1(2, 1)?

1-15 Suppose we have the following image: I = [

1-16 Suppose an image has 640 columns and 480 rows and is stored in row-major order.
Convert the coordinates (x,y) = (38,52), (592, 241), and (33, 0) to 1D indices. Con-
versely, convert the following 1D indices to (x, y) coordinates: i = 8092, 24061, and 38190.

1-17 Equations (1.3) — (1.5) apply to an image stored in row-major order. Write the equiva-
lent expressions to convert between 2D coordinates and 1D indices for an image stored in
column-major order.

1-18 Suppose the following 1D array of bytes in memory stores a 2 X 2 color image (in
blue-green-red order): 52, 68, 31, 133, 192, 88, 255, 208, 32, 233, 161, 25.

a. Assuming that the image is stored in interleaved format, convert to planar format. What
are the RGB values of the pixel at location (1, 1)?

b. Assuming that the image is stored in planar format, convert to interleaved format. What
are the RGB values of the pixel at location (0, 1)?

1-19 Suppose the following 1D array of bytes in memory stores 8 consecutive pixels of a
binary image: 0, 0, 0, 255, 255, 0, 255, 0. Show how to store these pixels in a single packed
byte.

1-20 For increased fidelity, medical images are often stored using more than 8 bits. Sup-
pose you needed to store a 12-bit-per-pixel grayscale image. Would you try to pack 3 pixels
into 2 bytes to avoid wasted bits? Why or why not?

112 195 48]

1-21 t the followi le image to set notation:
Conver € rollowing grayscale image to set notation |: 97 203 125

1-22 Convert the following 3 X 2 binary image back to array notation: {(1, 0), (0, 1), (2, 1)}.

167 30 245}

1-23 Consider the following 2D array, which has 3 columns and 2 rows: |: Al 127 87

a. If the array is an image /, what is the value of I(1, 1)?
b. If it is a matrix A, what is the value of a;,?
c. In which case would you write the dimensions as 2 X 3? As 3 X 2?

1-24 List three mathematical prerequisites for studying the material in this book.
1-25 Explain the difference between a convergent problem and a divergent problem.
1-26 Briefly explain why computer vision is so difficult.

1-27 Download a software library (e.g., OpenCV), and write a program to load an image
from a file and display it in a window.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

CHAPTER 2 .
Fundamentals of Imaging

fundamental concepts of imaging. Because most of the images you will encounter will already be digitized, it is

not necessary to understand all the details presented in this chapter before proceeding through the rest of the
book. Nevertheless, familiarizing yourself at least somewhat with the material of this chapter will better prepare you
to appreciate the subtle distinctions that you will encounter, as well as to make it easy to refer back to this chapter later
as needed. This chapter provides a quick tour of natural vision systems, with particular attention paid to the human
visual system. Afterwards we proceed to the topics of image formation and acquisition, such as the pinhole camera
model, lenses, sampling, and quantization, which are followed by a survey of alternative imaging modalities. Finally, a
detailed look at the electromagnetic spectrum is presented.

B efore delving into specific techniques for image processing and analysis, in this chapter we consider some of the

2.1 Vision in Nature

We begin with a tour of natural vision systems, starting with a single photoreceptor, followed
by the human visual system, and finally the visual systems of various animals. Since image
processing is concerned with producing a new image with improved visual quality over the
original, having some knowledge of human visual perception is necessary, and understand-
ing how animals are able to achieve amazingly robust behavior with little computational
power can yield inspiration for developing our own digital image analysis algorithms.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

2.1 Vision in Nature 21

2.1.1 A Single Photoreceptor

The miracle of vision starts with the amazingly complex system of a single photoreceptor,
which is the most fundamental component of any natural vision system. When a single pho-
ton of light hits a single photoreceptor, it sets off a wonderfully complex chain of events that
leads to the surprising ability to see. In a nutshell, the events are as follows. The absorption
of a photon causes a change in shape of a small organic molecule called retinal. This change
in shape, in turn, causes the larger protein (called rhodopsin) holding the retinal molecule to
change shape and bind itself to another protein (transducin), which causes another molecule
(GTP) to bind to it. This newfound combination then goes around cutting any instances of
another type of molecule (cGMP) that it encounters, thus reducing its concentration. This
reduction in concentration causes an ion channel to close, which then reduces the flow
of positively charged sodium ions into the cell. The resulting imbalance of charge causes
another channel to close, which reduces the concentration of calcium ions. Since calcium is
required by the neurotransmitter, this reduced level of calcium causes the neurotransmitter
to slow down, which therefore indicates to the next cell that a photon has been absorbed.” A
set of enzymes then goes to work to restore the rhodopsin to its original shape, to resynthe-
size cGMP, to restore the concentration of sodium ions, and so forth, so that the process can
begin all over again. As you can see, the complexity involved in even this most basic step
of vision, that of sensing a single photon, is quite impressive. In fact, some scientists call
such a system “irreducibly complex,” because if any one of the many components does not
function properly, then the entire system fails, and the process of vision cannot even begin.

2.1.2 Human Visual System

Individual photoreceptors are more useful if they are, in turn, packaged into an even larger
system. In this section we consider the human visual system.

Structure of the Eyes

As shown in Figure 2.1, the human eyeball is approximately spherical in shape, covered
by a transparent layer (called the cornea) in front and an opaque layer (called the sclera,
the white part of the eye) everywhere elseﬁiﬂiight rays enter the eyeball through the cornea,
where they are bent before they pass through the aqueous humor, where they are bent
again. These rays then pass through the small aperture known as the pupﬁjﬁl}L whose size is
controlled by muscles attached to the i{liﬂg, the colored circular region surrounding the pupil
whose circular boundary with the sclera is known as the limbus. From the pupil the rays are
bent yet again by the lens, whose thickness is controlled by the ciliary muscle in a process
known as accommodation. The lens provides only about a third of the refractive power
of the eyeball, the rest being achieved by the cornea and aqueous humor. Nevertheless, the
accommodation of the lens is needed to focus the light to form an image on the retina at the
back of the eyeball. After absorbing a photon, the photoreceptors in the retina are nourished
by the layer between the sclera and retina called the choroid.

The retina consists of two types of photoreceptors. The 100 million or so - are
sensitive to low levels of light and able to generate a detectable photocurrent from as little as
a single photon. The 6 million or so [l respond to normal, everyday light levels at which
the rods are saturated. Color vision is possible because of the three types of cones, namely
L-, M-, and S-cones, which respond primarily to long-, middle-, and short-wavelength

" One of the ironies of vision (at least in vertebrates) is that in its resting state the neurotransmitter of a photorecep-
tor constantly emits a signal, so that it is actually the lack of a signal that indicates the absorption of a photon. That
is, unlike most ordinary sensory receptors (including invertebrate photoreceptors), which become depolarized in
response to a stimulus, vertebrate photoreceptors become hyperpolarized.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

角膜

虹膜

瞳孔

22 Chapter 2 - Fundamentals of Imaging

Figure 2.1 Cross section of
the human eyeball.

Retina

Choroid

Iris

Cornea Fovea

Retinal
blood vessels

Pupil

Lens
Aqueous humor Optic nerve
Optic disc

Ciliary muscle
Sclera

light, respectively. Colloquially these are known as red, green, and blue cones, although
in fact the peak sensitivity of the three types is closer to yellow, green, and violet, as
shown in Figure 2.2. Rods contain a protein called rhodopsin, while cones contain three
different proteins called photopsins. According to the property of univariance, when
a photopigment absorbs a photon of light, it generates the same response no matter the
wavelength of the photon. That is, although a photoreceptor is more sensitive to some
wavelengths than others and therefore is more likely to absorb some wavelengths than
others, once the photon is absorbed, all information about the wavelength is lost. It is for
this reason that different types of cones are needed for color vision.

The rods and cones are not distributed equally throughout the retina. As shown in
Figure 2.3, no photoreceptors are present in the optic disc, also known as the blind spot.
Otherwise, cones exist throughout the retina but are concentrated more heavily in the fovea, ummmiw
the central pit responsible for the greatest visual acuity. The fovea is within the macula,gg s,
lutea, the highly pigmented yellow spot near the center of the retina that absorbs harmful
ultraviolet light to protect the retina. In the fovea, the cones are tightly packed to form a
regular sampling array, with the centers of adjacent cells spaced approximately 2.5 um,
which is about the same as the spacing between pixels on a typical camera sensor. The
fovea senses only about 5° of the visual field, which is slightly more than the width of both

Figure 2.2 Relative sensitivity of the S-, M-, 1r
and L-cones of the human visual system to 0.9
different wavelengths. These functions are 08t
also known as the cone fundamentals. Based

on data from http://www.cvrl.org. 82 [

0.5F
0.5}
03f
021
0.1f

Normalized sensitivity

0 400 450 500 550 600 650 700
Wavelength A (nm)

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

视网膜中心凹

视网膜黄斑

2.1 Vision in Nature

Figure 2.3 Distribution
of cones and rods in the
retina. Based on B. A.
Wandell. Foundations of
Vision. Sunderland, Mass.,
Sinauer Associates, Inc.,
1995.

23

(V]

E 1.8 o == Cones
= D = Rods
& I

|

& 1.4 [

= |

— |

X I

> 1.0 I

5 I

a I

§ 0.6 —i Blind spot
“— |

202 !

(]

¥ . N ————

Blind spot § —60 —40 =20 0 20 40 60
Z

Angle relative to fovea (deg)

your thumb joints when held together at arm’s length. The [fO¥ea is responsible for detailed
pattern recognition, which can be demonstrated by attempting to read a book while fixating
on two fingers covering the page; while you will have a general sense from your periphery
that there are words on the page, it will be nearly impossible to recognize them. The cen-
tral portion of the fovea, known as the |[JJill. is one-fifth the size of the fovea, or 1° of
the visual field, covering approximately the width of the nail of your index finger at arm’s
length. No rods exist in the foveola, which explains why to view a faint star at night it is
better to look slightly away from it, so that light from the star falls on the rods rather than
on the cones. Except for the blind spot and foveola, rods are present throughout the retina,
reaching their highest density about 20 degrees from the center.

In the fovea, S-cones account for approximately 6% of the cones, as shown in Figure 2.4,
although like rods they are completely absent from the foveola. The increased spacing
between S-cones (compared with M- and L- cones) matches the increased blurring of
short wavelengths (compared with the blurring of longer wavelengths) due to chromatic
aberration in the lens. The ratio of the number of M- to L-cones is highly variable among
individuals, making it difficult to distinguish between the roles of these two types of cones.
It is important to note that, even though the S-cones are less numerous in the retina, they
are more sensitive to light than are L- and M-cones. As a result, it would be wrong to
conclude that short wavelengths are less important, because in fact humans are able to
distinguish between different shades of blue as well as they are between different shades
of other colors.

Figure 2.4 An actual photoreceptor mosaic, 1.25° from
the center, pseudocolored to show the different types of
cones: L (red), M (green), S (blue). From Hofer et al. [2005].

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

24 Chapter 2 - Fundamentals of Imaging

Light does not land directly on the rods or cones but instead first passes through a layer of
cells, the details of which are examined below. Such an arrangement is called an inverted
retina. While at first glance this approach appears counterintuitive, there is in fact a good
reason for this design. An inverted retina is needed so that the retinal pigment epithelium
(RPE), which is attached to the choroid, is able to replenish the damaged photoreceptors.
Since the RPE is opaque, if the retina were not inverted then the RPE would have to be in
front of the photoreceptors, which would block the light and make it impossible for us to
see at all. Moreover, in the fovea the cones are elongated, so that light falls directly on the
cones without passing through other cells in the central portion of the retina, and hence the
inverted retina does not have much effect on the detailed, central vision anyway. And even
in the periphery where the light passes through additional cells, these cells are for the most
part transparent.

Each of the two eyeballs is approximately 24 mm in diameter, and the spacing between
them (called the interpupillary distance, or IPD) is approximately 60 to 70 mm. When
a person views a point in the scene, the eyes are said to be fixated on the point, and the
horizontal angle between the axes of the eyes is known as the vergence angle. The point
of fixation projects onto the retina at the same location (that is, directly in the center of

ERER

Figure 2.5 Retinal disparity is defined as the distance between corresponding points on the two retinas, after the retinas have been
overlaid on top of one another and rotated so that their optical axes are coincident. Based on B. A. Wandell. Foundations of Vision.
Sunderland, Mass., Sinauer Associates, Inc., 1995.

Fixation
point

XR A\
X N . .
' \\Dlsparlty =X; —XR

Corresponding points

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

上皮组织

2.1 Vision in Nature 25

the fovea) in both eyes. For all other points in the scene, the light rays project onto dif-
ferent locations on each retina depending on their location in the scene. The lateral shift
between these locations is known as the disparity of the point. The locus of points in the
scene that yield zero disparity is known as the horopter, and the theoretical horopter is
the Vieth-Miiller circle, which passes through the two lens centers and the fixation point,
as shown in Figure 2.5. Because the disparity is related to the distance (or depth) to the
point, computing the disparity is a key step toward determining the distance to a point,
and hence to 3D perception. Stereo vision involves establishing correspondence between
grayscale patterns in the two images to determine the depth to each point in the scene.
The resulting fused image is known as a Cyclopean image (after the famous one-eyed
mythical Greek monster), because the fused image almost seems to result from an addi-
tional sensor in the center of the head. Only points within a small area, known as Panum’s
fusional area," around the fixation point are fused into the Cyclopean image.* Outside
this area the brain retains both images, a situation known as diplopia (“double vision”).
To experience these phenomena, hold your finger in front of your face while focusing on
the finger, and you will see one 3D finger that is fused from both images (the Cyclopean
image); then without moving your finger focus on the scene in the distance, and you will
see two fingers (diplopia).

Because of the fovea, your eyes do not look at a scene by staring at one spot for a
long period of time. Instead, they jump erratically from one spot to another to allow high-
resolution imaging of various parts of the scene in order to build a full 3D mental picture.
For example, as you read this page, your eyes are not fixating on a single point, nor are
they moving with a continuous motion. Rather they jump from one word to another, giving
your brain enough time to read the word (and surrounding text) and move on. These rapid
movements are called saccades,* and they are the fastest movements made by the human
body. When a person looks at a photograph, for example, these saccades cause the person’s
eye to jump from one location to another; the path of these movements is known as a scan
path, an example of which is shown in Figure 2.6.

The Visual Pathway

Once light has been captured by the photoreceptors (rods and cones), the information is
processed and transmitted via neurons, or nerve cells. A neuron contains many dendrites ..
(inputs) and one axon, (output). The outputs from many neurons are tied to the inputs of
other neurons via connections known as synapses to form a neural network. As shown in

ESH

Figure 2.6 A scan path records the path traversed
by a person when viewing a photograph, shown

is a scan path of a photograph, showing that the
viewer focused primarily upon the facial features
and objects of interest, in order to build a complete
mental model.

" Section 13.2.1 (p. 625).
* The Cyclopean image, along with Cyclopean coordinates, is covered in Chapter 13.
¥ Pronounced seh-KAHD.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

树突

轴突

突触

26

Chapter 2 - Fundamentals of Imaging

Figure 2.7, the photoreceptors connect directly to the inputs of either rod or cone bipolar
cells, whose outputs then connect to the inputs of the ganglion cells. All visual signals
must pass through these cells, since the outputs of the ganglion cells actually form the optic
nerve, which exits the retina at the optic disc. An indirect pathway is also present due to the
horizontal cells, which are connected to the receptors, as well as amacrine cells, which
are connected to the bipolar and ganglion cells — neither has an identifiable axon.
Human vision is foveated, with the rods and surrounding cones contributing to the
ambient (peripheral) component of vision that senses motion and continuity, while the
cones in the fovea contribute to the focal (foveal) component of vision used to recognize
detailed patterns such as text or faces. The ratio of rods to ganglion cells is approximately
100:1 (100 to 1), meaning that the information from the rods is greatly compressed and

aggregated. For this reason, [SUSIICIONDIOVIUCICO0USPAtEIECHE but instead trade iGN
_. On the other hand, the ratio of cones to ganglion

cells, in the fovea at least, is 1:3, meaning that information from one cell maps to multiple
ganglion cells. It is for this reason that .

The optic nerve (composed of the axons of the ganglion cells) causes the 5-degree-wide
blind spot at the optic disc from 15 to 20 degrees from the center, on the side of the nose.
At the optic chiasm the optic nerve splits: One half of the bundle goes to the left, while the

Figure 2.7 Aftera
photoreceptor absorbs a
photon, the information is
passed through several layers
of cells before exiting via the
optic nerve. Surprisingly, the
light passes through these
same layers of cells before

landing on the photoreceptors.

:| Optic nerve fiber
:I Ganglion cells
1 Inner plexiform layer

Amacrine cells

Bipolar cells

Horizontal cells

_] Outer plexiform layer

Receptor nuclei

Rods and cones

Pigmented epithelium

£
2
5
£
=
=
=
=

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

2.1 Vision in Nature

27

other half goes right, both terminating in the lateral geniculate nucleus (LGN). A com-
mon myth is that the left half of your brain processes data from your right eye, while the
right half processes data from your left eye. In reality, the left half of your brain processes
data from the right half of your visual field (containing information from the left half of
both retinas), while the right half of your brain processes data from the left half of your
visual field (containing information from the right half of both retinas). This is necessary
for binocular stereo processing, so that the brain has access to information from both eyes
in order to establish correspondence for disparity computation. Nevertheless, processing
in the LGN is primarily monocular, with binocular processing reserved for the next step.
Information passes from the LGN to the visual cortex, which is at the rear of the brain.
The visual cortex is composed of several different stages, called V1 through V5. Area V1
is also known as the primary visual cortex, or striate cortex, while V5 is known as MT
(middle temporal). Early cells in V1 are essentially locally tuned Gabor filters™ that extract
spatiotemporal features such as spatial frequency, orientation, temporal frequency, and
motion direction. Beyond this, the actual inner workings of the visual cortex are largely a
mystery. The currently accepted theory is that there are two streams of processing, namely,
the dorsal stream, whose purpose is to analyze motion, locations of objects, and tracking,
and the ventral stream, which is responsible for object recognition and representation.
These streams are known as the “where pathway” and the “what pathway,” respectively.

Human Visual Perception

The human visual system can respond to levels of light ranging an astounding 14 orders of
magnitude.? The eye, however, cannot process this entire dynamic range simultaneously but
instead adapts using the different types of photoreceptors and by adjusting the size of the
pupil. As shown in Figure 2.8, at low light levels the rods dominate, and the resulting mono-
chromatic vision in these conditions is known as scotopic vision, from the Greek word for
“darkness.” At normal to higher light levels, the rods become saturated so that their responses
are not meaningful, and the cones take over. The resulting color vision is known as photopic
vision, from the Greek word for “light.” In between, there is a small range when both rods and
cones respond, known as mesopic vision. It may be helpful to think of these three types of
vision as being applicable, respectively, to starlight, sunlight, and moonlight, but keep in mind
that photopic vision also includes most normal viewing conditions, such as indoor lighting.

Figure 2.8 Scotopic,
mesopic, and photopic
vision at different light
levels. While the human
visual system is capable
of sensing light in
approximately a range of
10" overall (from 10~ ©
to 108 cd/m?), light can be
sensed in a range of 10,
at any particular state of
adaptation.

Starlight ~ Moonlight lliggggfg Sunlight
10°° 107* 102 10 102 10" 10° 108 L‘ggg;;g?;e
[N N I I N [(N NN N NN BN B
T T 1 1 T T 1T 1T T T T T 71T 1
T
] I
Darkness Scotopic Mesopic Photopic Retinal
vision vision vision damage

—

Visual perception
at particular state of adaptation

" Gabor filters are covered in Section 6.6.7 (p. 321).

*To get a sense of the enormity of this range, imagine a device that could measure distance not only in kilometers
but also in nanometers!

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

28

Chapter 2 - Fundamentals of Imaging

The luminous efficiency function (LEF) captures the relative sensitivity of the visual
system to different wavelengths. As shown in Figure 2.9, the photopic LEF corresponds to
normal light levels where the cones dominate due to the saturation of the rods, while the sco-
topic LEF corresponds to low light levels where the rods dominate due to the lack of sensitiv-
ity of the cones. The difference in peak wavelength is called the Purkinje effect and explains
why objects appear to have a more bluish tint as the light dims. Not surprisingly, the scotopic
LEF closely matches the rod spectral sensitivity function (SSF)," and the photopic LEF can
be well approximated as a weighted combination of the cone fundamentals of Figure 2.2.

At a particular state of adaptation, human vision can discern luminances across a range
of about 1000 to 1, depending on conditions. A good monitor can reproduce luminances in
a range of about 500 to 1, while a range of only 100 to 1 is possible from the reflectance
of paper. If two different shades of gray are placed adjacent to one another, a person can
discern the difference between them if their luminances differ by approximately at least
1%, which is called the just-noticeable difference (JND); otherwise, their brightness is
perceived to be the same. While this number is a helpful rule of thumb, it is important to
keep in mind that it is only a rough approximation to the actual behavior, which is quite
complex depending upon spatial frequency, temporal frequency, and overall light intensity.

The visual receptive field of a neuron is the retinal area in which light influences the
neuron’s response. The receptive fields of neurons in the visual cortex are optimized for
extracting efficient information using sparse coding constraints, where the learned recep-
tive fields arise from exposure to natural images. These neurons, like Gabor filters, perform
local spatial frequency analysis to form edge and line detectors that respond to luminance
information in the proper orientation and polarity. Unlike photoreceptors, which respond to
absolute levels of light intensity, these later neurons produce outputs that are independent of
the overall level because they respond to contrast (or change in light), in a process known
as lateral inhibition. Similarly, the retinal ganglion cells exhibit center-surround receptive
fields, in the shape of the Laplacian of Gaussian.*

2.1.3 Animal Vision

In addition to the human visual system, nature provides us with an astonishing array of
diverse vision systems. Studying such systems provides us with a fresh dose of humility
when we learn how effortless it is for a simple low-level animal with very little processing

Figure 2.9 Photopic and scotopic
luminous efficiency functions
(LEFs). Based on data from
http://www.cvrl.org.

Normalized efficiency

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

Scotopic LEF
== Photopic LEF

O Il Il Il 1
400 450 500 550 600 650 700

Wavelength A (nm)

" SSFs are covered in Section 9.2.1 (p. 405).
* The Laplacian of Gaussian is covered in detail in Section 5.4.1 (p. 242).

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

2.1 Vision in Nature

Figure 2.10 The common
housefly has the fastest
visual response of any

animal, leading to extreme

maneuverability in flight.
Tiny flying robots (such
as this one from Centeye)
have been inspired to
mimic the housefly’s
navigation ability based
on optic flow.

29

mrfiza / Shutterstock.com, Courtesy of Centeye

power to robustly extract information from an image when we find it difficult to do the same
even with powerful latest-generation computers. Studying such systems can also provide us
with confidence that the particular problem that we are addressing can, in fact, be solved,
if an existing animal demonstrates that particular capability. As a result, such systems can
provide inspiration for designing artificial machines. This imitation of natural systems,
known as biomimicry (or biomimetics), is an important approach to discovering novel
solutions in both software and hardware.

One example is the common housefly, which—Ilike other insects—has compound eyes, as
shown in Figure 2.10. In a compound eye, the photoreceptors are arranged in small groups
called ommatidia. Each ommatidium views the world from a different direction, yielding a
mosaic of images providing a fairly low-resolution representation of the scene. Even so, the fly
has the fastest visual response in the animal kingdom, which is achieved by the photoreceptors
physically contracting a tiny amount in response to light. Such mechanical response, in contrast
to the chemical response of our own visual system, is extremely fast, and it is one of the reasons
that the fly has the most maneuverable flight system. Flies maneuver by detecting optic flow,
which is the relative motion of the surrounding environment projected onto the eye, thus inspir-
ing flying robotic systems that weigh just a few grams and can avoid obstacles using optic flow
algorithms embedded on a tiny vision chip. Note that the ability of a fly to land effortlessly on
a seemingly untextured surface proves that texture is always present in the world.

If the housefly wins the award for the fastest visual response, the hawk (and other raptors)
wins for the highest visual acuity. A hawk, shown in Figure 2.11, can see a rabbit from a
mile away, which is about 8 times better than human vision. With today’s aerial imagery,
satellite images, and megapixel video cameras, similarly impressive resolutions are possible.
Tigers and other cats also have excellent eyesight. Like most predators, their eyes are in

Figure 2.11 Raptors,
such as this hawk, have
the highest visual acuity
of any animal. Megapixel
video cameras with
similar ability are now
commercially available.

Ronnie Howard / Shutterstock.com, ymgerman / Shutterstock.com

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

30

Figure 2.12
Predators such

as this tiger have
two eyes facing
forward, so that

it can estimate
the distance to its
intended prey via
stereo vision. Prey
such as this rabbit
have eyes on the
sides of the head,
providing a much
wider field of view
to detect danger.

Chapter 2 - Fundamentals of Imaging

Dariush M / Shutterstock.com, Eric Isselee / Shutterstock.com

front of their head, as shown in Figure 2.12; this overlap in the visual field of the two eyes
enables the predator to estimate the distance to its target by means of stereo vision. The
defenseless rabbit, on the other hand, has two eyes on the sides of its head, with very little
overlap in their fields of view. While this makes the rabbit unable to perceive depth from
stereo vision, it gives the creature a much wider field of view overall, thus enabling it to
perceive when it is being threatened by a predator.

Sometimes the best way to extract useful information from light is to filter special wave-
lengths. Pit vipers, for example, have a heat-sensing pit organ between each eye and nostril
to detect infrared light, as shown in Figure 2.13. Modern forward-looking infrared (FLIR)
cameras also detect heat, making it much easier to find people or machinery in all weather
conditions. At the other end of the spectrum, bees use ultraviolet filters to help them see
their target when pollinating flowers, as shown in Figure 2.14. Since many flowers have
low reflectance of ultraviolet light near the center, these filters simplify the detection of the
flower center, providing a convenient natural landing pattern for the creature. Similarly,
most birds can see four different color bands, similar to modern multispectral imaging
equipment used for applications ranging from astronomy to medicine.

The mantis shrimp, shown in Figure 2.15, has arguably the most sophisticated eye in
the animal kingdom. It can see 12 color dimensions (roughly half of the bands for visible
light and half for ultraviolet). It has 4 filters to tune the pigments, it sees several planes of
polarized light, and it can distinguish between left and right circularly polarized light. It

Figure 2.13 The loreal pit
between the eye and nostril
on a pit viper leads to an
organ that detects heat via
infrared light. Forward-looking
infrared (FLIR) cameras detect
warm bodies by examining
the infrared portion of the
spectrum, as seen in this
thermal image.

Susan Schmitz / Shutterstock.com, Neeraj Kanhere

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

2.1 Vision in Nature

Figure 2.14 Bees have
ultraviolet filters enabling
them to detect the flower
center, which is helpful for
pollinization. The middle
image shows the flower
(left) as it appears to a bee.
Ultraviolet cameras are also
used to detect heavenly

bodies, such as the sun (right).

31

© Bjorn Rarslett/NN, NASA/SDO

can even convert linearly polarized light into circularly polarized light. The most surprising
aspect of the shrimp is that it lives in the ocean at depths of 40 meters, where light is only
a dim, filtered blue. The purpose of this fancy vision system, then, is not to detect the sur-
roundings so much as it is for communication: The shrimp communicate with each other by
fluorescing their spots. Similarly, cephalopods such as squid, octopus, and cuttlefish have
tiny hairlike membranes (called microvilli) in their photoreceptor cells that are oriented per-
pendicular to one another, enabling the animals to detect differences in polarized light, and
they are able to produce polarized light patterns on their skin as a means of communication.

One of the most unique eyes is that of the lobster, shown in Figure 2.16. The eye of the
lobster (as well as other long-bodied decapods) focuses not by refraction but by reflection. That
is, instead of using a lens, light is focused using a honeycomb-like arrangement of mirror-lined
tubes. These tiny facets are perfectly square and from a distance look like tiny graph paper.
These square tubes are on a spherical surface, with flat shiny mirrors on the sides of the tubes.
This precise geometrical arrangement allows the eye to focus parallel light rays from any direc-
tion. This principle is the inspiration behind a new generation of astronomical telescope that
focuses X-rays using reflection, since no practical lens can focus such high-frequency waves.

The eyes of extinct trilobites have the amazing property that their calcite lenses are
shaped almost exactly as needed to minimize lens aberration, as shown in Figure 2.17.
In the 17" century, two different lens designs were developed by Descartes’

Figure 2.15 The mantis shrimp has
arguably the most sophisticated
eye of all, which can detect 11
different color bands and has
sophisticated machinery to deal

with polarized light.

Ethan Daniels / Shutterstock.com

"René Descartes (DAY-cart) (1596-1650) was not only an influential figure in mathematics but also the father

of modern philosophy, credited with the well-known saying, “I think therefore I am.” The Cartesian coordinate
system is named after him.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

32 Chapter 2 - Fundamentals of Imaging

Figure 2.16 The lobster

eye focuses by reflection,

not refraction, and is the
inspiration for a new
generation of telescope. Based
on Denton, M.J,, Nature’s
Destiny: How the Laws of
Biology Reveal Purpose in the
Universe, ch. 15, The Free Press,
New York/London, 1998 Retina

Reflector
units

Africa Studio / Shutterstock.com

and Huygens® according to optical principles to minimize lens aberration. As it turns out,
the lenses of trilobites form an internal doublet structure that follows one or the other of
these designs, depending upon the type of trilobite.

Other creatures that have unusual eyes are shown in Figure 2.18. The brittle star secretes
calcite crystals that form microlenses, so its whole body is composed of little eyes. Simi-
larly, the scallop contains an array of eyes around its opening. The nautilus eye is unique
in that it has no lens at all and therefore cannot focus light. The jumping spider has eight
eyes in total: The two largest eyes in the front and center have four retinas stacked in layers,
allowing the spider to judge distance by a technique called depth from defocus; the smaller
eyes are called ocelli and feed into a distinct visual pathway. Other creatures, such as certain
lizards and frogs, have an extra third eye called a parietal eye that contains a small lens and
retina between their primary two eyes.

2.2 Image Formation

‘We now consider the process by which an image is formed on the surface of a sensor, focus-
ing our attention primarily upon the case of standard optical cameras capturing visible light;
alternative imaging systems are discussed in a later section.

Figure 2.17 The doublet
structure of the trilobite
lens follows the shape
necessary to minimize lens
aberration. Depending
upon the type of trilobite,
this shape is essentially
identical to those deduced
by Descartes and Huygens
using the geometrical
principles of optics. Based
on E. N.K. Clarkson and

R. Levi-Setti. Trilobite eyes
and the optics of Descartes
and Huygens. Nature 254:
663-667, 1975.

Crozonaspis ~ Descartes’ lens
trilobite

Dalmanitina Huygens’ lens
trilobite

LorraineHudgins / Shutterstock.com

" Christiaan Huygens (HIGH-guns) (1629-1695) was an influential Dutch mathematician and scientist who dis-
covered Saturn’s rings as well as its first moon.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

2.2 Image Formation

Figure 2.18 Top:The
entire body of the brittle
star (left) is covered with
little eyes (middle). The
scallop (right) has eyes
all around its opening.
Bortom: The nautilus eye
(left) has no lens and
therefore cannot produce
a focused image. The
jumping spider (middle)
has extra little eyes called
ocelli. Creatures such as
this frog (right) contain a
third light-sensitive spot
(the tiny blue dot) called
a parietal eye between
the two main eyes.

33

2.2.1 Light and the Electromagnetic Spectrum

From basic physics you may recall that light is an electromagnetic wave traveling through
space. The wavelength A (measured in meters) of such a wave is the distance between
successive peaks in the sinusoid, while the frequency v (measured in hertz) is inversely
related to the wavelength. That is, A times v is the speed of light in the medium. Visible
light ranges in wavelength from about 380 nm to about 720 nm, or equivalently, 0.38 wm
to 0.72 wm. A nanometer is one billionth of a meter, or 1072 = .000000001 meters, so the
wavelength of visible light is about a hundred times smaller than the diameter of a human
hair, as shown in Figure 2.19. These short wavelengths explain why vision systems are able
to achieve such accurate measurements of the world.

Figure 2.19 The
wavelength of visible
light is about 1/100"" the
diameter of a human hair.

Kenneth M. Highfill / Science Source

" Technically the phase velocity.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

34

Figure 2.20 The
electromagnetic
spectrum consists of
gamma rays and X-rays
at one end, and radio
waves and microwaves
at the other end. The
visible spectrum is
between about 380
and 720 nm.

Chapter 2 - Fundamentals of Imaging

WWVWWNNNNNNNNNN NN

Infrared

Radio waves
Gamma rays

Radar TV FM AM
| | |
100 m

Itra-
X-Tays lgiole ¢
0.0001 nm 0.01 nm 10 nm__ \1\000 nm 0.000lm 00lm 1Im
=" Visible ~“~~__
- light ~~<

- Visible spectrum ~~<o

/
Peter Hermes Furian / Shutterstock.com

500 nm 600 nm

The visible spectrum is a tiny part of the entire electromagnetic spectrum, depicted in
Figure 2.20. Since the color violet has the highest frequency (shortest wavelength) among
visible light, waves with slightly higher frequency than that of violet are called “beyond vio-
let,” or ultraviolet (UV). Beyond ultraviolet light are X-rays and gamma rays. At moderate
to high frequencies, an electromagnetic wave can alternatively be viewed as a stream of par-
ticles called photons, where a photon is a single quantum of light containing an amount of
energy that is proportional to the frequency. This is known as the theory of wave-particle
duality. The amount of energy in a photon is given by 4 times v, where the proportionality
factor i = 6.626 X 1073* watts seconds squared (W - s?) is Planck’s constant.” The fact
that energy increases with frequency means that a high-frequency photon contains much
more energy than a visible light photon, which explains why X-rays and gamma rays are
so dangerous.

On the other end of the visible spectrum, light whose frequency is slightly lower (wave-
length slightly longer) than that of red is known as being “below red,” or infrared (IR).
Roughly speaking, three types of infrared light can be distinguished. Near infrared (NIR)
light consists of wavelengths only slightly longer than that of visible light. Such light is
prevalent in sunlight as well as indoor light sources, motivating camera manufacturers to
insert filters on the inside of consumer cameras to reduce the influence of these wavelengths.
At the same time, night vision is made possible by shining invisible near infrared light on
the scene and removing the infrared filter from the camera to increase its sensitivity to this
range of wavelengths, even when the scene appears to the unaided human eye to be dark.
Mid infrared (MIR) light, also known as thermal infrared, has much longer wavelengths
than visible light. Thermal infrared cameras do not require any artificial illumination but
instead sense the electromagnetic radiation emitted by objects in the scene. Such cameras
are typically expensive due to their need to cool the electronics to avoid confusing these
thermal emissions with those of the device itself. Far infrared (FIR) light is used primar-
ily in astronomical applications. Beyond infrared, the electromagnetic spectrum contains
microwaves (used in radar), and radio waves.

2.2.2 Plenoptic Function

Whenever light is present in a scene, the light rays bounce around the environment in a
complicated manner as they repeatedly reflect off the surfaces in the scene. These rays carry
all the information necessary to form an image of the scene at any point in space. Imagine,

" Max Planck (1858-1947) revolutionized science with his proposal of quantum theory.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

2.2 Image Formation

35

for example, standing in a well-lit room full of various objects and looking at an empty
area of one of the walls. At each point on the wall, rays of light that have interacted with
surface points throughout the scene impinge the wall, so that there is enough information
in that bundle of rays to produce a sharp, well-focused image of the room. In fact, there is
enough information to produce many sharp, well-focused images of the room, each from a
different point of view. However, the reason you will not see an image on the wall is because
what you are looking at is the sum of all those images. Or, stated another way, an image is
displayed on the wall, but it is so extremely defocused that it is unrecognizable.

The many bundles of light rays in the room are modeled by the plenoptic function.
The plenoptic function (the prefix plen- comes from the Greek word meaning “complete”)
specifies the radiance along all light rays in a region of space, that is, along all light rays
passing all locations (x, y, z) in all directions (o, d)), where 6 and ¢ are two angles that
uniquely specify the direction of a ray in 3D space. In other words, the plenoptic function
models all images of the scene that could be taken if a camera were placed at any possible
viewing position and any viewing angle. The plenoptic function is typically considered to
be five-dimensional (5D) but could be extended by including other parameters, such as time,
wavelength, polarization, or instantaneous phase, if desired.

In an area of free space, the values in the 5D plenoptic function are not independent of
one another. Radiance is a measure of the energy along a ray of light, and radiance is defined
so that its value does not change along a ray traveling through free space. As a result, the
plenoptic function is equal if evaluated at any two location-directions (x;, y;, 2y, 6, ¢)
and (x5, 5, 22, 0, ¢) such that the ray along the direction (6, ¢) passes through the two
points (x;, ¥y, z;) and (x,, y2, z,) unimpeded. This observation motivates the definition
of the light field, which is a 4D version of the plenoptic function in free space. The most
common parameterization of the light field, called the light slab representation, uses two
points (x;, y;) and (x,, y,), each on a different parallel plane, which can be thought of as
the collection of perspective images of one plane from a point on the other plane, as shown
in Figure 2.21.

2.2.3 Pinhole Camera

To form a recognizable image, the light rays must be constrained somehow. One way to
do this is to construct an empty, opaque box that is so tight that no light can enter the box.
Then, a small hole the size of a pin is pierced into one side of the box,which allows light
to enter the box only through the hole. The hole is called a pinhole, and the camera is
therefore called a pinhole camera. A pinhole camera will cause a faint image to be pro-
jected onto the inner wall of the box opposite the pinhole, as shown in Figure 2.22. The
image, however, is trapped inside the box. To view the image, one must either replace the

Figure 2.21 The light field is a
4-dimensional function of the

radiance over position and direction.
Shown is the light slab representation
of the light field, in which each ray —
of light passes through two parallel

planes.

(1, y1)

L (x1,y1, %2, y2)

" The term radiance is precisely defined later in the chapter, but it basically refers to the amount of energy in a
light ray.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

36

Figure 2.22 Ina pinhole
camera, light rays pass
through the tiny aperture
and form an upside-down
image on the opposite wall.
A camera obscura was an
early form of pinhole camera
in which light rays pass
through the small aperture,
reflect off the mirror, and
form an image on the top
horizontal surface near the
rear of the enclosed box.

Subject Box Screen

Chapter 2 - Fundamentals of Imaging

Camera obscura

Light rays

Hole in the box
Upside down image

Designua / Shutterstock.com, 19th Century Dictionary lllustration / Public Domain

side of the box with a translucent material and drape a dark cloth over the viewer (an early
primitive type of camera called the camera obscura, which literally means, “dark room”),
or the inner wall must be lined with a photosensitive material in order to capture the image
for viewing at a later time. Either way, the pinhole camera can be thought of as a way of
sampling the plenoptic function at the 3D location of the pinhole, allowing the light rays
at all angles 6 and ¢ to uniquely determine the image formed, subject only to the field of
view of the camera.

Geometrically, an ideal pinhole camera consists of a point and (typically) a plane.
The point, known as the focal point, is the pinhole through which all rays of light pass.
The plane, known as the image plane, is the sensor surface on which the image is
formed. The line through the focal point perpendicular to the image plane is known as
the optical axis, and the distance from the focal point to the image plane along this line
is the focal length.

A pinhole camera forms images via perspective projection: Light rays from the source
reflect off the surface of an object in the scene, travel through the focal point (also called
the center of projection), then land on the image plane. Consider a right-hand coordinate
system so that its origin is the focal point, the positive z axis points toward the world along
the optical axis, and the y axis points vertically, parallel to the columns of the image, as
shown in Figure 2.23. If we let (x,,, y,» Z,,) be the 3D coordinates of the world point, and
(x, y) the 2D coordinates of its projection onto the image, it is easy to see from the figure
that the two triangles in the y-z plane are similar because their angles are equivalent, lead-
ing us to conclude from what we know about similar triangles that the ratios of the lengths
of their sides are equal: y/f = ,,/z,,, where fis the focal length and z,, is the depth of the
point (i.e., distance to the point from the focal point). By symmetry, in the x-z plane we
have x/f = x,,/z,,. Rearranging yields the coordinates of the point where the imaging ray
lands on the image plane:

‘xW
x=f— (2.1)

Zyw

2w
y —fZW (2.2)

Although in reality the image is upside down, these equations exactly describe the right-
side up image that would be created on a virtual image plane at a distance of fin front of
the focal point, rather than at a distance of f behind it. This mathematical trick not only

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

2.2 Image Formation

Figure 2.23 Perspective
projection caused by a pinhole
camera, showing the focal
point (pinhole), image plane,
focal length, and optical axis.
The light rays emitted by

the light source reflect off

the surface in the world and
pass through the aperture to
form an upside-down image
on the image plane. This is
mathematically equivalent

to producing a rightside-up
image on the virtual image
plane in front of the focal point

37

Focal Virtual
point image

Image
Optical axis

Object

Focal
point

Image
plane Virtual

image plane

v}

w

simplifies the equations by obviating any need for a minus sign but also makes it easier to
visualize the imaging process by removing any need to imagine the image upside down.
Notice that perspective projection involves a loss of dimension in going from 3D to 2D:
Since any point in space along the light ray will project to the same point on the image
plane, it is impossible to recover the third dimension (distance from the camera) without
additional information.

Orthographic projection occurs when [IR,
In that case the nonlinear equations above become linear: x = x,,, y = y,,. Orthographic pro-
jection is an approximation of perspective projection in the unlikely scenario that the scene
being viewed is far from the camera, close to the optical axis, and no bigger than the cam-
era’s sensor in size. A more realistic approximation is scaled orthographic projection,
which is orthographic projection with a single uniform scaling factor. It is easy to see that
if the objects in the scene vary little in depth relative to their distance from the camera, then
the distance z,, to all points in the scene can be approximated with a constant z,, leading to

X
x=f—"=ax, (2.3)
Zw

y= le ~ayy, (2.4)
where @ = f/z is the scaling factor. Like orthographic projection, scaled orthographic pro-
jection is linear. Scaled orthographic projection of a scene is mathematically equivalent to
the orthographic projection of the scene onto a plane parallel to the image plane, followed
by perspective projection of all the points in that plane, where this last step is simply a
uniform scaling, as shown in Figure 2.24. Scaled orthographic projection, also known as
weak perspective projection,’ is a reasonable approximation when either the depth
varies little over the scene or the scene lies close to the optical axis. These two sufficient

" Some authors distinguish weak perspective from scaled orthographic by allowing nonuniform scaling in the former.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

38

Figure 2.24 Perspective,
weak perspective (scaled
orthographic), and
paraperspective projection
models. Based on V. S. Nalwa.
A Guided Tour of Computer
Vision. Reading, MA: Addison-
Wesley, 1993; S. E. Palmer.
Vision Science: Photons to
Phenomenology. Cambridge,
Mass.: The MIT Press, 1999.

Chapter 2 - Fundamentals of Imaging

Perspective Optical
axis
Focal |,
Scaled orthographic P om:[é//;%
(Weak perspective) o Optical
Image Object axis
Paraperspective > Optical
axis

Object

conditions are interrelated: An object near the optical axis may vary more in depth, while
an object far from the optical axis must vary less in depth to achieve the same amount of
error in approximation due to the simplified imaging model. Note that a long focal length
restricts the field of view, causing the image to be formed by light rays that are nearly
parallel to one another and hence ensuring that all visible objects are close to the optical
axis. For this reason scaled orthographic projection is a good approximation when view-
ing distant objects with a zoom lens, as long as the camera remains at a roughly constant
distance from the scene over time.

Affine projection is a generalization of scaled orthographic projection in which the
light rays remain parallel to each other but are not required to be parallel to the optical axis.
A special case of affine projection is paraperspective projection, in which light rays are
projected in parallel along the direction from the focal point to the centroid of the object
of interest onto a plane parallel to the image plane. The points on this plane then undergo
perspective projection, which is mathematically equivalent to uniform scaling since the
planes are parallel.

2.2.4 Camera with Lens

The ideal pinhole model remains important because even real cameras with lenses are
well modeled mathematically as pinhole cameras, once the distortions due to the lens are
accounted for. However, pinhole cameras themselves are not very practical because the

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

2.2 Image Formation

39

tiny hole does not let in much light. Although it is possible to build a real pinhole camera
that works, such a camera must be allowed to remain unmoved for several minutes in
front of a perfectly static scene in order to gather enough photons for a quality image to
be formed.

To build a more practical imaging device, the pinhole is replaced with a lens. A simplified
lens consists of two spherical surfaces joined so that the centers of the spheres are collinear
with the centers of the surfaces. Such a spherical lens has three basic parameters: the radii
ry and r, of the two surfaces, and the refractive index n." We make the common assumption
known as Gaussian optics in which all light rays are paraxial, that is, they form small
angles with respect to the optical axis. For such rays, assuming that the thickness of the lens
is negligible, the relationship between the lens parameters and the focal length fis given by
the lens maker’s formula, also known as the thin lens formula:

1:(n_1)<1_1> (2.5)

which follows the Cartesian sign convention in which light travels from left to right, and
the sign of ry or r, is positive if the surface makes the light rays more convergent, or nega-
tive if it makes them more divergent. A surface that bulges out is called convex, whereas a
surface that curves inward is concave, so ry is positive if the left surface is convex, whereas
1 is positive if the right surface is concave, as shown in Figure 2.25. The Gaussian lens
formula specifies the distance from the lens to the image s; for an object at a distance of
s, from the lens:

1 1 1
—=—+4+ — (2.6)
f So N
Figure 2.25 Thin IenS, thick Focal Optical
lens, and double Gauss lens. point center Lens
Object
Image
Optical axis i
I I
| e s l
| S | So !
Thin lens Thick lens

Double Gauss lens

"If the surrounding medium is not air (which has a refractive index very close to 1), then n is the ratio of the
refractive index of the material and the refractive index of the surrounding medium.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

40

Chapter 2 - Fundamentals of Imaging

If the thickness 7 of the lens is not negligible, then we have a thick lens, in which the
relationship between the lens parameters and the focal length are given by the thick lens

formula:
1=(n—1)(1—1+”_1.7> (2.7)

r 15} n ryrap

The Gaussian (paraxial) optical behavior of a thick lens is specified by three pairs of
cardinal points along the optical axis. Of these, the front and rear focal points are the
same as the focal points on either side of a thin lens. The front and rear nodal points are
such that a light ray aimed at one of them will emerge from the other one at the same angle
as the incoming ray. Similarly, a ray of light crossing the front principal plane at a certain
distance from the optical axis appears to emerge from the rear principal plane at the same
distance; these principal planes are defined as passing through the principal points and
perpendicular to the optical axis. If the surrounding medium on both sides is the same, then
each nodal point coincides with the nearest principal point. If, in addition, the lens is thin,
the front and rear nodal/principal points coincide at the center of the lens. The principal
point of a thin lens is therefore the center of the lens. More commonly, the term principal
point refers to the intersection of the line passing through the center of the lens and the
image plane.

Real lenses are neither thick nor thin but rather compound, in which several simple lens
elements are combined to improve performance. One of the most successful and common
compound lenses is the double Gauss lens, which consists of six simple lenses arranged
in a nearly symmetric relationship. The optical power of a lens is the inverse of the focal
length, measured in diopters (inverse meters). To a good approximation, the overall opti-
cal power of a compound lens system is simply the addition of the optical power of the
individual lens elements.

The aperture of a camera is the opening through which light rays enter the lens on their
way to the sensor. The ratio, f/d, of the focal length f to the diameter d of the aperture is a
dimensionless quantity called the f-number. Since the area of a circular aperture is propor-
tional to the square of the diameter, if the diameter is decreased by \/2, the amount of light
is reduced by a factor of 2. The aperture setting is measured in f-stops, where a stop is a
power of 2. That is, reducing the aperture by one stop means reducing the amount of light
by a factor of 2, while increasing the aperture by one stop means increasing the amount of
light by a factor of 2. The sensor size and focal length determine the angular field of view
(FOV), which is given by 26, where tan § = d/2f. The aperture determines the depth of
field (DOF), which is the range of distances in the scene that form acceptably sharp images.
That is, at distances other than the focused distance, a point will project onto the image not
as a point but rather as a blur spot, with the amount of lens blur defined by

d —
o= =5l (2.8)
52

where s; is the distance to the plane that is in focus, s, is the distance to the point, and c is
the diameter of the circle of confusion. While this formula makes the convenient assump-
tion that a point is imaged as a circle, more generally the impulse response, or point
spread function (PSF), specifies the shape that a point will take on the image plane. The
Fourier transform of the PSF is the optical transfer function (OTF), whose magnitude is
the modulation transfer function (MTF). Photographers refer to the aesthetic quality of
the blur as the bokeh."

" Pronounced BOH-keh.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

2.2 Image Formation

Figure 2.26 An undistorted
image, barrel distortion,
and pincushion distortion.

41

T
-

Undistorted Barrel distortion Pincushion distortion

Lenses exhibit various types of aberrations, which include any deviation of the perfor-
mance of a lens from ideal. For example, distortion arises from the fact that the light rays do
not necessarily follow straight lines when passing through the lens. The two most common
types of distortion are barrel distortion and pincushion distortion, as shown in Figure 2.26.
Distortion is more noticeable for lenses with small focal lengths (called fisheye lenses),
which are designed to capture a wide field of view. Camera calibration usually includes
nonlinear terms to account for such distortion. This bending of the light is often different for
different wavelengths due to material dispersion, leading to chromatic aberration. Chro-
matic aberration is usually reduced by adjoining multiple lenses in an achromatic doublet, or
by postprocessing the image inside the camera. When non-paraxial light rays enter the lens
from the side, they reflect and scatter inside the lens, producing lens flare, which manifests
itself as bright spots on the image due to a light source (such as the sun) that is outside the
field of view.

Another aberration is known as vignetting® which is the darkening of an image away
from the center. There are several types of vignetting, illustrated in Figure 2.27. Optical
vignetting is caused by the fact that off-axis rays may not travel through all the lens ele-
ments in a complex lens. Mechanical vignetting is caused by obstruction of the light rays by
external camera elements (such as the lens hood). Pixel vignetting is caused by the angular
sensitivity of digital sensors. Natural vignetting is caused by the dependence of light inten-
sity on the angle 6 that the incoming ray makes with the optical axis. For any given pixel
the irradiance® E falling on the sensor after passing through a simple lens is proportional
to the radiance L:

(2.9)

Figure 2.27 Optical
vignetting.

" Pronounced vin-YET-ing.

*Irradiance, the radiant power landing on a surface, is discussed in more detail later.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

42

Chapter 2 - Fundamentals of Imaging

where the proportionality constant is related not only to the f-number f/d, but also to the
angle 0. If we let Ey = L7 ({)? be the on-axis (6 = 0) irradiance on the sensor for a given
scene radiance L, and let E be the irradiance at a different point on the sensor, then their
relationship is given by

E
— = cos*6 (2.10)
E

0
Since the light intensity decreases according to the cosine of the angle raised to the fourth
power, this is known as the cosine fourth law. In practice this law is not important since
most modern cameras are designed to compensate for this effect using, for example, a
graduated neutral density filter that reduces the amount of light in the center of the lens to
balance the effects of the law. The effects of most types of vignetting are negligible when
using apertures smaller than an f-number of 8, represented as f/8.

2.2.5 A Simplified Imaging Model

Despite the intricate details of electromagnetic waves, radiometry, and lenses, a simple imag-
ing model that provides a reasonable approximation for many tasks specifies the irradiance
E on the image sensor as the product of a lighting function A and a reflectance function R:

E(x,y,A) = A(x,y, \)R(x,y,A) (2.11)

where E(x, y, A) is the irradiance at a point (x, y) on the sensor at wavelength A. In this
model, the lighting function A models the light source(s) and all interreflections and shad-
ows, not according to their location in 3D space, but rather according to the light rays col-
lected at each point on the sensor. Similarly, the reflectance function R models how much
light at wavelength A incident on the surface seen by the point (x, y) is reflected toward the
sensor. Reflectance values vary from 0 (complete absorber) to 1 (perfect reflector). In other
words, if every object in the scene were perfectly diffuse then E(x, y, A) = A(x, y, A) for
every point on the sensor and every wavelength. This imaging model is closely related to
the notion of intrinsic images, in which multiple images of a static scene under different
imaging conditions can be used to estimate the reflectance or other properties in the scene,
as illustrated in Figure 2.28.

Figure 2.28 Intrinsic
images are a mid-

level description of
scenes determined

by decomposing an
image into constituent
components, such as an
illumination image and a
reflectance image. Based
on Y. Weiss, “Deriving
intrinsic images from
image sequences,’
Proceedings of the
International Conference

on Computer Vision, pages

68-75, July 2001.

Input = Illumination X Reflectance

aluations for intrinsic image algorithms,” 2009 IEEE 12th

International Conference on Computer Vision, pp. 2335-2342.

© 2009 IEEE. Reprinted, with permission, from Roger Grosse, Micah K. Johnson, Edward H. Adelson, William

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

2.3 Image Acquisition

43

2.3 Image Acquisition

Once an image has formed on the surface of a sensor as an . 1 infor-
mation must be converted by the sensor into a digital image, which is then transmitted or
stored. The steps involved in this process are the focus of this section.

2.3.1 Sampling and Quantization

Let s(A), where 0 = s(A) = 1, be the sensitivity of the sensor to a particular wavelength
A. Then the image pixel value I(x, y) can be modeled as the integration of the irradiance
function over the area of the pixel and over all wavelengths, after first multiplying by the
sensitivity function:

I(xy) = go(///E(x’,y’,)\’)s()\') dx’dy’dx\’) (2.12)

where the primes indicate dummy variables. The integrals over wavelength and sensor
position, in addition to an | EEISIIBNSEEE (which is not shown), perform the work
of sampling to convert the continuous irradiance function into a discrete function defined
only over the rectangular lattice of integer (x, y) coordinates. Quantization then assigns a
discrete gray level to every pixel in order to represent its value in digital form. However, to
avoid an artifact known as false contouring,’ it is important not only that there is a

but also that they are _ This is accomplished by
applying a nonlinear mapping known as gamma compression, described in detail below,
prior to quantization. The function ¢ includes both gamma compression and quantization,
along with any sensor artifacts like blooming or noise.

2.3.2 Gamma Compression

The basic idea of gamma compression is shown in Figure 2.29. The raw measurement of
light obtained by the sensor is transformed by a nonlinear mapping before transmission,
storage, and/or manipulation. This step transforms the linear, physical light intensity into
a perceptually uniform quantity, so that the pixel values in a digital image are not (in most
cases) directly proportional to the amount of light collected by the sensor.

To understand gamma compression, we need to go back in time to consider an important
fact of a now-obsolete technology. Cathode ray tubes (CRTs), which were the prevailing dis-
play technology for three-quarters of a century, have the curious property that the intensity of
the light displayed on the screen is nonlinearly related to the applied voltage. More specifically,
the transfer function of a CRT display follows a power law, in which the displayed intensity
L (representing radiance or luminance) is proportional to the voltage V raised to some power:

L=cV'+b (2.13)

Figure 2.29 Linear light
intensities are gamma
compressed by the camera
into perceptually uniform
quantities, which are then
gamma expanded by

the display.

Im
—_— —_— —_— —_—
Physical Gamma- Gamma- Physical
light compressed compressed light
intensities Camera image image Display intensities

" Also known as banding, a form of posterization.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

44

Chapter 2 - Fundamentals of Imaging

where vy is the exponent of the power function, and the constants b and c are the blacklevel
and contrast, respectively, of the CRT display. If the monitor is adjusted properly so that
its blacklevel is zero (i.e., the black pixels just barely emit light), then b = 0, leading to a
simpler formulation:

L=cV? (2.14)

Because of the widespread use of the Greek letter gamma (y) for the exponent, this func-
tion is known as a gamma function. Figure 2.30 shows several plots of this function for
different values of gamma, assuming ¢ = 1 for simplicity. If y > 1, the function is convex
(curves upward) and is known as gamma expansion; if y < 1, the function is concave
(curves downward) and is known as gamma compression; if vy = 1, the function is linear.

CRT displays have a [ICAINGNE of v, =~ 2.2, where the subscript indicates that this
is the gamma of the display. To counter this effect and to simplify the electronics, video
engineers decided many years ago that the voltage inside a display should be proportional
not to the intensity of light being displayed but rather to the intensity raised to the power of
Y where y, = 1/v,. Cameras were therefore designed to encode the image according to
V = L}, where L; is the incoming light intensity, while displays produced light according
to L = V¥ = L4 Images encoded in such a way are said to be gamma compressed, and
if the gammas are inverses of each other (y,; = 1/v,.) then they cancel each other (L = L;)
so that the intensity displayed is the same as the intensity captured.

In practice, while the exponents used by the camera and display are nearly inverses
of each other, they are not exactly so. In fact, when the image is expected to be viewed
in lighting conditions different from those under which it was captured, the compression
exponent vy,. is intentionally designed so that the product y_.y, is not 1. The reason for this
choice is a perceptual phenomenon known as simultaneous contrast in which the human
visual system’s ability to discern contrast decreases in dark surroundings, as depicted in
Figure 2.31. As a result, if a scene is captured in a bright outdoor setting but the resulting
image (or movie) is viewed in a dim room or dark theater, it will lack contrast if displayed
at the same intensity level. For this reason, various television and movie industry standards
specify the viewing gamma (the product of the camera and display gammas) to be between
1.0 and 1.2, so that the viewing experience is subjectively correct even though it is not
necessarily mathematically correct. Today, video cards typically also have a lookup table
(LUT) that provides an additional adjustment, and the viewing gamma is defined to take
this into account as well.

Figure 2.30 Gamma function with

different values of 7.

0.8

0.6

0.4

0.2}

O !
0 02 04 06 08 1

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

2.3 Image Acquisition

Figure 2.31 Simultaneous
contrast. The pixels inside the
middle squares have the same
luminance, but the pixels on
the right appear brighter due
to its surroundings. Therefore,
if an image is displayed at

the correct luminance in a
dimmer environment than the
one in which it was captured,
it will appear to be lacking

in contrast.

45

In addition to this curious property of CRT displays, there is another more foundational
reason that television engineers chose to introduce gamma compression many decades ago.
Due to an amazing coincidence, the compression of light intensity according to y,. = 1/y,
closely models the way in which the human visual system perceives light. In other words,
although the doubling of the amount of light produces a physical intensity equal to twice
the original, the perceived intensity is not increased linearly but rather nonlinearly according
to a function quite similar to L}<. Gamma compression therefore transforms a linear light
intensity into a nonlinear quantity that is perceptually uniform. As a result, additive noise
introduced in the transmission of a gamma-compressed analog video signal has minimal
impact on visual perception, because a constant amount of additive noise affects the per-
ceived intensity by an equal amount regardless of the overall signal value. Without gamma
compression, however, additive noise in dark regions would produce a much more notice-
able (and objectionable) effect on the viewing experience than noise added to bright regions.
In the digital age this phenomenon still applies, particularly in the case of lossy compression
which introduces additive noise to the image. JPEG and MPEG compression, for example,
should always be performed on the nonlinear, perceptually uniform gamma-compressed
signal rather than on the original linear signal, in order to minimize unacceptable artifacts.
For the same reason, gamma compression prior to quantization results in a more effective
use of the finite number of digital codes available. It is important therefore to view gamma
compression not simply as an unfortunate relic necessary to maintain backward compatibil-
ity with now-obsolete CRT displays, but rather as an essential part of the image digitization
and transmission process based upon timeless characteristics of human visual perception.

To see this connection between gamma compression and human visual perception,
recall from our discussion on the human visual system that two luminances’ can be
discerned if their difference is at least 1% (approximately). That is, the contrast
threshold of the human visual system is approximately &£ = 1% = 0.01. Also recall
that for image reproduction purposes the range of luminances is about 100 to 1. Now
suppose we were to digitize these luminances in equally spaced intervals, in increments of
0.01, from 1 to 100, resulting in 9901 digital codes representing the luminance values of
1.00, 1.01, 1.02, . . ., 99.98, 99.99, 100.00. The drawback of this approach would be that,
while the consecutive codes at the lower end of the scale, say 1 and 1.01, are discernible,
consecutive codes at the higher end of the scale, say 99.99 and 100.00, are not discernible at
all. The reason for this is that (100.00 — 99.99)/100.00 = 0.01/100 = 0.0001 = 0.01%,
which is much less than 1%, so that many codes at the higher end of the scale would be

" Luminance, which is radiance multiplied by the sensitivity of the sensor, is discussed in more detail later.

46

linear 14-bit codes

gray level
00000000000000
00000000000001
00000000000010

10011010101010
10011010101011
10011010101100

Chapter 2 - Fundamentals of Imaging

wasted. On the other hand, if we were to digitize luminances in equally spaced intervals
in increments of 1.00, the digital codes of 1, 2,3, ..., 98,99, 100 would yield a barely
discernible difference at the higher end but unacceptably large differences at the lower
end, leading to objectionable false contouring. This is because (2 — 1)/1 = 1.0 = 100%,
which is much greater than 1%.

A more effective use of the digital codes occurs when consecutive codes correspond to
relative luminance differences of approximately 1%. If we let v be the gray level and L be
the luminance, then this is expressed as

AL
0.01Ay = = (2.15)
L
or
CL (2.16)
AL 0.01L '

where Av = 1 is understood to be the difference between two consecutive gray levels, and
AL is the difference between the corresponding luminances. If we let ¢ be the function
that maps luminances to gray levels, i.e., v = (L), the derivative of this function is
do/dL = Av/AL. Therefore, the function fis the integral of the above expression, or

(2.17)

o(L) = = 100 log L

0.01L

where log is the natural logarithm. This expression tells us that the desired nonlinear function
that maps linear intensity to a perceptually uniform value is logarithmic. Table 2.1 compares
this nonlinear coding with the two linear coding attempts just described. Linear coding
requires approximately 100/0.01 = 10000 gray levels, or 14 bits, to cover the 100:1 range
with an increment of 0.01, while an increment of 1.0 requires 100/1 = 100 gray levels,
or 7 bits. In contrast, if the codes are spaced nonlinearly according to a ratio of 1.01, then
only (log 100)/(log 1.01) = 463 gray levels, or 9 bits, are needed. The common 8-bit
format, which owes its popularity to the widespread practice of grouping 8 bits into a byte
in a digital computer, is sufficient for about a 50:1 ratio, roughly equivalent to traditional
broadcast-quality television.

The assumption of a constant 1% threshold in Equation (2.15) is known as Weber’s law.
Although Weber’s law is a good model of the transfer function of some cortical cells, it is not

linear 7-bit codes logarithmic 9-bit codes

L AL/L gray level L AL/L gray level L AL/L
1.00 1.00% 00000 1.00 100.00% 000000000 1.00 1.00%
1.01 1.00% 00001 2.00 50.00% 000000001 1.01 1.00%
1.02 1.00% 00010 3.00 33.33% 000000010 1.02 1.00%

99.98 0.00% 1100001 98.00 1.02% 111001100 98.01 1.00%
99.99 0.00% 1100010 99.00 1.01% 111001101 99.00 1.00%
100.00 0.00% 1100011 100.00 1.00% 111001110 100.00 1.00%

TABLE 2.1 Logarithmic coding is a more efficient use of the available bits than linear coding because it results in successive codes
that differ by the contrast threshold of 1% across the entire range of luminances. In contrast, linear 14-bit coding waste bits in bright
regions where successive gray levels look identical, and linear 7-bit coding produces objectionable artifacts in dark regions.

2.3 Image Acquisition

47

an accurate model of human visual perception over all luminances.” As it turns out, a more
accurate mapping between physical light intensity and perceived light intensity is obtained
with a power-law function, known as Stevens’ power law:

@(L) = cL” (2.18)

where vy, = 0.5. Here we see the amazing coincidence that this gamma of the
human visual system v, is nearly the same as the inverse of the CRT display gamma,
Ya» because 1/2.2 = 0.45. Therefore, the gamma compression of a camera produces nearly
the same mapping as that of the human visual system, which justifies our saying that gamma-
compressed signals are perceptually encoded. Note that the power-law function with y < 1
performs a similar operation to that of a logarithm function, since they both have similar con-
cave shapes. While the linear quantity L is referred to as the luminance as we saw earlier, the
nonlinear quantity that captures human perception on a uniform scale is known as lightness.

One drawback of the gamma compression function ¢ (L) = cL” is that its slope is infi-
nite at L = 0, leading to high amplification of noise in dark regions of the image. To over-
come this problem, it is common practice to modify the function by specifying a linear
section for values below some threshold 7:

(L) = mL ifL=r (2.19)
¢ (1 +€)L” — e otherwise ’

where the slope m and offset e are set to ensure that the value and first derivative of the two
sections of the function match at the point L = 7:

yrY-1

m (2.20)

m =

1
€ Ay — 1) 11 1 (2.21)
The nonlinear transfer function obtained by modifying gamma compression is uniquely
specified by the parameters y and 7. There are two widely used standards that offer slightly
different variations of gamma compression by choosing different values for these two param-
eters. Rec. 709, the standard for high-definition television (HDTV) that was first approved
in 1990, uses y = 0.45 =~ 1/2.222 and 7 = 0.018, leading to m = 4.5 and € = 0.099:

_ fasL if0 =L <0.018

)= 2.22
#709(L) {1.099L0'45 - 0.099 if0.018=L<1 222

where the intensity L has been normalized to be in the range of 0 to 1.% Six years after the
approval of Rec. 709, sRGB was developed to standardize the RGB color space used for
still images for display on computer monitors and printers. SRGB uses y = 1/2.4 = 0.417
and 7 = 0.0031308, leading to m = 12.92 and € = 0.055:

QDSRGB(L) =

12.92L if 0 = L = 0.0031308
(2.23)

1.055L9724) — 0,055 if0.0031308 < L < 1

"1In fact, if b is the bit depth, it is easy to see from Table 2.1 that the ratio of the highest luminance to the lowest non-zero

luminance is (1.01)", where n = 2°~'. For b = 9 bits, this yields (1.01)*'' = 162, which is a reasonable number. But
for b = 16, the logarithmic model yields (1.01)°5% = 10%3, which is more than the number of atoms in the universe.
Formally known as ITU-R Recommendation BT.709.
¥ Rec. 2020, used for UHDTYV, uses the same transfer function as Rec. 709. However, in 12-bit mode, the precision
is increased to 7 = 0.0181 and € = 0.0993.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

48

Chapter 2 - Fundamentals of Imaging

Linear

C Linear
section .

section

@(L)

- = sRGB transfer function
et] ol [B g -
=== Power function, f,(L) =104 === Power function, f(L) = L**17

L L L L) 0 L L L L)
02 04 06 08 1 0 02 04 06 08 1

L L

Figure 2.32 Rec. 709 gamma function (left), and sSRGB gamma function (right). In both cases, the effective gamma function closely
follows the modified gamma function, while the power function (using the same exponent as the modified gamma function but
without the linear segment) is noticeably different. The dashed black line indicates the linear section, which is valid only for L =< .

as shown in Figure 2.32. Either way, the resulting nonlinear quantity is known as the
grayscale value (or simply gray level), and since the nonlinear transfer function is designed
to correspond closely to the power function of Steven’s law, generally speaking lightness
and value can be thought of as synonyms. Note that in the case of a color image, Equation
(2.23) is applied to the color channels separately, with L replaced by R, G, and B after
normalizing to the range of O to 1.

It is important to note that modifying the gamma function by inserting a linear section
changes the effective gamma of the function. The effective gamma is defined as the
exponent of the gamma function (without the linear section) that best fits the curve (with
the linear section). As a result, although the exponent of the Rec. 709 transfer function is
0.45, its effective gamma is closer to 0.511. Similarly, although the exponent of SRGB is
approximately 0.417, its effective gamma is closer to 0.455. In fact, both of these stan-
dards were designed by first specifying the desired effective gamma, then determining the
exponent that best approximates that function. Because Rec. 709 is intended for viewing in
dim environments, it was designed for a 1.125 viewing gamma, which is achieved using an
effective camera gamma of 1/1.955555 = 0.511, since 2.2/1.955555 = 1.125, assuming a
CRT gamma of 2.2. Empirically, this effective gamma of 0.511 is achieved pretty well using
an exponent of 1/2.222222 = 0.45. sSRGB, on the other hand, was designed for a viewing
gamma of 1.0, because it is intended for typical office environments. With a CRT gamma of
2.2, this yields 1/2.2 = 0.454545 effective camera gamma, which empirically is achieved
with an exponent of 1/2.4 = 0.416666.

Having presented the concept of gamma compression in some detail, it is only appropriate
to caution the reader that not all cameras perform gamma-compression. That is, some high-
end cameras offer the possibility of storing the raw non-gamma compressed image, using a
large number of bits per pixel in order to prevent false contouring. Raw images are useful for
some computer graphics work, as well as for measuring the actual radiance of the scene. Nev-
ertheless, unless you have good reason to believe otherwise, you should always assume that
an image has been gamma compressed, especially with 8-bit-per-pixel-per-channel images.

2.3.3 CCD and CMOS Sensors

The light that falls onto the image plane is sampled by the sensor to produce values. These

days, nearly all cameras are digital. The two most common digital sensors are CCD (charge-
coupled device) or CMOS (complementary metal-oxide semiconductor). Each consists of a

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

2.3 Image Acquisition

49

dense array of photodiodes (typically spaced 1 to 5 wm apart) that convert light photons to
electrons. In a CCD sensor, these electrons are collected and stored in local potential wells
during exposure time and then read out by transferring electrons down the line of potential
wells until they reach the readout register known as the horizontal shift register. Electrons
in the horizontal shift register are then transferred one at a time to an amplifier that converts
the collected electrons into a voltage. In a CMOS sensor, transistors next to each photodiode
convert the electrons to a voltage.

CCD sensors dominated the digital camera industry for two decades before CMOS sen-
sors began to gain in popularity in the late 1990s. As a result, the CCD sensor is a more
mature technology and produces superior image quality overall. In particular, in low light
conditions CMOS sensors produce grainy images because the photons that land on the
transistors next to the photodiodes are wasted. These transistors thus reduce the fill factor
of CMOS sensors, which is the percentage of the pixel that collects light, as shown in
Figure 2.33. However, CMOS sensors have now progressed to the point that the images
captured by CMOS and CCD sensors in bright light settings are nearly indistinguishable in
quality. The primary advantages of CMOS sensors is that they are less expensive to produce,
consume less power, and are smaller and lighter. Moreover, CMOS sensors provide more
flexibility: because CMOS pixel values can be read individually, a subset of the pixels called
aregion of interest (ROI) can be read from a CMOS sensor without reading the entire image,
as opposed to the CCD sensor which requires an entire line to be read out. CMOS sensors
can also achieve a wide dynamic range by resetting individual pixel wells when they near
their capacity. Because the CMOS manufacturing process is identical to that used to produce
processors and memory, CMOS sensors can include circuitry directly on the same chip to
perform image processing operations such as stabilization or compression.

There are two dominant types of CCDs. A full-frame CCD has 100% fill factor because
the entire sensor surface area collects light, but this type of CCD requires a mechanical shutter
to prevent light from striking the photodiodes as the charge is read out. An interline transfer
CCD, on the other hand, consists of masked columns between the photodiodes; when an
exposure has ended, the charge is transferred from each photodiode to the adjacent masked
column, which is then used to transfer the charge. Because an interline transfer CCD can
read out the image even while light continues to strike the photodiodes, it has an electronic
shutter which leads to much faster shutter speeds than are possible with a mechanical shutter.

Figure 2.33 Fill factoris

the percentage of the pixel
on the physical sensor that
captures light. A full frame
CCD has 100% fill factor,
whereas an interline transfer
CCD has significantly less

fill factor. Based on http://
www.siliconimaging.com/
cmosfundamentals.htm, image
from photobit.

| Photodetector

Ll Sl S
|| o

4*
J*

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

50

Chapter 2 - Fundamentals of Imaging

Video cameras are either progressive scan or interlaced. An interlaced camera divides
each image frame of a video sequence into two alternating fields — an odd field and an even
field. The odd field consists of the odd rows of the image, while the even field consists of
the even rows of the image. By displaying the two fields in succession, the effective frame
rate of the display is doubled while taking advantage of the human visual system’s tendency
to blur information temporally. If the camera captures the two fields at different times, then
a moving object will be shifted between the two fields, even within the same image frame.
Interlaced cameras were the prevailing technology for analog video cameras, with 60 Hz
(or 50 Hz, depending upon the country) power circuitry driving 60 Hz (or 50 Hz) field
refresh rates, leading to effectively 30 Hz (or 25 Hz) frame rates for broadcast television.
A progressive scan camera, on the other hand, captures the entire image frame simultane-
ously, without dividing it into fields. With the move toward digital formats and standards,
progressive scan cameras are more popular, and interlaced cameras are all but obsolete.

To capture color, two approaches are common. Professional and other high-end cameras,
where quality is more important than cost, use an optical device known as a trichroic prism
to split the incoming light beam into the three separate beams of differing wavelengths,
which are then sensed by three separate CCD sensors, one for each color channel. Together,
the device is known as a three-CCD (3CCD) camera. A less expensive approach is to cover
the sensor with a color filter array (CFA) (or color filter mosaic), which filters the wave-
lengths of the incoming light differently for the individual pixels. A common CFM is the
Bayer filter, which blocks all but green light for alternating pixels throughout the sensor
in a checkerboard pattern; of the remaining pixels, red and blue light filters are placed over
alternating rows, as shown in Figure 2.34. With a Bayer filter, each pixel senses only one
of the three colors. The remaining colors are estimated using a demosaicking algorithm
that interpolates missing colors based on the colors sensed by neighboring pixels. Hav-
ing no such filters, a monochrome camera is responsive to a wider range of frequencies.
Figure 2.35 shows the spectral sensitivity functions (SSFs) for typical CCD color and mono-
chrome video cameras.

Cameras contain a number of controls. The shutter speed, along with the aperture, con-
trols the amount of light allowed to strike the sensor. Automatic gain control (AGC)
causes the camera to automatically adjust its exposure time to ensure that the output level
remains relatively constant, which can yield widely differing values, even for consecutive
image frames, when light sources enter or exit the scene. White balance is the proper
adjustment of the relative intensities of the primary colors needed to ensure that the colors
are captured properly.

Figure 2.34 A Bayer color filter
placed over an image sensor

is an inexpensive way to sense
color using a single sensor.
Green light is sensed by half
the pixels in the checkerboard
pattern, with the remaining
pixels sensing blue or red in
alternating rows.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

2.3 Image Acquisition

Figure 2.35 Spectral
sensitivities of a typical CCD
color (top) and monochrome
(bottom) video camera.
Note that, in contrast to the
human eye, CCD sensors are
sensitive to near infrared
light, up to approximately
1000 nm. Cameras typically
include an infrared filter
that cuts off frequencies
greater than about 700 nm.
Based on http://www.
theimagingsource.com/

downloads/fwcamspecwp.en.

51

Green
100} Blue
< 80
Z 60
2
Z 40
=i
Q
“ 20
0 I L L I
400 500 600 700 800 900 1000 1100
Wavelength (nm)
100 |
< 80t
£ 60f
2
F40f
=
Q
v 20
0 ! ! !
400 500 600 700
Wavelength (nm)

There are three main sources of noise in an image sensor. Shot noise occurs at extremely
low light levels due to the statistical nature of the discrete number of photons arriving in
any given length of time. Another source is sensor noise, which includes the fixed pattern
noise that arises due to differences in the individual pixel properties, as well as transfer
noise, quantization noise, and the dark current that flows through a photosensitive device
even when no photons are entering, leading to non-zero values regardless of the light level.
The third source is readout (or amplifier) noise, which is added uniformly to the image
by the amplifier used to convert electrons to voltage.

Other degradations in the image are possible. When the number of incoming photons
exceeds the capacity of the photodiode to hold charge, the excess charge leaks out of the
saturated photodiode into neighboring photodiodes, resulting in bright vertical streaks,
an artifact called blooming. Although blooming has traditionally been a problem for
CCD sensors, nearly all modern CCD sensors have anti-blooming protection to prevent
the charges from overflowing, and CMOS sensors have never been affected. Glare is the
presence of a bright light source that interferes with the ability to discern detail in the
image. Another degradation is motion blur, which occurs when an object moves rapidly
relative to the exposure time, causing streaking in the image in the direction of object
motion, regardless of the sensor type. A related problem is the rolling shutter effect,
which occurs in CMOS sensors that read out pixels sequentially rather than simultane-
ously, so that different pixels capture light entering the lens at different times. In the case
of an analog video signal, line jitter refers to the random horizontal shift of rows of the
image due to the inability of the phase-locked loop (PLL) circuitry to detect the start
of the active line period perfectly. Similarly, if the signal is interlaced, then alternating
lines of the image frame can show a moving object captured at different times, as shown
in Figure 2.36.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

52

Figure 2.36 Interlacing. A
half-black, half-white piece
of paper is translated. Left:
no motion, edge is sharp.
Middle: motion, edge is
blurred. Right: zoomed

in. The length of each
horizontal bar is the distance
traveled in 1/60 of a second.

Chapter 2 - Fundamentals of Imaging

2.3.4 Transmission and Storage

The digital image captured by the sensor is transmitted to the computer and either processed
live or stored for later processing. Traditional video cameras transmit the video signal using
analog waveforms, the three standards being NTSC (used in North America and Japan),
SECAM (used in France and the former Soviet Union), and PAL (used most everywhere else).
Based on an AC voltage frequency of 60 Hz, NTSC transmits even and odd image fields at
60 Hz, leading to an effective frame rate of 30 frames per second (fps)." Specified originally
in 1941 for black-and-white television and augmented in 1953 to include color, the NTSC
format was discontinued as a broadcast signal in 2009 to make room for digital video trans-
mission. Also interlaced, PAL transmits image fields at 50 Hz for an effective frame rate of 25
fps. NTSC, PAL, and SECAM use an aspect ratio of 4:3, resulting in an image resolution of
approximately 640 X 480 and 768 X 576, respectively. The former is known as VGA resolu-
tion, while the latter is (after taking into account the non-square aspect ratio of older displays)
4CIF. All three analog standards are known as composite video because the luminance
and chrominance information is combined into a single signal, whereas component video
separates the individual color channels into individual signals, resulting in higher fidelity.
Component video is typically used in production studios and other high-end applications.

The original digital replacement for analog video was Rec. 601,F but this has been
replaced by Rec. 709, which is the high-definition television (HDTV) standard mentioned
earlier. The term HDTV encompass a variety of different resolutions, but they typically
use an aspect ratio of 16:9. Common HDTV formats are 1080i or 1080p, containing image
frames of size 1920 X 1080 either interlaced or progressive, respectively, and 720p, contain-
ing 1280 X 720 progressive scan images. More recently, Ultra-high-definition television
(UHDTYV), defined by Rec. 2020, includes 3840 X 2160 and 7680 X 4320 video (known
as 4K and 8K, respectively).

To take advantage of the human visual system’s insensitivity to color changes, the color
information in digital video is often downsampled. Because the nonlinear version of chro-
minance is known as chroma (just as the nonlinear version of luminance is luma), this is
known as chroma subsampling. The nomenclature is rather nonintuitive, but as summa-
rized in Table 2.2, J:a:b means that chroma is downsampled by 7z = Z and v = -2%; in the
horizontal and vertical directions, respectively, so that the total amount of downsampling is
hv = 2. where J is nearly always equal to 4. For example, with 4:2:0 subsampling (the
most common format), a 2 X 2 window of pixels contains 4 bytes of luma data (assuming

 Actually the frame rate of the standard was modified to 30/1.001 = 29.97 fps when color was introduced to
reduce interference between the chroma subcarrier and the accompanying audio signal.

* Formerly known as CCIR 601.

¥ A special case in the notation occurs when b = 1 but @ # 1 (the final 2 columns of the table), in which v = 4
and therefore hv = 4h; otherwise v = 4 would require a or b to be negative.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

2.4 Other Imaging Modalities

horizontal chroma downsampling
vertical chroma downsampling

total chroma downsampling

number of luma bytes in 2 X 2 window
number of chroma bytes in 2 X 2 window

53

4:4:4 4:2:2 4:2:0 4:1:1 4:1:0 4:4:0 4:4:1 4:2:1
1 2 2 4 4 1 1 2
1 1 2 1 2 2 4 4
1 2 4 4 8 2 4 8
4 4 4 4 4 4 4
8 4 2 2 1 4 2 1

TABLE 2.2 The nomenclature for chroma subsampling is J:a:b, where J is nearly always equal to 4. From top to bottom, the rows are
h =4/a,v = 2a/(a + b), hv = 8/(a + b), 4, and 8/hv; the final two columns show the special case when v = 4. Boldface is used to
indicate that 4:2:0 is the most common case.

an 8-bit image) and 2 bytes of chroma data’ since the chroma data is downsampled by 2
in both directions). To allow for filter overshoot and undershoot, video standards typically
do not allow pixels to use all the available values but instead reserve a certain amount of
headroom and footroom, so that black has a value of 16, and white has a value of 235.
(While luma ranges from 16 to 235, chroma ranges from 16 to 240.)

A digital image is stored as an array of values in memory or as a sequence of bytes in
a file. A large number of file formats exist. Some of the most common include PNM, a
barebones format for uncompressed images used by researchers that includes PGM (for
grayscale) and PPM (for color); BMP, a simple format widely used for its connection to
the Windows operating system; GIF, an unusual format that supports multiple images for
animation but only a limited color palette, making it suitable to simple shapes and logos;
PNG, an open-source successor to GIF that supports lossless compression; TIFF, a flexible
format with an extremely wide range of options, making it important for high-end manipu-
lation of photographs but limiting its support in other applications such as Web browsers;
JPEG, a widely-used format that makes use of lossy compression to reduce the file size; and
JPEG 2000, a successor to JPEG that never gained widespread acceptance. The EXIF file
format is increasingly being used, rather than the original JFIF format, to store JPEG files
in order to allow metadata to be stored with the image, such as when and where the image
was captured, the settings of the camera, the color space, and so forth. Another format is
OpenEXR, which is used in the movie industry for high-dynamic range images using 16- or
32-bit floating point numbers. For video, one option is to store the video as a sequence of
JPEG frames, known as M-JPEG. More common file formats include the historic MPEG-1
format, or the more recent MPEG-2, MPEG-4, AVI, and QuickTime formats, which come
with a dizzying array of choices for the codec (compressor-decompressor).* The founda-
tional video compression standard is H.261, which is used by MPEG-1 and forms the basis
for all later standards. The more recent standards are H.262 (used by MPEG-2 and DVD
discs) and the ubiquitous H.264 (used by MPEG-4, Blu-ray discs, streaming Internet video,
and HDTV broadcasts).

2.4 Other Imaging Modalities

Now that we have spent considerable effort explaining the imaging process for a standard
optical camera, in this section we consider several alternate imaging modalities to help
appreciate the great diversity of techniques for gathering images, as well as the peculiar
properties of each.

"That is, 1 byte for Cp and 1 byte for Cy, see Section 9.5.3 (p. 427).
* Compression and decompression are discussed in more detail in Chapter 8.

Chapter 2 - Fundamentals of Imaging

2.4.1 Consumer Imaging: Catadioptric, RGBD, and Light-Field

We mentioned earlier that some animals, like lobsters, focus light not by using lenses, but
rather by using mirrors. In a similar way, cameras can be made that either focus or bend
light using mirrors. A standard optical imaging system using a lens is called dioptric, while
a camera that uses mirrors is called catoptric. Putting these two together, a system that
uses both lenses and mirrors is called catadioptric. One of the most widely used catadi-
optric imaging systems is the omnidirectional sensor, in which a camera points upward
at a hyperbolic (or parabolic) mirror, which allows the camera to see 360 degrees around
the scene, as shown in Figure 2.37. Such a camera system has an effective focal point at
the focus of the hyperboloidal-shaped (or paraboloid-shaped) mirror, so that it is called a
central panoramic camera. The resulting image is donut-shaped, with approximately
half the pixels wasted.

Another useful sensor is the RGBD camera that captures not only the RGB values for
each pixel but also the depth of the scene point from the camera plane. Such sensors operate
by either time-of-flight, stereo processing after projecting an invisible, infrared texture onto
the scene to simplify the correspondence problem, or shape from shading. Currently the most
popular sensors are the Microsoft Kinect, Asus Xtion, and Intel RealSense, which are revo-
lutionizing robotics and user interfaces due to their richer capturing modality. An entirely
different approach is achieved by a light-field camera (also known as a plenoptic camera)
that samples the light field using an array of microlenses; by tracing the rays of light using
the appropriate computation, the image can be refocused after it has been captured, or it can
be viewed as a 3D stereoscopic image whose appearance changes with the viewing angle.

2.4.2 Medical Imaging: CAT, PET, MRI, and Sonar

Medical applications use a variety of imaging technologies. One of the most well-known
is X-ray radiography, which produces images by transmission rather than reflection. A
generator emits X-rays toward an object of interest (such as part of a person’s body), and
a detector measures the photons that make it to the other side, rather than being absorbed
by the object. The high amount of calcium in bones, for example, along with their high

Figure 2.37 An omnidirectional
camera can be achieved by
attaching a hyperbolic or
parabolic mirror to an upward-
facing camera. Based on Valdir
Grassi Junior and Jun Okamoto
Junior, Development of an
omnidirectional vision system,
J. Braz. Soc. Mech. Sci. & Eng.
vol. 28 no. 1 Rio de Janeiro Jan./
Mar. 2006, http://www.scielo.br/
scielo.php?script=sci_arttext&pi
d=51678-58782006000100007

Mirror

Virtual focal

——

—_—

Focal point

Virtual
panoramic
cylinder

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

2.4 Other Imaging Modalities

55

density, causes them to absorb X-rays, which explains why bone structure is revealed so
prominently in an X-ray. X-ray technology can also be used to capture 3D structure as an
array of slices. The word romography refers to imaging by slices, so this approach is known
as computed tomography (CT). The term axial refers to the horizontal plane through
the human body when standing upright, and since the slices are parallel to this plane, the
approach is also known as computed axial tomography (CAT), so that CT scan and CAT
scan are essentially synonymous. A patient is enclosed in a ring of scintillation detectors,
and the X-ray emitting tube is rotated around the patient, collecting an image for each slice.
Reconstruction of the patient’s body is then obtained using algorithms such as filtered back
projection, or iterative reconstruction.

Another common technique is magnetic resonance imaging (MRI), which is safer than
X-ray because it does not use ionizing radiation. Soft tissue in the human body contains
water, and MRI uses powerful magnets to align the hydrogen nuclei (that is, protons) in
these water molecules. A radio frequency (RF) signal pulse at the resonance frequency is
emitted that systematically alters the alignment of the nuclei by flipping the spin of the pro-
tons. As the nuclei return to their original state, their motion generates an RF signal which
is detected by receiver coils. MRI is widely used for medical diagnosis, and its extension
called functional MRI (fMRI) uses MRI technology to detect change in magnetization
between oxygen-rich and oxygen-poor blood to measure brain activity.

Positron emission tomography (PET) is another technique for nuclear imaging. A
patient is injected with a radioactive isotope which, as it undergoes positron emission decay,
emits a positron. The positron travels a short distance, decelerates, and then interacts with an
electron. Both the electron and positron are annihilated, emitting a pair of gamma photons in
opposite directions in the process, which are detected by a scintillator. Unlike CT or MRI,
PET can detect details at the level of molecular biology.

Fluoroscopy is a way of obtaining real-time images of a patient using an X-ray image
intensifier to convert the X-rays on the sensor to visible light for viewing by a radiologist.
A popular fluoroscopy technique is digital subtraction angiography, in which a con-
trast medium has been injected into a structure; by subtracting the precontrast image, an
enhanced image is obtained which enables a physician to more easily see the blood vessels
for catheters and vascular imaging. Another technique is fluorescence in situ hybridiza-
tion (FISH) which is used to detect DNA sequences on chromosomes using fluorescent
probes that bind to certain parts of chromosomes.

Finally, ultrasound does not use electromagnetic radiation at all but rather sound
waves, which are longitudinal and require a medium for transmission. These broad-
band sound waves are reflected by the tissue, allowing real-time imaging of moving
structures with no ionizing radiation. Ultrasound imaging is widely used for observing
babies in the womb, as well as elastography, which is measuring the elastic properties
of soft tissue.

2.4.3 Remote Sensing: SAR and Multispectral

Cameras are often attached to aircraft or satellites for remote sensing of the earth for appli-
cations in meteorology, agriculture, surveillance, and geology. To enable detailed sensing
of the terrain in all weather conditions, these cameras typically sense multiple frequencies
simultaneously. A multispectral sensor senses a small number of frequencies, typically 5
to 7, while a hyperspectral sensor senses a much larger range of frequencies. Due to the
larger number of frequencies, it is often not possible to build a 2D array that yields an image
directly. Instead, either a whiskbroom sensor is used, in which a rotating mirror scans one
pixel at a time, or a pushbroom sensor, which is a 1D linear array perpendicular to the
direction of travel. Comparing the two alternatives, a pushbroom sensor is smaller, lighter,
consumes less power, and has high reliability because it has no mechanical parts.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

56

Chapter 2 - Fundamentals of Imaging

The Landsat program is the longest-running program to gather satellite imagery of
the earth’s surface, beginning in the 1970s and continuing to the present day. The latest
version of Landsat uses a whiskbroom multispectral scanner with 8 spectral bands and
an opto-mechanical sensor to collect information about earth from space, with calibration
used to convert raw sensed values to absolute units of radiance. Another satellite imaging
program is SPOT (Systeme Pour I'Observation de la Terre), which uses a pushbroom
camera consisting of a linear array of CCDs to collect 5 spectral bands. The SPOT sensor
is able to collect more photons than Landsat, so it has a higher signal-to-noise ratio. The
AVIRIS (Airborne Visible InfraRed Imaging Spectrometer) instrument, which uses a
hyperspectral sensor capable of collecting radiance in 224 contiguous spectral bands from
400 to 2500 nm, is a more recent sensor mounted on aircraft for measuring the Earth’s
surface atmosphere. In remote sensing, it is common to call the raw digital values from an
uncalibrated sensor digital numbers (DNs), to distinguish them from physically meaning-
ful quantities such as radiance or reflectance.

Synthetic aperture radar (SAR) illuminates the scene with radio waves whose wave-
length ranges from one meter to millimeters. The received echo waveforms are detected and
processed to form an image. SAR is usually mounted on a moving platform with a single
beam-forming antenna attached to an aircraft or spacecraft. SAR is an advanced form of
side-looking airborne radar (SLAR), which is essentially a virtual phased array. Related to
SAR is ultra-wideband radar, whose signals are defined as having a bandwidth exceeding
500 MHz or 20% the center frequency of radiation and are sometimes used for through-
the-wall imaging.

2.4.4 Scientific Imaging: Microscopy

A micrograph is an image obtained by connecting a camera to a microscope or similar
device to obtain a magnified image. An optical microscope, also known as a light
microscope, uses visible light and a system of lenses to focus the image. Some forms
of light microscopy are bright field microscopy, in which the light shines below the
sample, yielding a dark sample on a bright background; phase contrast microscopy,
which exploits phase shifts that occur when light passes through media, thus avoiding the
need to stain the specimen and allowing for in vivo imaging; and fluorescent microscopy,
which illuminates the specimen with a nearly monochromatic light to excite fluorescent
stains or proteins. Most fluorescent microscopes use epifluorescence, in which reflected
light from the specimen combines with the emitted light, yielding a high signal-to-noise
ratio. To reduce the out-of-focus light and improve the contrast, the recent approach of light
sheet microscopy has been gaining in popularity. Another advanced approach is that of
a confocal microscope, which uses point illumination and a beam splitter to allow 2D or
3D imaging of the object with increased contrast and resolution. Further improvements in
resolution are achieved using electron microscopes such as a scanning electron micro-
scope (SEM), which scans the surface using beams of electrons, or a scanning tunneling
microscope (STM), which uses quantum tunneling.

2.5 A Detailed Look at Electromagnetic Radiation

You may know that there are three ways to transfer heat energy. If you pick up a pan from
the stove, it will feel hot to the touch because of conduction. If you sit in front of a rotating
fan, the fan will cool your skin due to the movement of the air, known as convection. Both
of these methods require the source responsible for heat transfer to be nearby. In contrast,
if you stand outside on a sunny day, you will feel warmth from the sun, even though the

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

2.5 A Detailed Look at Electromagnetic Radiation 57

sun is millions of miles away. This form of energy transfer, known as electromagnetic
radiation, has nothing to do with the surrounding air, and it explains why the front side of
your body is heated while the back side is not when you stand in front of a campfire.

Even though it may seem that we have already treated the imaging process with a fair
amount of detail, to understand light on an even deeper level we have to consider precisely
what is meant by this third form of energy transfer. The energy in electromagnetic radia-
tion is carried solely by electromagnetic waves, which are perfectly capable of traveling
through a vacuum. In the following discussion we provide a more detailed description of
these waves, the energy carried by them, and the ways in which they interact with the world
around us.

2.5.1 Transverse Electromagnetic Waves

It is a fundamental principle of physics that a time-varying electric field causes, or induces,
a time-varying magnetic field, and vice versa. Mathematically, this coupling is described in
a set of equations known as Maxwell’s equations.” Let E and B be the 3D vector electric
and magnetic fields, respectively. In a vacuum containing no electric charge (imagine space
through which the sun’s rays travel), Maxwell’s equations in differential form are

OB
V-E=0 VXE=— (2.24)
ot
E

where 9/t is the partial derivative with respect to time, V is the “dell” operator, and €, and
Mo are fundamental constants of nature, namely the permittivity and permeability of free
space, respectively. The operator V- (“dell dot”) is the divergence of a vector field, while
V X (“dell cross”) is the curl.

In their most general form, Maxwell’s equations succinctly capture almost everything
we know about electricity and magnetism, making them foundationally important for elec-
tric circuits, transmission lines, radio transmission, antenna design, communications, fiber
optics, microwave ovens, waveguides, and sensing. While the details of these equations are
beyond our scope of interest, what is important to note is that electric and magnetic fields
are tightly coupled when they vary in time. This coupling, in fact, is the basis for the term
electromagnetism. As E changes, the non-zero value of OE/9t modifies the magnetic
field; the changing value of B, in turn, modifies the electric field. From the first-order
equations above, it is easy to derive second-order equations called the homogeneous
electromagnetic wave equations:

32

V’E = v (2.26)
2

V2B = 6#«887 (2.27)

where the Laplacian operator V> = V-V is the divergence of the gradient.? In these equa-
tions we have replaced €y and o with the constants e and w appropriate for the medium,

" James Clerk Maxwell (1831-1879) is widely considered one of the greatest physicists of all time.
“The gradient is covered in more detail in Section 5.3 (p. 234), while the Laplacian is discussed in Section 5.4.1 (p. 242).

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

58 Chapter 2 - Fundamentals of Imaging

to emphasize that the equations are applicable to any simple (linear, isotropic,” and homo-
geneous), non-conducting medium containing no electric charge, which includes all media
through which light travels, such as empty space, air, water, glass, or a variety of plastics.
For non-metallic materials, w ~ i to an accuracy of one part in a billion, so we may safely
assume w = wo. We will discuss the effects of e later in this section when we consider
refraction.

Solutions to the homogeneous electromagnetic wave equations are electromagnetic
waves. An electromagnetic wave consists of oscillating, coupled electric and magnetic fields
propagating at a speed (phase velocity) of \/ITI The electric and magnetic fields are in-phase
sinusoids (meaning they reach their maxima together) along the direction of propagation,
and they are perpendicular not only to each other but also to the direction of propagation,
so that E, B, and the propagation direction form a right-handed orthogonal set, as shown in
Figure 2.38. For this reason such a wave is called transverse, hence the name transverse
electromagnetic (TEM) wave. The polarization of the wave is described by the orienta-
tion of the fields. If the fields retain their direction as the wave travels, then the wave is said
to be linearly polarized. Alternatively, if their direction changes (rotates) as the wave travels,
then the wave is elliptically polarized (with circular polarization as a special case). In the
latter case the handedness of the wave is the direction of the change in orientation, namely,
whether the orientation rotates clockwise or counterclockwise.

2.5.2 Radiometry and Photometry

To precisely describe the amount of energy transferred by electromagnetic radiation, several
distinct quantities must be carefully defined. We begin by considering the simple example of
a old-fashioned 60-watt incandescent light bulb radiating energy. The basic unit of energy is
the joule (J), and the basic unit of power is the watt (W), which is defined as one joule per
second. Therefore, this particular light bulb consumes 60 joules of energy per second, or
equivalently, 60 watts of power. If all of this power were used for light (which it is not), then
we would say that the radiant flux for the bulb is 60 watts. The integration of the radiant
flux over a certain amount of time yields the total energy radiated by the light during that
time, called radiant energy and measured in joules.

Oftentimes we are interested in the radiant flux in a particular direction. This quantity is
known as radiant intensity, measured in watts per steradian (W - st~ !). Just as the radian
is the unit of measure for a 2D angle, the steradian (sr) is the unit of measure for a 3D angle,
also known as a solid angle.* Whereas a half-circle spans 7r radians, and a complete circle

Figure 2.38 Left: Direction of propagation

A transverse
electromagnetic (TEM) Electric — A
wave with linear field (E)

polarization. Right: A
TEM wave with circular
polarization. Based on D.
K. Cheng. Field and Wave
Electromagnetics. Addison Magnetic
Wesley, second edition, field (B)
1989.

" The term isotropic (from the Greek isos, equal, + fropos, way) means “the same in all directions.” The opposite
term is anisotropic.
The prefix ster- comes from the Greek word for solid, which is where we also get the word stereo.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

2.5 A Detailed Look at Electromagnetic Radiation 59

spans 27 radians (the circumference of a unit circle), a hemisphere spans 27 steradians,
and an entire sphere spans 4 steradians (the surface area of a unit sphere). Integrating the
radiant intensity over all possible angles yields the radiant flux.

Now imagine a sphere centered at the light bulb. As the radius of the sphere increases,
a point on the sphere gets farther from the light bulb and therefore receives less and less
radiant intensity, because a constant solid angle yields a larger area on the sphere as the
radius increases. This reduction motivates defining a new quantity, radiance, as the radi-
ant intensity divided by the cross-section area, measured in watts per steradian per square
meter (W - st~ - m~2). Equivalently, radiance is the power per unit foreshortened area
emitted into a unit solid angle. Along a ray of light emanating from the source, the radiance
remains constant at all distances from the source. Therefore, radiance can be thought of as
the amount of light along a ray traveling in any direction at any point in space.

Now suppose the light falls on a surface in the scene, such as the image sensor. The amount
of radiant power that lands on a portion of the surface is called the irradiance, measured
in watts per square meter (W - m~2). While radiance is a directional quantity, irradiance
is not. Instead, it is the integration of the radiance of all incoming rays on an infinitesimal
surface patch, after first considering the reduction in intensity due to foreshortening,
which reduces the amount of incident light on the patch based on the angle between the
surface normal and the incoming light ray. For example, if the light rays are parallel to the
surface (that is, perpendicular to the surface normal), then the irradiance is zero because no
light hits the surface.

These are the basic quantities of radiometry, which is the measurement of electro-
magnetic radiation, summarized in Table 2.3. Radiometry captures the rate at which light
energy is emitted or absorbed when such power is sufficiently high that these quantities
can be treated as continuous values, and when the light can be assumed to travel in straight
lines according to geometrical optics. Radiometry is applicable not only to visible light but
also to infrared, ultraviolet, and shorter wavelengths such as microwaves and radio waves.
However, at high frequencies like X-rays and gamma rays, it is more appropriate to talk
about individual photons, since the corpuscular nature of light makes the continuous quanti-
ties of radiometry less applicable.

Each quantity defined above also has a spectral version, namely spectral radiant flux,
spectral radiant intensity, spectral radiance, spectral irradiance, and so forth. The
spectral versions are normalized by wavelength, thus capturing the corresponding quantity
per wavelength. If any spectral version is integrated over all wavelengths, it yields the non-
spectral version. The per wavelength contribution to any radiometric quantity is known as
the spectral power distribution (SPD).

Related to radiometry is photometry, which is the measurement of electromag-
netic radiation after weighting each wavelength by the sensitivity of the human eye to
that wavelength. For example, a radio wave might have large radiometric values but zero
photometric values, since the human eye is not sensitive to radio waves. The basic unit in

radiometry photometry meaning

radiant energy (W - s) luminous energy (Im - s) energy

radiant flux (W) luminous flux (Im) power

radiant intensity (W - sr™!) luminous intensity (Im - sr™!) power in a direction
radiance (W - sr™ ! - m™2) luminance (Im - sr™!' - m™?) power along ray
irradiance (W - m~?) illuminance (Im - m~?2) power incident on surface

-1 _ -2 _

TABLE 2.3 Quantities of radiometry and photometry. Note that W - s = J,Im -sr™ ' = cd,Im - m™ = lux.

60

Chapter 2 - Fundamentals of Imaging

photometry is the candela (cd), which is roughly the power emitted by one candle in any
particular direction. Other units include the lumen (Im), which is a candela times a steradian,
and /ux, which is a lumen per square meter. By considering the sensitivity of the human eye,
each radiometric quantity has a corresponding photometric quantity, with radiant replaced
by luminous, and watt replaced by lumen.” Thus in photometry we have luminous energy
instead of radiant energy, luminous flux instead of radiant flux, luminous intensity
instead of radiant intensity, luminance instead of radiance, illuminance instead of irra-
diance, and so forth. Be sure not to confuse any of the precisely defined radiometric or
photometric terms described here with the subjective term brightness, which refers to the
perceptual sensation of light.

2.5.3 Blackbody Radiators

Electromagnetic radiation is closely connected with temperature. In our everyday experi-
ence, light sources such as incandescent bulbs, fire, and the sun are usually hot. Such light
sources can be closely approximated as idealized objects known as blackbody radiators.*
It may seem strange to use the term blackbody to refer to a brightly shining object, but the
name stems from the fact that such an object absorbs all incident EM radiation, just as a
completely black object absorbs all incident light. A blackbody radiator is in thermal equi-
librium with its surroundings, so that it emits and absorbs the same amount of EM radiation
at any given wavelength (otherwise it would increase or decrease in temperature). Planck’s
law expresses the spectral radiance of a blackbody radiator as a function of wavelength:

2hc?
L\(T) = N7
N(eM —1)
where £ is the same Planck’s constant mentioned earlier,’ k = 1.38 X 10~2? joules per
kelvin (J - K™!) is Boltzmann’s constant,! and T is the absolute temperature. Blackbody
radiance is plotted as a function of wavelength in Figure 2.39. The important aspect of this
equation to note is that the amount of EM radiation emitted at any wavelength is based
solely upon the constant temperature of the blackbody. This power per surface area is given
by Stefan’s law (derived from Planck’s law) as o7 # in watts per square meter (W - m™~2),
where o = 27°k*/15¢%h? is Stefan’s constant.

Also derived from Planck’s law is Wien’s displacement law,” which says that the peak
wavelength at which the most energy is radiated is inversely proportional to the tempera-
ture: Apeqr = b/T, where b =~ 2.9 X 10° nm - K is Wien’s displacement constant. At room
temperature (27°C =~ 81°F), the peak wavelength is 9.7 wm, which is very much in the far
infrared band (recall that the visible spectrum ends around 0.7 wm). Because the energy is
highly concentrated around the peak (approximately 70% of the energy emitted is between
one half and twice the peak wavelength), the amount of energy in the visible band is effec-
tively zero. As the temperature of the blackbody increases, its intensity and frequency also
increase, causing the peak wavelength to move from infrared to red to orange to yellow to
white to blue to ultraviolet. Lower temperatures (red through yellow) are known as warm
colors, while higher temperatures (bluish white) are known as cool colors. The difference

" For monochromatic light of 555 nm, 1 watt equals 683 lumens; at other wavelengths the conversion factor is
multiplied by the photopic luminous efficiency function (LEF) described in Figure 2.9.

* Ludwig Boltzmann (1844—1906) was an Austrian physicist.

¥ Section 2.2.1 (p. 33).

1 Not all light sources are well modeled as blackbody radiators; light-emitting diodes (LEDs), for example, do
not waste as much energy on heat because they do not emit significant amounts of infrared light.

“ Wilhelm Wien (1864-1928) was a German physicist.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

2.5 A Detailed Look at Electromagnetic Radiation 61

Figure 2.39 Blackbody radiance as a % 107
function of wavelength for different 12 =
temperatures, using Planck’s law. 2 —T=380°F
10F © =T = 98.6 °F
2. =T =200 °F
8l o =T =400 °F
2
.4
>

Spectral radiance (W/sr m?)
[@)

0 5 10 15 20
Wavelength A (um)

between two light sources can be measured by taking the difference between the micro
reciprocal degree (mired), defined as 10°T, for each.

2.5.4 Interaction with a Surface

When an electromagnetic wave impinges on a surface, it interacts with the surface in one
of three ways: the energy is either absorbed, reflected, or transmitted, as illustrated in
Figure 2.40. Absorption turns the electromagnetic energy into other forms of energy, such
as heat. Reflection and transmission, which allow the light to continue its journey, are more
relevant to our purposes.

Reflection

An opaque surface is one that only absorbs and reflects light, with no transmission. At the
extremes, there are two kinds of opaque surfaces, as shown in Figure 2.41. A specular surface
is one in which incoming light from one direction reflects in only one direction. A specular
surface is a good model for a completely smooth plane boundary. This is why if you take
a piece of reflective material (a metal like aluminum or silver) and smooth it, you will get

Figure 2.40 An EM wave N Y
interacts with a surface in one _%izg_
of three ways: absorption, / AN

transmission, or reflection.

L/ | | | | !

Transmission Absorption Reflection

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

62

Figure 2.41 In specular
reflection, incident light
reflects in a single direction
(as in a mirror). In diffuse
reflection, incident light
reflects in all directions
equally.

Chapter 2 - Fundamentals of Imaging

Specular Reflection Diffuse Reflection

a mirror. When you look at a mirror, the light you see depends very much on the direction
from which you are viewing. The reflection of a mirror is easy to model because the reflected
radiance is equal to the incoming radiance, and the angle of incidence equals the angle of
reflection. Glossy surfaces, such as the body of a polished automobile, are not pure mirrors but
nevertheless reflect the incoming light in a small set of directions around the specular angle.

At the other extreme is a diffuse, or matte, surface, which reflects light in many direc-
tions due to either a rough surface shape or internal scattering of the light by molecules
below the surface. An ideal diffuse surface that reflects equal luminance in every direction
is called Lambertian.” Although the intensity of the light reflected from such a surface is
proportional to the cosine of the angle between the surface normal and the direction of the
incoming light ray, known as Lambert’s cosine law, this effect is canceled by the foreshort-
ening of the apparent area of the viewer. As a result, a Lambertian surface appears equally
bright when viewed from any direction.

For a diffuse surface, the reflection coefficient p is the ratio of the reflected radiation to
the incident radiation. It is a unitless number that ranges from O to 1, with 0 meaning that none
of the radiation is reflected, and 1 meaning that all of it is reflected. The average reflection
coefficient is known as the albedo (from the Latin albus, meaning “white”) of the surface,
which also ranges from 0O to 1. A surface with albedo of 1 looks white, whereas albedo of 0
looks black. Albedo is often used to describe the surface of the earth in different terrains: dark
soil, for example, has an albedo as low as 0.05, while fresh snow has an albedo as high as 0.95.

Most real-world surfaces are not perfectly specular or diffuse. The intensity of light
seen from everyday surfaces can usually be modeled as a weighted combination of the
two extreme phenomena. The Phong reflection model is a widely-used empirical model
that combines specular and diffuse reflection terms, along with a term for ambient light, to
model the energy due to interreflections of other surfaces in the scene. Interreflections
occur when light bounces off one surface, then another, then another, and so on, which cause
regions to be illuminated that otherwise would be in shadow. More generally, a surface can
be modeled by the bidirectional reflectance distribution function (BRDF), which is

defined as the ratio of the radiance to the irradiance of a surface, measured in st~ !;

L (w
BRDF(w;, ,) = Lio,) (2.28)
E(o;)
where E; is the incoming irradiance, L, is the outgoing (reflected) radiance, and w; and
w, are the incoming and outgoing directions, respectively.* In the case of an ideal diffuse

" Johann Heinrich Lambert (1728-1777), was a versatile Swiss scientist and mathematician.

The directions are specified by two numbers indicating the angles in spherical coordinates, w; = (6;, ¢;) and

wr = (ol" ¢I‘)'

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

2.5 A Detailed Look at Electromagnetic Radiation 63

Normal

Figure 2.42 The bidirectional reflectance distribution function (BRDF) is a model of the reflectance of a surface as a function of the
incoming and outgoing directions. According to the Helmholtz reciprocity principle, the BRDF outcome does not change if the direction

of the light ray is reversed.

surface, the BRDF is a single number p;, which is related to the diffuse reflectance by a
factor of 7:p = mp,. The BRDF is symmetric in the incoming and outgoing directions,
so that BRDF (w;, ,) = BRDF(w,, w;), which is known as the Helmholtz reciprocity
principle,’ shown in Figure 2.42.

Transmission

Light that is neither absorbed nor reflected by the surface is transmitted through it. If light is
transmitted through the material without being scattered, then the material is transparent.
On the other hand, a translucent material also allows light to pass, but the internal structure
of the material causes scattering of the light rays. Either way, when the light hits the bound-
ary of the surface, its speed changes from \/’% to \/;%’ where €; and €, are the permittivi-
ties of the two media, assuming (as before) that w; = p, = u.* As aresult, the angle of the
light with respect to the surface changes according to Snell’s law of refraction, illustrated
in Figure 2.43, which says that at the interface between two dielectric media the ratio of the

sines of the angles is equal to the ratio of these speeds:

sinHt: € _m (2.29)
sin 0; € Ny ’

where 6, is the angle between the incident light ray and the surface normal, 6, is the
angle between the transmitted light ray and the surface normal, and n; = V'e,/€; and

n, = V €,/¢€ are the indices of refraction. This bending of the light according to Snell’s
law is the basic principle behind a lens.

When light passes from a higher permittivity to a lower one, that is, when n; > n,, a
surprising possibility arises. Rearranging the terms reveals

. np .
sin 6, = - sin 0, (2.30)
2

“Hermann von Helmholtz (1821-1894) made important contributions to diverse areas of science, including visual
perception, color science, electrodynamics, and thermodynamics.

* Note that the speed of the light is not constant. Rather, it is the speed of light in a vacuum that is the well-known

fundamental constant in nature: ¢ = \/1— = 299, 792, 458 meters per second.
€oko

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

64 Chapter 2 - Fundamentals of Imaging

Figure 2.43 Snell’s law of Incident ray
refraction (left) and total Transmitted
internal reflection (right). Note

0° 201° A, 40 angles
that 48.8 degrees is the angle n ny 90° |

of total internal r.efle.ct|on ny | \ \ 6ON
for water (assuming index of 3000 /48.8°

refraction = 1.33). Based on 15° Rgggg:d
http://www.timbercon.com/ ! Refracted /

Total-Internal-Reflection.html | ray **

0° 15° 30° 48.8° 60° Incident angles

Reflected ray

—_

so that the right hand side of the equation can be greater than 1, in which case 6, does not
exist at all! This is called total internal reflection, and it occurs when 0, is greater than a
certain critical angle that depends on the ratio n;/n,. Total internal reflection is the mecha-
nism behind fiber optics, in which a transparent core is surrounded by a material with a
lower index of refraction, allowing light to pass through the fiber by continuous reflections
with almost no loss. A natural example of this phenomenon is the mineral ulexite, which
contains fibrous compact veins that act as fiber optic cables, transmitting light from one
surface to the other. When the rock is polished on both sides and placed on top of, say, a
newspaper, the words seem to leap to the top of the stone, as shown in Figure 2.44 — hence
the nickname “television stone.”

Other Phenomena

Our brief tour in this section has only begun to explore the rich and complex capabilities of
electromagnetic waves. For example, when the dimensions of objects are small compared
with the wavelength of light, the wavelike properties of light become important, allow-
ing light to bend around the edges of an object or through tiny slits, causing diffraction
and interference between different waves. There are two types of mathematical models
commonly used to model diffraction: Fresnel diffraction describes what happens when
the light wave is near the object, while Fraunhofer diffraction applies to plane waves at a
distance.” Another phenomenon is iridescence, which occurs when a surface appears to
change color due to the viewing angle, as in soap bubbles, peacock feathers, or some but-
terfly wings. When the material is anisotropic so that a ray of light is split into two rays,
we have birefringence, a phenomenon exploited by a variety of applications. Circular

Figure 2.44 Ulexite (television stone) is a naturally
occurring rock with internal veins that act like fiber
optic cables.

topgeo.com

" Pronounced fray-NELL and FROWN-hoof-uh.
Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

2.6 Further Reading

65

birefringence is caused by applying a magnetic field that changes the relative speed between
left and right circularly polarized waves, known as the Faraday effect. Luminescence is
the emission of light by a method other than heat, such as by a light-emitting diode (LED),
which relies on electroluminescence. Other forms of luminescence include fluorescence,
in which the wavelength of light changes upon reflection, and phosphorescence, when
there is a time delay between the absorption and emission. Scintillation is the twinkling or
flickering of a light source, including the flash of light produced by an ionizing event, used
in the sensing mechanism of positron emission tomography (PET). As you can see from
these examples, electromagnetic waves exhibit a variety of phenomena, many of which
are useful in practical applications, beyond the simplifying assumptions that we normally

consider when studying light rays.

2.6 Further Reading

Excellent overviews of the human visual system can
be found in the works of Wandell [1995] and Palmer
[1999]. Another excellent reference on the inner work-
ings of vision is that of Hubel [1988]. A recent survey
on the human visual system is provided by Kriiger et al.
[2013]. Pioneering work in this field is too numerous to
cite, but the research studies on receptive fields by Hubel
and Wiesel [1962] and Olshausen and Field [1996] are
particularly well known and relevant. The irreducible
complexity of a photoreceptor is well argued by Behe
[1996], while the explanation of the need for an inverted
retina can be found in Gurney [1999]. The cone funda-
mentals in Figure 2.2 come from the data provided online
by Stockman and colleagues.”

The plenoptic function is due to Adelson and Bergen
[1991], while the light field was independently pro-
posed by and Levoy and Hanrahan [1996] and Gortler
et al. [1996] (where it was called the “lumigraph”); all
of these can be traced to Gibson’s ambient optic array
[Gibson, 1966] and even earlier to the integral camera
of Lippmann near the turn of the 20th century. And in
fact the term “light field” itself was coined by Gershun
[1939]. Further detail regarding the sampling of the light
field can be found in Ng [2006].

Standard image formation and acquisition is treated
in any computer vision book, such as Forsyth and Ponce
[2012] or Szeliski [2010]. Gamma compression is

" http://www.cvrl.org.

described in detail by Poynton [2003, 1998], who also
maintains an online Gamma FAQ.* A complementary
treatment of gamma compression can be found in the
work of Stokes et al. [1996]. A description of how pixels
are stored in a frame buffer, including resolution, color
channels, and so forth, can be found in Glassner [1990].
Pawley [2006] provides a detailed overview of the imag-
ing process in the context of microscopy. Vignetting is
described by Goldman [2010], while intrinsic images
are due to Barrow and Tenenbaum [1978] and investi-
gated by Weiss [2001], Tappen et al. [2005], and Grosse
et al. [2009]. For recent work on intrinsic images, see
Imber et al. [2014]. Further information regarding CCD
sensing and high dynamic range imaging can be found
in Debevec and Malik [1997]. Another important consid-
eration that we did not have space to consider involves
atmospheric effects; see, for example, the dark channel
prior of He et al. [2009].

Electromagnetic waves are the subject of any standard
text on electromagnetism, such as Cheng [1989]. Light
and the electromagnetic spectrum are covered in standard
physics texts, such as Gettys et al. [1989]. Radiometry and
photometry are difficult subjects to grasp, with subtle dif-
ferences between the terms being extremely difficult to
perceive for the uninitiated. For more information on the
subjects, the reader may wish to consult the Illumination
Fundamentals booklet from the Lighting Research Center.*

*http://www.poynton.com/PDFs/GammaFAQ.pdf.
¥ http://www.opticalres.com/It/illuminationfund.pdf.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

PROBLEMS

2.1 What is unusual about vertebrate photoreceptors, compared with most sensory
receptors?

2.2 Explain the purpose of an inverted retina in the human eyeball. Give two additional
reasons why the inverted retina does not cause significant distortion in the image.

2.3 List three parts of the human eyeball that refract light.

-What are the actual names of the three types of cones, which are colloquially called
red, green, and blue?

2.5 Define horopter.
2.6 Explained what is meant by foveated vision.

2.7 How do we know that the original signal captured by the rods is compressed by sub-
sequent cells before leaving the eyeball?

2.8 True or false: Your right eye is mapped to the left half of your brain, while your left
eye is mapped to the right half of your brain.

-Match each term on the left with with the lighting condition on the right.

scotopic vision sunlight
photopic vision moonlight
mesopic vision starlight

Bl Cones do not work in the dark, because they are not sensitive enough. What about
the converse: Do rods produce meaningful signals in everyday well-lit conditions? Why or
why not?

2.11 Draw a labeled diagram of the human visual system, including at least ten parts
indicated in bold in the text.

2.12 Why would it be tempting to conclude that short (blue) wavelengths are less important
to the human visual system? Why is this conclusion false?

2.13 Suppose the following pairs of numbers indicate the luminances of the left and right
halves of a piece of paper (ignore units): 100/101, 200/201, 300/301, 150/160, 250/260,
350/360. Which can be discerned?

2.14 What is a receptive field?

2.15 Which cells in the visual pathway transform the signal similar to the Laplacian of
Gaussian (LoG)?

2.16 The axons of which cells comprise the optic nerve?
2.17 What is unique about the lobster eye?

2.18 True or false: The speed of light is constant no matter what medium it is passing
through.

2.19 Which has a longer wavelength: red light or blue light?

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

Problems

67

2.20 Suppose a lens is made of a high-index plastic whose index of refraction is 1.74. If
the speed of light is approximately 3-10% m/s in a vacuum, what is the speed of light (phase
velocity) as it passes through the lens?

2.21 What is the plenoptic function?
Bl Dcscribe the essential elements of a pinhole camera.
2.23 What are the wavelengths of visible light?

BV hich has a longer wavelength: radio waves or X-rays? Which is more dangerous,
and why?

2.25 You are sitting at a stoplight listening to 102.1 FM on your old-fashioned radio, get-
ting a weak signal. You wish to roll the car to improve the signal. How far must you roll to
move one wavelength? What is the ratio of this wavelength to that of green light?

2.26 Is scaled orthographic projection more appropriate for a zoom lens or a fisheye lens?
Explain your answer.

2.27 Suppose we have a symmetric thin lens composed of two sections of a sphere glued

together, where the radii of both sides are equal. Explain why (- — 1) in Equation (2.5)

a1 2
is not equal to zero.

2.28 Apply the nonlinear transfer function from both Rec. 709 and sRGB in Equations
(2.22) and (2.23) to the values L = 0.2, 0.4, 0.6, and 0.8. Compute the difference for each
value as a percentage of the answer for Rec. 709.

2.29 Will gamma compression become obsolete now that CRT displays are obsolete? Why
or why not?

2.30 Specify the two sections of the modified gamma function with exponent y = 0.5 and
threshold 7 = 0.1.

2.31 Explain the idea of effective gamma.

2.32 What is the name of the most popular color filter array (CFA)?

2.33 Explain the difference between a field and a frame of video.

2.34 List some similarities and differences between CCD and CMOS sensors.
2.35 How much is a CMOS sensor affected by blooming?

2.36 Why does black have the value 16 and not 0 in a digital image?

2.37 Explain what is meant by a Lambertian surface. What is albedo? Which is more likely
to be Lambertian: a piece of cloth or a shiny piece of metal?

2.38 Which radiometric quantity is appropriate for a ray of light? What is the correspond-
ing photometric quantity?

2.39 Explain why a thermal infrared camera is able to measure the heat emanating from
people and animals.

2.40 Suppose I am standing on the shore looking at a body of water. If the water has an
index of refraction of 1.33, at what angle will I experience total internal reflection? How
does the answer change if I am underwater looking up? In both cases, express the angle
with respect to the vertical axis.

2.41 Alight field, which is 4D, can be represented as a 2D array of tiny 2D images. Indeed,
this is the representation used by a light field camera. Explain how a 2D array of microlenses
placed in front of the image sensor might be able to accomplish this.

2.42 Mathematically show the two sufficient conditions for scaled orthographic projec-
tion to closely approximate perspective projection. (Hint: Show from Equations (2.1)—(2.2)
that bounding the error |f7* — fz| < e for some nominal depth z, implies 2 - jl =%
where z = zo + &, and € is a constant. Then interpret the result in terms of the two suf-
ficient conditions.)

2.43 Suppose a person is standing in front of a pinhole camera so that their face occupies
a certain width in the image. If the person moves laterally so that the perpendicular distance
to the camera is maintained, does the face width in the image change? Why or why not?

2.44 Consider two thin lenses, both symmetric and made of the same material. If one lens
has twice the focal length of the other, what is the relationship between their radii?

2.45 In the case of a thin lens, what condition is necessary in order for a distinction between
the focal points and nodal points to be important?

2.46 Suppose a camera has an f-number of 8. What is the aperture, expressed as a function
of 7 What is the aperture of a camera whose light gathering ability is twice as great, also
expressed as a function of f?

2.47 List the four types of vignetting. Under what conditions are they important?

2.48 List the three ways of transferring energy. Of these, which one can travel through a
vacuum?

2.49 What is the name of the set of equations that underlie all applications using
electromagnetism?

2.50 Derive the homogeneous vector wave equations in Equations (2.26)—(2.27) from
Maxwell’s equations in Equations (2.24)—(2.25). (Hint: It is not necessary that you
understand what the divergence and curl operators actually do. Simply take the curl of
(2.24), and apply the fact that the curl operator is linear. You will need the vector identity
V XV X E =V(V-E) — V?E, and similarly for B.)

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

. CHAPTER 3 .
Point and Geometric
Transformations

n this chapter we discuss some of the simplest ways to transform an image into another image. These transformations

fall into one of two types. In a point transformation, a pixel’s value is changed solely based upon its original value,

without changing its location within the image. We consider several types of point transformations, such as graylevel
transformations in which the pixel values are scalars, multispectral transformations that operate on images with mul-
tiple channels, and multi-image transformations that operate on more than one image. In a geometric transformation,
the location of a pixel changes from the input image to the output image, but the value of the pixel does not change.
Our discussion of geometric transformations includes both simple transformations that involve a one-to-one mapping
from input to output pixels as well as more complex transformations that require interpolation.

3.1 Simple Geometric Transformations

We begin by considering simple geometric transformations in which the output pixel is
dependent only upon a single input pixel. More general geometric transformations are
considered later in the chapter.

3.1.1 Flipping and Flopping

Perhaps the simplest geometric transformation is to reflect the image about a horizontal or
vertical axis passing through the center of the image, as shown in Figure 3.1. If the axis is
horizontal, then the transformation flips the image upside down; whereas if it is vertical,

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

70

Chapter 3 « Point and Geometric Transformations

then the transformation flops the image to produce a right-to-left mirror image. A flip fol-
lowed by a flop (or equivalently, a flop followed by a flip, since order does not matter here)
is referred to as a flip-flop.t

Consider, for example, the following 3 X 3 grayscale image and its reflections about the
horizontal and vertical axes:

128 78 174] 174 78 128

181 48 77 | PO 1 77 48 181

109 49 138 | 138 49 109
J Fuip

109 49 138]

181 48 77

128 78 174 |

In this example, flipping swaps the first and last rows, whereas flopping swaps the first
and last columns. More generally, recall that for an arbitrarily sized width X height image,
the columns are x = 0, 1, ..., width —1, while the rows are y = 0, 1, ..., height —1.
Thus, all pixels in the first row have coordinates (x,0), while all pixels in the last row have
coordinates (x, height —1); all pixels in the second row have coordinates (x,1), while all
pixels in the penultimate (next-to-last) row have coordinates (x, height —2); and so on.
Therefore, flipping involves swapping row y with row height — 1 — y, while flopping
involves swapping column x with column width — 1 — x, as illustrated in Figure 3.2.
If we let (x, y) be the coordinates of an input pixel, and (x’, y") the coordinates of the cor-
responding output pixel, then the relationship between these coordinates can be expressed
mathematically as follows:

x' =x y' = height — 1 —y (flip) (3.1

x' = width — 1 — x y =y (flop) (3.2)
Using these equations, the transformations are expressed as functions that define the map-
ping between each input pixel I (x,y) and its corresponding output pixel I'(x’, y’):

I'(x, height — 1 —y) =1(x,y) (flip, forward mapping) (3.3)

I'(width — 1 — x,y) = I(x,y) (flop, forward mapping) (3.4)

where in each case I is the input image and /' is the output image. These equations, known
as forward mappings, instruct how to compute the destination coordinates from the source
coordinates. Rearranging the equations yields inverse mappings, in which the source
coordinates are computed from the destination coordinates:

Figure 3.1 Animage,
and the result of
flipping, flopping,
and flip-flopping.

"The terms flip and flop are widely used in the graphics community; the term flip-flop is introduced here as a natural consequence.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

3.1 Simple Geometric Transformations 71

Figure 3.2 To flip animage
(turn it upside-down),
swap each row y with its
corresponding row height
— 1 — y. Similarly, to flop
an image (produce a mirror
version), swap each column
x with its corresponding
column width — 1 — x.

[—— . — [n v y & 1y
Flip
[W N] [\ — 4] height—]—y
Image Upside-down

X <—> Xvidth—] —X

/ Flop \
/
N
- Image - ~ Mirror
I'(x',y") = I(x', height — 1 —y") (flip, inverse mapping) (3.5)
I'(x',y") = I(width — 1 — x',y') (flop, inverse mapping) (3.6)

Although both the forward and inverse mappings are equivalent to each other in the simple
case of flipping and flopping, the distinction between them is important with more compli-
cated transformations, as we shall see later.

Throughout this book we will be presenting a variety of different algorithms to pro-
cess images. To capture these algorithms precisely we present them using pseudocode.
Pseudocode (which literally means “false code”) is a compromise between the two extreme
alternatives of explaining an algorithm in human language (which leads to ambiguity) and
providing actual working code (in which uninteresting details obscure the important steps).
Pseudocode allows us to precisely express the steps of an algorithm in a manner detailed
enough to aid implementation, but independently of any particular programming language.

The pseudocode for the algorithms to flip and flop an image using the forward mapping
are shown as the procedures FLIPIMAGE and FLOPIMAGE in Algorithms 3.1 and 3.2, respec-
tively. Each of these procedures takes one input parameter, namely the image /, which can
be of any type (grayscale, RGB, floating-point, or otherwise), and each procedure produces
exactly one output, namely the upside-down or mirror-reversed image I'. The comments,
which are set apart by a right-facing triangle (»), help to explain what each line of the
pseudocode is doing, although these particular procedures are so simple that there is really
no need for comments at this point. Line 1 allocates memory to store the output image; we
will often omit this step and assume that memory has already been allocated. Line 2 indi-
cates a “for loop” over all the pixels in the image. In this line the image is treated as a set,
so that (x,y) € I means a pixel in the image. Line 2 is therefore a compact way of saying,
“for each pixel in image /,” which in many programming languages would be expressed as
two separate for loops, one over x and another over y:

for y < 0 to height—1 do

for x <= 0 to width—1 do

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

72

Chapter 3 « Point and Geometric Transformations

ALGORITHM 3.1 Flip an image by reflecting about a horizontal axis

FLIPIMAGE ()

Input:

image [of size width X height

Output: upside-down image /'

1

2
3
4

for (x,y) € I do

I' < ALLOCATEIMAGE(width, height) Allocate memory for output image.
For each pixel in input image,

I'(x, height — 1 — y) < I(x,y) set corresponding pixel in output image.
Return output image.

ALGORITHM 3.2 Flop an image by reflecting about a vertical axis

FLoPIMAGE (1)

Input:

image [of size width X height

Output: mirror-reversed image I’

1

2
3
4

for (x,y) € I do

I' < ALLOCATEIMAGE(width, height) Allocate memory for output image.
For each pixel in inputimage,

I'(width — 1 — x,y) < I(x,y) set corresponding pixel in output image.
Return output image.

or equivalently using a single for loop over the 1D index using Equation (1.3):
for i < 0 to width - height—1 do

However, we use the set notation (x, y) € I to simplify the presentation and to emphasize
that the order in which the pixels are processed in this case does not matter. In Line 3 the
image is treated as a 2D array, so that /(x, y) yields the value of pixel (x, y). This value is
then copied to a different location in the output image I'. The left arrow (<—) denotes the
setting of a variable, performing the same role in our pseudocode as the equal sign (=)
in most programming languages. This notation should help to avoid confusion, because
incrementing a variable, for example, will be written in our pseudocode as x <— x + 1 (or
x <=, D) rather than x = x + 1, which is not a valid mathematical statement. Once all pixels
have been transformed, the resulting image is returned in Line 4.

3.1.2 Rotating by a Multiple of 90 Degrees

Another important geometric transformation is to rotate the image. Later in the chapter we
will consider arbitrary rotation angles, but for now let us limit ourselves to rotations that are
multiples of 90 degrees about the center of the image, which simplifies the problem consid-
erably by ensuring that the transformation is a one-to-one mapping from pixels in the input
image to those of the output image. Figure 3.3 shows the result of rotating an image by mul-
tiples of 90 degrees. Note that rotating an image by 180 degrees is equivalent to a flip-flop.

Consider, for example, the clockwise 90-degree rotation of a width X height image,
as illustrated in Figure 3.4, where each pixel (x, y) in the input image maps to the pixel
(x',y") in the output image. From the figure it is not hard to see that the dimensions of the
new-width X new-height output image are swapped with respect to those of the input image:
new-width = height and new-height = width; and that I(x, y) mapsto ' (height — 1 — y, x),
so that x" = height — 1 — yand y' = x, or

3.1 Simple Geometric Transformations 73

Figure 3.3 Animage
rotated by 0, +90, —90,
and 180 degrees.

—90° 180°

Stan Birchfield

I'(height — 1 — y,x) =1(x,y) (3.7)

which is the forward mapping. Alternatively, we can rewrite the correspondence as x =y’
and y = height — 1 — x’, leading to the inverse mapping:

I'(x',y") =I(y', height — 1 — x') (3.8)

As with flipping and flopping, these two approaches are equivalent since rotating about a
multiple of 90 degrees is a one-to-one mapping.

EXAMPLE 3.1

Solution

Rotate the following 3 X 2 grayscale image clockwise by 90 degrees, using both forward
and inverse mapping approaches:

I [105 90 35}
228 207 52
Considered as a forward mapping, Equation (3.7) indicates that the pixel at 7(0,0) maps
tol'(2—1—-0,0) =1'(1,0); the pixel at I(1,0) mapsto I'(2 — 1 —0,1) = (1,1);
the pixel at 7(2,1) maps to I'(2 — 1 — 1,2) =1'(0,2); and so forth. Considered as
an inverse mapping, Equation (3.8) indicates that the pixel at /' (0, 0) is mapped from
1(0,2 — 1 —0) =1(0, 1); the pixel at I'(1, 0) is mapped from 7(0,2 — 1 — 1) =1(0,0);

the pixel at I' (1, 2) is mapped from (2,2 — 1 — 1) = I(2, 0); and so forth. Either way,
the result is as follows:

22 1
|:105 90 35:| RoTATE CLOCKWISE 8 05

207 90
N
228 207 52 52 35
Figure 3.4 To rotate an image \
clockwise by 90 degrees, the P — . * .
pixel (x, y) in the input image is Iy = Y
mapped to (X, y’) in the output .80
image. From the drawing, it = Rotate 90° 2
| ~ new- ¥ = 1
is easy to see that X' = new: S 2
width —1 — y = height =
—1—yandy =x.
width new-width

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

74

Chapter 3 « Point and Geometric Transformations

Similar reasoning can be applied to other multiples of 90 degrees. If we let 90m be the
clockwise rotation angle, where m is an integer, then only four possible cases exist: A clock-
wise rotation of 90 degrees (the case we just considered in detail) occurs if the remainder
of dividing m by 4 is 1, a counterclockwise rotation of 90 degrees occurs if the remainder
is 3, a rotation of 180 degrees occurs if the remainder is 2, and no rotation occurs if the
remainder is 0. Note that the image dimensions are swapped when the rotation is either
clockwise 90° or counterclockwise 90°, whereas the image dimensions are unchanged when
the rotation is either 0° or 180°. The pseudocode for these cases, using inverse mapping, is
shown in Algorithm 3.3, where we have used the notation of modulo arithmetic to specify
the remainder, that is, mod(m,4) is the remainder of dividing m by 4.

3.1.3 Cropping an Image

Figure 3.5 shows the result of cropping a smaller region out of a larger image. The region
to be cropped is specified by a rectangle, where the coordinates of the top-left pixel in
the rectangle are given by (left, top), and the coordinates of the bottom-right pixel just
outside the rectangle are given by (right, bottom). In other words, we adopt the common
convention that the rectangle specified by the four parameters left, top, right, and bottom
includes the pixels in the sets x € {left, ..., right—1} and y € {top, ..., bottom—1},
so that the pixel (left, top) is included but the pixel (right, bottom) is excluded. One
advantage of this convention is that the number of pixels in the rectangle is given simply
by (right — left)-(bottom — top). The pseudocode of this procedure, which unlike the
previous transformations considered is not one-to-one, is shown in Algorithm 3.4.

3.1.4 Downsampling and Upsampling

Another common operation is to downsample an image to produce a smaller image than the
original. In general it is advised to smooth the image before downsampling to avoid aliasing
artifacts, as discussed later in the chapter. For now, however, let us simply discard a subset of the
pixels. For example, to downsample by a factor of 2, every other column and row are discarded:

I'(x,y) = I(2x,2y) (downsample by two) (3.9)

ALGORITHM 3.3 Rotate an image by a multiple of 90 degrees

ROTATEIMAGEBYMULTIPLEOF90ODEGREES(Z, 11)

Input:

image [of size width X height, signed integer m indicating the number of 90-degree turns

Output: image I’ of size new-width X new-height, which is I rotated by 90m degrees clockwise

1
2
3
4
5
6
7
8
9

10
11

case mod(m,2) of

0: new-width <— width, new-height <— height

Image dimensions remain the same.

1: new-width <— height, new-height < width Image dimensions are swapped.
I' < ALLOCATEIMAGE(new-width, new-height)
for (x',y") €I do

case mod(m,4) of

return /'

0:

1:
2:
3

I'(x',y") < I(x',y") no rotation
I'(x',y'") < I(y', height — 1 — x") 90 degrees clockwise
I'(x',y") < I(width — 1 — x', height — 1 — y') 180 degrees
I'(x',y") < I(width — 1 — y', x") 90 degrees counterclockwise

3.1 Simple Geometric Transformations 75

Figure 3.5 Animage and an

automobile cropped out of the
region of the image indicated by the

red rectangle.

Stan Birchfield

Image Cropped region

Similarly, an image can be upsampled to produce a larger image than the original. For
best results, interpolation should be performed between pixel values to avoid pixelization
artifacts, as discussed later. For now, however, simply replicate each pixel a certain number
of times. For example, to upsample by a factor of 2, each row and column is copied twice:

I'(x,y) = IQ;J BJ) (upsample by two) (3.10)

where the floor operator ensures that the input image is accessed by integer coordinates.

Results of repeatedly downsampling and upsampling by a factor of two in both directions
are presented in Figure 3.6.

ALGORITHM 3.4 Crop an image

Input:

image 1, rectangle with corners (left, top) and (right—1, bottom—1)

Output: cropped image I of size new-width X new-height

[©) NNV, T N OIS

new-width < right — left
new-height <— bottom — top
I' < ALLOCATEIMAGE(new-width, new-height)

for (x',y’) € I' do
I'(x',y") < I(x'
return /'

+ left,y' + top)

Figure 3.6 Lert: Animage and the result of downsampling by a factor of 2 and 4, respectively, in each direction. RicHT: A cropped region
and the result of upsampling by a factor of 2 and 4, respectively, in each direction.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

76 Chapter 3 « Point and Geometric Transformations

3.2 Graylevel Transformations

A geometric transformation, as we have just seen, changes a pixel’s location without chang-

ing its value. A complementary idea is that of a point transformation, which-
* To be a point transformation, it is required
that the mapping be independent of the pixel’s coordinates as well as of the coordinates
and values of all other pixels. In this respect point transformations can be considered as a
special case of spatial-domain filtering, which we consider in detail later.” Spatial-domain
filtering removes the latter restriction, allowing the output values to be dependent upon the
values of other pixels.

The simplest type of point transformation is a graylevel transformation, which trans-
forms a grayscale input image into a grayscale output image:

I'(x,y) = f(I(x,y)) (3.11)

where f is a function that maps the gray level of a pixel in the input image I to the gray
level of a pixel in the output image I'. Graylevel transformations are used for many pur-
poses, such as contrast enhancement, nonlinearity correction, and binarization. If we let
Zyass = {0,1,2, ..., 255} be the set of integers between 0 and 255, inclusive, then for an
8-bit grayscale image, f'is a mapping from an element of the set Z.,55 to another element
of the same set, represented mathematically as

S 2255 = Loass (3.12)

and depicted graphically in Figure 3.7. Note that fis not dependent upon the coordinates x
or y themselves but only upon the value of the image pixel.

Pseudocode to perform a graylevel transformation is presented as the generic procedure
TRANSFORMGRAYLEVELS in Algorithm 3.5. The procedure takes two input parameters: an
image I and a function f*. For each pixel in the image, the function fis called with the pixel’s
gray level, and the return value of the function is then stored at the same location in the
output image. After all pixels have been transformed, the resulting image is returned. Since
the pixels’ locations do not change, and therefore x" = x and y’ = y, there is no need to
distinguish between the forward and inverse mappings, as is done with geometric

Figure 3.7 A graylevel transformation

maps input gray levels to output gray

levels. Based on http://www.unit.eu/cours/
videocommunication/Point_Transformation_
histogram.pdf

Output gray level

Input gray level

* Chapter 5 (p. 215).
*In code f would be considered a function object or “functor.”

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

3.2 Graylevel Transformations

77

ALGORITHM 3.5 Transform gray levels of an image

TRANSFORMGRAYLEVE

Ls(Z, f)

Input: grayscale image /, graylevel mapping f
Output: transformed image /'

1 for (x,y) € Ido

2 I'(x,y) < f(I(x,y))

3 return !/’

transformations. Note that other variations of the same basic idea can be achieved by modi-
fying the procedure to suit the particular needs at hand. For example, instead of returning
the output image by value, as is shown here, it may be preferable to pass a previously allo-
cated array into the procedure to store the output. Or, instead of using a separate output
image to hold the result, an alternative would be to store the result in place, that is, to
overwrite the pixel’s value using I(x, y) <= f(I(x, y)). Such variations, which are common
to all the pseudocode presented in this book, are left as exercises for the reader.

Graylevel transformations are also known asjiEEEE, but the former
term has the slight advantage in emphasizing that the mapping is between discrete sets of
values, as well as being more accurate when images are already gamma-compressed, in
which case the values do not (strictly speaking) represent intensity anyway.” Nevertheless,
the transformations presented in this section are easily extended to integer or floating-point
images by simply removing the discretization, or to RGB images by applying the transfor-
mation to each color channel separately.

3.2.1 Arithmetic Operations

A useful class of graylevel transformations is the set of arithmetic operations, depicted in
graphical form in Figure 3.8. The identity transformation maps each gray level to itself,
thus rendering the image unchanged, whereas inversion reverses the gray levels to create
a photographic negative. Addition and multiplication, as their names imply, simply add
or multiply, respectively, a constant to each gray level, and the gain-bias transformation
combines these two operations. Except for inversion, all of these transformations are
monotonically nondecreasing, meaning that the ordering of gray levels does not change
as a result of the mapping. That is, if z; = z,, then f(z;) = f(z,). When the transformation

Figure 3.8 Arithmetic grayleve

| transformations. From left to right: identity, inversion, addition (bias), multiplication (gain), and gain-

bias transformation, where saturation arithmetic prevents the output from exceeding the valid range. Note that the slope remains 1
under addition, while the mapping passes through the origin under multiplication.

Output

255

255 —— 255 255 !
; |
|

Output
Output
Output
Output

I I

I I

I I

I I I

I I I

L Il L
0 255 0 255 0 255 0 255

Input Input Input Input

"Recall from Section 2.3.2 (p. 43) that gamma-corrected gray levels represent lightness, which is perceptually uniform;

whereas intensity is proportional to the power in the electromagnetic wave, as explained in Section 2.5.2 (p. 58).

78

Chapter 3 « Point and Geometric Transformations

is monotonically non-decreasing, then the relative values of pixels remain the same, i.e.,
if one pixel is brighter than another in the input image, then it remains brighter in the
output image.

Let us consider these operations in more detail. Apart from the identity function, the sim-
plest arithmetic operation is to invert each pixel’s value by subtracting it from the maximum
gray level, which in the case of an 8-bit image leads to

I'(x,y) =255 —I(x,y) (3.13)

resulting in an image that looks like the photographic negative of the input image. An
example of graylevel inversion is shown in Figure 3.9, where the input and output gray
levels of the pixelsin a 5 X 5 window are

7 21 25 38 76 248 234 230 217 179
27 45 58 88 155 228 210 197 167 100
28 46 96 163 216 | INVERTGRAYLEVELS | 557 509 159 92 39
40 55 123 216 226 215 200 132 39 29
42 55 94 173 201 213 200 161 82 54

Note that for each pixel, the input and output values sum to 255.
Another arithmetic operation is to add a constant number, say b, to each pixel’s value:

I'(x,y) =I(x,y) + b (3.14)

which is one way to brighten a dark image. If I' were a floating-point or integer-valued
image, we would have nothing more to say. But for grayscale images with a finite number
of bits devoted to each pixel, we must concern ourselves with the possibility of overflow,
which occurs when the result is too large to fit into those bits. For example, adding 75 to an
8-bit pixel whose value is 200 would result in the value 275, which would exceed the stor-
age capacity of the pixel. The solution to this problem is to use saturation arithmetic in
which results are clamped to the nearest valid value, leading to 200 + 75 = 255, which is
obviously only valid if the plus sign is interpreted as saturation addition with a valid range
of 0 to 255. As a result, we add an extra test to ensure that no value greater than 255 will
attempt to be stored:

I'(x,y) = min(I(x,y) + b, 255) (3.15)

Figure 3.9 An 8-bit grayscale
image (left), and the inverted
image obtained by subtracting
each pixel from 255 (right).

vita khorzhevska / Shutterstock.com

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

3.2 Graylevel Transformations

79

Moreover, if b is allowed to be negative (in which case the image will be darkened), an
additional test is needed to ensure that negative results are clamped at zero. To handle
the general case in which the sign of b is not known beforehand, clamping must occur at
both ends:

I'(x,y) = min(max(I(x,y) + b,0),255) (3.16)

Note that with saturation arithmetic, addition and subtraction are not necessarily inverses
of each other.

EXAMPLE 3.2

Solution

Compute the result of adding either 100 or —100 to the following 3 X 3 grayscale image,
using saturation arithmetic:

216 171 174
I=1|134 214 97
52 5 212

For b = 100, add 100 to each pixel and clamp the result at 255. For b = —100, subtract
100 from each pixel and clamp the result at 0. These operations yield

[255 255 255
I1+100 =255 255 197
| 152 105 255
116 71 74]
I—100=| 34 114 0
L0 0 112

An alternative approach to brightening or darkening an image is to multiply each pixel
by a positive value:

I'(x,y) =cl(x,y) (3.17)

where ¢ >0 is a constant. As before, we must apply a minimum,
I'(x,y) = min(cl(x,y),255), to prevent the result from exceeding the number of bits
allowed for storage. If, in addition, c is a floating-point value and I’ is a grayscale image,
then we also must round the result to the nearest integer before storing.

Combining multiplication and addition yields the transformation

I'(x,y) =cl(x,y) +b (3.18)

where the constant c is called the gain and b is called the bias. Recall from the previous
chapter that a standard television or computer monitor has two controls called the contrast
and blacklevel (or brightness).” Mathematically, the gain-bias transformation is identical
to that of the contrast and blacklevel controls, as can be seen from comparing Equation
(3.18) with Equation (2.13). Note that ¢ plays the role of the contrast, while b governs the
blacklevel. Together these two parameters are useful to increase both the overall gray levels
as well as the contrast of a dark image. Figure 3.10 shows the effects of applying gain and
bias to an image, using the pseudocode presented in Algorithm 3.6. Note that multiplication,
which is implicit in the equation, is explicitly denoted using the asterisk (*) symbol in the

" Section 2.3.2 (p. 43).

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

80 Chapter 3 « Point and Geometric Transformations

Figure 3.10 Improving
image quality by applying
gain or bias to an image.
From left to right: Original
image, brightened image
by adding a constant value
(b = 50), higher contrast
image by multiplying a
constant value (¢ = 2.5).
Source: Movie Hoop Dreams

ALGORITHM 3.6 Apply gain and bias to a grayscale image, using saturation arithmetic

Input: grayscale image /, constants b, ¢

Output: grayscale image / " with increased brightness and contrast
1 for (x,y) € Ido

2 I'(x,y) < MiNn(Max(Rounp (I(x, y)*c + b),0), 255)
3 return/’

pseudocode to better reflect the appearance of actual code. Also note that addition and multi-
plication are special cases of this procedure, when ¢ = 1 and b = 0, respectively. Grayscale
inversion is also a special case, when b = 255 and ¢ = —1, but in that case the procedure
can be simplified since rounding and saturation arithmetic are not needed.

Compute the output of Algorithm 3.6 on the following 3 X 3 grayscale image, with b = 50
and ¢ = 2, using saturation arithmetic:

216 171 174
I=|134 214 97
52 5 212
Solution For each pixel, we simply multiply the value by ¢ and add b, then clamp the result:
255 255 255
APPLYGAINANDBIAS(/,50,2) = | 255 255 244
154 60 255

3.2.2 Linear Contrast Stretching

A closely related transformation specifies a line segment that maps gray levels between g,
and g« in the input image to the gray levels g/in and g, in the output image according
to a linear function. Called linear contrast stretch, this transformation is given by

, 8max ~ &mi ,
1 (x’y) = M(I(xs y) - gmin) + 8min (3.19)

8max — &min

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

3.2 Graylevel Transformations

81

Itis easy to verify that that the minimum input value maps to the minimum output value, that
is, I(x,y) = gminmapstol'(x,y) = ghn. Similarly, the maximum input value maps to the
maximum output value, that is, I(x, y) = gmax yields I'(x,y) = ghax- As a consequence,
if some values in the input image are less than g,,,;, or greater than g,,.,, then it is necessary
to clamp the output of Equation (3.19) using min(max (-, g/in)s &max)-

One widely used application of linear contrast stretching is to display an integer-valued
or floating-point image. Most displays require pixel values to be in the range of 0 to 255 for
all color channels. Therefore, to maximize the output contrast, we usually take advantage
of the full output range by setting g/in = 0 and g, = 255, in which case Equation (3.19)
simplifies to

(x,y) - gmin> (3.20)

, 1
I'(x,y) = Rounp <255 :

8max ~ &min

where g, and g, are the minimum and maximum of the values in the image, and round-
ing has been included for clarity. (Oftentimes, floating-point values are between 0.0 and
1.0.) It is easy to see that this equation is identical to the gain-bias transform of Equation
(3.18), with ¢ = 255/(gmax - gmin) and b = —255 - gmin/(gmax - gmin)'

A piecewise linear contrast stretch, formed by combining several of these line seg-
ments, can model any graylevel transformation with arbitrary precision, given enough line
segments. Figure 3.11 illustrates linear contrast stretching and piecewise linear contrast
stretching.

Solution

Apply the piecewise linear contrast stretch shown in Figure 3.12 to the following 3 X 3
grayscale image:

73 56 3
15 188 239
82 45 o4

From the figure, we see that the mapping contains 3 linear segments. In the first segment,
any value less than 50 is mapped to 100. In the second segment, values between 50 and
100 are linearly mapped to the range 100 to 200. In the third segment, values between 100
and 255 are linearly mapped to the range 200 to 255. Plugging these values into Equation
(3.19), the mapping can be expressed as

100 if I(x,y) = 50
I'(x,y) =192(I(x,y) —50) + 100 if 50 < I(x,y) = 100 (3.21)
2(I(x,y) — 100) + 200 if 100 < I(x, y)

The value 64, for example, falls into the second category and therefore is mapped to
2(64 — 50) + 100 = 128. The value 188 falls into the third category and is mapped to
(55/155)-88 + 200 = 231 (after rounding). Applying the same procedure to the other
values yields the following output image:

146 112 100
100 231 249
164 100 128

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

82

Chapter 3 « Point and Geometric Transformations

255 255 255
- g'max |77 I I - : : - :
=3 | | = | | =] |
Sy | | & | | & |
z Emin—(1 3 - |
O : | | O | | O |
P | | | |
L ! ! ! !
0 &min 8max 255 0 Zmin 8max 255 0 255
Input Input Input
Figure 3.11 Left: Linear contrast stretching maps all the gray levels between g andg__ totherangeg/ tog .Middle:lfg’ =0

and g/ = 255, then the full output range is used. Rich: A piecewise linear contrast stretch can model any graylevel transformation with

arbitrary precision.

3.2.3 Analytic Transformations

In addition to arithmetic operations, graylevel transformations can be specified using analytic
functions such as the logarithm, exponential, or power functions, as shown in Figure 3.13:

I'(x,y) = log(I(x,y)) (3.22)
I'(x,y) = exp(I(x,y)) (3.23)
I'(x,y) = (I(x,y))” (3.24)

where vy is a nonnegative real number and the necessary rounding and clamping are omitted
for brevity. The logarithm is useful for squeezing images with a high dynamic range, such
as the magnitude of the Fourier transform,’ into a grayscale image with a small bit depth
(typically 8 bits per pixel). The exponential is the inverse of the logarithm. The power func-
tion, as we saw in the previous chapter, is also known as the gamma function and is useful
for gamma expansion (y > 1) or gamma compression (y < 1). Most grayscale images
are already gamma-compressed, in which case gamma expansion can be applied to convert
it back into a [EGIGNGEHNAR by reversing the effects of gamma compression. On the other
hand, if the image is in raw format, then gamma compression can be used to compress the
radiance map into a perceptually uniform grayscale image.*

Figure 3.12 An example piecewise linear

graylevel mapping.

255 o
200 f--------

100

Output gray level

0 50 100 255
Input gray level

" See Section 6.3.3 (p. 293) for an example.
 As explained in Section 2.3.2 (p. 43) , y = 2 for expansion, while y = 0.5 for compression.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

3.2 Graylevel Transformations 83

Figure 3.13 Analytic graylevel
mapping. From left to right: 255
logarithm, exponential,
gamma expansion

(y = 2),and gamma
compression (y = 0.5).

All transformations are
monotonically nondecreasing.

Output

3.2.4 Thresholding

Another important graylevel transformation is thresholding, which takes a grayscale
image and sets every output pixel to 1 if its input gray level is above a certain threshold, or
to 0 otherwise:

, 1 ifl(x,y)>71
I'(x,y) = . 3.25
(%) {O otherwise ()

where 7 is the threshold. The result is a binary image that, for some images at least, separates
the foreground object(s) from the background, as shown in Figure 3.14. By convention, fore-
ground pixels are labeled on, or 1, while background pixels are labeled ofF, or 0. Because
thresholding produces a binary image as output, it is also known as binarization. Even
though only one bit per pixel is needed to store a binary image, it is often more convenient
to use one byte per pixel, setting the nonzero output values to 255 instead of 1, and storing
the output as a grayscale image; this approach has the advantage that it allows the output to
be displayed without scaling, and it also creates a bitwise mask in which all the bits in each
pixel agree with each other, which can be used in masking.

3.2.5 Other Transformations

Several other transformations are worth mentioning. Density slicing (or graylevel slicing
or intensity slicing), assigns all gray levels within a certain range to a certain value. For
example, all gray levels between 128 and 164 might be mapped to 255. Figure 3.15 shows
two versions of density slicing, one in which all gray levels outside this range are mapped
to black (zero), and one in which all gray levels outside this range remain unchanged. Either
way, density slicing is a useful way of highlighting some feature of interest that generates a
relatively narrow range of values in the image. If multiple features generate multiple non-
overlapping ranges, then multiple slices can be combined, so that all gray levels within one

o B Yo

20" o

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

Figure 3.14 An 8-bit
grayscale image (left),
and the binarized result
obtained by thresholding
with 7 = 150 (right).

‘%

Ciprian Stremtan / Shutterstock.com

84

Figure 3.15 Density slicing
maps a range of input gray
levels to a specific output gray
level. All other input gray levels
are either mapped to zero (left)
or remain unchanged (right).

Chapter 3 « Point and Geometric Transformations

255 ----q—g-------- - 255 ----—g--------

Output
Output

NpF——— e ——
Nnpb-—————— e —_——_—_

o
N
W
o
[\

Input Input

range map to one value, while all gray levels within another range map to a different value.
We will see an example of density slicing in the next section.

Quantization, which discards one or more of the [OWeISOIAERBI, is a staircase function
as shown in Figure 3.16, with the number of stairs equal to 2% where b is the number of bits
per pixel retained. Since the higher-order bits typically contain more useful information than
the lower-order bits, quantization is an easy way to reduce the storage requirements of an
image without making it unrecognizable. For example, a pixel whose value is 163 (that is,
10100011 in binary) in an 8-bit-per-pixel image can be stored as 160 (that is, 10100000 in
binary) in a 6-bit-per-pixel image. Although some information has been lost, 160 is similar
enough to 163 that for some purposes recognizability will not be significantly affected. Too
much quantization, however, can seriously degrade the quality of the image, and there are
better ways to achieve high compression ratios anyway,” so quantization should be used with
care. An example of an image with varying levels of quantization is shown in Figure 3.17.

Bit-plane slicing is another transformation that is sometimes mentioned in the context
of graylevel transformations. A bit plane is a |FGIMIMAEE whose value at each pixel is the
same as the appropriate bit in the corresponding pixel of the original image. As a result, the
number of bit planes is equal to the number of bits per pixel. By convention these bit planes
are called O through b — 1, where b is the number of bits per pixel: Bit plane O is associated
with the lowest-order bit, bit plane 1 with the second-lowest-order bit, and so on through bit
plane b — 1 with the highest-order bit. For an 8-bit-per-pixel image, b = 8, so the highest-
order bits of all the pixels are stored in bit plane 7. Figure 3.18 shows the transformations

Figure 3.16 Quantization discards the lower-order bits via a staircase function, with the number of stairs determined by the number of
bits retained. From right to left: Only 1 bit is retained, so the gray levels in the dark half (less than 128) map to 0, while the gray levels
in the bright half (above 127) map to 128 (binary: 10000000); 2 bits are retained, so gray levels are mapped to either 0, 64, 128, or 192;
3 bits are retained, so all gray levels are mapped to either 0, 32, 64, 96, 128, 160, 192, or 224; all 8 bits are retained (no quantization,

the identity function).

(8 bits per pixel)

= = =
2) 5 255F-————- |
1] R * |
(=" =9 o 4:—; |
5 oy 5 & p—
e e 15
% a- a3 |
Pt} = = © |
B B o |
S ————r
\an
< Q ~ 0 255
Input

" Compression is covered in Chapter 8 (p. 355).

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

3.2 Graylevel Transformations 85

Figure 3.17 From left-to-
right and top-to-bottom:
An original 8-bit-per-pixel
image of a fire hydrant and
its quantized versions with
7,6,5,4,3,2,and 1 bit per
pixel. Note that the image
is quite recognizable with
as few as 3 bits per pixel.

Stan Birchfield

< 25T o 255 - o 255 5 255

O | O | O = | O |

== | == | == | == |

= & I = & | = & I =S & |

[SR= | [SPR=1 | [So=} | =] |

5° L, E° L E° |, E° |
| | | |

~ —_— ~ ~ - ~"

0 255 0 255 0 255 0 255
Input Input Input Input

Figure 3.18 Bit-plane slicing transformations for the four highest-order bit planes. The transformation for bit plane 7 is identical, apart
from scaling, to thresholding with a value of 127.

for bit planes 4 through 7 (that is, the four highest-order bits), and Figure 3.19 shows the
bit plane slices of an image. Note that bit plane 7 is identical to the result of thresholding
the image with 7 = 127 and multiplying by 255, and the lower-order bit planes resemble
noise. Bit planes are not very useful on their own, but an image can often be represented

with some fidelity by retaining the higher-order bit planes while discarding the lower-order
bit planes, which is effectively quantization.

3.2.6 Lookup Tables

If the same transformation is to be performed many times, it is often more computation-
ally efficient to compute the transformation beforehand and store it as a lookup table
(LUT). A lookup table is an array specifying the output gray level for any input gray

Figure 3.19 From left-to-right and top-to-bottom: Bit planes 7, 6, 5, 4, 3, 2, 1, and 0 of the hydrant image. Note that the higher-order bit
planes bear some resemblance to the original image, while the lower-order bit planes appear as noise. Bit plane 7 is identical, apart from

scaling, to the quantization with 1 bit per pixel. The image reconstructed from the highest four bit planes (that is, 4 through 7) is shown
in the bottom-left of Figure 3.17.

Stan Birchfield

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

86

Chapter 3 « Point and Geometric Transformations

level. To transform an image, one simply needs to look up the appropriate output value
in the LUT:

I'(x,y) = wt[I(x,y)] (3.26)

where [ut is a one-dimensional array of 256 bytes (assuming an 8-bit image as input), and
the bracket operator is used to select an element of the array. Any discrete graylevel trans-
formation can be implemented using a LUT.

3.3 Graylevel Histograms

A histogram is a simple but powerful technique for capturing the statistics of any type
of data. The space in which the data reside is divided into -, and the histogram records
the number of occurrences in each bin. Throughout this book we will encounter a variety
of different types of histograms, but in this section we focus on the graylevel histogram,
which is a histogram of image gray levels. The space in which the gray levels reside is the
discrete set of values {0, 1, ..., 255}, and this space is divided into 256 bins, one for each
gray level. The graylevel histogram is a one-dimensional array that stores for each gray level
the number of pixels having that value. If n; is the number of pixels in the image with gray
level €, then the histogram # is an array with 256 values specified by

W] =n, €=0, ..., 255

The graylevel histogram can be thought of as a summary of image data that captures only
which gray levels occur, not where they occur. That is, all spatial information is discarded.

The computation of the graylevel histogram of an image is straightforward, as shown in
Algorithm 3.7. After initializing each element of the array to zero, all the pixels in the image
are visited, and each time a particular gray level is encountered, the appropriate element
of the array is incremented. When the procedure has completed, each element of the array
therefore stores the count of pixels for that particular gray level.

The normalized histogram h[¢] is computed from the histogram by simply dividing
each value by the total number of pixels in the image. That is, if we let n = width - height,
then h[€] = h[€]/n for € = 0, ..., 255. The normalized histogram is the probability
density function (PDF)" capturing the probability that any pixel drawn at random from

the image has a particular gray level, so Eisoﬁ[«f] = 1. Note that while h[€] is an integer,

h[€]is a floating-point value. As shown in Algorithm 3.8, the computation of the normalized
histogram requires just a single pass through the image.

ALGORITHM 3.7 Compute the graylevel histogram of an image

CoMPUTEHISTOGRAM(])

Input: grayscale image /

Output: graylevel histogram &

1 for ¢ < 0 to 255 do

2 h€]<0

3 for (x,y) EIdo

4 hlI(x, y)] 1 hli(xy)] hli(xy)] + 1
S returnh

7 Since the image is discrete, his technically a probability mass function (PMF), but the distinction is not important

for our purposes.

3.3 Graylevel Histograms 87

ALGORITHM 3.8 Compute the normalized graylevel histogram of an image

Input: grayscale image / B
Output: normalized graylevel histogram £

1 h < CompUTEHISTOGRAM(])
2 n < width*height

3 for ¢ < 0 to 255 do

4 h[€] < h[€]/n

5 returnh

Compute the histogram and normalized histogram of the following 4 X 3 3-bit grayscale
image:

7 4 2 0
I=14 2 4 5
3 3 5 6
Solution Because it is a 3-bit image, there are only 2> = 8 possible gray levels. To compute the

histogram, we simply count the number of times that each gray level appears in the image.
The value 0 appears once, 1 appears not at all, 2 appears twice, 3 appears twice, 4 appears
three times, and so forth. To compute the normalized histogram, each value in the histogram
is divided by the total number of pixels in the image, which in this case is 4 - 3 = 12. The
results are

histogram: A =[1 0 2 2 3 2 1 1]
normalizedhistogram:ﬁ= [0.083 0.00 0.167 0.167 0.250 0.167 0.083 0.083]

3.3.1 Interpreting Histograms

Graylevel histograms provide an easy way of visualizing the statistical properties of an
image. The histogram of an image that is [0OIdaIK, for example, will have large values for
the bins with small indices and small values for bins with large indices. On the other hand,
the reverse will be true for the histogram of an image that is [OONDRIGNN. If the image is
BYBIERBOREE. then a large number of pixels will be saturated at 255, which will be visible
as a large spike in the histogram at 2[255]. If the image has | ISR, then all the values
in the histogram will be concentrated in a relatively narrow range, whereas a
image will have values spread throughout the entire range. Some examples of images and
their histograms are shown in Figure 3.20.

3.3.2 Histogram Equalization

O RRSINE, ino!ves distributing the pixel values of an
image more evenly across the range of allowable values. We saw two approaches to achieve

this effect in previous sections, namely, _ and

The drawback of these methods is that they require someone to manually specify the
parameters of the transformation. In this section we consider an alternate approach known

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

88

Figure 3.20 Images and
their histograms. From left
to right: an image with
high contrast and many
dark or bright pixels, a dark
image with low contrast,
and another high contrast
image with good exposure.
Note the spikes at 255 in
the first and last images,
indicating pixel saturation.

Chapter 3 « Point and Geometric Transformations

LELiiepnl
Stan Birchfield, Source: Movie Hoop Dreams, Jessica Birchfield

as histogram equalization, which is completely automatic, extremely simple to imple-
ment, and parameter-free.

Histogram equalization first converts the PDF (captured by the normalized histogram)
to a cumulative distribution function (CDF) by computing the running sum of the
histogram:

¢
clel=> nlkl, €=0,...,255 (3.27)
k=0

The running sum can be computed efficiently by initializing the first element of the array
according to c[0] = h[0] and then updating c[€] = ¢[€ — 1] + h[€] for each gray level .
Once the CDF has been computed, a pixel with gray level ¢ is simply transformed to
€’ = RounD(255 - ¢[£]). The algorithm is straightforward, as shown in Algorithm 3.9,
and an example is shown in Figure 3.21. Note that since the integral of a PDF is always 1,
the CDF always evaluates to 1 at the largest value, and thus ¢[255] = 1. As a result, the
output €' is in the range from 0 to 255 as desired.

ALGORITHM 3.9 Perform histogram equalization on an image

Input:

grayscale image /

Output: histogram-equalized grayscale image /" with increased contrast

h < CoMPUTENORMALIZEDHISTOGRAM)
¢ < RunnivgSum (k)

I'(x,y) < RounD(255 * ¢c[I(x, y)])

1
2
3 for (x,y) EIdo
4
5

return /'

1D array a of length values

s[k] < slk — 1] + alk]

Input:

Output: 1D running sum s of array
1 s[0] < a[0]

2 for k < 1 to length — 1 do

3

4 return s

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

3.3 Graylevel Histograms 89

Figure 3.21 The result of
histogram equalization applied

to an image. The increase in ?\

A

contrast is noticeable. The
normalized histogram of the
result is much flatter than
the original histogram, but it
is not completely flat due to
discretization effects. Source:
Movie Hoop Dreams.

1

Perform histogram equalization on the image of Example 3.5.

Solution The normalized histogram of the image was given by the previous example:

h=1[0.083 0.00 0.167 0.167 0250 0.167 0.083 0.083]

The cumulative histogram is obtained by computing the running sum of the normalized
histogram:

c=1[0.083 0.083 0.250 0417 0.667 0.834 0917 1.00]

Since it is a 3-bit image, the maximum gray level is ngray = 2> — 1 = 7, so the map-
ping from input to output gray levels is determined by RounD(7 - ¢[€]). For exam-
ple, gray level 2 maps to Rounn(7-0.250) = Rounn(1.75) = 2. while gray level 4
maps to Rounn(7-0.667) = Rounp(4.67) = 5. This results in the following mapping:
0—>1,1—>1,2—>2,3—>3,4—>5,5—>6,6—>6, and 7 — 7, which yields the follow-

ing result:
7 4 2 7 5 2
—
4 2 4 5 2 5
HistoGRAMEQUALIZE
3 3 5 3 3 6

Why does such a simple algorithm work? In other words, what is Line 4 (the heart
of the algorithm) in HISTOGRAMEQUALIZE doing? To gain some intuition, consider the
example shown in Figure 3.22, in which we assume that the gray levels are continuous
for simplicity. To emphasize their continuous nature, we will use z instead of € to des-
ignate a pixel value. The desired PDF p’(z), which is the normalized histogram of the

gray levels of the output image, should be flat. That is, given some constant 8, the value
a'+é

fa, p’ (z)dz should be the same for any gray level a’. Since the algorithm uses the CDF

q(z) of the original histogram to transform gray levels, this transformation is visualized

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

90

Figure 3.22 Why histogram
equalization works. In this
example, the histogram of
the original image is heavily
weighted toward darker
pixels. If we let the CDF be
the mapping from the old
gray level to the new one, the
new PDF is flat and therefore
weights all gray levels equally.
This is because any interval of
width & in the new histogram
captures the same number
(8/255) of pixels in the
original image. In this example
the area within each orange
region is identical. Note

that discretization effects
have been ignored for this
illustration.

Chapter 3 « Point and Geometric Transformations

p PDF Desired PDF
Equal area
Equal area P
1/255 ‘ i
ajiby o by 255 ai ai+0 aj aj+6 255
|| | ! Transformed gray level z’
I ! |
ol
B az, i 255+ q
— 1 N
£5 3
§ ? Scaled CDF
= ©b
255

Original gray level z

in the lower-left plot of the figure, with gray level z along the horizontal axis transform-

ing to the new gray level 7/ = 255 - ¢(z) along the vertical axis. Since ¢ is the integral

of p, the area under the PDF for any interval corresponding to an output interval of & is
g '(a'+8)

qul(a,) p(z2)dz=q(qg '(a" +8)) —q(qg '(a')) =a’ + 8 — a’ = . Inother words,

equally spaced intervals of width 0 along the axis of the new PDF capture equal numbers

of pixels in the original PDF. The CDF thus provides a simple means of ensuring that.
cqual number of pixels contribute to an cqually spaced interval in the output. (< 1~

this analysis assumes that the gray levels are continuous—in practice the algorithm only
produces an approximately flat output because of discretization effects.

An alternative, and slightly more mathematical, explanation is as follows. The goal is to
apply a mapping z' = f(z) to convert the image /, whose normalized histogram is , to the
image I', whose normalized histogram is h'. To maximize contrast, we want the normalized
histogram to be flat, that is, ' (z) = 1, over all possible gray levels z. From basic prob-
ability theory, we know that if p(x) is a PDF over x and if y = f(x) is a transformation of
the random variable x, then the PDF ¢(y) of the result is given by

dx
q(y) = p(x)- (3.28)
Y
Let the transformation f be the CDF of the input histogram:
@ =f(2) =) = [M) (3.29)

where we assume 0 =< z = 1 and 0 =< 7’ =< 1 for simplicity. Using Leibniz’s integral rule
from calculus, the derivative is calculated as
dz’ _df(z) _d
dz

v4

[/Oh(z)dz] ~ h(z)

3.30
dz dz ()

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

3.3 Graylevel Histograms

91
Substituting z for x, z' for y, h for p, and ' for g into Equation (3.28) leads to
- - dz — 1
h'(z') = h(z)- =h(z) =——=1 (3.31)
() = W) = A 2

which is indeed the desired uniform distribution.

3.3.3 Histogram Matching

Instead of attempting to flatten the histogram as much as possible, sometimes the goal is
to transform the histogram in a specific way. In this more general case, we wish to modify
the image so that its histogram closely matches that of a given reference histogram. For
example, we may have two images taken under different lighting conditions, and we wish
to modify them so that they appear as if they had been taken under similar conditions. This
procedure, called histogram matching (also known as histogram specification), is based
on the same principle as that of histogram equalization. B

Suppose we are given an image / with normalized graylevel histogram £, along with a refer-
ence normalized graylevel histogram £,.,. Our goal is to apply a transformation to / to obtain
an image /" whose normalized graylevel histogram is /,,. From Equation (3.29), we can apply
the following transformations to flatten both /2 and A,

7y =c(z) = /:h(z)df (3.32)

z

2 = Gyl = / e (£)dE (333)

The first equation transforms the gray level z in the input image to the gray level z] in a
histogram-equalized image. The second equation transforms the gray level 7’ in the output
image to the gray level z5 in a histogram-equalized image. To make sure that z maps to z/,
we simply set zj = z5, leading to the desired transformation:

7' =f(z) = cf(c(2)) (3.34)

In other words, the inverse of the CDF of Emf is applied to the CDF of / to yield the output
gray level. The transformation is illustrated in Figure 3.23.

The pseudocode for histogram matching is presented in Algorithm 3.10. Although the
idea is conceptually as simple as histogram equalization, the procedure is considerably

Figure 3.23 Histogram matching. Given the CDF ¢ of the original image and the desired CDF c,;, histogram matching transforms an
original gray level z to a new gray level z’ by finding the value of z’ such that c(z) = c.¢(z’). As before, discretization effects are

ignored in this illustration.

c(z2)

Original CDF Desired CDF
i c N Cref
C_’ref (Z)
z 255 7 255
Original gray level Transformed gray level

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

92

Chapter 3 « Point and Geometric Transformations

ALGORITHM 3.10 Perform histogram matching on an image

HisTOGRAMMATCH (1, A7)

Input: grayscale image /, reference normalized graylevel histogram E,ef 7
Output: grayscale image /" whose normalized graylevel histogram closely matches £,

O 0 1 O Lt B W N =

—_ = =
N = O

h < CoMPUTENORMALIZEDHISTOGRAM(]) Compute the normalized histogram of the image,

¢ < RunnNiNGSuM (/) then compute the CDF of the image,

Crer < RUNNINGSUM (£1,,.7) as well as the desired CDF.

for € < 0 to 255 do For each possible gray level €, set f[£] = ¢,,/[c(€)].

€'« 255 This is done by finding € such that ¢,.c[€'] = ¢[€],

repeat and setting /[€] = €".To handle discretization effects,

fle] < ¢ £ is set to the maximum possible gray level,

€ «—_ 1 then repeatedly decremented

while ¢’ = 0 AND ¢,/[€'] > c[{] until G, l[€'] = [£].

for (x,y) € I do Once the mapping fhas been determined,

I'(x,y) < flI(x,y)] itis applied to all pixels in the image.
return /'

more complicated due to the need to invert the reference CDF. During initialization in
Lines 1-3, the two cumulative histograms, ¢ and c,,, are computed. Then, for each gray
level ¢, we find in Lines 5-9 the index €’ such that ¢,;[¢'] = ¢[€]. Because these are
discrete histograms, an exact equality is not possible. Instead, we set €’ to the maximum
possible gray level, then decrement it until ¢, [€'] < c[€]. This yields the largest value
i such that ¢, [€'] = c[€]. (Alternatively, we could set €' to the smallest value such
that ¢,.¢[€'] = ¢[€].) The result is stored in a 1D array f, which is the histogram match-
ing function. After all possible gray levels have been processed, fis applied as a lookup
table. Notice that in the pseudocode ¢ and c,,, could be replaced by ¢ and ¢, since the
normalizations cancel when the histograms are compared.

3.4 Multispectral Transformations

While grayscale images are useful for many applications, even more compelling are
multispectral images, which store multiple values for each pixel by capturing the amount
of light in different bands of the electromagnetic spectrum. These bands typically include
portions of either the visible spectrum or the infrared or ultraviolet regions, but may include
other regions as well. All the pixel values for a given band are known as a channel, so that
the collection of channels makes up the image. The most common multispectral image is
the RGB image containing 3 channels corresponding to the red, green, and blue regions of
the spectrum; other sources of multispectral images are remote sensing devices on satellites
or aircraft as we discussed in the previous chapter.

A mapping in which either the input or output (or both) are multispectral images is called
a multispectral transformation. In its most general form, this type of transformation can
be represented as a mapping from a vector of values to another vector of values. If we let
I;(x, y) be the value of the i band in image 7, and let I} (x, y) be the value of the j" band
in image I', then the transformation of pixel (x,y) is

H(xy) .. Lxey)=7f0[L0y) ... L(xy)]) (3.35)

3.4 Multispectral Transformations 93

where the input image I has m bands, the output image /' has n bands, and f'is a mapping
from an m-element vector to an n-element vector.

3.4.1 RGB Transformations

One such multispectral transformation is to convert an RGB image to a grayscale image,
which involves a mapping from a three-channel image (m = 3) to a single-channel image
(n = 1). The simplest approach one might consider would be to average the three values:

I(oy) = 3 Ues) + Il y) + 15 1) 3:36)

where I, I, and I are the red, green, and blue channels of the input image. However,
the resulting image will not look correct, because the human visual system is not equally
sensitive to all frequencies. A significant improvement is obtained by increasing the weight
of the green channel, since the human visual system is more sensitive to green than to the
other bands:

, 1
I (X’Y) = Z(IR(X»}’) + 21G<x’y) + IB(LY)) (3-37)

which has the advantage that the division by 4 can be easily and efficiently implemented as
a bitwise shift to the right by two. This simple equation, shown as pseudocode in Algorithm
3.11, is actually a decent approach to use in many practical applications, although we shall
discuss a more accurate method later in the book that is preferred if computational time is
not an issue."

The reverse operation, namely to convert a one-byte-per-pixel grayscale image to a three-
byte-per-pixel image with RGB color channels, is straightforward and involves simply
replicating the values:

L(x,y) =1(x,y) I5(x,y) =1(x,y) Iz(x,y) = I(x,y) (3.38)

as shown in Algorithm 3.12. Note that the resulting RGB image will still look like a
grayscale image when displayed, because the color information has been lost. Nevertheless,
converting to RGB is useful for overlaying results on the image (see Figure 1.2), as well as
for pseudocoloring, described later.

At first glance it may not be obvious why the reverse transformation does not use the
same coefficients as the forward transformation. That is, why is the reverse transformation
not Iy < I, I; <= 21, and Iy <— I, or something similar? The following example illustrates
why such an approach would be fundamentally wrong.

ALGORITHM 3.11 A simple, approximate RGB to grayscale conversion algorithm

RGBTOGRAYSIMPLE (I, I, Iy)

Input: RGB image with channels Iy, /5, and Ip
Output: grayscale image I’

1 for (x,y) € Irdo

2 I'(x,y) < (Ir(x,y) +2*I(x,y) + Ip(x,y))/4

3 return [’

" Section 9.5.6 (p. 428).

94 Chapter 3 « Point and Geometric Transformations

Suppose a pixel has RGB values R = 126, G = 222, B = 94. Convert the pixel to grayscale
according to Equation (3.37), then convert back to RGB using both Equation (3.38) and the
non-replicating transformation. Is this new RGB value consistent with the grayscale value

in both cases?

Solution Applying Equation (3.37) we have
1
grayscale = 1(126 + 2(222) + 94) = 166
Now, according to Equation (3.38) this grayscale value converts back to RGB as follows:

R=166 G =166 B = 166

Note that this result is not the same as the original pixel’s RGB values, because the color
information has been lost. Nevertheless, the values are internally consistent, because if we
apply Equation (3.37) again, we arrive at the same grayscale value:

1
grayscale = 1(166 +2(166) + 166) = 166

which is what we want.
However, if we apply the non-replicating transformation we get

R=166 G =2(166) =332 B =166

Here we immediately see a problem, because G does not even fit into 8 bits. Moreover, when
we convert back to grayscale we get

1
grayscale = 1(166 +2(332) + 166) = 249

which is much brighter than the original pixel.

ALGORITHM 3.12 Grayscale to RGB conversion

Input: grayscale image /
Output: RGB image with channels Iy, I;, and I

1 for (x,y) € I1do

2 Ig(x,y) < I(x,y)
3 I(x, y) < 1(x,y)
4 Ip(x,y) < I(x,y)

5 return Iy, I, Iy,

Various typical point transformations of an RGB image are displayed in Figure 3.24. In
the first row, the three separate color channels are shown by setting, in turn, the other color
channels to zero. For example, the red channel is visualized by setting

I(x,y) = Ig(x,y) Ig(x,y) =0 Iz(x,y) =0 (3.39)

and similarly for green and blue. The second row shows a different way of visualizing
these channels, where grayscale images were formed by simply copying the values from
the appropriate color channel:

Ille(x’)’) = IR(X’)’) I&(x’)’) = IR(x’)’) Il/?(x’ }’) = IR(X7 y) (3-40)

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

3.4 Multispectral Transformations 95

Figure 3.24 Top: Original
RGB image and three
separate color channels.
MippLe: RGB image obtained
by swapping the color
channels, and same three
color channels of original
image shown as grayscale
images. Bortom: RGB image
obtained by swapping

the color channels in

the reverse order, and
three different grayscale
transformations of the
original image. See text
for details.

image green blue

£ 4

Es
—
-
swappedl1 red green blue
swapped2 grayl gray2 gray3 f;

3.4.2 Pseudocolor

and similarly for green and blue. Notice that skin contains significantly more red than
green, and significantly more green than blue, which explains why the red image is so much
brighter than the other two. Just below the original image in the first column, the purple face
(swapped1) was obtained by swapping the three color channels:

I(x,y) = I(xy) IG(x,y) = Iz(x,y) Ip(x,y) = Ig(x,y) (3.41)

Since red is the dominant color in the original image, blue is the dominant color in the result,
leading to the purplish appearance. Similarly, swapping the color channels in the reverse
order leads to a greenish appearance, shown as the light green face (swapped?2). Finally, the
bottom row displays three different versions of RGB to grayscale conversion of the original
image. The average of the three channels, Equation (3.36), is too dark (gray1), but there is
not much difference between the recommended simple conversion of Equation (3.37)
(gray2) and the more correct version (gray3) described later.”

The transformation of Algorithm 3.12 is not the only way to produce an RGB image from
a grayscale image. Instead of creating a colorless image, an alternate approach is to assign

" Section 9.5.6 (p. 428).

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

96

Chapter 3 « Point and Geometric Transformations

an RGB value to each gray level based upon some criterion other than simply replicating
the gray level three times. Because this process assigns colors not according to their actual
appearance in the real world, the resulting image is known as a [ElSCHGOIOR image, or
pseudocolor image. One of the most common ways of pseudocoloring is to assign each
range of values to a different RGB color — another form of density slicing that we con-
sidered in the previous section. You have probably seen the result of density slicing on
weather satellite display, such as Geostationary Operational Environmental Satellite
(GOES) infrared images. A geostationary satellite is one whose rotation is the same as
the earth’s so that its position over the earth remains constant, enabling continuous moni-
toring of the same location. GOES satellite imagery is used to monitor severe weather
conditions such as hurricanes and tornadoes, and to estimate rainfall for flash flood warn-
ings. GOES data includes both infrared images and water vapor images. In GOES infrared
images, the mapping from 8-bit gray levels to the temperature 7 in degrees Celsius is’

57 —3I(x,y) ifI(x,y) =176
m(x,y) =

145 — I(x,y) otherwise
where a higher gray level means a lower temperature. This temperature mapping can be
used to create a variety of different pseudocolorings, such as the following density slicing:

(3.42)

I(x,y) ifI(x,y) =130

green if 130 < I(x,y) = 170
yellow if 170 < I(x,y) = 210
red if210 < I(x y) < 225

I'(x,y) = (3.43)

so that red regions are the coldest, indicating clouds that are higher in elevation. Similarly,
brighter values in the water vapor image indicate more moisture, so that yellow and red
areas indicate rain. Figure 3.25 shows GOES infrared and water vapor images, along with
the pseudocolor results using the same mapping.

Another popular remote sensing program is Landsat, which was mentioned in the previous
chapter. Since the program’s inception, the Landsat hardware has undergone several revisions.
Landsat 5, first launched in 1984 and decommissioned in 2013, used a Thematic Mapper
(TM) sensor to collect 7 spectral bands: 3 visible channels, 3 near and mid infrared channels,
and 1 thermal channel. These 7 bands are shown in Figure 3.26.* Since the first three bands
correspond approximately to the blue, green, and red wavelengths, an RGB image of the area
can be produced by combining these three images with appropriate weights (doubling the
green and red). The first image of the last row shows the result of this combination.

Looking closely at the RGB image, you will notice that the peninsula in the northwest
corner is sparsely populated, covered mostly with rolling hills of vegetation. This same
area appears dark in the green and red images (bands 2 and 3) but bright in the near infra-

red images (bands 4 and 5). This is because live green plants
for photosynthesis, while they
because their energy level per photon is too low to be useful for synthesizing organic

molecules. As a result, a simple way to detect the presence of living, healthy, green vegeta-
tion is to compute the ratio of the red value to the near infrared value for each pixel, which
is called the Ratio Vegetation Index (RVI):

’ IIR(X,)’)
Iyi(x,y) = ———~

= (3.44)
IRed(x’ y)

" From http://www.goes.noaa.gov/ECIR3.html
* Notice that the thermal channel's spatial resolution is significantly less than that of the other channels.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

3.4 Multispectral Transformations 97

Figure 3.25
Pseudocolor display
using density slicing
of GOES infrared
(top) and water
vapor (bottom)
images.

NOAA, http://www.goes.noaa.gov

3.4.3 Chromakey

where I, is the spectral reflectance (ratio of reflected to incoming radiation) in the visible
red band (approximately 580 to 680 nm) and / is the spectral reflectance in the near infra-
red band (approximately 720 to 1100 nm). One drawback of the RVI is that it ranges from
0 to infinity, which is inconvenient. A more common approach, therefore, is to compute
the difference between the bands normalized by the sum of the bands. This Normalized
Difference Vegetation Index (NDVI) is functionally equivalent to the RVI:

_ IIIQVI(x’y) -1 _ IIR(X,)’) - IRed(X,)’)
Ievi(x,y) + 1 Ig(x,y) + Igea(x,y)

Since both of the input values are nonnegative, the NDVI value is between —1 and +1.
High values (0.3 to 1.0) indicate live, green vegetation. Soils are generally in the range of
0.1 to 0.2, water is near zero or slightly negative, and clouds and snow have values less
than water. The bottom row of Figure 3.26 shows the NDVI computed using bands 3 and
4, along with a pseudocolor output showing the vegetation, soil, and water detected by this
simple approach.

Inpvi(x, y) (3.45)

Another simple but popular multispectral technique is chromakeying, which is widely
used in the movie and broadcasting industry to separate foreground from background for the
purpose of blending multiple images. For example, a weather forecaster stands and points in
front of a blue screen, and all the pixels that do not contain blue are placed on top of a map,
making it look like the forecaster (who, of course, is not allowed to wear blue) is pointing
at the map. This is the traditional way of broadcasting weather forecasts on television, and
it is similar to the way live action is blended with animation in movies.

While in theory the color can be anything (purple or orange, for example), in practice one
of the three color channels is usually chosen. Historically blue was used, because blue is the

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

98

Figure 3.26 7 bands of
aLandsat image of the

San Francisco Bay Area.

The bottom row shows

the RGB image obtained

by combining bands 1, 2,
and 3; the NDVI calculated
using bands 3 and 4; and
the pseudocolored image
obtained by density slicing
on the NDVI (blue indicates
water, green indicates
vegetation, and tan indicates
soil). Notice the vegetation
occurs outside the city itself
in Marin County (upper
peninsula in the image) and
several parks (namely, the
Presidio, Golden Gate Park,
and San Bruno Mountain
State Park on the lower
peninsula). Source: http://
glcf.umd.edu, http:/glcf.
umd.edu/data/landsat/

Chapter 3 « Point and Geometric Transformations

Band 1

Band 2 Band 3 Band 4
0.45-0.52 um 0.52—-0.60 um 0.63—0.69 um 0.76—0.90 um
blue green red near IR

Band 5 Band 6 Band 7
1.55—1.75 pm 10.4—12.5 um 2.08—2.35 um
mid IR thermal mid IR

|,

"RGB

Pseudocolored NDVI

farthest color from human skin color and because high-contrast film that was sensitive to
only blue was widely available. The result, therefore, was known as bluescreening. More
recently, the widespread use of digital video cameras that are more sensitive to green than to
red or blue, combined with the use of digital video formats that also emphasize green over
blue, have led to the dominance of using a green backdrop, known as greenscreening.

In the simplest possible implementation, a binary mask is produced from an RGB image
by thresholding the amount of the particular color (green, for example):

1 iflg(x,y) > 7

3.46
0 otherwise ()

M(x,y) = {
where 7 is a threshold. Better results are obtained if, instead of thresholding the color value,
the value itself is retained and scaled between 0 and 1. Known as the alpha value (discussed
in more detail later in this chapter), this approach leads to fewer artifacts around the fore-
ground / background edges.

3.5 Multi-Image Transformations

A multi-image transformation involves two or more input images. The multispectral
transformations that we have just seen are a special case in which the different images are
the individual spectral bands. More generally, though, multi-image transformations include
images taken of the same scene at different times, or of different scenes entirely. The two
basic types of multi-image transformations are arithmetic and logical operations, which are
covered in this section, after which we describe several applications of these basic ideas.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

3.5 Multi-Image Transformations 99

3.5.1 Arithmetic Operations

Earlier in the chapter we saw how to add a constant to an image, subtract a constant from an
image (or subtract an image from a constant), and multiply an image by a constant. In such
cases an output image was produced from a single input image and a parameter specifying
the constant. In a similar manner, arithmetic operations can be used, without an additional
parameter, to produce an output image from multiple input images. These images must have
the same dimensions, because the arithmetic operator is applied to pixels at the same (x, y)
coordinates in each image.

EXAMPLE 3.8

Solution

Compute the sum of the following 3 X 3 grayscale images:

216 171 174 72 134 106
I, =134 214 97 L=|68 8 23
52 5 212 189 91 212

The solution is obtained by straightforward addition without saturation, storing the result
as an integer or floating-point value:

288 305 280
I +1,=1202 303 120
241 96 424

Unlike the case of a single input image, multi-image transformations do not typically use
saturation arithmetic but rather store the result as an integer-valued or floating-point image.
However, when multiple operations are combined, the result is often stored directly into
an 8-bit grayscale or 24-bit RGB output image without having to employ a floating-point
image. For example, the absolute difference between two images computes for each pixel
location the absolute value of the difference between the pixels:

I'(x,y) = |L(x.y) = L(x.y)| (3.47)

Since the difference between two 8-bit pixels ranges from —255 to 255, the absolute dif-
ference ranges from 0 to 255, and therefore no loss of information is incurred when storing
the result. Similarly, the weighted average of two images, where the weights sum to 1,
results in pixel values in the same range as the original. This operation, known as linear
interpolation,’ is conveniently written using a single parameter:

I'(x,y) =nl(xy) + (1 = n)hL(x,y) (3.48)

where 0 = 1 = 1. Note that the operation produces a convex combination of the two inputs
because the output is guaranteed to lie inclusively between them:

min(7, (x,y), L(x,y)) = I'(x,y) = max(/,(x,y), L(x,y))

for any pixel coordinates (x,y).

" Also known as first-order Lagrange interpolation.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

100 Chapter 3 « Point and Geometric Transformations

EXAMPLE 3.9 Compute (a) the absolute difference between the two images in the previous example and
(b) the weighted average, with weights 0.1 and 0.9.
Solution If we apply rounding to the weighted average, both results fit into an 8-bit grayscale image:
144 37 68
(a) I, - L|=| 66 125 74 (3.49)
1137 8 0
86 138 113
(b) Rounp0.17; + 09L,) =| 75 102 30 (3.50)
L 175 82 212

3.5.2 Logical Operations

The standard logical, or Boolean, operators AND, OR, XOR (exclusive or), and NOT (comple-
ment) produce a 0 or 1 as output, given Os or 1s as input, as shown in Table 3.1. These
operators apply naturally, therefore, to binary images. For example, given two binary images
in which 1s indicate the objects of interest, the logical AND produces an image containing
1s where the objects intersect. Similarly, the logical or produces an image containing 1s
where either of the objects appears, and the logical NOT produces an image containing 1s
where the objects do not appear.

m Apply the logical operators to the following two binary images:

1 1 0 0 0 O

L=|1 1 0| L=]0 1 1

1 1 0 0 1 1

Solution The results are straightforward:
0 0 O 1 1 0 1 1 0 0 0 1 1 1 1
0 1 0 1 1 1 1 0 1 0 0 1 1 0 O
0o 1 0 I 1 1 1 0 1 0 0 1 1 0 0
I, AND I, Iy or I, 1) XOR I Nort [} NoT I,

It is also common to apply logical operators to a pair of images in which one is a binary
image while the other is a regular grayscale or RGB image. In such cases the binary image

is interpreted as a | with [l indicating [IEIECEIONEES. 2nd [l indicating .
The most common operator is AND, which sets all the pixels in the

a b aano b a b aorb a b axorb a NOT a
0 0 0 0 O 0 0 0 0 0 1

0 1 0 0 1 1 0 1 1 1 0

1 0 0 1 0 1 1 0 1

1 1 1 1 1 1 1 1 0

TABLE 3.1 The truth tables of the standard logical operators.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

3.6 Change Detection

101

image to 0 if the corresponding pixel in the binary image is 0 and leaves the remaining
pixels intact. Equivalently, we can think of first extending each mask pixel by the num-
ber of bits per image pixel before applying the logical operator bitwise, as shown in the
following example.

Apply the following binary mask M to the RGB image I below (of a gray square around a
green dot), where pixel values are specified in hexadecimal notation:

888888 888888 888888
I = | 888888 OOFFOO 888888 | M =
888888 888888 888888

o o O
—_—— O
—_—— O

Solution First, extend the mask to have the same bit depth as the image, replicating the 1s or Os as
many times as needed:
000000 000000 000000
M' = | 000000 FFFFFF FFFFFF
000000 FFFFFF FFFFFF
A bitwise AND between the image and extended mask retains the 4 pixels in the lower-right
corner, setting the others to 0:
000000 000000 000000
MASKIMAGE(LM) = | 000000 0OFFO0 888888
000000 888888 888888
3.6 Change Detection

Suppose a stationary camera (mounted on a tripod, for example) observes a scene containing
one or more moving objects. By comparing image frames in the video sequence, the moving
objects (foreground) can be separated from the stationary objects (background). Although
the problem of foreground / background segmentation is discussed more thoroughly in
Chapter 10, this approach of subtracting image frames is so simple and easy to implement
that there is no need to delay introducing this powerful and widely used technique. There are
two basic variations on the theme, depending upon whether a reference frame is available.
Both variations are covered in this section.

3.6.1 Frame Differencing

One Wai to detect motion, known as frame differencing, is to_

The key insight is that, because the camera is stationary, the
background pixel values should not change much, whereas the values of the pixels con-
taining the moving foreground will change considerably. Because we are not interested in
whether the pixel gets brighter or darker, but rather only in the amount of difference, it is
sufficient to compute the absolute difference between image frames. The simplest approach
is to use two successive frames to compute a difference image:

I'(xy) = 5(xy) = L1 (xy)| > 7 (3.51)

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

102 Chapter 3 « Point and Geometric Transformations

ALGORITHM 3.13 Compute the double difference between three consecutive image frames

ALGORITHM 3.14 Compute the triple difference between three consecutive image frames

where [; is the frame at time ¢, I,_; is the previous frame, and 7 is some threshold.
Unfortunately, this two-frame approach suffers from the double-image problem, that
is, the difference image will contain foreground pixels not only where the foreground
object is located in the current frame but also where it was in the previous frame. This
problem can be solved using a third frame by applying the logical AND to the two difference
images computed using the two pairs of adjacent frames. The result, known as the double-
difference image (or three-frame difference), is given by

I'=|I,—L_|>7aNDp |4, — L] >71 (3.52)

where 1, , is the next frame in the sequence, and the pixel coordinates have been omitted for
brevity. An alternate approach is to combine the absolute differences from all three image
pairs using addition and subtraction prior to thresholding:

1/(x,y) = (|It—1 - It| + |Iz+1 - It| - |It—1 _It+1|) >T (3.53)

which we call the triple-difference image. These two procedures are shown as
Algorithms 3.13 and 3.14, and the results can be seen in Figure 3.27, where the absolute
differences from the individual color channels have been combined to improve results over
grayscale processing.

3.6.2 Background Subtraction

A background image is a reference image that does not contain any foreground objects. If
a background image is available, then the foreground can be separated from the background

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

3.6 Change Detection

Figure 3.27 Detectinga
moving object by frame
differencing. LeFT coLumn:
Three image frames from
a video sequence. SECOND
coLumn: The absolute
difference between pairs
of frames. THIRD COLUMN:
Thresholded absolute
difference. RiGHT coLuMN:
Final result using double
difference (top), triple
difference (middle),

and thresholded triple
difference (bottom)
methods.

103

Input images Absolute difference Thresholded

with just two images rather than three. This technique, known as background subtraction,
is straightforward:

I'(x,y) = [I(x,y) = B(x,y)| (3.54)

where [is the image and B is the background image.

One way to obtain a background image is to remove all foreground objects from the
scene before taking the picture, or similarly, to take the picture before changing the scene.
This latter approach is used in digital subtraction angiography (DSA), where a reference
image is captured of a blood vessel before injecting it with dye to increase contrast. In many
applications, however, it is not possible to exercise so much control over the environment. In
such cases the best approach is to compute a mean image, or average image by adding suc-
cessive images in a video sequence to each other and then dividing by the number of images:

1 n
I'(xy) = S I(x,y) (3.55)

i=1

ALGORITHM 3.15 Compute the mean of a set of images

CoMPUTEMEANIMAGE (7)

Input: setof nimages 7 = {I,}/—,

Output: mean image
for (x,y) € I, do
S(x,y) <0

for i < 1 ton do

I'(x,y) < S(x,y)/n

return /'

1
2
3
4 S(x,y) < L(x,y)
5
6

104

Chapter 3 « Point and Geometric Transformations

where [; is the i image and 7 is the number of images. Since the order does not matter, we
can assume the images are collected in a set Z = {I;}"_,. The procedure requires iterating
through the images of this set and, for each pixel, adding the value of the pixel in the i®
image to the sum obtained so far. To avoid the problem of overflow, an integer-valued (or

floating-point) image S is needed to hold the sum for each pixel._
If the camera is stationary and the fore-

ground objects are small and moving often enough, then the mean image will contain the
appearance of the background of the scene, without any foreground objects. Figure 3.28,
for example, shows the mean image computed from successively larger sets of images from
a traffic camera. After 100 frames of video (approximately 3 seconds), the vehicles have
disappeared, leaving only the background. It is easy to modify the procedure to update the
mean image incrementally, thus making it applicable to arbitrarily long video sequences
without having to store all the images. The result of using this mean image as a background
image is shown in Figure 3.29.

One [AUNEMEAEE of background subtraction over frame differencing is that it separates
the foreground objects even when they cease moving for a period of time. On the other
hand, one drawback is that objects that remain stationary for a very long time prevent the
detection of other objects that might pass in front. A solution to this problem is to adap-
tively update the background, so that stationary objects blend with the background over
time and the background image adapts to changing lighting conditions. Another issue is
the distraction caused by slightly moving background objects, such as trees waving in the
wind, which can be handled by using more sophisticated probabilistic models of
pixel colors.”

Figure 3.28 Top: Five
images from a video
sequence. Bortom: Each
column shows the mean
image obtained using
all the images up to and
including the one above
it. As time progresses
the moving objects
disappear, leaving only the
background.

-

Figure 3.29 Background subtraction. From left to right: the background image, the current image, the absolute difference between the
image and the background, and the thresholded absolute difference.

Background Image Absolute difference Thresholded =
" See Problem 3.40.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

3.7 Compositing

105

3.7 Compositing

3.7.1 Dissolving

Another application of multi-image transformations is digital compositing, which is widely
used in the movie industry to blend live action with computer graphics or to blend different
areas of a computer graphic scene rendered by different pieces of software. If you have ever
watched a movie with special effects, it is almost certain that you witnessed the results of
digital compositing of 2D images. We begin with the simplest approach, namely dissolving,
followed by compositing with binary masks, and then compositing with alpha values.

Suppose we have two input images I, and [that are the same size as each other. The
weighted combination between them is given by

I'(x,y) = waly(x,y) + wglp(x, y) (3.56)

where w, and wp are scalar weights. If we restrict wy, + wp = 1, then the output is a convex
combination of the inputs, as mentioned earlier: I' (x,y) = nly(x,y) + (1 — n)Iz(x, y),
where n = w,/ (w4 + wg). When n = 0 the output is identical to the second image, when
n = 1 itisidentical to the first image, and for other values the output is a blend of the two. By
varying 7 from 1 to 0, the first image slowly dissolves into the second. This simple algorithm
is often used to transition from one scene to another in movies, as shown in Figure 3.30.7

3.7.2 Compositing with Binary Masks

Now suppose that the two images are accompanied by binary masks M, and My that define
the support of the pixels. That is, M, (x, y) = 1 wherever the value I,(x, y) is valid, and
M, (x,y) = 0 wherever the value I,(x, y) is invalid; and similarly for My and I. Invalid
pixels can be ignored.

Since the masks are binary, exactly four cases exist for any given pixel. For each of these
cases, one or more choices are available for the output pixel, as shown in Table 3.2. For
example, if M,(x,y) = Mg(x,y) = 0, then the output pixel mask M’ (x,y) must be 0,
because both inputs are invalid. In that case, the value of the output RGB pixel I’ (x, y) is
irrelevant, which is indicated by the dot (-) in the table. If, on the other hand, M, (x,y) = 0
but Myz(x,y) = 1, then the output pixel mask can be 0 (invalid), or it can be 1 (valid)
with the output RGB pixel set to the only valid input RGB pixel, namely Igz(x,y). If
M, (x,y) = Mg(x,y) = 1, then three choices exist, because the pixel value can be selected
from 1, from I, or from neither.

Multiplying the number of entries in the third column of the table, there are exactly
3-2-2-1 = 12 possible ways of combining two images with binary masks. These 12 compositing
operations are called the Porter-Duff operators and are illustrated in Figure 3.31. Of these
operations, three are trivial, namely coPY 1, COPY I, and CLEAR; one is commutative, because
14 XOR Iz = I XOR I4; and four are noncommutative. The latter include /4, OVER [, which
places the first image over the second; I, IN I, which copies the first image only where it lies
inside the second; I, oUT I (short for 1, “held out by” I), which places the first image only
where it lies outside the second; and I, ATOP I, which combines the images within the second
mask. The reverse versions are obtained by swapping the two operands. Table 3.3 shows the
formulas for these compositing operations, which are obtained by inspection from the figure
(using the simplest possible formulas for I’ by ignoring invalid pixels outside the mask M").

" If the images are not already aligned, then the dissolve is accompanied by a warp to align the images, which is
called morphing, described in Section 3.9.7 (p. 126). Screenshots from the 2011 movie “The Adventures of Tintin.”

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

106

Figure 3.30 Two examples
of dissolving one image
into another. Source:
Screenshots by WETA
Digital Ltd. - © 2011
Paramount Pictures. ‘The
Adventures of Tintin’

Chapter 3 « Point and Geometric Transformations

3 1
lar g

1 1
—IA-I-?

1 3
-1y 4 + T

a

The result of applying these binary compositing operators to a pair of images is shown
in Figure 3.32. We only show the forward operators, in which the tree is I, and the house is
Ip; the reverse operators are left as an exercise. Note that some operators copy invalid pixels
(i.e., pixels outside the mask) to the output image, even though they are still considered
invalid (because they remain outside the output mask).

M,(x,y) My(x, y) M (x, y) Iy
0 0 0
0 1 0,1 -, Ig(x,)’)
1 0 0,1 I (x,y)
1 1 01,1 L (x,y), Ip(x, y)

TABLE 3.2 The four cases for any given pixel in compositing images with binary masks. For each case, the choices available for the
output pixel are given in the last two columns, with a dot () meaning that the RGB value is irrelevant since the mask is zero. Each entry
in the M’ column is paired with an entry in the I’ column.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

3.7 Compositing

Operation
CLEAR
COPY I
1, OVER Ip
Iy 1IN Iy
1, ourt Iy
1, ATOP I
14 XOR Iy

107

r m
0 0
I M,
Iy A My + I3 A Mg A M, M, + Mg
I M, A Mg
A M, A My
Iy A My + Iz A M, My
Iy A My A Mg+ Iz A Mg A M, My A Mg+ Mg A M,

TABLE 3.3 Formulas for compositing two images with binary masks. The formulas for the reverse versions of the non-commutative
operations are easily obtained by swapping the operands. The caret (A) symbol refers to logical anp, the angle () refers to logical nor,
and the plus (+) symbol indicates logical or (which is equivalent to addition in these formulas due to mutual exclusion

between the terms).

3.7.3 Compositing with Alpha Channels

One of the with binary masks is that they produce harsh, unnatural edges around

the boundaries of objects when compositing two images, as evident from the figure. A better
way is to associate with each image an alpha channel (sometimes called an opacity map)
instead of a binary mask. The alpha channel is the same size as the image, and each pixel
in the alpha channel is (conceptually at least) a floating-point value, typically between
0 and 1, with 1 meaning that the associated RGB pixel is opaque and 0 meaning that it is
transparent (or, equivalently, invisible or invalid). Pixels between 0 and 1 indicate varying
degrees of opacity.

Let the alpha channels of the first input, second input, and output be given by ay,, ap,
and «', respectively, and let the RGB images be I, I, and I’, as before. The general rule
for compositing is to compute a convex combination of the RGB images and a weighted
combination of the alpha channels:

II

—~~

x,y) =n(xy)L(xy) + (1 —n(xy))z(xy) (3.57)
a'(x,y) = dalx,y)aa(x,y) + dp(x, y)ag(x,y) (3.58)

Figure 3.31 The twelve binary compositing operations. The first column shows the original two images. Columns 2 through 5 show
the noncommutative operations, with the order of operands reversed in the two rows. The final column shows the cLear (top) and xor
(bottom) operations. In all cases the display shows the RGB image after applying the mask, i.e., I" ano M’, with black pixels indicating a

mask value of 0.

Cory

IN Our ATOP CLEAR / XOR

OVER

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

108

Figure 3.32 Common
binary compositing
operations applied to a pair
of masked images. The top
two rows show, from left to
right: Original image /, and
mask My, original image /g
and mask Mg, and image /"
and mask M’ resulting from
the four operations ovew, IN,
out, and aTop, respectively.
The bottom row shows the
result of anping each image
with each mask.

segmentation: threshold
blue screen?

Chapter 3 « Point and Geometric Transformations

seeyou / Shutterstock.com, dny3d / Shutterstock.com

I

where the fraction is given by

_ Palx, y)ea(x, y) _ dalx, y)aa(x, y)
) = e an(ry) + e)as(ry) — alxy) (3:59

and the coefficients ¢4 and ¢y are determined by the operation, as listed in Table 3.4.

By substituting the coefficients from Table 3.4 into Equations (3.57), (3.58), and (3.59),
it is easy to derive the actual formulas for any of the 12 possible compositing operations.
The formulas for the most common operators are given in Table 3.5, where the similarity
with Table 3.3 should be evident by replacing M, with a4, the logical AND (/) operator with
multiplication, and the logical NoT (7) operator with “one minus”. As a simple example,
consider the computation I, OVER I, where I is a background image with ag(x,y) = 1
everywhere. In that case, a'(x, y) = 1 everywhere, so that the output image is a simple
convex combination of the two images according to the alpha channel of 1,:

I'(x,y) = axdy + (1 — ay)ly (3.60)
as expected.

Operation ba bp
1, OVER I 1 1 — ay
Ig OVER I, 1 — ap 1

Iy IN I ap 0

IgIN I 0 oy
1, out Iy 1 —ap 0

Iz ouT I, 0 1 — oy
1, ATOP I ag 1 — oy
I ATOP 1, 1 —ap oy
I, XOR Iy 1 — ap 1 — oy

TABLE 3.4 Coefficients for the different compositing operations.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

segmentation: threshold
blue screen?

3.8 Interpolation

Operation
I, OVER I
I, 1IN Iy

1, ouTt Iy

1, ATOP I

14 XOR I

109

I a'
! + (1 - ay)
— (aqly + (1 = ap)agly) @A ®a)%p
e
IN apQp
Iy ay(1 = ag)
aAIA aF (1 - aA)IB ap
1
—(ax(1 — ag)ly + (1 — ay)agly) ay(1 = ag) + ag(l — ay)
ol

TABLE 3.5 Formulas for compositing two images with alpha channels for the most common operations. The formulas for the reverse
versions are easily obtained by swapping the operands.

3.7.4 Using Premultiplied Alphas

As evident from Figure 3.32, the image must first be multiplied by the mask before displaying,
to avoid the possibility of displaying invalid pixels. Therefore, since the image must be multi-
plied by the alpha channel anyway, to save computation it is often preferred to premultiply the
image by the alpha channel before processing. In this approach, all compositing operations
are performed on premultiplied images, so that when it is necessary to display the image, no
further multiplication is necessary. Although at first glance the resulting savings may not seem
all that significant, this approach is actually widely used in the entertainment industry — keep
in mind that a single movie contains hundreds of thousands of image frames at very high reso-
lution, so any possible reduction in computation cannot be dismissed. An additional advantage
to using premultiplied images is that they are more easily interpretable visually because they
do not show arbitrary colors for invalid pixels, which was also noted in the figure.
The premultiplied image values are defined as

Ii(xy) = as(xy)i(xy) (3.61)
Ig(x,y) = ap(x y)p(x,y) (3.62)
I'(xy) = a'(xy)I'(xy) (3.63)
By substituting Equations (3.57) and (3.58) into Equation (3.63), it is easy to show that
I'(x,y) = ¢alx, y) L (x, y) + dplx, y)Ip(x.y) (3.64)
a'(x,y) = dalx. y)aa(x,y) + dplx, y)ap(x,y) (3.65)

Note that the first equation is actually simpler than Equation (3.57), and the second equation
is copied from Equation (3.58) for completeness. When compositing it is important to always
keep track of whether the images have been premultiplied by the alpha channel to avoid intro-
ducing artifacts.

3.8 Interpolation

As a 2D array of values, a can be thought of as_
The problem of interpolation is to

estimate this underlying continuous function by computing pixel values at any real-valued
coordinate pair in the image plane. In order to be a true interpolation function, the estimated

continuous function must coincide with the sampled data at the sample points, although it

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

110 Chapter 3 « Point and Geometric Transformations

is sometimes desirable to relax this requirement, as we shall see. In this section we describe
several methods of interpolation, beginning with the simplest.

3.8.1 Nearest Neighbor Interpolation

Let I be a grayscale image defined over discrete locations x = 0, ..., width —1 and
y=0, ..., height —1, and let 1 be the continuous underlying function defined for any
real-valued coordinate location (x,y). For now, let us require [to be a true interpolation
function, so /(x,y) = I(x, y) whenever x and y are integers that are within the image
bounds. The simplest approach to interpolation, called nearest neighbor interpolation,
returns the gray level of the pixel nearest the coordinates:

I(x,y) = I(min(max(ROUND(x), 0, width — 1)), min(max(ROUND(y), 0, height —1))) (3.66)
although the notation is simplified considerably if bounds checking can be assumed:

I(x,y) = I(ROUND(x), ROUND(Y)) (3.67)

Note that even though (x,y) are real numbers, with nearest-neighbor interpolation the result
is still a discrete gray level, I(x,y) € Zg.»ss.

3.8.2 Bilinear Interpolation

A more accurate approach is bilinear interpolation. As the name implies, bilinear inter-
polation is a 2D extension of 1D linear interpolation. If fis a 1D function, then recall that
linear interpolation at a point f(x) computes a weighted average of the two nearest samples, "
as illustrated in Figure 3.33:

f(x) = (1 —a)f(xo) + af(xo + 1) (3.68)

where xy = |x]is the index of the nearest pixel to the leftand & = x — xp, 0 = @ < l is the
fractional distance between the real value x and the integer x,. To verify that this is a true
interpolation, note that f(x) = I(xy) when & = 0, and f(x) = f(xo + 1) whena = 1,
so that the interpolation passes through the samples, as required.

Similarly, bilinear interpolation computes an appropriately weighted average of the four
nearest pixels, i.e., the pixels in the surrounding 2 X 2 neighborhood, as shown in the
figure. The nearest pixel up and to the left of the point is given by (x, yo), where xo = |x]
and y, = |y| are integers. Again, the fractional part is what remains after subtracting the
coordinates of the upper-left pixel coordinates: @, = x — xp, @, =y — y0, 0 = a, @, < 1.
The interpolated value is then the weighted average of the four nearby pixels:

I(x,y) = aya,do + aaly + aeaydy + aady (3.69)

wherea, = 1 — a,,anda, = 1 — a,, and we define Ioy = I(x0,). 110 = I(xo + 1, o),
Iy = I(xg,y0 + 1), 1;; = I(xy + 1,y + 1).To verify that this is a true interpolation, note
that if x and y are integers, then xo = x, yo = y,and @, = &, = 0,sothat1(x,y) = I(x, y);
and so on. The pseudocode is provided in Algorithm 3.16.

3.8.3 Bicubic Interpolation

Now suppose we want to interpolate between two adjacent data points for which_ we know
not only their values but also their derivatives:

df (x)

’ U7 ax

df(x)
dx

fo=f(x), A=flx+1), fo= (3.70)

X0 X0+ 1

" Section 3.5.1 (p. 99).

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

3.8 Interpolation

Figure 3.33 Top: Linear
interpolation f(x) atan
arbitrary point x of a discrete
function f is computed as

the weighted average of the
two nearby sampled values,
namely f(xy) and f(x, + 1),
where x, = |x|. Bortom: Bilinear
interpolation /(x,y) ata point
(x, y) of a discrete image / is
computed as the weighted
average of the four nearby gray
levels, namely log, 1o, o7, and

I The alternating white and
shaded regions indicate the
extent of the sampled pixels in
the continuous domain.

111

1D function

xo—1 Xg X xp+1 Xot2
o
— x
2D function
S
xp—1 X0 xo+l xg+2
yo—1
Ioo Lo
Yo
y ay
,, y
y0+1 101 111
+
Yot2 oy

X

I(x, yot+1) = (1—ay) Ip1 + aylyy I(x, yo) =~ (1—ay) Ing + axly

the sampled points xy and xy + 1. In this case, more accurate results (at greater computa-
tional expense) are achieved via cubic interpolation, which is the third-order function that
passes through the sampled values and also satisfies the derivatives. It is not difficult to
show' that cubic interpolation is given by

(Za3 — 3a2+1)fo+(a3 — 2% + a)f0+(—2a3 + 3a2)f1 +(oz3 - az)fl

’

(3.71)

ho hU, h hy

where hg, hg, h;, and ki are the cubic Hermite splines shown in Figure 3.34 alongside the
coefficient functions used in linear interpolation, namely, 1 — « and a. Note that f(x) = f;

" Problem 3.32

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

112

Chapter 3 « Point and Geometric Transformations

ALGORITHM 3.16 Perform bilinear interpolation on an image at a point

and];(x) = f, when a = 0, while f(x) = f, and f(x) = f, when a = 1, as desired;
where

];(x) = % = (602 — 6a)fy + (36> — 4a + 1)fy + (=6a> + 6a)f; + (3a® — 2a)f;, (3.72)

Several ways of estimating the derivative are possible. The family of cardinal splines
approximates the derivative as

N

fi=

where 0 = 7 = 1 is a tension parameter controlling the extent of the derivative’s influence.
The most common choice is 7 = 0, leading to

(fis1 = fie1) (3.73)

o1
fi= S = fie1) (3.74)
Substituting this expression into Equation (3.71) yields the popular Catmull-Rom spline:
A 1
J(x) = 5 ((=a® +20% = @)y + (3a® = 50 + 2)fy

+ (=3a® +4a? + a)f; + (@ = a?)fy) (3.75)

Figure 3.34 Linear
interpolation coefficient
functions (left), and cubic
Hermite splines (right).
Note the similarity: hy and
h; are smooth versions of
the linear interpolation
coefficient functions.

0.8}

0.6F

0.4

0 : ! - - -0.2 L I !
0 02 04 06 08 1 0 02 04 06 08 1

a a

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

3.8 Interpolation

113

or in matrix form:

Iv
A 1 2 =5 4 -1
f) =g’ o a1} ;‘1’ (Catmull-Rom) (3.76)
o 2 o o0/l
where we define b = —1 so thatf, = f(xo — 1), and f, = f(xo + 2). Note that, whereas

linear interpolation requires two nearby sampled values, Catmull-Rom spline interpolation
requires four. Catmull-Rom spline interpolation is the most common variety of cubic inter-
polation, and we shall use the terms interchangeably from now on.

An alternate way of visualizing linear and cubic interpolation is shown in Figure 3.35. An

interpolation kernel k(x)|is defined over the continuous domain, and the interpolated value

is the weighted sum of the neighboring samples, where the weights are chosen by centering
the interpolation kernel over the desired position x, that is,l flx) = > k(i — a) fi.lln linear
interpolation, for example, k(x) is the triangle function:

[it = |
klx) = {O otherwise (linear) (3.77)
so that
1
Fx) = k(i = a)f, = k(—a)fy + k(1 — a)fy (3.78)
i=0
=(1—-|-afp+ (1= |1 =al)fi=(0—a)fy+ afy (3.79)

Figure 3.35 Top: Linear
(left) and cubic (right) 1D
interpolation kernels. The
dashed line indicates k(x)
= 0 to emphasize that the
cubic interpolation kernel
contains negative values.
Bortom: Interpolation
involves shifting the kernel
so that it is centered at the
desired position x, then
the neighboring samples
are combined using the
weights from the kernel.

27 27
1.5F
1t
Z 05}
~
0
—05F
—1L
=2
X X
o flx,) o flxy,)
flx1) JSx1)
k(—a) k(l—a) k(—a) k(l—a)
f(xO) f(xZ) f(xO) f(xZ)
| k(—1-a) | k(2—a)
X, xb)‘C)‘Cl)‘CZ)él?)éo)‘C X1)‘62

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

114 Chapter 3 « Point and Geometric Transformations

which is equivalent to Equation (3.68). For cubic interpolation, k(x) is defined as

3|x]* = 5[x|* + 2 if [x] =1
k(x) = 5 —|x|3 + 5\x|2 = 8lx|+4 ifl <|x] <2 (cubic) (3.80)
0 otherwise

so that the cubic interpolation function evaluated at position x is computed as

fx) = T ki = a)f; = k(=1 = alfy + k(=alfy + k(1 = @)fi + k(2 = a)fs (3.81)

=—(((-1=a)+5(-1—a)*+8(-1—a) +4)f,

+ (=3(=a)® = 5(-a)® + 2)f)

+(3(1 —a) =5(1 —a)* +2)f

+(-2-—a)+52-a)’-8(12—-a) +4)f) (3.82)
With a bit of algebraic simplification, this expression can be shown to be equivalent to
Equation (3.75).

Bicubic interpolation is an extension of this basic idea to 2D, in which the weighted
sum of the values of the 16 pixels in the surrounding 4 X 4 neighborhood are computed:

2

2
2 E l+1a}{+1 (383)

where the weights k;; are determined by a linear combination of the 16 pixel values:

k, o 0 0 0 0 4 0 0 0 0 0 0 0 0 0 o |1
k, 0 0 0 0 -2 0 2 o 0 0 0 0 0 0 O0f |1,
k, 0 0 0 0 4-10 8 -2 0 0 0 0 0 0 0 of |1,
k,, o 0 0 0 -2 6 -6 2 0 0 0 0 0 0 0 O0f |1
k, 0o -2 0 0 0 0 0 0 0 2 0 0 0 0 0 o |1
k,y 1 0 0 0 0 0 -1 0 0 -1 1 0 0 0 0 0|1,
k,, -2 5 -6 0 0 0 2 1 0 -4 5 -1 0 0 0 O0f |1,
by 1|1 =3 4 0 0 0 -1 -1 0 3 —4 1 0 0 0 0 | (3.84)
k, 40 4 0o 0o 0-10 0 0O O 8 0 0 0 -2 0 0| |1,
k, -2 0 0 0 5 0 -4 0 -6 5 0 0 1 -1 ol |1,
k,, 4-10 12 0 -10 25 -22 4 12 -2 12 -5 0 4 -5 1| |I,
k,, -2 6 -8 0 5-15 16 -4 -6 12 -9 5 0 -3 4 -1 I,
k, 0o -2 0 0 0 6 0 0 0 -6 0 0 0 2 0 0|1,
k,, 1 0 0 0 -3 0 3 0 4 -1 =4 0 0 -1 1 o0f |1,
k,, -2 5 =6 0 6-15 12 -3 -8 16 -9 4 0 —4 5 -1 1,
|k, | 1 -3 4 0 -3 9 -9 3 4 -9 7 -4 0 3 -4 1] |I,]|

where I, = I(xog — 1,y — 1), and so forth. Deriving this 16 X 16 matrix is left as an
exercise, but basically they are the coefficients necessary to ensure that the interpolated
function maintains continuity in its values, first derivatives, and cross derivatives. Bicubic
interpolation is illustrated in Figure 3.36, and the pseudocode is provided in Algorithm 3.17.
Compared with bilinear interpolation, bicubic interpolation preserves finer detail but
requires more computational expense.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

3.8 Interpolation

115

Figure 3.36 Bicubic interpolation at X

a point (x, y) is a weighted average of

the 16 nearby gray levels.

-xo—1 xp xpt+1 x9+2

|
|
|
|

y Lyl lop| hy |
yo—1 |
|
|

Yo Lo oo l Ly Iy

! o
| y
_______________ _K_______________J__ y

yo + 1 '

L1 Io i Iy I
|
32 + 2 :

: %) Iop| | i I»
o
Otx X

(x,y)

3.8.4 Keys Filters

Bicubic interpolation can be improved upon in two ways: first, by

(Relaxing this requirement tends to produce more visually pleasing
results in practice than true interpolation.) To implement both of these improvements, we

turn to the cubic convolution filter:

flx) = Zlk(i — a)f(xo + i) (3.85)

where, as before, xo = [x]and @ = x — x,. This filter is applied to the image along the rows,
then along the columns (or vice versa) in a separable manner, thus achieving an efficient

ALGORITHM 3.17 Perform bicubic interpolation (slow version)

Input: image, floating-point coordinates (x, y)
Output: weighted average of graylevel values of nearest 16 pixels

Xo < FLOOR (x)
Yo < FLoOR (y)
. <X — X
@,y <Yy = Yo
Compute k;;, i =

AN WL AW N =

=1, ...,2,j=—1, ..., 2 using Equation (3.84)

2 2 9 .
i+1 +1
return 2i= . EF el e

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

116

k(x)

Chapter 3 « Point and Geometric Transformations

approximation to 2D bicubic interpolation.” The kernel k(x) is a piecewise cubic spline
function specified by two parameters, b and c:

(12 = 9b — 6¢)|x|> + (=18 + 12b + 6¢) |x|> + (6 — 2b) if x| <1
(=b — 6¢)|x]P+ (6b+30c) |x|> +(—12b—48¢c) |x| +(8b+24c) if | = |x| <2 (3.86)

0

otherwise

where b (for “B-spline”) governs the amount of smoothing, and ¢ (for “cardinal spline”) is
related to the spline tension.? It is easy to verify that, for any values of b and c, the kernel
is continuous and symmetric about the origin, has a continuous first derivative, and pre-
serves the value of a constant input signal, 2; 71k(x) = 1. Combining Equations (3.85)
and (3.86) yields a more complete expression:

2
> k(i — a)f;

i=—1

k(=1 —a)fy + k(—a)fy + k(1 — a)fy + k(2 — a)fp

1

g((—b —6c)(1+a)®+ (6b+30c) (1+a)?+ (—12b — 48¢) (1 +a) + (8 + 24c))f;
1
+ g((12 —9b —6¢)a’ + (—18 + 12b + 6¢)a? + (6 — 2b))f;
1
+g((12—9b—6c)(1—a)3+(—18+12b+6c)(1—a)2+(6—2b))f]
1
+g((—b—6c)(2—oz)3+(6b+30c)(2—a)2+(—12b—48c)(2—a)+(8b+24c))f2
—b — 6¢ 12—=9b—6c —12+9 +6c b+6¢]|f,
1 3b 4+ 12¢ —18 + 12b + 6¢ 18 — 15b — 12 -6
~[a® & a 1] ¢ ¢ ¢ ¢ fo (3.87)
6 —3b — 6¢ 0 3b + 6¢ 0 fi
b 6 — 2b b 0 2

where f; = f(xo + i), as before.

The two parameters b and ¢ govern the type of filter, allowing us to generate any smoothly
fitting piecewise cubic filter. The resulting filter space is illustrated in Figure 3.37, with an
overlay of the subjective quality as assessed by image processing experts on sample images.
The vertical line along the left of the figure at ¢ = O contains the well-known family of
B-splines, of which the uniform cubic B-spline (» = 1, ¢ = 0) is the most famous:

-1 3 =3 1|| £
. 15 3 -6 3 01| f
=— 1 3.88
f) =cle® @@ a Ul o P (3.88)
1 4 1 0]l f

Similarly, the horizontal line along the bottom of the figure at » = 0 contains the family of
cardinal splines that we considered in the previous section:

2-c)xP+ (c=3)|x*+1 if|x] =1
k(x) =S —c|x]® + 5c|x|* — 8c|x| + 4c if1 <|x| <2 (3.89)
0 otherwise

" Convolution and separability are covered in detail in Chapter 5.
+1f 7 is the spline tension described in the previous section, then ¢ = 3 (1 — 7).

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

3.8 Interpolation 117

B-spline cubics

governs the smoothing 1/ Uniform cubic B-spline
1.0

Y
0.8
0.6
b
0.4
Gf‘? Mitchell Bad
02F Bad TN
Catmull-Rom
0 ‘ e : &— Cardinal
0 0.2 0.4 0.6 0.8 1.0 true interpolation filters

splines

Figure 3.37 The space of smoothly fitting piecewise cubic filters, governed by the parameters b and c. The true interpolation filters are
the cardinal splines, which satisfy b = 0, while the B-spline cubics satisfy ¢ = 0. The Keys filters satisfy b + 2c = 1, with special cases
being the Mitchell filter (b = 1/3, ¢ = 1/3), the Catmull-Rom spline (b = 0, ¢ = 0.5), and the standard uniform cubic B-spline (b = 1,

¢ = 0). The color indicates subjective quality as assessed by image processing experts, with the “bad” regions exhibiting anisotropy,
excessive ringing, blocking, aliasing, or smoothing artifacts. Based on D. P. Mitchell and A. N. Netravali. Reconstruction Filters in
computer graphics. Computer Graphics (SIGGRAPH), 22(4):221-228, June 1988.

. 2 -3 3-2¢ -
fx) = o a 1] c ¢ el fo (3.90)
—c 0 c 01l fi
0 1 0 0l 5

These splines incorporate no smoothing and hence are true interpolation filters, that is,
f(x) = f(x) whenever x is an integer, which is easily seen from Equation (3.90) because

f(x) =fywhena = 0.
From the figure notice that the visually pleasing filters tend to lie on or near the line

b+ 2c=1. (3.91)

Any filter satisfying this constraint is called a Keys filter. Substituting Equation (3.91) into
Equations (3.86)—(3.87) reveals that Keys filters are parameterized as

(3 + 12¢) x> + (=6 — 18¢) [x|> + (4 + 4c¢) if x| <1
k(x) = s (=1 —de)|x]P+ (6 + 18¢c) x> + (=12 — 24¢)|x| + (8 + 8¢) ifl = |x[<2 (3.92)
0 otherwise

—1—4 3+ 12¢ —-3-—12¢ 1+4c|| f
3+6c —-6—18c 3+ 18c —6¢

A . 2 Jo
= —|la 1 3.93
F(x) 6[a o« a 1] 3 0 3 0 P (3.93)
1—2c 4 + 4c 1 —2¢ 0 1

where 0 = ¢ = 0.5.
The Catmull-Rom spline is not only a cardinal spline but also a Keys filter, occur-
ring when b = 0 and ¢ = 3, which is seen by substituting ¢ = % into Equation (3.93) and

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

true interpolation filters

governs the smoothing

118 Chapter 3 « Point and Geometric Transformations

comparing with Equation (3.76) . Although it is beyond our scope to prove this, Catmull-
Rom achieves third-order convergence with respect to the Taylor series approximation of
the original signal, which is the best of any known filter. Catmull-Rom is therefore a popular
filter that in practice tends to produce acceptable results without noticeable artifacts.

Nevertheless, the most widely used Keys filter is the Mitchell filter (also known as the
Mitchell-Netravali filter), defined as b = 1/3, ¢ = 1/3:

1.167|x|® — 2|x|*> + 0.889 if x| <1
k(x) = 4 —0.389|x + 2|x|* — 3.333|x| + 1.778 if1 = |x| <2 (3.94)
0 otherwise

—-0.389 1.167 —1.167 0.389 || f»

) 0.833 —2 15 ~0333 || f,

~[a® o 1 3.95

f)=le? o e 1) g 0.5 0 i (3.95)
0.055 0890 0055 0 5

From the figure, it can be seen that the Mitchell filter lies even further from the objectionable
regions than Catmull-Rom. In practice the achieves

3.8.5 Lanczos Interpolation

Another important method is Lanczos interpolation,” whose interpolation kernel is the
well-known sinc function multiplied by a truncated sinc function:*

i -(sinc 2 if—a<x<
K(x) = (sinc x)-(sinc®) i a. x<a (3.96)
0 otherwise
where
. sin mx
sinc x = (3.97)
X

and a is an integer specifying the number of positive zero crossings to include. The first
factor has zeros at integer values of x, while the second factor is the bell-shaped window
function (known as the Lanczos window) that reaches zero at x = *a.

To interpolate a 1D discrete signal f, the weighted sum of the 2a values of the signal is
computed, using the values of the interpolation kernel as weights. Typically a = 2 or 3,
where the kernel is known as Lanczos-2 or Lanczos-3, respectively. Figure 3.38 shows an
example using the Lanczos-2 kernel, where x = 9.2, xg = |x] = 9,and « = x — xy = 0.2.
The value f(x,) is multiplied by k(—c), the value f(x, — 1) is multiplied by k(—a — 1),
the value f(x, + 1) is multiplied by k(—a + 1), and the value f(x, + 2) is multiplied
by k(—a + 2). More generally,

f) = X ki —a)f(x+ i) (3.98)

" Cornelius Lanczos (1893-1974) made a number of important contributions to math and physics, including several
numerical algorithms.
* Pronounced “sink”, the function in Equation (3.97) is the so-called normalized version. The unnormalized
verison, %, omits 7.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

3.8 Interpolation 119

Figure 3.38 Interpolation of a 1D signal. Here the 1l
signal shown by the vertical lollipops is evaluated
at x = 9.2.The interpolation function is the smooth 0.8¢
curve (Lanczos-2 in this case). The 4 green circles
indicate the values of the interpolation function that 0.6
are elementwise multiplied by the corresponding 04}
signal values, and then summed to yield the
interpolated value. 0.2 I
. 7

Like the cubic convolution filters,

One must be careful to distinguish between Lanczos interpolation, which we consider
here, and Lanczos filtering, which we consider later.” In the latter, the rationale for using
the sinc function is that it is the ideal low-pass filter, which makes sense in the context of
filtering an image by convolving with a large kernel that has been sampled at integer posi-
tions. In interpolation, however, the kernel has only 4 or 6 values (depending upon whether
a = 2 or 3), and the kernel is sampled at non-integer positions.

Figure 3.39 shows the 1D interpolation kernels defining the different filters of this
section, and Figure 3.40 compares the results of these filters on an example 1D signal. Note
that the first six filters are true interpolations because they pass through all the sample points
of the original signal, whereas the last two introduce some amount of smoothing. Although
the negative lobes of Catmull-Rom, Mitchell, and Lanczos filters cause ringing in the signal,
which is theoretically undesirable, this behavior actually

Figure 3.39 Various interpolation kernels, including those that introduce a small amount of smoothing. The “bad filter”is at b = 0,
¢ = 1. Note that the last two kernels are not true interpolation functions, because they do not satisfy k(*1) = k(*2) = 0.

1r 1r
0.8F 0.8}
0.6 0.6
= =

< 04f < 04F
021 02f

0 - 0

=02 . . .) =02
-2 -1 0 1 2 -2

X
Nearest neighbor Linear Lanczos-2 Lanczos-3

-1 0 1

X X X X
Catmull-Rom Bad Mitchell B-spline

" Section 6.4.1 (p. 296).

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

大耳垂

120 Chapter 3 « Point and Geometric Transformations

)
)
fx)
fx)

0 5 10 15 20 0 5 10 15 20

fx)
fx)
fx)
fx)

B-spline

Figure 3.40 Comparison of 1D interpolation methods, some with smoothing, on an example signal. Overall the Catmull-Rom, Mitchell,
and Lanczos-2 methods do the best job of providing a smooth fit to the signal without excessive overshoot or ringing.

S, i 2 manner similar to the Mach bands

phenomenon.* Note that nearest neighbor and linear methods produce sharp transitions,
whereas the higher-order methods produce smoother results. The B-spline filter smooths
too much, while the “bad filter” at b = 0, ¢ = 1 causes excessive overshoot, or ringing.
A good compromise is achieved by either the Mitchell or Lanczos-2 filters.

3.9 Warping

Armed with the ability to interpolate pixel values, in this section we consider arbitrary geo-
metric transformations from real-valued coordinates (x, y) to real-valued coordinates (x’, y'):

I'(x',y") =1I(x,y) (3.99)

where the mapping function f: R?* — R? specifies the transformation, or warping, from
the input coordinates to the output coordinates:

(x,y") =f(x,y) (3.100)

Since fis a function of two inputs that produces two outputs, another way to write the
equation is to split it into two components:

x' = f.(x,y) (3.101)
Y =£(xy) (3.102)
where f(x,y) = (f.(x, y),£,(xy)).

Earlier in the chapter we discussed the distinction between forward and inverse mapping
of coordinates. Unlike the simple transformations considered there, transformations involving
real-valued coordinates do not involve a one-to-one mapping between the pixels of the input
and output images. As a result, some pixels in the output image may not be touched by the

* Section 6.4.3 (p. 303).

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

3.9 Warping

121

transformation, because the pixels that would have mapped to them are, in fact, out of bounds
in the input image. At the same time, multiple pixels in the input image sometimes map to the
same pixel in the output image due to discretization effects (imagine viewing a slanted plane,
as illustrated in Figure 3.41). To ensure that all pixels in the output image are set exactly once,
it is important not to loop over the pixels in the input, performing the forward transforma-
tion, but rather to loop over the pixels in the output, performing the inverse transformation:

(x,y) =f " x"y") (3.103)

where interpolation is used to calculate I(x, y). In this manner, the coordinates (x', y’) in
the output are guaranteed to be integers, even though the coordinates (x, y) in the input may
be real-valued.

3.9.1 Downsampling and Upsampling Revisited

Flx) =
fx) =

In Equations (3.9)—(3.10) we showed how to downsample or upsample an image by a factor
of 2, without averaging the pixel values. In the more general case, let s, and s, be real-valued
scaling factors in the horizontal and vertical directions, respectively:

I'(x',y") = I(s.x’, syy’) (downsample) (3.104)
I'(x',y") = 1(x'/s, y'/s,) (upsample) (3.105)

where s, s, = 1.If s, = s,, then the transformation preserves the aspect ratio of the original
image.

Although downsampling can be achieved by simply discarding pixels that are not needed
(nearest-neighbor interpolation), it is better to compute output pixel values as an average of
the neighboring input pixels to avoid aliasing.” Any of the interpolation methods can be used,
with best results obtained by introducing a small amount of smoothing (i.e., not using a true
interpolation filter). For example, if s, = s, = 2, then the output pixel is computed as the
weighted average of the pixel and its two immediate neighbors. This is achieved for two alter-

native techniques by setting @« = 0 in Equation (3.88) and Equation (3.95), respectively:
0.167f(x — 1) +0.666f(x) +0.167f(x+1) (uniform cubic B-spline) (3.106)
0.055f(x — 1) + 0.889f(x) + 0.055f(x + 1) (Mitchell) (3.107)

Figure 3.41

A frontoparallel plane in the
input is warped to a slanted
plane in the output. The inverse
transformation guarantees
that every pixel in the output
receives a value, whereas the
forward transformation leads
to some pixels not receiving
values while others receive
multiple values. Based on
Burger and Burge: W. Burger
and M. J. Burge. Digital Image
Processing: An Algorithmic
Introduction Using Java.
Springer, 2008.

A

Lo/ o o o o
O O O O O O o o o o o o

OCBOOﬁBOObO
I
i
T
!

0O 0O O 0O O 000 O o o o
0O 0O O O O 0O 00 0O o o o

O O O O‘“‘O'ﬂio o O

O O O 0O O o o oo o o o
O O O 0O O o o oo o o o

o 0O O O O

\\fil/ ’
Source Target

" Aliasing is discussed in Section 6.1.3 (p. 275).

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

122

Chapter 3 « Point and Geometric Transformations

When s,, 5, > 2, additional neighboring pixels must be averaged, requiring techniques that
will be explored in Chapter 5.

Similarly, although upsampling can simply replicate pixels (nearest-neighbor interpola-
tion), to avoid blocking artifacts it is best to use a higher-order form of interpolation, such
as the Mitchell filter. For example, with s, = 5, = 2 and substituting a = 0.5 into Equation
(3.95), the Mitchell filter applies

f(x) = —0.035f(x—1.5) +0.535f(x—0.5) +0.535f(x+0.5) —0.035f(x +1.5) (3.108)

There is a fundamental limit to how much upsampling can be performed, since we cannot
recreate detail that was not present in the original image, and thus upsampling necessarily
involves hallucinating information. Nevertheless, for higher scaling factors, more sophisti-
cated algorithms can be used to recover sharp edges and textures while suppressing artifacts;
such algorithms are beyond our scope but are mentioned later as additional reading.

3.9.2 Euclidean Transformations

translation
rotation
reflection: fliping & floping

A number of different primitive geometric transformations are illustrated in Figure 3.42.
Translation, for example, involves shifting the image by a certain amount ¢, horizontally
and ¢, vertically:

x'=x+1, (3.109)
y =y+ fy (3.110)

whose inverse mapping is easy to obtain:

[1 =f'x,y) = [x,) tx} (3.111)
y y - ty

where interpolation is necessary to compute I(x, y) if 7, and 7, are not both integers. Although
out-of-bounds values are typically set to the nearest pixel, as mentioned above, another pos-
sibility is to wrap the pixels around the other opposite side of the image, which is sometimes
used in the case of a landscape background.

Another transformation is to rotate the image by a clockwise angle 6:

x"| |cos@® —sinf || x
y' sinf cos 6 y
.

R

(3.112)

!

orx’ = Rx,wherex’ = [x’ y’]Tandx = [x y]T. This equation specifies rotation about
the origin in the upper-left corner of the image. Usually, however, we want to rotate about
some pointe = [¢, ¢,]" inside the image:

x =R(x—¢)+c (3.113)

Figure 3.42 Various geometric transformations applied to a square. From left to right: Identity, translation, rotation, uniform scaling,
non-uniform scaling, shear, and projective transformation. Note that all transformations but the last one preserve parallel lines.

t

i

SRR

" Subsampling is also discussed in detail in Section 7.1.1 (p. 329).

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

translation
rotation
reflection: fliping & floping

3.9 Warping 123

Since a rotation matrix has the property that its inverse is its transpose, R"! = R™ all we
need to do to invert the equation is transpose the matrix, which means swapping the sign

on the sine:
x| cosf sinf x| e Lo
y —sinf cosf y' cy cy
-

(3.114)
RT

Unless 6 happens to be a multiple of 90 degrees, interpolation will need to be performed,

because x and y will not be integers for arbitrary values of 6.

Conveniently, translation and rotation can be combined into a single Euclidean
. , ~ DARERD DI A
transformation: x’ = R(x —¢) + ¢+t = Rx + t:

x"| _|cos® —sind || x N 1
y' sinf cost ||y ;y

—_— translation (3~1 1 5)
R
where t = [;x ;y]T = —Rec + ¢ + t. This can be viewed as either a rotation about ¢

followed by a translation by t, or equivalently as a rotation about the origin followed by a
translation by t. Euclidean transformations preserve the shape and scale of an object.

By appending a 1 to each point, we obtain the 3 X 1 vectors [x y 1] and
[x" vy 1] which are thefhomogeneous coordinatesfof the points. Using homo-
geneous coordinates, Equation (3.115) can be rewritten as a single matrix multiplication:

x' cos® —sin® 1, || «x
y' | =1 sinf cos 6 ;y (3.116)
1 0 0 11

which is convenient mathematically. Homogeneous coordinates are powerful
representations that have many uses in computer vision and are covered in more detail later
in the book."

3.9.3 Similarity Transformations

Uniform scaling is achieved by multiplying all the coordinates by the same scalar k:

x' = kx (3.117)
y' = ky (3.118)

Similarity transformations are a superset of Euclidean transformations, because they
include not only translations and rotations, but also uniform scaling:

x' kcos® —ksin® ki, || x
y' |=|ksin0 kcos® ki, |y (3.119)
1 0 0 11

Similarity transformations also preserve shape, but not necessarily size.

" See Section 13.4.1 (p. 654).

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

translation

124 Chapter 3 « Point and Geometric Transformations

3.9.4 Affine Transformations

A 2 X 2 matrix R is a rotation matrix if and only if its determinant is 1, i.e., det(R) = 1.
Removing this constraint to allow for any arbitrary, invertible 2 X 2 matrix leads to an
affine transformation:

y dpyp A (LY L d23

which can be rewritten as a single matrix multiplication using homogeneous coordinates:

Y| =lan axn ax||y (3.121)
1 0 0 1 1

To warp an image using an affine transformation, the matrix must be inverted:

!/
X 1 dr —dp Aax3dyp — dxdy3 || X
J— !
y|= — —ay; ay —axpay taxyap ||y (3.122)
dajpdyy — dppdyg
1 0 O ajdyy — appdyg 1

Affine transformations include rotation, translation, and uniform scaling, since similarity
transformations are a special case. In addition, affine transformations can change the scale
nonuniformly:

x' = sx (3.123)
Yy =8y (3.124)

as well as produce something called shear, in which one coordinate is shifted by an amount
proportional to the other coordinate:

x'=x+ay (3.125)
y =y (3.126)

where s,, 5,, and a are scalars. Together, these possibilities mean that a square can warp into
a rectangle or parallelogram. Note that lines that are parallel to each other in the original
remain parallel in the output.

3.9.5 Projective Transformations

A 2D projective transformation relaxes the constraint that the bottom row of the matrix
be [0 0 1]7, leading to an invertible 3 X 3 matrix H known as a homography:

x' hiv hiy hiz || x
Yo|® [hy hyp oz ||y
1 h h h 1
31 32 33 (3.127)
-
H

With projective transformations, homogeneous coordinates become considerably more dif-
ficult to visualize and understand, because the left-hand side is not necessarily equal to, but
rather is proportional to, the right-hand side. If we use A to represent this proportionality
constant, then we can rewrite the equation as

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

3.9 Warping

125
x' hir hiy his
Ay | =1ha hyn hsl||y
1 hyy hy hy |1
—_— , (3.128)
H

where A = hy;x + h3py + hss. Note that if the bottom row of the matrix is [0 0 1]7
as before, then A = 1 for all possible values of x and y, and we are back to an affine trans-
formation. On the other hand, if A # 1, then the output vector has a value in the last entry
that is not equal to 1. To compute the true (x’, y’), then, we must divide by A:

_Ax" hpxt hpy t by
)\ h31)€ + h32y + h33

Ay hyx + hypy + R
y = Ay _ e 22Y 23 (3.130)
)\ h3]x + h32y + h33

!

X

(3.129)

Solution

Apply the following projective transformation to the point (1,2):

7 3 2
H=|2 4 8 (3.131)
1 3 2

The homogeneous coordinates of the point are obtained by appending a 1 to (1,2), leading
to[1 2 1]7. Multiplying by the matrix H yields:

Ax' 7
Ay | =12
A 1

201 15
8i[2 =18 (3.132)
211 9

W W

so that A = 9 and therefore (x,y’) = (4, %) = (£, 2).

If A = 0 then it is not possible to divide by it. Instead of this being an error, however, the
resulting point is known as a [MMM which is closely related to the concept of a
. Points at infinity, and projective transformations in general, are covered
in more detail later in the book." Projective transformations subsume affine transformations,
so they are capable of performing translation, rotation, non-uniform scaling, and shear.
Projective transformations also have the ability to transform parallel lines into intersecting
lines, such as occurs in a picture of railroad tracks captured from a low vantage point. Exam-
ples of various geometric transformations applied to an image are shown in Figure 3.43.

3.9.6 Arbitrary Warps

Projective (and therefore the special cases of affine, similarity, and Euclidean) warps can
be captured succinctly in 3 X 3 matrix transformations using homogeneous coordinates.
Such an approach can be used, for example, to warp the image to provide a bird’s-eye view
given a perspective image of a planar ground (e.g., road or railroad tracks). Similarly, such
a transformation can be used to intentionally distort the image so that when the image
is projected onto a flat surface at an angle, it appears undistorted (a procedure known

" Section 13.4 (p. 654).

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

126

Figure 3.43 Various
geometric warpings
applied to an image.

Chapter 3 « Point and Geometric Transformations

/]

|

=

/ !
Image Translation Rotation Affine Projective

Yulia Glam / Shutterstock.com

as keystone correction). Beyond projective warps, however, the mapping function fin
Equation (3.103) can be any desired function, thus providing increased flexibility to allow
an image that has been geometrically distorted in a nonlinear way (e.g., because of lens
aberration or a catadioptric sensor) to be unwarped to provide a perspective view, or to
define a spiral transform that swirls the image about its center to distort the image to create
a visually pleasing effect, or to perform radial distortion to increase or decrease the number
of pixels devoted to the center. The details of such warps are left as exercises to the reader.

3.9.7 Image Registration and Morphing

Finally, to close this chapter we mention that when two images are provided as input, it is
sometimes desirable to align them so that they can be overlaid on top of one another. This align-
ment is known as image registration. Depending on the type of scene and the relationship
between the images, the warp needed for image registration can vary from simple to complex.
For example, if two images are taken of a planar scene from different locations, then they are
related by a homography, which can be estimated by numerical techniques given correspon-
dences between the two images. However, if an airplane flies over non-flat terrain to take
pictures, the resulting images cannot be perfectly aligned using such a 3 X 3 matrix, because
trees or buildings will cause 3D parallax effects, which in turn will cause misalignment between
pixels on those surfaces when the images are registered based on the ground plane motion.

If two images are not only registered but also dissolved into each other, we say they are
morphed. A common example is to morph one person’s face into another by specifying a
warping function that maps the corresponding features of one person’s face (eyes, nose, and
mouth corners) into the corresponding features of the other person’s face, and to blend the
pixel values over some number of image frames to provide the appearance of a continual
blending from one image to the other when the sequence of frames is played back as a video.
The warping of such nonlinear, complex surfaces as faces requires transformations that are
local rather than global in nature.

3.10 Further Reading

Most of the material in this chapter, such as graylevel [2008] or Gonzalez and Woods [2008]. Multispectral
transformations, graylevel histograms, histogram transformations such as NDVI are described in the remote
equalization, and histogram matching, can be found in sensing literature, such as Campbell and Wynne [2011] or
any image processing textbook, such as Burger and Burge Lillesand et al. 2007]. Another popular approach for dealing

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

3.10 Further Reading

with multispectral data in remote sensing (but beyond our
scope) is known as the Tasseled Cap Transformation,
which is due to Kauth and Thomas [1976]. For a thought-
provoking discussion regarding the use of pseudocoloring,
consult the work of Borland and Taylor [2007].
Background subtraction can be traced to the early
work of Jain and Nagel [1979], which also addressed the
problem of updating the background image once objects
begin moving. The double-difference image for frame dif-
ferencing is originally due to Kameda and Minoh [1996].
A notable investigation of the topic of background sub-
traction was conducted by Toyama et al. [1999]. One of
the most popular background subtraction algorithms is
based on mixtures of Gaussians and is due to Stauffer and
Grimson [2000], which was later updated by Zivkovic and
van der Heijden [2006]. Additional approaches to back-
ground subtraction are that of Javed et al. [2002], which
combines color and gradient information, and the texture-
based approach of Heikkila and Pietikainen [2006].
Anyone interested in learning more about digital com-
positing is encouraged to pick up the delightful book by

127

Brinkmann [2008], which explains techniques widely used
in the entertainment industry, as well as the terms flipping
and flopping as they are commonly used in the computer
graphics community. The classic paper on compositing is
that of Porter and Duff [1984], which remains a readable
and self-contained introduction. Another short introduc-
tion to compositing is the paper by Thompson [1990].
Cubic convolution interpolation filters were developed
by Keys [1981], who also showed that the Catmull-Rom
spline (without mentioning it by name) minimizes the
reconstruction error. This work was later extended by
Mitchell and Netravali [1988], who demonstrate that a
small amount of smoothing improves the subjective quality
of the reconstructed image — the Mitchell filter is a result
of this study. A comparison of various interpolation meth-
ods is found in Turkowski and Gabriel [1990]. Another
excellent description of 1D and 2D geometric transforma-
tions, warps, and interpolation methods can be found in
the Burger and Burge book [2008]. For more recent work
on sophisticated upsampling algorithms, consult Shan et
al. [2008], HaCohen et al. [2010], or Kopf et al. [2007].

PROBLEMS

3.1. Given the following 4 X 4 grayscale image, perform the following operations: flip,
flop, flip-flop, invert, and rotate clockwise by 90 degrees.

176 94 201 219
37 161 16 88

71 129 177 81
41 198 107 19

3.2. Based on Algorithms 3.1 and 3.2, write pseudocode to flip-flop an image.

3.3. Modify Algorithm 3.1 to perform the flipping in place, so that the output and input
images occupy the same memory.

3.4. Modify the pseudocode of Algorithm 3.3 to rotate the image in place, using only
enough additional storage to hold one pixel value at a time. (Only implement rotate clock-
wise by 90 degrees.)

BBl Use 8-bit saturation arithmetic to compute the following: (a) 52 + 200, (b) 86 + 199,
(c) 30 — 50, and (d) 32 + 11. Then repeat with 4-bit saturation arithmetic.

3.6. Using the 8-bit image in Problem 3.1, perform the following arithmetic operations,
clamping where necessary: add 65, subtract 85, multiply by 2.

- Compute the (a) sum, (b) difference, and (c) absolute difference of the following two
8-bit images, using saturation arithmetic to store the result in another 8-bit image:

19 171 91 68 106 97 190 5
L1230 99 74 195 L 81 o4 183 82
! 85 71 208 18 2 71 200 251 94

241 212 189 68 181 76 9 18

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

128

Problems

- Suppose you want to display the following floating-point image. Perform a linear
contrast stretch to convert the pixels to 8 bits, mapping the smallest value to 0 and the
largest value to 255:

0.327 0945 0.559 0.381
0.181 0.252 0.080 0.950

0.240 0399 0.737 0.148
0986 0.170 0.246 0.447

3.9. Determine the lookup table (LUT) for the piecewise linear graylevel mapping given in
Figure 3.12. (To avoid excessive writing, provide entries only for the gray levels divisible by 25.)

3.10. Generate the LUT for the operation I’ (x, y) = n-(;1(x, y))*°, assuming /and I’ are
4-bit grayscale images. Set 7 to ensure that the maximum value of 7 maps to the maximum
value of I'.

3.11. Threshold the image in Problem 3.1 with 7 = 155.
- Compute bit plane 7 and bit plane 4 for the image in Problem 3.1.

- Compute the histogram, normalized histogram, and cumulative normalized histogram
for the following 4-bit image:

5 8 3 17
1 3 3 9
6 8 2 7
4 1 0 9

3.14. Implement histogram equalization in your favorite programming language. Run your
code on the image in Problem 3.13, as well as on a low-contrast image of your own.

3.15. Implement histogram matching, and run your code on the image in Problem 3.13,
using the reference histogram ,,,=[1 1 1 0 2 2 2 0 4 3] Check by
hand to verify that the output is correct.

3.16. If histogram equalization is applied twice to an image, that is, if it is applied to the
result of histogram equalization, will the second application change the image or not?
Explain why or why not.

3.17. Compute the grayscale equivalent for each of the following RGB triplets using both
Equations (3.36) and (3.37), rounding to the nearest whole number: (a) (128,128,128), (b)
(64,245,198), and (c) (255,253,128). Also, (d) for each color, compute the difference in
grayscale between the two conversions.

3.18. Implement the RGB-to-grayscale conversion approaches of Equations (3.36) and
(3.37), and run on a few sample images. Also run the RGB-to-grayscale conversion of some
existing software application. Can you tell a difference in quality between the various outputs?

3.19. An alternative to the NDVI of Equation (3.45) is the Infrared Percentage Vegetation
Index (IPVI), given by

IIR(x’ J’)
Ip(x,y) + Igea(x, y)

11’PV1(X,)’) = (3.133)

Show that IPVI is functionally equivalent to NDVI, in that it is simply a linear transformation.
Compute the transformation, and state the range of IPVI. What are the thresholds for
detecting live green vegetation in IPVI?

Problems

129

3.20. What temperature (in degrees Celsius) is represented by a pixel in a GOES infrared
image with a value of 2007

3.21. Suppose you have an application for which you want to apply background subtrac-
tion. List some difficulties that might prevent the output from being perfect.

3.22. Compute the (a) double difference and (b) triple difference between the following 3
consecutive frames, using the threshold 7 = 40:

168 94 67 21 168 92 71 20 171 92 70
97 78 198 | 122 71 191 27| | 76 193 39 228
70 208 17 2 83 212 16 187 371209 20 20 194

208 189 68 240 216 188 68 241 210 190 73

3.23. Explain the concept of dissolving and how it is used in the movie/film industry for
digital compositing.

3.24. In addition to the 12 binary Porter-Duff operators (and their alpha-channel equiva-
lents), other compositing operators are possible. One of these is SCREEN, defined as

IASCREENIB =1- (1 _IA)(l _IB)

where the pixel values are assumed to range between 0 and 1 to simplify the equation.

(a) What does the screen operator do? (Hint: Assume I, and [y are the foreground and back-
ground, respectively, and examine what happens when the images are at their minimal
or maximal values.)

(b) Implement the screen operator and test it on two images, each with constant alpha
channel of 0.5 for every pixel.

3.25. Another pair of compositing operators is dodging and burning. Dodging brightens
certain pixels in an image, while burning darkens the pixels; in both cases the pixels are
specified by a second binary image. One way to implement these operators is to add or
subtract a constant, say 128, to every pixel in the image where the binary image is on, using
saturation arithmetic. Write the pseudocode for these two operators.

3.26. Suppose your computer has saturation arithmetic built-in, that is,
a + b =min(a + b, 255) for byte operations, and so forth. (Such logic is common for
CPUs with SIMD instructions such as MMX/SSE.) How would you modify your pseudo-
code in the previous problem?

3.27. The 12 Porter-Duff operators are as follows:

(a) CLEAR (e) IgOVERI, (i) Igoutly,
(b) cory I,) LNy (G) I, ATOP Iy
(c) copy Ig (g) IpINIy, (k) Iz ATOP I,
(d) I,0VERIg (h) I ourly 1) I, xor g

Apply these operators to the following two images with masks:

132 231 227 255 255 O 43 79 116 0 0 0

105 238 | My =255 255 O|Ig=|56 246 184 | Mzp=|0 255 255
59 128 0 0 0 36 119 162 0 255 255

Show only the values of the valid pixels; indicate invalid pixels using an X.

130

Problems

3.28. One of the 12 Porter-Duff operators is equivalent to (I, IN Ig) OVER Iz. Which one
is it?

3.29. Using the same values for I, and I as in Problem 3.27, but with the following opacity
values, compute (a) I, OVER I, (b) I, IN I, and (c) I, ATOP Ij.

1.0 05 0 0 0 0
ay=105 04 0| az={0 02 06
0 0 0 0 06 1.0

3.30. The four operators in Figure 3.32 are not commutative. Briefly describe what the
result of each operator would be if the order of the operands were reversed.

3.31. Given the following image, use bilinear interpolation to compute the value at
(a) (0.1,0.7), (b) (1.2,0.5), (c) (1.3, 1.6), and (d) (2.8,1.7).

232 177 82 7
241 18 152 140
156 221 67 3

3.32. Show that Equation (3.71) passes through the values f; and f; and maintains the
derivatives f; and f;.

3.33. Derive the 16 X 16 bicubic interpolation matrix in Equation (3.84), using the central
difference operator for derivatives.

3.34. The general form of a 1D symmetric cubic filter is given by

as|x]? + ar|x|? + ay|x| + ag if [x] <1
k(x) = qad|x|® + ad|x* + aj|x| + ap if1=|x| <2 (3.171)
0 otherwise

Show that if the value and derivatives are enforced to be continuous everywhere, and the
coefficients sum to 1, then the 8 parameters are reduced to 2, leading to Equation (3.86).

3.35. Why is the Mitchell filter generally preferred over Catmull-Rom?

3.36. It can be shown that the Mitchell filter in Equation (3.95) is a linear combination of
Catmull-Rom in Equation (3.76) and uniform cubic B-spline in Equation (3.88) Find the
weighting coefficients.

3.37. List a popular filter for downsampling, and another for upsampling.

3.38. Find two images of a fairly static scene taken by a camera that panned and zoomed
between the images. Manually click on two corresponding points on both images to com-
pute the scale and rotation between them, then use one of these corresponding points to
compute the translation. Construct a similarity transform, and apply the transform to one
of the images to bring the two images into approximate alignment.

3.39. Set up a stationary camera and capture a short video sequence of some moving
foreground objects while the background remains stationary. Compute the mean image of
the sequence to generate a background image, then use background subtraction to segment
the foreground objects. Display the foreground objects that result from thresholding the
absolute difference between the current image(s) and the background image.

3.40. Implement the popular background subtraction approach that uses mixtures of Gauss-
ians to model the background pixel colors, explained in Stauffer and Grimson [2000].

Binary Image Processing

) &

A
R \\\\1,\ Yih/- i b\\v\"k“‘\\\:

n the previous chapter we examined simple operations to transform one image into another. In this chapter we

continue the investigation by focusing on the special case of binary images. Our goal in this chapter is to cover

well-known algorithms that are widely used in practice, while at the same time laying a foundation for later
chapters. Binary images provide a natural excuse to introduce mathematical morphology, which is an approach to
image processing that views a binary image as a subset of the plane, as well as other mathematical concepts such
as the eigendecomposition of a matrix, which is useful for determining the orientation of a set of points in the
plane. Unlike the previous chapter, the operations in this chapter are not restricted to those in which the output
pixel is determined by a single input pixel.

4.1 Morphological Operations
Recall that [CSNOINCICIASCAICIAge, or thresholding the result of an operation

like background subtraction, produces a binary image in which foreground pixels have
the value of 1, while background pixels have the value of 0. Logically, these values can
be considered as oN or ofF, respectively. Figure 4.1 shows an example grayscale image
of objects on a conveyor belt, along with a thresholded version. Such images are com-
mon in manufacturing environments, where machine vision techniques play an important
role in ensuring that the parts being manufactured are without defects, are sorted into

132

Figure 4.1 Left: A
grayscale image of
several types of fruiton a
dark conveyor belt. Right:
A binary image resulting
from thresholding. The
white pixels are on and
indicate the foreground,
while the black pixels
are off and indicate the
background.

Chapter 4 - Binary Image Processing

Stan Birchfield

the proper bins, and so on. For such applications, it is often important to isolate the
foreground objects from the background, as well as to compute properties of the objects
for the purpose of classifying and manipulating them. Unfortunately, as seen from the
figure, thresholding does not produce a perfect separation between the foreground and
background. Although we will consider algorithms for automatically computing a thresh-
old value later, on a difficult image like this one, the result will be noisy no matter what
threshold value is chosen.

Morphological operations provide a powerful way to clean up such noise. The word
morphology means “the study of P8, and mathematical morphology is an entire
branch of mathematics that has been developed to process images by considering the shape
(or form) of the pixel regions. Mathematical morphology models binary images as sets
by considering foreground (on) pixels as subsets of the image plane. In the next chapter,
we shall extend this concept to grayscale images, but for this chapter we focus on binary
mathematical morphology.

4.1.1 Binary Image as a Set

A binary image is generally thought of as an array of values such that I(x,y) returns 1
or 0 for each pixel location (x,y). Alternatively, as explained earlier,* a binary image can
be represented as the set of coordinates of all the foreground (1-valued, or on) pixels.
These two representations are equivalent, and we can freely convert between them as
desired.

EXAMPLE 4.1

Solution

Write the set representation of the following binary image:

1 0 1
I=10 1 1
0 0 O

The set representation contains the coordinates of all the pixels with a value of 1. Using
our coordinate system convention in which the x axis points to the right, the y axis points
down, and the origin is the top-left pixel, this yields {(0,0), (1, 1), (2,0), (2,1)}.

" Chapter 10 (p. 444).
*Section 1.4.3 (p. 13).

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

4.1 Morphological Operations

133

EXAMPLE 4.2

Solution

A 3 X 3 binary image is represented by {(0, 1), (0,2), (1,2), (2,2), (2,1)}. What is
the array representation?

The array representation is obtained by placing a 1 at every location contained in the set,
and 0 everywhere else:

~
Il
—_— = O
- o O
—_— = O

The two fundamental set operators are union and intersection. If A and B are sets of
points in the plane, then the union of .4 and B is the set containing all points that are in
either A or B (or both), while the intersection of A and B is the set containing all points
that are in both A and B:

AUB={z:z€ Aorz € B} (union) (4.1)
ANB={z:z€ Aandz € B} (intersection) (4.2)

where z € R? is a point in the plane. Additional operators are the translation of the set A by
the vector b, denoted Ay; the reflection of the set B about its origin (the flip-flop operator
we saw in the previous chapter), denoted B; the logical complement 7 A containing all the
points not in A, which is equivalent to replacing each 1 in the array with 0 and each 0 with
1; and the difference A\ B between two sets containing all the points in .4 that are not in B.
If weleta = (a,, a,) € Abe apointin the first set, and let b = (b,, b,) € B be a point
in the second set, then these operators are summarized as follows:

A,={z:z=a+b,ac A} (translation) (4.3)
B={z:z=-b,beE B} (reflection) (4.4)
A={z:z¢& A} (complement) (4.5)
A\B={z:z€ A, z& B =ANB (difference) (4.6)

where —b = (—b,, —by) indicates that the sign of both the x and y coordinates have
changed. The application of these operators is shown in Figure 4.2, from which it is easy to
see thatz € A () B implies z € A U B, since any point in the intersection must also be
in the union. As a result, the intersection is a subset of the union: A (1B <A U B.

In addition, it is obvious that any point not in the union of .4 and B is also not in .4 and
not in B; similarly, any point not in the intersection of .4 and B is either not in .A or not in
B. These are known as De Morgan’s laws:

T(AUB) =7ANTB 4.7)
(ANB)=74U78 (4.8)

Figure 4.2 Set operators. The first two columns show two sets .4 and BB in blue. Then, from left to right, shown are the union, intersection,
shift of .A by some amount b (not related to B), reflection about the origin (assumed to be at the center), complement, and set difference.

A

B AUB ANB Ap B A A\B

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

134

Chapter 4 - Binary Image Processing

4.1.2 Minkowski Addition and Subtraction

The coordinates of two points can be added easily using vector addition,
a+ b= (a, + by, a, + by), which leads naturally to a definition for the sum of two sets.
The Minkowski addition’ of two sets .4 and B is defined as the set of points resulting from
all possible vector additions of elements of the two sets:

AoB={z:z=a+b,ac Abe B}
=UJ{a+b:aca}=J4A,

beB beB

(4.9)

(4.10)

In other words, Equation (4.9) says that A @ B is the set {z} such that for each point z in

the set there is some a in A and some b in 3 whose sum is z. Equivalently, Equation (4.10)

says that 4 @ B is the union of the sets resulting from translating .A by each element of 5.
The Minkowski subtraction of two sets is defined in an analogous manner:

AcoB={z:z—b€eE A Vb e B}
= {a+b:acAdAl =4

beB beB

(4.11)

(4.12)

where the symbol V means “for all.” That is, Equation (4.11) says that A © B is the set jzt
such that for each point z in the set and for all b in 3, the pointz — b is in A. Equivalently,
Equation (4.12) says that it is the intersection of the sets resulting from translating A by
each element of B.

These two operations are best understood by example. Although Minkowski addition and
subtraction are defined for arbitrary point sets in the plane (and can be extended beyond the
plane, as we shall see in the next chapter), our goal is to apply these concepts to images,
that is, to discrete point sets in a square lattice in which the point coordinates are integers.
Our example, therefore, highlights this case.

EXAMPLE 4.3

Solution

Compute the Minkowski addition of the two discrete sets .A; and /3 shown in Figure 4.3,
and the Minkowski subtraction of the two discrete sets .4, and 3 shown in the same figure.

The first set contains just two points: A; = {(0,0),(1,0)}. The second set contains four
points: B = {(0,0),(1,0),(0,1),(0,2)}. Minkowski addition is computed by adding
each element of B to each element of A;:

€A, €B eA®B
(0,0) + (0,0) = (0,0)
(0,0) + (1,0) = (1,0)
(0,0) + (0,1) = (0,1)
(0,0) + (0,2) = (0,2)
(1,0) + (0,0) = (1,0)
(1,0) + (1,0) = (2,0)
(1,0) + (0,1) = (1,1)
(1,0) + (0,2) = (1,2)

" The mathematician Hermann Minkowski (1864—1909) was a teacher of Albert Einstein.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

4.1 Morphological Operations

135

Since one point is repeated, the result is the set containing the 7 unique points:
Ar®B=1{(00),(1,0),(0,1), (0,2),(2,0), (1,1), (1,2)}. The figure shows that
this set of points is the union of all the points in .4, when .4, is translated to every point in 5.
Minkowski subtraction is less intuitive. Nevertheless, it is easy to show that (0, 0) is in
A, © B because, for every element of 53, their difference is in .A,. On the other hand, the point
(1,0)is notin A, © B, because for the point b = (0,2) € B, the difference is not in Ay

eB eB
(0,0) — (0,0) = (0,0) € A, (1,0) = (0,0) = (1,0) € A,
(0,0) — (1,0) = (—1,0) € A, (1,0) — (1,0) = (0,0) € A, 4.13)
(0,0) — (0,1) = (0,—1) € A, (1,0) = (0,1) = (1,-1) € A, ’
(_o,ﬁo)—(o,z)z(o,—z)evzt2 (1,0) = (0,2) = (1,-2) & A,
€ A,08B & A,0B

The figure shows that the set .4, © B is the intersection of the sets of points resulting from
translating A, to every point in .

Properties

The Minkowski operators have a number of interesting properties. From the previous example,
itis clear that Minkowski addition grows the foreground .4, whereas Minkowski subtraction
shrinks the foreground 4,. Formally, as long as the second set /3 contains the origin (which is
nearly always the case in practice), then Minkowski addition is extensive, which means its
, while Minkowski subtraction is anti-extensive, which means
its output is a subset of the input. Similarly, if A, is a subset of A,, then the result of either
operator on A; will be a subset of the result of the same operator on A,, a property known
as increasing. Other properties are fairly easy to show, which are listed here for reference:

AeB=Bd A (commutativity) (4.14)

AcB =104 (non-commutativity) (4.15)
(AeB)eC=A® (BaC) (associativity, separability) (4.16)
(AeB)eCc=A5(BaC) (separability) (4.17)
(AeB)eC=(AaC)®B (order does not matter) (4.18)
(AeB)ec=(AeC)oB (order does not matter) (4.19)
A®Bc A if(0,0) € B (extensivity) (4.20)

Ao Bc A if(0,0) € B (anti-extensivity) (4.21)
Al@BS A,0Bif A CA, (increasing) (4.22)
AioBc A, 0B if A c A, (increasing) (4.23)

A® (BUC) = (AeB) U(A®C) (parallelism) (4.24)
Ao (BUC)=(AeB)N(AsC) (parallelism) (4.25)
(ANB)eCc=(AsC)N(BeC) (4.26)
(AUB)eC=(AaC)U (BeC) (4.27)
T(AeB) =468 (duality) (4.28)
(AeB)="4eB (duality) (4.29)

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

136 Chapter 4 - Binary Image Processing

-2 0 2 -2 0 2
-2 -2
0 . 9 o x = . x U o5 x
2 2
y y y y
Aq B
U = U r“x = sl
y ly y
A1 @B
-2 0 2 -2 0 2
-2 -2
0 . x 6 0 __)2 = . X m ole X
2
y y y y
Ay B
N . x N . x = . X
y y y
A, © B

Figure 4.3 Minkowski addition and subtraction, from Equations (4.10) and (4.12) , respectively. For both operations, the first set (A,
or A,) is translated so that its origin is placed at each element of the second set (B). The union of the blue cells then yields A, & B,
while their intersection yields A, © 5. In other words, each on (blue) cell in A; ® B is on (blue) in at least one of the intermediate
results, while each on (blue) cell in A, © B is on (blue) in all of the intermediate results. Colored cells are on (value 1); white cells are
ofF (value 0); and all pixels outside the 5 X 5 image are assumed to be orr. The small black dots indicate the origins of the coordinate
systems. (As explained later, this is the “center-in" approach.)

One particularly interesting property is that of duality. Two operators ¥ and V' are
said to be duals of each other with respect to complementation if "W (A) = ¥'(7A4).
It is not hard to see that Minkowski addition and subtraction are duals of each other with
respect to complementation, because the former grows the foreground A (or, equivalently,
shrinks the background 71.A4), while the latter shrinks the foreground A (or, equivalently,
grows the background 7.A). In other words, for a given B the same result is achieved if we
complement the output or if we complement the input and change the operator. Duality is
a powerful tool for proving properties.

Swapping the Order of the Operands

Due to the commutative property, it is not surprising that Minkowski addition can also be
computed by leaving A stationary and instead shifting 3, whereas in the above example
we left B stationary and shifted .A. Similarly, by combining the commutativity and duality

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

4.1 Morphological Operations 137

properties, it is easy to show that Minkowski subtraction can be computed by leaving 7.4
stationary and instead shifting 8:

AeB=Bad A (4.30)
={z:z=a+b,ac€ A beEB} (4.31)
=UJfa+b:peB= B, (4.32)

ac A acA

AeB="1Bo74 (4.33)
={z:z—a& B Vag A} (4.34)
=(N{a+b:b&B= ()8, (4.35)

aZ A aZ A

Computations involving these swapped operands are illustrated in Figure 4.4.

Center-In Versus Center-Out

All the formulations of Minkowski addition and subtraction that we have seen so far are
examples of what we call the “center-in” approach, in which the center of one set is placed
only at certain locations, and the output is determined by examining the entire set (applying

Figure 4.4 Alternate view of Minkowski addition and subtraction from Equations (4.32) and (4.35), which are obtained by swapping the
order of the operands using the properties 4, ® B = B® A;and A, © B = B3 © 7 A,, respectively. For addition, the second set
(B) is translated so that its origin remains within the first set (.4,), and the result is the union of all the on (orange) cells. For subtraction,
the second set (B) is translated so that its origin remains outside the first set (.4,), and the result is the intersection of all the ofr (non-
orange) cells. In other words, each on (blue) cellin A; @ B is on (orange) in at least one of the intermediate results, while each on (blue)
cellin A, © B is off (non-orange) in all of the intermediate results. Equivalently, the result of subtraction is on everywhere except where
the pixel is on (orange) in at least one of the intermediate results. (This is also the “center-in" approach.)

-2 0 2 2 0 2
) -2
0 x D 0 x = x U mx = X
2 2 0 O
y y ly y y
Ay B A1 DB

y
A, © B

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

138

Chapter 4 - Binary Image Processing

either union or intersection). In contrast, the “center-out” approach performs a test at each
location on all the elements of the set, then updates the value of the center element. In other
words, the former approach treats the center element (i.e., the element at the origin) as an
input to decide whether to even look at the other elements, whereas the latter approach

treats the center element as the output that aggregates information from the other elements.
All formulations of Minkowski addition or subtraction can be classified as either center-in
or center-out.

The center-out approach to Minkowski addition finds the set of points z such that at
least one point in the reflected 53, when centered at z, intersects A. Similvarly, Minkowski
subtraction is the set of points z such that all the points in the reflected B, when centered
at z, intersect A:

A®B=1{z:B,NA%+0} (4.36)
AoB=1{z:B,c A} (4.37)

The two approaches are summarized in Table 4.1. Despite the (perhaps surprising) need for
a reflection, the center-out apRroach is more intuitive and easier to visualize than the center-
in approach, because the set 13 is translated by every possible z, and a test is performed on
the entire set. This is illustrated in Figure 4.5, where the equivalence of the center-in and
center-out approaches is obvious by comparing with Figures 4.3 and 4.4.

4.1.3 Dilation and Erosion

center-in

center-out

Minkowski addition and subtraction lead naturally to the two fundamental morphological
operators called dilation and erosion. As shown in previous examples, Minkowski addi-
tion grows (or “dilates”) the region by increasing its size, whereas Minkowski subtraction
shrinks (or “erodes”) the region by decreasing its size. Examining Figure 4.5, however,
reveals a problem: Minkowski subtraction A © B yields the set of locations at which the
reflected set B3 fits entirely within A, whereas it is more natural to want the set of locations at

which the original set B fits entirely within A; as a result, the erosion operator S is defined
to be Minkowski subtraction after first reflecting the second operand. Minkowski addition,
on the other hand, exhibits no such reflection in its output, and therefore the dilation opera-
tor @ is identical to Minkowski addition:
AeB=A®B={z:z=a+b,ac A b e B} (dilation) (4.38)
ASB=AcB={z:z+be A Vb e B} (erosion) (4.39)

where the right-most equations are copied from Equations (4.9) and (4.11), changing the
sign in the latter.

Structuring Elements

Up to now the two operands have been treated more or less equally. Typically, however, the
first set, which we call /, is a binary image containing tens of thousands of pixels, whereas

AeB ASB
{z:z=a+b,a€ A beE B} {z:z— b € A Vb € B}
= UbeB-Ab = UaEABa = mbeB Ap = ﬂaefA_'Ba
{z:l’g’zﬂAaﬁﬁ} {Z:éng}

TABLE 4.1 All formulations of Minkowski addition and subtraction can be classified into one of two categories, center-in or center-out.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

4.1 Morphological Operations 139

-2 0 2 -2 0 2 B
-2 —2[1 NONE §C
O EE T © O % = e U Esx U e
2 20 11] n
y y y y y
Ay B
] |
YY) U: XU ._)E: ° X
B[] EEEC
Es] EEDO
y y y
A1 DB
-2 0 2 -2 0 2
-2 — 21 o 1]]
oRf o offge - piie: U R U R -
* = o * i v X
2 2] Tl
y y y ly ly y
A, B A,O8B

Figure 4.5 Yet another view of Minkowski addition and subtraction, from Equations (4.36) and (4.37). For both operations, the reflected
second set Bis translated throughout the space. For addition, the output is the union of the locations of the center of Bwhen at least
one element of 3 overlaps A;. For subtraction, the output is the union of locations of the center of B when all elements of B overlap A,.
(This is the “center-out” approach.)

the second set B is a much smaller binary mask called a structuring element (SE).” From
Equations (4.32) and (4.35) , the center-in formulation of dilation and erosion involves
translating B across the image, performing a test on the central pixel, and updating the
output of all the pixels under B:

1B =JB, (dilation, center-in) (4.40)
z€]

168 = ﬂ —léz (erosion, center-in) (4.41)
z&1

as shown in Algorithm 4.1. In the case of dilation, the output is initially set to oFr everywhere.
Then, for every location (x,y), the structuring element B is overlaid on I centered at (x,y),
and the value /(x,y) is tested. If 7(x,y) is on, then the output I’ is set to oN wherever B is
oN. Ignoring border effects, /" will be the same size as /. Similarly, in the case of erosion,
the output is initially set to on everywhere. For every location (x,y), the structuring element
B is overlaid on 7 centered at (x,y), and the value /(x,y) is tested. If 7(x,y) is ofF, then the
output /' is set to oFf wherever B is oN. In the code, note that x' = 0, ..., wg — 1, and
y' =0, ...,hg — 1, where wg and hp are the width and height of B, respectively. Typically
the size of B is odd, in which case the floor of the half-width and half-height simplify to

WB wp — 1 hp hg — 1 . R .
5 = > and > = , The notation v’ <— g v in Line 5 is a shorthand

" Since SEs are usually stored as arrays rather than sets, from now on we use the non-calligraphic notation B rather
than B for clarity; the two are mathematically equivalent.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

140

Chapter 4 - Binary Image Processing

ALGORITHM 4.1 Dilate or erode an image with a structuring element (center-in approach)

DiLATE-CENTERIN (/, B)

Input:

binary image / and structuring element B

Output: binary image I’ from dilating / with B

1
2
3
4
5
6

ERODE-CENTERIN (I, B)
Input:

for (x,y) € I do

Initialize the output /" (x, y) <— OFF forall (x,y).
For each on-pixel in the input /,

if I(x,y) = on then overlay B at the pixel,
for (x',y') € Bdo and set all pixels overlapping an oN-pixel in B to ON.
I'(x+x' —|Z,y+y - [%"J) <~ Bx,y") (e, /"< I"rB.)

binary image / and structuring element B

Output: binary image I’ from eroding / with B

AN L AW N =

for (x,y) € I do

Initialize the output/” (x, y) < 1forall (x, y).
For each oFF-pixel in the input /,

if I(x, y) = oFF then overlay 3 at the pixel,
for (x',y') € Bdo and set all pixels overlapping an ofe-pixel in 13 to OFF.
I'(x—x + |2,y —y +|%2]) < oNot B(x',y") (ie,!" < 1"mp78B.)

way of saying v’ <— v’ OR v, and similarly for v’ <= snp v, much like the operators |= and
&= in the C programming language.

From Equations (4.36) and (4.37) , the center-out formulation of dilation and erosion
involves translating B (or B) across the image, performing a test at each pixel, and output-
ting a value in the center:

1®B=1{z:B,NI+ 0} (dilation, center-out) (4.42)
I1©6B={z:B,<I} (erosion, center-out) (4.43)

as shown in Algorithm 4.2. In the case of dilation, for every location (x, y) the reflected
structuring element B is overlaid on /, and the corresponding output value I’ (x,y)is set to
on if there is an on-pixel in / under at least one of the on-pixels in B. The erosion /OB is
computed similarly. For every location (x, y) the structuring element B is overlaid on 7, and
the corresponding output value I’ (x, y) is set to on if there is an on-pixel in I under all of
the on-pixels in B. In both cases, the reflection of B is accomplished by changing the signs
in Line 4. It is no doubt ironic that, whereas the dilation (Minkowski addition) operator has
avoided all mention of reflection until now, its center-out computation actually requires
reflection, whereas the implementation of the erosion operator, which we might have
expected to involve reflection, in fact requires none. For clarity, the situation is summarized
in Table 4.2. Nevertheless, in case it is not already clear why dilation requires a reflection
of the structuring element, an additional example is provided in Figure 4.6.

Using Dilation and Erosion for Noise Removal

The most common use of dilation and erosion is to remove noise. In this application, erosion
and dilation are morphological filters that either remove anything smaller than the structuring

4.1 Morphological Operations 141

ALGORITHM 4.2 Dilate or erode an image with a structuring element (center-out approach)

element (erosion) or fill any gaps / holes smaller than the structuring element (dilation), and
therefore the structuring element is usually a discrete approximation to a circular disk. The
two most common structuring elements are the elementary structuring elements, which
include a 3 X 3 cross of 1s (known as B4) and a 3 X 3 array of all 1s (known as Bg):

0 1 0 111
By=[1 1 1 Bg=1|1 1 1 (4.44)
0 1 0 11 1

depicted graphically in Figure 4.7. The symmetry of such structuring elements means that
there is no difference between Minkowski subtraction and erosion, because the structuring
element is equal to its reflection. Also, the size and shape of the structuring element greatly
simplify the implementation. In the case of B,, for example, the code in the outer for loop

TABLE 4.2 Whether reflection of the second argument (structuring element) is needed for both center-in and center-out approaches for
all operators. Note that Minkowski addition and dilation agree on both, since the operators are identical. Similarly, Minkowski subtraction
and erosion disagree on both, since the definition of the latter already includes a reflection.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

142 Chapter 4 - Binary Image Processing

HON 5]]
L=l 1] HON HE [T1]
HOON [=]=] HON HON
HEE CL1] LI=]=] L] |
C1S[]
.

Figure 4.6 A simple example illustrating the need for reflecting the structuring element in “center-out” dilation. Left column: A3 X 3
binary image with a single on pixel in the center (top), and an L-shaped 3 X 3 structuring element (bottom). Remaining columns: As the
structuring element slides past the image (top), dilation sets the pixel in the output (bottom) corresponding to the central pixel of the
structuring element to on if there is overlap between the image and the structuring element. In all cases, colored pixels are on, whereas
white pixels are ofr. As can be seen, if an asymmetric structuring element is not first reflected, then the resulting dilation will exhibit an
undesirable reflection.

(Lines 2-6) can be replaced with a single line, leading to Algorithm 4.3. Similar code can
be written using Bg. Note, therefore, that the most widely used cases of dilation and erosion
are extremely easy to implement.

Properties

It should be obvious that dilation and erosion inherit the properties of the Minkowski opera-
tors. All the properties in Equations (4.14)—(4.29) are also true for dilation and erosion by
simply replacing © with) everywhere. The only exception is duality, which requires an
additional reflection:

T(A®B) = TASB (duality) (4.45)
T(AS6B) = A®B (duality) (4.46)

That is, dilation and erosion are duals of each other with respect to complementation and
reflection, which is illustrated in Figure 4.8.
One of the more interesting properties is separability:

A® (B®C) = (A®B)®dC (separability) (4.47)
AS(B®C) = (ASGB)SC (separability) (4.48)

In other words, if we dilate an image by a structuring element B, then dilate it again with a
different structuring element C, the result is the same as if we had dilated the image by the
structuring element resulting from dilating B with C. A similar argument holds for erosion.
As an example, Bg can be decomposed as follows:

1 1 1 0 0 O 0 1 O 0 1 0 0 0 O
Bg=|1 1 1|=(1 1 1|(®&|0 1 O0|=]0 1 O|®|1 1 1 (4.49)
1 1 1 0 0 O 0 1 0 0 1 0 0 0 O

since dilation is commutative. By dilating (or eroding) with the horizontal structuring ele-
ment, then dilating (or eroding) with the vertical structuring element, significant computation

Figure 4.7 The two most common structuring elements. i .
By Bg

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

4.1 Morphological Operations 143

ALGORITHM 4.3 Dilate or erode an image with a B, structuring element (center-out approach)

can be avoided. This approach, which can be applied to rectangular structuring elements of
all 1s of any size, is particularly beneficial for large structuring elements.

Another interesting property is parallelism, which allows us to dilate or erode piece by
piece, then combine the results by union or intersection:

A®(BUC) =(A®B)U(A®C) (4.50)
AS(BUC)=(ASB)N(ASC) (4.51)

For example, if we had three processors, we could decompose Bg as follows:

11 1 11 1 0 0 0 0 0 0
Bg=|1 1 1|=|0 0 o|U[1 1 1|Ul0 0 0
111 00 0 0 0 0 111

perform dilation (or erosion) using a different structuring element with each processor, then
combine the results using union (or intersection).

Figure 4.8 The duality of dilation and erosion, namely, /(A ® B) = A & B. Note that out-of-bounds pixels receive the value of their
closest neighbor.

HEN
B A®B (AD B)
B A==
A B TASB

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

144

Chapter 4 - Binary Image Processing

Alternative Definitions and Notation

The reader is cautioned that the notation used for dilation and erosion varies among authors.
The notation used in this book is summarized as follows:

(Mink. addition/dilation) A ® B = _J Ay ABB = (J Ay (reflected dilation) (4.52)

bEB bEB
(Mink. subtraction) A© B = () Ay AGB = () A_y (erosion) (4.53)
bEB beB

By retaining the standard notation for Minkowski addition and subtraction while introducing
the notation © for erosion, the distinction between these concepts is clearly maintained.
Many authors, such as Gonzalez and Woods [2008] and Davies [2005], reuse the Minkowski
subtraction notation for erosion, leading to ambiguity in interpreting the symbol ©. Other
authors, such as Serra [1982] and Soille [2003], not only use different notation but also
define dilation to include a reflection (“reflected dilation™), in the same way that erosion
includes a reflection. These differences are summarized in Table 4.3, where the top rows
show how each author defines each term, using our notation to describe the definition; and
the bottom rows show the notation used by these authors. When the structuring element is
not symmetric, maintaining these distinctions is important.

4.1.4 Building Large Structuring Elements

We have just seen” that [

The dilation or erosion of an image with a separable SE is equivalent to two successive
dilations or erosions, respectively, with the component SEs, as shown in Equations (4.46)—
(4.47). This property can be used to greatly decrease the number of computations needed
when an SE is separable. For example, a 3 X 3 SE of all 1s is the dilation of a vertical SE
of all 1s with a horizontal SE of all 1s:

1 1 1 1
Bg=|1 1 1|=|1|@[1 1 1]
11 1 1 —_— (4.54)
L3 (10
L3 0.1)

This Book GW, Davies, SHB, SS Serra Soille

definition dilation A®B A®B ADB ASB

erosion ASB ASB ASB ASB

notation dilation A®B A®B A®B 55(A)

erosion ASB ASB ASB ep(A)

TABLE 4.3 Comparison of the definition and notation for dilation and erosion among various authors (from left-to-right: Gonzalez and
Woods [2008], Davies [2005], Sonka et al. [2008], Shapiro and Stockman [2001], Serra [1982], and Soille [2003]). The top rows present
the definitions of the operators by the various authors with respect to our notation. All authors agree on the definitions, except that
the last two authors introduce a reflection in the definition of dilation. The bottom rows present the notation used by the various
authors. Ignoring the last column, all authors agree on the notation for dilation, whereas our notation for erosion differs from others’
by making the reflection explicit in the operator symbol. (Keep in mind, however, that in a “center-out” implementation, it is actually
dilation, not erosion, that reflects the structuring element, even using the definitions in the middle two columns. See Table 4.2.)

" Section 4.1.2 (p. 134).

4.1 Morphological Operations 145

where L, (,,) indicates a straight line SE in the direction of (x,y) with length r. A variety
of shapes of arbitrary size can be composed from this basic definition of a line, as shown

in Figure 4.9:
Square, = L, (10)® L, (o.1) (4.55)
Rectangle,, ¢ = L, (10)® L¢(0.1) (4.56)
Diamond, = L, _1(11)® L,—1 1, —1) ® Diamond, (4.57)
Octagon, = L, 1 (1) D L,— 11, —1) D Ly(1.0)D L, (0,1) (4.58)
Octagon, = L, ;1) D L, (1. 1) ® L,(1.0) ® L, (0.1 (4.59)

where Diamond, is identical to B, in which the 1s are arranged in a plus sign. For the
two types of octagon SEs, the following ordering relation can be shown to hold for all 7:
Octagon, C Octagon, C Octagon,; ; C Octagon,., .

4.1.5 Opening and Closing

One problem with dilation and erosion is that they inadvertently grow or shrink a binary
object. For example, with a 3 X 3 structuring element, dilation extends the object by 1
pixel around the border of the object, whereas erosion removes (in addition to noise) a
1-pixel-thick border around the object. The solution to this problem lies in two additional

morphological operations called opening (which is _) and

closing (which is
AoB=(ASB)®B (opening) (4.60)
AeB=(A®B)SB (closing) (4.61)

Figure 4.9 Composing
large structuring elements
by dilating smaller ones.
From top to bottom:
Squares, Rectangles 3,
Diamonds, Octagons,
and Octagonj.

f.al. .
- - H
P« Y« e o

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

146

Chapter 4 - Binary Image Processing

Equivalently, the opening of a set is the union of all the SEs that fit entirely within the set,
whereas the closing of a set is the intersection of all translations of the complement of the
SE such that it contains the set:

AoB=|J{B,:B,c A} (opening) (4.62)

AeB = m{—le:A c B} =1 <U{BZ;BZQ 7A}> (closing) (4.63)

z

It is easy to show that opening and closing are also duals of each other with respect to
complementation and reflection:

7(AeB) = (TAoB) (duality) (4.64)
7(AoB) = (TA®B) (duality) (4.65)

The open and close operators are idempotent, meaning that repeated applications of open-
ing or closing do nothing:

(AocB)oB=A0oB (idempotence) (4.66)
(AeB)eB=AepB (idempotence) (4.67)

It is easy to see that openings are anti-extensive, whereas closings are extensive.

If the foreground pixels are visualized as land and the background pixels as water,
features can be defined, such as lakes, bays, channels, capes, isthmuses, and islands.
Figure 4.10 illustrates some binary regions with these features, along with the results of
dilation, erosion, closing, and opening. For simplicity we ignore discretization and imagine
the structuring element in the shape of a circular ball (or disk). If the ball is rolled on the
outer contour of the object, the result of dilation is the set of all points whose enclosing
contour is defined by the path of the center of the ball. This operation fills the lakes, bays,
and channels. Similarly, if the ball is rolled on the inner contour of the object, the result of
erosion is the set of all points whose enclosing contour is defined by the path of the center of
the ball. This operation removes capes, isthmuses, and islands. Note that dilation increases

Figure 4.10 Top: Dilation of a binary region by a circular structuring element can be visualized as rolling the disk along the outside of the
region; the result is enclosed by the path of the center of the disk. The right column shows the result of closing (dilation followed by erosion),
which fills lakes, bays, and channels. Bortom: Erosion can be visualized as rolling the disk along the inside of the region; the result is again
enclosed by the path of the center of the disk. The right column shows the result of opening (erosion followed by dilation), which removes

capes, isthmuses, and islands.
Bay

Channel

Isthmus

Island

Cape

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

4.1 Morphological Operations 147

the size of the region, whereas erosion decreases the size of the region. By following one
operation after the other, the undesired features can be filtered without changing the overall
size of the region. An example of applying various morphological operations to a binary
image (obtained by thresholding a background subtraction result) is shown in Figure 4.11.

In addition to morphological openings, which we have just seen, there are also algebraic
openings, which cannot be written as a single erosion followed by a dilation. The area
opening, for example, removes all regions whose area (in terms of the number of pixels) is
smaller than a given threshold. The area opening is equivalent to the union of all morphological
openings with connected SEs whose size (in terms of the number of pixels) is equal to the given
threshold. Similarly, there are algebraic closings. The area closing, for example, is the dual
of area opening, given by the intersection of all morphological closings with connected SEs
whose size is equal to the threshold. Another algebraic opening is the parametric opening,
which is the union of all morphological openings by all subsets of the SE whose size is equal
to the given threshold. Such operators are mathematically interesting but not widely used.

4.1.6 Hit-Miss Operator

Erosion can be used to define a simple approach to shape detection in a binary image. Sup-
pose we have a shape that we wish to detect in an image A. The erosion ASB, will find
all places in the image Witere B, fits entirely within the foreground of A (meaning that every
oN pixel in B,y lines up with an on pixel in A), but it will lead to spurious detections as well.
To avoid these spurious detections, use another structuring elementhat contains the
pixels that we do not want to be on. These could be the inverse 'B,, of the shape, the outer
boundary (B, ® B,) — By, of the shape, or some other set of pixels. To detect the shape in
the image, the hit-miss operator’ uses erosion to find all the places in the image where
B, matches the foreground and B, matches the background:

A® (Byy, By) = (ASB,) N(TASB,,,.) (hit-miss operator) (4.68)

The hit-miss operator provides a simple approach to|object detectionl, for which more robust

techniques will be considered in Chapter 12.

Notice that the hit-miss operator takes two arguments, the second of which is a pair of
SEs. We can combine these two SEs into a single ternary SE that holds one of’
for each pixel:

ON if Bon = ON
B = < OFF if BOFF = ON (4.69)
DONT-CARE otherwise

Figure 4.11 A binary image and the result of morphological operations: Erode, dilate, open, and close. Erosion removes salt noise but
shrinks the foreground. Dilate fills pepper noise but expands the foreground. Opening and closing removes the respective types of noise
while retaining the overall size of the foreground.

Stan Birchfield

Input image Erode Dilate Open Close

"The hit-miss operator is also known as the hit-and-miss transform or hit-or-miss transform, but the latter is inac-
curate since the parts are combined by conjunction rather than disjunction. Similarly, operator is more appropriate
than transform because the coordinate frame does not change.

148

4.1.7 Thinning

Chapter 4 - Binary Image Processing

allowing us to write Equation (4.68) in a more compact form:
A®B (hit-miss operator with ternary argument)

Figure 4.12 shows an example of the hit-miss operator applied to detect a simple smiley
face pattern in an image. The foreground pattern contains the eyes and mouth, while the
background pattern contains the negation of the foreground—except that the corner pixels
are considered “don’t care.” The foreground pattern is found in the image at three places, in
addition to several spurious readings along the bottom of the image. Notice that the detec-
tion in the upper-right is of a face for which a nose was added. The background pattern is
also found in three places, including a detection of a face with a pixel missing from the
mouth. When _, only the two unmodified faces are detected. Notice
that the DONT-CARE pixels do not have any effect on any of the detections. Figure 4.13 shows
the hit-miss operator applied to another image for the purpose of detecting a particular letter
(“¢”) in an image of an English sentence.

One application of the hit-miss operator is morphological thinning. Thinning a binary image
involves removing pixels from the foreground (that is, setting pixels to off) while maintain-
ing as much as possible the structure and connectivity of the foreground regions. At its core,

thinning takes an image and a ternary SE and removes all the points detected by the SE:

IBB=I—-({U®B)=IN"(I®B) (4.70)

where the subtraction operator performs |set differencing|by setting all pixels that are oN in

I ® B to ofF in the output. Typically we want to thin an image using several ternary SEs,
organized as either an ordered or unordered set. An ordered set is known as a sequence,
in which case thinning applies the elements of the sequence in order, one at a time, to the
output of the previous element. If welet B = (B}, B,, ..., B,,) be asequence of m ternary
SEs, then the thinning operator is defined as

I18B=(88B)H8B,)--- BB, (sequential) (4.71)

Figure 4.12 Hit-miss operator. Tor: The foreground pattern B, the background pattern B, and the ternary representation B with

X indicating boNT-cARe. Bortom: From left-to-right: The image A within which to search for the pattern, the negation 7A of the image, the
erosion of the image with the foreground pattern, the erosion of the negated image with the background pattern, and the final result, which
shows two successful detections of the smiley face.

Bon By Ternary B

Image A

A ASBoy A S Bogr Final result

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

4.1 Morphological Operations 149

e o ® ®
IR el The hit-miss operator
is a simple approach is a simple approach
to object detection. to object detection.

@ ® © ®
A Bon BoFF

& ®
The hit-miss operator
is a simple approach

to object detection.

@ ®
ASBoN TASBoFr A®B Detections overlaid

Figure 4.13 The hit-miss operator applied to a binary image, with white indicating on and black indicating ofr. Tor: From left-to-right:
The image, the inverted image, the foreground pattern, and the background pattern. Bortom: From left-to-right: The erosion of the image
with the foreground pattern, the erosion of the inverted image with the background pattern, the result of hit-miss, and the outlines of
the detections overlaid on the original image.

On the other hand, if welet B = {31 ,By, ..., Bm} be an unordered set of m ternary SEs, then
the thinning operator first flags all pixels that are detected by the SEs, then removes those pixels:

I8B=I-(U®B)J{U®B,) U---U{I®B,)) (nonsequential) (4.72)

Either way, the equations above constitute one iteration of thinning with the set/sequence.
Applying multiple iterations is straightforward:

rg"B=((18B)B8B) - BB (4.73)

n iterations

where n is the number of iterations. If the procedure is run until convergence, the
computation is represented as I B> B, so that repeated applications have no effect:
(1B8*B) B B=18B"B.

Figure 4.14 shows 8 ternary SEs that are commonly used for morphological thinning.
The two basic SEs are

0 0 O X 0 0
BEDGE =X 1 X BC()RNER = 1 1 0
1 1 1 X 1 X

and the other 6 SEs are rotated versions of these. As a rough approximation, B, and its variet-
ies detect points that are on an interior edge of a region, or that are protruding out of the region.
Similarly, Boraer and its varieties detect points that are on a corner or on a thin diagonal line.

Figure 4.14 Structuring elements commonly used for
morphological thinning. Colored pixels are on, white pixels Edge SEs: @ @ @ g
are off, and x indicates DoNT-cARE. The top row shows the 4
edge SEs, while the bottom row shows the 4 corner SEs.
Corner SEs: @ @ @ @

150

4.1.8 Thickening

Chapter 4 - Binary Image Processing

Figure 4.15 shows the process of thinning a binary image using these 8 SEs as a
sequence. The first SE is applied to the image, matching 5 pixels along the top that are then
removed. Afterward, the second SE is applied, and no pixels are matched. The third SE is
then applied, and 8 pixels along the bottom are matched and removed. The process contin-
ues until convergence, at which point the result is an approximation of the skeleton of the
image, a topic covered in more detail later in the chapter.” When applied as a sequence, the
order in which the SEs are applied does in fact matter, and it is generally recommended to
apply Bgpee and its variants before applying Beoraer and its variants, within each iteration,
so0 as to avoid unnecessarily shrinking the region. This is the approach taken in the example
shown in the figure.

Figure 4.16 shows the process of thinning the same binary image using the same SEs
as the previous figure. This time, however, the edge SEs are applied as a set, so that all
edge pixels are first detected and removed. This process continues until convergence. Once
no more changes are made to the image, the corner SEs are applied as a sequence, begin-
ning with the first one and continuing until convergence. This approach produces a thin-
ner skeleton than the approach in the previous example which, as we shall see later, is an
improvement because the goal is usually to obtain the thinnest skeleton possible. Note from
the figure that the corner SEs cannot be applied as a set, because then two adjacent pixels
would be detected and deleted (i.e., the pixel just below the hashed pixel in the next-to-last
graphic), leading to a disconnected skeleton.

Thickening is the opposite of thinning. Thickening a binary image involves adding pixels
to the foreground (that is, setting pixels to oN) while maintaining as much as possible the

Figure 4.15 Morphological thinning of a binary image using the SEs of Figure 4.14 treated as a sequence. The first SE matches pixels
(indicated by hashed squares) along the top of the region, which are then removed. The second SE matches no pixels, while the third SE
matches pixels along the bottom, which are then removed. This process continues until convergence, yielding an approximate skeleton

of the original image.

Input image After first SE After second SE After third SE

After fourth SE After fifth SE After sixth SE After seventh SE

After eighth SE After ninth SE Final result

" Section 4.5.1 (p. 195).

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

4.1 Morphological Operations

Figure 4.16 Morphological thinning of the
same binary image using the same SEs as the
previous example. In this case, however, the
edge SEs are applied repeatedly as a set until
convergence, before applying the corner SEs
repeatedly as a sequence. In the first iteration
pixels along the top, right, bottom, and left
of the region are removed by the edge SEs. In
the second iteration, 9 additional pixels are
removed by the edge SEs. In the final iteration
a single pixel is removed by one of the corner
SEs, thus producing a thinner skeleton than in
the previous example.

(iteration 1)

%

After corner SEs

Final result

151
[T1]
W27 B%%
% |
% %
% 7
| 7727277 | H-HH
Image After edge SEs After edge SEs

(iteration 2)

overall shape of the foreground regions. At its core, thickening takes an image and a ternary
SE and adds all the points detected by the SE:

IBB=1U(I®B)

(4.74)

where the union operator sets all pixels that are oN in / ® B to on in the output. Using X to
represent DONT-CARE, commonly used SEs for thickening are

1 1 X X 1 1
BGROW-SE =1 0 X BGROW-SW =X 0 1
1 X 0 0 X 1

and the rotated versions of these, which are all shown in Figure 4.17. Bgrow.sg grows the
region in the southeast (bottom-right) direction, B,y sw £rows in the southwest (bottom-
left) direction, and so on. Note that the central pixel of thickening SEs are ofr, whereas the
central pixel of thinning SEs are on.

The process of morphological thickening of a binary image is shown in Figure 4.18. For
brevity we simply show the input and output of the procedure, leaving the detailed steps as
an exercise for the reader. Note that the thickening process fills the concavities of the region,
resulting in an approximation to the convex hull, discussed later.” Thickening is not as sensi-
tive as thinning to the order in which the SEs are applied, so the distinction between set and
sequence is less important. Comparing this figure with Figure 4.16, notice that the thinning
SEs are designed to retain 8-connectedness of the foreground, while the thickening SEs are
designed to thin 4-connected foregrounds. For example, if the original region in Figure 4.18
were first thinned to an 8-connected region, thickening would have no effect because the
SEs would not match anything. We will discuss 4- and 8-connectedness in more detail in
the next section.

Figure 4.17 Structuring elements commonly

used for morphological thickening. hd hd % %

" See Section 4.4.8 (p. 187).

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

152 Chapter 4 - Binary Image Processing

Figure 4.18 Morphological thickening of a binary image []
using the SEs in Figure 4.17. Shown are the original image m
(left) and the final result after convergence (right). The

thickened result is an approximation to the convex hull.

[] I
Input image Final result

An alternate approach to thickening the foreground is to thin the background. That is, the
complement of the image is taken, thinning is applied until convergence, and the result is
then complemented again. This approach is illustrated in Figure 4.19, from which it is clear
that this approach does not yield the convex hull—rather it retains the approximate shape of
the original region. One drawback of this approach is the lack of meaningful convergence.
As we saw in Figure 4.18, thickening converges to a solution in a finite number of iterations,
without regard to the size of the background in which the foreground is embedded. In this
alternate approach, however, if the foreground were embedded in a much larger background,
then the background would be repeatedly thinned until it reached the borders of the image,
at which point the background size would be greatly reduced, thus causing the foreground
region to have enlarged well beyond its original size.

4.2 Labeling Regions

Once the noise in a binary image has been removed (or at least reduced) using morphological
operations, the next step is often to find regions of pixels in the image. Each region is a set
of connected pixels and is assigned a unique label to distinguish it from other regions. In this
section we consider basic definitions, followed by several algorithms for labeling regions.

4.2.1 Neighbors and Connectivity

The morphological algorithms of the previous section are the first algorithms we have con-
sidered that use neighbors of pixels to compute a result. A pixel ¢ = (g, qy) is a neighbor
of pixel p = (p,, p,) if q is in the neighborhood of p, denoted ¢ € N (p), where N
is the neighborhood function. The most common neighborhoods used in image processing
are shown in Figure 4.20:

Figure 4.19 Morphological thickening of the same binary image by thinning the background using the thinning SEs in Figure 4.14. Top:
The background (obtained as the complement of the original image), and the output after each iteration of morphological thinning.
Bortom: The original image and the thickened output after each iteration, obtained by complementing the image above it.

| T

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

4.2 Labeling Regions 153

Figure 4.20 Commonly used neighborhoods. From left to right:
/\/;1, ./\/8, and ND‘

® The 4-neighborhood, denoted by N, consists of the four pixels to the left, right, above,
and below the pixel.”

® The D-neighborhood, denoted by A, consists of the four pixels diagonal from the pixel.

® The 8-neighborhood, denoted by A, consists of the eight closest pixels. That is,

Ng = Ny U Np.

Note that the structuring element B, that we encountered earlier is a set consisting of the
central pixel and its 4-neighbors, whereas Bg consists of the central pixel and its 8-neighbors.

Any algorithm that uses neighbors must decide what to do when those neighbors do
not exist. For example, in the case of dilation or erosion, when the structuring element is
centered near the boundary of the image, some of its elements will extend past the image,
placing them out of bounds. Although for simplicity the pseudocode presented in the previ-
ous section ignores this detail, in a real implementation a decision must be made how to
handle these [ESIDONIBMPIEE. W hile there is no agreed-upon solution for this problem,
several common approaches are the following:

o . Kccp the SE in bounds at all times and set the output

pixels near the boundary to zero (or some other arbitrary value). This is the fastest and
simplest solution and is acceptable if you do not care what happens near the border.

o BB Ncar the border, shrink the SE so that it does not extend past the image
border. For example, if we have a 3 X 3 SE of all ones, we could use a 2 X 3 SE of
all ones near the left and right border, a 3 X 2 SE near the top and bottom borders, and
2 X 2 SEs (with the center placed appropriately) near the four corners.

o . Thc most common approaches to padding are to R
(that is, out of bounds pixels are assigned the value of the nearest pixel in the image),
BBl (image values are mirror-reflected about the image border), [Jilll (image values
are extended in a periodic wrap, which is what the discrete Fourier transform does
implicitly), and [EIGGEME. Note that this last option was used in the previous section,
where we assumed that out-of-bounds pixels were oFF.

The type of neighborhood determines the type of adjacency. Two pixels are said to

be - if N NENCHNCISAMCIVAINg (i.c., cither oN or off in the case of a binary
image) and if [IEYIAICCICHDOIIONCACIIOINET. Pixcls are said to be connected (or contigu-

ous) if there exists a path between them, where a path is defined as a sequence of pixels
Pos P1> - - -»>Pn—1 such that p,_; and p; are adjacent foralli = 1, ...,n — 1. A region
in an image is therefore a set of connected pixels. Not surprisingly, the two most common
adjacencies are 4-adjacency and 8-adjacency, illustrated in Figure 4.21:

e Two pixels p and q in an image I are 4-adjacent if I(p) = I(q) and q € N4(p):

e Two pixels p and q in an image I are 8-adjacent if I(p) = I(q) and q € N(p).

In addition, the notion of 4- and 8-neighbors can be combined to yield m-adjacency (“mixed
adjacency”):

e Two pixels p and q in an image I are m-adjacent if I(p) = I(q) and (q € N ,(p) or
(q € Np(p) and N4(p) N N4(q) = 9)).

¥ In cellular automata theory, N is known as the von Neumann neighborhood, while A/ is the Moore neighborhood.
J. von Neumann (1903-1957) was a pioneer in many areas and is perhaps most famous for the von Neumann
architecture used in almost all computers today. E. F. Moore (1925-2003), the inventor of the Moore finite state
machine, was a pioneer of artificial life.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

154

Figure 4.21 Abinary region and the 4-,
8-, and m-adjacency of its pixels. Note
that m-adjacency removes the loops that
sometimes occur with 8-adjacency.

Chapter 4 - Binary Image Processing

Region 4-adjacency 8-adjacency m-adjacency

4.2.2 Floodfill

In other words, two pixels are m-adjacent if they are either 4-adjacent or 8-adjacent and
there is not another pixel that is 4-adjacent to both of them. For all adjacencies, the neigh-
borhood relations are symmetric, so that ¢ € A/ (p) if and only if p € N (q) for any
neighborhood N .

Discretization introduces a subtle complication in dealing with adjacency. According
to the Jordan curve theorem, any simple closed curve (called a Jordan curve) divides
the plane into the interior region bounded by the curve and the exterior region which is the
complement of the interior region unioned with the curve. Thermntinuous path
from one region to the other intersects the curve. With discretization, however, it is easy
to demonstrate scenarios in which a path from the background to the foreground does not
intersect the discretized curve if the same adjacency is used for both foreground and back-
ground. The well-known solution to this problem is to use 4-adjacency for the foreground
and 8-adjacency for the background, or vice versa.

BN, -so called seed fill, is the problem of coloring all the pixels that are connected
to a seed pixel with some desired new color (where “color” refers to either an RGB triplet
or gray level or binary value, depending on the image type). Several algorithms exist for
performing floodfill, with the recursive version being particularly easy to explain. As shown
in Algorithm 4.4, the algorithm takes the coordinates of a seed pixel p = (x,y), a new
color, and an image, and it sets the colors of the pixels. (The pseudocode uses non-bold-face
p (rather than p) to represent the pixel to emphasize that it is just like any other variable.)
The seed pixel is examined and set to the new color after first storing the original color. The
neighbors (either 4- or 8-), in turn, are examined and set to the new color if they are equal to
the original color under the seed pixel. The neighbors of these pixels are then examined and
set in the same manner, with the process recursively repeating until no neighboring pixels
share the original seed pixel color. No value is returned, since the pixels are modified in
place. Although this algorithm is simple to understand, it is never used in practice because,
not only is recursion computationally inefficient due to the overhead of making function
calls, but, more importantly, recursive floodfill will cause the stack to be overrun, because
it is not uncommon for floodfilled regions to contain tens of thousands of pixels. And of
course a stack overrun will cause the program to crash.

A more computationally efficient approach overcomes these problems by using a
dynamic array of pixels called the [#ORMieF. In the initialization, the original color of the
seed pixel is grabbed, the seed pixel is colored with the new color, and the coordinates of
the pixel are pushed onto the initially empty frontier. Then the algorithm repeatedly pops
a pixel off the frontier and expands all the adjacent pixels (the neighbors that still have the
original color), where expansion involves setting the pixel to the new color and pushing its
coordinates onto the frontier. The algorithm terminates when the frontier is empty. In the
pseudocode of Algorithm 4.5, the algorithm performs a depth-first search if the frontier
is implemented as a stack, because PusH and Pop operate on the same end of the array.
Alternatively, if the stack is replaced by a queue, then PusH and Pop operate on opposite
ends of the array, and the FIFO (first-in-first-out) operations cause a breadth-first search

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

4.2 Labeling Regions 155

ALGORITHM 4.4 Perform floodfill on an image (stack-unfriendly version using recursion)

instead. Either way the output is the same, so a stack-based frontier is recommended because
its memory management is simpler. An example of the algorithm applied to a binary image
is illustrated in Figure 4.22.

Variations on the algorithm are easy to obtain by making minor modifications to this
basic pseudocode. One common variation is to leave the original input image intact and
instead to change an output image. This variation is implemented in Algorithm 4.6, where
each pixel O(x, y) in the output is set if the pixel /(x, y) in the input would have been changed
by the previous algorithm. This version of the algorithm will be used in the next section for
connected components, as well as later for segmentation.” It does not return a value, since
it operates on the output image that is passed into the procedure.

An interesting connection exists between floodfill and dilation, namely that floodfill
is equivalent to repeated conditional dilations. The conditional dilation of an
image I with respect to another image C is defined as dilation followed by intersection:*

1®:B=(I®&B) NC (4.75)

ALGORITHM 4.5 Perform floodfill on an image (fast version using frontier)

" Section 10.1.3 (p. 450).
* Conditional erosion is defined similarly, by replacing the intersection operator with union and the dilation with erosion.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

156

of the 4-neighbor FLoopriLL algorithm
on a small image. The frontier is
shown below the image. Starting
from the seed pixel labeled 1, the
interior region of white pixels is
changed to yellow by the algorithm,
while orange is used to indicate the
pixels being considered in the current
expansion. The labels are artificially
introduced to aid in associating pixels T
in the image with those in the frontier.

Figure 4.22 Step-by-step illustration T H
. . 2 2 [18[2 52
1 L | [s[1]3 HE 3 S[5[1][3
] 4 4 N 74
OOTTTTTT] [OITTTTT] RBEREBGITTIT] RBEEBGITITT] RBEETTTTT] [RIEI4I6]718

Chapter 4 - Binary Image Processing

skl
NEMEE
&
> || o
NEE
NEN
&)
P> [esl o]
B
===
&)
EIEIEIE
NEE
===
&
BE
EE
NEN
&)

2]3[4]6[7 2[3]4[6]7[9]A 2[3]4[6]7[9 2]3[4]6[7]9]B 2[3]4[6]7[9

The image I is called the marker image, while C is called the mask image. If B is an
elementary structuring element (either B4 or Bg) containing 1s only in pixels that are a
distance of 1 from the center, then conditional dilation is also known as geodesic dilation
of size 1, denoted I @ B. The geodesic dilation of size n is therefore the repetition of 1
conditional dilations, each with the same elementary structuring element:

19 B= (((I®:B) ®cB) - ®cB)

(4.76)

n iterations

We are usually interested in repeating conditional (or geodesic) dilation until convergence,
a process known as morphological reconstruction by dilation:

I®EB= (((I®cB) ®cB) - - ®cB) 477)

k iterations

where k is the smallest number such that 7 &7 ! = I ©&. In other words, the dilations are
repeated until they have no effect, I &2 B = ((I ®E B) ©¢ B.

It is easy to see that the 4-neighbor floodfill of a 0-valued region in a binary image with
seed pixel p is equivalent to P @3, B4, where P is an image with a 1 at p and Os everywhere

ALGORITHM 4.6 Perform floodfill, saving the output in a separate image

FLOODFILLSEPARATEOUTPUT(Z, O, p, new-color)

Input:

image I, seed pixel p, and new color preallocated output image O (same size as /)

QOutput: all pixels in O connected to p in [are colored new-color

orig-color < I(p)
frontier.PUSH(p)
O(p) < new-color
while frontier.S1ze > (0 do

p < frontier.Pop()

for g € N(p) do

if I(p) = orig-color AND O(q) # new-color then
frontier PUSH(q)

O 0 3 O L A W N =

O(q) < new-color

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

4.2 Labeling Regions

157

else. The first iteration computes (P @ B,) (N 71, which includes the seed pixel and its
4-neighbors. The next iteration grows the region to include the 4-neighbors of all of these
pixels, but the intersection with the complement of the original image retains only those
pixels whose value in the original image is 0. This process continues until the entire region
is filled, at which time repeated iterations do not change the output.

Viewing floodfill as conditional dilations is valuable due to the extremely compact math-
ematical notation that can be used to describe the computation, as seen in the P &%; B,
above. Indeed, this ability to represent fairly complex operations using the basic building
blocks of dilation or erosion is one of the strengths of mathematical morphology. On the
other hand, conditional dilation is not used in practical implementations due to the substan-
tial computational overhead incurred by touching every pixel at each iteration.

Closely related concepts are opening by reconstruction and closing by
reconstruction, defined as

(18&"B) &7 B’ (closing by reconstruction) (4.78)
(I1&"B) &7 B’ (opening by reconstruction) (4.79)

which are the opening and closing, respectively, by reconstruction of 7 of size n. In other
words, the image / is used as the mask image, whereas an eroded or dilated version of [is
used as the marker image. The two SEs B and B’ may be the same or they may be differ-
ent. Recall that morphological opening removes small objects, and the subsequent dilation
restores the remaining objects. Similarly, opening by reconstruction (which is not a mor-
phological opening but rather an algebraic opening) also removes small objects but then
restores the remaining objects exactly. In other words, all image features that do not contain
the SE are removed, while the others are not changed.

4.2.3 Connected Components

Recall that two pixels are said to be connected if there is a path between them consisting of
pixels all having the same value. A connected component is defined as a maximal set of

pixels that are all connected with one another. The connected components of an image are
the equivalence classes of the image with respect to the equivalence relation ““is connected
to,” where an equivalence relation is a reflexive, symmetric, and transitive relation that
partitions a set into disjoint subsets (which are the equivalence classes).

Connected component labeling is the process of assigning a unique identifier to every
pixel in the image indicating to which connected component it belongs. For example, this
process is used to separate the various foreground objects in a binary image. Given a binary
image with on pixels signifying foreground and ofr pixels indicating background, the result
of a connected component labeling algorithm is a two-dimensional array (the same size as
the image) in which each element has been assigned an integer label indicating the region
to which its pixel belongs. That is, all the pixels in one contiguous foreground region are
assigned one label, while all the pixels in a different contiguous foreground region are
assigned a different label, all the pixels in a contiguous background region are assigned yet
another label, and so forth. Thus, connected components is a partitioning problem, because
it assigns the image pixels to a relatively small number of discrete groups.

One way to implement connected components is by repeated applications of flood-
fill, starting each iteration with a new unlabeled pixel as the seed point. This is shown in
Algorithm 4.7. Initially the output label array L is created to be the same size as the input
image, all elements in this output array are unlabeled, and a global label is set to zero. Then
the image is scanned, and whenever a pixel is encountered that has not yet been labeled,
floodfill is applied to the image with that pixel as the seed pixel, filling the elements in the
output array with the global label. The global label is then incremented, and the scan is

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

Chapter 4 - Binary Image Processing

ALGORITHM 4.7 Perform connected components by repeated applications of floodfill

continued. This relatively simple procedure labels each pixel with the value of its contigu-
ous region. One advantage of this algorithm is that the regions are labeled with consecutive
labels of 0, 1, 2, ... so that the number of regions found is given by the global label.

A more common approach, sometimes known as the classic connected components
algorithm, involves scanning the image twice, as shown in Algorithm 4.8. In the first
pass, the image is sequentially scanned from left to right and from top to bottom, and

ALGORITHM 4.8 Perform the classic union-find connected components algorithm

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

4.2 Labeling Regions 159

a’' < GETEQUIVALENTLABEL(a)
b' < GETEQUIVALENTLABEL(D)
if ' > b’ then

equivia'] < b’
else

equiv(b'] < a’

AN N AW =

1 if a = equiv[a] then

2 return a

3 else

4 equiv[a] < GETEQUIVALENTLABEL(equiv[a])
5 return equiv(a]

all the pixels are labeled with preliminary labels based on a subset of their neighbors.
For 4-neighbor connectedness, the algorithm compares a pixel with its two neighbors
above and to the left; for 8-neighbor connectedness, the pixel is also compared with the
two neighbors diagonally above-left and above-right, as shown in Figure 4.23. While
performing the preliminary labeling, an equivalence table is built to keep track of which
preliminary labels need to be merged. In the second pass, the label of each pixel is set to
the equivalence of its preliminary label, using the equivalence table. This approach is also
known as a [IIGEIMGEISORIEN because it performs the two operations of finding regions
and merging them. It is the first algorithm we have considered where the order in which
the pixels are processed matters.

An example of this 4-connected version of the algorithm at work can be seen in
Figure 4.24, while the output on a real image is displayed in Figure 4.25. To extend the
code to 8-neighbors, simply insert two additional tests comparing the pixel with its neigh-
bors I(x — 1,y — 1) and I(x + 1,y — 1); and set equivalences between any of the four
neighboring pixels (left, above, above-left, and above-right) with the same value as the pixel.
Note that out-of-bounds accessing has been ignored; to turn this pseudocode into executable
code, bounds checking must be added in the if and elseif clauses, so that the top-left pixel
(0, 0) in the image falls through to the else clause, and all remaining pixels along the top
row and left column are only compared with existing pixels.

Algorithm 4.8 relies on two helper functions. The first function, SETEQUIVALENCE, sets
the equivalence between two labels, storing the equivalence in a one-dimensional array of
integers, equiv. The array is initialized with its own indices, i.e., equiv[i] <— ifor all i. The
convention is adopted that equiv[i] = i, to avoid creating cycles in the data structure. In
other words, the smallest label in each set is taken to be the representative label of the set.
(It is assumed that the array grows dynamically in size or is created large enough to hold the
total number of labels encountered.) The second helper function, GETEQUIVALENTLABEL,
returns an equivalent label by simply accessing the array, using recursion to ensure that

Figure 4.23 Masks for the 4-neighbor and 8-neighbor versions of the
classic union-find connected components algorithm. The colored pixels

are neighbors of the central pixel that are examined by the algorithm.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

160 Chapter 4 - Binary Image Processing

Figure 4.24 Classic union-find 11]1]1]f1 0{0[0[0]0 0/0[0]|0]0
connected components algorithm on an 010]0]0]1 1111110 11]1]1]0
. : s JENENEDED! 212(2(2]0 0[0f0]0]0
exampleplnarylmage.From Iefttorlght. oToToTio 3331204 313131004
The input image, the labels after the first oliTi11To 35(5(2 (4 3lololol4
pass, and the labels after the second Binary image Labels Labels
pass. Below the image is the equivalence (after first pass) (after second pass)
table, with green arrows pointing from
a label to its equivalent label. Notice : . LY A L N—
e : Equivalence table: [0[1]2[3]4]5] [o]1]2]3]4]5] [o]1]2]3]4]5]
that the final image contains gaps; for YOLOLOLZOLOLY) 040 D4 D40 DU

example, no pixel is labeled 2.

the smallest possible label has been found. While getting an equivalent label, the array
is updated with the smallest possible equivalent label. An alternative is to traverse the
equivalence table once between the two passes, after which GETEQUIVALENTLABEL(a) can
simply call equiv[a] without having to resort to recursion.

Both algorithms for connected components are linear in the number of pixels. To be more
precise, the union-find algorithm applied to an image with n pixels is O (na(n)), where a(n)
is the inverse Ackerman function that grows so extremely slowly that a(n) =< 4 for any
conceivable image." The four-neighbor floodfill version requires touching most pixels seven
times (to set the output to UNLABELED in the initialization, to check whether the pixel has been
labeled, and five times during the floodfill to set the pixel and check its label from the four
directions); pixels along the border of two regions may require slightly more. The union-find
algorithm involves touching each pixel just four times (the first pass, the second pass, and the
check from the pixels to its right and below). Thus, in practice the union-find algorithm is
slightly more efficient in run time despite the additional computation required by the equivalence
table. However, one drawback of union-find is that it leaves gaps in the labels. That is, the final
result might have (as in the example of Figure 4.24) a region 1 and a region 3, but no region of
pixels labeled 2. This inconvenience can be removed by another pass through the equivalence
table to produce a new equivalence table in which the base labels are sequential.

With either algorithm, it is easy to compute region properties such as area, moments
(discussed later in the chapter), and bounding box. All of these quantities can be updated
during the connected components algorithm with appropriate calculations each time an
output pixel is set, with minimal overhead. The extension is left as an exercise.*

Figure 4.25 Because the connected components algorithm assumes neighboring pixels have the exact same value, it works best on
images with a small number of values. Shown here are an input image quantized to four gray levels (left) and the result of connected
components (right), pseudocolored for display.

Stan Birchfield

i For example, a(n) = 4 for an image with a googol n = (10'%°) of pixels.
* Problem 4.28.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

4.2 Labeling Regions

161

4.2.4 Boundary Tracing

Given a contiguous region of pixels found by a floodfill or connected components algorithm,
it is oftentimes useful to find its boundary. We distinguish between the region boundary,
which is the smallest set of pixels that encloses (in some sense) all the pixels in the region,
and the hole boundary, which is the smallest set of pixels that encloses all the holes
(if any) inside the region. If the region contains no holes, then the hole boundary is the
empty set. The union of the region and hole boundaries is the complete boundary. In a
discrete image, it is not trivial to define what is meant by “enclosing” a set of pixels. This
difficulty leads to two alternatives: the inner boundary, which consists of all pixels in the
region that are next to some pixel not in the region, and the outer boundary, which consists
of all pixels not in the region that are next to some pixel in the region. If we let R be a region
represented as a binary image, that is R(p) = on if p is in the region, and R(p) = oFF
otherwise, where p = (x,y) isa pixel, then these definitions are given by

inner boundary = {p:p € R, 3q € N (p).q & R} (4.80)
outer boundary = {p:p € R, 3q € N (p),q € R} (4.81)

Technically, these definitions are for the inner complete boundary (with the inner region
boundary and inner hole boundary as subsets) and the outer complete boundary (with
the outer region boundary and outer hole boundary as subsets), respectively. Figure 4.26
illustrates these definitions.

The inner complete boundary of the region can be computed easily enough via the dif-
ference between the region itself and an eroded version of the region:

inner boundary = R anp (RO B) (4.82)

where B is either B4 or Bg. That is, each pixel in the output is on if and only if the corre-
sponding pixel in R is on, but in the eroded version it is ofr. Similarly, the outer complete
boundary can be computed using dilation:

outer boundary = (R® B) axp 'R (4.83)

However, outer boundaries should be computed with care because they cannot easily be
represented for any region that touches the image border. In either case, the choice of

Figure 4.26 A binary
region with one hole, and
different definitions of the
boundary of the region.
All results are shown using
4-neighbors. Colored cells
are on, white cells are ofF.

Binary image Outer region Outer hole Outer complete
boundary boundary boundary

Inner region Inner hole Inner complete
boundary boundary boundary

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

162

Chapter 4 - Binary Image Processing

the structuring element B will affect the result in a nonintuitive way: B4 will produce an
8-connected boundary (see Figure 4.26), whereas Bg will produce a 4-connected boundary.

While mathematical morphology provides a conveniently compact description of the
boundary, procedures based on morphology—such as those in Equations (4.82)—(4.83)—only
return the (unordered) ser of pixels on the boundary. However, for some applications it is
necessary to compute the boundary as a path, i.e., as an (ordered) sequence of pixels. A simple
procedure for computing the boundary of a region as a path is the wall-following algorithm,
also known as Moore’s boundary tracing algorithm.” The wall-following algorithm
derives its name from the analogy of a blindfolded person desiring to traverse the edges of a
room. By holding out his left arm stiff to the side and his right arm stiff in front, the person
continually walks straight until either contact with the left wall has been lost (in which case
the person turns left) or a wall is detected in front (in which case the person turns right).

In a similar manner, the wall-following algorithm traverses the boundary of a region
by examining pixels in front and to the left, turning appropriately based upon the values
of the pixels. The algorithm, shown in Algorithm 4.9, computes the clockwise inner
boundary, but other variations are easily obtained with slight modifications. We adopt the
convention of the Freeman chain code directions, shown in Figure 4.27, in which the

ALGORITHM 4.9 Perform wall following

WaLLFoLLow(])

Input: binary image / containing a single oN region
Output: clockwise sequence of pixels on the inner boundary of the region

1 p < po < FINDBOUNDARYPIXEL(/) Find first on pixel from top-right corner.
2 dir<0 Set initial direction to the right.
3 repeat
4 boundary-path.PUSH(p)
5 if LEFT (I, p, dir) = oN then Turn left and move forward.
6 dir <~ TURNLEFT(dir)
7 p < MoVEFORWARD(p, dir)
8 elseif FRONT(Z,p,dir) = ofr then Turn right.
9 dir < TURNRIGHT(dir)
10 else
11 p < MOVEFORWARD(p, dir) Move forward.
12 until p = py AND dir = dir,
13 return boundary-path
FINDBOUNDARYPIXEL(/)

Input: binary image / containing a single oN region
Output: a pixel on the inner boundary of the region

1 for y <= 0 to height — 1 do Scan from top to bottom
2 for x < width — 1 to O step —1 do and from right to left
3 if /(x,y) = on then returning the first on pixel encountered.
4 return (x, y) (Note: The order of scanning affects the starting direction.)

" After G. A. Moore, unrelated to E. F. Moore of the Moore neighborhood.

4.2 Labeling Regions

Figure 4.27 Freeman chain code 1
directions for 4- and 8-neighbors.(copied

from somewhere)

163

list of directions proceeds counterclockwise starting from the right (positive x axis). For
4-neighbor connectedness, dir takes on values in the set {0, 1, 2, 3}, while for 8-neighbor
connectedness, dir takes on values of {0, 1, ..., 7}. With this convention, TURNLEFT and
TURNRIGHT return the next and previous direction in the list, respectively, using modulo
arithmetic: TURNLEFT(dir) returns (dir —1, z), while TURNRIGHT(dir) returns (dir +1, z),
assuming z-neighbor connectedness. MOVEFORWARD computes the pixel attained after
moving forward according to the current direction and the current pixel. Recalling that
the y axis points down, this means MovEFORWARD(x, y, 0) returns (x + 1,y), and
MoOVEFORWARD (x, y, 1) returns (x,y — 1) if z=4, or (x+ 1,y — 1) if z=8. An
example of the wall-following algorithm is shown in Figure 4.28.

While the algorithm is straightforward, careful attention must be paid to the starting
position. For example, if we select a random pixel inside the region and scan its neighbors
iteratively until a boundary pixel is found, there is danger of finding a pixel on the hole
boundary rather than the region boundary, in which case the wall-following algorithm will
simply trace around the hole. Therefore, to ensure that FINDBOUNDARYPIXEL returns a
pixel on the region boundary, it is best to start from a pixel known to be outside the region
(at the image border, for example), scanning until a boundary pixel is found. The starting
direction must be facing in the general direction of the exterior. For the ending condition,
it is necessary (as shown in the code) to test for both pixel location and direction to handle
the case of a single-pixel-thick isthmus or cape (see Figure 4.9).

Wall following is useful for several tasks. To compute the perimeter of a region, for
example, apply the 8-neighbor version of WALLFoLLOw, then compute the distance along
the resulting path using the techniques described in the next section. The 8-neighbor version

Figure 4.28 An example of
wall following (clockwise
4-connected inner region
boundary), showing the

first seven iterations of the
algorithm, along with the final
result. The arrow indicates the
current direction.

Initial After After After
iteration 1 iteration 2 iteration 3

' Af‘ger After After Final
iteration 4 jteration 5 iteration 6

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

164

4.2.5 Hole Filling

Chapter 4 - Binary Image Processing

will trace exactly the same pixels that result from subtracting the B4-eroded image from the
original region. As a result, the path computed by the 8-neighbor version contains pixels that
are 4-neighbors of the background. It can be shown that consecutive pixels in the 8-neighbor
path are m-adjacent.

The 4-neighbor version of wall following can be used as well, but in the resulting
sequence of pixels the distance between any two consecutive pixels will be 1. As a result,
the perimeter will be simply the number of pixels remaining after subtracting the eroded
image from the original region, using By as the structuring element. The path computed by
the 4-neighbor version contains pixels that are 8-neighbors of the background.

Sometimes a region contains small holes, and it is desired to fill the holes. A conceptually
simple way to do this is to use morphological reconstruction by dilation:

region without holes = F ®%; B (4.84)

where F is a marker image with at least one on-pixel somewhere along the border of the
image (but outside the region), and R is a binary image with on pixels inside the region
and oFF pixels outside the region as well as inside the holes. A practical implementation of
this approach uses floodfill to fill the background, after which the complement of the filled
region yields the desired hole-free region. This approach is especially useful if it is desired
to fill in all the holes of all the regions of the image. In such a case the marker image F
should be set to F = I;pq0- () 1, where I,,,,4., contains on pixels along the border of the
image and ofr pixels everywhere else.

If the region is small compared to the size of the image, then the approach just described
wastes much computation in filling in the entire background. An alternative is to use wall
following to find the region boundary (as distinguished from the hole boundary), then
perform floodfill on the binary image consisting of just the region boundary. This same
approach can also be used to fill in all the regions of an image by applying the procedure
repeatedly.

4.3 Computing Distance in a Digital Image

For many applications, such as measuring the perimeter of a region or the length of an
object, it is necessary to compute the distance between two pixels in an image. In this section
we discuss various techniques for efficiently estimating such a quantity.

4.3.1 Distance Functions

Letp = (p,. py) andq = (q,, g,) be the coordinates of two pixels in an image. A function
d(p,q) of two vectors is a distance function (or metric) if it satisfies three properties:

e d(p,q) =0andd(p,q) = 0iffp = q (non-negativity and reflexivity)
* d(p,q) = d(q,p) (symmetry)
® d(p,q) =d(p,r) +d(r,q) (triangle inequality)

for all possible coordinates p, q, r € IRZ, where iff means “if and only if”. A function sat-
isfying only the first two conditions is called a semi-metric, an example being the quadratic

function Hp - qHZ = (px - qx)2 + (py - qy)2~-1-

" A function satisfying, in addition to all three conditions above, a particular fourth condition that we shall describe
later is called an ultrametric, as covered in Section 10.3.4 (p. 481).

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

4.3 Computing Distance in a Digital Image 165

EXAMPLE 4.4

Solution

Show that the quadratic function does not obey the triangle inequality.

As a counter-example, let p=(—1,0),q = (1,0), and r = (0,0). Then
d(p,q) = 4,d(p,r) = 1,andd(r,q) = 1.Since 4 > 1 + 1, the triangle inequality does
not always hold for the quadratic function, and therefore it is not a metric.

Three common distance functions (metrics) for pixels are the Euclidean distance, which
is the square root of the quadratic function, and two other functions that are approximations
to Euclidean:

dg(p.q) = V(p, — ¢.)* + (p, — ¢,)* (Euclidean)
dy(p.q) = Ipx — gl + |Py - qy| (Manhattan, or city-block)

ds(p, q) = max(|p, — q.l. lp, — q,1) (chessboard)

The Manhattan distance is known as d, because the pixels that are one unit of distance
away are the 4-neighbors of the pixel, while the chessboard distance is known as dg
because the pixels that are one unit of distance away are the 8-neighbors of the pixel. It
is worth noting that Manhattan always overestimates Euclidean, while chessboard always
underestimates it: dg(p, q) = de(p, q) = d,(p, q). Moreover, the chessboard distance
is never more than 30% away from the Euclidean distance, and the Manhattan distance is
never more than 42% away:

0.7dg(p,q) < ds(p.q) = de(p,q) = dy(p,q) < 1.42d:(p, q) (4.85)

The proof of these inequalities is left to the reader.”
These distance metrics are related to the vector norm. The L”-norm of a vector v € R"
is defined as

\4

n 1
»
= (E Iv,-"> (4.86)
P i=1
where v; is the i element of v. The most common values of p are 1, 2, and :
IVl = il + -+ [l (absolute value-, or, L'-norm) (4.87)
Ivll. = m (Euclidean-, or L>-norm) (4.88)

[v].. = max{|v,

N T (maximum-, or L”-norm) (4.89)

Where there is no subscript, the Euclidean-norm can safely be assumed: ||v|| = |v|,. It is
easy to see that the L'-norm of v = p — q is the Manhattan distance, the L>-norm is the
Euclidean distance, and the L™-norm is the chessboard distance.

Another metric that should be mentioned in this context is the Mahalanobis distance.
As we have just seen, if v is the vector from one point to another, then the Euclidean distance
between those points is given by |[v|, = \Vv'v, which is the square root of the inner product
of the vector with itself. The Mahalanobis distance introduces a covariance matrix within
the inner product, \V/'vT C~!v, which has the effect of scaling the different axes differently:

dytana(P- €:C) =V (p — q)TC ' (p — q) (Mahalanobis) (4.90)

where C is the covariance matrix. Obviously, if the covariance matrix is the identity matrix,
then the Mahalanobis distance reduces to the Euclidean distance.

" Problems 4.31 and 4.32.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

166

4.3.2 Path Length

4.3.3 Chamfering

Chapter 4 - Binary Image Processing

Now suppose that we wish to calculate the length of a specific path ¢ between pixels p and
q, which as we saw earlier is defined as a sequence of pixels beginning with p and ending
with q such that each successive pixel in the path is adjacent to the previous pixel. Let n,,
be the number of isothetic moves in the path, where an isothetic move is one that is hori-
zontal or vertical (i.e., the two pixels are 4-neighbors of each other). Similarly, let n; be the
number of diagonal moves in the path (i.e., the two pixels are D-neighbors of each other).
Generally the path will use m-adjacency, but if 4-adjacency is used, then n, is simply zero.

Even in a continuous space, the length of a path (or curve) is not always well-defined.
Consider, for example, the well-known fractal question, “What is the length of the British
coastline?” Depending upon the scale of interest, the resulting values can be significantly
different from one another. Similarly, it is impossible to precisely define or solve the problem
in a discrete image. Nevertheless, one reasonable approach is to sum the Euclidean distances
between consecutive pixels along the path. Since the Euclidean distance between two pixels
that are 4-neighbors of each other is 1, and the Euclidean distance between two pixels that are
D-neighbors of each other is \/2, this is equivalent to measuring the length of the path ¢ as

length(¢p) = n, + nd\/Z (Freeman) (4.91)

which is known as the Freeman formula . An alternate approach is to rearrange the node
pairs and use the Pythagorean theorem to estimate the length of the curve as the hypot-
enuse of the resulting right triangle:

length(¢p) = Vn3 + (n, + ny)? (Pythagorean) (4.92)

While the Freeman formula generally overestimates the length of a curve , the Pythagorean
theorem usually underestimates it. Insight into the problem is obtained by noticing that the
previous two equations can be written as special cases of the more general formula:

length(¢) = Vi3 + (ny+ en)?+ (1 —c)n, (Kimura) (4.93)

where ¢ = 0 for the Freeman formula and ¢ = 1 for the Pythagorean theorem. By setting ¢
to 3, a compromise is achieved between overestimation and underestimation known as the
Kimura method. In practice, this method works well, as shown in Figure 4.29.

We have seen how to compute the distance between two pixels, as well as the distance
between two pixels along a specific path. But what if we want to compute a large number of
distances? Such a problem arises, for example, when performing template matching using
intensity edges, in which we need to compute distances between all the intensity edges in
a template and their closest match in the image. For reasons of computational efficiency, it
is not feasible to compute all of these distances directly. Instead, it is better to precompute
a distance transform, which is an array that stores the distance from each pixel in the
image to its nearest element in the set of interest (e.g., the intensity edges). A computational
trick allows such an array to be computed efficiently using only a small number of passes
through the image (usually just 2).

Let us define the (a,b) chamfer distance between pixel p = (p,, p,) and pixel
q = (¢, qy) asd,,(p,q) = miny{an, + bn,}, where a and b are nonnegative values, n,,
and n, are the number of isothetic and diagonal moves in the path ¢, respectively, and the
minimum is computed over all possible paths between the two pixels. We shall assume that
0 < a = b, in which case the (a,b) chamfer distance d,, ;, is a metric. We also assume that
b = 2a (known as the Montanari condition), which ensures that diagonal moves are not
ignored. Rather than searching over all possible paths, simple observation reveals that the

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

4.3 Computing Distance in a Digital Image

Figure 4.29 A discretized
90-degree sector of a circle
with radius 10, where purple
lines indicate isothetic moves,
and yellow lines indicate
diagonal moves. The number
of isothetic and diagonal
moves are n, = 8 and

ng = 6, respectively. The true
arclengthis 10(#7/2) = 15.7.
The estimated path length
according to the three
formulas is 16.5 (Freeman),
15.2 (Pythagorean), and

15.7 (Kimura).

<

UGN

= O VoW RO

X
012345673891011

167

Freeman Pythagorean Kimura

shortest path always consists of a horizontal or vertical line segment, along with a diagonal
line segment if the two pixels do not share the same column or row. That is, if we define
d, = |p, — ¢,/ and d, = |p, — g,|, then the distance between p and q is simply given by
d,»(p,q) = an, + bny, where n; = min(d,, d,) is the number of moves along the diago-
nal line segment and n, = max (d,, dy) — ny is the number of remaining isothetic moves.
This single formula arises because the Montanari condition favors diagonal moves. If, on
the other hand, the Montanari condition does not hold, then diagonal moves are ignored,
in which case the distance is d,;,(p, q) = a(d, + d,), which is a scaled version of the
Manhattan distance.

Assuming there is no obstruction between p and q, the Euclidean distance is usu-
ally considered the “correct” distance. Other distance functions, known as quasi-
Euclidean, are approximations to this Euclidean distance. It can be shown that the

(a,b) chamfer distance that best approximates Euclidean is the one with a = 1 and

b= % + V' V2 — 1 = 1.351, where the value of b is just slightly less than that used in
the Freeman formula. A nearby integer ratio is 4/3, so if there is a need to avoid floating
point computations, then d; 4 yields a reasonable approximation to the Euclidean distance
(scaled by the factor 3). It is easy to see that if @ = 1 and b = o0, the chamfer distance
reduces to Manhattan because it ignores diagonal moves; or if « = 1 and b = 1, then it
reduces to chessboard because it treats isothetic and diagonal moves equally. This rela-
tionship between Euclidean and quasi-Euclidean helps shed light on why this procedure
is called chamfering. In woodworking, chamfering refers to the process of reducing the
harsh 90-degree angles of a surface by introducing a beveled edge. In a similar manner,
the chamfer distance in an image approximates the Euclidean distance by smoothing out
the harsh corners of the Manhattan or chessboard distances by allowing appropriately
weighted diagonal moves.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

168 Chapter 4 - Binary Image Processing

ALGORITHM 4.10 Compute the chamfer distance for all pixels in an image

CHAMFER(/, a, b)

Input: binary image /, chamfer parameters a and b
Output: image D containing the distance of each pixel to the nearest oN pixel

1 first pass

2 for y <= 0 to height — 1 do

3 for x < 0 to width — 1 do

4 if I(x, y) = on then

5 D(x,y) <0

6 else

7 D(x,y) < MiN(®,a+ D(x —1,y),a + D(x,y — 1),
b+D(x—1,y—1),b +D(x+1,y—1))

8 second pass

9 for y < height — 1 to O step —1 do

10 for x < width — 1 to O step —1 do

11 if I(x, y) # on then

12 D(x,y) < miNn(D(x,y),a+D(x+ 1,y),a+ D(x,y + 1),

X.
b+Dx+1,y+1),b+Dkx—1,y+1))
13 return D

Computing the (a,b) chamfer distance is straightforward, as shown in Algorithm 4.10.
It involves two passes through the image, with the first pass scanning the image from
left-to-right and top-to-bottom, then the second pass scanning in the reverse direction. For
each pixel, four of its 8-neighbors are examined in one direction, then the other four in the
reverse direction. One can think of the algorithm as casting shadows from the foreground
pixels in the two diagonal directions (southeast in the first pass, and northwest in the sec-
ond). After the first pass, the distances from every pixel to all of the pixels above and to the
left have been computed, and after the second pass, the distances to all of the pixels have
been computed.

In the pseudocode, 8(x, y) = = if x or y is out of bounds, and % is meant to represent
a large number that is greater than any possible distance in the image. The chamfering
algorithm is similar to connected components in that the manner in which boundary pixels
should be handled is specified precisely: out-of-bounds pixels should simply be ignored,
so that the minimum is computed over fewer than five values when the pixel is along the
image border. Figure 4.30 shows an example of the chamfering algorithm applied to an
image, while Figure 4.31 illustrates one use of the chamfer distance. For the special case of
Manbhattan distance (¢ = 1 and b = =), the pseudocode simplifies to only require examin-
ing two of the 4-neighbors in each pass, as shown in Algorithm 4.11.

Since Manhattan always overestimates Euclidean, while chessboard always underesti-
mates it, a combination of the two can be used. One approach is to alternate the computa-
tions between the two distance metrics as the image is scanned; this requires two passes
through the image, as usual. Another approach is to compute both d, and dg and then to
combine the results: max (dg(p, ¢),3ds(p, q)), which requires four passes through the
image. Of course, as mentioned earlier, a good approximation can also be obtained by
simply computing d5 4 and then dividing by three.

4.3 Computing Distance in a Digital Image 169

Figure 4.30 A binary image
and its chamfer distance
(brighter pixels indicate larger
distances).

4.3.4 Exact Euclidean Distance

The chamfer distance approximations of the previous section are attractive due to their
simplicity and computational efficiency. Nevertheless, exact Euclidean distances, if needed,
can also be computed efficiently, with a running time that is linear in the number of pixels.
Here we present a technique that, similar to computing the chamfer distance, requires
just two passes through the image. Unlike the chamfer distance, however, this algorithm
processes the image in one direction (rows or columns) in the first pass, then processes the
orthogonal direction (columns or rows) in the second pass.

Consider a row of a binary image, which can be treated as a 1D function /(x). To find the
distance from every pixel in the row to the nearest o pixel in the row is straightforward. The
key insight is to recognize that the squared Euclidean distance is given by the lower envelope
of vertical parabolas whose vertices are placed at each (x, 0) for which I(x) is oN, as shown
in Figure 4.32. For example, suppose that the entire image is 0 except for one on pixel at
Xo- Then the Euclidean distance of any pixel in the image to the nearest on pixel is given by
8(x) =V (x — x0)2 Now, although in 1D it would be easy to cancel the square with the
square root, such cancellation is not possible in 2D. Therefore, in anticipation of our later exten-
sion to 2D, let us consider the squared distance 6 (x) = (x — x,)>. The shape of this function
is obviously a vertical parabola with vertex at (x,, 0). Now suppose the image consists of two
ON pixels, one at x; and one at x;. Then the squared distance from any pixel x to the nearest oN
pixel would be the minimum of these two values, i.e., 6*(x) = min{(x — xy)%, (x — x;)?}.
Moreover, the two parabolas intersect halfway between the points at (x, + x;)/2, leading to

8 (x) = {(x —x0)% ifx <3(xo+ x)

494
(x — x;)? otherwise (4.94)

Figure 4.31 For a region with concavities, its
centroid may not even lie within the region.
Therefore, the location with maximum
chamfer distance (computed on the inverted
image, so that the distance to the background
is computed) is often a better estimate of

the “center” of a region, because it yields the

center of the largest part of the region.
Centroid

Largest chamfer
value

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

170 Chapter 4 - Binary Image Processing

ALGORITHM 4.11 Compute the Manhattan distance for every pixel using chamfering

This argument is easily extended for any number of on pixels.

The first pass of the algorithm, therefore, scans the 1D function and creates an array of the
x coordinates of all the on pixels. The elements of this array correspond to the parabolas, so
the array stores everything we need in order to compute the distance function for all pixels in
the row. To use the array, we simply consider the pixels in the row sequentially and compute
the squared distance (x — x;)2, where x; is the x-coordinate of the nearest parabola. The
procedure for this first pass, shown in Algorithm 4.12, uses a dynamic array v to hold the
x-coordinates of the parabolas and outputs a 1D array 8’ that is the same length as the input.
(We use length to refer to the number of pixels in the 1D horizontal or vertical slice, which
is either the width or height, respectively, of the original 2D image.) Lines 8-9 advance to
the next parabola when x > % (x; + x;.,) by updating the index k of the current parabola.

Now that we have seen how to compute the squared distance of a 1D signal (which is
the first pass of the algorithm), let us see how it fits into the rest of the procedure. Given a
2D binary image /, let us construct a 2D function F so that

Flxy) = {O if I(x,y) = oN (4.95)

«» otherwise

Omitting the square root for simplicity, the 2D exact squared Euclidean distance function
is therefore computed by finding, for each pixel (x, y), the nearest pixel (x’,y’) for which

F(x',y') =0:
Dz(x,y) = min (x —x")%> + (y — y')2 + F(x',y") (4.96)
XLy
= min (min (x — x")> + F(x',y")) + (y = ')?
' . (4.97)
first pass
second pass

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

4.3 Computing Distance in a Digital Image 171

! J5[v2| 1|00
1 =) (2|1(0[0]|0
2 110|1]0]0

Image Euclidean distances

10
8
~~ 6 ~~
Ra¥ Rad
ol ol
© 4)
0
0 1 2 3 4 o 1 2 3 4 o 1 2 3 4
First row Second row Third row
10 10
8 8
—~ 6 ~ 6
Ra) o)
@ o4l @ 4
2+ 2
0 1 1 1 Ix 0
0 1 2 0 1 2 0 1 2
First column Second column Third column

Figure 4.32 Computation of exact Euclidean distance from each pixel in a binary image to the nearest on (blue) pixel. The first pass
processes rows of the image to compute squared distances using the lower envelope of the parabolas. (The lower envelope is shown in
red.) The second pass processes columns of the image using parabolas determined by the first pass. Based on P. F. Felzenszwalb and D. P.
Huttenlocher. Pictorial structures for object recognition. International Journal of Computer Vision, 61(1): 55-79, Jan. 2005.

This separability of the horizontal and vertical processing is the trick that enables us to
solve the problem efficiently. Separating the equation, we see that the two passes of the
algorithm are similar:
D"*(x,y) = min(x — x")> + F(x',y) (first pass) (4.98)
D*(x,y) =min(y —y")> + F'(x,y") (second pass) (4.99)
¥
where F' = D'. The first pass, whose procedure we have just examined, can be simplified
because F'is either 0 or % everywhere, and values of % can be ignored because we seek the
minimum. As hinted in Equation (4.97) , we shall describe the algorithm by processing the
rows in the first pass, then the columns in the second pass; but the opposite order could just
as easily have been adopted.
The second pass of the algorithm is slightly more complicated. The 1D function used as
input in this case is not a row of the original binary image but rather a column of the output
from the first pass. That is, after processing all the rows to compute the squared distances

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

172 Chapter 4 - Binary Image Processing

ALGORITHM 4.12 Compute the exact Euclidean distance for all pixels in a 1D binary image

ExacTEUCLIDEANDISTANCE 1 DBINARY(/)

Input: 1D binary image / with length length
Output: 1D array 6’ containing the squared Euclidean distance of each point to the nearest on pixel

1 compute lower envelope

2 for x <= 0 to length — 1 do

3 if I[x] = on then Store the x coordinates of all on pixels

4 v.PUSH(x) (this captures the lower envelope of parabolas).

5 fill in values

6 k<0

7 for x <= 0 to length — 1 do For each pixel in the row

8 while k = v. S1ze — 2 aND x > (v[k] + v[k + 1])/2 do advance to the next

9 k<1 parabola if necessary.
10 8'[x] « (x — v[k])? Evaluate the nearest parabola.
11 returné’

along the rows, these values are then stored in a 2D array, whose columns are then processed
in a similar manner to before. Let us imagine transposing this array, so that the variable x
can continue to be used to index the 1D array even though it is a vertical slice of the origi-
nal image. In the second pass, the squared Euclidean distance is again given by the lower

EXAMPLE 4.4 Compute the exact Euclidean distance of all pixels in Figure 4.32 to the nearest on pixel.

Solution Along the first row, the first pixel is at a distance of 3 from the nearest on pixel, the second
pixel is at a distance of 2, the third pixel is at a distance of 1, and the remaining two pixels
are at a distance of 0. Similarly, along the second row, the distances are 2, 1, 0, 0, and O.
Along the third row, the distances are 1, 0, 1, 0, and 0. Putting these together, the squared
distance from each pixel to the nearest oN pixel along the same row is given by

9 4 1 0 O

4 2 0 0 O

1 01 0 O
Therefore, along the first column, we place a parabola at x = 0 with vertex at §*(x) = 9,
another one at x = 1 with vertex at 8>(x) = 4, and another one at x = 2 with vertex at
82(x) = 1, where x is the row. The lower envelope of these parabolas yields the squared
distances of 5, 2, and 1. Similarly, along the second column we place parabolas with vertices
at Bz(x) = 4,2, and 0, and the lower envelope yields the squared distances of 2, 1, and 0.
Along the third column the parabolas are placed with vertices at 1, 0, and 1, and the lower
envelope yields 1, 0, and 1. Putting these values together yields the squared distances given by

52 1 0 0

2 1 0 0 O
1 01 0 O

Taking the square root yields the Euclidean distances shown in the figure.

4.3 Computing Distance in a Digital Image

envelope of the parabolas, but this time a parabola is placed not only at the on pixels but
rather at every pixel. Moreover, the parabolas do not in general touch the x axis but instead
are offset vertically. That is, the parabolas are placed so that each center is at (x, f'(x)) for
every x, where f'(x) is the squared distance from the first pass.

The procedure is given in Algorithm 4.13. First the rows are processed, then the columns.
‘We use slice notation, so F(:,y) means the yth row of F, whereas F(x,:) means the ™ column
of F. The 1D subroutine requires us to keep track of k + 1, which is the number of parabo-
las in the lower envelope, and two arrays. The array v has k + 1 values so that v[k] is the

ALGORITHM 4.13 Compute the exact Euclidean distance for all pixels in an image

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

174 Chapter 4 - Binary Image Processing

16 x<_1 and advance to next.

17 > Fill in values

18 k<0

19 for x <~ 0O to length — 1 do > For each pixel in the row / column,
20 while z[k + 1] < xdo advance to the next
21 k< 1 parabola if necessary.
22 8'[x] < (x — v[k])? + flv[k]] > Evaluate the nearest parabola.

23 return &’

horizontal coordinate of the k™ parabola in the lower envelope. The array z has k + 1 values
so that the k™ parabola is in the lower envelope from z[k] to z[k + 1]. That is, z keeps track
of which parabolas define the lower envelope, while v keeps track of where the parabolas
are located. Straightforward algebra reveals that two vertical parabolas with vertices at (x,
f(x)) and (x;, f(x;)) intersect at the horizontal position given by

() + 2% = () + x7)

x' = 2(x —x) (4.100)

When processing the parabolas sequentially in the second pass, two possible cases arise.
In the first case, x' > z[k], so the lower envelope must be modified to include the parabola
from x starting at x'. In the second case, x' = z[k], which indicates that the kP parabola is
not part of the lower envelope and should therefore be removed. Note that Algorithm 4.12
is just a special case of EXACTEUCLIDEANDISTANCEID when the input is binary, because
the value of fis O for any parabola, which precludes case 2 (in Line 14) from occurring.

4.4 Region Properties

4.4.1 Moments

We now turn our attention to computing various properties of binary regions. Such proper-
ties are useful for classifying objects, detecting defects in manufactured parts, and pattern
recognition, among other applications.

Many of the properties encountered in this section build on the foundational concept of
moments. Let us represent an image region by a nonnegative mass density function
f(x,y) = 0 defined over the image domain, where the function generally returns larger val-
ues inside the region than outside. We will focus our attention on the simple case of a binary
region in which f(x, y) = 1 inside the region and f(x,y) = 0 outside the region—imagine
aregion found by thresholding, for example. Nevertheless, the formulas for moments apply
to any nonnegative function, such as the result of some algorithm that generates a probability
map (but note that none of the following analysis requires E Xy f(x,y) =1, as would be
required by a probability density function).

Regular Moments

Given the discrete function f and nonnegative integers p and g, the pg™ moment of a 2D
region is defined as:

my, = >, 2xPyif(x,y) (4.101)

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

4.4 Region Properties

175

We say that the pg™ moment is of order p + ¢. Thus, the zeroth-order moment is n1qp, the
first-order moments are m and m;, and the second-order moments are m,, mg,, and m,;.
Computing these moments is easy, requiring a single pass through the image, as shown in
Algorithm 4.14.

The centroid (X, y) of the region is defined as the weighted average of the pixels and
is easily computed from the zeroth and first moments:

1
Ly = L), 3 (4.102)
G =5 (Sastas). oo »)
- (@ @) (4.103)
Mmoo Moo

If f were a continuous function, it could be viewed as the mass density function of a solid
planar body, the moments of which (by replacing the sums in Equation (4.101) with inte-
grals) capture the inertial properties of the body. The zeroth moment, for example, yields
the mass of the body, while the centroid captures its center of mass, and the second-order
moments are related to its moments of inertia. In the case of a binary function f, a cardboard
cutout (or any other flat material with uniform mass density) with the same shape as the
region will remain horizontal when suspended by a string attached at the centroid.

Central Moments

The regular moments that we have just defined will differ depending on where in the image
the region is located. To provide translation invariance, the pg™ central moment is defined
as the pg™ regular moment about the centroid:

Mpg = > > (x =)y = y)iflxy)

It is easy to show that the central moments are functions of the regular moments:

Moo = Moo (4.104)
tip =0 (4.105)
o1 =0 (4.106)

ALGORITHM 4.14 Compute the zeroth, first, and second-order moments of an image

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

176 Chapter 4 - Binary Image Processing

ALGORITHM 4.15 Compute the central moments of an image

Moo = Mg — .Emlo (4.107)
Hop = Moy — ymg; (4.108)
M1y = myp = Ymyg = myp — Xmg; (4.109)

These equations allow us to compute the central moments with just a single pass through
the image, shown in Algorithm 4.15, and there is no need to compute wuq or uy; because
they are always zero. It is easy to verify that the equations above are special cases of the
general formula for computing central moments from regular moments:

P q
Hpg = 2 2(—1)’*"(’:)(?)%"?"1,1-,-3—; (4.110)

i=0j=0

!
where [L — is a binomial coefficient, and n! is the factorial of n.
k K(n—k)!

Normalized Central Moments

Under a uniform scale change x' = ax,y’ = ay, @ # 0, the central moments change
according to w,, = o’ +‘1+2y,pq. This result is easily shown using the continuous formula-
tion of moments:

Mpg = / (x" =Xy - i’)"f(%%) dx' dy’ 4.111)
_ //(ax —) (ay —) flx, y)a? dx dy .112)
ot [2 - Do) dedy @113
AT (4.114)

since, by change of variables, dx’ = adx and dy’ = a dy. For the zeroth moment
(p =g =0), this yields uyy = a’ugo. As a result, if we normalize a region’s central

+q+2
moment by dividing by y,(;oz , we obtain a quantity that does not change with scale,
which can be seen as follows:

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

4.4 Region Properties

177

’ ptq+2 pPrq+2
Hpq @ Hpg @& Mpg Hpq 4115
(,)p+q+2 - (>)p+q+2 - ptg+2 ptq+2 (),,+(,+z (.)
Moo/ > @ foo) 2 «@ Moo > HMoo) >

This observation leads to the definition of the pg™ normalized central moment as

_ Hra

Npy = (4.116)
pa Mgo

where y = 24*2 for p + g = 2. The case p + ¢ = 1 is not included simply because
K10 = o1 = 0, as shown earlier. Other approaches to scale normalization are possible,
such as w,,, / (oo + ;/,02)“// 2, which is also scale invariant as can be seen by using the same
reasoning as above for dividing by ud.

Hu Moments

So far we have seen the central moments, which are invariant to translation, and the nor-
malized central moments, which are invariant to translation and uniform scaling. The Hu
moments, which are invariant to translation, uniform scaling, and rotation, are natural
extensions. These are given by
b1 = Mo + N2
$r = (Mo — Me2)* + 41,
$3 = (m30 — 3m12)* + (3may — mo3)?
by = (M0 + M12)* + (M1 + Mo3)?
b5 = (m30 — 3m12) (m30 + m2)[(M30 + Mm2)? — 3(m2y + M03)?]

+ (321 = m03) (M21 + m03)[3(m30 + M12)? — (21 + m03)?]
d6 = (M0 — m02) [(m30 + M12)* — (Ma1 + M03)?] + 4n11(m30 + M12) (M21 + M03)
$7 = (3m21 — m03) (m30 + Mm2)[(M30 + M2)? — 3(m21 + M03)?]

+ (3m12 = m30) (M21 + M03)[3(m30 + M12)? — (21 + mo3)?]

The first six values are also invariant to reflection, while ¢; changes sign upon reflection,
allowing us to distinguish between mirror images. (We call the first six values invariants,
.while? the last value i.s a pseudoim./ariant.) If n,,, is re:placed by Mpq in these equations, the
invariance to scale disappears while all other properties remain.

Zernike Moments

For rotational invariance, the complex Zernike” moments, which in practice exhibit
reduced sensitivity to discretization noise, are even better than the Hu moments. Like the
regular, central, and normalized central moments, but unlike the Hu moments, the complex
Zernike moments can be computed for any order, thus enabling reconstruction of the region
to arbitrary precision. To understand these moments, let us define a new coordinate system
with its origin at the region centroid and scaled so that

~I

X — X ~_)Y
r Y=

%= (4.117)

where r is the radius of a circle that entirely encloses the region of interest. It is easy to see
that if x and y lie within a circle centered at (x, y) with radius r, then > + 3% =< 1, that is,

" Pronounced ZERN-uh-kee.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

178

4.4.2 Area

Chapter 4 - Binary Image Processing

(%, ¥) lies within the unit circle. This is important because the complex Zernike moments
derive their rotational invariance from the orthogonality of the Zernike polynomials, but
this property only holds within the unit circle.

The complex Zernike moments of order p = 0 are defined as a summation over the circle
centered at (X, y) with radius r:

+1
Zyy = b - > >) ViE (%, 5) (4.118)
X y

with the restriction that p — |g| = 2n for some nonnegative integer n. As a result of this
restriction, the moments are Zyg, Z11, Z>g, Z22, Z31, Z33, Zags Za2, Zas, and so on. Usually the
first 9 to 12 moments are computed. Although g can be negative, the moments with negative
¢ do not contribute new information, since it can be shown that Z,, = Z;_ for any p and
g, where the asterisk (*) denotes the complex conjugate.

Since the difference between p and |g| is even, their sum must be even as well, so let us
define n’ to be the nonnegative integer such that p + |g| = 2n’. The function Vi, is then
the complex conjugate of a Zernike polynomial of degree p and angular dependence g:

Vo5 5) = S (1) PN o oyiemia (a119)
pa o m!(n—m)!(n" —m)!
14 .
= > B3+ 37)2e/?? (4.120)

k=lg
p—kiseven

where tan @ = y/%,j =V —1, and the second equality comes from substituting
m = (p — k)/2, leading to
p+ k>'
5)

B, =(-1)% (4.121)
o (p—k>,<k+ q|>,(k— |q|),
2) 2 ' 2 ’
The Zernike moments are related to the regular moments according to
Pl L &L K"\ (lql
Zpg = > > >(FhH? Bk Mk —2a—b2a+b (4.122)
T A aa=0b=0 aJ\b

where k' = 5 (k — |g|), and the regular moments are computed according to the normalized
coordinate system defined by X and y. (Note that in this equation the sign of j is opposite
the sign of g.)

The area of a region is given by its zeroth moment my, = wqo. For a binary region, this is
simply the number of pixels in the region. Alternatively, given the pixels defining the bound-
ary (as in wall follow), the area of the polygon defined by these boundary pixels is given by

n—1

area = 2, (xiv 1 = % Viv1) (4.123)
i=0

Note that, given two binary images /; and I,, we have
area(l,) + area(l,) = area(I, N L) + area(l; UL) (4.124)

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

4.4 Region Properties

4.4.3 Perimeter

4.4.4 Orientation

Ciaxa

179

The perimeter of a region is typically computed by applying the Kimura distance to the
boundary found by wall following. Similar to area, we have

perimeter(/,) + perimeter(/,) = perimeter(/, (\1,) + perimeter(/; UL) (4.125)

where the approximation is due to discretization effects.

The orientation of a region is determined by the relationships between the x and y coordi-
nates of the pixels in the region. These relationships are captured by the 2 X 2 covariance
matrix, which is defined as the expected value of the outer products of the pixel coordinates
after shifting the coordinate system to the region centroid, multiplied by

p(x,y) = f(x,y)/ >, f(x,y), which is a normalized version of the mass density function

sothat >, p(x,y) = L.Ifweletx = [x y]Tandx =[x y]" be vector representa-
tions of the point (x,y) and centroid (X, y), respectively, and E[-] the expected value,’ then
the covariance matrix is written as

= E[(x = %) (x = x)Tp(x)] (4.126)
1

= mE(X - x)(x = x)f(x,y) (4.127)

:E;”Uy)z B:ﬂ[x_x y—ny(x,y) (4.128)
NPT
Sl S LE-00-9 (-2
1
Ex,yf(x’y)

:|f(x,y) (4.129)

2 (x = 1) fxy) 2 y(x =) (y - y)f(x y)

_ - (4.130)
Dol =x) (v = y)fxy) (=) fxy)
_ 1|:/-‘L20 /‘Lll:| (4.131)
Moo [M1 Moz

where the equalities follow from straightforward substitution, and the (optional) subscript
on C indicates its dimensions. As can be seen, the covariance matrix of an image region is
a simple function of its central moments.

Returning to our earlier physical analogy, the covariance matrix is part of the inertia
moment tensor of the body. Just as the area captures the body’s resistance to linear forces,
the values in this matrix capture the body’s resistance to rotational forces about the axes,
as illustrated in Figure 4.33. The diagonal elements w,o/ oo and pgs/ o, known as the
moments of inertia, capture the resistance of the body to rotation about the x and y axes,
respectively, since (x — x) and (y — y) are distances to the axes. The off-diagonal element
w11/ oo, called the product of inertia, captures the twist that the body will undergo around

" The expected value of a random variable Z with probability density function p,(z) is defined as the mean of the
distribution: 2 zp,(2).

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

180 Chapter 4 - Binary Image Processing

Figure 4.33 The second-order
moments are related to the
moments of inertia of a flat rigid

body with uniform mass density, T

represented here as an ellipse.
X l X X
y

M20 > (2 20 < m(2 20 = 02
11 =0 pi1 =0 p11 <0

one axis when it is rotated around the other axis, which is related to the asymmetry of the
body. Note that w, unlike the other quantities, can be negative.

Every rigid, physical body has a figure axis, which is defined as the axis about which
the moment of inertia is minimized. This axis passes through the centroid of the body. For
a circular body, the axis is arbitrarily defined, but for an elongated body the figure axis will
be aligned with the direction of elongation. For example, much less energy is required to
rotate a baseball bat about its axis of symmetry than to swing the bat, so the baseball bat’s
axis of symmetry is its figure axis.

The orientation of a 2D region is the angle 0 of its figure axis, which is related in a rather
simple way to the second-order central moments:

2
tan 26 = <““> (4.132)
M20 = Mo2

If the moments are computed using a standard image coordinate system with the positive
x axis pointing right and the positive y axis pointing down, then the angle 6 will be clock-
wise with respect to the positive x axis. It would be tempting to invert this equation, but
this would be wrong:

1 2
§ # — arctan ('“”) (4.133)
2 Moo — Mo2

Can you guess why? The inverse tangent function (arctan) returns an angle between —/2
and 77/2, so Equation (4.133) yields a value for 6 between —r/4 to /4, which of course
does not represent the full range of possible line orientations. The solution to this problem
is to keep the numerator and denominator separate, using their signs to compute an inverse
tangent between —7 and 7 in the appropriate quadrant; multiplication by 1 then yields an
angle between —77/2 and 77/2. Most programming languages have such a function, usually
called ATAN2 (y,x). Since the right side of Equation (4.132) indicates the rise over the run,
the numerator is the argument for y, while the denominator is the argument for x, as shown
in Algorithm 4.16.

While proving Equation (4.132) is left as an exercise for the reader, some insight into
the problem of orientation can be gained from our physical analogy. For any rigid body, it
is possible to rotate the coordinate system so that the product of inertia goes to zero, i.e.,
#1171 = 0. When this occurs, the new x and y axes are aligned with the principal axes of
inertia of the body (also known as the principal axes of rotation), one of which is the figure

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

4.4 Region Properties 181

ALGORITHM 4.16 Compute the orientation of a region in an image

Input: binary image / containing a single oN region

Output: angle of major axis of binary region, clockwise from positive x axis
1 oo, M20> M2 11 < COMPUTECENTRALMOMENTS(/)

2 return (1/2) & ATAN2(2M11, Moo — Moz)

axis. The moments of inertia about the principal axes of inertia are known as the principal
moments of inertia. Rotating the coordinate system by 6 is the same as rotating the body
by —#, so let

cos 6 sin 6
(4.134)

R =
{2x2} |:—sin 0 cos

be the rotation matrix that causes this to happen, i.e., it aligns the x axis with the figure axis.
Then, the covariance matrix in the new, aligned coordinate system is

Gl =8 “R" ~ Rx) (Rx — RX) Tp(x)] (.135)
) K ~X'R! (4.136)
Exyf(x y) 2 (x = x) "Rf(x,y)
1
TS - X=X y) RY (4.137)
2 flxy) g(x x) (x = %) 'flx,y)
e (4.138)

where in the third line R and R are pulled out of the summation because they do not depend
on x or y, and the final equation results from comparing with Equation (4.127).

Since w;; = 0 in the aligned coordinate system, C' is a diagonal matrix. Thus, if we
could determine the rotation matrix R that diagonalizes the covariance matrix, we would
have an alternate way of determining the orientation 6 of the region. It turns out that this
is easily done by eigendecomposition of the matrix. Recall that a 2 X 2 matrix has two
eigenvalues, A; and A,, and two corresponding eigenvectors, v, and v,. Eigenvalues and
eigenvectors are paired together, so A, goes with v, and A, goes with v,. The eigenvalues
and eigenvectors of a matrix reveal its structure. In the case of an arbitrary input vector X,
the output vector x’ = Cx does not necessarily have any obvious relationship to the input.
However, when the input vector is an eigenvector of the matrix, then the output is a scaled
version of the input:

CV] =)\1V1 CV2 = A2V2 (4.1 39)
where the eigenvalues specify the amount of scaling. We can think of the eigenvectors as the
characteristic frequencies of the matrix, with the matrix resonating at those frequencies simi-
lar to the way a tuning fork resonates in response to a sound wave at a particular frequency.

If we stack the eigenvectors into the columns of a matrix P = [v; v,]and the eigenval-

ues of C into a diagonal matrix A = diag(A;, A,), then we obtain a compact representation
of the diagonalized covariance matrix:

A =PTCP (4.140)

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

182 Chapter 4 - Binary Image Processing

which is easy to show as follows. Since C is real and symmetric, its eigenvectors are ortho-
normal (orthogonal and unit norm) as long as the eigenvalues are distinct.” Therefore,
P" = P!, By substitution from Equation (4.139), we have

A O
CP=Clv; v]=[Nv; v]=[v, v,] [01 A j| =PA (4.141)
2
or CP = PA. Multiplying both sides on the left by PT yields Equation (4.140).
Comparing Equation (4.140) with Equation (4.134), we see that PT plays the role of R
by rotating the covariance matrix so that it becomes diagonal, and therefore

6 —sinf
pP=R" = o (4.142)
sin 6 cos 0
sothat v; = [cos® sin@]" and v, = [—sin® cos 8]T Thus, the eigenvectors are the

principal axes of the region, and, if we follow the common convention of ordering the
eigenvalues so that A; = A,, then v, yields the figure axis.

One final detail needs to be considered. There is a sign ambiguity in the eigenvectors,
which can be seen in Equation (4.139), because if v; satisfies the equation, then so does —v;,
for i = 1, 2. The ambiguity can also be seen in Equation (4.140), because (PM) TC(PM)
is also equal to A, where M is any of the following:

L] [s] e

Geometrically, we note that the axis defined by 6 and the axis defined by 6 + 7 are the
same, which is why [cos® sin@]" and [—cos@ —sin @] refer to the same axis.
As a result, Equation (4.142) is slightly misleading, because our convention says that
—a/2 < 0 =< 7/2, in which case cos § = 0. But when the eigenvectors of C are com-
puted, there is no guarantee on the sign of any of the four values vy, v,1, v15, and v,,, where
vi=[vii vy JTandv, =[v;, vy]". Toadhere to our convention, then, we should flip
the sign on v; if vy is negative. The angle 6 is therefore given by the arcsine (inverse sine)
of v,1, subject to the sign of vy, as shown in Algorithm 4.17.

Recall that an orthogonal matrix is one whose transpose is its inverse, e.g., R"! = RT"
A rotation matrix has an additional property; namely, its determinant is + 1. Although P is
guaranteed to be an orthogonal matrix,* its determinant is not constrained to be + 1 but may
instead be — 1. Therefore, the matrix P may cause not only a rotation but also an undesir-
able mirror reflection, which yields a left-handed coordinate system—another reason that
Equation (4.142) is misleading. As a result, even after correcting the sign of v; according
to our convention, care must be taken whether v, or —v, yields the orthogonal axis in the
righthand sense. Because of our convention on 6, this means that we should use —v, instead
of v, if vy, is positive, if we care about producing a right-handed coordinate system from
the axes. Note, however, that this correction is irrelevant if orientation is all that is desired.

4.4.5 Best-Fitting Ellipse

Suppose we have a binary region defined as the set of pixels inside an ellipse centered at
the origin:

ellipse region = {(x,y) : ax> + bxy + cy> = 1} (4.144)
"1If the eigenvalues are not distinct, the eigenvectors can nevertheless be chosen to be orthogonal.

* Somewhat confusingly, according to standard terminology a matrix is called orthogonal if its columns are
orthonormal.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

4.4 Region Properties

ALGORITHM 4.17 Compute the orientation of a region in an image (eigendecomposition method)
CoMPUTEORIENTATIONB YEIGENDECOMPOSITION(/)
Input: binary image / containing a single oN region
Output: angle of major axis of binary region, clockwise from positive x axis
1 oo, Mogs Mo2s 11 < COMPUTECENTRALMOMENTS(/)
1| M20 HM11

C(_#oo|:
K11 Moz

A1, Ay, vy, v, <= EIGEN(C) M= v = vy vyl andy, = (v

return ASIN (v,)

2

3

4 if v;; = 0 then
5

6 else

7

return ASIN(—vs;)

183

sz]T

with 4ac > b? and a, ¢ > 0 to ensure that the equation describes an ellipse (rather than a
parabola or hyperbola). Conveniently, it can be shown that the second-order central moments

of such a region are related to the coefficients of the ellipse in a simple way:

L | oo M ¢ -
C = [=n| , 2
Koo | M11 Moz 2 a

(4.145)

where 7 = 4 det(C), and det(C) = (waotor — p31)/udo = & (4ac — b?) is the deter-
minant of the covariance matrix, so that n = 1/(4ac — b*). While proving the relation-
ship in Equation (4.145) is omitted here, its truth can be partially verified by recalling that
covariance matrices are always positive semidefinite, which implies that det(C) = 0, or
oot = (31, which implies 4ac = b?. It is also true that all the diagonal elements of a
positive semidefinite matrix are nonnegative, so a, ¢ = 0. Another useful exercise is to gen-
erate actual binary elliptical regions according to Equation (4.144), measure their moments,

and verify that Equation (4.145) holds.

The eigenvalues of C can be computed by solving the characteristic equation

det(C — My x2y) = 0, where Iy) is the 2 X 2 identity matrix, leading to

Ao =
T 2

1
<M20 + por = \/(Mzo — poa)* + 4#«%1)
0

(4.146)

where A, takes the plus sign and A, takes the minus sign, so that A; = A,. It is easy to show
that the sum of the eigenvalues is the trace of the covariance matrix, A; + A, = tr(C) =
(oo + mo2)/poo. and that the product of the eigenvalues is its determinant,
MA, = det(C) = (maomor — 1)/ udo. From the eigendecomposition of the previous sub-
section, we note that the eigenvalues are invariant to rotation, and their ratio is invariant to scale.
Also note that, because C is positive semidefinite, both eigenvalues are real and nonnegative.
Every noncircular ellipse has a major axis and a minor axis, which are equivalent to
the principal axes previously mentioned, with the major axis being identical to the figure
axis. There is a simple relationship between the length of these axes and the eigenvalues of

the covariance matrix:
semimajor axis length = 2\51
semiminor axis length = 2\/);

(4.147)
(4.148)

184

Chapter 4 - Binary Image Processing

where the major or minor axis length is defined as the distance between the two intersection
points of the ellipse boundary with the major or minor axis, respectively, and the semi-
major and semiminor axis lengths are one-half of these. (If the ellipse were a circle, then
the axis length would be the diameter, and the semi-axis length would be the radius.) To
verify that these equations are true, consider (without loss of generality) the simple case of
an ellipse that is aligned with the coordinate axes, so that » = 0, and the boundary of the

ellipse is given by ax®> + ¢y*> = 1. Such an ellipse crosses the x axis at x = i\/ll;, and it

crosses the y axis at y = i\/} Now suppose (also without loss of generality) the ellipse
is wider than it is tall, so that a = ¢, which implies wg, = 9. Then, by substitution of
Equation (4.145),

1 4 4
semimajor axis length = \/; = \/ 1Moo _ \/ 20 Pz oo _ \/ #20 _ 2\51 (4.149)

o2 50 Moz Moo
1 4 4
semiminor axis length = \/7 = \/ MFo0 \/ ,U«zoz,uoz Foo \/ Hoz _ 2\/)T2 (4.150)
¢ H20 MO0 20 Koo

Since the eigenvalues are not affected by rotation, this result holds no matter the orientation
of the ellipse. If @ > ¢, then the roles of @ and ¢ are swapped in Equations (4.149)—(4.150),
but Equations (4.147)—(4.148) still hold.

Thus we see that given any arbitrary binary 2D region, the “best fitting ellipse” of the
region, which is defined as the ellipse with the same second-order central moments as
the region, is given by ax? + 2bxy + cy? = 1, where the coefficients are determined by
Equation (4.145) after first computing the second-order central moments of the region. The
major and minor axes of this ellipse are given by the eigenvectors of the covariance matrix
formed from the second-order central moments, and the lengths of these axes are related to
the square roots of the eigenvalues. In case it is not clear why a square root is needed, recall
from Equation (4.141) that

A0
=P P 4.151
¢ [0 Aj 15

so that diag(A,, A,) is the covariance matrix after the region has been rotated by P so
that it is axis-aligned. Therefore, these eigenvalues are indeed the variances: A, = o} and
A, = 03, and their square roots are the standard deviations: \ﬁl = o0 and \//\j = 0.
Since standard deviations are lengths, this explains why length is proportional to the square
root of the eigenvalue.

We can go a step further by considering the 2D Gaussian (or bell) curve. We will study
the Gaussian in more detail in the next chapter, but for now let us note that the isotropic
(meaning the same in all directions) 2D Gaussian is in the shape of a bell. The level set of
a 2D function G(x, y) at level A is the set of points such that G(x, y) = A, for some con-
stant h. Geometrically, the level set is the intersection of the function with the horizontal
z = h plane, and it can be thought of as a horizontal slice through the function. Because
an isotropic Gaussian is rotationally symmetric, its level set will take the shape of a circle.
An anisotropic (meaning not the same in all directions) Gaussian, on the other hand, is
not rotationally symmetric, and therefore its level set is in the form of an ellipse. For every
2D elliptical region, there is an associated 2D Gaussian function with the same mean and
covariance matrix, so that A; and A, are the variances of the two random variables of this 2D
Gaussian. This analysis also gives meaning to the factor of 2 in Equations (4.147)—(4.148) ,
because it says that the ellipse captures =20, i = 1, 2, in each direction, or 95.45% of the
area under the Gaussian curve.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

4.4 Region Properties

185

4.4.6 Compactness

4.4.7 Eccentricity

Compactness is a measure of how close the pixels in the region are to the center of the
region. Since the most compact shape is a circle, we define compactness as

47 (area)

compactness = (4.152)

(perimeter)?

For a continuous region, compactness ranges from 0 to 1, with 1 indicating a circle, since the
area of a circle with radius r is 772, and its perimeter is 27r. Note, however, that discretiza-
tion effects can cause the resulting compactness to be slightly greater than 1 for discretized
shapes that resemble circles.

The area of an ellipse is a natural generalization of the area of a circle, with the semi-
major and semiminor axis lengths playing the role of the radius. If we let €; = 2\51
and €, = 2\@ be these lengths, according to Equations (4.147)—(4.148), then the area is
7€ 1€>. The perimeter of an ellipse is more difficult to calculate, but one approximation that
works reasonably well is 277V (€7 + €3)/2. Substituting into Equation (4.152) yields the
compactness of an ellipse:

t f 1L 2'47726162 26162 2a (4 153)
compactness o1 ellipse = = = .
P PEZ4r+8) G+6 o2+1

where a = % = 1 is a scale factor relating the lengths of the axes, so that A; = aA,. Note

that the compactness is 1 for & = 1 (circle), ¢ = 0.8 for & = 2,15 =~ 0.47 for @ = 4, and
so on.

The eccentricity of a region measures its elongatedness—that is, how far it is from being
rotationally symmetric around its centroid. Since the eigenvalues capture the variance in
the two principal directions, the eccentricity of a region is defined as the difference between
these variances, normalized by the larger variance. Similar to the axis lengths, we take the
square root:

A — A
eccentricity = - (4.154)

which ranges from O (when the region is a circle) to 1 (when the region is a straight line).
Substituting Equation (4.146) yields the eccentricity in terms of the moments:

o 2V (pag — po)? + 4y _ 2B
eccentricity = = B (4.155)

Moo t Moz T \/(Mzo — po)? + 4pgy r(C)

where 8 = Vtr2(C) — 4 det(C), and tr>(C) is the square of the trace of the covariance
matrix. In the case of an axis-aligned ellipse, w;; = 0, and Equation (4.155) simplifies to

|/U«20 - IU«02|
Moo + top + a0 — ool

eccentricity (when axis-aligned) = \/ (4.156)

Figure 4.34 shows an example of compactness and eccentricity.
Other definitions for eccentricity could be imagined, but there are several distinct advan-
tages to the definition in Equation (4.154). First, it matches the standard mathematical

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

186

Figure 4.34 Left: A circle is
the most compact shape,
with a compactness of 1.
Middle: A shape whose
compactness is less than 1.
Right: The eccentricity of
the shape is computed as
the eccentricity of the best-
fitting ellipse.

Chapter 4 - Binary Image Processing

definition of the eccentricity of an ellipse, which is the ratio of the distance between the
ellipse foci to the length of the major axis. Thus, the eccentricity of the region is equivalent
to the eccentricity of the best-fitting ellipse. Secondly, due to the normalization by A, it is
invariant to scale, which is a desirable property because it ties the eccentricity to the shape
of the object without regard to its size in the image.

For comparison, an alternative definition that has been proposed by some authors is the
ratio of the principal axes of inertia:

A _ \/P«zo + por = V(oo — mon)® + 4dy (4.157)
Ay pao + pon + V(a0 — poo)® + 4udy
which, when axis-aligned, reduces to

A
2o [Re (4.158)
/\1 M20

This definition shares many of the desirable properties of the definition above, except that it
has to be interpreted in the opposite manner because it yields 1 for a circle and O for a line.
To fix this problem, we could try to subtract the ratio from 1:

|2
1 A (4.159)

which also ranges from O (when the region is a circle) to 1 (when the region is a straight
line). However, this definition has a more serious drawback in that there is no straightfor-
ward relationship between a change in the axis lengths and the corresponding change in the
value of the eccentricity. For example, a doubling of the ratio of the two axis lengths does
not lead to a doubling of the eccentricity.

An even worse measure is the difference between the two eigenvalues:

1
A=A = @\/(Mo — po2)? + 4uty (4.160)

which ranges from O (when the region is a circle) to % (when the region is a line). This
definition suffers from two problems: a doubling of the difference between the two principal
axes leads to a quadrupling of the eccentricity, and the eccentricity is dependent upon the
scale of the region.

Finally, the following definition is sometimes proposed:

(20 = mo2)® + 4y
Moo

(4.161)

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

4.4 Region Properties

4.4.8 Convex Hull

187

but it is not clear what the justification for this measure is. Sometimes it is assumed to be
the ratio of the principal axes of inertia, but this is not true, as we have just seen the correct
formula in Equation (4.157). Moreover, this equation is fundamentally flawed because of the
mismatch of units in the numerator, where one moment is added to the square of another. If
we recall from Equation (4.114) that a scale change of « causes the second order moments
(a0» Mos and ;) to increase by a factor of a, we notice that this same scale change
causes the first term in the numerator to scale by a factor of a8, while the second term scales
by only o*. This mismatch leads to unpredictable behavior in the overall quantity.

A set of points in the plane is convex if any straight line between two points in the set lies
entirely within the set. The convex hull of a set is the smallest convex set containing the set.
The difference between the set and its convex hull is called the convex deficiency, which is
sometimes used as a descriptor of the shape of the object. The convex deficiency is somewhat
related to compactness, because compact shapes (i.e., those whose value is close to 1 accord-
ing to Equation (4.152)) by their very nature have little to no convex deficiency; the con-
verse, however, is not necessarily true because elongated convex shapes such as ellipses or
rectangles can have arbitrarily small values for compactness without any convex deficiency.

Given a set of points in the plane, we can think of the convex hull as being the region
defined by the shape of a rubber band placed around the set. Consider a polygon defined by
a clockwise sequence of vertices pg, Pi, Pas - - - » P, Each vertex is locally either convex
or concave (the opposite of convex). If we sequentially remove each concave vertex until
there are no more concave vertices, the resulting shape will be the convex hull, as shown in
Figure 4.35. To test whether a vertex is locally concave, let v; = p; — p;_ be the vector
joining two consecutive vertices, p; —; and p;. Such a vector splits the entire plane into two
half-planes, one to the right of the vector and one to the left. If the next vertex (p;.) is
in the left half-plane, then the middle vertex (p;) is on a concavity, which means that it is
in the interior of the convex hull and therefore definitely not on the boundary of the convex
hull. On the other hand, if the next vertex is in the right half-plane, then the middle vertex
is possibly on the boundary of the convex hull, depending upon additional information. In
Figure 4.36, for example, p, is to the right of the vector joining p, and p;, and therefore
the middle vertex (p,) is, as far as we know based upon this single test, on the boundary
of the convex hull. However, pj is to the left of the vector joining p; and p», and therefore
the middle vertex (p,) is at a concavity and needs to be removed.

Mathematically, it is easy to test whether the third vertex is in the right or left half-plane
defined by the vector joining the first two vertices. If we treat the vectors v; and v; | as
lying in a 3D space, then their cross product, v; X v; 1, yields a vector perpendicular to the
plane. According to the right-hand rule with our standard image coordinate system, if the
z-coordinate of v; X v, is greater than 0, then p; + ; lies in the right half-plane defined by
v;; whereas if the z-coordinate of v; X v, 1 is less than 0, then p; ; ; lies in the left half-plane

Figure 4.35 Lert: An arbitrarily-shaped Po P1 Po P1
region in the plane. RicHt: The convex hull
of the region is the shape that results from

enveloping the region with a rubber band,

P3 P3

which removes all concavities. All vertices
are locally convex except for p..

P4 P4
Region Convex hull

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

188 Chapter 4 - Binary Image Processing

Figure 4.36 LerT: The vertex p, is to the Left half-plane //

right of the vector joining po and p;, and Po Vi P1 Po vy p1S N &
therefore p, is, as faraswe know based ~ TTTT T T T @ — m m m ’V@ Q\‘v
upon this single test, on the boundary of v2 V2 q§

the convex hull. RigHT: The vertex ps is to Y3

the left of the vector joining p; and p,, and P3 P3
therefore p, is at a concavity and needs to

be removed. P4 /P4

defined by v,. The sign of this z-coordinate is given by the sign of the determinant of a
matrix containing the coordinates of the points, where p; = (x;, y;), and so on:

i ; Xi—1 Yi-1 1
. Jpossibly on boundary ifd =0
‘ here d = det ; ;1]]@ae2
' { definitely in interior ifd <0, where ¢ i Yi ()
Xiv1 Vi1 1

This test leads naturally to an algorithm for computing the convex hull of a contiguous
binary region, shown in Algorithm 4.18. First wall following yields the boundary of the
region as a sequence of pixels. Then we consider triplets of adjacent pixels along this
boundary. For each triplet the test in Equation (4.162) is performed. If the third point is in
the left half-plane, then as far as we know it might be one of the vertices of the convex hull,
so the point is retained, and the algorithm continues. On the other hand, if it is in the right
half-plane, then the previous point is at a concavity and is therefore definitely not a vertex of
the convex hull because it lies in the interior of the convex hull. In this case, we remove the
point and back up by one pixel in our traversal, then continue. By sequentially considering
pixels along the boundary of the region and testing whether the next pixel is within or
outside the right half-plane, a minimalistic sequence of half-planes can be generated so that
all pixels in the boundary are within the convex hull defined by the intersection of these half
planes. The points that remain at the end of this processing are the vertices of the polygon
defining the convex hull. Note from the pseudocode that some additional logic is necessary
to handle the special case of the initial pixel.

This consideration of half-planes also leads to an elegant definition of the convex hull
in terms of mathematical morphology. More specifically, the convex hull is the intersection
of the dilation of the region with the set of SEs containing half-planes at all orientations:

convex hull = ﬂ 1® By (4.163)
all 6

where By is a half-plane at orientation 6, as illustrated in Figure 4.37. In this context, a half-
plane SE has infinite extent with 1s on one side of a line and Os on the other side. Suppose,
for example, the region is dilated with a half plane defined by a vertical line passing through
the origin, with 1s to the right of the line. Then, according to the definition of dilation, the
dilation of the region with this SE yields a 1 anywhere to the left of the rightmost pixel in
the region. That is, as the structuring element is translated to the left, there will always be
overlap between the region and the structuring element. Only as the structuring element is
translated to the right of the rightmost pixel is there no overlap, and hence a 0 output. The
result is the same as if a rigid sheet were draped over the region with gravity pointing in
the direction perpendicular to the line. As the line is rotated, different outputs result, and
the convex hull is the intersection of all such dilations.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

4.4 Region Properties 189

ALGORITHM 4.18 Compute the vertices of the convex hull of a binary image region

Dilating a region with an infinite number of infinite SEs is (obviously) computationally
prohibitive. However, as the number of orientations is increased, such an approach yields
an increasingly good approximation to the true answer. Therefore, a reasonable approach
is to dilate the region with the four half planes oriented along the cardinal directions (up,
down, right, and left), then dilate with four planes oriented at 45 degrees from these (which
yields northwest, northeast, southwest, and southeast), and so on, with an appropriate stop-
ping criterion. Even so, this approach is much more computationally intensive than the one
presented above, and it results in only an approximation.

4.4.9 Euler Number

Topology is the study of properties of objects that are preserved under continuous deforma-
tions of the objects. Such deformations allow for bending, stretching, and compressing, but
not tearing or sewing. The mathematical name for such a deformation is a homotopy,’

7 If the homotopy has an inverse, it is known as a homeomorphism. For example, the mapping from a circle to an ellipse
(or jelly bean, for that matter) is a homeomorphism, because the mapping is one-to-one. On the other hand, the map-
ping from a circle to a line is just a homotopy because multiple points on the circle map to the same point on the line.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

190 Chapter 4 - Binary Image Processing

ALGORITHM 4.19 Fill in the convex hull of a binary image region

Input: binary image / with a single foreground (on) region
Output: pixels inside convex hull of region are set to oN
v < CoMPUTECONVEXHULLVERTICES(/)
Xmins Xmax < COMPUTEPOLYGONCROSSINGS(V)
for y <— 0 to height — 1 do
for x < xmjn[y] to xmax[y] do
I(x,y) < ON

D AW N =

although they are more colloquially known as “rubber sheet deformations.”As an example,
consider the letters “A” and “P”, as shown in Figure 4.38. By a continuous deformation
(homotopy) of the points on the letter, one can be changed into another without affecting
the connectivity (topology) of the region. That is, any path connecting any two points within
one shape has a corresponding path in the other shape. In contrast, the letters “A” and “B”
are not related by a homotopy, because the conversion from “A” to “B” requires tearing a
hole (or joining two protrusions to create a hole). Similarly, the letters “A” and “C” are not
related by a homotopy, because the conversion from “A” to “C” requires sewing up a hole.
In both of these cases, there exist paths in one shape whose corresponding deformed paths
in the other shape require passing through the hole of the other shape.

An important topological invariant is the Euler number’ (or Euler characteristic), which
is defined as the number of regions minus the number of holes:

(4.164)

Figure 4.37 The convex hull of

aregion can be computed by
the intersection of the dilation ®
of the region by an infinite

set of half planes of different
orientations.

S2)
I

“ Pronounced OIL-ur.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

4.4 Region Properties 191

Figure 4.38 Top: The letters “A”and “P” are
related by a homotopy, because there is a
continuous deformation that relates the two
shapes. Bortom: The letters “A” and “B" are not
related by a homotopy, because there is not a

continuous deformation that relates the two

shapes. Rather, tearing the region to produce
the extra hole is necessary (or sewing the hole
in the case of the reverse transformation).

To get a sense of this concept, the Euler numbers of the capital and lowercase letters of the
English alphabet are shown in Table 4.4.

Given a region in the plane, suppose vertices are added to the boundary of the region, and
edges (which can be straight or curved lines) are drawn between these vertices, as shown in
Figure 4.39; the edges divide the region into one or more faces. Let us enforce the following
rules: Every vertex has at least one edge connected to it, the region has at least one (implicit
if necessary) vertex, a vertex is declared wherever the edges intersect, and the outer and hole
boundaries count as edges, too. According to the Poincaré formula, the Euler number is then
equivalent to the number of vertices minus the number of edges plus the number of faces:

Euler number = number of vertices — number of edges + number of faces (4.165)

where vertices and edges outside the region are not counted. This formula states that the
Euler number is independent of how the region is divided by the vertices, edges, and faces.
In the figure, for example, for the first region there is a single (implicit) vertex, a single
edge (the outer contour), and a single face (the filled blue region), so the Euler number is
1 — 1 + 1 = 1. If another vertex is added and an edge is drawn between the vertices, then
there are 2 vertices, 3 edges (the outer contour has been split in two), and 2 faces, leading
to2 — 3 + 2 = 1; and similarly for the other tesselations.

Equation (4.165) hints that it might be possible to compute the Euler number from local
operations. Indeed, the Euler number obeys the inclusion-exclusion principle, similar to
the operation on sets:

E(Il UIz) = E(Il) + E(Iz) - E(I] mlz) (4166)

where I, and I, are two subsets of the plane, and E(/) is the Euler number of /, as shown in
Figure 4.40. Now suppose we already know the Euler number of a subset /, and we want to
calculate how much the Euler number will change if it is merged with another region Al.
By substitution, we have

AE=E(I\UAI) — E(I) = E(AI) — E(INAI) (4.167)
ctegions holes Euler letters
1 2 =1l Bg
1 1 0 AabDdeOoPpqR
1 0 1 CcEFfGHhIJKKLIMmNnrSsTtUuVvW
wXxYyZz
2 0 2 ij

TABLE 4.4 The Euler number of the lowercase and uppercase characters in the English alphabet.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

192

>

1-1+1=1

x

7-12+6=1

Chapter 4 - Binary Image Processing

23DDD

2-3+2=1 3-5+3=1 1-2+1=0 4-6+2=0 2-4+2=0

2PDDDD

—2+1=1 —3+1=1 —9+3=0 2-3+1=0 4-6+2=0

Figure 4.39 Various tesselations ofa region whose Euler number is 1 (Ieft) and 0 (right), showing that the Euler number is not
dependent upon the particular tesselation chosen. Under each figure is the number of vertices minus edges plus faces according to
Equation (4.165). Note there is implicitly at least one vertex, edges intersect at vertices, and external vertices or edges are not counted.

where AFE is the amount that the Euler number changes when the A7 region is unioned
with 1. In other words, the change in the Euler number is the Euler number of the added
subset minus the overlap between the subsets.

As an application of this principle, the Euler number can be determined by dividing the
plane into strips and counting the number of convexities and concavities within the strips:

Euler number = number of upstream convexities — number of upstream concavities (4.168)

where “upstream” points opposite the sweeping direction. In Figure 4.41, for example,
the sweeping direction is horizontal (to the right), and the first strip contains 1 convexity,
the second strip 1 convexity, and the third strip 1 concavity. The Euler number is therefore
1 + 1 — 1 = 1, which is what we expect since there is 1 region with 0 holes. The rationale
behind Equation (4.168) is that whenever a convexity is encountered, a new region appears,
thereby increasing the Euler number, but a concavity joins two regions, thereby decreasing
the Euler number.

It is not hard to imagine how the locally countable property of the Euler number could
apply to a square lattice such as a binary image. As the image is swept from left to right
and top to bottom, any time a 2 X 2 array of pixels is encountered with a 1 in the lower-
right corner and Os in the other 3 pixels, there is a convexity. Similarly, any time there is a
0 in the lower right corner and there are 1s in the other pixels, there is a concavity, as seen
from a sweep from the top-left corner to the bottom-right corner. Therefore, it is not too
surprising that the Euler number is related to the number of the first occurrence minus the
number of the second occurrence.

In reality, the square lattice complicates this simple analysis, requiring us to sweep from
all four cardinal directions (from the four corners of the image) and average the results.
This leads to the algorithm presented in Algorithm 4.20. Every 2 X 2 array of pixels in the
zero-padded image, overlapping as needed, is examined. Each of these arrays is known as
a bit quad since it contains 4 binary pixels. Since each pixel is either on or ofr, there are

Figure 4.40 Euler number of the union of two
regions is the sum of the Euler numbers of the — + _
individual regions minus the Euler number of the

intersection.

2-3+2=1 2-2+1=1 2-2+1=1 2-240=1

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

4.4 Region Properties 193

Figure 4.41 Euler number
is the number of convexities

minus the number of)
concavities. Concavity

Convexity Concavity
Convexity

+ g -

Convexity

1+1-1=1

2% = 16 possible bit quads. These are divided into 6 sets, depending upon the number and
arrangement of the on pixels:

R Y Y A A Y

Qo [&3 [[N Qp

where Q;,i = 0, ..., 4 is the set of bit quads with i 4-connected on pixels, and Q, is the
set of bit quads with on pixels in the 2 corners. Note that Q;, Q,, and Q5 each contain 4
elements, which vary from each other by 90-degree rotations.

Let n; refer to the number of times that type Q, appears. Then it can be shown that the
Euler number of a binary image is given by:

E,(I) = —(ny — nsy + 2np) (4-connectedness) (4.169)

= &=

Eg(1) = —(ny — ny — 2np) (8-connectedness) (4.170)

4

where E, is the Euler number assuming 4-connectedness for the foreground (and
8-connectedness for the background), while Eg is the Euler number assuming 8-connectedness
for the foreground (and 4-connectedness for the background).

ALGORITHM 4.20 Compute the Euler number

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

194 Chapter 4 - Binary Image Processing

Bit quads can also be used to compute the area and perimeter of a region:

1
area = Z(nl + 2}12 + 3n3 + 4n4 + ZnD) (4.171)
perimeter = n; + n, + n3 + 2np (4.172)

where the first equation is identical to the zeroth moment we showed before, i.e., counting
all the on pixels (with appropriate handling of the image borders). The second equation,
however, computes the length of the perimeter along the edges between pixels, rather than
by connecting the centers of the pixels. Thus a 2 X 2 square region of 4 on pixels has a
perimeter of 8, not 4. If it is desired to estimate properties of an underlying continuous
object that has been discretized, somewhat more accurate formulas are as follows:

1
area — Z(l’ll + 21’12 + 351’13 + 4]’14 + 3nD) (4.173)

1
perimeter = n, + —=(n; + n3 + 2np) (4.174)

V2
Of course, it is also possible to compute the Euler number by simply running the
connected components algorithm while keeping track of whether each region is on or
ofF, as well as whether each ofr region touches the image border. The Euler number is
then the number of on regions minus the number of off regions that do not touch the
image border.

4.5 Skeletonization

Another characteristic of a binary region is its skeleton. For the moment, let us ignore
discretization effects and consider only continuous regions. With this simplification, there
are two alternate but equivalent definitions of the skeleton, illustrated in Figure 4.42. In
the first, known as Blum’s medial axis transform, we imagine a region of dry, flam-
mable grass, surrounded by dirt that does not burn. If the region is set on fire along its
boundary, then the wave front of the fire will propagate inward. Assuming the grass burns
at a constant rate throughout the region, the medial axis is defined as the set of points
where two or more wave fronts meet, and the skeleton is defined as the medial axis.
Alternatively, the skeleton is defined as the locus (i.e., set of locations) of the centers of
all the maximal disks, where a maximal disk is a circle that fits entirely within the region
and touches the boundary in at least two places. It is easy to verify that these definitions
are equivalent.

A related concept is the quench function, which is defined as the radius of the associ-
ated maximal disk for each point on the skeleton, or (equivalently) the distance traveled by
the wave front before it was quenched at the medial axis. It is easy to see that the skeleton
and quench function together contain enough information to uniquely reconstruct the region.

Figure 4.43 shows six example binary shapes and their associated skeletons. The skeleton
of a filled square (not shown) is an X, and the skeleton of a filled rectangle is similar except
that the X is stretched along the longer dimension. Similarly, the skeleton of a filled circle is
a point, while the skeleton of an ellipse is a line segment whose endpoints are the centers of
the circles contained with the ellipse and tangent to the ellipse ends. The skeleton of a filled
plus or X depends upon the shape of the region at the extremities; with rounded extremities
(as shown in the figure), the skeleton does not reach to the boundary of the region, whereas
with pointed extremities it does. Finally, the skeleton of a hollow square is a thin square on
the inside, plus straight line segments pointing to each corner.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

4.5 Skeletonization 195

Figure 4.42 The skeleton of a
binary region is defined as the
locus of points where the wave
fronts of fires set to the boundary
meet, or equivalently as the locus
of the centers of the maximal balls.

One of the first things you will notice about skeletons is that, even in their definition, they
are extremely sensitive to noise. Even a tiny amount of noise can have a huge impact on the
nature of the skeleton. Figure 4.44 shows two examples. In the first example, an otherwise
perfectly noise-free filled rectangle is corrupted with a single pixel protruding from its side.
This single pixel alters the skeleton (again, by definition, not dependent on any algorithm)
to include a rather long protrusion from its middle segment to the boundary of the object.
In addition, because the pixel is shaped like a square, this protrusion forks to touch the four
corners of the pixel square as well. The fact that the skeleton, by definition, touches each
corner of a region is even more problematic when discretization occurs. This phenomenon
is illustrated in the second example, in which a circle is approximated by a set of pixels on
a discrete lattice. Even ignoring all other sources of noise, the jagged edges from the pixel
corners cause the skeleton to change shape beyond recognition from the simple point of the
continuous circle. Notice that this phenomenon is due solely to the jagged corners; it occurs
even when the skeleton itself is represented in the continuous domain.

To add to the problems already mentioned, it is not obvious how to translate the
continuous definition of skeleton to the case in which the skeleton is represented discretely.
In fact no definition has been found that works well in all cases, and instead we must settle
for a reasonable approximation. That is, we seek a set of pixels (the discretized skeleton)
that roughly corresponds (in some sense) to the true skeleton of a continuous shape obtained
by interpolating the boundary points. As a result of this imprecision, there are two types of
skeletonization algorithms. C-type (for “corner”) algorithms seek to preserve the skeleton
segments that touch the corners of the region, whereas S-type (for “smooth”) algorithms
seek to ignore the corners of the region and instead preserve only its overall shape. In the
subsections that follow, we consider several approaches to skeletonization that fall into
these two categories, all of which aim to compute a skeleton that is connected, maximally
thin, and minimally eroded.

4.5.1 Skeletonization by Thinning

A common approach to skeletonization is to repeatedly thin the image until the result converges.
We saw one version of this approach already, namely morphological thinning.” An ordered set
of structuring elements (SEs) is applied repeatedly to the image until convergence, and the
final result yields an approximation to the skeleton. At its core, each iteration of thinning
identifies pixels that can be removed (that is, set to oFf) from the image without affecting the
connectivity of the foreground regions, and while having minimal impact on their shape.

Figure 4.43 Six different continuous shapes (blue) and their skeletons (thin red lines).

) @& X

" Section 4.1.7 (p. 148).

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

196 Chapter 4 - Binary Image Processing

Figure 4.44 The definition of the skeleton of a region is very sensitive to noise in the input. LerT:

Even a single pixel can drastically affect the skeleton, such as this small protrusion that causes an >>\/>\/<<<
entirely new branch to be added. RichT: Because a skeleton is required to touch each corner, the “true” N
skeleton of a discretized circle looks nothing like that of the continuous circle that it approximates.

By changing the test that identifies the pixels to remove, as well as changing the order
in which to remove them, alternate skeletonization-by-thinning algorithms are obtained.
Two such algorithms are described in the next two subsections, but first we must lay the
groundwork by attempting to understand under what circumstances it is advisable to remove
a pixel based on the values of its 8-neighbors. To do this, let us consider some fundamental
characteristics of 3 X 3 binary patterns.

There are 28 = 256 possible 3 X 3 binary patterns with an on pixel in the center, since
there are 8 pixels around the center, and each pixel can take one of two values. Let o rep-
resent the number of on pixels in this outer ring of 8 pixels. The number of 3 X 3 binary
patterns with a particular value of o is given by “8 choose o, represented mathematically
as (%) = ﬁ’ where n! = n-(n — 1)-(n — 2) - - - 1 is the factorial operator for any
positive integer n, and 0! = 1. Substituting, we see that for ¢ = 0 there is just one pattern
because (?,) = 1; for 0 = 1 there are (if) = 8 patterns; for ¢ = 2 there are (3) = 28 pat-
terns; for o = 3 there are (2) = 56 patterns; for o = 4 there are (i) = 70 patterns; and so
on. It is easy to verify that 1 + 8 + 28 + 56 + 70 + 56 + 28 + 8 + 1 = 256.7 If we
discard patterns that are identical except for a rotation and/or reflection, we are left with
just 50 unique patterns, shown in Figure 4.45.

Let us define the connection number, represented as i, as the number of regions that
are 8-connected to the central pixel (minus 1 if there is a 4-connected cross in the center).
In other words, the connection number is the number of 8-connected foreground (oN) regions
inthe 3 X 3 pattern that would remain if the central pixel were set to oFr, minus the number
of holes that would be created.* It turns out that iy can be computed as the number of 0-1
(oFF-oN) transitions around the 4-neighbors of the central pixel, plus the number of isolated
foreground pixels in the corners:

= +
v o4 Po10.c (4.175)
0— 1 transitions isolated corners

If the pixels in a 3 X 3 neighborhood around a central pixel p, are labeled as follows:

pPs P11 P2
P17 Po D3
6 P5 D4

then these quantities are computed as
Yo14= (p1-p3) + (p3-ps) + (ps-p7) + (p7-p1) (4.176)
Yoi0. = (p1°p2p3) + (p3-pa-ps) + (ps-pe-p7) + (p7-ps p1) (4.177)

where the overbar means binary complement. In this equation, p;-p; = 1iff p; = 0 (oFF) and
p;j = 1 (on), otherwise 0; and p; p;-p, = 1iff p; = 0 (oFF), p; = 1 (on), and p; = O (oFF).

- n
" As an aside, this analysis generalizes to an elegant, non-obvious formula: 2" = E (> for any integer n = 0.
: i
i=0
* Another term that is often used is the crossing number, represented by y, which is defined as twice the con-
nection number, that is, y = 2.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

4.5 Skeletonization

197

y=0 =0 |g=1" =1 =1 =1
=1 =1 Y=1% p=2 =2 ¢y=2
=1 =1 =2 P=2 = =1 =1 | ¢=2 ¢=2

:mmmﬁm A

=1 =10 =10 b=0 | =
Eﬁﬂmﬂ =
p=2 y=2 = =3 v =0

EEENETT

p=2 ¢§=2 =

w=2

EWEEEEE

bp=2 $=2 ¢=2

Figure 4.45 The 50 unique 3 X 3 binary patterns with on in the center, along with their o value (number of ons in the 8-neighbors)
and ¢ value (connection number). The remaining 206 patterns are obtained by rotating and/or reflecting these patterns, which does
not affect either o or .. For all patterns with s # 0, the connection number is the number of 8-connected foreground regions that
result if the central pixel is set to ofr. For patterns with o # 0 and 4 = 0, setting the central pixel to off creates a hole. The purple
boxes enclose the patterns whose central pixel is removed by the sigma-psi algorithm, while the green and brown asterisks indicate
the patterns whose central pixel is removed by morphological thinning and Zhang-Suen, respectively. The former algorithm is more
aggressive in removing pixels than the other two.

The values of o and ¢ provide valuable information about the role of the central pixel.
Examining the 50 unique 3 X 3 patterns, it is evident that a pixel with 4 > 1 connects
multiple regions, that is, ¢ is either the number of 8-connected regions that would result if
the central pixel were set to off (if 3 # 0 and ¢ # 0), or the number of holes created (if
¢ = 0). More specifically, a pixel with o = ¢y = 2 is in the middle of a line segment, a
pixel with ¢ = ¢ = 3 is at a T-junction, a pixel with o = ¢y = 4 is at an X-crossing, and
a pixel with o = 1 is at the end of a line segment. In all these cases, the pixel cannot be
removed without disconnecting multiple regions, thus destroying the property that the thin-
ning algorithm retains the connectivity of the original region. By inspection, a more general
statement can be made: removing (that is, setting to off) the central pixel whenever ¢y = 1
retains connectivity of the regions. However, removing the pixel when o = 1 erodes the
region more than is necessary, thus violating our requirement of minimal erosion.

4.5.2 Sigma-Psi Algorithm

This analysis leads naturally to the sigma-psi (o-1) algorithm, which iterates through
an image, examining pixels and deleting those for which o # 1 and ¢y = 1. The process
continues until convergence. Figure 4.46 shows the result of this algorithm on the same

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

198 Chapter 4 - Binary Image Processing

3172727
HN7ZEN
e
4
7007072027,

[TTTTT
Binary image After first pass After second pass Final result

Figure 4.46 Skeletonization using the oy algorithm. Each pixel is examined in turn, and if & # 1and s = 1, then itis deleted. In the
first pass, all the pixels along the border of the region are deleted. In the second pass, a number of additional pixels are deleted, with the
particular pixels chosen being dependent upon the order in which they are examined. The final result is indeed a thinned version of the
input. This is an S-type algorithm, because the segments touching the corners are not preserved.

binary image as that of Figure 4.15. In this case the pixels were processed in order from
top-to-bottom and from left-to-right. The result of this decision is that the skeleton tends to
be shifted down in the image, because the pixels are removed in the order in which they are
encountered. At first glance, it might appear that a solution to this problem of downward
shifting would be to remove pixels in one-pixel-thick increments by simply flagging the
pixels for deletion if they pass the o # 1, ¢ = 1 test, deleting them all at once after the
entire image has been examined, and then repeating this process until convergence. Unfor-
tunately, sigma-psi is too aggressive in the way that it flags pixels for deletion to adopt this
approach. That is, if pixels are not deleted as they are encountered, the algorithm may lead to
a disconnected skeleton. In the figure, for example, the pixel at location (7, 4), which is the
third colored pixel from the right on the bottom row of the penultimate graphic, has o = 4
and ¢y = 1 and therefore would be flagged for deletion at the same time its neighbors are
flagged. This conclusion is similar to our earlier statement that morphological thinning must
process the corner SEs as a sequence rather than as a set to avoid disconnecting regions.

From the figure, it is clear that the sigma-psi algorithm is S-type, since it does not pro-
duce a skeleton that reaches to the corners of the regions. In contrast, the morphological
thinning algorithm that we encountered previously is C-type, as can be seen by recalling the
output in Figure 4.15, which does reach to the corners. Which type of skeleton is preferred
depends upon the application.

4.5.3 Zhang-Suen Algorithm

A closely-related skeletonization-by-thinning method is the Zhang-Suen algorithm.
Zhang-Suen repeatedly applies two subiterations to the image. In the first subiteration,
pixels are flagged for removal if they meet the following 4 tests:

a)2<0<=6 (4.178)
b) o5 =1 (4.179)
c)p1-p3ps=0 (4.180)
d)ps psp;=0 (4.181)

where iy, ¢ is the number of 0-1 (oFr-on) transitions along the 8-neighbors of py, that is,

Yors = (P1p2) + (P2 p3) +(p3-pa) +(pa-ps) +(ps-ps) +(ps-p7)+(p7-ps) +(ps-p1) (4.182)

Once the entire image has been examined, the pixels that have been flagged are removed. In
the second subiteration, pixels are flagged for removal if they meet four tests, the first two
of which are identical to those above, while the latter two are slightly changed:

c)pi-pspr=0 (4.183)
d')pi-ps-p;=0 (4.184)

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

4.5 Skeletonization

199

As before, after the entire image has been examined, the pixels that have been flagged are
removed. These two subiterations are repeated until convergence. Note that the two tests in
Equations (4.180)—(4.181) , and the two tests in Equations (4.183)—(4.184) , are equivalent
to the following two expressions, respectively:

c.d) p3 or ps or (p;-p;) (4.185)
¢',d’) pjor p;or (p3-ps) (4.186)

That is, the first subiteration deletes points on the east or south boundaries, or on the north-
west corner, while the second subiteration deletes points on the north or west boundaries,
or on the southeast corner. The result of Zhang-Suen on the same binary image is shown in
Figure 4.47, where the similarity with sigma-psi is obvious.

4.5.4 NF2 Algorithm

An alternative to using thinning to perform skeletonization is to use the distance transform
of the complement of the image, which yields the distance from each foreground pixel to the
nearest background pixel. Peaks and ridges of the resulting distance function then indicate
the points on the skeleton. However, since there is no simple way to detect the ridges of a
2D function, algorithms based on such an approach tend to work poorly in practice, yielding
instead disconnected skeletons or noisy results.

One of the more robust and effective techniques that is based on the distance function is
known as NF2. This algorithm was developed in the robotics community for path planning
and is therefore not widely known in the image processing community. The algorithm,
presented in Algorithm 4.21, follows the wave front analogy, creating a frontier of pixels
along the boundary of the region and allowing them to propagate inward at a constant rate.
As the wave fronts propagate, the algorithm keeps track of, for each pixel on the frontier,
the closest boundary pixel b(-) as well as the distance d(-) to that boundary pixel. When
two wave fronts meet, the overlapping pixel is added to the skeleton S if their correspond-
ing boundary pixels are at least a small distance apart. This distance threshold, represented
as 7 in the code, is typically set to a number between 2 and 6, depending on the expected
noise level in the image. For simplicity, the pseudocode shows the version of the algorithm
using the Manhattan distance, but other distance measures could be used if more accurate
results are desired. Note that NF2 computes the distance transform on the fly rather than
as a preprocessing step.

An example illustrating several steps of the execution of NF2 is shown in Figure 4.48.
Initially, all pixels inside the region are set to a distance of infinity to their nearest boundary
pixel, and all pixels on the boundary are set to a distance of 0. Then the frontier is created and
allowed to propagate inward by a distance of 1 each iteration, thus computing the distance
of each neighboring pixel, as well as determining when two wave fronts collide. Notice that
NF2 tends to produce a fairly thin connected discrete skeleton. Another advantage to NF2 is
its computational efficiency, because it does not require multiple passes through the image
like the skeletonization-by-thinning algorithms do.

Figure 4.47

The Zhang-Suen
algorithm applied
to a binary image.

[l
]
Z

Z
GUYLLYLL YD

Binary image After first After second After third Final result

subiteration subiteration subiteration

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

200 Chapter 4 - Binary Image Processing

ALGORITHM 4.21 NF2 algorithm for skeletonization (using Manhattan distance)
SKELETONBYNF2(/)

Input: binary image / containing a single region R of oN pixels
Output: set S of pixels comprising skeleton of region

Initialization

1 for each pixel p € R do For each pixel in region, initialize

2 d(p) < = its distance to nearest background pixel to infinity.

3 for each pixel p &€ R do For each pixel in background,

4 if there exists ¢ € N (p) s.t. ¢ € R then if it is a boundary pixel, then

5 d(p) <0 set its distance to nearest background pixel to zero,

6 b(p) < p setits nearest background pixel to itself,

7 next-frontier. PUSH(p) and push the pixel onto the zeroth frontier.

Main loop

8 0«0 Set distance to zero.

9 repeat
10 frontier <— next-frontier Copy the frontier generated in previous iteration.
11 for each p € frontier do For each pixel in the frontier,
12 for each g € N (p) s.t. ¢ € Rdo if it has a neighbor inside the region
13 if d(q) = o then that has not yet been visited, then
14 d(g) <8+ 1 set the neighbor’s distance to one more than itself,
15 b(q) < b(p) set its nearest background pixel to be the same,
16 next-frontier.PUSH(q) and push the neighbor onto the next frontier.
17 elseif Dist(b(q), b(p)) > 7 then Otherwise, if background pixels are far
18 if p & S then enough apart, then the wave fronts meet; store only one
19 S.PUsH(q) of the pixels to avoid generating double-thick skeleton.
20 S« 1 Increment the distance for the next iteration.
21 until frontier. Size =0 Repeat until frontier is empty.

Figure 4.48 Skeletonization using NF2. A binary input image, and the intermediate result using 7 = 2 after Lines 2, 7, and 19, respectively,
for 8 = 0, followed by the intermediate results after Line 19 with § = 1, 2, 3. Green indicates pixels on the skeleton as the algorithm
proceeds, while blue is used in the final graphic to depict the skeleton.

0/0]0 0[0]0 0[0]0 0[0]0
== [=] [=[=]= o [=[=[=] 0 [F[=[=]0 0 [T o [Tl o
o | ||| o|w|o 0l |e @]e]e|e]|0]0[0 oltl=l=Tl=[=[1]0]0]0
|00 [| o0 oo | o0 |oofw|w]|w 0 o]0 [o0 [o |00 0|00 |oe ||| O O[T e[| [|1 [T 0
oo EEEEEEE M= === EEEEEED = == EEEEER
o |0 [0 | 0| 00 [0 [o0 | e [0 | 0[] | [|| =]|]|=]0 ol [a[attl1lo
0]0]0]0]0{0]0]0]01]0 ojofofofojojofofo
Binary image After line 2 After line 7 After line 19 (6 = 0)
01010 0[0[0 0[0]0 0]10/0
0 1(1{0f1|1 0 0 1|01 0
01 |2f2]1]2]2{1(0[0]0 0J11212]1f2)2]1]0]0]0
Of1[2[e]2]of=f2[1]1 0 01112]13]2[3[3]|2]1]1 0
0f1(22]2(2(2(2(2]2 0 0]112)2]2]2]2)2]2]2|1]0
O[T T fTf1fIfafIf1]1 0 O[T |11 f1f1f1j1)1]1 0
ofofojojojofofofolo 0j0jojofofojojo]o
After line 19 (6 = 1) After line 19 (8 =2) Final result

4.6 Boundary Representations 201

A comparison of the various skeletonization algorithms on two different binary images
is shown in Figure 4.49. Here it is obvious that NF2, like morphological thinning, is C-type,
whereas the others are S-type. C-type algorithms produce actual skeletons when the corners
in the region are meaningful, but they produce noisier outputs when discretization effects
obscure the true shape of the underlying continuous region. The thinning algorithms are
all similar in their approach, but they differ both in the test used to determine whether to
delete pixels, as well as the order in which the pixels are processed and deleted. By exami-
nation it is easy to verify that morphological thinning identifies a subset of the patterns
detected by the sigma-psi algorithm for deletion, since 4 = 1 and o # 1 for all of the
SEs in Figure 4.14. Similarly, Zhang-Suen is more conservative than sigma-psi, because
several patterns that satisfy o, 4 = 1 have ip; g # 1. These relationships are highlighted in
Figure 4.45, where it is seen that only a subset of the pixels flagged for removal by sigma-
psi are flagged for removal by either morphological thinning or Zhang-Suen. In general, it
should be kept in mind that skeletonization is a delicate process, and the output can vary
widely depending upon the details of the implementation, as well as upon any postprocess-
ing used to clean up the result.

4.6 Boundary Representations

Earlier in the chapter” we discussed a variety of properties that can be computed of a binary
region for the purpose of distinguishing the shape of the region from other shapes. In this
section we continue that discussion, but here we focus on ways to represent the boundary
of such a region. Since the interior of a region and its boundary are complementary, the
representations discussed here can be thought of as a way to enrich those provided by the
region properties considered earlier.

4.6.1 Chain Code

Given a binary region, the first step is to apply a boundary tracing algorithm (such as the
one discussed earlier?) to yield a sequence of pixels around the perimeter of the region.

Figure 4.49
Comparison of the
various skeletonization
algorithms on two
different binary
images.

Input image Morphological Sigma-psi Zhang-Suen NF2

" Section 4.4 (p. 174).
*Section 4.2.4 (p. 161).

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

202

Chapter 4 - Binary Image Processing

Treating each pair of consecutive pixels as vertices of a line segment, the sequence yields
the simplest possible boundary representation, namely a polygon, which can represent the
boundary with any arbitrary degree of precision by introducing or removing vertices with
real-valued coordinates (perhaps interpolated between pixels). Nevertheless, the drawback
of such a polygon representation is that it stores the absolute coordinates of the pixels, thus
tying the representation to the actual location of the region in the image.

For distinguishing the shape of the boundary, generally we want to transform the
sequence into a representation that is invariant to translation, rotation, and/or scale changes,
as well as to the starting pixel. Perhaps the simplest, and certainly one of the oldest, tech-
niques for doing so is the chain code. The most famous chain code is the Freeman chain
code, which we saw in Figure 4.27. In a chain code, only the first point’s absolute coor-
dinates are stored, while all other points are represented by their position relative to the
previous point in the chain. Thus, if the first point’s coordinates are ignored, then the chain
code provides a representation that is translation invariant. Figure 4.50 shows an example
of a binary region and its 4-connected boundary, which is given by the following sequence
of pixel coordinates: (1,1), (2,1), (3,1), (4, 1), (4,2), (5,2), ..., (1,2). Using the 4 cardinal
directions of the compass (east, north, west, and south), the second pixel is east of the first
pixel, the 5th pixel is south of the 4th pixel, and so on, leading to the representation E-E-E-
S-E-E-S-E-W-S-W-W-S-W-W-N-W-N-N-N. By assigning the numerical values of 0, 1, 2,
and 3 to these directions according to Figure 4.27, the Freeman chain code representation
of this region is given by 00030030232232212111. Similarly, the 8-connected boundary
is the sequence (1,1), (2,1), (3,1), (4,1), (5,2), ..., (1,2), which is represented by E-E-E-
SE-E-SE-SW-W-SW-W-W-NW-N-N-N, or more compactly as 000707545443222. (Note
that although 0 means east in both representations, the other numbers differ in their mean-
ing between 4- and 8-connectedness.) Like other representations, the chain code converts
the 2D representation of pixel coordinates into a 1D representation, thus simplifying the
description for matching.

To make the representation rotation-invariant, the relative positions of consecutive pix-
els can be encoded as the number of left- and right-hand turns. This representation can be
thought of as a derivative of the chain code, and it can be generated easily as a by-product
of the wall-following algorithm. For example, in a 4-connected boundary it is possible to
drive forward (F), turn right (R), turn left (L), or make a U-turn (U). The derivative of the
4-connected chain code above is therefore given by F-F-F-R-L-F-R-L-U-L-R-F-L-R-F-R-
L-R-F-F, or 00031031213013031300. Similarly, the derivative of the 8-connected chain
code is F—F—F—R45—L45—R45—Rgo—R45—L45-R45-F—R45—R45—F—F, or 000717671707700, where
the subscripts indicate the rotation angle in degrees.

4.6.2 Minimum-Perimeter Polygon

Another early approach to boundary representation is the minimum-perimeter polygon
(MPP). From the original discretized region, let us create a continuous boundary using
some method (which could be as simple as connecting the centers of the boundary pixels

Figure 4.50 Simple binary
region (left), with its
4-connected boundary
(middle) and 8-connected
boundary (right).

1
==
11 I !
1 1
Binary region 4-connected 8-connected
boundary boundary

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

4.6 Boundary Representations

Figure 4.51

Continuous boundary
(left), boundary overlaid
on a discrete grid
(middle-left), minimum-
perimeter polygon
(MPP) (middle-right),
and MPP displayed
without the grid (right).

203
| |
y e
[— \\\I:_
) |
L 7/
SEANA =Y HE SR
| |
Continuous Continuous boundary Minimum-perimeter Minimum-perimeter
boundary on discrete grid polygon (MPP) polygon (MPP)

on discrete grid

4.6.3 Signature

to form a polygon). Then let us overlay a grid on the continuous boundary and mark the
cells through which the boundary passes, where the grid resolution may or may not be
the same as the original image resolution. If we imagine a rubber band that circumscribes
the boundary but is required to remain inside the marked cells, the MPP is defined as the
shape taken by the rubber band as it automatically stretches and compresses to minimize
its internal energy.

From the example in Figure 4.51, it is easy to see that the rubber band will take the shape
of a polygon whose vertices are one of two kinds: each vertex is either a convex corner of
the 4-connected interior or the point opposite a concave corner of the 4-connected interior.
In the figure the interior is white, and the convex corners are illustrated with white circles,
while the vertices opposite the concave corners are illustrated with dark circles. It is easy
to demonstrate that every convex vertex of the polygon is indeed a convex corner of the
interior region, but the converse is not true. Similarly, every concave vertex of the polygon
is a point opposite a concave corner of the interior, but the converse is not true. The actual
algorithm for computing the MPP of a shape at a particular resolution is left as an exercise
for the reader.

A common approach to representing the boundary of a region is via some type of sighature.
For all signature representations, the region is typically first rotated using the principal axis
to ensure that the representation is independent of the starting pixel. Then the left-right
ambiguity is resolved by projecting the region onto the principal axis and computing some
property of the projection function, such as the side with the most mass.

The most basic type of signature is known as the centroidal profile, or -6 curve. This
approach captures the distance r from the center of the region as a function of the angle 0, as
illustrated in Figure 4.52. Two drawbacks are obvious with this representation, illustrated in
Figure 4.53. First, shapes with concavities might result in multivalued functions. Although

Figure 4.52 The centroidal
profile (r-6 plot) of several
shapes.

0 0 0

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

204 Chapter 4 - Binary Image Processing

0

Figure 4.53 One drawback to the centroidal profile is the possibility of multiple values for a given angle (left). Another drawback is that
uniform sampling of the angles does not necessarily lead to uniform sampling along the boundary, particularly for a region with a large
aspect ratio (middle, right).

we could simply record the minimum value, this solution results in a loss of information,
making it impossible to recover the original shape from the function. Secondly, for regions
with a large aspect ratio, uniform sampling of the angle does not lead to uniform sampling
of the region boundary, causing some parts of the boundary to be represented in greater
detail than other parts.

To ensure uniform sampling of the shape around the boundary, the distance r from the
center can be plotted as a function of the arclength s as the boundary is traversed. This is
known as the radial representation, or r-s curve. The resulting curve is guaranteed to be
single-valued (i.e., a true function), but this representation introduces an ambiguity when-
ever the tangent passes through the centroid. To resolve the ambiguity, it is necessary to
store an extra bit to capture whether the boundary turns back on itself.

An alternative representation is to store the angle iy between a fixed reference line
(e.g., the positive x-axis) and the tangent to the boundary at the point at arclength s. This
is known as the tangential representation, or i)-s curve. This curve can be thought of
as a continuous version of the chain code representation. Horizontal lines in the -5 curve
correspond to straight lines on the boundary, since the tangent angle ¢ is not changing. If
the i-s curve is monotonically increasing, then the shape is convex.

4.6.4 Fourier Descriptor

None of the boundary representations mentioned above explicitly attempts to be robust
when there is noise in the input. One important type of noise is occlusion, which causes
missing features in the boundary. Another type of noise is the high-frequency noise due to
sampling resolution that can interfere with the overall shape in which we are interested. We
will revisit this issue later when we consider ways to fit polylines to curves, but for now
we mention that the Fourier transform is naturally suited to provide a multiscale representa-
tion in which low-frequency components capture the overall shape, while high-frequency
components respond to data that may not be of interest. By retaining only a few of the
components, a faithful approximation to the boundary with a much more compact repre-
sentation can often be obtained.

In this approach, the sequence of pixel coordinates is treated as a vector-valued function
of the arclength s. With a closed boundary, this is a periodic function, which is then expanded
as a Fourier series (although in practice the discrete Fourier transform is always used*). The
Fourier series coefficients provide increasingly detailed representations of the boundary and
therefore, depending upon the complexity of the boundary, it may often be faithfully

" Section 7.3 (p. 341).
* For more details on the discrete Fourier transform, see Chapter 6 (p. 272).

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

4.6 Boundary Representations

4.6.5 B-Spline

205

represented with just a few of the coefficients. With proper parameterization, it is also pos-
sible to ensure that the Fourier coefficients are translation-, rotation-, and scale-invariant.

B-splines (“basis splines”) were briefly mentioned in the previous chapter.” The term spline
comes from building construction, where it refers to a thin, flexible strip of wood or metal;
draftsmen later used splines for drawing curved lines, which led to its adoption as the name
of a specific mathematical description of curved lines. In this section we cover the simplest
type of B-spline, the uniform cubic B-spline, paying particular attention to some of the
standard procedures for fitting and using this representation.

We should mention that B-splines are closely related to other popular types of curve
representations. Hermite splines,* for example, are used to interpolate data when the first
derivatives are available. Bézier curves are useful for modeling curves where intuitive
user control of the curve is needed. Bézier curves are useful for short curves with small
number of control points, whereas B-splines are appropriate for long continuous curves.
NURBS (non-uniform rational B-splines) are a generalization of both B-splines and
Bézier curves that are popular in the graphics community because of their ability
to handle both analytical shapes (conic sections) and freeform shapes in a
consistent manner.

Computing a Point Along the Spline

A uniform cubic B-spline is represented as a sequence of control points q;,
i=0,...,n+ 1 in the plane. Let us collect these points in a matrix Q of size
(n 4+ 2) X 2, where the i row of Q contains the i control point q,. The spline is param-
eterized by a real parameter s, which varies from 1 to n, thatis, | = s = n. A point on the
spline is represented as x(s) = (x(s), y(s)). Computing x(s) is fairly straightforward.
First define the matrix M which contains the coefficients of the B-spline basis functions
necessary to maintain C> continuity (that is, continuity in the function itself, as well as in
its first and second derivatives):

-1 3 -3
1l 3 -6 3
M=%1-3 o 3

1 4 1

(4.187)

oS o O =

which we saw earlier in Equation (3.88). Next, let i be the largest integer that is no
greater than s, that is, i = |s], and let « = s — i be the fractional leftover value, so that
i=1, ...,n,and 0 = a < 1. Then,

x(s) = [x(s) y(s)] = vIMQ; (4.188)
where
qi—1
vi=[ada? al] and Q;= % (4.189)
qQi+1
qi+2

" Section 3.8.4 (p. 115).
#Section 3.8.3 (p. 110).

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

206

Chapter 4 - Binary Image Processing

Note that s = i = 1 at the beginning of the spline, while s = i = n at the end of the spline;
in both cases o = 0, so that

x(1) = —(qo + 4q, + q3) (4.190)

AN |— =

X(n) = (qnfl + 4qn + qn+1) (4191)

Computing the Slope of a Spline

To compute the slope of the tangent of the spline at a point, simply take partial derivatives:

Ox(s)

T = V,TMX,-
o)
pls) _ v' My, (4.192)
Os
where
vT=[3 2a 1 0] (4.193)

is the derivative of v with respect to «.. The slope is then given by

dy(s) oy(s) as v'My,

= 4.194
Ox(s) ds 0x(s) v TMx; ()
Constructing the Spline
Suppose we wish to interpolate a sequence of data points X;, X,, ..., X, in the plane with
a B-spline curve, where x; = (x;, ;) is the i'" data point. Interpolation implies that we
setx(i) = x; fori = 1, ..., n. Notice that, in the case of s being an integer, « = 0, and
therefore Equation (4.188) simplifies to the following:
1 di—1
x(s) =g[l 4 1] q; (4.195)
qi+1
Collecting all the data points together yields
X 1 4 1 0 0 0 q
110 1 4 1 0 0
2= : 4 (4.196)
. 6 :
X,, 0 0O 0 1 4 1|19+

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

4.7 Further Reading

207
If the spline represents a closed curve, then the constraints simply wrap around:
(4 1 0 0 0 - 1]
X 1 4 1 0 0 01| aq
1fjo 1 4 1 0 --- 0
o2 : € (4.197)
: 6 : f
X, O --- 0 0 1 4 1]|q,
1 -0 0 0 1 4]

and we set qo = q,, and q,;, = q, to maintain C> continuity. On the other hand, if the
spline represents an open curve, then additional equations are needed to make the system
invertible. One possible approach is to add two artificial data points:

Xy = 2X1 - X (4.198)

X,+1 = 2X, — X,_| (4.199)

which are chosen to linearly extend the curve at both ends. We also add two new con-
trol points, q—; and q,, +,, which disappear from the equations by setting q_; = q, and

Uu+2 = (,+1- The result is

5 1 0O 0 O 0
1 4 1 0 O 0
X0 0 1 4 1 0 ol %
x| _1 q
% 0O O 1 4 1 0) (4.200)
Xn+1 0 0 1 4 1 qQn+1
L 0 0O 0 O 1 5]
Thus, given Xy, ..., X, either Equation (4.197) or Equation (4.200) can be solved for
Qo> - -5 Qn+1-
4.7 Further Reading

Mathematical morphology and morphological processing
techniques trace their roots to work done at the Centre de
Morphologie Mathématique in the Ecole des Mines de
Paris in Fontainebleau, France beginning in 1964. The
pioneers in this field were Matheron and Serra, the latter
of whom heads the Center for Mathematical Morphol-
ogy to this day. The classic text in the field is that of
Serra [1982], but it is a heavy mathematical read. For
a more practical treatment, the work of Soille [2003] is
recommended. Another well-known early paper in this

field is that of Haralick et al. [1987]. For recent work
on morphological processing (extended to 4D spatio-
temporal volumes) see the paper by Luengo-Oroz et al.
[2012]. Minkowski addition is due to Minkowski [1901],
but Minkowski subtraction was introduced a half-century
later not by Minkowski himself but by Hadwiger [1950].
Apparently, the original version of Minkowski subtrac-
tion included a reflection: X© B = (,<pX_,, but the
general consensus for at least the past several decades
has been to define it in the manner done in this chapter.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

208

The classic connected components algorithm, with
an extra step to resolve the labels between the first and
second pass through the image, is due to Rosenfeld and
Pfaltz [1966]. The union-find algorithm, described by
Tarjan [1975], was first incorporated into the classic
connected components algorithm by Dillencourt et al.
[1992]. Nowadays when people refer to the “classic
connected components algorithm” they typically are
referring to this more recent version that takes advan-
tage of union-find. For a recent paper on connected
components and computing region attributes simul-
taneously, consult the paper by Gabbur et al. [2010].
There are numerous papers on connected components,
such as that of Chang et al. [2004], which show how to
compute connected components while simultaneously
computing region contours (wall following). The wall-
following algorithm, also known as boundary tracing,
contour tracing, the Moore neighborhood algorithm,
or the Moore-neighbor tracing algorithm, is due to
Moore [1968].

The Manhattan chamfer distance algorithm was
originally described by Rosenfeld and Pfaltz [1966] in
the same paper that introduced the classic connected
components algorithm. Other early work on distance
functions can be found in the papers of Rosenfeld
and Pfaltz [1968] and Montanari [1968], where the
Montanari condition is first described. The classic
work on distance transforms and chamfer metrics that
approximate Euclidean distance is the well-known
paper of Borgefors [1986]. The exact Euclidean dis-
tance algorithm presented here is from Felzenszwalb
and Huttenlocher [2004]; alternative approaches can be
found in papers by Breu et al. [1995] and Maurer et al.
[2003]. The Kimura distance function is from Kimura
et al. [1999].

Moments can be found in any image processing
book, such as Gonzalez and Woods [2008] or Jain
[1989]. Hu moments were introduced by Hu [1962],
while Legendre and Zernike moments were introduced
by Teague [1980]. An overview of different types of
moments, including geometric, Legendre, Zernike,
pseudo-Zernike, rotational, and complex moments can

Chapter 4 - Binary Image Processing

be found in the work of Teh and Chin [1988], along with
an experimental analysis that shows the superiority of
Zernike and pseudo-Zernike moments for image recon-
struction. An example of an application using Zernike
moments is that of Boland et al. [1998]. The formula
for computing area can be found in Ballard and Brown
[1982]. Some of the equations for the best-fitting ellipse
are in Shapiro and Stockman [2001]. The equation for
eccentricity, which is standard in the mathematical
community, is almost entirely absent from the image
processing literature, with one notable exception being
the text by Burger and Burge [2008]; the alternate for-
mula for eccentricity in Equation (4.161) is found in the
books by [Ballard and Brown 1982, p. 255] and [Jain
1989, p. 392]. The approach of computing the convex
hull by dilating with half planes of various orientations
is described by Soille [2003].

The bit quad algorithm for computing the Euler
number is due to Gray [1971]. Perhaps the most suc-
cessful use of the Euler number to date has been for
automatic thresholding, as described by Rosin [1998]
and Snidaro and Foresti [2003]. Some researchers have
found Euler number to be one of the most clinically
useful parameters for discriminating cervical abnor-
malities, see Pogue et al. [2000], and it has been used
to a limited extent in document image processing, see
Srihari [1986]. Morphological thinning as presented
here uses the SEs found in Sonka et al. [2008]. The
sigma-psi algorithm is described by Davies [2005] using
the crossing number y = 2i instead of the connection
number . The Zhang-Suen skeleton algorithm is from
Zhang and Suen [1984], whereas NF2 is described in
Barraquand and Latombe [1991]. Blum’s medial axis
is from Blum [1967]. For a more recent application of
skeletons, see the work on the shock graphs such as
Giblin and Kimia [2003].

The Freeman chain code is from Freeman [1961]. The
minimum-perimeter polygon (MPP) is first described by
Sklansky et al. [1972]. The name B-spline was introduced
in Schoenberg [1971], and there are many good resources
on B-splines, such as the works of Bartels et al. [1987]
and Mortenson [1997].

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

PROBLEMS

4.1 Define mathematical morphology.

4.2 Write the set representation of the binary image A, and the array representation of the

binary image 5.
1 1 1 0
01 0 O

a=|70T ol B 2, (02), 22).(6,2),(1,3), 5,30
0 0 0 O

4.3 Apply the set operators of Figure 4.2 to the images .4 and B of the previous question,
usingb = (1, 1). Thatis, compute A U B, A N B, A,, B, VA, and A\B. Write the results
as arrays.

4.4 Compute Minkowski addition for sets .4, and B, as well as Minkowski subtraction for
sets A, and BB, shown below. Ignore the out-of-bounds pixels.
(a) Use the center-in approach.

(b) Repeat, using the center-out approach.

-2-101 2 -2-1012
) -2
-1 -1
0 0 X
1 1
2 2
y y
Ay B

4.5 What is the difference between erosion and Minkowski subtraction?

4.6 Compute the dilation of the image A below using both center-in and center-out
approaches. In both cases, do not reflect the structuring element 5. In which approach is
reflection necessary to ensure that the output exhibits the same orientation as the input?

A B

4.7 Prove Equation (4.15) from Equations (4.14), (4.28), and (4.29).

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

210 Problems

4.8 Recall the fruit image at the beginning of the chapter, which is reproduced below for
convenience. On the two thresholded results shown, identify the name that best describes
each of the labeled artifacts A—E: lake, bay, channel, cape, isthmus, or island. Which mor-
phological operator (opening or closing) should be applied to the image on the left to remove
noise? To the image on the right?

4.9 Thin the following binary image using the SEs shown in Figure 4.14 using the two
variations described in the text.

(a) Apply all 8 SEs as a sequence until convergence.

(b) Apply the 4 edge SEs as a set until convergence, then apply the 4 corner SEs until
convergence.

4.10 Determine the skeleton of the image shown in the previous question using
(a) the sigma-psi algorithm.
(b) the Zhang-Suen algorithm.

4.11 Implement the NF2 algorithm and run it on the image of the previous questions as
well as on a binary image of your choice.

4.12 Which of the labeled pixels below are 4-neighbors of the central pixel ¢? 8-neighbors?
diagonal neighbors?

(S

4.13 Implement the floodfill method of Algorithm 4.5 in your favorite programming lan-
guage. Test your code on the synthetic image of Figure 4.22, along with another image you
create. Now modify the code to use 8 neighbors.

4.14 Implement the connected components method of Algorithm 4.8. Test your code on
a synthetic image.

4.15 Compute the Euclidean, Manhattan, and chessboard distances from each pixel in a
5 X 5 image to the central pixel. What shape do the isocontours take in each case?

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

4.16 Implement the Manhattan chamfer distance algorithm of Algorithm 4.11. Find an
interesting binary image, then test your program on it.

4.17 Given the following binary image:

~

Il
S = O
- O O

(a) Compute the zeroth-, first-, and second-order regular moments.

(b) Compute the zeroth-, first-, and second-order central moments.

(c) Compute the covariance matrix, along with its eigenvalues and eigenvectors.
(d) Find the parameters of the best-fitting ellipse.

(e) Compute the eccentricity, orientation, and axis lengths of the best fitting ellipse.

4.18 Define the convex hull, then draw the convex hull for the following shape.

What is the Euler number of each of the following shapes? Verify your results using
the Poincaré formula of Equation (4.165)?

AASHE

4.20 Prove each of the following equations for sets A, BB, and C:

(@Aoe (BaC)=(AcB)eC

b AS (BacC) = (A46B)ocC

©A® (BUC) = (AeB)U (A®C)

dAe (BUC) = (AeB)N(AsC)

@A (BUC) = (A6B)N(ASC)

4.21 Show that each of following expressions is equivalent to the statement,

“A® B is the set of points {z} such that for each z there is some a in A and some b in B
whose sum is z.”

(@QA®B={z:z=a+b,ac A bec B}
b) A® B = Jpes A

) AOB= UaEABa
A®B={z:AN(B), + 0}

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

212

Problems

4.22 Show that each of the following expressions is equivalent to the statement, “A S 5
is the set of points {z} such that for each z and for all b € B, the point z — b is in A.”

(a) AoB={z:z—beE A YbeE B}
b) AeB={z:z—a& B, VvVa& A}
c) AcoB={z:z=a+b,Jac A VbeE B}
d AoeB={z:z=a+b,Vae& A Ib & B}
© AeB={pesA
® AeB= () B,
agZ A
(&9 AeB={z:B,c A}

4.23 In robotics and motion planning the Minkowski difference, usually denoted A © B,

is not related to Minkowski subtraction at all but rather is equivalent to a reflected dilation,
AdB. Explain why this operation computes the set of locations at which a 2D robot
A collides with object B assuming translation-only motion of the robot.

4.24 Demonstrate by a simple example that repeated applications of opening or closing
do nothing.

4.25 Structuring elements are not always 3 X 3 arrays of 1s. Annular opening involves
dilating an image by a donut-shaped structuring element (a ring of 1s with Os in the middle).
If A is an image of scattered tiny blobs, and 5 is an appropriately sized donut-shaped
structuring element, then (A @ B) M A removes all isolated regions in the image. Sketch
a simple example to demonstrate this.

The floodfill algorithm as presented in Algorithm 4.5 performs essentially a depth-

first search of the space due to its_use of a stack data structure. If a queue is used instead,
then the algorithm will perform a breadth-first search. If the algorithm is modified to look
not for identically colored pixels, but rather similarly colored pixels, then explain why a
breadth-first search would be preferable.

4.27 If memory is limited, a fixed-memory floodfill algorithm can be designed using a
variant of the wall-following algorithm. The boundary of the painted region is traced while
painting new pixels adjacent to the boundary, until no such pixels exist. Such an algorithm
is not used in practice because, although it is fairly efficient for nearly convex shapes, much
time is wasted determining the next pixel to paint when it is applied to complex shapes.
Nevertheless, write pseudocode for this algorithm.

4.28 Another alternative to the floodfill algorithm presented in this chapter processes scan-
lines rather than individual pixels. All the pixels reachable from the seed horizontally are
painted, then the scanline above is examined and the reachable pixels painted, and so forth.
When no more pixels can be painted, the process is repeated for the scanlines below the
seed pixel. Thus, instead of pushing individual pixels onto the stack, this algorithm pushes
the start (or end) coordinate of each disjointed set of horizontally connected pixels onto the
stack. Write pseudocode for this algorithm.

4.29 The classic connected components algorithm of Algorithm 4.8 can easily be modified
to calculate properties of the regions. Such quantities are updated during the algorithm by
inserting appropriate calculations to update these quantities each time an output pixel is

Problems

213

set, with minimal overhead. Write pseudocode to show how to calculate the area, moments,
minimum and maximum gray level, and bounding box. Also show how to calculate the Euler
number, i.e., to count the number of regions and holes.

4.30 Write pseudocode for other variations of the wall-following algorithm:

(a) counterclockwise interior boundary

(b) 8-connected interior boundary

(c) 4-connected exterior boundary

4.31 Manually apply the wall-following algorithm on the image of the letter “D” in
Figure 4.26.

(a) Use the 4-neighbor version of Algorithm 4.9. Verify that the output is an §-connected
boundary.

(b) Use the modified 8-neighbor version you developed in Problem 4.30b. Verify that the
output boundary is 4-connected.

4.32 Prove that the Manhattan distance always overestimates Euclidean, while the chess-
board distance always underestimates it: dg(p, q) = dg(p, q) = d4(p, q). Hint: Note that
for any two nonnegative numbers a, b = 0,

1 1
E(a—kb) 57\/512+b25max(a,b) =Va+b*=<a-+hb.

2

4.33 Prove that the chessboard distance is never more than 30% away from the
Euclidean distance, and the Manhattan distance is never more than 42% away:

0.7dg(p. q) < dg(p,q) = de(p,q) = d,(p,q) < 1.42dx(p,q).
2tan 6

4.34 Apply the double angle formula, tan 26 = =" 57, to Equation (4.132) to obtain
equivalent expressions for the orientation of a region (assuming p;; # 0):

anf — Mo2— Moo T \/(Mzo_Moz)2 + 4u) _ 2p1,

2pi M0~ Moz T \/(I-Lzo_,Uvoz)2 + 4ug,

4.35 Show that the curve ax’> + 2bxy + ¢y*> = 1is an ellipse if and only if ac > b>. Hint:
Solve the equation for y, then examine what happens when x goes to infinity.

4.36 Prove that the orientation defined in Equation (4.132) describes the line about which the
moment of inertia is minimized. (Hint: The moment of inertia of an object with mass density

function f(x, y) about a line with angle 6 is given by >, > (xsin 6 — ycos)% f(x,y).
To minimize, differentiate and set to zero.)

4.37 Prove that the orientation defined in Equation (4.132) is the angle of the eigenvector
corresponding to the largest eigenvalue of the covariance matrix. (Hint: Solve the system
of equations (C — AI)v = 0 for v, and v,. Then use the definition v; = [cos § sin§]"

V1121

and the double angle formula for tangent to recognize that tan 26 = ﬁ, where
vi=[ln ovalh)
4.38 Prove that the orientation defined in Equation (4.132) describes the line that mini-

mizes the sum of the squares of the perpendicular distances between the coordinates of the
pixels in the region and the line.

4.39 Given a perfect square rotated at some arbitrary angle, what does Equation (4.132)
yield for the orientation? Explain.

4.40 Design a vision system to detect a binary template in an image. Assume that the tem-
plate is at the same scale as the image, so that only translation needs to be taken into account.
Use the chamfer distance to efficiently compute a matching score associated with each
location in the image. Write code to implement this procedure, and display the probability
map showing the matching score for each location in the image (ignoring the borders).
Also display a template-sized rectangle around the peak in the map.

4.41 Identify several different types of small, readily available objects, and gather several
instances of each. Examples might be coins, buttons, pencils, keys, and so forth. Place the
objects on a single-colored table or floor, and take a picture that looks down on the scene.
Write code to threshold the image, clean up the noise, label the components, compute vari-
ous properties of the foreground regions, and automatically classify the regions according
to the appropriate category. Now rearrange the objects, take another picture, and run the
same code. Note your observations on whether the algorithm performed robustly on the
new image.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

CHAPTER 5
Spatial-Domain Filtering

n Chapter 3 we explored a variety of simple point transformations in which each output pixel is a function of a single

input pixel. An even more powerful class of transformations, known as spatial-domain filtering, occurs when each

output pixel is a function of the input pixel and its neighbors. The two most common uses of spatial-domain filter-
ing are noise removal and edge detection, which are accomplished using lowpass and highpass filters, respectively. In
this chapter we study both types of filters in the spatial domain, reserving frequency analysis of such filters to a later
chapter. Because of the importance of the Gaussian (bell-curve) function, we spent a great deal of effort describing the
creation, analysis, and use of Gaussian convolution kernels and their derivatives.

5.1 Convolution

The most common way to filter an image in the spatial domain is convolution. We begin
with the 1D case, then move to the 2D case, followed by a discussion about how convolution
relates to other types of filters and operators.

5.1.1 1D Convolution
Let us begin with a simple example. Suppose we are given the 1D signal

1 5 6 7]

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

216 Chapter 5 - Spatial-Domain Filtering

and want to compute the average of each sample and its two neighbors. One way to view
such a computation is to imagine another signal, called a kernel, consisting of three 1s that
is slid across the original signal:

156 7 - - 1567 - - 1567 - - 15671 -
111 111 111 111
\ 4 4 4
2 4 6 433

At each position, the values that are aligned vertically are multiplied by each other, then the
products are summed and divided by 3. The output is therefore

2 4 6 433

because (1 +5)/3 =2, (1 +5 + 6)/3 = 4, and so on. Notice that when the kernel is
near the beginning or end of the signal, the computation involves out-of-bounds pixels
whose values are unknown (indicated by the dots). Some assumption must be made about
these out-of-bounds samples in order to complete the computation. Any of the approaches
discussed earlier’ are applicable, but here we assume the values are 0 for simplicity.

The preceding example illustrates the important concept of convolution. More precisely,
the discrete convolution of a 1D signal f with a kernel g is defined as®

P = £ ©5(0) = 3 flx = Dali) 5.)

Wi =1

= X flx—10gi) (5.2)
where we use the prime (') to denote the output (so f’ should not be confused with the
derivative), w is the width (or, equivalently, the length) of the kernel, and the second equality
assumes that g(x) = O forall x < —worx = w — . The origin W of the kernel indicates
the location where the result is stored, which is usually defined to be the index nearest the
center. That is, w = |5 (w — 1), so that w = 0 if the width is 1 or 2, % = 1 if the width is
3 or 4, and so on. For example, if we use underscore to indicate the origin,

w=1 w=0 kerel: [1]

w=2 w=0 kerel: [l 1]

w=3 w=1 kernel: [1 1 1]
w=4 w=1 kernel: [1 1 1 1]

although we oftentimes omit the underscore when the central element of the kernel is the
origin,so [l 1 1] means [1 1 1] To ensure that the kernel has an unambiguous
center, kernels are almost always created with.an.odd number of elements, in which case,
W is referred to as the half-width (becauseiw = 2i + 1% so that{w =3 (w-— l)iwithout
any need for performing the floor operation), and the equation above simplities to

f1(x) =flx) @glx) = X flx = i)g(i) (5.3)

i=—w

" Section 4.1.3 (p. 138)
* Although convolution is often denoted by the symbol *, we use the notation ® to avoid confusion with multipli-
cation and complex conjugate.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

5.1 Convolution

217
Convolution is closely related to cross-correlation, which is defined as
0 w—w—1
Flom(x) = f(x)@g(x) = D f*(x+i)gli) = > f*(x+i)gli) (5.4)

where the superscript asterisk (*) indicates the complex conjugate. By comparing this
equation with Equation (5.1), we see that if the signal is real, so that f = f*, then the only
difference between the two operations is that convolution reflects (flips) the kernel, whereas
cross-correlation does not. Most of the kernels we will encounter are either symmetric,
g(k) = g(—k), in which case ' (x) = f2,..(x), or antisymmetric, g(k) = —g(—k), in
which case f'(x) = —f%,-(x). Therefore, it is usually okay to neglect to flip the kernel, as
long as we remember to flip the sign of the result when the kernel is antisymmetric. Similarly,
it is easy to see that convolution is always commutative, that is, f® g = g ® f, whereas
cross-correlation is commutative only when the signal is real and the kernel is symmetric.

A discrete signal is stored in memory as a 1D array of values with non-negative indices. To
handle this detail, the kernel is typically shifted by w, defining g[x] = g(x — W) as the 1D
array that holds the samples of the function g, where g[x] is valid forx = 0,1, ..., w — 1,
in which case convolution can be rewritten as

w—1
) =fx) @g(x) = X flx+w — il gli] (5.5)
i=0
For example, if g(+) is a three-element kernel defined for x € {—1, 0, 1}, the array g[-]
contains values fori € {0, 1, 2} such that g[0] = g(—1), g[1] = g(0),and g[2] = g(1).
Conveniently, note that w, which in this case is 1, is always the zero-based index of the
central element of the kernel.

With this additional detail in mind, the pseudocode for 1D convolution is shown in
Algorithm 5.1. As we saw in the preceding example, this code illustrates that convolution is a
shift-multiply-add operation: viewing the signal fas a 1D image, the kernel is shifted (or slid)
across the 1mage, and at each pixel the elements of the kernel are individually multiplied
(indicated by the asterisk) by the values in the image, followed by a summation of the resulting
products. Brackets are used inside the pseudocode to emphasize that g[x] is merely accessing an
element of the discrete array. While f* is actually defined for n + w — 1 values according to
Equation (5.5), where 7 is the length of the original signal, for simplicity we adopt the common
image processing practice of setting the size of the output to be the same as that of the input.
Also, near the two ends of the signal, the computation uses indices that exceed the size of f, as
mentioned earlier; such out-of-bounds details have been omitted to avoid cluttering the code.

ALGORITHM 5.1 Convolve a 1D signal/image with a 1D kernel

CoNVOLVEID(f, g)

Input:

1D signal f with length n, 1D kernel g with length w

Output: the convolution of fand g

1
2
3
4
5
6
7

we|(w—1)/2]

forx<~Oton — 1do

val < 0

fori< Otow — 1do
val < val + g[i] * flx + w — i]

f'[x] < val
return f’

218

Chapter 5 « Spatial-Domain Filtering

Solution

Suppose we have an input signal f=[8 24 48 32 16] with five elements, and a kernel
g =1[1 2 1] with three elements. That is, n = 5 and w = 3. What is f® g, if we use
replication to handle out-of-bounds values?

As shown in Figure 5.1, first we extend the signal past the borders using the method of
replication (which, in the case of extending by just one sample, is equivalent to reflection).
Then we slide the kernel across the signal and record, at each pixel, the sum of the element-
wise multiplications. The output signal f' = [12 26 38 32 20]is the same width as
the input. It is important to notice that convolution must never be done in place; otherwise,
if fand f' are stored in the same place in memory, then the values computed for f will
corrupt those being read from f.

The relationship between the input f and the output f* depends upon the type of the
kernel g. Two types of kernels are common. perform an of
the values in a local neighborhood and therefore/feduce the effects ofnoise. Such kernels are
often used as the first stage of preprocessing an image that has been corrupted by noise, in
order to restore the original image. Differentiatin_gﬁkernels, on the other hand, accentuate

the places where the signal is changing rapidly in value and are therefore used to extract

useful information from images, such as the boundaries of objects, for purposes such as

object detection. Smoothing kernels are lowpass filters, whereas differentiating kernels
Wers. To avoid changing the overall gray level of the output, smoothing
kernels have the property that all the elements of the kernel sum to one, E,g(i) =1,
whereas differentiating kernels have the property that all the elements of the kernel sum to
zero, Eg(i) = 0, since the derivative of a constant image is zero. Smoothing kernels are
usually slyrnmetric, whereas differentiating kernels are either symmetric or antisymmetric

depending on whether the order of differentiation is even or odd, respectively. In the next
few sections we will consider these two types of kernels in more detail.

Figure 5.1 An example of
1D convolution.

Image Kernel
58 8 124483216 16§ ® |1/4(1/2]1/4
HEN !
8/4 +8/2 +24/4 =12
1/411/2|1/4
| I 8/4 +24/2 + 48/4 = 26
1/4|1/211/4
¥ 3
= |12]26(38(32|20
A A
1/4|1/211/4
I I 24/4 + 48/2 +32/4 =38
1/4|1/211/4
I I 48/4 + 32/2 + 16/4 = 32

1/411/2|1/4

32/4 +16/2 + 16/4 =20

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

5.1 Convolution 219

5.1.2 Convolution as Matrix Multiplication

Sometimes it is convenient to view discrete convolution as the multiplication of a matrix

by a vector to produce another vector: the input vector is formed from the original signal,
the matrix is formed from the convolution kernel, and the output vector is the result of the
convolution. For example, consider the 1D input signal f = [8 24 48 32 16]and
kernel g = 3[1 2 1] that we saw earlier. It is easy to see that the following holds:

8

12 1 2 1 0 0 0 O 8
26 ! 0O 1 2 1 0 0 0|24

38| = 1 0O 0 1 2 1 0 0]]48 (5.6)
32 0O 0 0 1 2 1 0]]32
20 O 0 0 0 1 2 1 16
——

f' convolution matrix | 16]

G f

where the left vector is simply the output ' = f® g shaped like a traditional column-
wise vector, the right vector is the input f after extending the signal by replication, and the
matrix is constructed by sliding the convolution kernel g horizontally by one position for
each successive row. More generally, if the input signal f has n elements and the convolu-
tion kernel g has w elements, then convolution can always be represented as the following
matrix multiplication:

f{nxl} = G{an’}f{n’Xl} (57)

where G is the convolution matrix constructed from the kernel g, f is the extended input

signal stored in vector format, f is the output as a vector, and n’ = n + w — 1. Typically
WEWson = (Ifwe ignore the border effects and set n = n’, then the convolution
matrix is a Toeplitz matrix, meaning that every diagonal descending from the top left to the
bottom rigmonstant value.)

5.1.3 Convolution as Fourier Multiplication

It is also worth noting that convolution in ¢ tial domain is equivalent to multiplication
in the frequency domain. That is, ii f'(x) = f(x) ® g(x) &is the convolution of two signals
fand g, if F{f} and F{g} are the Fourier transforms of the two signals, respectively, and
if F{f'} is the Fourier transform of the output, then the latter is the multiplication of the
former two: F{f'} = F{f} - F{g}. An alternate way to compute the convolution of two

signals, then, is the compute the inverse Fourier transform of the multiplication of the two
Fourier transforms:

) =fx) @g(x) = FHF ()} Flg(0)}} (5.8)

Two important points must be noted, however. Since multiplication is less expensive than
convolution, this trick can result in significant computational savings when the convolu-
tion kernel is large, because the overhead of computing the forward and inverse Fourier
transforms is less than the amount of computation saved by not having to slide the kernel.
Therefore, this trick is widely used in signal processing, where convolution kernels can be
large, and where frequency-domain filters are commonly inserted into the pipeline. In image
processing, however, convolution kernels tend to have only a few elements, so that a direct
implementation of convolution is usually faster. A second point is that the equation above

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

220 Chapter 5 - Spatial-Domain Filtering

is true only in the case of circular convolution, that is convolution in which the signals are
considered to be periodic. As a result, zero padding is necessary if linear convolution is
desired. We will consider frequency-domain processing in more detail in the next chapter.

5.1.4 Linear Versus Nonlinear Systems

Before continuing, let us briefly consider filtering in general, to better appreciate how con-
volution fits into the larger context. In signal and image processing, as well as in related
fields, a system is an operator that produces an output from an input. A system is said to be
linear if both the scaling and additivity properties hold for all possible inputs:

L(af) =aLl(f) (scaling) (5.9)
L(fi +f) =L(A) + L(f) (additivity) (5.10)

where L represents the system, so that £(f) is the output of applying the system to the
input f, and « is a scalar. According to the scaling property, a scaled version of the input
causes the output to be scaled by the same amount, while the additivity property says that
the output resulting from the sum of two inputs is simply the sum of the two individual
outputs. Together, these properties are referred to as superposition:

L(afi + anfy) = ayL(fy) + auL(f>) (superposition) (5.11)

The system L is linear if and only if this equation holds for all inputs and all scalars. If a
system is not linear, then it is said to be nonlinear.

Another important property involves the response of the system to a shifted version of the
input. A system is called shift-invariant if a shift in the input causes a shift in the output by
the same amount. More precisely, if f'(x) = L£(f(x)) is the output of applying the system
to the input signal f(x), then the system is shift-invariant if and only if

f'(x—x) =L(f(x — x0)) (5.12)

Linear shift-invariant systems,’ i.e., systems that are both linear and shift-invariant, are
particularly important due to their convenient mathematical properties. Such systems are
perfectly described by convolution with a (possibly infinite) kernel:

70 =100 @ 8(e) = 3 5(x =)g(i) 5.13)

i=—o

A discrete linear shift-invariant system is perfectly described by its impulse response,
which 1s defined as the output £(0) that results from applying the system to the function
with a value of 1 at the origin and 0 everywhere else:

1 ifx=0
o = 5.14
(x) {O otherwise ()

also known as the Kronecker delta function. By setting fto § in Equation (5.13), it should
be easy to see that the impulse response of a linear shift-invariant system described by con-
volution is simply its convolution kernel.

Depending upon the impulse response, there are two types of linear shift-invariant
systems. A finite impulse response (FIR) filter is a system for which the impulse

" Mathematically, linear shift-invariant systems are identical to the more well-known linear time-invariant (LTI)
systems from signal processing. The difference in nomenclature arises because with images the independent vari-
able is the pixel location rather than time.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

5.1 Convolution

221

response is finite in duration. FIR filters are perfectly described by convolution with a
finite-length kernel. On the other hand, if the response continues forever, then we have an
infinite impulse response (IIR) filter. Due to the impossibility of constructing a kernel
with infinite duration, IIR filters are implemented using feedback from earlier computations.
That is, unlike FIR filters, for which convolution must not be performed in place, IIR filters
do perform their computation in place by storing the result into the same pixels that will be
read in the next iteration, so that the output of the system is fed back as part of the input to
the system. In practice, most filters are either linear FIR filters (and thus implemented using
convolution) or nonlinear filters, although IIR filters can be used to perform fast filtering
with large kernels. To develop some concrete appreciation for the differences between these
types of filters, consider the following example.

Solution

Are the following systems linear or nonlinear, shift varying or shift-invariant, and FIR or IIR?
Lof(x) = £(f(x) = (f(x))?
2 () = L(f(x) =3f(x = 1) +3f() +5f(x+ 1)
3. (x) = L(f(x)) =f'(x = 1) +f(x)

The three systems are analyzed as follows:

1. This system squares the input. To see that this is nonlinear, notice that
(af(x))? # o?(f(x))? in general, thus violating the scaling principle.
Nevertheless, it is shift-invariant, since the output at any given position is only
dependent upon the input at that position. Since the concept of an impulse response
is not meaningful in the case of nonlinear filters, we do not usually characterize
them as being either FIR or IIR.

2. This system is just a convolution of the input f with the kernel g = ;[1 2 1].
Therefore, it is a linear shift-invariant system that is also an FIR filter.

3. This system is known as an accumulator because it sums all the values of fup to the
present location: f'(x) = EL . 8(x—1i)f(i), where g(x)is 1 for all x = 0
and 0 otherwise (the unit step function). The impulse response of this system is the
unit step function, which extends forever. Therefore, this is a linear shift-invariant

system that is also an IIR filter.

5.1.5 2D Convolution

Although 1D signals are easier to analyze, our goal is to perform filtering not on a 1D signal
but rather on a 2D image. Thankfully, the extension of convolution to two dimensions is
straightforward:

w—1lh—1

I'(x,y) =1(x,y) ®G(x,y) = D2 D 0(x+w— i,y +h—j)G(i,j) (5.15)

i=0j=0

where w and / are the width and height of the kernel, respectively; 1 = [% (h — 1)]is the
half-height of the kernel, just like W is the half-width; and the kernel G is assumed to be
shifted by w horizontally and & vertically, so that all indices are nonnegative. To convolve
an image with a 2D kernel, simply _ about both the horizontal and vertical
axes, then slide the kernel along the image, computing the sum of the elementwise multi-
plication at each pixel between the kernel and the input image, as shown in Algorithm 5.2.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

222 Chapter 5 « Spatial-Domain Filtering

ALGORITHM 5.2 Convolve an image with a 2D kernel

5.2 Smoothing by Convolving with a Gaussian

The simplest smoothing kernel is the box filter, in which every element of the kernel
has the same value. Since the elements must sum to one, the elements of a box filter of
length w each have the value 1/w. Some examples of box filters are 5 [1 1 1], and
1 1 1 1 1] Inpractice, kernels are usually created to have an odd length to avoid

undesired shifting of the output.

5'2.1 Gaussian Kernels to reduce noise with Gaussian kernel

Convolving a box filter with itself yields an approximation to a Gaussian kernel. The
continuous 1D Gaussian function is the familiar “bell curve”, defined as

(x) ! (ﬁ) (5.16)
aussy2(x) = ———=exp| ——— .

§ 2mo? P 202

where o2 is the variance, and the normalization factor 1/\/2mo? ensures that

f_m gauss,2(x) dx = 1. The 1D and 2D Gaussians are shown in Figure 5.3. Earlier we
explained that if a signal of length n is convolved with a kernel of length w, the length of
the resultis n + w — 1. While we often choose to retain only the n values, sometimes it is
necessary to retain all the values. For example, the simplest nontrivial box filteris 5 [1 1],
which, when convolved with itself, leads to

-1 1]e=[1 1]=—=[1 2 1] (5.17)

which is akernel withw = 3, = 1, g[0] = }, g[1] = 1, and g[2] = }. This discrete kernel

approximates a Gaussian with o> = 1. An additional iteration yields

1 1 1

2 Heglt 2 1)=—[1 4 6 4 1] (5.18)

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

to reduce noise with Gaussian kernel

5.2 Smoothing by Convolving with a Gaussian 223

Figure 5.2 Binomial (left) and trinomial (right) 1 1

triangles for constructing Gaussian kernels. The 1 1 1 1 1

(2k + 1)™ row of the binomial triangle approximates 1 2 1 1 2 3 2 1

a Gaussian with o2 = k/2, while the (k + 1) row 1 3 3 1 1 3 6 7 6 3 1

of the trinomial triangle approximates a Gaussian with 1 4 6 4 1 1 4 10 16 19 16 10 4 1
2 _ 2% i - ivei
0" =3, where kis a non-negative integer. Binomial triangle Trinomial triangle

which approximates a Gaussian with o> = 1. Ignoring the normalization factor, these
Gaussians can easily be remembered as the odd rows of the binomial triangle, also known
as Pascal’s triangle,’ with the (2k + 1)™ row approximating a Gaussian with o> = k/2, as
shown in Figure 5.2. Similarly, the (k + 1)" row of the trinomial triangle approximates a
Gaussian with o> = 4. For example, [1 1 1] approximates a Gaussian with
o? = 3, while

nm 2 3 2 1] (5.19)

approximates a Gaussian with o> = %

5.2.2 Computing the Variance of a Smoothing Kernel
To compute the variance of an arbitrary smoothing kernel g, one might be tempted to apply
the formulas
1

W= ;Eg(z) (wrong) (5.20)

o’ = %E(g(l) —w)? (wrong) (5.21)

Figure 5.3 A Gaussian is a bell curve. From left to right: The 2D isotropic Gaussian viewed as an image where the gray level of each
pixel is proportional to the value of the Gaussian function at that point, the 2D isotropic Gaussian viewed as a surface in 3D, and the 1D
Gaussian function (or, equivalently, a slice through the 2D Gaussian function, obtained by intersecting it with a vertical plane).

1 T T T T

0.8 A 081]

06[1

0.4 []

04f i

0 02[i
100 0 100 [1.
0 0 1 1 1 1 1 1 E
—100 —100 ~80 —40 0 40 80 -

" Blaise Pascal (1623-1662) was a French mathematician who developed probability theory and proved that light
travels through a vacuum; he also invented the mechanical calculator, hydraulic press, and syringe; and he made
important contributions to Christian philosophy, most notably the famous Pascal’s Wager.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

5.2.3 Separability

Chapter 5 - Spatial-Domain Filtering

but these compute the mean and variance of the values of the kernel, rather than the mean
and variance of the kernel along the domain. The correct way is to calculate the mean and
variance of the coordinates of the elements of the kernel, with the values serving as weights:

> ig(i)

w=—" (correct) (5.22)
> .8(0)
>0 =)% (i)
o’ = (correct) (5.23)
>.8(0)
As an example, the mean and variance of g = ;[1 2 1] are
1
p=0 11 242:1) =1 (5.24)
21 2 2 2 1
O'ZZ((O—l)'l-f-(l—l) '2+(2—1)'1)=5 (5.25)

As mentioned earlier, with an odd-length kernel the center of the Gaussian is equal to the

half-width, or uw = w.

Given two 1D kernels, a 2D kernel can be constructed by convolving them with each other,
with one oriented vertically and the other oriented horizontally. For example,

W | =

1
1 1 1j=—|1 1 1
: =g

1
1
—|1|®

1

(5.26)

Since convolution itself is commutative, we could also write this by reversing the order of
the kernels, but writing the vertical kernel first provides a helpful visual aid, because the
result is the same as the matrix multiplication of the two vectors (i.e., the outer product of

the two vectors).

When a 2D kernel can be decomposed into the convolution of two 1D kernels, we say
that the kernel is separable. Every 2D axis-aligned Gaussian kernel is separable, such as

the 2D isotropic Gaussian:

1 x2 + y?
Gauss,2(x,y) = 5 €Xp <—2y>
o

27T 20

(5.27)

where the normalization 1/2770% is again designed to ensure that ff Gauss,2(x,y) dxdy = 1.
To show the separability of this function, apply the law of exponents to the convolution of
an arbitrary 2D signal I(x,y) and a 2D isotropic Gaussian, ignoring the normalization factor

for simplicity:

S (> +/)
I(x,y) ® Gauss,2(x,y) = E El(x — i,y —j)exp By
i o

_2 _p
= 2 [zl(x — iy —j)exp (%)} exp <%¢'2>

1(x.y) ® gauss,(y)

(5.28)

(5.29)

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

5.2 Smoothing by Convolving with a Gaussian 225

= (I(x,y) ® gauss,2(y)) ® gauss,2(x) (5.30)
= (I(x,y) ® gaussy>(x)) ® gaussy>(y) (5.31)

where one kernel is oriented vertically while the other is oriented horizontally. Thus we
see that convolving I with Gauss,>(x, y) is the same as convolving / with a vertical 1D
Gaussian kernel gauss,2(y), followed by a horizontal 1D Gaussian kernel gauss,>(x); or
vice versa, since the order does not matter. As an example,

1 2 1 1
1 1 1
Ixy)e|—[2 4 2||=1xy)e—|2]||e(-[1 2 1] (5.32)
16 4 4
1 2 1 1
because
1 1 2 1
1 2 @1[1 2 1]—L 2 4 2 (5.33)
4 4 16 ’
1 1 2 1

and because convolution is associative: (f® g;) ® g, = f® (g, ® g,). A discrete 2D
kernel is separable if and only if all of its rows and columns are linearly dependent (i.e.,
scalar multiples of one another), meaning that the kernel (viewed as a matrix) is rank 1.
Another way to derive the separability of the Gaussian is to notice from Equations (5.16)
and (5.27) that the 2D Gaussian can also be viewed as simply the product of two 1D Gaussians:

1 x2 + y2
Gauss,2(x,y) = exp| ———— (5.34)
o (xy) 2mra? P < 202
1 2 1 2
() () e
2o ? 20 2702 20
= gauss,2(x)-gauss,2(y) (5.36)

This equation is true for any point (x,y), which means that if we let g2 be the 1D Gaussian
kernel represented as a (vertically oriented) vector, then the 2D Gaussian is just the outer
product of this vector with itself: Gauss,2(x,y) = g,2gr=. In fact, this observation holds
for any separable kernel, because the convolution of two 1D kernels in orthogonal directions
is equivalent to the outer product of the two kernels when they are viewed as vectors. For
example, the outer product gg™ = [1 2 1]T[1 2 1]is given by

1 2 1]=

—_— DN =
—_— DN =
[\STE SN)

1
2 (5.37)
1

which (ignoring the normalization factor) is equivalent to Equation (5.33).

Separable convolution is shown in Algorithm 5.3 using two 1D kernels, one for the hori-
zontal and one for the vertical operation. For simplicity this code assumes that the length of
both kernels is the same, which is nearly always true in practice, although this assumption is
not important. Note that convolution requires a temporary image to store the result of the first
convolution, since convolution cannot be done in place. Note also that it is critical to con-
volve every row (that is, including the first and last) of the image for a horizontal kernel, and
every column of the image for a vertical kernel. This is because the second convolution uses
values computed in the first convolution. With a little extra work to handle out-of-bounds
pixels, the values for all the pixels in the output image can be computed. If the 2D kernel

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

226

ALGORITHM 5.3 Convolve an image with a separable 2D kernel

CONVOLVESEPARABLE (I, 8> 8v)

Input: 2D image {4 x reigni}y» 1D kernels g, and g, each of length w
Output: the 2D convolution of / and g, ® g,

O 0 3 O L B W N =

—_ = = e =
(S VS I S =)

convolve horizontal
for y <= 0 to height — 1 do
for x < w to width — 1 — w do
val < 0
fori<~Otow — 1do
val < val + g li] *I(x + w — i,y)
Lp(x,y) < val
convolve vertical
for y < w to height — 1 — w do
for x < 0 to width — 1 do
val <= 0
fori<~Otow — 1do
val < val + g[i]* 1, (x,y + W — i)
I'(x,y) < val
return /'

Chapter 5 - Spatial-Domain Filtering

is of size w X w, then the amount of computation in separable convolution is O(2w) rather
than O (w?), which can be a significant savings in computation over the full 2D convolution.

Just as 1D convolution can be viewed as matrix multiplication, so can 2D convolution.
One way to achieve this is to stack all the pixels of the image row-by-row into a single
vector, then form the convolution matrix G by stacking successively shifted versions of the

different rows of the kernel to form an equation similar to Equation (5.7). However, when

the kernel is separable there is a more compact, elegant notation:
I' = G,IG (5.38)

where Gy, is the convolution matrix constructed from the 1D kernel g;, G, is the convolu-
tion matrix constructed from the 1D kernel g, the 2D convolution kernel is g g1, and I is
the image / yiewed as a matrix and extended appropriately to handle border issues. To see
this result, notice from Equation (5.7) that I,,,, = G,I' convolves along the columns of /,
and applying the convolution again to the transposed result convolves along the rows of 1,
yielding the final 2D convolution: I' = G,(1,,,) " = G,IG,.

5.2.4 Constructing Gaussian Kernels

To construct a 1D Gaussian kernel with an arbitrary standard deviation o, simply sample
the continuous zero-mean Gaussian function gauss,2(x) = \/ﬁ exp (;7“2) and normalize

by dividing each element by the sum of all the elements, E gauss,2[i], as shown in

Algorithm 5.4. This sum is the zeroth moment of the signal. The property » gauss,2[i] = 1

is important to ensure that the overall brightness of the image does not change as a result
of the smoothing. Another way to look at this is that the smoothing of a constant image
should not change the image. Note that the continuous normalization factor \/217; which

5.2 Smoothing by Convolving with a Gaussian 227

ensures Lw gauss,>(x) dx = 1 in the continuous domain, can be ignored since it disap-
pears anyway when the discrete normalization step is performed. The discrete normalization
step, however, cannot be ignored because the continuous normalization factor alone will not
ensure that Ei gauss,2[i] = 1, due to discretization effects. Also note in the pseudocode
that we must subtract W from the index while constructing the kernel, since gauss,,>(x) has
zero mean, but our discrete Gaussian kernel gauss,2[i] is centered around i = .

Given a desired standard deviation, a reasonable approach to choosing an appropriate
kernel half-width is the following:

w =250 — 0.5 (5.39)

where the approximation indicates that a rounding of the value on the right-hand side
must occur, since w is an integer. Line 1 of Algorithm 5.4 uses this expression, shown
as pseudocode in Algorithm 5.5. To derive this expression, note that the central sample
gauss[w] in the discrete Gaussian approximates the region between x = —0.5and x = 0.5,
as shown in Figure 5.4. Similarly, the adjacent sample gauss[#W + 1] approximates the
region between x = 0.5 and x = 1.5, and an arbitrary sample gauss[W + k| approximates
the region between x = k — 0.5and x = k + 0.5. Since w — 1 = 2w = w + w, the final
sample gauss{w — 1] approximates the region between x = w — 0.5 and x = Ww + 0.5.
Therefore, a kernel of width w approximately captures the area

w+0.5

/ gauss(x) dx
—i—05

under the original continuous Gaussian function. You may know from the defini-
tion of a Gaussian that 68.27% of the area under the Gaussian is captured in the region
o =x = 0,95.45% in the region 20 = x = 20, as summarized in Table 5.1. By setting
w + 0.5 = 2.50, 98.76% of the area under the Gaussian is captured, to ensure that the

ALGORITHM 5.4 Create a 1D Gaussian kernel

Input: floating-point standard deviation o
Output: 1D Gaussian kernel (as an array with w elements)

O 00 3 O L B W N =

W < GETKERNELHALFWIDTH (o) > Determine a reasonable halfwidth w, using, e.g., Algorithm 5.5.
w<2w+ 1 2 Compute the (odd) width w from the halfwidth @.
norm < 0 2 Initialize the normalization factor to zero.
fori<~Otow — 1do 2> Construct the w-element kernel by sampling
gauss[i]<exp(—(i—w)* (i —w)/(2*0*0a)) the continuous Gaussian function,
norm <, gauss|i] while keeping track of the normalization factor.
fori<~Otow — 1do > Apply the normalization factor
gauss[i] <, norm to ensure that E:;_Olgauss[i] =0.

return gauss

ALGORITHM 5.5 Compute the appropriate halfwidth of a 1D Gaussian kernel with a given standard deviation

1

return Rounp (2.5¢ — 0.5)

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

228

Chapter 5 - Spatial-Domain Filtering

@
0.9 /\ 0.9 4
0.8 0.8 f
07 0.7
= 0.6 = 06
2 0.5 2 0.5
= 04 z 04
03 ® 03
0.2 0.2
0.1 0.1
0 0
-3 -2 -1 0 1 2 3 -10 -5 0
x (pixels) x (pixels)
o=1.0 o=3.0

10

Figure 5.4 A continuous Gaussian (blue curve) and its discrete approximation (black circles) for two different values of o. The shaded area
under the rectangles approximates the area under the continuous curve between x = —2.50-and x = +2.50-. The width and half-width
of the kernelsare w = 5, W = 2 (foro = 1.0),and w = 15, w = 7 (for & = 3.0), accordingtow + 0.5 = 2.50 andw = 2w + 1.

kernel well approximates a Gaussian. However, if a less accurate approximation is accept-
able, then the 2.5 factor multiplying the standard deviation can be reduced accordingly.

If gauss,> refers to a 1D Gaussian kernel with variance o2,

Gaussian kernels are as follows:
gausso.zs =

1
gauss0_333=g[l 4 1]

LT
8AUSS(375 16

1
gaussys = —[1 2 1]

4

1[1 4 6 4
auss; g = —
8 1.0 16

1]

then some common 1D

(5.40)

(5.41)

(5.42)

(5.43)

(5.44)

Note that Equation (5.39) returns the correct lengths for these variances, which are computed in
the same manner described before. However, the variance of the discrete Gaussian kernel will
in general be different from that of the underlying continuous Gaussian function from which
it was sampled. From Table 5.2, we see that this difference in variance can be as high as 30%.

Now that we can create Gaussian kernels and convolve an image with horizontal and ver-
tical kernels, we can smooth an image by convolving with a 2D Gaussian kernel, as shown
in Algorithm 5.6. Although the code shows the simplest case of an isotropic Gaussian,
because that is the most common case, it would be easy to extend the code to the anisotropic

TABLE 5.1 The area under the Gaussian curve within

domain

intervals defined by different factors of the standard

deviation. This is sometimes called the 68 — 95 — 99.7 rule. [-o0= X =o0]
[-20 = X =20]
[-250 = X =250]
[-30 = = 30]

area under curve
68.27%
95.45%
98.76%
99.73%

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

5.2 Smoothing by Convolving with a Gaussian 229

TABLE 5.2 The discrete
Gaussian kernel has,

in general, a different
variance from the
underlying continuous
function from which it
was sampled. Shown are
the differences for several
different values of 2.

gaussgrs =31 6 1] 0.25 0.28 10.7%
gaussozzs = L[1 4 1] 0.333 0.36 7.4%
gaussozs == [3 10 3] 0.375 0.42 10.7%
gaussos = 5[1 2 1] 0.5 0.72 30.6%
gaussio =11 4 6 4 1] 1.0 1.17 14.5%

Gaussian case. Results of convolving an image with 2D isotropic Gaussians with different
variances are shown in Figure 5.5.

5.2.5 Evaluating Gaussian Kernels

In this section we examine in more detail the relationship between the width of the Gaussian
kernel and its standard deviation. The reader should feel free to skip this section upon first
reading.

Some authors have argued that it is not possible to build a faithful Gaussian kernel with
just three samples (w = 3). The argument is based on recognizing that there are conflicting
constraints: Only a narrow (small o) Gaussian will be accurately represented by just three
samples, but a narrow Gaussian in the spatial domain leads to a wide Gaussian (large o)
in the frequency domain, leading to aliasing.” This is because the Fourier transform of a
Gaussian is .F{exp(—z"f:z)} x exp(—#jr)z), where w is the angular frequency and
o' = 1/o is the standard deviation of the Fourier transformed signal.? To see this
numerically, notice that capturing 98.76% of the Gaussian yields the constraint w = 5o,
where w is the width of the kernel, since the region from —2.5¢ to 2.5¢ has a width of 5o.
Now because the sampling frequency is 1 sample per pixel, Nyquist’s sampling theorem

ALGORITHM 5.6 Smooth an image by convolving with a 2D Gaussian kernel

Input: image /, standard deviation o
Output: result of convolving / with a 2D isotropic Gaussian with o

1 gauss < CREATEGAUSSIANKERNEL (o)
2 [I' < CONVOLVESEPARABLE(], gauss, gauss)

3 return [’

Original

Stan Birchfield

o = 5 pixels o = 10 pixels o = 20 pixels o = 40 pixels

Figure 5.5 A 2304 X 1728 image, and the result of smoothing by convolving with an isotropic Gaussian with different standard

deviations.

7 Aliasing is discussed in more detail in Section 6.1.3 (p. 275).
* The Fourier transform is covered in more detail in the next chapter.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

230

Chapter 5 - Spatial-Domain Filtering

says the cutoff frequency is 0.5, implying a cutoff angular frequency of 27 (0.5) = . To
keep 98.76% of the area of the Fourier transform between —7r and 7r, we must therefore
(assuming w = 3) set 27m = 50"’ = 5(1/0), which leads to o = = = 0.8. Putting the
spatial constraint w = 5o together with the frequency constraint ¢ = 0.8 implies w = 5,
assuming w is odd. In other words, this reasoning leads to the conclusion that the kernel
must contain at least 5 samples to faithfully represent the Gaussian.

However, such a conclusion is unwarranted. The 3-element kernel is widely used in practice,
and for good reason. A more appropriate question to ask is: What is the best that a 3-element
kernel can do? Instead of requiring that the kernel capture 98.76% of the area of the Gaussian,
let us seek a value for o that maximizes the area preserved in both the spatial and frequency
domains. Let a represent the value such that this preserved area is in the region
—ao = X = ao, so that w = 2ao. The same area is captured in the frequency domain
when 27 = 2a0’, or 0 = 1/0’ = a/7. Since we are interested in the case w = 3, we
can solve the equations ao = 1.5 and o/ = 7 for the two unknowns to yield
a=V157 =217 and ¢ = V' 1.5/7 = 0.69. From the definition of the Gaussian, this
value of o = 2.17 implies that 97% of the Gaussian is captured in both the spatial and frequency
domains, which is quite acceptable for many applications. Moreover, it is interesting to note
that this particular value of 0> = 0.48 (o = 0.69) is very close to the o> = 0.5 (o = 0.71)
of the 3 X 1 kernel obtained by the binomial triangle. Therefore, according to the criterion of
balancing the area under the spatial- and frequency-domain signals, o = 0.69 is the optimal
3 X 1 Gaussian kernel, which is closely approximated by gaussys = 5 [1 2 1]

Now that we have seen that the best 3-element Gaussian kernel is very close to the
one given by the binomial triangle, let us analyze the other kernels in the triangle. Table
5.3 shows the first few of these kernels, along with the value for o (which indicates the
preserved region —ao = x = ao) and the area under the Gaussian curve (obtained using
a Gaussian Q-function table). While the Gaussian is faithfully preserved in all cases, the
binomial kernel is wider than it needs to be for increasing values of o. For example, with
o = 1.41, awidth of w = 7 would capture nearly 98.76% of the curve (since 5o = 7), but
the binomial triangle uses w = 9 to represent this Gaussian. The trinomial triangle results
in more compact Gaussians, as can be seen from the bottom portion of the table.

Now let us examine how faithfully Equation (5.39) captures the corresponding Gauss-
ian. The formula in the procedure is w = RoUND(2.50 — 0.5). Therefore, this procedure
will output half-width w if and only if w — 0.5 = 2.5¢ — 0.5 < w + 0.5, assuming val-
ues halfway between integers round up. Solving for o yields w/2.5 = o < (W + 1)/2.5.
Since w = 2w + 1, we can solve for @« = w/20, which corresponds to the preserved region
X € [—ao, ao . Table 5.4 shows the minimum and maximum values of « for each odd width
w, along with the minimum and maximum values of the area under the curve. Here we see the
Gaussian is faithfully represented and compact. In fact, the width computed is the same as that
of the trinomial triangle in all examples shown. For values of o very near the lower end of each
range, the kernels are not as compact as they could be. If this is a concern, the formula could
be replaced by reducing the multiplicative factor, for example, w = RoUND(2.20 — 0.5).

5.2.6 Smoothing with Large Gaussians

As the width of the kernel increases, the amount of computation required to convolve a sig-
nal with the kernel increases proportionally. Therefore, as the variance increases, convolving
with a Gaussian becomes increasingly expensive. One way to solve this problem could be

to replace the single large convolution with multiple smaller convolutions, taking advantage

" Nevertheless, perhaps it can be argued that 3 elements are not sufficient to accurately capture the derivative of a
Gaussian, since the 3 X 1 first-and second-derivatives do not have a well-defined variance, Section 5.3.1 (p. 234)
and Section 5.4 (p. 240).

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

5.2 Smoothing by Convolving with a Gaussian 231

)

A W

Q

—_

2
3
4

9

binomial kernel =7 o a = area
o2 1] 0.5 071 212 96.60%
= 4 6 4 1] 1.0 1.0 250 98.76%
&l 6 15 20 15 6 1] 1.5 122 286 99.58%

(1 8 28 56 70 56 28 8 1] 20 141 318 99.85%

trinomial kernel gl =2 o a = area
o1 1] 067 0.82 184 93.42%
s 2 3 2 1] 133 115 217 97.00%
» 3 6 7 6 3 1] 200 141 247 98.65%

L1 4 10 16 19 16 10 4 1] 267 163 276 99.42%

TABLE 5.3 The area under the curve is well captured by Gaussian kernels given by the binomial and trinomial triangles. However, as o- increases,
the kernels waste computation because they are much wider than necessary to faithfully capture the Gaussian to a reasonable amount.

W N = =

4

of the property that the convolution of two Gaussian kernels with variances o3 and o3 is a
Gaussian with variance o3 + o3;" therefore n repeated convolutions with gauss,, is equiva-
lent to a single convolution with gauss,,;>.

Unfortunately this approach generally increases, rather than decreases, the amount of
computation needed. For example, suppose we want to convolve with gauss;oo (that is,
a Gaussian with o> = 100). The straightforward approach would be to convolve with
a kernel of halfwidth w = Rounp(2.5(¢) — 0.5) = 25, or width of 51. But accord-
ing to the preceding analysis, an equivalent approach would be to first convolve with
gausssg, then convolve with gausssy again. Since each of these kernels has halfwidth
W = Rounp(2.5(\V/50) — 0.5) = 17, or width of 35, this approach convolves with 71
elements instead of 51, thus actually requiring more computation than the straightforward
approach— a conclusion that is consistent with what we said about Pascal’s triangle, namely,
that it leads to Gaussian kernels that are inefficient because they are too wide.

Nevertheless, a more computationally efficient approach can be achieved using the
central limit theorem, which says that the repeated convolution of any nonnegative kernel
with itself always converges (under very mild assumptions) to the shape of a Gaussian.
More specifically, if we let b,, be the box filter of width w, then n convolutions of the filter
with itself approximates gauss,2, where o, = 55+ (w? — 1), since the variance of b,, is
(w? — 1)/12. Thus, the variance of b,, ® b,, ® b,, is (w?* — 1)/4, while the variance of

w=2w + 1 o range a = w/20 range area max area min
3 [0.4,0.8) [3.75,1.88) - 93.99%
5 [0.8,1.2) [3.13,2.08) 99.83% 96.25%
7 [1.2,1.6) [2.92,2.19) 99.65% 97.15%
9 [1.6,2.0) [2.81,2.25) 99.50% 97.56%

TABLE 5.4 The area under the curve is well captured by Gaussian kernels given by GetKernetHALFWipTH. For standard deviations very near
the lower end of each range, the kernels could be reduced in size while maintaining acceptable accuracy, but for the most part the
representation is compact. The third and fourth columns use interval notation, e.g., 0.4 = o < 0.8.

" See Problem 5.32.

232

Chapter 5 « Spatial-Domain Filtering

b,, ® b,, ® b,, ® b,, is (w* — 1)/3. As demonstrated in Figure 5.6, the convolution of a
signal with a Gaussian can be well approximated as a series of convolutions with the box
filter:

f® gauss,> ~f® (b, ® b, ® b, ®b,) = (((f®b,) ®b,) ®b,) ®b, (5.45)

where generally only 2 to 4 convolutions are needed to yield a good approximation.

Convolution with a box filter is extremely fast because, ignoring the normalization factor,
the box filter simply sums the elements of the signal overlapping the kernel. For example,
if we let f' = f® b+, then at position x the computation is

Fx)=fx=3)+f(x=2) +f(x—1) +f(x) + flx+1) + f(x+2) +f(x+3) (546)

while at the next position (x + 1), the computation is
Flax+1)=Ffx—-2)+fx—1)+f(x) +fx+1) +f(x+2) +f(x+3) +f(x+4) (547
=f'(x) =flx =3) + f(x +4) (5.48)

Figure 5.6 Repeated convolutions of a box filter leads to a Gaussian. The vertical bars (in blue) show the samples of discrete kernels
obtained by convolving a box filter with itself, for w = 3 (top), w = 5 (middle), and w = 7 (bottom); while the overlaid plots (in red)
show the sampled Gaussians with the same variance as the kernels. After just a few convolutions, the approximation is extremely
accurate, thus enabling efficient approximation of arbitrarily-sized Gaussians.

1 1 1 1
0.8 0.8 0.8 0.8
0.6 0.6 0.6 0.6
z z 2
%0 0.4 %004 0.4 *00.4
0.2 0.2 0.2 0.2
0 - - 0 0 0
- —0.5 0 0.5 1 — 0 -3 -2 -1 0 1 2 3 —4 -2 0 2 4
x (pixels) x (pixels) x (pixels) x (pixels)
by by ® by by®by® by by®@by®by® by
(02 = 0.667) (02 =1.333) (a2 = 2.000) (02 = 2.667)
1 1
0.8 0.8
~ 0.6 0.6
= z
0.4 0.4
0.2 0.2
0 0
-2 0 2 4 -6 -4 -2 0 2 4 6 -8 -4 0 4 8
x (pixels) x (pixels) x (pixels) x (pixels)
by by ® by by ® by @ by by ® by ® by ® by
(02 =2) (62=4) (02 =6) (02 =18)
1 1 1 1
0.8 0.8 0.8 0.8
06 0.6 06 06
z z s z
%004 %04 04 %004
0.2 0.2 0.2 0.2
0 0 0
-3 -2 -1 0 1 2 3 -6 -4 -2 0 2 4 6 -8 —4 0 4 8 -10 -5 0 5 10
x (pixels) x (pixels) x (pixels) x (pixels)
b, b,®b, b,®b,®b, b,®b,®b,®Db,
(o2 = 16) (02 =32) (0% = 48) (02 =64)

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

5.2 Smoothing by Convolving with a Gaussian 233

Thus, as the kernel slides across the signal, each output value is computed by simply adding
the new value and subtracting the old value—without any multiplication, and independent
of the length of the kernel. In this way, the box filter of any length can be implemented
efficiently (in constant time) by just one subtraction and one addition per column, as shown
in Algorithm 5.7.

An equivalent approach is to first compute a running sum’ of the signal, then add and
subtract values from this running sum. Such an approach reveals that convolving with a box
filter is equivalent to performing an integration over a window, followed by a differentiation
(subtracting two values from each other). More generally, it can be shown that for any
continuous signal f and kernel g, the convolution of the signal and kernel is equivalent to
the convolution of the signal integrated n times with the kernel differentiated n times:

d'g(x)
dx"

f®g= /m/m fx)dx |® (5.49)

n integrations

where n is an arbitrary nonnegative integer. This fact is easy to prove using the Fourier
transform (which we shall consider in more detail in the next chapter). Since integration in
the spatial domain is equivalent to division by jw in the frequency domain, while differenti-
ation is equivalent to multiplication by jw, where j = \/jl and w is the angular frequency,
the multiplication and division cancel each other, so the convolution of the integral with the
derivative is, in the frequency domain, nothing but 7{ f} - F{g} - jo/jo = F{f} - F{g}.
Recalling that multiplication in the frequency domain is equivalent to convolution in the
spatial domain, Equation (5.49) is established.

5.2.7 Integral Image

The running sum is easily extended to 2D, where it is known as the integral image.* Given
a single-channel 2D image /, its integral image S is computed by scanning the image from
the top-left to the bottom-right corners, computing the running sum as

S(x,y) =I(x,y) - S(x — L,y — 1) +S(x—1,y) + S(x,y -1) (5.50)

ALGORITHM 5.7 Convolve a 1D signal/image with a 1D box kernel

ConNvoLVEBOX(f, w)

Input:

1D signal f with length n, 1D box kernel with length w

Output: the convolution of fand g

0 N L AW N~

we|(w—1)/2]
val < 0

for i < —w to w do
val < val + f|i]
for x <~ Oton — 1do

h(x] < val

val < val + flx + w + 1] — f[x — W]

return

" Section 3.3.2 (p. 87).

“In computer graphics, the integral image is known as a summed area table (SAT).

234

Chapter 5 - Spatial-Domain Filtering

It is easy to see that S(x',y") Ex 02 . Once the integral image has been

calculated (usually as a preprocessing step), then the sum of values inside any rectangle can
be computed with simply one addition and two subtractions:

2 Ey:yol(x’y) = S(XO - l?y() - 1) + S(X],y]) - S(XO - l’yl) - S(xl’yO - 1) (5'51)

where (xg, yo) and (x;, y,) are the top-left and bottom-right coordinates of the rectangle,
respectively.

5.3 Computing the First Derivative

Now that we have seen how to apply a lowpass filter to an image to perform smoothing,
we turn our attention in this section to highpass filters. A highpass filter is one that preserves
the local differences in the input signal, which can be detected by computing the derivative

of the signal. Large values in the derivative indicate important parts of the signal, which
we shall consider in more detail in Chapter 7 when we consider edge detection.

5.3.1 Gaussian Derivative Kernels

The simplest approach to estimating the derivative is to compute finite differences, which
means to subtract one value in the signal from another. If the values are adjacent, this is
equivalent to convolving with the kernel [1 ~ —1]. Since this kernel has an even number of
elements, the center of the kernel can be placed on either element, leading to the so-called
forward difference kernel, [1 —1], and backward difference kernel, [1 —1].
(If the convention of the origin appears reversed, remember that convolution flips the kernel
before performing shift-multiply-add.)

In the real world, the input signal has typically been corrupted by some type of noise.
That is, the input signal to which we have access is actually a combination of the under-
lying noise-free signal in which we are interested and noise that has unfortunately been
mixed with the signal in some way. As a result, it is usually wise to perform at least some

smoothing to the image before differentiating to help reduce the effects of such noise. This

can be achieved by convolving the signal with a smoothing kernel before convolving with
a differentiating kernel. The simplest smoothing kernel is 3 [1 1], leading to

D)l —=se(30 el -il)=fe
where 1[1 0 —1]is the!central difference kernell In other words, convolving the

image with a smoothing kernel, then convolving the result with a differentiating kernel, is
equivalent to convolving with another kernel that is the combination of the two, due to the
associativity of convolution. Note that the origins of the two kernels must be different to
avoid undesirable shifting of the signal:

[1 0 —1] (552

1 el -1]==[1 0 -1] (5.53)

With larger smoothing kernels, computing finite differences between neighboring
smoothed pixels does not yield favorable results. Instead, it is better to convolve the image
with a smoothed differentiating kernel, which (since differentiation and convolution are
associative) is equivalent to differentiating the smoothed signal:

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

5.3 Computing the First Derivative 235

d

— gauss,>(x)
X

L (10 @800) =100 @ () (550

where fis the input and g is the smoothing kernel. Since the Gaussian is the most common
smoothing kernel, we focus our attention on the derivative of Gaussian, which is easily
shown in the continuous domain to be just a scaled version of the x coordinate times the
Gaussian:

(ren(52) - () et
== X = — X = —— gauss,2(x .
dx 2 P 207 o\ 2w P 20° o’ §

For more compact notation, we denote this Gaussian derivative as gauss,2(x), with a dot
over the letter “g”.

The overall shape of the Gaussian derivative kernel is evident in Figure 5.7. The function
is antisymmetric, meaning gauss(—x) = —gauss(x) for all x, and therefore it is zero at
x = 0. Once the Gaussian derivative kernel has been constructed, the derivative of the signal
is computed by simply convolving with the kernel. Examining the antisymmetric shape, it is
evident that such a convolution is actually computing a weighted average of all the values to
the right of the kernel center and subtracting a weighted average of all the values to the left.
This equivalent view of the procedure is also illustrated in the figure and is sometimes helpful
in understanding the connection between finite differences and Gaussian derivative kernels.

To construct the 1D Gaussian derivative kernel, simply sample the continuous Gaussian
derivative, then normalize. Similar to Gaussian normalization, which imposes the constraint
that convolution with a constant signal should not change the signal, Gaussian derivative
normalization imposes the constraint that convolution with a ramp should yield the slope
(i.e., derivative) of the ramp. For example, suppose [a b c¢]is an unnormalized differ-
entiating kernel. Convolution of the kernel with [0 1 2], which is a ramp signal with a
slope of 1, is given by 0-c + 1:b + 2-a (since convolution flips the kernel), and this result
should equal 1. Since the Gaussian derivative crosses the y-axis at x = 0, we know that the
central element is zero, b = 0, and therefore 2a = 1, ora = % Since the Gaussian deriva-
tive is antisymmetric, the normalized 3-element central difference operator is thus given by

1
gauss0‘5=5[1 0 —1] (5.56)

More generally, it is easy to verify that norlmalization of a kernel of length w requires
. . . w—
dividing each element of the kernel by >)i gausslw — 1 — i], where gauss[i] is the
i=
i element of the unnormalized kernel. Because the Gaussian derivative is antisymmetric,

Figure 5.7 The 1D Gaussian
derivative (left), along with
an equivalent view of the
operation (right) in which a
weighted sum of the values
on one side are subtracted
from a weighted sum of the
values on the other side.

20 20 T T T T T T T T T
10 16 1
12+ .
0 i i
8t n _ -
-10 al |
: 0

—20 Il Il Il Il Il
0

40 80 120 160 200 0 40 80 120 160 200

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

236

Chapter 5 - Spatial-Domain Filtering

gausslw — 1 — i] = —gauss[i] for all i, assuming the kernel is odd width, so it may

be easier to remembler the normalization divisor as the negative of the first moment of
e

the kernel: —2,70 i gauss[i]. Applying this reasoning to the unnormalized central

difference operatlor [1 0 —1], we find that the normalization divisor is given by
ELO] i gauss[i] = 0-1 + 1-0 + 2-(—1) = —2, leading to Equation (5.56). The proce-
dure for constructing a Gaussian derivative kernel, shown in Algorithm 5.8, is similar to the
one used to construct the 1D Gaussian kernel except for the normalization factor and the
factor of i — win Line 5, which is simply a shifted version of x. Note that an important step
is missing from this code: after sampling, the value (1/w) 2\1—01 i gauss-deriv[i] should be
subtracted from each element to ensure that the sum of all thé elements is zero; this should
be performed before computing the normalization factor.

Note that, although we use gauss,,> to denote the Gaussian derivative kernel with variance
o2, there is no easy way to compute the variance of a derivative kernel, and in fact in the
case of w = 3 all Gaussian derivative kernels are identical no matter the variance. That is,
% [1 0 —1]istheonly3 X 1 Gaussian derivative kernel, because no matter how wide
the Gaussian, the sample in the middle is zero, the two remaining samples are opposite each
other, and the normalization procedure always cancels the values to leave the same 3 factor
in front. As a result, the nominal variance of o> = 0.5 was chosen somewhat arbitrarily.
Also, keep in mind that although the normalization factor is needed in order to compute the
slope of the function, in practice it can be ignored whenever the relative slope, rather than
the actual slope, is all that is needed.

At first glance it may seem odd that the differentiating kernel ignores the central pixel.
However, this is a natural consequence of the fact that the derivative of a Gaussian is zero at
x = 0. Another way to see this is that, because the kernel sums to zero and is antisymmetric,

its central pixel has to be zero. If neither of these explanations is entirely satisfactory, per-

haps 1t will be helptul to note (as mentioned earlier) that the centralized difference operator
actually averages the two slopes computed by the forward difference, f(x + 1) — f(x),
and the backward difference, f(x) — f(x — 1). Thatis, if f'(x) = f(x) ® gauss s, then

1<f(x) —flx—1) +f(x+ 1) —f(x)) S+ 1) —fx—1)
2 1 1 B 2

f'(x) = (5.57)

as shown in Figure 5.8.

ALGORITHM 5.8 Create a 1D derivative of a Gaussian kernel

CREATEGAUSSIANDERIVATIVEKERNEL (o)

Input:

floating-point standard deviation o

Output: 1D Gaussian derivative kernel

O 00 9 O Lt A W N =

W < GETKERNELHALFWIDTH (o)

w<2w + 1

norm < 0

fori<~Otow — 1do
gauss-deriv[i] < (i — w) xexp(—(i —w) * (i —Ww)/(2*x0*0))
norm <— _ i * gauss-deriv[i]

fori<~Otow — 1do
gauss-deriv[i] <, norm

return gauss-deriv

5.3 Computing the First Derivative

Figure 5.8 The central difference operator is the average of the
forward and backward differences, i.e., the average of the two slopes. f

x—1 x x+1

237

5.3.2 Image Gradient
The derivative of a function of one variable is defined as

a_ A ()
= lim
dx Ax—0 Ax

(5.58)

The generalization of derivative to 2D is the gradient, the vector whose elements are the

partial derivatives of the function along the two axes:

¥ o

Vilx,y) = L’ﬂx Dy

(5.59)

where the superscript | denotes transpose. As shown in Figure 5.9, if the image is viewed
as a surface z = f(x, y), where z is the height of the surface at any point, the gradient is a
vector pointing uphill. If we let d = V£ (xo, yo) be the gradient evaluated at a point (xo, yg),
ande =[x —x, y — yo]' be the vector from (xy, yo) to an arbitrary point (x,y), then the
equation of the tangent plane to the surface at the point (x, o) is given by the inner product
of the two vectors plus the value at that point: Z = d'e + f(xy, vo).

Computing the image gradient requires convolving the image with a Gaussian kernel to

reduce the effects of noise, then computing the partial derivatives in the orthogonal direc-

tions. Due to the associative property of convolution, this is equivalent to convolving the

image with the partial derivatives of a 2D Gaussian:

al(g;;y) = %(I(x,y) ® Gauss(x,y)) =1(x,y) ® e
({ﬂ(gy,y) = gy(l(x,y) ® Gauss(x,v)) =1(x,y) ® o

0 Gauss(x,y)

0 Gauss(x,y)

(5.60)

(5.61)

Figure 5.9 The derivative
of a 1D function (left),
and the gradient of a 2D 14
function (right).

g 0.8

0.6
0.4
0.2 -

0
100

—50

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

—-100 =100

50

100

238

I(x,y)

Chapter 5 « Spatial-Domain Filtering

Continuous versions of these 2D convolution kernels are shown in Figure 5.10.

Thankfully, the partial derivative of a 2D Gaussian is separable, so that the convolution
of an image I with the 2D kernel for the partial derivative is equivalent to two successive
convolutions with 1D kernels:

) 2 2
o 0 Gausse(x,y) 8Gauss (x,y) // £y —m) exp {(52:277)} dédn (5.62)

2
// - fl(x —&y—mn) exp{ }exp {25 }dgdn (5.63)
3 -1 -&
= / - |:/I(x — &y —m)exp {%_2} dni| exp {M}dg (5.64)

= (I(x,y) ® gauss,2(y)) ® gauss,2(x) (5.65)

= (I(x,y) ® gauss,2(x)) ® gauss,2(y) (5.66)

where gauss,2(x) = % gauss,> and where the final equation is due to the fact that the
order of convolution does not matter. Similar analysis shows that the partial derivative in
y is also separable:

0 Gauss,2(x,y)

o = (I(x,y) ® gauss,2(x)) ® gauss,2(y) (5.67)

I(x,y) ®

= (I(x,y) ® gauss,2(y)) ® gauss,2(x) (5.68)

Therefore, to compute the gradient of an image, we must differentiate along the x and y axes
by convolving with a smoothing 1D kernel and a differentiating 1D kernel in the orthogonal
direction. That is, to compute the partial derivative with respect to x, convolve with a
horizontal derivative of a Gaussian, followed by a vertical Gaussian (or switch the order of

Figure 5.10 The 2D
Gaussian partial derivatives
in the x and y directions,
shown as 3D plots (top) and
images (bottom).

Copyright 2018 Cengage Leazaong. All ﬁghts ReLQ'Oed. le‘th be Jeggd, scanned, or dupm!ed, in 6Q)Ie or ;LQQ't W&A’&-ZOOL&D

x10~4

60 60

100 100

140 140

180 180

5.3 Computing the First Derivative 239

these two, since convolution is commutative); to compute the partial derivative with respect

to y, convolve with a horizontal Gaussian, followed by a vertical derivative of a Gaussian.
The simplest 2D differentiating kernel is the Prewitt operator, which is obtained by

convolving a 1D Gaussian derivative kernel with a 1D box filter in the orthogonal direction:

1 1 0 -1
) 1 1 1
Prewitt,=—|1|®=[1 0 —-1]=—=|1 0 -1
3 2 6
1 1 0 -1
1 IR |
. 1 1
Prewitt, = 5[1 1 1le=| 0= 5 0 0 0
-1 -1 -1 -1

It can be shown that applying the Prewitt operator is equivalent to solving for the plane that
minimizes the least-squares-error over the 3 X 3 window, where all the pixels are treated
equally. Again, keep in mind that the normalization factor of ¢ can be ignored in most
applications.

The Sobel operator is more robust, as it uses the Gaussian (o> = 0.5) for the
smoothing kernel:

1 1 0 -1
. 1 1 1
Sobel, = gaussys(y) ® gaussys(x) = " 2 | ® 3 1 o —-1]= s 2 0 -2
1 1 0 1
1 C1 o2 1
. 1 1 1
Sobel, = gaussys(x) ® gaussys(y) = 1 1 2 1]® 5 0= 5 0 0 0
-1 -1 -2 -1

The Scharr operator is similar to Sobel, but with a smaller variance (o> = 0.375) in
the smoothing kernel:

3 3 0 -3
. 1 1 1
Scharr, = gaussy75(y) ® gaussys(x) = 16 10 | ® 5 1 0o —-1]= Ev) 10 0 —10
3 . 3 0 -3
1 3 10 3
. 1 1 1
Scharr, = gaussy y75(x) ® gaussgs(y) = 16 3 10 3]® 5 0= Ev) 0 0 0
-1 -3 —-10 -3

The advantage of the Scharr operator is that it is more rotationally invariant than other 3 X 3
Gaussian kernels.

For completeness, we mention the classic Roberts cross operator,” which is the oldest
pair of gradient kernels:

Robert. L 0
v =
o V2 L0 -1

Robert 1 0 -1
overts, — —~—=
2 veLltoo

The Roberts kernels suffer from two drawbacks. First, they compute derivatives along the
diagonal directions rather than along the x and y axes, which is more of an inconvenience

" Lawrence G. Roberts (1937-), after writing the first Ph.D. dissertation in computer vision (in 1963), went on to

Copyright 2018 Cengage Learbegofiierthearchitect who designed thedoriginal ARPANET: which became the Iiteinee-200-203

240

Chapter 5 - Spatial-Domain Filtering

than any fundamental limitation. Secondly, because they have even dimensions, the kernels
are not centered. That is, they do not compute the derivative at a pixel, but rather between
pixels. Nevertheless, for some applications two-point differences are better than three-point
central differences, because they use all pixels in the computation (as opposed to ignoring
the central pixel) and because they are more compact.

Once we have computed the gradient of the image, it is often desirable to compute the
magnitude of the gradient. A natural way to do this would be to compute the Euclidean norm

of the gradient vector: |Vf| = V/f2+ fyz, where f, and f; are the two components of the

gradient vector, i.e., Vf = [f, fy]T A computationally efficient approximation can be
obtained by computing the sum of the absolute values: [Vf| = | f,| + [f,|. A third option is
to select the maximum of the two absolute values: [Vf| = max(|f,], | f,]). Note that these
three choices are, respectively, the Euclidean, Manhattan, and chessboard distances’ between
the origin and the point (f,, fy) The pseudocode to compute the image gradient is provided
in Algorithm 5.9, using the Manhattan distance. For each pixel in the image, the partial
derivatives in x and y are computed, then converted into a magnitude and phase representa-
tion. For other distance metrics, only Line 6 changes. Figure 5.11 shows the result of apply-
ing this computation to an image. Results of computing the gradient magnitude of an image,
using different variances for the Gaussian, are shown in Figure 5.12.

5.4 Computing the Second Derivative

Just as the finite difference operator approximates the first derivative, the difference between
differences approximates the second derivative. This can be seen in 1D by convolving the
function with the noncentralized difference operator, then convolving the result again with
the same operator:

1ol —1]=fx)e (1 -1]e1 -1])=fx)&[1 -2 1] (569)

which yields the second-derivative convolution kernel [I —2 1]. It turns out
that, just as there is only one 3 X 1 kernel for computing the derivative of a Gaussian,
this is the only 3 X 1 kernel for computing the second derivative of a Gaussian. Note
that the normalization factor is 1, already included in the kernel. Another way to look
at this is to express the first and second derivatives as df/dx =~ f(x) — f(x — 1) and
dffa = (fx + 1) = flx)) = (fx) = flx = 1)) =flx + 1) = 2f(x) + flx = 1),

respectively.

ALGORITHM 5.9 Compute the gradient of an image

CoMPUTEIMAGEGRADIENT (I, o)

0 N N Lt A W N~

gauss = CREATEGAUSSIANKERNEL (o)

gauss-deriv = CREATEGAUSSIANDERIVATIVEKERNEL (o)

G, = CONVOLVESEPARABLE(/, gauss-deriv, gauss)

Gy = CONVOLVESEPARABLE(], gauss, gauss-deriv)

for (x,y) € I do

Gag = 1G(x,y)| + |G (x, y)

P
return G40, Gppase

G hase — ATANZ(Gy()C,)7), Gx(xs }’))

" Section 4.3.1 (p, 164).

5.4 Computing the Second Derivative 241

Figure 5.11 Top: Animage.
Lerr: The partial derivatives
of the image in the xand y
directions, which together
form the two components
of the gradient of

the image. RighT: The
magnitude and phase of
the gradient.

For a function (or image) of two variables, the second-derivative in the x and y directions
can be obtained by convolving with the appropriately oriented second-derivative kernel:

2
I
Pey) vyt —2 1] (5.70)
Ox
&1(x,) :
2 ey @ | 2 (5.71)
dy |

while the cross-derivative is obtained as

-1 0 1
9% (x, 0%I(x,
(ry) _0%I(xy) _ ey et 0 0 o (5.72)
Ox Oy Jy Ox 4 1 0 -1

VI AR
Original o = 1 pixel o =5 pixels o = 10 pixels o =20pixels =

Figure i A6 &-§12imags.and the radientmagnituds.compried weind an SugRic Gausianawith Jiisensesapgard deviations.

242

Chapter 5 - Spatial-Domain Filtering

where the latter kernel is obtained by convolving the centered first-derivative 5 [1 0 —1]
with an oriented version of itself:
1 1 -1 0 1
l[1 0 —1]@l 0 _1 0 ®l[1 0 —1]—l 0 0 0] (573)
2 2 2 2 4 ’
-1 -1 1 0 -1

Alternatively, using the non-centered first-derivative leads to a more compact but non-
centered cross-derivative kernel:

1 —1}®[_ﬂ=[_ﬂ®[l —1]=[_: _ﬂ (5.74)

If larger kernels are desired, then the property that we saw with the first derivative,
namely that differentiation of a smoothed signal is equivalent (in the continuous domain)
to convolution with a differentiated Gaussian, can be used:

d? d*g(x)
—(flx)®glx)) =f(x) &
TS 9 () =£(x) < .
In other words, a discrete, smoothed second-derivative kernel can be created by sampling
the continuous second-derivative of the smoothing function. The second derivative of a
Gaussian, in the continuous domain, is calculated to be

(5.75)

g'auss(TZ(x) = C;iigaussUZ(x) (5.76)
= % <—0)_ngauss02(x)> (5.77)
= —% <gauss02(x) + xdgcmés;,z(x)) (5.78)
= —(01_2 — ;i >gauss(,2(x) (5.79)

where we use double dots to denote the second derivative. After sampling this continuous
function, and shifting so that the sum of elements is zero normalization requires dividing
each element by one-half the second centralized moment of the elements: % E,W= 5 i
gauss[i], where w is the halfwidth of the kernel, gauss is the unnormalized kernel, and i = 0
refers to the central element of the kernel. The justification for this formula is that convolu-
tion with a parabola, y = x%, should yield the second derivative, which is 2. Note that with
the second derivative it is important to use the centralized moment, whereas with the zeroth
and first derivatives, either centralized or non-centralized moments produce the same result.

5.4.1 Laplacian of Gaussian (LoG)

Extending the previous discussion to 2D leads naturally to the Laplacian operator V2,
which is defined as the divergence of the gradient of a function. While the concept of diver-
gence’ is beyond our scope, in 2D Cartesian coordinates the Laplacian of an image is just
the sum of the second derivatives along the two orthogonal axes:

o olfar aI1l" 984 94U
=—+— (5.80)

2l = . 1:[— = —| = +
v Vv Ox Oy]|ox Oy ox? oy?

" Section 2.5.1 (p. 57).

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

5.4 Computing the Second Derivative 243

Because of associativity, computing the Laplacian of a smoothed image is the same as
convolving the image with the Laplacian of Gaussian (LoG):

*(I® Gauzss(x,y)) . ?(I® Gauzss(x, y)) e <5‘2 Gaussz(x,y) N 9% Gaussz(x, y)> (5.81)
Ox dy 0x ady

which is also known as the inverted “Mexican hat” operator because of its shape, shown
in Figure 5.13. The LoG is rotationally symmetric and is a center-surround filter because
it consists of a central core of negative values surrounded by an annular ring of positive
values. As a result, it maintains a connection with biology, because certain cells in the retina

perform center-surround operations and therefore function like LoG filters." “The LoG is
actually not a lowpass or highpass filter but rather a bandpass filter, though small 3 X 3
discrete LoG kernels operate essentially like highpass filters.

Not surprisingly, the 2D Gaussian second-derivative filter is separable:

2 Gauss(x, 2 _(£2 2
I(X’y)®8G6x2(y)= //;(1 i) (x—fy—n)eXp{(i;n)}dfdn
2 _2)
= //012<1 i) (x—fy—n)eXp{zj}eXp{z;}dfdn
2 g2)
JL (=5 er-men {55} de oo { S on

® gauss(x)) ® gauss(y) (5.82)

(1(x)
=(I(x)® gauss(y)) ®'gauss(x) (5.83)

Therefore, since the LoG is the sum of two separable kernels, it is no more expensive to
compute than the gradient. But the LoG itself is not separable but rather the sum of two
separable computations:

(1@ Gauss) | (1% Gauss) _ (az Gy | & GauSS(w)) (5.89

ox* dy? dx? dy?
= ((x,y) ® gauss(x)) ® gauss(y)
+ (I(x,y) ® gauss(y)) ® gauss(x) (5.85)

Figure 5.13 The Laplacian of Gaussian, presented as an image (left), a 2D plot (middle), and a 1D slice through the 2D plot (right). The
center-surround nature of the operator is evident in the image, while the inverted Mexican hat shape is evident in the plots.

0.5 0.8}
0 0.4}
300 '
200 ' —0.4}

100 —o0gl
0 0 100 200

~100 —60 —20 20 40 100

Stan Birchfield

" Section 2.1.2 (p. 21).

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

244 Chapter 5 - Spatial-Domain Filtering

: : : . 92 Gauss 0° Gauss __ - .
A discrete LoG kernel is obtained by computing 5™ + oy with the appropriate value

for o, then sampling. For 3 X 3 kernels, the differentiating kernel is fixed as [I —2 1]
(because it is the only 3 X 1 second-derivative Gaussian kernel), and the smoothing kernel
is determined by o. The simplest Laplacian kernel involves no smoothing and is therefore
simply the sum of the horizontal and vertical second-derivative kernels (considered as the
middle row and column, respectively, of a square matrix whose remaining elements are zero):

1 0 0 O 0 1 0 0 1 0
LoGyo=1[1 -2 1]+ |—-2|=|1 =2 1|+|0 =2 0o|=|1 -4 1 (5.86)
1 0 0 0 0 1 0 0 1 0

where we let LoG - signify the isotropic LoG kernel with variance 2. As another example,
for 0> = 0.25, wehave § [1 6 1] as the smoothing kernel, leading to

0% Gaussg »s ! 1 ! 21
—— —=[1 -2 lle-|6|=-|6 —12 6 (5.87)
Ox T R B
0% Gaussgors 1 ! 1 ! 0 !
T: -1 6 1]®|—-2]|= g -2 —-12 =2 (5.88)
Y 1] L1 e 1
0% Gaussy»s 0% Gaussyrs 1 ! 21
LOG0_25 = + = - 2 _12 2 (5.89)
2 2 4
0x y |)1

Repeating this procedure for other values of o yields alternative 3 X 3 LoG kernels, shown
in Table 5.5.

The center-surround property is evident by noticing that in all of these 3 X 3 cases the
kernel is equivalent to a scalar times the difference between the average value of the neigh-
bors and the value of the central pixel: V2I = h(I — I), where I is the average gray level of
the 8-neighbors, and the scalar 4 is the negative of the central kernel weight. For example,
convolving with LoG, o, computes

VU(x,y) =I(x+ 1,y) + I(x — 1,y) + I(x,y — 1) + I(x,y + 1) — 4(I(x,y) (5.90)
=4(I(x,y) = I(x,y)) (5.91)

where
Hoy) = UGk L) +1(x = 1,9) + 10y = 1) + I(ny + 1) (592)

so in this case & = 4. Results of computing the LoG of an image, using different variances
for the Gaussian, are shown in Figure 5.14.

o2 =0.0 o2 = 0.167 o2 =0.20 o2 =0.25 0?2 =0.33 o2 =05
0 1 o] S0 10 1] L0 8 1] o6 1] i1 4 1] 12 1]

0 1 0 1 4 1 1 301 1 2 1 111 1 0 1
1 —4 1| £|4 -20 4|33 —-16 3| 4l2 —-12 2| 4[1 -8 1| 5|/0 —4 o0
0 1 0 1 4 1 1 301 1 2 1 111 1 0 1

TABLE 5.5 Various discrete 3 X 3 LoG kernels. For each choice of variance, the middle row shows the 1D smoothing kernel, while
the last row shows the resulting LoG kernel.

5.4 Computing the Second Derivative 245

5

Original

.
P o Mo

Stan Birchfield

o = 10 pixels o = 20 pixels

o = 1 pixel o =5 pixels

Figure 5.14 A 2304 X 1728 image, and the result of convolving with an isotropic LoG with different standard deviations.

5.4.2 Difference of Gaussians (DoG)

The Laplacian of Gaussian (LoG) is closely connected to the difference of Gaussians
(Do@G). More specifically, a close approximation to the LoG is obtained by subtracting one
Gaussj,g{l fronwgther, where the variances of the two Gaussians have a parmm
ship to one another. To see this connection, simply differentiate the continuous gauss(x)
with respect to the scale parameter o:

d gauss,>(x) d | P
R T 5.93
o o \6770- e (5.93)
1 @
=— (0 ?+0 (P073)) e (5.94)
\2m
1 1 2 L2 o
S (—2 + x4) e (5.95)
2w\ o* o
1 2
= —0 <0’2 - ;C_4> gauss,2(x) (5.96)

Comparing this result with the second derivative of the Gaussian in Equation (5.79) yields
a surprising relationship:
d gauss,2(x) d? gauss,>(x)

=0

do dx?

(5.97)

Since we cannot actually compute the derivative of the Gaussian with respect to o, it is
approximated using finite differences. From Equation (5.58) this yields

d gauss(x; o) . gauss(x; o + 8) — gauss(x; o)
do 1)

(5.98)

where we introduce the notation gauss (x; o) to refer to gauss,>(x), and & is a small change
in standard deviation. Combining this expression with Equation (5.97) yields

d? gauss(x; o)
dxz

d? gauss(x; o)
dx?

gauss(x; 0 + 8) — gauss(x;0) = 8o (5.99)

=(p-—1)o? (5.100)

where p = 22 is the ratio of the two standard deviations. As 8 — 0 (p — 1), the DoG

approximates the scaled 1.oG, However, small values of 0 lead to low sensitivity of the

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

246

Chapter 5 « Spatial-Domain Filtering

filter, because as the two Gaussians approach each other in width, their responses become
identical. It has been found empirically that p = 1.6 yields a reasonable tradeoff, leading to

DoG(x; o) = 0.60° LoG (x; o)

That the scaled LoG is well approximated by the difference of two Gaussians is shown in

Figure 5.15.

The relationship in 2D is the same as that in 1D:

d Gauss(x,y)

9% Gauss(x, y)

9% G :
_ 0_(auss(x y) .

(5.101)

5.102
do ox?) ()
To see this, note that a 2D, zero-mean isotropic Gaussian is given by
1 x2 + y2
Gauss(x, = exp| — (5.103)
(x.5) 2o’ P < 20
Differentiating twice with respect to x yields
9% Gauss(x, 9?2 1 x2 + 42
—z(y) =— cexp | (5.104)
0x ox~ \2mo 20
1 x?
=—\|1-— Gauss(x,y) (5.105)
o o
and by symmetry,
9% Gauss(x, y) 1 y2
8—)12 = ? 1 - Gauss(x,y) (5.106)
Putting these together yields
9% Gauss(x, 8% Gauss(x, x2 4+ y%2 — 202 x2 +
LoG(x, y; o) = 2(y) + 2(y) = Y exp| — 2y (5.107)
ox dy 270 20
2 2
x“+y
= < e 2) Gauss(x, y) (5.108)
Differentiating with respect to o yields
d Gauss(x, d 1 x2+y?
dGauss(xy) _ d exp | (5.109)
do do \27o 20
2 X2+ y2
=-—=(1- 1
5 (1 o Gauss(x,) (5.110)
Comparing Equation (5.108) with Equation (5.110) yields Equation (5.102).
Figure 5.15 Lerm: Two 0.02 ”" 0.01
Gaussians whose ratio 5 Y B
of standard deviations B oy 27 L6y
is 1.6. RigHT: The - . 0
difference of Gaussians - ! o
(solid blue) and 1D 0.01f
Laplacian of Gaussian - P
(solid red). The scaled - A Y —001
DoG (dashed blue) - H %
approximates the LoG. 0 i /' ‘\ 0.02
0 S0 100 150 200 250 0 50 100 150 200 250

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

5.5 Nonlinear Filters

247

5.5 Nonlinear Filters

All the filters we have considered so far in this chapter rely upon convolution and are there-
fore linear shift-invariant filters, as we have already explained. Although there exist filters
that are /inear but not shift-invariant, we will not spend time discussing these, since they
are not commonly used. Instead, we turn our attention in this section to nonlinear filters,
which do not obey the superposition principle. In this section we consider several important,
widely-used nonlinear filters.

5.5.1 Median Filter Gaussian filter good for AWGN
impulse noise:

salt-and-pepper noise without “pepper

., In choosing what type of filter to use, it is important to identify the type of noise that one
expects to be present in the image. For example, the lowpass filter obtained by convolving
with a Gaussian is the optimal filter for minimizing the effects of additive white Gaussian
noise (AWGN). To understand what this means, imagine adding to each pixel of a noise-free
image a random value drawn from a Gaussian distribution:

I'(x,y) =1I(x,y) + & &~ N0,07) (5.111)

In this equation, 7 is the noise-free image, I' is the image corrupted by additive white Gauss-
ian noise, and ¢ is the random value drawn independently for each pixel from a Gaussian
distribution (also known as the normal distribution, hence the N') with a mean of zero and
a variance of ¢%." Pseudocode for adding white Gaussian noise to an image is given in
Algorithm 5.10, where we assume that a procedure exists called RANDGAUSSIAN that gener-
ates a random value according to a Gaussian distribution, and we have made sure to clamp
the value so that it stays within the image range (assuming a bit-depth of 8). Such a proce-
dure is sometimes used to create synthetically corrupted images for measuring the robust-
ness of algorithms.

Another type of noise is salt-and-pepper noise, in which each pixel is set to either the
minimum (“pepper”) or maximum (‘“‘salt”) possible gray level, or it remains unchanged:

0 ifo=¢<p
I'(x,y) =255 ifpsé<p+q E~U(01) (5.112)
I(x,y) otherwise
where the random variable ¢ is drawn from a uniform distribution between 0 and 1, inclu-

sive. The probability of a pixel becoming salt is p; and the probability of a pixel becoming
pepperis g.Itiseasytoseethat 0 = p=1,0=¢g=1,and0=p + g = 1.

ALGORITHM 5.10 Add independent Gaussian noise to an image

Input:

grayscale image /, standard deviation o of the Gaussian distribution

Output: image corrupted by additive Gaussian noise

—_

for (x,y) € I do

& < RANDGAUSSIAN (o)
I'(x,y) < max(0, min(255, I(x,y) + £))

return [’

" Considered as a random variable, we say that ¢ is independent and identically distributed (i.i.d.).

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

impulse noise:
salt-and-pepper noise without “pepper”

Gaussian filter good for AWGN

248

Chapter 5 « Spatial-Domain Filtering

For an image corrupted by salt-and-pepper noise, convolving with a Gaussian is a bad
idea, because such an operation will change the values of all the pixels, even of those that
are not corrupted. Moreover, such an operation will result in a blurry appearance due to the
weighted averaging operation. A much better solution in such a case is the median filter,
which replaces each pixel with the median of all the gray levels in a local neighborhood, gener-
ally defined by a square window. The median filter works on the assumption that a small per-
centage of the pixels)l’lgs been corrupted. A comparison of the results of median filtering and
Gaussian smoothing on an image corrupted by salt-and-pepper noise is shown in Figure 5.16.

Computing the median of a set of values involves sorting the values, then selecting the one
in the middle. Therefore, the standard median filter algorithm on an image is computationally
demanding, because for each pixel we must perform O(w? log w) operations to sort the gray
levels in the w X w window centered at the pixel. With a slight trick, a much more efficient
O(w) algorithm is able to compute the exact same result as the standard algorithm. The key to
this algorithm is to store the graylevel histogram of the pixels in the window, along with the
median and the number of pixels whose gray level is less than or equal to the median. These
two extra values of information can then be updated in (approximately) constant time for
each pixel. This faster algorithm is shown in Algorithm 5.11. For simplicity, out-of-bounds
details have been omitted from the pseudocode, and for compactness, the semicolons in lines
11, 13, 15, and 17 allow multiple lines of code to be displayed on a single line.

5.5.2 Non-Local Means

A particularly effective way to reduce the effects of noise in an image is to compute a weighted
average over all pixels in the image, a technique known as non-local means (NLM):

1
I'(xy) == D wed(x,y') (5.113)
(wy) €1
where n = 2 (s WxX is a normalization factor and wy - is the weight associated with

the pixels x = (x,y) and x’ = (x',y"), computed based on the similarity in appearance
of the two graylevel patterns in the windows surrounding the pixels. As a result, similar-
looking regions have more influence on the outcome than regions whose appearance is far

from the window around the target pixel. A typical implementation of non-local means,
shown in Algorithm 5.12, compares pixels using a distance function:

_ _dilxx')

Wxx — € 202 (5.114)

where the distance function sums the difference in gray levels between corresponding pixels
in some window W:

di(x,x") = D I(x+8) —I(x' +8)

(5.115)

Figure 5.16 LerFT: An 816 X 612image, and its corruption by salt-and-pepper noise. Right: The result of applying 3 X 3 median and Gaussian
filters, respectively, to the corrupted image. Notice that the median filter removes the noise much better than the Gaussian filter does.

Original image

A . - T s
o ; 3

Image corrupted by Image restored using Image restored using
salt-and-pepper noise median filter Gaussian filter

Jessica Birchfield

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

5.5 Nonlinear Filters 249

ALGORITHM 5.11 Perform median filtering on an image

Even more robust results can be achieved by applying a Gaussian weighting function to
this window, so that pixels near the center achieve more influence over the computation of
d;(x, x"). This straightforward extension is left as an exercise for the reader.

5.5.3 Bilateral Filtering

Recall that the convolution of a signal f{x) with a kernel g(x) is given by sliding a flipped
version of the kernel across the signal and computing the sum of the elementwise
multiplications:

710) = () @ g(x) = 3 S(i)gla =) 5.116)

where n = 2 g(i) is the normalization factor. Convolution is a linear operation because
it operates the same on every pixel, regardless of the value of the pixel.

Many applications benefit from also taking into account the values of the pixels during
the filtering. This concept leads to the bilateral filter, which contains two kernels, a seatial
kernel and a range kernel. The spatiarl?grmts neighboring samples according to
their proximity to the central sample, while tlﬁ?lge kernel g, weights neighboring samples

DA
according 1o their similarity in value to the central sample:

7(3) = £ © (sx). () = o5 Sl = e) ~7(0) 517)

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

250

Chapter 5 - Spatial-Domain Filtering

ALGORITHM 5.12 Perform non-local means filtering on an image

NoNLoCALMEANS(Z, w)

Input:

grayscale image /, set of pixels W specifying window

Output: smoothed image from applying non-local means filtering

1

O 0 3 O L B W N

—_
=

11

12 return [’

for (x,y) € I' do For each pixel in the output image (same size as input image),

initialize value to zero,
and normalization factor to zero.

for (x',y’) € I do For each pixel in input image,
d<0 initialize distance to zero.
for (5, Sy) € Wdo Compute the dissimilarity between the two windows.
d< I(x + 8,y +8,) —I(x' + 8,y +8,)
wexp(—d=xd/ (2«0 *0)) Set the weight to the similarity.
val <, w=I1(x',y") Update the sum of the weighted pixels,
norm <, w and the normalization factor.
I'(x,y) < val/norm Set the output pixel to the normalized value.

where © indicates bilateral filtering, n(x) = >, g,(x — i)g,(f(x) — f(i)) is the nor-
malization factor, and the variable z is used to emphasize that the input values to g, are not
pixel coordinates but rather gray levels. If the range kernel is the identity function, that is,
g (f(x) — f(i)) = 1, then bilateral filtering reduces to convolution.

The extension to 2D is straightforward:

I'(x,y) = 1(x,y) ®(G,(x,y), g(z) (x =iy —j)

gr(l(x,y) - I(i,j)) (5.118)

where n(x, y) 2 E G,(— j)g(I(x,y) — I(i,j)) is the normalization fac-
tor. For the same reasons that Gausglan kernels are used in convolution, Gaussian kernels
are also typically used in bilateral filtering:

2 2

G,(x,y) = e‘% g (z) = e 207 (5.119)
Because the bilateral filter weights pixels according to their proximity, it produces a
smooth blur, and because it weights pixels according to their values, it tends not to smooth
across intensity edges. The filter thus achieves edge-preserving smoothing, as shown in
Figure 5.17. Within a fairly homogeneous regi(;;lngf intensity, bilateral filtering is similar to
convolution, but near an edge, it only takes into account the pixels on the near side of the
edge, thus preserving the edge. Unlike convolution, which after repeated applications even-
tually converges to a flat image in which every pixel takes on the average value in the image,
bilateral filtering typically converges to an image in which every pixel is assigned the aver-
age value of the similar-colored pixels nearby.” Repeated applications of bilateral filtering

thus yield a cartoon-like image, as shown in Figure 5.18.

" Actually, such convergence occurs only if the range kernel is truncated (e.g., set to zero after several standard
deviations), or if the iterations are stopped when the change in the image is small — almost always the case in prac-
tice. With an infinite-support range kernel, bilateral filtering eventually leads to a flat image just like convolution.

5.5 Nonlinear Filters 251

0
y 0075 20 {0

Based on Fast bilateral fltering for the display of high-dynamic-range images, Durand and Dorsey ACM SIGGRAPH
conference (c) 2002, Association for Computing Machinery, Inc. http://doi.acm.org/10.1145/566570.566574

Figure 5.17 Bilateral filtering of a noisy step edge preserves the crisp edge as it smooths out the noise on either side of the edge.
The top row shows the kernel at three locations: Far from the edge, the kernel approximates a Gaussian, whereas near the edge it
approximates half a Gaussian.

There are three parameters in a Gaussian bilateral filter: the spatial standard deviation
o, the range standard deviation o, and the number of iterations n;,,:

I'(x,y) =I(x,y) @" (Gs(x,y).8,(2)) = (I(x,y) ®(Gs(x,¥).8,(2))) - ® (Gy(x,¥),8,(2))

repeated n;,, times

(5.120)

The code to implement bilateral filtering is straightforward, as shown in Algorithm 5.13.
Since the values of a Gaussian are nearly negligible beyond several standard deviations, we
can limit the processing to a fixed-size window of radius 2.50 in the spatial domain to limit
computation. For relatively small values of o, such a straightforward approach yields an
algorithm that, while not necessary efficient, is nevertheless tolerable for many applications.

5.5.4 Bilateral Filtering for Large Windows

When the window size is large, bilateral filtering is extremely slow, requiring computation that
is proportional to the size of the window for every pixel in the image. Just as we showed that
Gaussian convolution can be achieved in constant O(1) per-pixel time by approximating the

Figure 5.18 Repeated
applications of bilateral
filtering yield a cartoon-
like image in which
the colors are flattened
in local regions. The
result (right) was
obtained by applying
Niter = 5 iterations of
bilateral filtering on the
input (left).

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

252 Chapter 5 - Spatial-Domain Filtering

ALGORITHM 5.13 Perform bilateral filtering on an image

BILATERALFILTER (I, 0, 0, Rypp,)

Input: grayscale image I, standard deviations o and o, of Gaussian spatial and range kernels, number #n;,,, of

iterations
Output: bilateral-filtered image

1 for k < 1 to n;,, do

For each iteration,

2 for (x,y) € I do and for each pixel in the image,
3 val <= 0 initialize the value to zero,
4 norm < 0 and the normalization factor to zero.
5 for (5,,6,) € Wdo For each pixel ina = 2.50-; window,
6 d> <8, %6, + 3, * 6, compute squared spatial distance,
7 d, < I(x,y) —I(x + 8,y + 5,) and range difference
8 w<exp(—d%/(2*02)) *exp(—(d,*d,)/ (2 * o?)) to compute weight.
9 val < w*I(x + 8,y + 8y) Accumulate weighted sum
10 norm <, w and update normalization factor.
11 I'(x,y) < val/norm Set output to normalized weighted sum.
12 1< 1 Copy entire output image to input for next iteration.

13 return [’

Gaussian kernel with the convolution of box kernels, bilateral filtering with Gaussian kernels
can also be achieved in constant O(1) per-pixel time by approximating the Gaussian range ker-
nel. Several approaches have been proposed for achieving such an efficient approximation. To
understand how this is done for one such approach, let us first describe the notion of shiftability,
after which we will see that the Gaussian can be well approximated by a raised cosine.

A function ¢ (z) is said to be shiftable if for every translation 7, we have

n

$p(z—1) = E ci(m)pi(2) (5.121)

i=1
wherg ¢; are the interpolating.coafficicnts, ¢; are the global basisfunctons, and n is the
Quder of shiftability. Using shiftability, a local kernel can be decomposed into weighted
sums of the basis functions. It can be shown that the only smooth functions that are shift-
able are composed of sums and products of the polynomials and exponentials. For example,
consider the function

d(z) = Dlae™ (5.122)
i=1

It is easy to see that this function shifted by 7 can be expressed as the weighted sum of terms
depending only upon z, using weights depending only upon 7:

bz — 1) = Dae (5.123)
i=1

n

=2 e

(6574
i=1 €

a;e

(5.124)
cir) ¢i2)

5.5 Nonlinear Filters

253

Another example of a shiftable function is the cosine: cos(z — 7) = cos(7) cos(z) +
sin(7) sin(z), and similarly the sine: sin(z — 7) = cos(7) sin(z) — sin(7) cos(z).
In other words, any sinusoid’ can be expressed as the linear combination of two fixed
sinusoids.

The key to making bilateral filtering efficient is to approximate the Gaussian. Among the
many ways to approximate the Gaussian, one of the most effective for exploiting shiftability
is that of the raised cosine, which is the cosine raised to some power. It can be shown that
as the power increases, the raised cosine indeed converges to a Gaussian:

n 2.2
nlgnw [cos(%)} = exp (—7;> (5.125)

where the scaling by Vn prevents the expression from degenerating to zero almost everywhere.
The rate of convergence of raised Gaussians is much faster than that of other expressions such
as the Taylor series polynomials, thus requiring fewer terms to achieve a good approximation.
A reasonable choice is n = 3, as seen in Figure 5.19. Note that o> = 1/, where o is the
variance of the Gaussian, so that we can set y = o, ! given some desired variance o,.

To see how to apply this technique, let us consider the case n = 1. Although this yields
a rather crude approximation to the Gaussian, it simplifies the math considerably, enabling
us to develop some intuition before tackling the more difficult case n > 1. In other words,
let the range kernel be given by a windowed Gaussian:

(5.126)

g2.(z) =¢(z2) = {cos(yz) f-a=z=a

0 otherwise

where a = 77 so that the function is nonnegative and unimodal with a peak at z = 0.
Plugging this expression into the bilateral filter equation above yields

F(x) = f(x) ®(g,(x), g,(2)) (5.127)

= 03 S =) cos(y (1) ~ (1)) (5.128

Figure 5.19 The raised cosine approximates the Gaussian. The black line shows exp (—z2/202) for o = 4.The red lines show the raised
cosine, [cos('yz/\[n) ", forn = 1,2,and 3, wherey = 1/0.Forn = 2 the raised cosine still exhibits considerable oscillation, but for
n = 3it well approximates the Gaussian shape. For n = 20 (not shown), it is nearly indistinguishable from the Gaussian.

|
—_
W

1. 1.
0.8[08|
. 06[— 06}
SO Ot
T 04f T 04]
02[02]
) , oL oL
5 5 -15 =5 5 15 -15 15
Z
1 n=2

7 Since the term sinusoid allows for arbitrary phase, it includes both sine and cosine.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

254

Chapter 5 - Spatial-Domain Filtering

ﬁ S (0)8.(x = Dleos(3/(x) eos(vf(0)) = sin(y(x)) sin(yf(i))] (5.129)

ey (o83 () — sin(yf()) (5.130)

where we notice from the last expression that the basis functions are simply convolutions of
modulations of the original signal with a standard spatial convolution kernel:

Ef cos(yf(i))g,(x — i) = f(x) cos(yf(x)) @ g (x) (5.131)

Ef sin(yf(i)) g (x — i) = f(x) sin(yf(x)) ® g,(x) (5.132)

Similarly, the normalization factor is given by

ng(x— i) cos(y(f(x) — f(i))) (5.133)

cos(yf(x 2 cos(yf(i))g,(x —i) — sin(yf(x)2 sin(yf(i))g,(x — i) (5.134)

cos(yf(x)) [cos(yf(x)) ® go(x)] = sin(yf(x)) [sin(vf(x)) ® g,(x)] (5.135)

This is a truly remarkable result because it shows that the bilateral filter with an approxi-
mate Gaussian range kernel can be written as a linear combination of convolutions with
the spatial kernel.

Implementing this approach to bilateral filtering is straightforward. The input signal f(x)
is multiplied pointwise by the function cos(yf(x)), as well as by the function sin(yf(x)).
The results are then convolved with a Gaussian kernel with standard deviation o to yield ¢,
and ¢», as in Equations (5.131) and (5.132). The two signals ¢; and ¢, are then multiplied
pointwise by cos(yf(x)) and sin(yf(x)) again, respectively, and the results are subtracted
to form the numerator in Equation (5.130). A similar approach, but without the original input
signal f(x), yields the denominator 1 (x), as in Equation (5.135). Dividing the numerator and
denominator by each other yields the final result. Notice that every step of this algorithm
is constant O(1) per-pixel time, if we use the trick shown earlier for reducing Gaussian
smoothing to constant per-pixel time. The pseudocode for 2D bilateral filtering using this
rather crude approximation of the Gaussian range kernel is given in Algorithm 5.14.

Now let us consider n > 1, which yields a much better Gaussian approximation. Using
the expression cos § = % (e’ + ¢ /%) and the binomial theorem, it can be shown that

d(z) = {cos (\/ﬂ 22 <)exp(ui_/zm) (5.136)

where j = \/— 1. Note that we have n + 1 terms, leading to 2(n + 1) basis images. But if
n is even, then the expression inside the summation is constant when i = n/2, thus reducing
the number of basis images by 1.

Plugging this into the bilateral filter equation above yields

f(x) = f(x) © (g,(x), g.(2)) (5.137)
. o y(f(x) = ()Y
Sy e ((w)

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

5.5 Nonlinear Filters 255

ALGORITHM 5.14 Perform fast bilateral filtering on an image using the crude approximation of a cosine for the range kernel

S (S (U 10)
R O

- S el —i
- n(x) Zf()gs()

2) 2_(7) exp (j (20 - \;%yf(x))exp (_j (2i — \;?)lﬁ(i))

e f () a,(f(D))

where again we notice that the basis functions are simply convolutions of functions of
the original signal, after multiplying by a complex exponential, with a standard spatial
smoothing kernel. Similarly, the normalization factor is given by

n(x) = Ei‘,gs(x = i)(cos(W/——;f(i))))n (5.138)

] 2<2<) P (’%)) (2 exp (—J%) alx i)>

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

256

Chapter 5 - Spatial-Domain Filtering

This fast version of bilateral filtering, extended to 2D, is given m Algorlthm 5.15, where
Fact(n) = n! s the factorial function, needed because (}) = 7% ;-

Bilateral filtering is used for a variety of applications. Besides general denoising pur-
poses, it is widely used for tone mapping high-dynamic-range (HDR) images, as shown
in Figure 5.20. The bilateral filter is applied to HDR intensity values in the log domain,
followed by contrast reduction to yield low-dynamic-range (LDR) intensity values; glare
reduction can be achieved in a similar manner. Bilateral filtering can also be used for low-
light enhancement (LLE) using two images of a scene, one taken with a flash and the other
taken without a flash, as shown in Figure 5.21. The flash image captures detail, while the
no-flash image captures the unmodified viewing conditions (original scene ambience), so
applying the bilateral filter to the latter to remove noise and then applying a cross-bilateral
filter to the former using the latter allows the two images to be combined to preserve the
important properties of each.

ALGORITHM 5.15 Perform fast bilateral filtering on an image using the raised cosine for the range kernel

BILATERALFILTERFAST (1, 0, 0, Nz,

Input:

O 00 N L A W N =

[NS T NS T RO T N I N I e e e e e
A WO = O OV oo 3N N R WD = O

grayscale image /, standard deviations o and o, of Gaussian spatial and range kernels (range kernel is

approximated as a raised cosine) number 7;,,,. of iterations
Output: bilateral-filtered image

y <« 1/o,

n<3

For a reasonable approximation, it is recommended that n = 3.

for k < 1 to n;,, do
for i < O tondo

for (x,

Compute basis image G/ and coefficient image D;, along with H; for normalization

for (x,y) € I do

vey* (2%i—n)*I(x,y)/SQRT(n) scalar
B < Facr(n)/(Fact(i) #*Facr(n - i) *Pow(2, -n)) scalar
H(x,y) < [cos(v) sin(v)]" 2 X 1 vector represents complex number
Gi(x,y) < I(x,y) * Hi(x,y) 2 X 1 vector represents complex number
D;(x,y) < [cos(v) sin(v)]" =B 2 X 1 vector represents complex number
G} < SmootH(G,, o) Smooth real and imaginary channels separately.
H] < SmootH (H;, o) Smooth real and imaginary channels separately.

For each pixel, divide the elementwise multiplication of the images.

y) € Ido
num < 0

for i < 0 tondo

num <, D;(x,y) * G/ (x,y) multiplication of two complex numbers
den <, Di(x,y) * H(x,y) multiplication of two complex numbers
I'(x,y) < REAL(num/den) Extract real component after complex division.
I1<T
return [’

5.5 Nonlinear Filters 257

Figure 5.20 Tone mapping
of high dynamic range
images is often performed
using bilateral filtering.

Samot / Shutterstock.com

5.5.5 Mean-Shift Filter

Another edge-preserving filter closely related to the bilateral filter is the mean-shift filter.
In the mean-shift filter, each pixel iteratively moves in such a way as to seek the nearest mode
in the joint spatial-range space until convergence. More specifically, let x; = (x;, y;, v;) be
the coordinates and value of the i"™ pixel, where I(x;, y;) = v;. If we consider the set of
points { (x;, y;, v;) }/— |, where n is the number of pixels in the image, as discrete samples of
a probability distribution function (PDF), then an estimate f of the underlying continuous
PDF can be constructed as

vy L (X% 1 (X=X
ﬂ"“n?f(p) n§k< e (5.139)

where K(-) is the kernel function with bandwidth &, and where the rightmost part
assumes that K(-) is a radially symmetric kernel, so that K(z) = k(|z||*), where k()
is called the profile of the kernel K(-), with z an arbitrary vector. Note that k(-) is only
defined for nonnegative scalar values, and proportionality is used so that normalization
constants can be ignored in the profile.

Figure 5.21 One of
the more interesting
applications of the
bilateral filter is to
combine a flash
image (left) with
ano-flash image
(middle) to preserve
both detail and the
original viewing
conditions of the
scene (right).

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

258

Chapter 5 - Spatial-Domain Filtering

Two popular kernels for mean-shift filtering are the Gaussian (or normal) kernel, and
the Epanechnikov kernel, which are given (along with their profiles) as follows:

Ky(z) = ———=exp(—3|z|] ky(z) = exp(—3z) 2=0
v(z) (27)9 p(—2z[*) v(2) p(—32)
d+ 2 2 . .
(1 — |z)*) if|z] =1 11—z if0=z=1
K — 2¢q (k = 5.140
£(2) {0 otherwise (2) 0 ifz>1 ()

where c, is the volume of the unit d-dimensional hypersphere and d is the dimensionality
of the space (d = 2 for spatial coordinates, d = 1 for range values). For example, with
Gaussian kernels, Equation (5.139) becomes

PRI Ix — xif
f(x) a;z exp<—2h2 (5.141)

so that the bandwidth is the standard deviation. In the case of filtering images, X is
not in a Euclidean space, since the spatial and range dimensions have different units.
As a result, it is necessary to use different bandwidth parameters for the different
dimensions, so that k(|X — X;|>/h?) is replaced with k(|x — x|>/h2 + (v — v;)*/h?),
where x = (x,y) and x; = (x;,y;), and h, and h, are the spatial and range bandwidth
parameters, respectively.

An extremum of the PDF can be found by differentiating Equation (5.139), which, if we
let g(z) = —0k(z)/0X, yields:

af (x)
0x

—0 (5.142)

(5.143)

]
i =
Q
x\‘m
RS
»
D
Bl
> |
'S}
il
o
~_—
~_
—
Al
N—

n Y — Y. 2
_ g(lX X[H > (ii _ i) (5.144)

(5.145)

o (X=X
|: n <||X _ Xi||2>:| 2i1g< h2 X; B
g — X
i=1

5 |x — x|
izlg W2

weighted mean

mean-shift

Since the derivative of the exponential is an exponential, gy(z) = Sky(z) in the case of
the Gaussian kernel, and gz(z) = 1 in the case of the Epanechnikov kernel. Let us define
the kernel G(-) so that G(z) =« g(||z|?), then K(-) is called the shadow of G(-). It is not
difficult to see that the Epanechnikov kernel is the shadow of the uniform kernel, while the
Gaussian kernel is the shadow of itself.

In Equation (5.145) we have labeled the weighted mean of the points using the kernel
centered at X, as well as the difference between the mean and the current estimate X, where
the latter is known as the mean-shift. Since the extremum occurs when the mean-shift

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

5.5 Nonlinear Filters

259

is zero, if we let x@ be the estimate for the ™ iteration, then the estimate in the next
iteration can be set to x* 1) = x + AX®)_ where the difference between consecutive
estimates Ax" = X"V — X is just the mean-shift. This leads to the mean-shift filtering
algorithm, which repeatedly sets the estimate to the weighted mean:

> Ix — %™ _
i-18 2 Xi

_ (5.146)
n %@ — x,|?
28T

for t = 1,2, ... until convergence, where x© is the initial estimate. The algorithm per-
forms gradient ascent, which can be seen by noticing from Equations (5.142) and (5.145)
that the mean-shift vector is always proportional to the density estimate, and therefore it
points toward the maximum increase in the density.

The mean-shift algorithm is guaranteed to converge as long as the kernel profile is con-
vex and monotonically decreasing, which are true for both the Gaussian and Epanechnikov
kernels. For the latter, the algorithm converges in a finite number of steps, since the number
of locations with unique mean values is finite. With a Gaussian, the algorithm requires an
infinite number of steps, but it is easy in practice to terminate when the norm of the mean-
shift vector is below a threshold. The convergence of the algorithm arises from the automatic
adaptation of the step size in the gradient ascent. From the denominator in Equation (5.146)
we notice that regions of low-density values yield large step sizes, whereas high-density
regions lead to smaller step sizes. Thus, as the estimate approaches the nearest extremum,
the step sizes decrease until they reach zero, either actually or asymptotically.

The mean-shift filtering procedure is shown in Algorithm 5.16. In Line 2, {x} is initialized
to the spatial coordinates and range value of a pixel in the image. Lines 4-11 contain the
core procedure for updating X by accumulating the vector numerator and scalar denominator

i(r+l)

ALGORITHM 5.16 Apply the mean-shift filtering algorithm to an image

MEANSHIFTFILTER (1, hy, h,.)

Input: grayscale image /, bandwidth parameters A, and A,
Output: output image /' resulting from the mean-shift (edge-preserving) filter
1 for (x,y) € Ido For each pixel in the image,
2 (x",y",v") < (x, 3, I(x,y)) initialize x = (x',y’,v").
3 repeat
4 num < (0,0, 0) Loop through all
5 den <0 the other pixels in the image,
6 for (x;, y;) € I do accumulating the vector
7 weg(((x" = x)? + (' = y)2)/hg + (v = v)?/K}) numerator g (-)%,
8 num < w* (x;, yi, I(x;, y;)) and scalar
9 den <, w denominator 2 g(+) of Equation (5.146),
10 mean-shift < num/den — (x',y',v") and updating x accordingly.
11 (x',y',v") < num/den This is repeated until the norm of the
12 until NorM(mean-shift) < t mean-shift vector is below a threshold.
13 I'(x,y) < v’ Update the pixel value using the value in x.
14 return [’

260

Chapter 5 « Spatial-Domain Filtering

of Equation (5.146), looping through all the pixels in the image to compute the weighted
average. After the algorithm has converged, the output gray level is set to the final gray
level from the iterations, discarding the shift in spatial coordinates. Note that the algorithm
requires four nested for loops, which explains why mean-shift filtering can be quite slow. In
practice, the Gaussian kernel is typically truncated past £2.5A, or so, thus greatly reducing
the amount of computation; the Epanechnikov kernel is truncated by definition. Note also
that when the Epanechnikov kernel is used, the weight in Line 10 reduces to 1 for points in
the hypersphere and O for points outside, since the Epanechnikov kernel is the shadow of
the uniform kernel. An example of mean-shift filtering is shown in Figure 5.22.

The similarity between the bilateral filter and the mean-shift filter is obvious from
studying Equations (5.118) and (5.146). In fact, the two equations are nearly identical in
the case of the Gaussian kernel. The primary difference is that the bilateral filter updates
the gray levels of the pixels without shifting the spatial coordinates of the pixels, whereas
the mean-shift filter also shifts the spatial coordinates. Even though the shifted spatial
coordinates are eventually discarded, this aspect of the computation is what enables the
mean-shift algorithm to seek the nearest extremum of the PDF, and it is what guarantees
that the algorithm converges to a cartoon-like image, whereas a bilateral filter that runs
forever (without a truncated range kernel) will eventually yield a flat image in which all
pixels have the same gray level.

5.5.6 Anisotropic Diffusion

In physics, diffusion refers to the movement of molecules from regions of high concen-
tration to regions of low concentration. If we allow the graxlevel pixel values to indicate

the amount of concentration, then diffusion applied to an image would darken the bright
regions and brighten the dark regions. And if run forever, diffusion would eventually lead to
an image in which every pixel has the same value, namely the mean of all the pixel values.
Consider, for example, the following procedure. Let I'” refer to the image after the
™ iteration, with 1© = 1 being the initial image. Then repeatedly smooth the image by
computing for r = 1, 2, ..., a weighted average between each pixel and its 4-neighbors:

1 D(x,y) =19(x, y)
FAIO(x = 1,y) = 19(x,y))
FAI(x + 1,y) — 19(x,y))

Figure 5.22 Animage
(left) and the cartoon-
like result of mean-shift
filtering (right), using
hs = 32and h, = 16.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

5.5 Nonlinear Filters

i(t)(x,

261
A1y = 1) = 1V(x,y))
A,y + 1) — 19(x,y))
= (1= 40)19(x y) + 4MD(x, y) (5.147)
where the scalar A governs the step size, and
2= U0 = 1) + 190+ 1) + 190y = 1) + 19y + 1)) (5.148)

is the average of the 4-neighbors of the pixel at (x,y). To ensure convergence, 0 = A =< }; if
A= i, then the computation simply replaces each pixel with the average of its 4-neighbors
at each iteration; if A < ﬁ, then the computation increases or decreases the pixel value to
make it more like the average of its 4-neighbors.

Equation (5.147) is very similar to Gaussian smoothing, and it is easy to see that it will
eventually lead to a flat image in which every pixel has the same value. This procedure
is known as isotropic diffusion, because it propagates the pixel values in all directions
(that is, all of the four cardinal directions, due to discretization effects) equally. In contrast,
anisotropic diffusion means to smooth the image differently in the different directions.
Typically, this involves smoothing the image everywhere except across intensity edges, like
the edge-preserving smoothing behavior of the bilateral and mean-shift filters. In anisotropic
diffusion, the image values are smoothed by repeatedly performing local averages, but doing
so in a way that weights neighboring pixels less if they lie on an intensity edge. In this way,
the anisotropic diffusion process blurs the image within regions but not across boundaries.

The implementation of anisotropic diffusion is straightforward. For any iteration ¢, only
the latest 2D image /) is stored, from which the diffusion coefficients are computed for each
pixel and direction. To preserve image boundaries caused by intensity edges, let us define

O(x,y, Ax, Ay) = g(II9(x + Ax,y + Ay) — 19(x,y)|) (5.149)

where C¥(x, y, Ax, Ay) is the diffusion coefficient at pixel (x,y) in the direction (Ax, Ay)
at iteration 7, and g is a monotonically decreasing function, such as g(z) = exp(—z%/s2)
org(z) = (1 + z%/s%) !, where s is a scale parameter. Similar to the isotropic procedure
above, the new value of a pixel as

1 9(x,y) = 19(x, y)

FAC(x,y, =1,0) (I(x — 1,y) — I”(x,y))
FAC (x,y, +1,0) (IP(x + 1,y) — IP(x,y))
+ACO(x, 3,0, =1) (19(x,y = 1) = 19(x. y))
FACD (2,9, 0, +1) (1D (x,y + 1) — 19(x, y)) (5.150)

where 0 = A =] to ensure convergence.

To gain an appreciation for the underlying math, consider the family of continuous-
domain images obtained by convolving the original image /(x, y) with Gaussian kernels
having continuously increasing variance:

I(x,y,t) =I(x,y) ® Gauss,(x, y) (5.151)

where t = 0 is a continuous scale parameter that governs the amount of smoothing,
I(x,y,0) = I(x,y), and x and y are treated as continuous values as well. It can be shown
that the resulting 3D volume defined in Equation (5.151) is the solution to the so-called

heat equation, which is a physical equation describing the evolution of a heat distribution

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

262 Chapter 5 - Spatial-Domain Filtering

I(x, y,) over time ¢ in a homogeneous medium with isotropic conductivity, given an initial
heat distribution 7(x, y,0) = I(x, y):

OI(x,y,t)

_loo
ey = 2v I(x,y,1) (5.152)

where V2 is the Laplacian operator. This heat equation is a type of diffusion equation.
Note that in the physical equation the variable ¢ is actual time, whereas in the implementa-
tion above it is “pseudo-time” that corresponds to the iteration of the algorithm. The fact
that the Gaussian kernel is the unique kernel for solving this equation also follows from the
fact that it is the Green’s function of this heat equation at an infinite domain.

Similarly, the continuous anisotropic diffusion equation states that the change over time
is equal to the divergence of the weighted gradient:

OI(x, y, t
(xaty) =V-(C(x,y,t,Ax, Ay)VI(x, y, 1)) (5.153)
= C(x,y, 1, Ax, Ay)V?I(x,y,t) + (VC(x,y,1, Ax, Ay)) "VI(x,y, 1) (5.154)

where C(x,y,t, Ax, Ay) is the diffusion coefficient at pixel (x,y,f) in the direction
(Ax, Ay), V- is the divergence, V is the spatial gradient, and the second equation is obtained
from the first by the product rule of differentiation, noting that V-VI = VZI. It is easy to
see that this anisotropic equation reduces to the isotropic equation of Equation (5.152) if
C(x, v, t, Ax, Ay) = %, since VC = 0 if C is constant. The implementations above arise
from the approximation 01(’;7,”) ~1"*Y(x,y) — I(x,), and by using the 3 X 3 LoG
kernel defined by o = 0.

5.5.7 Adaptive Smoothing

Closely related to anisotropic diffusion is the concept of adaptive smoothing. Adaptive
smoothing simply computes a weighted average of the neighbors of a pixel, with weights
that discourage smoothing across boundaries:

_ S A+ iy + WO (x + iy +)

i wO(x + i,y +)

where the summation is conducted over a local neighborhood of the pixel and the weights
are defined to be inversely related to the magnitude of the image gradient:

|VI(x, y) II2)

25>

I(Hl)(x,y)

(5.155)

w(’)(x, y) = exp(— (5.156)
where s is another scaling parameter. Comparing Equation (5.155) with Equation (5.118),
it is clear that the bilateral filter is simply a special case of adaptive smoothing, with the
particular choice of weights determined by Gaussian spatial and range kernels.

5.6 Grayscale Morphological Operators

Why grayscale morphological operation?
feature detection Another important class of nonlinear image filters is that of morphological operators. In the

previous chapter we discussed binary morphological operators, such as erosion, dilation,
opening, and closing. These concepts can be naturally extended to grayscale images.
Graiscale morphology is used for a variety of image processing tasks such as

segmentation. :| sharpening.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

Why grayscale morphological operation?
feature detection

5.6 Grayscale Morphological Operators 263

5.6.1 Grayscale Dilation and Erosion

Recall from the previous chapter that a binary image can be viewed as a set of oN pixels,
so that the dilation or erosion of a binary image is given by the union or intersection of
translated versions of the structuring element placed within the image:

1@B=|JIs=|JBs=1{6:B; N1 +0} (binary or grayscale) (5.157)

5EB SE1
I6&B = NI = Q Bs={6:Bs<1} (binary or grayscale) (5.158)
SEB 6l

where 8 = (8,, 8,), and we have shown both center-in and center-out formulations for
completeness.

The extension to grayscale images is straightforward: just as a binary image can be
viewed as a set of (x,y) coordinates such that /(x, y) = ON, a grayscale image can be viewed
as a set of (x,y,v) coordinates such that I(x, y) = v. In other words, if we view the grayscale
image as a function of (x.v), then the image can be viewed as a set containing all the points
at or below the function, as illustrated in Figure 5.23. Similarly, a grayscale structuring ele-
ment (SE) is the set of points at or below the grayscale function defining the SE. With this
expanded understanding of the sets / and B, the definition of grayscale dilation and erosion
remains identical to Equations (5.157)—(5.158) above except with é = (5, Oy 8,) and
with B flipping not only 6, and 8, but also §,.

As an alternate view, recall that binary erosion sets the central pixel to oN if all of the
pixels overlapping the SE are on; otherwise it sets the central pixel to off. Similarly, binary
dilation sets the central pixel of a binary image to on if any of the pixels overlapping the
reflected SE are on; otherwise it sets the central pixel to off. Equating ofr and oN with the
binary values 0 and 1, respectively, it is easy to see that this computation is equivalent to

(I®B)(x,y) = max I(x+ 8,y +3,) (binary dilation) (5.159)
(6. 8,)EB

(I&B)(x,y) = min I(x+ 8,y +8,) (binary erosion) (5.160)
(5..8,)EB

since 0 is the minimum binary value and 1 is the maximum binary value. Extending these
definitions to grayscale images is straightforward:

(I®&B)(x,y) = max I(x+08,y+8,) —38, (grayscale dilation) (5.161)
(5,8, 8,)h

Figure 5.23 A grayscale
image can be viewed as the
set of all 3D points (x, y, v)
underneath the graylevel
function.

(e

S O
o |-
[OSI I\

y T
2

1 2 1 1 ?
21 1 0 2 ©

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

264

Chapter 5 « Spatial-Domain Filtering

(I&B)(x,y) = min I(x +8,y+8,) — 8§, (grayscale erosion) (5.162)
(5, 8,,8,)EB

These expressions make it obvious what to expect from applying these operators to an
image: dilation brightens an image, while erosion darkens it. (Note that in the case of
dilation, 8, in B means —3§,, in B, so that Equation (5.161) actually adds the value in B to
the image gray level rather than subtracting it.) Note that, for grayscale dilation/erosion to
achieve the exact same result as binary dilation/erosion, the foreground and background
pixels in the SE must be set to 0 and — o, respectively. For example, the grayscale versions
of the B, and Bg kernels of Equation (4.44) are, respectively

—© (0 —» 0 0 O
0 O 0 and 0 0 O
—© (0 —» 0 0 O

We distinguish between two kinds of grayscale structuring elements: a - has the
same value for all pixels in its domain, while a [NORSHBESE does not, where the domain is
defined as the set of locations for which the SE has values greater than negative infinity.
Thus, for example, the two SEs above are flat. Flat SEs are nearly always used in practice
for reasons such as the following: it is difficult to select meaningful values for a non-flat SE,
non-flat SEs can yield results outside of the valid range, and non-flat SEs incur significant
additional computational burden.

5.6.2 Grayscale Opening and Closing

Grayscale opening and closing are defined in the same way as binary opening and closing:
] ® B=(I®B)©B (grayscale closing) (5.163)
IoB=(ISB)®B (grayscale opening) (5.164)

Just as with the binary versions, the grayscale operators are duals of each other with respect
to complementation and reflection:

(IeB) = USEB (duality of grayscale dilation / erosion) (5.165)
(I6B) = I&B (duality of grayscale dilation / erosion) (5.166)

(1 ® B) = (1oB) (duality of grayscale closing / opening) (5.167)
T(IoB) = (71 ® B) (duality of grayscale closing / opening) (5.168)
D, v ith an SE | while

- . Results of grayscale dilation, erosion,
closing, and opening on an image are shown in Figure 5.24.

Figure 5.24 Animage, and the result of applying grayscale dilation, erosion, closing, and opening, respectively, using a flat, circular

structuring element.

Original image

Grayscale Grayscale Grayscale Grayscale
dilation erosion closing opening

View Apart /S|

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

5.6 Grayscale Morphological Operators 265

5.6.3 Top-Hat Transform

A particularly useful transform that builds on grayscale opening and closing is the top-hat
transform, illustrated in Figure 5.25. The white top-hat (WTH) transform, also known as
“top-hat by opening”, is the difference between the original image and the grayscale opening
of the image and therefore preserves objects that are brighter than their surroundings, while
the black top-hat (BTH) transform, also known as “top-hat by closing”, is the difference
between the grayscale closing of the original image and the image itself and therefore pre-
serves objects that are darker than their surroundings:

Iyry =1— (IoB) (white top-hat) (5.169)
Iyry = (I ® B) — 1 (black top-hat) (5.170)

The self-complementary top-hat is defined as Ify75; + I57s, and it extracts-
Structures that cannot contain the SE whatever theit relative contrast. 1 <t~ o1 .1

closing (like its binary counterpart) is extensive (assuming that the SE includes the ori-
gin) and because grayscale opening (also like its binary counterpart) is anti-extensive (also
assuming that the SE includes the origin), the grayscale values in the output of the WTH or
BTH are always nonnegative. It can be shown that the WTH is non-increasing and idem-
potent, while the BTH is neither idempotent nor increasing. The top-hat transform can be
used to correct for uneven illu@nation, with WTH used for dark backgrounds and BTH for
bright backgrounds. The top-hat transform with a large isotropic SE acts as a highpass filter,
removing the low frequencies of the illumination gradient. Opening with a large SE, on
the other hand, tends to remove relevant image structures but preserves the slowly varying
illumination function. A simple neighborhood-based contrast operator is to take the image
and add the WTH then subtract the BTH, i.e., (I + Iyzy — Iprs). Results of the various
top-hat transforms on an image are shown in Figure 5.26.

Figure 5.25 White top-hat
(WTH) transform (left),
and black top-hat (BTH)
transform (right).

I(x) I(x)

x X

I 1
Image 1 mage

1G] IS 1)

Opening /o B of image ¥ Closing [® B of image ~ ~*
I(x) I(x)

a A l a a
X X
White top-hat transform 7 — (/ o B) Black top-hat transform (7 ® B) — I

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

266

Original image

Chapter 5 - Spatial-Domain Filtering

White top-hat Black top-hat

Self-complementary
top-hat

View Apart /Shutterstock.com

Figure 5.26 Animage, and the result of applying the white top-hat, black top-hat, and self-complementary top-hat transforms,
respectively, using a flat, circular structuring element.

5.6.4 Beucher Gradient

Another highpass filter is the Beucher gradient, which is defined as the difference between
the grayscale dilation of the image and the grayscale erosion. Assuming an isotropic SE, this
operator outputs the maximum variation within the disk rather than the slope. Nevertheless,
the result of the computation approximates (and becomes equivalent to, as the radius tends
toward zero) the norm of the traditional gradient vector. The Beucher gradient is the most
common morphological gradient, but two other definitions of the morphological gradient
are the half-gradient by erosion (or internal gradient), defined as the difference between the
original image and the eroded image, and the half-gradient by dilation (or external gradient),
defined as the difference between the dilated image and the original image.

To compute the directional gradient, one can use a line SE instead of an isotropic SE.
One must be careful, however, to define the direction of the gradient as the perpendicular
to the direction that outputs the minimum directional gradient, rather than the direction that
outputs the maximum directional gradient. For example, a line SE applied to a line in the
image outputs the same morphological gradient in all directions except for the direction of
the line, where the output is zero.

5.7 Further Reading

The concepts of convolution, cross-correlation, and
linear time- (or space-) invariant systems can be found
in any good signal or image processing book (such as
Oppenheim and Schafer [1999] or Jain [1989]), although
the distinction between FIR and IIR filters is typically
emphasized more in the signal, rather than image, pro-
cessing literature. While viewing convolution as matrix
multiplication is not particularly useful in everyday
applications, it does provide a natural means to study the
set of all linear transformations of an image. Seitz and
Baker [2009] call this concept filter flow and present an
intriguing approach to estimate various transformations
that fall within this set, such as geometric transforma-
tions, vignetting, radial distortion, lighting changes, blur,
optical flow, and even stereo.

The importance of the Gaussian is widely known and
used. For a thorough treatment regarding the evaluation

of Gaussian kernels, with some alternate conclusions
than those presented here, see Trucco and Verri [1998].
The concept of cascaded convolution, in which convolu-
tion with a Gaussian kernel is approximated by repeated
convolutions with box filters, is due to Wells [1986].
The O(1) computation of Wells’s approach relies on the
moving average, which is related to the summed-area
table of Crow [1984] and the space-variant filtering with
arbitrarily sized polynomial kernels of Heckbert [1986].
For a discussion of the need for diagonal convolution to
preserve 2D circular symmetry in cascaded convolution,
see Rau and McClellan [1997].

An alternate approach to efficient Gaussian convo-
lution, which is also independent of the width of the
Gaussian, is to use IIR filters. This approach was first
described by Deriche [1987, 1990] and later revisited to
avoid having to recompute the coefficients of the filter

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

5.7 Further Reading

in Deriche [1993]. A similar approach was adopted by
Young and van Vliet [1995]. Yet another approach to
efficient (though not constant-time) large-kernel convo-
lution, called hierarchical discrete correlation, can be
found in Burt [1981]. The integral image is due to Viola
and Jones [2004], which is based on earlier work in com-
puter graphics and fits within the more general boxlets
framework of Simard et al. [1998].

The Roberts operator can be found in Roberts [1963],
which many regard as the first publication in computer
vision. Several years later, the Prewitt operator was
developed by Prewitt [1970] in the context of biomedical
image processing. The Sobel operator was first presented
in a talk at the Stanford Artificial Intelligence Project in
1968 by I. Sobel and G. Feldman entitled, “A 3x3 Iso-
tropic Gradient Operator for Image Processing,” but the
earliest known reference to the operator in print remains
Pingle [1969], who attributed it to Sobel. Ironically, this
“isotropic” operator is (like other discrete kernels) not
really isotropic once discretization effects are considered,
leading to the development of the Scharr operator, which
is described (in German) by Scharr [2000].

The use of Laplacian of Gaussian in image process-
ing is due to the pioneering work of Marr and Hildreth
[1980], who also first proved the equivalency between the
Laplacian of Gaussian and the Difference of Gaussians
(in the limit). This theory influenced later work on scale
space, including that of Witkin [1983] and Lindeberg
[1990, 1994] which later influenced the popular SIFT
feature detector of Lowe [2004]. The Gaussian pyramid
was proposed almost simultaneously by the early papers
of Burt [1981] and Crowley [1981], while the Laplacian
pyramid is discussed in the works of Burt [1981], Burt
and Adelson [1983], and Crowley [1981]. A more recent
paper discussing efficient implementation details is that
of Crowley et al. [2002].

The efficient O(w) median filter using the graylevel
histogram is due to Huang et al. [1979]. A faster O(log w)
algorithm can be found in Weiss [2006], but it is difficult
to implement. An even faster, constant-time O(1) algo-
rithm that also makes use of the graylevel histogram and
is quite easy to understand can be found in Perreault and
Héert [2007], where additional implementation details
are provided to vectorize the computation, enabling the
method to achieve approximately the same speed as that
of Weiss in practice. The non-local means (NLM) algo-
rithm is due to Buades et al. [2005].

The origins of the bilateral filter can be traced to the
nonlinear Gaussian filters of Aurich and Weule [1995]
and the SUSAN framework of Smith and Brady [1997],

267

although it was independently rediscovered by Tomasi
and Manduchi [1998], who gave the filter its present
name. An overview of the bilateral filter is given by
Paris et al. [2009]. To improve computational effi-
ciency, several approaches have been proposed. Durand
and Dorsey [2002] use the bilateral grid, whereas Weiss
[2006] assumes that the spatial weight kernel is a box
function. Porikli [2008] presents a variety of ways to
achieve efficient O(1) computation of various forms
of the bilateral filter using either integral histograms
or the Taylor series expansion to express the Gaussian
using power terms of the image. Other approaches are
described by Chen et al. [2007] and Yang et al. [2009].
The efficient algorithm presented in this chapter is from
Chaudhury et al. [2011], who show how to approxi-
mate the Gaussian using raised cosines, which provide
a better approximation; in follow-up work, Chaudhury
[2011] explains the concept of shiftability. An alter-
nate approach on fully connected graphs using polyhe-
dral lattices is in Adams et al. [2010], and a real-time
implementation of the bilateral filter for computational
photography applications is described in Rithe et al.
[2013].

Anisotropic diffusion is due to Perona and Malik
[1990], for which a good reference is Weickert [1998].
Adaptive smoothing is found in Saint-Marc et al. [1991].
Barash [2002] draws the connection between anisotropic
diffusion, adaptive smoothing, and bilateral filtering, and
fixes adaptive smoothing to make it consistent with the
anisotropic diffusion equation; and in follow-up work
Barash and Comaniciu [2004] also connect these with
mean-shift. The original mean-shift algorithm, which
has been called Gaussian blurring mean-shift (GBMS)
because the original data values are changed each itera-
tion, can be found in Fukunaga and Hostetler [1975].
Interest in mean-shift was renewed by Cheng [1995],
which introduced Gaussian mean-shift (GMS), the ver-
sion explained in this chapter. The difference between
GBMS and GMS, including the superior performance
of the latter, is explained by Rao et al. [2009]. Further
developments to mean-shift, along with practical appli-
cations such as filtering and segmentation, are due to
Comaniciu and Meer [2002]. Mean-shift has also been
used for tracking by a variety of researchers, such as
Comaniciu et al. [2003], Avidan [2005], and Birchfield
and Rangarajan [2005].

The top-hat transform is due to Meyer [1979], while
the Beucher gradient was introduced in Rivest et al.
[1993]. For further information, consult either the book
by Serra [1982] or the one by Soille [2003].

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

268 Chapter 5 « Spatial-Domain Filtering

PROBLEMS

E;I;Given the 1D kernel g(x) =[8 4 1 4 9 3 2 4 2] answer the
ollowing: a) What is its width? b) Half-width? ¢) Zero-based index of the central element?

{_S:Ng].Convolve the 1D input signal f(x) =[5 4 0 3 8 2] with the kernel
g(x

=3[1 2 1]. To properly handle the borders, extend the input by replicating the

values, and set the output length to be the same as the input. Would the result of cross-
correlation be the same as or different from that of convolution? Explain.

‘Convolve the 2D image I with the 2D kernel G, both given below. To properly handle
the borders, extend the input by replicating the values, and set the output size to be the same
as the input.

5 4 0 3 1 1 2 1
I=(6 2 1 8 G=E2 4 2
7 9 4 2 1 2 1

5.4 Repeat the computation of the previous problem using the separable version of the
kernel. First convolve with the horizontal ; [1 2 1], then with the vertical § [1 2 1].

5.5 Convolve the following grayscale image with a 3 X 3 Gaussian (computed using Pas-
cal’s triangle), minimizing the number of computations used. Handle borders by extension.
What is the normalizing constant?

8§ 2 1 5
0 1 3 0
1 0 1 6
0 4 0 1

5.6 Write the convolution matrix associated with the convolution kernel
g(x) =%I[1 3 6 3 1] Assume aninput of length 5, and that the input is extended
by replicating the values.

For each of the kernels below, specify whether it is a smoothing or a differentiating

ernel.

(@ 52 4 6 8 6 4 2]

® 1 2 3 2 1 0 -1 -2 -3 -2 -1]
© 9 1 -1 -9]

@ [9 1]

5.8 For each of the smoothing kernels below, specify the normalizing constant a:
@ 1 3 6 3 1]

(b) L[22 99 22]

(¢ 1[3 16 109 16 3]

5.9 For each of the following filters, draw the impulse response, and specify whether it is
FIR or IIR, where fis the input and f” is the output.

@@ f'(x)=fx—1)+2f(x) +fx+1)
b f(x)=f(x—-1)—-f(x+1)
© f(x)=fx)+f(x-1)

5.10 Isthesystem f'(x) = af(x) + b linear (in the sense defined in Section 5.1.4), where
a and b are scalars? Why or why not?

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

 ZeroV2

 ZeroV2

 ZeroV2

 ZeroV2

Problems

269

5.11 Compute the variance of the following kernel: [1 2 3 4 5 4 3 2 1]

5.12 Construct the 7 X 1 Gaussian kernel using the binomial triangle, including the nor-
malization. Compute its variance.

5.13 Constructa3 X 1 Gaussian kernel by sampling a continuous Gaussian with o> = 0.4.
What is the resulting variance of the discrete kernel?

Construct a 1D Gaussian kernel by sampling the Gaussian function with ¢ = 1.8. Use
quation (5.39) to determine the length of the kernel, and be sure to normalize properly.
What is the standard deviation of the kernel after sampling?

5.15 Is the following kernel separable? If so, then separate into two 1D kernels. If not,
then state why not.

3 6 9
6 12 18
12 24 36

5.16 Write the matrices G, and G, for applying the horizontal kernel g, = [1 2 1]T
and vertical kernel g, = [3 5 3]T as the matrix multiplication in Equation (5.38) to a
4 X 4 image with reflection.

5.17 Another way to compute the partial derivatives of a 2D array of pixel values is to fit
aplane I(x,y) = ax + by + c to the values (in the least squares sense), then compute the
partial derivatives of the plane.

(a) Show that for a 3 X 3 array, the result of this procedure is identical to applying the
Prewitt kernels.

(b) What are the results of applying this procedure to 2 X 2,4 X 4, 0or 5 X 5 arrays?
(c) Show that the magnitude of the gradient computed using the Roberts' cross operator is the
magnitude of the gradient computed using a 2 X 2 array multiplied by the factor /2.

5.18 Show that the Sobel kernels are equivalent to the convolution of 2 X 2 finite differ-
ence kernels along both axes with a 2 X 2 box filter.

We saw in Section 5.1.2 that a linear shift-invariant system can be represented as

matrix multiplication. Does the same hold true for a linear shift-varying system? If so, then
what property of such a matrix indicates whether a linear system is shift-invariant or not?

5.20 A scanline of a grayscale image has the following values:
[7 5 3 2 5 0 8 9] Convolve this scanline with a) Gaussian, b) Gaussian
derivative, and c¢) Gaussian second-derivative kernels, all with % = 0.5. Handle borders
with reflection.

5.21 Explain why there is a) only one 3 X 1 Gaussian derivative kernel, and b) only one
3 X 1 Gaussian second-derivative kernel.

5.22 Smoothing a digital image is similar to defocusing the lens of the camera, because
both approaches result in a blurred image. Answer the following:

(a) Can you think of any differences between the results of the two approaches? (Hint:
Consider what happens to the image of a bright light.)

(b) What shape should the convolution kernel be to simulate the defocusing ability of a lens?

5.23 Show that magnitude of the gradient is not isotropic when implemented discretely, by
comparing and contrasting the Euclidean, Manhattan, and chessboard versions on the two

 ZeroV2

 ZeroV2

270

Problems

images below, using the Prewitt, Sobel, and Scharr operators. Which operator, and which
metric, yields the most consistent behavior on these two inputs?

I 1 0 1 0 O
1 1 0 1 1 0
1 1 0 I 1 1

5.24 Prove that the output of a discrete linear shift-invariant system is the convolution of
the input signal and the impulse response. Hint: Express the input as the sum of weighted
Kronecker delta functions, then apply the additivity, scaling, and shift-invariant properties.

5.25 The isotropic Gaussian is the only rotationally symmetric 2D function that is separable.
Prove that it is rotationally symmetric. (Hint: A 2D function is rotationally symmetric if and

only if (9f/0x)y = (9f/0y)x.)

5.26 We have argued that in general, separable convolution is more efficient than non-
separable convolution. Can you imagine a scenario in which the separable implementation
might actually be slower?

A 3 X 3 Laplacian of Gaussian (LoG) kernel applied to the image below should equal

1, since the change in slope along the x direction is 1, and the change in slope along the y
direction is 0. (That is, the slope between the first and second columns is zero, and the slope
between the second and third columns is one, so the change in slopeis 1 — 0 = 1.) Select
four of the LoG kernels introduced in this chapter, and show that they all satisfy this criterion.

0 0 1
0 0 1
0 0 1
5.28 Is the following a LoG kernel? Why or why not?
2 -1 2
1
-1 -4 -1
2 -1 2

5.29 Table 5.5 lists a number of different LoG kernels. Show that the following is also a
LoG kernel, and compute its variance.

1 6 1
-6 —28 6
8 1 6 1

5.30 Derive the expression for the third-derivative Gaussian kernel, Cj% gauss2(x).

5.31 Given the smoothing kernel gaussg ;5 = % [1 14 1], calculate the associated
3 X 3 LoG kernel.

5.32 Prove that the convolution of two Gaussians is a Gaussian. For simplicity, assume
continuous 1D signals.

5.33 Another way to verify the normalization of a LoG kernel is to convolve
the kernel with t!’le paraboloid ‘)gz + y? and ensure that the result equals 4, since
V2(x2 +y?) = L(x? +y?) + %(xz +y?) =2+2=4

x2

(a) Whatis the 3 X 3 image that results from sampling the central part of the paraboloid
2 2
x° + y7?
(b) Using this image, select four of the LoG kernels introduced in this chapter, and show
that they all satisfy this criterion.
(c) Would the result be different if the image were obtained by sampling a non-central
part of the paraboloid? Why or why not?

 ZeroV2

Problems

271

5.34 We mentioned that convolution must not be performed in place. Show an example
where performing convolution in place erases nearly all image information.

5.35 Prove that convolution is commutative.

5.36 State the 3 X 3 convolution kernel whose effect is to shift the image to the right by
one pixel.

5.37 Describe a scenario in which the normalization factors associated with Gaussian
derivatives are important.

5.38 What filter would you use to remove salt-and-pepper noise? Is this a linear or non-
linear filter?

5.39 Write pseudocode for implementing convolution with a box kernel of arbitrary size,
computing the running sum to ensure that the procedure is computationally efficient.

5.40 In some applications, it is important to reverse the effects of convolution. If the kernel
is known, how might this deconvolution be performed?

5.41 Show that the application of a 2D LoG kernel to a constant or ramp graylevel function
yields zero.

5.42 Verify that convolving the signal [6 8 3] with the kernel § [1 2 1] twice is
identical to convolving the signal with = [1 4 6 4 1],

5.43 Compute the integral image of the following grayscale image. Use the integral image
to compute the sum of the inner 3 X 3 array of pixels.

218 87 246 63 175
106 161 231 32 207
16 141 136 140 202
8 253 55 112 188
73 8 165 209 99

Compute the a) grayscale dilation and grayscale erosion of the 5 X 5 image shown
in the previous question, using a 3 X 3 flat SE consisting of all zeros (the grayscale version
of Bg). Then compute b) the grayscale closing and opening, and c) the white top-hat and
black top-hat transforms. Handle borders with reflection.

In an attempt to remove noise, an image is convolved with a 3 X 3 Gaussian kernel
composed from two 1D kernels, namely, the horizontal gauss, 5 kernel and the vertical
gaussg 5 kernel. Then, to differentiate, the resulting smoothed image is convolved with
horizontal $[1 0 —1] and vertical 3[1 0 —1] kernels. Write the equivalent 2D
kernels that, if the original image were convolved with them, would yield the same result.
What do you notice about this kernel that is undesirable? What are the implications regard-
ing smoothing before differentiating?

Write code in your favorite language to construct the Gaussian, first-derivative, and
second-derivative kernels, all parameterized by the standard deviation o. Then write code
to apply these kernels to a grayscale image, computing the smoothed image, the gradient
components in x and y, the gradient magnitude, and the LoG.

5.47 Implement both the bilateral and mean-shift filters and apply them to a grayscale
image. Compare and contrast the two algorithms. Then apply them separately to the color
channels of an RGB image. Describe the output that results.

CHAPTEB 6 .
Frequency-Domain Processing

n the previous chapter we considered ways to transform an image by filtering in the spatial domain. A complementary

approach is to filter in the frequency domain using the well-known principle that convolution in the spatial domain is

equivalent to multiplication in the frequency domain. In this chapter we discuss the Fourier transform in an effort to
explore this concept of the frequency domain, particularly as it relates to discrete signals. We then examine frequency-
domain approaches to filtering and their connection with spatial-domain filtering.

6.1 Fourier Transform

Suppose we have a one-dimensional continuous signal g (¢), such as an audio signal contain-
ing speech or music. Oftentimes we want to be able to analyze such a signal by determin-
ing which frequencies are present. Such information can be used in a variety of ways, for
example to classify the signal (whether it contains primarily high or low frequencies) or to
filter the signal (to remove, for example, high-frequency noise or a low-frequency hum).

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

6.1 Fourier Transform

273

6.1.1 Forward Transform

The standard technique for performing frequency analysis of a signal g() is to compute its
Fourier transform’ G(f), which is defined as the integration of the signal after first mul-
tiplying by a certain complex exponential:*

0

G(f) = Flg} = / g(1)e > dy (6.1)

—

where F indicates the Fourier transform, ¢ indicates time (the domain of the original signal),
findicates frequency (the domain of the transformed signal), and j = V —1. If fis measured
in seconds, then fis measured in inverse seconds, also known as hertz (1 Hz = 1/sec).

This equation, which at first glance may seem intimidating, can be made more under-
standable by applying Euler’s formula, ¢/’ = cos § + j sin 6:

G(f) = /Zg(t) cos 2m fidi +j /:—g(t) sin 277 ft dt

— (6.2)
Geven Goaa

or G(f) = Gpen(f) + jG,au(f). Here we see that for any given frequency £, we obtain a
measure indicating the presence of that frequency in the signal by multiplying the signal by
a cosine and sine with frequency fand integrating them separately. Using complex numbers
is just a convenient way of allowing us to express two separate quantitiem
in a single equation. We could just as easily have defined the Fourier transform to be a pair
of numbers for each frequency: G(f) = (Goyen(f), Goua(f)), but this definition would
lose some of the elegant mathematics that comes for free when we use complex numbers.

The reason we call these two numbers G,,,, and G, is that the former captures the fre-
quency information in a signal with even symmetry, while the latter captures the frequency infor-
mation in a signal with odd symmetry. That is, G,,;; = O for any signal with g(#) = g(—1)
for all ¢, and G,,,,, = O for any signal with g(¢#) = —g(—1) for all z. For a signal that has
neither even nor odd symmetry, the two numbers together capture the frequency information.

We say that the function g is a time-domain signal if its domain is time (e.g., an audio
signal), or a spatial-domain signal if its domain is some spatial coordinate (e.g., an image
graylevel function along a row or column of a camera’s imaging sensor). In either case

is the standard way to convert the original signal into the frequency

domain, and the math is the same for both. The resulting frequency-domain representation
of the signal is like a reverse phone book in which the entries are sorted by phone number
rather than by name. This alternate representation makes it easy to discover information that
is hidden in the original signal, such as which frequencies are present.

To see how the Fourier transform works, let us consider a simple example.

EXAMPLE 6.1

Solution

Compute the Fourier transform of g(#) = cos 2000 7+.

This continuous signal is a pure even sinusoid with frequency f = 1000 Hz = 1 kHz. We
expect, therefore, that the Fourier transform will contain only real values (G,,; = 0 because
the signal has even symmetry), and that the Fourier transform will somehow indicate that

" Joseph Fourier (1768-1830) was a French mathematician and physicist who also played a key, if indirect, role
in deciphering the Rosetta Stone.

* In this chapter we depart from our usual practice of using capital letters to indicate 2D functions, in order to
follow the common notation of using capital letters to denote frequency-domain signals.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

274

Chapter 6 « Frequency-Domain Processing

the signal contains only a single frequency. From Euler’s formula it is not hard to show that
cos @ = 1 (e’ + ¢779), which plugs into Equation (6.1) to yield

G(f) = /w;(ejZOOOm 4 I2000m1) =j2m i gy 6.3)
_ l/w(ejZﬂ-(lOOOf)t I efj2ﬂ-(100()+f)t) d (6.4)
2 — oo
1
= (8(f = 1000) + 8(f + 1000)) 6.5)

where 8(f) is the Dirac delta function, which is defined (informally at least) as an infinite
spike at the origin with unit area. In other words,

_ _Jee iff=f
o= h) = {O otherwise

(6.6)

and f7m8(f) df = 1. This Fourier transform pair is illustrated in Figure 6.1. In case you are
wondering why there is a spike at both the positive and negative frequencies (or, rather, what
is the meaning of a negative frequency), consider a spinning wheel. The Fourier transform
captures the frequency at which the wheel spins, but it cannot distinguish whether the wheel
spins clockwise or counterclockwise; the positive and negative frequencies indicate these
two possibilities.

Although deriving Equation (6.5) from Equation (6.4) is not trivial, when we consider
the inverse Fourier transform below we will show that Equation (6.5) is indeed the correct
answer. Additional intuition can be gained by simply substituting values: for example, it
is not surprising that G(f) blows up at f = 1000, since 2100011 — 0 — 1, leading
to fil dt, which is unbounded; similarly, it is not surprising that G(f) = 0if £+ 1000,

since e/27(1000=1)1 i just a complex exponential, and the oscillations of sine and cosine

functions cause their positive and negative portions to cancel each other when integrated.

Figure 6.1 A continuous
time-domain signal (left)
and its Fourier transform
(right). The latter reveals that
the signal is a pure sinusoid
with frequency 1000 Hz,
since it contains two infinite
spikes (Dirac deltas) at
f=1kHzand f = —1kHz.
Note that the multiplicative
factor 3 has no effect on the
display. See the text for an
explanation of the negative
frequency.

0.8 |
0.6 |-
0.4

02}

f (KHz)
2 (8(f = 1000) + 8(f + 1000))

t (milliseconds)

cos 20007t

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

6.1 Fourier Transform 275

6.1.2 Inverse Transform

One of the convenient properties of the Fourier transform is that it is reversible. That is, the
original signal can be recovered from its frequency-domain representation by computing
the inverse Fourier transform, which surprisingly is defined in exactly the same way
as the forward Fourier transform except for the sign in the exponent, and the fact that the
integral is computed over frequency rather than over time:

s =716} = | “G(f)er af 6.7)

—©

For all practical purposes (that is, under rather mild mathematical assumptions), the forward
and inverse transforms cancel each other, i.e., 7~ {F{g}} = g and F{F {G}} = G.

EXAMPLE 6.2 Compute the inverse Fourier transform of G(f) = 3 (8(f — 1000) + 8(f + 1000)).

Solution To solve this problem, we make use of the sifting property of the Dirac delta function,
namely,

)

/ W()S(f — fo) df = h(fy) (6.8)

for any function A(f'). The sifting property is easy to see, since the Dirac delta function
multiplies the entire function by zero except for the value at f = f,. Plugging into

Equation (6.7) yields
g(r) = /m;(é(f— 1000) + &8(f + 1000))e’>™ af (6.9)
=% wé(f— 1000)ej2“f’df+% wa(f+ 1000)e/?™" df (6.10)
— lejZOOOm + lefj2000m (6.11)
= cos 20007t ? (6.12)

where the last equality arises from Euler’s formula. Thus we see that the forward transform
of the previous example, which is difficult to derive analytically, is readily obtained by
considering the problem in reverse.

6.1.3 Sampling and Aliasing

When a continuous signal is sampled, it becomes a discrete signal. It would be natural to
assume that some information is lost in the process of sampling, thereby making it impos-
sible to reconstruct the original signal from its samples. In fact, however, according to the
Nyquist-Shannon sampling theorem," it can be shown that if a certain condition holds
true, then the discrete samples contain just as much information as the original signal, so
that the original signal can be reconstructed exactly from the discrete samples. This condi-
tion is that the sampling rate must be greater than the Nyquist rate, which is twice the

"H. Nyquist (1889-1976) and C. Shannon (1916-2001) were pioneers in information theory at AT&T Bell Labs.
The latter’s Master’s thesis is sometimes considered the most important such work ever produced.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

276

Chapter 6 « Frequency-Domain Processing

highest frequency in the signal.* A signal that contains such a maximum frequency is called
a band-limited signal, so this theorem only applies to band-limited signals.

Figure 6.2 shows a continuous signal sampled at three different frequencies. When the
sampling frequency is greater than the Nyquist rate, we say that the signal is oversampled,
in which case perfect reconstruction is possible. When the sampling frequency is lower
than the Nyquist rate, the signal is undersampled, and important information about the
signal is irrecoverably lost. Similarly, when the sampling frequency is exactly the Nyquist
rate (i.e., two samples for each period of the highest frequency), the signal is critically
sampled, and the original signal is also (just barely) unrecoverable.

When a signal is undersampled, aliasing occurs. An alias is an assumed name, so it is
as if the high frequency (which is higher than half the sampling rate) shows up as a dif-
ferent frequency. If fis the frequency of the signal being sampled, and f; is the sampling
rate, then the aliased frequency is given by | f,n — f|, where n = Rounp(f/f;). (Note that
if f; > 2f, then n = 0 and the aliased frequency is identical to the actual frequency, i.e.,
there is no aliasing.) In the right side of Figure 6.2, for example, f = 1000 and f; = 1250,
so the aliased frequency is [1250-1 — 1000| = 250, because n = Rounn(1000/1250) = 1.
In other words, when the signal is sampled at + = 0.8 ms, it has undergone 0.8 periods. The
value at this time is exactly what would have been obtained by sampling a 250 Hz signal,
which would have undergone only 0.2 periods. At this sampling rate, therefore, it is impos-
sible to tell a 1 kHz signal (the blue curve in the figure) from a 250 Hz signal (the red curve).
This phenomenon is readily seen in old Western movies, where, as a wagon speeds up, its
wheels appear at first to speed up, then slow down, then rotate in the opposite direction. For
this reason, aliasing is also known as the “wagon wheel effect.”

6.1.4 Four Versions of the Fourier Transform

The Fourier transform introduced in Equation (6.1) is actually one of several variations of
the concept. As we have just seen, signals can be either continuous or discrete, and they can
be defined everywhere (infinite duration) or over a limited domain (finite duration). These
choices lead to four versions of the Fourier transform, as shown in Table 6.1. The version we
have considered so far is applicable to continuous, infinite duration signals, in which both the
time and frequency values are defined for all real numbers. The discrete-time Fourier transform

Figure 6.2 A continuous 1 kHz time-domain sinusoid sampled with 3 different sampling frequencies: 5000 Hz (left), 2000 Hz (middle),
and 1250 Hz (right). The Nyquist rate, which is twice the frequency of the signal, is 2000 Hz. Sampling at higher than the Nyquist rate
preserves the information in the signal, while sampling at lower than the Nyquist rate leads to aliasing. In this case the frequency of the
aliased signal (red curve) is 250 Hz.

0.8

0.4}
0

g(x)

-04
—0.8

T T T T 0.8 T T T T 0.8 T T T T
. 0.4 - 041 i
1= 0 1 = of |
i] &= i 1 = i i
- 1 -04} . —04} 1
i Il Il Il i _0'8 i Il Il Il] _0'8 i Il Il Il i
0 1 2 3 4 0 1 2 3 4 0 1 2 3 4
¢ (milliseconds) t (milliseconds) ¢ (milliseconds)
Oversampled Critically sampled Undersampled

Do not confuse the Nyquist rate (twice the highest frequency), which is a property of the signal, with the Nyquist

frequency (half the sampling rate), which is a property of the sampling system.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

6.2 Discrete Fourier Transform (DFT) 277

infinite duration

finite duration
(periodic)

continuous discrete

Fourier transform Discrete-time Fourier transform (DTFT)
G(f) = [g(n)e 7> di G(f) = 2 __g(x)e >

g(t) = [G(f)e I df g(x) = f_iG(f)ejZ”fxdf

tER fER xEZ f€[-33]
Fourier series Discrete Fourier transform (DFT)
2 j w=1 —j2mkx/w
G(k) =} /_zgmeﬂzﬂmdl G(k) = X" g(x)e 2/

: 1 w—1

© . — Jj2mkx/w
g(1) = X, G(k)emHT gx) = 3, G(ke

te[_%’%] kEZ XEZO:w—l kEZO:w—l

TABLE 6.1 The four versions of the Fourier transform.

(DTFT), on the other hand, applies to signals defined only for discrete values of the domain
(but still extending forever), in which case the frequencies are defined only up to the value of 3
due to the Nyquist-Shannon sampling theorem just mentioned. In the Fourier series, the roles
are reversed, so that the continuous signal is represented as an infinite sum of weighted sinu-
soids. Finally, the discrete Fourier transform (DFT) applies to signals that have been sampled
a finite number of times, so that both the samples and the frequencies are discrete and finite.

6.2 Discrete Fourier Transform (DFT)

In this chapter we focus our attention primarily on the last of the four versions, namely, the
discrete Fourier transform (DFT). The DFT is arguably the most practical of the versions,
since to be stored in a digital computer a continuous signal must be sampled a finite number
of times. As a result, all | EHIDNRIBIBNEE 2rc stored as discrete. finite-duration signals, so
that if you ever run across the Fourier transform of a real-world signal, you are probably
looking at a DFT. Moreover, the discrete mathematics behind the DFT is much simpler
than that of the continuous Fourier transform, making it much easier to establish results and
recognize connections between different aspects of the theory. One of the nice properties of
the DFT is that, unlike some of the other versions, it always exists."

6.2.1 Forward Transform

Let g(x) be a 1D discrete signal with w samples. The DF T of g is defined as the summation
of the signal after multiplying by a certain complex exponential:

G(K) = Fle(x)} = S g(x)e i 6.13)

where x and k are integers. Recognizing the similarity between this equation and the continuous
version in Equation (6.1) , we see that the discrete version replaces the integral with a summa-
tion, and f with é, so that the latter plays the role of a discrete frequency. Similarly, in the dis-
crete domain the sifting property is achieved with the Kronecker delta function, defined as

" The Fourier series, for example, only exists for signals that satisfy the Dirichlet conditions.

278

Chapter 6 « Frequency-Domain Processing

1 ifk =k
o(k — ko) = 6.14
(0) {0 otherwise ()
The DFT takes a discrete signal consisting of w samples (x = 0, 1,2, ...,w — 1) and
produces an output also consisting of w samples (k = 0, 1,2, ...,w — 1). Typically, the

input signal is real-valued, whereas the output is complex-valued due to the use of complex
exponentials. As with the continuous version, Equation (6.13) can be rewritten by noting
that Euler’s formula, ¢/’ = cos 6 + j sin 6, allows us to express the complex exponentials
in terms of sines and cosines:

G(k) = Flg(x)} = Wﬁg(x)(cos 2T — jsin 2:;’%) 6.15)

x=0

where again it is obvious that f = £ This formula leads to a straightforward implementation
for computing the DFT, presented in Algorithm 6.1. Although this pseudocode is per-
fectly valid, it is not widely used due to its inefficiency. A more efficient algorithm is the
fast Fourier transform (FFT), which by a clever trick reuses intermediate computations
to reduce the running time from 0 (w?) to O(w log w) — a substantial improvement. All
modern implementations of the DFT use some variation of the FFT algorithm, and most
versions of the FFT algorithm require the length of the signal to be a power of 2, i.e.,
w = 2" where n is an integer. If this condition does not hold, then the signal is zero-padded
to increase its length to the next power of 2.

6.2.2 Inverse Transform

Like the continuous Fourier transform, the DFT is reversible. That is, given the DFT of a
signal, the original signal can be recovered by applying the inverse DFT:

w—1

8() = FTHG(O} = o S Gk 2Tl 6.16)

k=0

ALGORITHM 6.1 Compute the DFT of a 1D signal (slow version)

DiscRETEFOURIERTRANSFORM (g[0], . . ., g[w — 1])

Input:

real 1D signal g of length w

Output: real (G,,,,) and imaginary (G,,,;) components of the DFT of g

fork<~Otow — 1do

1
2
3
4
5
6
7
8

Geven[k] e O
Goadlk] <0
f<k/w

forx <~ 0Otow — 1do
Goaalk] < Gogalk] — glx] * sin(2 * 7 * f* x)

return G,,.,,, G,

Again, the inverse transform is identical to the forward transform except for the sign of the
exponential and the summation variable. The scaling factor L is needed to ensure that the
two transforms are inverses of each other, that is, 7~ '{ F{g}} = gand F{F Y{G}} = G.
But this factor may be placed in either transform, or alternatively \% may be placed in front

6.2 Discrete Fourier Transform (DFT) 279

6.2.3 Properties

of both; what is important is that the multiplication of the two numbers is equal to =. The
implementation of the inverse transform is made clear using Euler’s formula:

w—1
g(x) = F HG(k)} = ! EG(k)(cos ZWka + jsin 2:;kx> (6.17)

Wk=0

w—1
1 27k 21k
--3 +j Sy jsin T :
Wk:O(Gevm(k)]Godd(k))<cos L, X T jsin= x) (6.18)

= greal(x) +jgimag(-x) (6.19)
where
w—1
1 21k . 27k
greal(x) - ;%Geven(k) Cos T-X - Godd(k) sin W X (6.20)
w—1
1 2wk 21k
. = — x4+ : — .
gtmag(x) W]E)Godd(k) Cos w X Geven(k) s w X 0 (6 21)

Note that if g(x) is real, then g;,,,, (x) = Ofor all x, so that the imaginary component can be
discarded while computing the inverse DFT. This leads to Algorithm 6.2 as one way to com-
pute the inverse DFT. In practice the inverse FFT algorithm should be used for efficiency.

Several important properties of the DFT are fairly straightforward to prove from the
definition:

e The DFT s linear. That is, if G(k) = F{g(x)} and H(k) = F{h(x)} are the Fourier
transforms of two signals, then the Fourier transform of a weighted combination of the sig-
nals is simply the weighted combination of their Fourier transforms, using the same weights:

Flag(x) + bh(x)} = aF{g(x)} + bF{n(x)} (6.22)
which follows from the definition of the DFT:
w—1
Flag(x) + bh(x)} = X (ag(x) + bh(x))e /> (6.23)
x=0
w—1 w—1
= aEg(x)e_jz’Tk’C/W + bzh(x)e_ﬂ”k’m” (6.24)
k=0 k=0
=aF{g(x)} + bF{h(x)} (6.25)

ALGORITHM 6.2 Compute the inverse DFT of a 1D signal (slow version)

Input: real (G,,,,) and imaginary (G,,,;) components of the DFT of a real 1D signal
Output: real 1D signal g, of length w whose DFT is G,,.,, + jG,uu

1 forx<Otow — 1do

[\8}

greal[-x] <0

fork<—Otow — 1do

f<k/w

greal[x] <~ greal[x] + %(Geven[-x] * COS(2 *ar *f* -x) + Godd[-x] * sin(2 *ar *f* -x))

return 8real

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

280

Chapter 6 « Frequency-Domain Processing

A compact way to state the linearity property is

DFT
g(x) <= G(k) (6.26)
DFT
h(x) <= H(k) (6.27)
DFT
ag(x) + bh(x) <= aG(k) + bH(k) (6.28)

e The DFT is periodic. Given an input discrete signal of w samples, the DFT also is
composed of w (possibly complex) samples. By convention, this DFT is defined as
G(k),k=0,...,w — 1. But what if we try to evaluate Equation (6.13) for some arbi-
trary value of k? It is easy to show that G(k) = G(k + nw) for any integer n, since

e—j27r(k+nw)x/w — e—j277kx/w . e—j277nx — e—j277kx/w (629)

where the last equality uses Euler’s formula to deduce e /2™~ = cos 2mnx — j sin 2mwnx = 1,
since n and x are both integers. As a result, the DF T is periodic. This property of periodicity
means that even though G(k) can be evaluated for any value of £, it can be uniquely repre-
sented using the same number of samples as the original signal, since G is simply replicated
forever in both directions. Similarly, the function F~'{G(k)} is periodic with the same
period w and can be evaluated for any value of x, even though the original signal is defined
only for x =0, ...,w — 1. Another way to look at this is that the DFT assumes that the
original signal is defined over all possible integers but is periodic outside the values given.
The periodicity of the original signal and the DFT are illustrated in Figure 6.3. In other words,

EXAMPLE 6.3

Solution

DFT
glx +nw) =g(x) <= G(k) =Glk+nw), x,k,n,w€E7Z (6.30)
Is each of the following discrete signals symmetric about the origin: [1 2 1],[4 3 3],

and [5 0 5]? (Recall that the underscore indicates the origin.)

The first signal, [I 2 1], is obviously symmetric about the origin. Due to the period-
icity property of the DFT, the second signal [4 3 3] can be thought of as extending
forever in all directions, ie., [~ 3 3 4 3 3 4 3 3 4 3 3 ---]
which is the same as [3 4 3], which also is symmetric about the origin. Applying
the periodicity property to the third signal [5 0 5], we see that it is equivalent to

[-- 5 0 5 5 0 5 ---], whichisnot symmetric about the origin.
Figure 6.3 Periodicity . ° . . 4 . . .
of the DFT. The discrete 0.8} 4 i]
signal consisting of eight - : 3L |
samplesx =0, ...,7 (red, 041 7
left) gi\{es rise Fo the DFT = 0 i 1 é g 5 : :
consisting of eight samples 55 o)
k=0,...,7(red, right). —04 i]
If the DFT is evaluated for 1t]
other values of k, or if the —08[) - :
inverse DFT of the DF T is " T — 0 < 5 $
evaluated for other values —20 -10 0 10 20 30 —20 -10 0 10 20 30

of x, the signal repeats with
period w = 8.

x (samples) k (cycles)

Spatial-domain signal Frequency-domain representation

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

6.2 Discrete Fourier Transform (DFT) 281

® Computing the DFT of a shifted signal is the same as multiplying the DFT of the original,
unshifted signal by an appropriate complex exponential. Known as the shift theorem, this
property is easy to prove:

w—1

Fle(x = xo)} = X glx — xg)e /27 (6.31)
x=0
w—1—xg
— 2 g(xr)e*jZﬂ'k(x’ano)/w (632)
w—1
_ Eg(xr)e*jZ*n'kx'/we*jZkao/w (6.33)
x'=0
= Flg(x) e /2mhxo/ (6.34)

where the second line uses a change of variables x" = x — x(, and the third line follows
from the periodicity of the DFT. In other words,

DFT

g(x) = G(k) (6.35)
DFT _
g(x —x9) = G(k)e/2mkxo/w (6.36)

Keep in mind that with discrete sequences the shift theorem only holds when xj is an integer.

e Modulation, which is the dual of the shift theorem, states that multiplying a signal by a
complex exponential causes a shift in the frequency domain:

w—1
F{g(x)ejZWkox/w} — Eg(x)ejZ'n'kox/we—jZka/w (637)
x=0
w—1
= D glx)e2mkkox/n (6.38)
x=0
= Gk — ko) (6.39)

where G(k) = F{g(x)}. Substituting, we see that to shift by half the width of the signal,
we must set ky = 7, so that

G<k - g) — Fg()ei™} = Fg(e) (~1)) (6.40)

where the last equality follows from Euler’s formula and the fact that cos 7x is 1 if x is even,
or 0 if x is odd, assuming x is an integer. Therefore, if the original signal is multiplied by
(=1)* the resulting DFT will be centered. In other words,

DFT

g(x) <= G(k) (6.41)
Jjmkox/w DET _

g(x)e <= G(k — kg) (6.42)

g0 (~1)F = G(k—Z) (6.43)

Like the previous property, these formulas only apply to discrete sequences when kg is an
integer. Therefore, when applying the latter formula be sure that the width of the signal is
even, or the DFT will be shifted by a nonintegral amount, thus distorting the values.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

282

Chapter 6 « Frequency-Domain Processing

e The scaling property says that if the signal is stretched in the spatial domain, then the
Fourier transform is compressed in the frequency domain, and vice versa:

o(x) <= G(k) (6.44)
(ax) < Lk (6.45)
glax L6\ .

for a # 0. Note that this property strictly holds only for the continuous Fourier transform.
For the DFT this is only an approximation, since no matter the value of a (apart from the
trivial case a = 1), the scaling property involves noninteger indices.

® The complex exponentials are orthogonal to one another:
w—1 ifx = x'
EejZTrkx/we*j%Tkx’/w — woix =)C (646)
o 0 otherwise

The first case (x = x') is easy to show:

w—1

26]2‘”16)(N 260_ 21 = w (6.47)

The second case (x # x') uses the well-known formula for the sum of a geometric series,
w—1
> af=(1-a")/(1 - a).Letusdefine § = x — x', then

k=0
w—1 - 1 — ej2776 ej7T5(eij"5 — ej7r5) (v —1)8/w sin 776
Sel _ S _ L _ i ST — 0 (6.48)
= 1 — e]27r5/w e—prﬁ/w(eﬂrﬁ/w _ e—.]ﬂ'ﬁ/w) sin w8/w

where the last equality follows since sin 76 = 0 whenever & is an integer, and sin 76/w # 0
whenever & is not a multiple of w.

® The DFT of a real-valued signal exhibits Hermitian symmetry, which means that its real,
component is even-symmetric, and its imaginary component is odd-symmetric. This fol-
lows naturally from the fact that the cosine function is even-symmetric, whereas the sine
function is odd-symmetric:

Geven(_k) = Eg COos _]277()X/W) (6.49)
w—1

= Eg cos(—j2mkx/w) (6.50)

= Gm(k) (6.51)

Goga(—k) = Eg sin(—j27(—k)x/w) (6.52)
w—1

= > — g(x) sin(—j2mkx/w) (6.53)
x=0

~Goaa(k) (6.54)

That is, a real g(x) leads to a Hermitian G(k), and therefore |G(—k)| = |G(k)| and
£G(—k) = —2G(k). The converse is also true: a Hermitian G(k) leads to gy, (x) = 0
for all x. When frequency-domain filters are introduced in Section 6.4, we will ensure that
the filters also are Hermitian, so that the imaginary components remaining after the inverse
DFT will be zero (at least to the level of machine precision).

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

6.2 Discrete Fourier Transform (DFT) 283

e Even and odd symmetry. The DFT of a real-valued, even-symmetric signal is also
real-valued and even-symmetric. The DFT of a real-valued, odd-symmetric signal is
purely imaginary-valued and odd-symmetric. These properties arise because the sum of
an odd function about the origin is zero, and the product of an even and odd function is
odd. From Equation (6.15), 0

2k
g(x) iseven= G(k) isreal,even : G(k) = > g(x) cos %x —j>, §in = “x
X X

even-odd = odd

Q 2ark
gis odd = G(k) is imaginary, odd : G(k) = D, W —j > g(x) sin%x
X X
odd - even = odd

Thus, even-symmetric kernels, such as Gaussian or Laplacian of Gaussian, have frequency
responses that are real and even, while odd-symmetric kernels, such as the derivative of
Gaussian, have frequency responses that are imaginary and odd.

e Parseval’s theorem states that the energy is preserved in the frequency domain, where
the energy is defined as the sum of the squares of the magnitudes of the elements:

w—1 w—1

g = X6 (6.55)

This property is also known as the unitarity property of the DFT.

® The E‘g lgélcgllienponent of the signal is captured by G(0), which is just the sum of the values

in g(x),i.e., G(0) = Ejiolg(x), since ¢” = 1. For this reason, G(0) is referred to as the
DC component, where this term alludes to the direct current in an electrical circuit—that
is, the amount of current flowing through the wire, ignoring oscillations.
e Convolution in the time (or spatial) domain is equivalent to multiplication in the
frequency domain, and vice versa:
DFT

g1(x) ® &:(x) <= G(k)Gy(k) (6.56)
aWnl) <> 6K @ Gk (6.57)

It is important to note, however, that due to the periodicity of the DF T the convolution here
is circular convolution, and hence this is known as the circular convolution theorem. If
standard convolution is desired, the signals must be zero-padded with a sufficient number
of values first, as explained next.

6.2.4 Zero Padding

It is often said that convolution in the time domain is equivalent to multiplication in the fre-
quency domain. While this statement is true for continuous-time infinite-duration signals, spe-
cial care must be taken in applying it to discrete signals. We cannot convolve two discrete signals
by simply computing the DFT of each, multiplying the results, and computing the inverse DFT,
for two reasons. First, as mentioned above, multiplication in the frequency domain is actually
equivalent to circular convolution in the spatial domain, so if regular convolution is desired,
we must first zero pad one of the signals. Secondly, if the two signals are of different lengths,
then their Fourier transforms will have different lengths, thus precluding their multiplication;
again zero-padding is the answer. The following example should make these concepts clear.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

average

284

Chapter 6 « Frequency-Domain Processing

EXAMPLE 6.4

Solution

Suppose we want to convolve the input signal g =[6 4 1 0 1 4] with the lowpass
Gaussian filter 1(x) = [1 2 1], where the underscore indicates the value at the origin.
Show how to zero pad the signals for a frequency-domain implementation of (a) circular
convolution, and (b) linear convolution.

(a) Obviously we cannot simply multiply the DFTs because they are of different lengths.
Instead, we must zero pad the kernel and use the periodicity property. Let us define
heeropaa(x) =10 0 1 2 1 0]=[2 1 0 0 0 1], whose DFT is
[4 3 1 0 1 3] TheDFTofthesignalis[16 9 1 0 1 9] The circular
convolution is obtained from the inverse DFT of the multiplication of the two DF Ts:

Slire(x) = 8(x) ® hypropaa(x) = F{[16-4 9-3 1-1 0-0 1-1 9-3]} (6.58)
=F Y64 27 1 0 1 27} (6.59)
=[20 15 6 2 6 15] (6.60)

(b) For linear convolution, we also need to zero pad the input signal to prevent the convolu-
tion kernel from wrapping past the signal boundary. To ensure both signals are of the same
length, we also need to add additional zeros: By the periodicity property,

eeropaa(x) = [0 6 4 1 0 1 4 0]=[6 4 1 0 1 4 0 0] (661)

Reeropad () 0 00121 00=[2100000 1] (662

The linear convolution is then given by

g'(x) = g(x) ® h(x)

fﬁl{f{gzempad} :]:{hzempad}} (663)
[15 15 6 2 6 9] (6.64)

While the forward and inverse DF Ts are difficult to verify without a computer, the final
results are easily computed using the standard spatial-domain techniques that we have
already studied. The circular convolution of g and /4 allows the first and last values of the
signal to wrap around when the convolution kernel is at the borders:

8lie(0) = 1:4+2:6+1-4=20 (6.65)
glire(1) = 1-6+2-4+1-1=15 (6.66)
gle(2) = 1:4+2:14+1:0=6 (6.67)
glire(3) = 1-142-0+1-1=2 (6.68)
glie(4) = 1-:0+2-1+1-4=6 (6.69)
glie(5) = 1-1+2-4+1-6=15 (6.70)

orgly(x) =[20 15 6 2 6 15]. Linear convolution is obtain in the same manner,
except that g is zero padded as necessary:

¢(0) = 1-:0+2:6+1-4=15 (6.71)
g(5) = 1-142:44+1-0=9 (6.72)

and so forth.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

6.2 Discrete Fourier Transform (DFT) 285

6.2.5 Magnitude and Phase

Often it is convenient to convert the real and imaginary components of the Fourier transform
into polar coordinates:

G(k) = Geven(k) +jGodd(k) = |G(k)|ejLG(k) (673)

where G,,,, (k) and G,,,;(k) are the real and imaginary parts of G, respectively, and

IG(K)| = VGhen(k) + G24a(k) (6.74)
/G(k) = tan_l<G0dd(k)>

Ge ven (k)
are the magnitude and phase, respectively.

Filters are characterized by their phase, of which there are three types. By far, the most
common type of digital filter is{zero-phasd, which means that G (k) = 0 for all k. As
we have just seen, a real-valued convolution kernel with gven symmetry about the origin
yields a real-valued Fourier transform with even symmetry about the origin, and is therefore
a zero-phase filter. All Gaussian filters, suchas [1 2 1], and all Laplacian of Gaussian
filters, suchas [—2 1], where the underscore indicates the origin, are zero-phase.

If the kernel is real-valued with.even symmetry about an index other than the origin,
then it is For example, [1 2 1] is linear-phase. This is easy to see

from the shift theorem, since a shift of the signal by x, causes the Fourier transform
to be multiplied by ¢ I2mhxo/w indicating that the phase is —2mkxy/w, which is a linear
function of k. Linear-phase filters are common in signal processing due to the need for
causal processing, but they are uncommon in image processing. However, as we just
saw, a real-valued convolution kernel with odd symmetry about the origin yields a purely
imaginary Fourier transform with odd symmetry about the origin. More precisely, the
magnitude of the Fourier transform is even, while the phase is either * /2 everywhere.
Such filters are considered generalized linear phase and can, for all practical purposes,
be treated as linear-phase. All first-derivative Gaussian filters, suchas [I 0 —1], fall
into this category.

Finallyfnonlinear-phaseffilters arise when dealing with old-fashioned analog circuitry
or IR filters. However, as long as we work with convolution (and hence digital FIR filters),
we will not encounter these.

(6.75)

6.2.6 Interpreting Discrete Frequencies

One aspect of the DFT that may not be obvious at first is how to interpret discrete frequen-
cies. To overcome this difficulty, let us consider the simple example of the continuous signal
g(x) = cos ¥ x, shown in the left side of Figure 6.4. If g is a spatial-domain signal and
x is expressed in meters, then the frequency of the signal is § cycles per meter, while the
period of the signal (which is the inverse of the frequency) is 8 meters per cycle. Indeed, as
can be seen from the figure, the signal repeats every 8 meters, so that g(x + 8) = g(x), or
more generally, g(x + 8n) = g(x), where n is an arbitrary integer.

Now if the continuous signal is sampled at locations x = 0, 1, ..., 7, we obtain the
discrete signal shown in the right side of the figure, where the units of x are now samples
rather than meters. Therefore, the frequency of the discrete signal is § cycles per sample,
while the period of the signal is 8 samples per cycle. Like radians, “cycle” is a dimensionless
unit that can be ignored whenever convenient, so it is equivalent to say that the frequency
is § inverse samples, while the period is 8 samples.

Although it is obvious from the shape of the plot that the signal is exactly one period of
a cosine waveform, keep in mind that the DFT computation operates solely on the eight

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

286

Figure 6.4 LEeFT: A continuous
spatial-domain signal cos 2 x
is sampled at locations
x=0,1,...,7.RcHr:The
discrete signal resulting from
the sampling. Note that the
units for the domain have
changed from meters to
samples.

Chapter 6 « Frequency-Domain Processing

0.8} . 0.8} 1

0.4 T 04F T

© | . —1
5 0 i 1 = 0 i ®]
—0.4} . —0.4F]
-0.8f] -0.8f]
-10 -5 0 5 10 15 0 1 2 3 4 5 6 7

x (meters) x (samples)

sampled values in the right side of the figure: 1, %, 0, —L\f, -1, —%f, 0, % Applying
Equation (6.13) yields

1 1
G(0) =1+ —=e® + 0 + -+ -+ —=€ = (6.76)
V2 V2
1 ; . 1 .
G(1) = 1e° + —=e 728 4+ 07748 4 .. 4 ——7/MT8 = 4 (6.77)
V2 V2
1 . . 1 .
G(2) = 1° + e A8 L) I8T/B L 2878 (6.78)
V2 V2
(6.79)
1 : . 1 .
G(7) = 1° + e IVAT/8 L ()28 T/8 L ,—j98m/8 — y (6.80)
V2 V2
which is summarized as
4 ifk=1lork=7
G(k) = 6.81
(k) {0 otherwise ()

and displayed in Figure 6.5. There is a spike at k = 1 and another spike at k = 7; or equiva-
lently at f = §and f = {, since w = 8. The first spike is what we expect, since the original
continuous signal has a period of 8 meters, and therefore the discrete signal has a period of

Figure 6.5 Lert: The DFT of the discrete signal shown in the right side of Figure 6.4, shown as a function of the discrete index k. MippLE:
The DFT shown as a function of f = k/w, where w = 8 is the number of samples in the original discrete signal. Ricit: The DFT of the
discrete signal shifted to show positive and negative frequencies.

4 T T T T T 4 T T T T T 4 T T T T
3| 13l sl]
SE 120 ISP :
o L 1O 1 1O 1]
1t . 1t . 1t _

O i o & & o & 1 0 i & & o & o | 0 o & & &
01234567 012531567 1 2 0 23
8 8 8 2 8 8 8 2 8 8 8

k (cycles) f (cycles/sample) f (cycles/sample)

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

6.2 Discrete Fourier Transform (DFT) 287

8 samples. To understand the spike at k = 7, recall from our discussion on periodicity that

S 1 . . . 1 .
f=""Tisthesameas f = —. soin this case f = Jis the same as f = —j. Therefore, this

additional frequency of f = %, which at first glance appears extraneous, is actually none other
than the negative of the frequency that we already know is present in the signal. In fact, the

relationship between f = g and f = —j can be observed in the sum of complex exponentials:

1
cos 2mfx = E(ez”fx + ¢ 27Y) (6.82)

so that a sinusoid can be thought of as containing both the positive and negative frequencies.
One way to visualize this relationship is to display the values for which k = to the left of
the values for which k < 1, as shown in the right side of the figure.

6.2.7 Basis Functions

The DFT illustrates a foundational concept in signal analysis, namely basis functions. A
basis function is a scalar function defined over the same domain as the original signal that,
when linearly combined with other basis functions, yields the signal:

g(x) = D api(x) (6.83)

where g is the signal, o is the k™ scalar weight, and ¢, (x) is the k™ basis function, defined
over the same domain as g. Rearranging Equation (6.83) into matrix form yields

g(O) (»[’0(0) ‘7[’1(0) dfw(o) (&%)
s | (o) (D) (D) | |«

thatis,g = Wa,ore = W ! g Itiseasy to see that the basis functions are given by the columns

of W,ie., W = [‘/’0 g ll’w]’ where i = [d/k(o) l)[lk(l) e wk(W)JT is

the k™ basis function in vector form. If W is orthogonal, then W ! = W' in which case
a = W'g, and the basis functions are equivalently given by the rows of W,

The simplestset of basis functionsis {e, }}— ;,wheree, = [0 -+ 0 1 0 --- 0]
is a vector of zeros with a one in the k™ position:
gx) = [g(0) (1) g(2) -+ glw—1)]
= g(0O)t 0 O 0]
+g(1)[0 1 0 0]
+g(2)[0 0 1 0]
+gw—1)0 0 0O --- 1]
The basis functions define a transform such that
w—1
ap = D g(x)e(x) (6.85)
x=0
w—1
g(x) = Daelx) (6.86)
k=0

where ¢;(x) is the x™ element of .

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

288

Chapter 6 « Frequency-Domain Processing

Notice that e, is simply the unit vector along the k™ axis in a Cartesian space. For
example, suppose for simplicity that the signal consists of just two samples: g(0) and
g(1). If we think of the signal as a vector g = [g(0) g(1)]7, it is trivial to see that
g=g(0)[1 O]"+ g(1)[0 1]". In this example, e, =[1 0]" and ¢, =[0 1]"
are the basis functions, and g(0) and g(1) are the weights that cause the linear combination
of the basis functions to exactly represent the original signal g. As shown in Figure 6.6, the
signal can be visualized as a point (g(0), g(1)) in the plane, e, and e; are unit vectors along
the axes, and the weights g(0) and g(1) are obtained by projecting the signal onto the basis
functions: g(0) = g'eyand g(1) = g'e,.

The DFT operates in much the same way. The forward DFT performs an analysis of
the signal by determining the contributions of the various frequencies in the signal, while
the inverse DFT performs a synthesis of the signal as a weighted sum of sines and cosines.
The sines and cosines at different frequencies are the basis functions of the DFT, and the
weights for any particular signal are given by the output of the DFT applied to the signal.
Basis functions, as in the case of simple unit axes or in the case of Fourier sines and cosines,
are often orthogonal to one another, but we will see examples later in this chapter of non-
orthogonal basis functions.

6.2.8 DFT as Matrix Multiplication

Sometimes it is helpful to consider the - as _

That is, if we let g be the vector containing the input signal, and g » the vector containin% the

frequency-domain representation, then[g » = F,, glis the forward DF T, while|g = F,,'g #is
the inverse DF T, where F, is the w X w normalized DF T matrix, obtained by rearranging

Equation (6.13) in matrix form:

1 e j2m/w e JAm/w Ce eij27T(W*1)/W g(O)
1 ‘) . 1
N L L e 7 | S DR
= w :
| el Db gjambe- Db geme- e | L8GW — 1)
g
F,

where the ik™ element is given by (1/\/»;)e_j 2mik/w if i and k are zero-based indices.
The basis functions are given by the columns of F;,!. Since the matrix is both orthogonal
and symmetric, F,,! = F] = F,, these are the same as the columns (or rows) of F,,.
These basis functions are orthogonal to one another, that is, £ f;" = 0if i # k, where f; is
the "™ column of F, and * is the complex conjugate. Because of the normalization factor,
all the basis functions have unit norm, that is, |f]|* = fT £* = 1 for all i. Recall in our

Figure 6.6 In a standard Cartesian coordinate system, unit
vectors along the coordinate axes act like basis functions, with
the elements of a vector being equivalent to the projection of
the vector onto these vectors. Shown are the basis functions
ey and e; along the x and y axes, respectively.

£(0)

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

6.3 Two-Dimensional DFT

289

earlier definition of the DFT that the forward and inverse normalization factors can be
set arbitrarily as long as their product is 1/w. Here we distribute the normalization factor
equally, with 1/Vw in the forward transform and 1/ \/;v in the inverse transform, which
ensures that F,, is a unitary matrix (the complex version of an orthogonal matrix), so that
FIF} = FiF,, = L, where Iy, is the n X n identity matrix. Therefore, since F,,
is symmetric, its inverse is its complex conjugate (F~! = F*), which is what we expect
because the inverse DFT is exactly the same as the forward DFT except for the sign of
the complex exponential.

6.3 Two-Dimensional DFT

6.3.1 Separability

Now that we have established the foundation of the discrete Fourier transform, we are ready
to discuss its application to image processing. The 2D DFT is a natural extension of the 1D
case: simply replace the single frequency k with two frequencies in the two directions, k,
and k,, so that kx/w becomes kex/w + k:,y/ h. That is, if g(x,y) is a 2D signal (such as an
image) defined over the domain x = 0,1,...,w — land y =0, 1,...,h — 1, then the
forward and inverse DF Ts are given by

w—1 h—1

Glky k) = > Eg(x,y)e_ﬂ”XTf (forward DFT) (6.88)
x=0 y=0
1 w—1 h—1
glx,y) = wh > D Glk, ky)ejzm‘Tf (inverse DFT) (6.89)
k=0 k=0

wherex = [x y]T and f = [%]T so that x'f = kXTX + k,Tv As with the 1D transform,

w

keep in mind that the placement of the scaling factor 1/wh is arbitrary.

A straightforward implementation of the 2D DFT is shown in Algorithm 6.3. The frequency
representation G is stored in the same manner as a complex image would be, with two num-
bers per element (the real and imaginary components). Lines 1-2 loop over all the elements
in this 2D array, computing the values by performing an elementwise sum in Lines 9-10
according to Equation (6.88), taking advantage of Euler’s formula. The pseudocode is ter-
ribly inefficient, with an asymptotic running time of O(w*), assuming w = h.

The speed can be increased substantially by taking advantage of the fact that the 2D DF T
is separable. To see that this is indeed the case, simply expand Equation (6.88), substitute
the product of the exponents for the exponent of the sums, and recognize that the exponents
in the product are themselves dependent upon only one of the two variables, either x or y:

w—1h—1
Glkyky) = > Dglx,y)e 2mkex/wrkrh) (6.90)
x=0 y=0
w—1 sh—1
=> <Eg(x,y)e_’2”k"y/h> o2/
x=0 =0 — (6.91)
G, (x;k,

where Gy(x; ky) is the 1D DFT of column y of g(x,y). This equation says that the 2D DFT
can be computed by first computing the 1D DFT of each column independently, then

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

290

Chapter 6 « Frequency-Domain Processing

ALGORITHM 6.3 2D DFT (slow version)

DiscRETEFOURIERTRANSFORM2D (1)

Input:

grayscale image / of size width X height

Output: real (G,,,,) and imaginary (G,,;) components of the 2D DFT of 1

for k, <= 0 to height—1 do
for k, <— 0 to width—1 do

Geven(ki k) < 0

Goaa(kys ky) < 0

fo < k/width

Sy <= ky/ height

for y < 0 to height—1 do

for x <= 0 to width—1 do

—
©

1

1

O 0 3 O L B W N

1

return G,,.,,, G,

Geven(kkay) (_+ I(x,y) *COS(Z*W* (f;c*x +f;:*y)>
Goad(ke ky) <= 1(x,y) *sin(2* 7w * (fo*x + £, *y))

computing the 1D DFT of the resulting rows. Of course due to symmetry this order can be
reversed by processing the rows first, then the columns, without affecting the result. The
separable algorithm is shown in Algorithm 6.4. First the DFT is computed of each row of
the image, storing the result in the corresponding row of a temporary array. (The colon
operator selects all the values in the row.) Then the DFT is computed of each column of the
temporary array. Note that in the first iteration all the input values are real, whereas in the
second iteration the values are complex, thus necessitating the call to the DISCRETEFOURIER
TRANSFORMCOMPLEX procedure we saw before, which is here abbreviated DFTC. The
running time of this pseudocode for the 2D DFT is O(w?). To further increase speed a real
implementation would use the FFT to compute the 1D DFTs of the separable algorithm,
leading to a running time of O(w? log w).

The separability of the 2D DFT leads to an elegant, compact representation of the 2D
DFT using matrix notation, similar to Equation (5.38):

(6.92)

where § is the _ (orimage) treated as a _; . is the -.
given in Equation (6.87); . is the- _ defined in the exact same

ALGORITHM 6.4 2D DFT (separable version, still slow)

DiSCRETEFOURIERTRANSFORM2DSEPARABLE(g)

Input:

grayscale image / of size width X height

Output: real (G,,,,) and imaginary (G, ;) components of the 2D DFT of I
for y < 0 to height—1 do

1

A W

9}

Tempeven(:’ y) ’

Temp,;,(:,) < DISCRETEFOURIERTRANSFORM (g (0, v), . . ., g(width—1,y))

for x < 0 to width—1 do
Goven(X, 1), Goga(x, 1) <= DFETC(Tempen(x,0), ..., Tempon(x, height—1),

return G,,.,,, G,u4

Temp, 4(x,0), ..., Temp,q,(x, height—1))

6.3 Two-Dimensional DFT

291

manner but substituting / for w in Equation (6.87); and G = is the 2D DFT of G. This result
is easy to derive and illustrated in Figure 6.7. Let g be the i row of G containing the values
in the i (zero-based index) row y = i of the original 2D signal g(x, y), oriented horizontally;
thatis, G = [g, g,_ 1). The vector F,,g; is therefore the 1D DFT of those values,
oriented vertically. Let Temp = F, G be a temporary matrix (the same size as G ') whose
columns are the 1D DFTs of the columns of G . If we transpose this matrix and premultiply
it by F,,, then we will compute the 1D DFTs along the vertical direction of the original signal,
yielding the desired result: G » = F,Temp' = F,(F,G")" = F,GF| = F,GF,,, where
the last equality follows from the symmetry of the 1D DFT matrix, as we saw earlier. Note
that if the original signal G is square, then Equation (6.92) reduces simply to G » = F,,GF,,.

6.3.2 Projection-Slice Theorem

The projection of a continuous function g(x, y) of two variables onto a line at some orienta-
tion 6 is the 1D function that results from integrating the function along rays perpendicular
to the line. Let us define a slice through a 2D continuous function G(fx, fy) at 0 as the 1D
function obtained by ignoring all values except those along the line. The projection-slice
theorem, also known as the Fourier slice theorem, says that the Fourier transform of the
projection of g onto a line through the origin is the same as the 1D slice of G at the same
orientation, where G =]-'{g}. In other words, the Fourier transform of the projection is the
slice of the Fourier transform, as shown in Figure 6.8.
This theorem is easily proved for the case of a horizontal slice along the x-axis:

G(f.0) =/ /g(x,y)e”z”f»xdxdy (6.93)

0

= [m |:/_wg(x, y)dYJ o i2mhx g

g,(x)

= Flg(x)}

(6.94)

(6.95)

Figure 6.7 The 2D DFT as
a pair of matrix multiplies,
utilizing the principle

of separability. The 1D
DFT matrix is multiplied
by the transpose of the
original signal (treated as
a matrix) to compute the
1D DFTs along the rows
of G (columns of G"). Then
this result is premultiplied
by the 1D DFT matrix to
compute the 1D DFTs along
the columns of G, yielding
the 2D DFT G£.

ith column

F, (z,9) G (x,y) Temp (z, y)

ith column

Fy, (z,9) Temp (z, y) Gr(z,y)

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

292

Figure 6.8 Projection-slice
theorem.

Chapter 6 « Frequency-Domain Processing

ky

2D Fourier transform

ﬂ Slice

120 10 ¢
~ 80r IDFT < 6
= - |:> O A
Y ~
40 @2t
O L L L L L xl O L L I L I I k)'C
0 100 200 300 0 100 200 300
Projection 1D Fourier transform of projection

= slice of Fourier transform

where g,(x) = [g(x, y)dy is the projection of g onto the x-axis. In other words, a hori-
zontal slice through the Fourier transform at f, = 0 is identical to the Fourier transform
of the projection of the original signal onto the x-axis. It will be obvious that the theorem
applies along any orientation, after we show (later in this section) that a rotation of the
image yields a rotation of the Fourier transform by the same amount in the same direc-
tion. This theorem also applies to the case of a discrete function, although when 6 is not
an integral multiple of 90 degrees, discretization effects cause the two functions to only
approximate each other.

The projection-slice theorem is important in the reconstruction of an object from images
of its slices. Imaging by slices is known as tomography, and the process of recovering
an object from image slices is known as tomographic reconstruction. CAT scans (from
computed axial tomography),” for example, operate by collecting cross-sectional slices
through an object at various orientations. At each orientation, the sensor accumulates the
light that passes through the object along a line, a process that is essentially a natural inte-
gration because the amount of radiation detected along a line 1s related to the sum of all
the absorbances of the material along that line. Mathematically, the integration of a signal
along all possible lines is known as the "Radon transform, and it is widely used in tomo-
graphic reconstruction. By the projection-slice theorem, the 1D Fourier transform of the
slices obtained by the sensor is equivalent to the slices of the 3D Fourier transform of the
(unknown) original signal. It is easy to see that the original signal can be recovered (in theory
at least) by computing the inverse 3D Fourier transform of the combined 1D Fourier trans-
forms of the slices, although in practice more numerically stable approaches are often used.

" Section 2.4.2 (p. 54).

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

6.3 Two-Dimensional DFT

6.3.3 Displaying th

293

e 2D DFT

To display the 2D DFT of an image, the first step is to separate it into two 2D arrays contain-
ing the magnitude and phase, respectively. The phase is linearly scaled to the range of the
display (typically O to 255) and shown as a grayscale image. If this same procedure were
followed for the magnitude, however, the display would show a purely black image with a
single bright pixel in the top-left corner. This top-left pixel, in a manner analogous to the
1D situation that we discussed earlier, captures the DC component, which is typically so
much larger than the other values that they all appear to be zero, as shown in Figure 6.9.

To overcome this problem, it is common practice to display the logarithm of the mag-
nitude instead, as shown in Figure 6.10. This display, however, still does not reveal the
structure of the DFT magnitude very well because the DC component is in the top-left
corner. To shift it to the center of the image, the four quadrants of the DFT should be
cropped and pasted in a manner similar to the approach taken in the 1D case described
earlier. In other words, if we imagine dividing the DFT into 4 quadrants, with the top-left
labeled A, the top-right labeled B, the bottom-left labeled C, and the bottom-right labeled
D, then the data must be shifted so that the order of display is (from top-left to bottom-
right) D-C-B-A. A simple handy trick to do this, from Equation (6.43), is to simply mul-
tiply the value of each pixel in the signal by (—1)* " prior to computing the DF T, since
Flg(x,y) (=1)**} = G(k, — 5.k, —), where G(k,, k,) = F{g(x,y)},andwand h
are the width and height, respectively, as shown in Figure 6.11.

Another way to think about this procedure is to remember from the periodicity property
that the DF T treats the signal as if it were replicated forever in all directions, and therefore
the DFT is replicated in all directions as well. To illustrate this, Figure 6.12 shows the image
replicated four times. If the DFT were applied to each of these images separately, we would
have 4 DFTs, each with quadrants A, B, C, and D, and each containing the DC component’
at the top-left corner of the A quadrant. When the DFT is applied to the combined image,
the resulting DFT is simply the concatenation of all 16 quadrants. The information in the
four central quadrants, namely D-C-B-A, is identical to that in the DFT of the single image,
but rearranged so that the DC component appears in the center, which is what we want. This
manner of rearranging the display also reveals that the values along the middle of the image
in both the horizontal and vertical directions are significantly larger than all the other values;
there will be more about this in the next section.

Figure 6.9 Slice through the
magnitude of the 2D DFT (first
row). This first row includes the
DC component, shown as a
circle ('0'). Left: Without the log,
the dynamic range is so great
that nearly all frequencies
appear to have zero
contribution. Right: Applying
the logarithm reduces the
dynamic range to increase
visibility of the components.

18 10° 18
a -
_ M = 14)
> N
=1 =
S G 10H
O o} “on
i o i
2t OF
0 100 200 300 400 0 100 200 300 400
x (pixels) x (pixels)
IG(fx. fy)l log |G(fx. fy)l

" Please note that the two quadrants named C and D are unrelated to the direct current (DC) acronym.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

294 Chapter 6 « Frequency-Domain Processing

2 values at one point after DFT: magnitude and phase

Image log |G(fx, fy)| G(fx’ fy

Figure 6.10 Animage and its 2D DFT shown as magnitude and phase. (To increase the dynamic range of the display, the log of the
magnitude is shown.) The DC component, which is the top-left corner of the magnitude, is difficult to see.

Stan Birchfield

6.3.4 Linear Image Transforms

The properties of the 1D DFT outlined in Section 6.2.3 also apply to the 2D DFT, namely
linearity, periodicity, shift theorem (an important application of which we just saw), modula-
Jion, orthogonality, Hermitian symmetry, unitarity, and so forth. Other properties generally
hold as well, and the extension from 1D to higher dimensions is usually straightforward
and obvious.

One such property is as follows. Suppose we have a continuous signal g(x) with Fourier
transform G(f), and we want to find the Fourier transform of the related signal g(x'), where
x' and x are related by 4 linear transform1

!

x' = Ax (6.96)

where A is a square matrix. It is easy to show that the Fourier transform of the transformed
signal is given by

s(x) < G(h) (6.97)
!]: 1 !
g(x’) det(A) G(f") (6.98)

where f' = A~ Tf. This expression is only approximately true for the DFT because of
discretization issues but is nevertheless quite important in practice.

For example, suppose the coordinate system of the image is rotated by an angle 8 so that
x' = Ax,wherex = [x y]Tandf=[f £]". Then

cosf —sinf
A=R, = 6.99
0 [sin 6 cos 0 :| ()

Figure 6.11 Multiplying the image by (—1)**” prior to taking the DF T causes the result to be shifted so that the DC component is in
the center. On the right is shown the logarithm of the magnitude of the DFT of the post-multiplied image.
1 [+ [+ Y+ 1
-1 - - -
+1 g+ 1Y +1 Y +1
—1 - - B

center point:
direct current (DC)

DFT
BB
— 1[I 1 G911 B9 1 A
+1 [-
1B B

Stan Birchfield

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

2 values at one point after DFT: magnitude and phase

center point:
direct current (DC)

6.3 Two-Dimensional DFT

Figure 6.12 Top: The
DFT treats the input as
a replicated input, and
produces a replicated
output. Bottom: It is
easier to visualize the
DFT by shifting it so that
the DC component is in
the center, which causes
no loss of information.
The quadrants A, B, C,
and D present in the
original DF T output

295

are also present in the
shifted output, justin a A B A B
different order.

C D C D

A B A B

C D C D |:

so that
].'
g(x',y") = G(fLf) (6.100)

where f' = Af = Ryf, because for a rotation matrix, Ra.T = Ry. and det(Ry) = 1. In
other words, the frequencies rotate in the same direction as the image. We now have an
explanation for the bright horizontal and vertical lines in the middle of the shifted DFT in
Figure 6.12. These lines arise from the sharp contrast between the top and bottom rows of
the original image, as well as between the left and right columns, which are visible in the
figure. If these wrapping effects of the DFT were not so overwhelming, then the DFT would
more clearly reveal the dominant gradient directions in the image.

Another specific linear transform that appears often in practice is scaling. In 2D, scaling
of the form x" = ax, y’ = by involves

Az[a O] (6.101)
0 b

and therefore

|)
g(ax, by) <= bl G(J; ;) (6.102)

That is, shrinking in one domain causes expansion in the other.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

296 Chapter 6 « Frequency-Domain Processing

6.4 Frequency-Domain Filtering

One of the important applications of the DFT is to filter an image. In the previous chapter we
looked at spatial-domain techniques to filter an image, whereas here we consider frequency-
domain techniques. In reality these two approaches are often equivalent due to the circular
convolution theorem, which says that the Fourier transform of the convolution of two signals
is equivalent to the multiplication of their Fourier transforms. In other words, if g(x,y) and
h(x,y) are two signals, and if g’ = g ® h, then it is also true that

G'(ky ky) = Gk, ky)H(k,, ky) (6.103)

where G’ = F{g'}, G = F{g}, and H = F{h}. An alternate way of obtaining the desired
result is therefore to compute the inverse Fourier transform of the multiplication of the two
Fourier transforms:

g'(x,y) = F YA g(x, y)}Fh(x, y)}} (6.104)

assuming that appropriate care has been taken in zero-padding. As discussed earlier, this is
an FIR filter with & as the impulse response and H as the frequency response, assuming g
is the original signal.

There are two primary reasons for considering frequency-domain approaches. First, it
is often more intuitive to design and analyze filters in the frequency domain. That is, even
if a filter is eventually implemented as a spatial convolution, it is usually much easier to
understand the purpose of the filter by studying its frequency response than by using the
weights of the convolution kernel. Secondly, multiplication is less computationally expen-
sive than convolution, so in some circumstances (e.g., large kernels) the frequency-domain
implementation can be faster than the spatial-domain implementation, despite the overhead
required to compute forward and inverse Fourier transforms. However, be aware that this
argument is more applicable in signal processing than it is in image processing because large
kernels are rarely necessary in the latter, due to the prevalency of multiresolution analysis,
which we consider in the next chapter.

Whether spatial- or frequency-domain, filtering is used primarily for two applications:
namely, restoration and enhancement. In F@SEOFAEION, the goal is to remove the effects of
noise that has, in some way or another, degraded the image quality from its original condi-
tion (or its potential condition, if the corruption occurred prior to capture). ERRaNCEMEnt.
on the other hand, involves accentuating or sharpening features to make the image more
useful, going beyond simply a pure, noise-free image. In previous chapters we saw tech-
niques for restoration, such as Gaussian smoothing and median filtering, and we also saw
techniques for enhancement, such as histogram equalization and level slicing. In this section
we consider how to accomplish these goals via frequency-domain methods using lowpass,
highpass, and bandpass filters.

6.4.1 Lowpass Filtering

A lowpass filter allows low frequencies to pass through while attenuating high frequencies.
In image processing, pixels whose values are similar to their neighbors remain relatively
unchanged, while sharp transitions are smoothed. Lowpass filtering is used primarily for
restoration—that is, to remove noise that has corrupted the signal.

Ideal Lowpass Filter

The ideal lowpass filter, also known as the [EIMMG. perfectly passes all frequencies
below a certain cutoff, while perfectly attenuating all frequencies above the cutoff. The set
of frequencies below the cutoff is called the passband, while the set of frequencies above

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

6.4 Frequency-Domain Filtering 297

the cutoff is called the stopband. The frequency response of a filter will be denoted as
H(f), which is a complex function of the frequency f, so that H = |H|e/“", where |H]| is
the magnitude and £ H is the phase, as mentioned before. While the phase is an important
consideration in the design of causal filters for time-domain signal processing, it is not
very important for image processing because convolution kernels can be centered on the
output pixel, thus incurring no shift in the spatial domain. Therefore, we will assume
£ H = 0 for the rest of our discussion, allowing us to focus solely upon the magnitude of
the frequency response of the filters we encounter, since H = |H|. The magnitude of the
ideal lowpass filter is

Hy ()] = {1 iy =/ (6.105)

0 otherwise

where f, is the cutoff frequency. Equation (6.105) shows the 1D continuous case for simplic-
ity, but the extension to the discrete 2D case is straightforward:

|H (ke k)| = {1 if d(ky k) = d,

) (6.106)
0 otherwise

where d. is the discrete cutoff frequency, and

i 2 h 2
d(kx’ ky) = ||[x %’ y %}H = \/(kx - V2V> + (ky - 2) (6.107)

is the distance from the origin in frequency space.
The convolution kernel associated with the ideal lowpass filter is given by its inverse
Fourier transform:

o f.
h(x) = [Hyp (e df = / 27 df (6.108)
— % —f,
1) . sin 27 f,. x
= —(e/2mex — T2 = Sin 2mex 2f. sinc 2f.x (6.109)
j2mx X

— sinmx

where sinc x = ¥ is the normalized sinc function.” Equation (6.105) is called a rect
function since, when plotted, it looks like a rectangle. Thus, the Fourier transform of a sinc
function is a rect function, and vice versa. To apply the ideal lowpass filter in the frequency
domain, simply compute the Fourier transform of the signal, then multiply all frequencies
above the cutoff frequency by zero. To apply the same filter in the spatial domain, convolve
the signal with the sinc kernel.

A fundamental principle in filter design is that there is no perfect filter, and therefore
the best we can do is to strike a practical balance between the various trade-offs in order
to achieve the desired performance. The reason for this limitation is that no filter can have
a finite extent in both the spatial and frequency domains. In other words, eyery filter, must,
extend either infinitely in space, infinitely in frequency, or infinitely in both. To say this
another way, no filter can be both bandlimited and timelimited. A bandlimited filter is
one whose values in the frequency domain are zero for all f > f,,,., where f,,,, is some
constant. A timelimited filter is one whose values are zero in the time (or spatial) domain
for all x > x,,,,, Where x,,,, 1S some constant.

Consider, for example, Figure 6.13, which shows the ideal lowpass filter being applied
to a 1D signal. With the ideal lowpass filter, H(f) has finite extent, but /(x) extends forever.
Since it is not possible to convolve a signal with a kernel (such as sinc) that has an infinite

" Section 3.8.5 (p. 118).

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

298

Chapter 6 « Frequency-Domain Processing

1
. 06
Nat
Spatial <= 02
domain e 02
= —U.
h=1)
-0.6
_1 L
—100
X X X
Low. High-frequency Passband
ow-frequency component assban
1200 compoqnent Y P 1 [M 1000 [
1000 | 0.8}k = 800}
— 800 = i = i
Frequency = < 0.6F T 600
domain 5 600F = B ~ -
S 40} Z 04} = 400}
5] 5
200 02 B Stopband 200
()] —— B 0 L L ! L L L J 0 L L L L L L
-8 -4 0 4 8 -8 -4 0 4 8 -8 -4 0 4
f f f
Signal Filter Filtered signal

Figure 6.13 The function sin(f,x) + sin(fx) filtered by an ideal lowpass filter. In the frequency domain, the Fourier transform of the
signal is multiplied by a box function. Equivalently, in the spatial domain, the signal is convolved with a sinc function. In this example
the filter successfully removes the high-frequency component from the signal, leaving only the low-frequency component.

domain, the ideal lowpass filter is not realizable in the spatial domain. Another drawback
of the sinc function is that it oscillates about the y-axis. Therefore, even the ideal lowpass
filter is not a perfect filter because it gives rise to ringing in the output signal. Ringing,
which occurs when the output signal contains oscillations that are not present in the input
signal, is related to the Gibbs phenomenon, which occurs when a function with a jump
discontinuity (such as the rect function) is approximated by a finite number of Fourier
coefficients. Ringing is generally considered undesirable because it causes the signal to
overshoot or undershoot, which can cause the signal to be clipped to the maximum or mini-
mum value, thus further distorting the shape of the signal. In the example of Figure 6.14,
which illustrates the process of applying a lowpass filter to an image, ringing is evident.

Figure 6.14 The process of frequency-domain filtering. From left to right: The DFT of the image is computed and multiplied by the
frequency-domain filter, followed by the inverse DFT to yield the filtered image. Notice in this example that the ideal lowpass filter
causes significant ringing in the output.

2D
ARinging output image
T T o — T T] different from
1k p 3 E [i 1F input
1D i] 6 1 6f] 0.6
slice o |] 4] \ -] i
21 E 2 E i] 02
—02 L L L L oLl M T L —0. L M T L oLlw MR L —02 L L TR
0 100 200 -100 0 100 -100 0 100 -100 0 100 0 100 200
X k k k X
Image F DFT of image DFT of lowpass filter DFT of filtered image F! Filtered image
g (x.y) log |G(k,, k)| log [H(k,, k)| log|G(k,, k)| - [H(k,, k)| a(x, y) ® h(x,)

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied.

, scanned, or duplicated, in whole or in part. WCN 02-200-203

output image different from input

6.4 Frequency-Domain Filtering

299

Windowing

Any filter can be implemented in either the spatial or frequency domains. That is, we can imple-
ment the filter either as a finite array of values in the frequency domain (in which case it will
have infinite extent in the spatial domain), or as a finite array of values in the spatial domain
(in which case it will have infinite extent in the frequency domain). Either way, it is necessary
to multiply the filter by a window function, which is a nonnegative function that decreases
monotonically from the center, such as the rect function or any of various bell-shaped curves."

Let us consider what happens if we multiply (in the spatial domain) the sinc kernel by a
rect window function. Since multiplication in the spatial domain is equivalent to convolution
in the frequency domain, this is equivalent to (in the frequency domain) convolving the rect
function (which is the Fourier transform of the sinc) with the sinc function (which is the
Fourier transform of the rect). As can be seen from Figure 6.15, the windowing operation
results in ripples in the frequency domain response of the filter.

Gaussian Lowpass Filter

This fundamental trade-off between the extent of the filter in the spatial and frequency
domains leads naturally to the Gaussian lowpass filter, which is defined as

|H,, (f)| = e /727 (6.110)
where the standard deviation f,. of the Gaussian plays the role of the cutoff frequency. It
can be shown that the Gaussian filter is the perfect balance between the extent in the two
domains, in the sense that it is the shape that minimizes the product of the spatial- and
frequency-domain functions. Because the Fourier transform of the Gaussian is another
Gaussian and the Gaussian is a monotonic function on either side of the mean, it is easy
to see that filtering with a Gaussian does not yield any ripples (in the frequency domain)
or produce any ringing (in the spatial domain). However, one of the drawbacks of the
Gaussian is its very mild roll-off from the passband to the stopband, unlike the steep

Figure 6.15 When the ideal lowpass filter (left) is multiplied by a window function (middle), the resulting filter exhibits ripples (right).
Note that the bottom middle plot shows the absolute value of the sinc function.

another filter: gaussian filter

Spatial
domain

Frequency
domain

0.04 1 0.04
0.03F 0.8 —~ 0.03F
- \5/ -
30.02 i = 0.6 = 0.02 i
= 0.01f %04 = 001f
0 02 0

00— O -1 TR TR TS LN TR T N S

—100 —-40 0 40 100 —-100 —40 0 40 100 —-100 —40 0 40 100

h(x) w(x) w(x) @® h(x)
Passband
Passband 200 1000 e

1 Ripples
0.8 160 = 800
S 06 S 120 T 600
T o4 2 80 § 400

40 —
0'3 Stopband 0 208 Stopband
-20 -10 0 10 20 -20 -10 0 10 20 =20 -10 0 10 20
IH() IH(A) IW(HHH()]
Ideal lowpass filter Window function Windowed lowpass filter

7 Such as the Hann, Hamming, or Bartlett-Hann window functions.
Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

another filter: gaussian filter

300

in the frequency domain

Chapter 6 « Frequency-Domain Processing

Original image

Stan Birchfield

o= 40 pixels™! o= 20 pixels™! o =10pixels™! o =5 pixels~!
Figure 6.16 Animage, and the result of [ESINONEasemng i he SESNSNSINNNE it different variances. The top row
shows the DFT of the image and the magnitude of the frequency response of each filter. The smoothed images are the inverse DFT of

the multiplication of the image DFT with the various filter frequency responses. Note that a large variance in the frequency domain
yields less smoothing, whereas a small variance yields more smoothing.

roll-off of the windowed box function. These two alternatives are analogous to underdamped
and overdamped control systems, where a quick response time goes hand-in-hand with
overshooting and ringing. The result of Gaussian lowpass filtering on an image, with
different variances, is shown in Figure 6.16.

Butterworth Lowpass Filter

Filter design is a delicate process that has been studied extensively by the signal processing
community for decades. To overcome the undesired effects of the simplistic rect and Gaussian
filters, filter designers have proposed a number of more sophisticated filters. One of the more
common is the elliptic filter, which is a general type of filter that allows the designer to
independently specify the amount of ripple in the passband and stopband. As the amount of
ripple goes to zero in the passband or stopband, the elliptic filter is well approximated by a
Chebyshev filter. If the ripple goes to zero in both the passband and stopband, the elliptic filter
approximates a Butterworth filter. The Butterworth filter is also known as the maximally
flat filter (since all derivatives exist and are zero at the origin), and it is generally considered a
good compromise between various trade-offs and is therefore widely used in signal processing
applications. The magnitude-squared of the Butterworth lowpass filter of order n is given by

1
L+ (ff)*

Taking the square root of this expression yields the magnitude of the filter, from which it is

Hy, ()P = (6.111)

clear that the frequency response is [Hy,;, (f)| = 1/ \/2 at the cutoff frequency f = f., for
any value of n. Unlike the elliptic and Chebyshev filters, the Butterworth filter is monotonic
in both the passband and stopband. While the Butterworth roll-off for order n = 2 is noto-
riously slow, as n increases, the shape of the Butterworth approximates the ideal lowpass
filter, as shown in Figure 6.17.

Sometimes you will see this equation without the square:

1
\Hyy (f)| = W

which could be called the “sloppy Butterworth”. While the sloppy Butterworth does not
possess any particularly interesting spectral properties (and is therefore not used in signal
processing applications), its simplicity (i.e., lack of a square root) makes it a somewhat
popular choice for the more forgiving area of image processing, where specific spectral

(6.112)

copyright 2018 cREQRerties are much dess important than the overall.shape.of, the, function.ycn 02-200-203

in the frequency domain

6.4 Frequency-Domain Filtering

Figure 6.17 The magnitude of the
Butterworth lowpass filterforn = 1ton = 5
(solid lines). As n increases, the Butterworth
response approaches the ideal lowpass filter
(dashed line).

301

Hyp (f)

Il
EXNUNE)

Lanczos Filter

When the sinc function is multiplied by the first lobe of another sinc function, the result is
the Lanczos filter,” which is a high-quality filter that is widely used in image processing,
particularly for smoothing an image before downsampling. Because of its high computa-
tional requirements compared to simple Gaussian kernels,* however, it is not well suited to
real-time applications. While the Lanczos filter can be implemented in the spatial domain
as easily as the frequency domain, it belongs in this chapter because it is more easily
explained in relation to the ideal lowpass filter.

To understand the details of the Lanczos filter, recall that the Fourier transform of a rect
function is a sinc function, and vice versa. More specifically, if 7 and 3 are scaling factors
in the spatial and frequency domains, respectively, then we have the following Fourier pairs:

NSRS

1 ifl = .
t<x> - Lo sing(qy) = 20T (6.113)
el 7 0 otherwise T f ’

(6.114)
B

i F 1 if|fl<é
Bsinc(Bx) :M — rect<f>= 1 |f| .2
0 otherwise

mPx

The Lanczos convolution kernel is the product of two kernels, one that performs the work
of the ideal lowpass filter, and one that performs windowing. For an ideal lowpass filter with
cutoff frequency f,, we have 8 = 2f,, leading to

sin 2w f.x sin 2w f.x

wi(x) = 2f.sinc(2f.x) = 2f. T fix = (6.115)

For the window function, we apply the first lobe of another sinc:

sin 7 5

=

sinc(3) = o dfe= o

= w 6.116
"2 (x) 0 otherwise ()

where w = 2w + 1 is the width of the kernel. Multiplied together, these two yield the

Lanczos convolution kernel:
sin 27 f,x sin w3

X=—W, ..., W (6.117)

h(x) = wi(x)wy(x) =

mX s

=

"Recall the closely-related concept of Lanczos interpolation in Section 3.8.5 (p. 118).

Copyright 2018 Cengage Learr%isgimiﬂﬂiéh%(lpesuaéd. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

302 Chapter 6 « Frequency-Domain Processing

Smaller kernels exhibit more noticeable ringing, while larger kernels result in wasted com-
putation because they do not yield noticeable improvement in the output quality. Typical
values for w lie in the range of 19 to 31.

6.4.2 Highpass Filtering

In the frequency domain, the magnitude of a highpass filter is just the magnitude of an
allpass filter minus the magnitude of the corresponding lowpass filter. Since an allpass filter
does not attenuate any of the frequencies, it has the value 1 everywhere, leading to

‘Hhighpuss(f” =1- |Hlowpass(f)| (6118)

which is illustrated in Figure 6.18 for an ideal lowpass filter.
Applying this equation to the lowpass filters of the previous section yields the following:

1 iff=f.) .
|H,-hp Nl = . (ideal highpass filter) (6.119)
0 otherwise

/ 1
H =1 —\/— Butterworth highpass filter (6.120)
| hhp(f)| 1+ (f/f;‘)zn (ghp)

1
|H gy ()] = W (sloppy Butterworth highpass filter) ~ (6.121)
|thp(f)| =1 -/ (Gaussian highpass filter) (6.122)

When the filter is zero-phase, the filter is equal to its magnitude, H() = |H(f)|, thus
simplifying Equation (6.118) t0 Hyienpass(f) = 1 = Higypass(f). This leads to a simple
relationship in the spatial domain between convolution with a highpass kernel 4, and its
corresponding lowpass kernel /;,,:

g'(x) = g(x) ® hy,(f) (6.123)
= F HG(f)H,(f)} (6.124)
=F NG () (1 = H,(f)} (6.125)
=F H6(N}t = FHG(NH,()} (6.126)
=g(x) ® (8(x) — hyp(x)) (6.127)
= g(x) — g(x) ® Iy, (x) (6.128)

where Equation (6.127) follows from Equation (6.125) , and Equation (6.128) follows from
Equation (6.126). To derive Equation (6.127), recall that the Fourier transform of a Dirac
delta function is

G(f) = /S(x)e‘ﬂ”f’cdx =1 (6.129)

from the sifting property in Equation (6.8), so that the inverse Fourier transform of an allpass
filter is a delta function. The result of Gaussian highpass filtering on an image, with different
variances, is shown in Figure 6.19.

Figure 6.18 A highpassfilter . .., frequency
is the allpass filter minus a ——— — = —
lowpass filter f f I f

Copyright 2018 Cengage Learning. ﬂug@é%gtler\%% May not be cc%)’&t}ystc)gnsnseﬁ,(l)r%gplicated, in whljégrhpgasr§ %32-200-203

every frequency

6.4 Frequency-Domain Filtering 303

--

Original image o=5pixels™! o =10pixels! o =20pixels™! o =40 pixels~!

Figure 6.19 Animage, and the result of (EEUSSIERINIGNEpassHilkerng in the [EHHEHSMNEIEN \ith different variances. The top row
shows the DFT of the image and the magnitude of the frequency response of each filter. Bright values indicate frequencies that are
passed, whereas dark values indicate frequencies that are attenuated.

=
2
=
S
=

6.4.3 Bandpass Filtering

A bandpass filter rejects both low and high frequencies, instead passing only frequencies
in a certain band. The ideal bandpass filter is

H(f)| = {1 io =J =i (6.130)

0 otherwise
where the passband is between f;, and f};.

Laplacian of Gaussian (LoG) filter

By far the most common bandpass filter for image processing is the Laplacian of Gaussian
(LoG) filter, which we saw in the previous chapter:

H(f)| = —f2e /2 (6.131)

This expression follows from the well-known formula for the Fourier transform of the n™
derivative of an arbitrary function g:

f{d g(f)} = (N"G(f) (6.132)
dx

by letting g and G be the Gaussian, letting n = 2, and recognizing that j> = —1. The LoG

filter is sometimes known as the Laplacian filter.

It is worth noting that 3 elements are not sufficient to capture the bandpass nature of the
Laplacian. In the previous chapter we noted that the only 3 X 1 second-derivative Gauss-
ian kernel is [I —2 1]. The DFT of this kernel is [=3 0 —3], which removes the
low-frequency DC component while passing the other high frequency. In other words, every
3 X 3 LoG kernel acts like a highpass filter. To keep the DF T nonnegative (and hence zero-
phase) we typically use the negative LoG kernel [-1 2 —1], whose DFTis[3 0 3]

It is easy to see that the negative LoG kernel is just the scaled difference between allpass
and lowpass filters:

1
[-1 2 —-1]=3|[0 1 0]—5[1 1 1] (6.133)

highpass allpass lowpass

orin 2D,
Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

304

Chapter 6 « Frequency-Domain Processing

0 -1 0 00 0] Jo 10
—1 4 —if=af 0 1 0f-¢|1 2 1 (6.134)
0 -1 0 0 0 0 0 1 0

highpass allpass lowpass

where 1 = 6. Since the convolution of the image with an allpass filter is just the image
itself, we have

1® (—LoG) = (I = I ® hjppypass) (6.135)

where Ap,,q45 18 the 3 X 3 lowpass kernel and 7 is the associated scaling factor. Table 6.2
provides the lowpass kernels for several 3 X 3 LoG kernels, along with their scaling factors.

EXAMPLE 6.5

Solution

Given the following lowpass kernel:

11 1 1
1 1 1
Piowpass(x,y) =—|1 1 1|=—1|®-[1 1 1] (6.136)
? 11 1 3 1 3

find the equivalent LoG kernel that satisfies Equation (6.6), and find the scaling factor 7.

An image does not change when it is convolved with the allpass filter. Combined with the
linearity property of convolution, this yields

I,(.X, y) = n(l(x’ y) - I(-xvy) ®hl()wpass(x7y)) (6-137)
0 0 0 | 1 1 1
= nlI(x,y)®|0 1 0 —I(x,y)@g 1 1 1 (6.138)
0 0 0 1 1 1
0 0 0 | 1 1 1
=q|I(x,y)®[|[0 1 0 “y 1 1 1 (6.139)
0 0 0 1 1 1
-1 -1 -1
=I(x,y)®g 1 8 I (6.140)
-1 -1 -1

The convolution kernel in the final line is recognized as the LoGy 33 kernel of Table 5.5,
multiplied by —n, where n = 3. The result is shown in the penultimate column of Table 6.2.

Unsharp Masking and Highboost Filtering

The Laplacian leads to a popular way to enhance an image known as sharpening. This
approach takes advantage of a peculiarity of the human visual system, namely that neurons
in the retina distort the intensity values based on neighboring intensities. Such a distortion
is evidenced in the well-known Mach bands illusion, illustrated in Figure 6.20, which
reveals that the human brain perceives exaggerated intensity changes near intensity edges.
Capitalizing on this phenomenon, the sharpening trick to image enhancement introduces
artificial Mach bands by exaggerating intensity edges.

Sharpening is almost always performed with a Laplacian kernel, and it can be done in
either the spatial or frequency domain. In the spatial domain, simply subtract a blurred

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

6.4 Frequency-Domain Filtering

0 1 0 1 4 1 1
1 -4 1| §|4 —20 4|3|3 -1
0 1 0 1 4 1 1
a? =00 g% =0.167 T =
0 1 0 1 4 1
1 21 =4 16 4| %
01 0 1 4 1
- st o4 1] 4
- o2 = 0333 G =
n= n= n=

301 1
6 3|42
301 1

305
111 1 0 1
il =8 1| 3|0 —4 0
111 1 0 1
a2 =033 a? =05
11 1} 1 0 1}
sl 11 o o0 o
11 1 1 0 1
i1 1] 5[t o 1]
o2 =067 o2=10
n=3 n=2

TABLE 6.2 The lowpass kernels associated with various LoG kernels. The first two rows show the discrete 3 X 3 LoG kernels
from Table 5.5, along with their variances o-2. The next four rows show the corresponding 3 X 3 lowpass kernel h1owpass
sothat/ ® (—LoG) = n(I — | ® hjoupass), along with the 3 X 1 generator for the separable lowpass kernel and its
variance o2, and the associated scaling factor 7. (The 3 X 3 lowpass kernel in the first column is not separable.)

version of the image from the image, then add the result back to the original image. Insert-
ing scaling factors a and b, this is represented mathematically as

I'(x,y)

where I(x, y) is a blurred version of the image, igpass =

1(xy) + (al(x,y) = bI(x,y))
I(-x’y) + (al(x,)’) - bl(x’y) ®hlowpss)
(1+a—b)1(x’y)+b[(x’y)®hhighpass

(1+a-b)(xy) + %my) ® (—LoG(x.y))

(6.141)
(6.142)
(6.143)

(6.144)

hallpass - hluwpass is the 2D

highpass kernel, —LoG is the zero-phase negative-LoG kernel, and the last equality follows
from Equation (6.135) when the kernel is 3 X 3. This technique is known as either unsharp
masking or highboost filtering. Sometimes the former name is reserved for the case
when a = b = 1, while the latter term is reserved for the case when a = b > 1, but such
a distinction seems unnecessary since all cases involve boosting, or emphasizing, the high
frequencies. The process of unsharp masking is illustrated in Figure 6.21.

The expression in Equation (6.144) is equivalent to the following convolution:

I'(x,y) =I(x,y) ® hysy(x,y)

(6.145)

Figure 6.20 The Mach
bands illusion. Left: Image
consisting of dark and

light regions, with a linear
transition between them.
The human visual system
hallucinates a dark band left
of the transition and a bright
band right of the transition.
Right: 1D slice through the
image, showing the actual
graylevel function and the

percei%gﬂimqtjm’Cengage Learning.

Phantom-ﬁ t Phantom

dark band

All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. W&\l@-@é@bﬁ)

Bright band

Gray level

180 .)
Perceived image profile
160 B §~
140
Actual image

120 profile
100 |

80L —

s
60
100 140 180 220 260 300

306 Chapter 6 « Frequency-Domain Processing

Original image Image minus lowpass Sharpened image

NASA

Figure 6.21 From left to right: Animage of Saturn’s moon Dione, the result of subtracting the low-pass filtered version of the image
from itself, and the sharpened image resulting from adding this subtraction back to the original image.

where
b
hUSM = (1 ta-— b)hal/pass - ELOG (6146)
Different choices for the LoG kernel lead to different convolution kernels, such as
0 0 o] ,fo 10 0 -1 0
husmoo(x.y) = |0 T4a=b 0= -1 —4 1|=--1 j(1+a) =2 —1|or (6147)
L 0 0 0| 0 1 0 0 -1 0
K 0 0] 111 ~1 ~1 —1
b 1 b 0
hUSM,033(X,y) = |0 1+a—b O 33 1 -8 1 =§ -1 ;(1+a)—1 -—1]| (6.148)
L0 0 0] 1 1 1 -1 -1 —1

Figure 6.22 shows the results of sharpening an image using unsharp masking via
Equation (6.148).
Due to the circular convolution theorem, the equivalent representation of unsharp mask-
ing in the frequency domain is
I'(x,y) = F HAIGG)} Hysm (ke k) } (6.149)
where
Hysu(ke ky) = Flhysyt = (1 + a — b) + bHpignpass (K ky) (6.150)

Figure 6.22 The process of image sharpening: The image is convolved with the LoG, and the result is subtracted from the original
image. The edge in the right column appears sharper than that in the left column.

5
%
H

-1

S Y S '} 72
—-200 0 200 -8—4 0 4 8 —200 0 200 =20 0 200
X X X x
Image LoG Image ® LoG Imag}el — Image ® LoG
I(x) 0%g(x)/0n? 1(x)® 02 g(x)/0x> = sharpened image

I(x) - I(x) ® 02 g(x)/0x>

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

6.4 Frequency-Domain Filtering 307

where the highpass filter Hj,;qppqss 1S, in the 3 X 3 case, the DFT of the scaled negative-
LoG kernel. The filter Hg;, is sometimes known as a high-frequency-emphasis filter.

In case you are wondering about the name “unsharp masking”—which may seem odd
since it is a technique used to sharpen an image—the term comes from the old days of pho-
tography (before the digital age). A picture taken by a camera would be stored on a piece of
film called a “negative.” In a darkroom a light would be shone through the negative to produce
a positive image, which was then developed using special chemicals. To accomplish unsharp
masking, the light would first be shone through a thin piece of glass to create a slightly out-of-
focus positive image, which would then be aligned with the original in-focus negative image
for another round of exposure. Light shining simultaneously through the in-focus negative
and out-of-focus positive images would then create the unsharp masked version.

6.4.4 Homomorphic Filtering

In an earlier chapter” we looked at the notion of intrinsic images, in which a 2D image is
decomposed into the individual causes of the image such as illumination and reflectance.
Homomorphic filtering is a simple and classic technique to separate these two
components—that is, to estimate a model that explains for each pixel the contribution due
to light shining in the scene and the contribution due to the surface reflecting the light.

In Equation (2.11) we saw that the irradiance E at a point (x,y) is the product of the light
A and the surface reflectance R:

E(x,y) = Alx, y)R(x,y) (6.151)

where we have ignored the dependency on wavelength for simplicity. Taking the Fourier
transform of both sides does not help, because there is no formula relating the product of
two DFTs:

HE(x, y)} # FAA(x, y)) AR, y) } (6.152)

However, if we first take the logarithm of the image (which, after gamma expansion, we
assume to be the irradiance), then a simple relationship emerges:

log E(x,y) = log A(x,y) + log R(x,y) (6.153)
Fllog E(x,y)} = Fllog A(x,y)} + Flog R(x,y)} (6.154)

Typically the lighting function A contains primarily low frequencies, while the reflectance
function R contains more high-frequency information. In homomorphic filtering, the DFT
of the logarithm of the image is computed, then the result is filtered using a lowpass or
highpass filter to process reflectance and lighting differently. Finally, the exponential of the
inverse DFT of the result is computed. Figure 6.23 shows the results of homomorphic filter-
ing on an image to reveal details in the shadows that are not visible in the original image.

Figure 6.23 Left: Animage with severe shadows, and the result of homomorphic filtering using a high-frequency filter to reduce the
influence of lighting. Right: the result of multiplying the image by a constant and adding a constant to the image, for comparison.
Note the ability of homomorphic filtering to reveal details in the shadow of the canon that are not visible in any of the other images.

Original image

Stan Birchfield

Homomorphic filtered Increased gain Increased bias

Copyright 2018 Cengage Learﬁi&m(ﬂbﬁimﬁ@g@}q. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

308

Chapter 6 « Frequency-Domain Processing

6.5 Localizing Frequencies In Time

6.5.1 Gabor Limit

As we have seen throughout this chapter, the Fourier transform is a handy technique for
extracting frequency information from a 1D or 2D signal, as well as to filter such informa-
tion. A serious drawback of the Fourier transform, however, is that it only indicates the
presence of a certain frequency in the signal without providing any information about the
location of that frequency within the signal. In other words, although the Fourier transform
indicates which frequencies are present in the signal, it does not tell us anything about where
they are located.

Musical notation, such as that shown in Figure 6.24, provides a helpful way to look at
this problem. Such notation captures not only which notes are played, but also when they are
played. The original 1D time-domain signal is, in some sense, a projection of this notation
onto the time axis, making it easy to determine when the notes are played but not so easy to
determine which notes are played. The Fourier transform, on the other hand, can be thought
of as a projection of this notation onto the frequency axis, making it easy to determine which
notes are played but not when they are played. What we desire is a way to transform the
original signal that captures both types of information.

To better understand this trade-off, suppose you want to play a short pulse of a note on a
musical instrument, like a flute. You place your fingers carefully over the flute and blow
into the mouthpiece for a brief period of time. The question is, How long should you blow?
If the pulse is too short, then it will not be easy to tell which note was played, but if your
pulse is too long, then it will not be easy to tell when the note was played (because it will
not appear as a pulse anymore). In the former case the pulse cannot be localized in frequency,
whereas in the latter case it cannot be localized in fime. This fundamental trade-off is
captured in the Gabor limit,” which says that a signal cannot be localized simultaneously
in both frequency and time.

The Gabor limit forces us into a fundamental trade-off between localizing in frequency
and localizing in time. If our goal is to balance this trade-off the best we can, then it is
clear that the duration of the pulse should be related to the frequency that we are trying to
localize. That is, a high-frequency tone should receive a shorter pulse, while a low-frequency
tone should receive a longer pulse, as illustrated in Figure 6.25. The pulse should be long
enough to capture at least one period (or cycle) of the tone, but not so long as to capture
an unnecessarily large number of periods. Since the period is inversely proportional to the
frequency, this tells us that the desired pulse duration should also be inversely proportional
to the frequency.

Figure 6.24 Musical notation is a convenient éﬁzm

way of expressing frequencies as they occur
in time. The 1D time-domain signal can be
thought of as the projection of this musical
notation onto the time axis, while the 1D
frequency-domain representation is the
projection onto the frequency axis.

" Dennis Gabor (1900-1979), in addition to his work on wavelets, is best known for inventing holography, for

which he received the Nobel Prize in Physics.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

6.6 Discrete Wavelet Transform (DWT) 309

Figure 6.25 The duration of
a pulse of a pure frequency
should be determined

by the frequency. Shown
here are two signals (high-
frequency on the left,
low-frequency on the right)
modulated by two different
window functions (short-
duration window on top,
long-duration window on
bottom). In the top-right
the pulse is too short, so
that the frequency is not
discernible, whereas in the
bottom-left the pulse is too
long, making it difficult to
precisely locate the pulse.
In the top-left and bottom-
right, the width of the pulse
is appropriately chosen.

0.8}
04r

Amplitude
Amplitude

Amplitude
Amplitude

6.5.2 Short-Time Fourier Transform (STFT)

One approach to capturing time-localized frequencies of a signal is to slide a window
function (e.g., a Gaussian) across the signal and at each location in time compute the
Fourier transform of the windowed signal. This approach, known as the short-time Fourier
transform (STFT) or the windowed Fourier transform, is computationally expensive
because it requires computing many Fourier transforms for a single signal. More importantly,
it violates the principle of the Gabor limit, which says that we should multiply the signal
by a windowing function whose width is inversely related to the frequency we are trying
to capture. In other words, high frequencies need narrow windows, while low frequencies
require wide windows; but the STFT multiplies the signal by the windowing function
before extracting the frequencies, and thus it subjects all frequencies to the same windowing
function. It is unavoidable, then, that the windowing function will be too wide for high
frequencies and too narrow for low frequencies. What we need is a way to adaptively adjust
the windowing function applied 7o the signal based on the frequencies that we are seeking
to extract from the signal. While this goal might at first glance appear to be enormously
difficult (or even impossible), there is in fact a simple, computationally efficient way to
achieve it: namely, the wavelet transform.

6.6 Discrete Wavelet Transform (DWT)

The key idea of the wavelet transform is to determine the locations of frequencies in a signal
in such a way that the frequencies are taken into account when determining their location.
Like the Fourier transform, the wavelet transform can be either discrete or continuous, and
it can be applied to either infinite-duration or finite-duration signals. We will focus our
attention primarily upon the discrete wavelet transform (DWT) because it is both easier

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

310

in image signal processing,
instead of the concept of time,
we have the concept of location

Chapter 6 « Frequency-Domain Processing

to understand and more practical. But for the most part, the discussion below will apply
equally well to any of the versions.

Like the Fourier transform, whose basis functions are sines and cosines, the wavelet
transform also projects the signal onto basis functions. Starting with a mother wavelet,
denoted by i (x), the wavelet transform basis functions are obtained by scaling and shifting

the|mother wavelet
1 - b
Yop(x) = —= o qx D (6.155)

Va a

where the translation b determines the location of the wavelet, and the scaling (or dila-
tion) a > 0 governs its frequency. Note that ¢y = ¢, ;. The normalization % ensures that
ltp,.(x)| is unaffected by a or b. For a discrete signal, both a and b are integers, and the
floor operator is necessary to ensure that the argument to the mother wavelet is an integer;
for a continuous signal, the floor operator can be removed, and a and b allowed to be real.

Theldiscrete wavelet transform (DWT)lof a 1D discrete signal g(x) is a 2D array of
values G(a,b), where each element in the array is the sum of the elementwise product of the
signal with the appropriate wavelet function:

G(ab) = D g(x)p.p(x) (6.156)

This equation clearly reveals that the wavelet transform is by its very nature massively
redundant, because it replaces a 1D function g(x) with a 2D function G(a,b). If @ and b
are allowed to take on any integer values, then the transform is [SHGONMPIGES. because it
contains more information than is necessary to represent the original signal faithfully. The
beauty of the wavelet transform is that this redundancy can be removed and still retain all
the essential information by spacing a and b appropriately. For a signal with length w, we
typically set a = 2/ and b = 2ak, where j =0, ...,log,w — landk =0, ..., — 1,
so that successive frequencies are separated by an octave, and the translation keeps neigh-
boring wavelets well-separated. This is called critical sampling, and it yields sparse basis
functions that balance the competing design goals of accurately representing the signal
while not being too redundant, just as the Gabor limit tells us to do. A wavelet transform
that is critically sampled is called complete, because it retains exactly the information of
the original signal, enabling the inverse to be computed.

As an example, when w = 8, we have j € {0, 1, 2}, with the values of k depending
upon j as shown in Table 6.3. Each of the entries in the table yields one of the wavelet basis
functions for w = 8§, so that there are just 7 basis functions (4 in the first row, 2 in the second
row, and 1 in the bottom row). As a result, when an 8-element signal is projected onto the
basis functions using Equation (6.156), only 7 values will be obtained as outputs, meaning
that information has been lost. Thus, in our attempt to remove the redundant information,
we removed too much information. This problem is easily corrected by augmenting with
an additional basis function, which in general is needed to preserve all the information in
the original signal, whenever critical sampling is performed.

j a k b

0 1 0,1,2,3 0,2,4,6
1 2 0,1 0,4

2 4 0 0

TABLE 6.3 The values of a and b needed to generate a complete wavelet basis for an 8-element input.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

in image signal processing,
instead of the concept of time,
 we have the concept of location

6.6 Discrete Wavelet Transform (DWT) 311

This additional basis function, often called the|father wavelet (or scaling function), is

denoted ¢ (x), analogous to the mother wavelet i (x). Oftentimes, the wavelet transform
is orthogonal, meaning that the mother and father wavelets form an orthonormal basis for
the space when translated by even multiples:

. N L 1 ifi=
;w(x =2)¢(x — 2j) = Ex:¢>(x 20)p(x — 2j) = {0 otheruise (6.157)
Dp(x = 2i)p(x —2j) =0 (6.158)

where i and j are arbitrary integers. To create a father wavelet orthogonal to the mother
wavelet, simply reverse the order of the values and negate every other element:

o(x) = (—1)"y(w—1-1x) (6.159)

where w is the length of the kernel, which is even.

6.6.1 Haar Wavelets

The simplest and oldest type of wavelet is the Haar wavelet.? In the continuous domain
the Haar mother wavelet is simply two adjacent boxcar functions® of opposite sign:

1 ifo<x< %
Ylx) =4-1 ifi<x<l1 (6.160)
0 otherwise

and the wavelet functions are critically sampled, as shown in Figure 6.26. In the discrete
domain the Haar mother wavelet is a sequence of 1s followed by a sequence of —1s, along
with some scaling. Not only are Haar wavelets the easiest way to learn about the wavelet
transform, they also form the basis of widely used techniques, such as the features used in
commercially available face detectors. This popularity stems from the speed at which they
can be computed due to their reliance upon simple sums and differences.

The discrete Haar mother wavelet is justa 1 at x = 0 and a —1 at x = 1, appropriately
scaled so the norm is 1:

: 1 ifx=0
Y(x) =—4=¢—-1 ifx=1 (6.161)
\/2 0 otherwise

Figure 6.26 Haar basis functions are based
on boxcar functions. Shown are the mother
(left) and father (right) wavelets.

" If necessary, simply append a zero element to the end of the discrete wavelet to make w even.
* Alfréd Haar (1885-1933) was a Hungarian mathematician.
¥ A boxcar function is constant over some particular interval but zero everywhere else.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

312

Chapter 6 « Frequency-Domain Processing

To represent the Haar wavelet as a discrete array, simply ignore the zeros (which implicitly
extend the array in both directions):

1

d(x) = —=[1
V2 o
1

p(x) = —=[1

V2 o

where the father wavelet is obtained by the QMF relation in Equation (6.159). Note that ¢ acts
like a highpass filter, and indeed Ex Y (x) = 0. Similarly, ¢ acts like a lowpass filter, but unlike
alowpass convolution kernel, the sum of the elements is not 1, but rather the energy of the signal
is 1. That is, EX é(x) # 1but EX ¢*(x) = 1; as a result, the father wavelet has the effect
of increasing the overall level of the signal, which, in the case of an image, brightens the image.
Because of the quadrature mirror relation, the energy in the highpass filter is also 1: EX P (x) = 1.

1] (father wavelet) (6.162)

—1] (mother wavelet) (6.163)

EXAMPLE 6.6

Solution

Show that the discrete Haar wavelet satisfies (6.159) and is orthogonal.

The length of the kernels is w = 2. From Equation (6.163) we have 4(0) = —(1) = <.
Plugging into Equation (6.159) yields

$(0) = (=1)'¢(2-1-0) = —y(1) = (6.164)

o(1) = (D2 -1-1) =y(0) = —= (6.165)

which indeed matches Equation (6.162). It is easy to show that Equations (6.157)—(6.158)
are satisfied:
1\? 1\? 1\? 1\?
) () -G5) - (-3)
5 -(-3)
— - ——=) =0 6.167
\/2 5 ()

—

(6.166)

EXAMPLE 6.7

Solution

Write the translated and scaled versions ¢, ; and ¢, of the Haar mother wavelet in
Equation (6.161).

Setting b = 1 causes the wavelet to shift to the right by 1:
! 1 ifx=1
Pri(x) =—=q-1 ifx=2 (6.168)

Va2 o

since ¢ 1 (x) = (x — 1). Similarly, setting a = 2 causes the width of the wavelet to
expand by 2:

otherwise

1 ifx=0
! 1 ifx=1

Pro(x) = > -1 ifx=2 (6.169)
-1 ifx=3

0 otherwise

since 5.9 (x) = 5 (|3]). Note that the normalization factor ensures that the energy in the
signal remains constant: [y, o(x)| = [y (x)| = [2.0(x)| = 1. The results are plotted in
Figure 6.27.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

6.6 Discrete Wavelet Transform (DWT) 313

o
o W
T
——o

|
o
(9,1
T
q
[S—
dq
dq
q
dq
|
e
W
; =
|
o
(91
T
q
o0—
o—
dq
dq

—1 1 1 J —1 1 1 1 J —1 1 1 1 J
-2 0 4 6 -2 0 2 4 6 -2 0 2 4 6
X X
P(x) 1, 1(x) 2, 0(x)

Figure 6.27 The wavelets of Example 6.7. From left to right: the discrete Haar mother wavelet, a translated version, and a scaled version.

The basis functions for the discrete Haar wavelet transform are the scaled and translated
versions of the mother wavelet, along with the appropriately scaled father wavelet. For a
signal with w = 8, for example, these scales and translations are given by the values in
Table 6.3. Ignoring normalization for simplicity, the scaled father wavelet (j = 2,a = 4)
consists of eight Is, and the correspondingly scaled mother wavelet consists of four 1s
followed by four —1s. At the next scale (j=lLa= 2), the width of the latter wavelet
is reduced by a factor of 2, so it consists of two s followed by two —1s, with Os filling
in the remaining elements. At this scale the translation is either » = 0 or b = 4, to avoid
overlap of the nonzero elements of the wavelet functions within a scale. At the finest scale
(j = 0,a = 1), the width of the nonzero elements of the wavelet function is only 2, with
translations of 0, 2, 4, and 6. These basis functions can be summarized as shown in Table
6.4, where the positive sign (+) indicates the number +1, while the negative sign (—)
indicates the number — 1. These basis functions are displayed in Figure 6.28.

EXAMPLE 6.8

Compute the discrete wavelet transform, using the Haar wavelet, of the 1D signal
g(x)=[1 7 3 0 5 4 2 9] ignoring normalization for simplicity.

Solution To compute the DWT, simply sum the elementwise products of the signal with the basis
functions. Because the basis functions consist of only + 1s or —Is, this procedure requires
simply adding or subtracting values. If we let G(0, 0) indicate the DC component obtained
from the scaled father wavelet, then this yields:

G(0,0)=1+7+3+0+5+4+2+09=31] (6.170)
G(4,0)=1+7+3+0-5-4-2-9=[-9 (6.171)
G(2,0)=1+7-3-0=5 (6.172)
G(2,4)=5+4-2-9=|-2 (6.173)
G(1,0)=1-7=]-¢ (6.174)
G(1,2) =3 -0=|3] (6.175)
G(1,4) =5 -4 =] (6.176)
G(1,6) =2 -9 =7 (6.177)
The final wavelet transform then consists of these 8 values, which we arrange by conven-
tion as the low frequency component followed by the components of increasingly higher
frequencies: W{g} = [31, —9,5, =2, —6, 3, 1, —7]. As we shall see later, this transform
is invertible, so the original signal can easily be recovered from these 8 values.

314 Chapter 6 « Frequency-Domain Processing

j k a b basisfunction
2 0 4 0 ¢ao=m[+ + + + + + + +]
2 0 4 0 Puo=nl+ + + + — — — -]
1 0 2 0 Yo=ml+ + — 0 0 0 0]
1 1 2 4 4Ypu=7[0 0 0 0 + + — —]
0 0 1 0 $o=m[+ — 0 0 0 0 0 O]
0 1 1 2 ¢p=7m(0 0 + — 0 0 0 O]
0 2 1 4 Ya=7m[0 0 0 0 + — 0 0]
0 31 6 Yie=m[(0 0 0 0 0 0 + -]

TABLE 6.4 Basis functions for an 8 element discrete Haar wavelet, where + means +1,and — means —1.The scaling factors
aregiven by n; = 27U+ 12 = = 5 which leads to ;> for the first 2 rows, ; for the next 2 rows, and > for the bottom 4 rows.

6.6.2 DWT as Matrix Multiplication

Just as we showed that the discrete Fourier transform (DFT) can be viewed as matrix mul-
tiplication,’ so can the discrete wavelet transform (DW T). For an 8-element signal, for
example, the Haar wavelet matrix is

G(0) 12 12 1/2 1/2 12 12 1/2 172 1 [(0)
G(1) 12 12 1/2 12 =12 —1/2 =12 —1/2 ||g(1)
G(2) V2 1IN2 —1/NV2 —1/V2 0 0 0 0 ¢(2)
G(3)| 1 0 0 0 0 N2 1N2 —1/NV2 —1/V2] g(3)
G4) | "zl 1 -1 0 0 0 0 0 0 g(4)| (6:178)
G(5) 0 0 1 ~1 0 0 0 0 ¢(5)
G(6) 0 0 0 0 1 ~1 0 0 ¢(6)
L G(7)] Lo 0 0 0 0 0 1 -1 |le]
Hy

where we define G(i) to be the i/ element in the output, as in Equations (6.170)—(6.177).
It is easy to verify that this matrix is orthogonal, that is, HgHg = H{Hg = Ijgsg).

6.6.3 Fast Wavelet Tra nsform (FWT) similiar to FFT(fast fourier transform)

In the previous example, scaled versions of the wavelet function were repeatedly applied.
Examining Equations (6.170)—(6.177), we notice that this approach involves a fair amount
of redundant computation. A much faster approach, known as the fast wavelet transform
(FWT), simply computes the high- and low-frequency components first, then downsamples
the low-passed signal and repeats until the length of the signal is too small to continue.

More specifically, if g is the signal, ¢ is the lowpass kernel, and ¢ is the highpass kernel,
then the computation at a single resolution is given by

Son(x) = (g®) L2 = Dg(2x + k)p(k) (6.179)

* Section 6.2.8 (p. 288).

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

similiar to FFT(fast fourier transform)

6.6 Discrete Wavelet Transform (DWT) 315

1.~ 1.~ 1, 1~
05| 05} 051 0.5}

0be 2 e 09 09 opeee 0 _Ll_l_‘*H 0._._._._1_1_“
=05} =05} =05} =051

e e e e

0 2 4 6 0 2 4 6 0 2 4 6 0o 2 4 6
X X X X
j=2k=0 j=2k=0 j=1,k=0 j=1k=1
b4.0 P10 P20 P24

1r 1p 1r 1r
0.5 05 051 05F

0 T‘_‘_‘_‘_‘_‘ 0-——'—1—_- 0-——'—'——- 0-—'—1
=05} =05} =05} =05}

R T O | R T T T T T T | R T R T N | R T T T T |

0 2 4 6 0 2 4 6 0 2 4 6 0o 2 4 6
X X X X
j=0k=0 j=0k=1 j=0k=2 j=0,k=3
1.0 1,2 P14 16
Figure 6.28 The 8 basis functions for a complete 8-element discrete Haar wavelet.
nign(x) = (g@) 12 = D e(2x + k)y(k), (6.180)
k

where the subsampling operator is defined as (g | k) (x) = g(kx). In other words, we can
conceptually think about convolving (or, rather, cross-correlating, since the kernel is not
flipped, hence the symbol ®) the signal g with the kernels ¢ and ¢, then downsampling
both results by 2 to get the lowpass and highpass signals—which is shown in the middle
of the equations. But in reality the wasted computation is avoided by shifting the kernels
by 2 samples each time—shown on the right of the equations.

After the low- and high-frequency components have been computed for one resolution,
the low-frequency component is used as the signal for the next resolution. That is, at resolu-
tion i, Equations (6.179)—(6.180) become

i) = (g, @) L2 = D (2x + k)p(k) (6.181)
k

g (x) = (g, @w) L2 = D¢, (2x + k) (k) (6.182)
k

where gg,% = g is the original signal. Since the signal is downsampled by 2 each iteration, the
method is straightforward if the length w of the signal is a power of 2; if not, then zero-padding
is necessary. The final wavelet transform is given by stacking the high-frequency components
at all levels, along with the low-frequency component at the lowest level, into a vector.

Pseudocode for the FWT is provided in Algorithm 6.5, where Lines 3 and 5 indicate a
concatenation of the lowpass and highpass components. Unlike the FFT, whose descrip-
tion was omitted from the text due to its rather extensive bookkeeping, the FW T is easy to
understand and implement, particularly in the case of Haar wavelets. In fact, the wavelet
transform is one of those rare cases in which no engineering trade-off has to be made: Not
only does the wavelet transform provide more information than the Fourier transform, but
the algorithm to compute it is much simpler to implement and faster to run. If w is the length
of the signal, the FWT can be computed in linear O(w) time, compared with the O(w log w)
asymptotic running time for the FFT.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

316 Chapter 6 - Frequency-Domain Processing

ALGORITHM 6.5 Compute the discrete wavelet transform of a 1D signal using Haar basis functions

EXAMPLE 6.9 Apply the fast wavelet transform (FWT) to the signal g = g(x) =[1 73 05 4 2 9]
using Haar wavelets. Ignore normalization for simplicity.

Ignoring the normalization factors, simply add and subtract pairs of adjacent elements of
the signal:
1+7= 8 3+40=3 5+4=9 2+9= 11

1-7=[-6] 3-0=[] s5-4=[1] 2-9=[7

Then repeat the same procedure on the sums:
8+3=11 9+ 11 =20

8§-3=[5] 9-11=[2]

11 + 20 = [31]
11 —20 =|-9|

Using the convention of Algorithm 6.5, the outlined results are concatenated in reverse
order, so that the low-frequency component comes first. The resulting wavelet transform is
therefore W{g} =[31 -9 5 —2 —6 3 1 —7], which is exactly the same
result obtained in Example 6.8 .

Alternatively, Equations (6.181) and (6.182) can be applied:

and again:

1 1
() = L -

gV (x) = [1+7 340 5+4 2+9]= [8 3 9 11] (6.183)
V2 V2

1 1

gu(x) =—=[1-7 3-0 5-4 2—9]=—[} (6.184)

V2 V2
At the next resolution,
1 1
dD(x) = 5[8 +3 9+11]= 5[11 20] (6.185)

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

6.6 Discrete Wavelet Transform (DWT) 317

Gl () = %[8 -3 9-11]= ;[J (6.186)

and at the final resolution,
¢O(x) = ——[11 +20] = —— [J (6.187)
22 22
©) _ 1 1
(x) = 11— 20] = [} 6.168)
¢ 02 N2

which is the same result as before except for the scaling factors. To see that the normaliza-
tion factors preserve the energy in the original signal, note that

P+7+3+0+5+4+22+9°=185

)) O+ G+ () () + () - () =

6.6.4 Inverse Wavelet Transform

Just as the Fourier transform admits an inverse, so does the wavelet transform. In the case
of the DWT, the matrix formulation just introduced makes it easy to discover the inverse.
For example, the forward Haar transform is

V(’) _ L 1 1 Vo
L=l 0] o159

where vg = g(2x), vy = g(2x + 1), v) = g (x), and v = g0, (x). Itis easy to see that
the matrix is its own inverse, so that

Vo _ L 1 1 V(’)
Sl 0

As with the Fourier transform, the specific values of the forward and inverse normalization
factors are not important, as long as their product is (in the case of Haar) == - \%2 = 1 There-
fore, an alternative is to place the normalization factor entirely in the inverse transform,
which is oftentimes more convenient:

Vo _ 1 1 Vo 6.191)
V{ 1 —1 Vi ’
vy 211 =1]|w»n ’

Recalling the definitions of vy, v;, v, and v}, and carefully noting the resolution, the inverse
Haar wavelet transform in Equation (6.192) can be rewritten as

47 1, ¢ ;
§70(2x) = (6, () + gl () (6.193)

- L .
dV02x+1) = E(g%)w(x) — g a(x)) (6.194)

The pseudocode is provided in Algorithm 6.6.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

318

Chapter 6 - Frequency-Domain Processing

ALGORITHM 6.6 Compute the inverse DWT of a 1D signal using Haar basis functions

EXAMPLE 6.10

From the previous example, we have that W{[1 7 3 0 5 4 2 9]} =
31 -9 5 -2 —6 3 1 —7], using the simplified normalization of
Equation (6.191). Apply the inverse fast wavelet transform to the result to verify this result.

Applying Equation (6.192) to the first two values of the inverse wavelet transform yields:
FP2n] = = [31 + (-9)] = [11] (6.195)

FPL2n+1]==[31 - (-9)] = [20] (6.196)

N[= N =

Concatenating the values yields f@[n] = [11 20]. At the next resolution, these two val-
ues are combined with the next two in the sequence:

1

fO2r)==-[11+5 20+ (-2)]=[8 9] (6.197)

Ff2n+1]==[11-5 20— (-2)]=[3 11] (6.198)

NSRS

Interleaving these values for the even and odd indices yields fV[n] =[8 3 9 11].
These four values are then combined with the final four:

FOr]==[8+(=6) 3+3 9+1 11+ (-7)]=[1 3 5 2] (6.199

1
2

fOLp+1]==[8-(-6) 3-3 9-1 11— (=7)]=[7 0 4 9] (6.200)

1
2
Again interleaving these values yields the final result: f@[n]=[1 7305 4 2 9],
which is what we expect.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

6.6 Discrete Wavelet Transform (DWT) 319

Note that the fast wavelet transform (FWT) operates on the signal at multiple resolutions.
First the sums and differences are computed at the original resolution. Then the sums are used
to effectively subsample the signal, and the sums and differences are computed on a signal that
contains half as many samples as the original. This process of computing sums and differences
and downsampling is repeated until the signal is too small to continue. As we shall see in the next
chapter, there is a close connection between the FWT and the well-known pyramidal decomposi-
tion of an image; an operation is applied to repeatedly subsampled versions of the signal to reveal
frequency information at each scale. The underlying theory behind these algorithms is known
as multiresolution analysis (MRA), and it applies to critically sampled wavelet transforms.

6.6.5 Daubechies Wavelets

d(x) =

p(x) =

4\/

~ [0.48296291 0.83651630 0.22414387 —0.12940952] (D4 scaling) (6.203)

4\1/2[1—\@ —3+V3 3+V3 —1-13]

~ [—0.12940952 —0.22414387 0.83651630 —0.48296291] (D4 wavelet) (6.204)

Despite the simplicity and popularity of Haar wavelets, the abrupt transitions of the box-
car functions yield objectionable artifacts that are unacceptable for some applications. A
generalization of Haar wavelets are Daubechies wavelets—in fact, Haar is a special case
of Daubechies. Recall that a wavelet family is defined entirely by the mother wavelet, but
that the father wavelet (or scaling function) is needed for computational efficiency by the
DWT algorithm. Like Haar wavelets, Daubechies wavelets are orthogonal, so that the father
wavelet is determined from Equation (6.159).

The key idea behind the Daubechies wavelet is to achieve the highest number of vanish-
ing moments for a defined support width. A smooth signal can be locally approximated by
a polynomial, and the moments of the signal are a measure of how similar the signal is to
the powers of x in the polynomial. A vanishing moment occurs when the moment is zero, in
which case the signal bears no resemblance, and therefore the low-order polynomial features
of the signal are removed by the wavelet transform, leaving only higher-order features. Thus,
the number of vanishing moments are related to the compression ability of the wavelet, so
that the Daubechies wavelets are designed to attain the maximum compression (in some
sense) for a given amount of computation (support width).

Daubechies wavelets are defined given a certain kernel width, which is an even number
ranging from 2 to 20. The Daubechies D2 wavelet is identical to the Haar wavelet, D4 is
the simplest non-Haar Daubechies wavelet, and so forth. The number of vanishing moments
is given by half the number, so D2 has 1 vanishing moment (constant signals transform
to zero), D4 has 2 vanishing moments (linearly sloped signals transform to zero), and so
forth. It is beyond our scope to discuss how to construct these kernels, but it is important to
note that Equation (6.159) makes it easy to determine the scaling kernel from the wavelet
kernel, and vice versa. Specifically, we simply reverse the order of the values and negate
every other element. For example, the scaling and wavelet kernels for D2 are given by

1
$(x) =—=[1 1]=1[0.70710678 0.70710678] (D2 scaling) (6.201)

V2

L[l
\/2,

while the scaling and wavelet kernels for D4 are given by

1+V3 3+V3 3-V3 1-V3]

P(x) = —1] = [0.70710678 —0.70710678] (D2 wavelet) (6.202)

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

320

Chapter 6 « Frequency-Domain Processing

Note that the sum of the elements of each wavelet kernel is 0, the sum of the elements of
each scaling function is \[2, and the norm of each kernel is 1. Verifying the vanishing
moments is left as an exercise.”

EXAMPLE 6.11

Solution

Apply the fast wavelet transform (FWT) to the signal g@ = g(x) =[1 73 05 4 2 9]
that we saw in Example 6.9 using D4 Daubechies wavelets. For simplicity, assume
periodicity.

If we let ¢(x) =[hy hy hy hsl), so that hy=~ 0.48, h; = 0.84, h, = 0.22, and

hs = —0.13, then the lowpass and highpass values from the finest resolution are computed
as follows:

(e ()] [ho h hy By 0 0 0 o |[1] [7011
g | [0 0 hy A h hy 0 0 |7 2.0520
g2 | |0 0 0 0 hy h h hyl|[3 5.0445
d3) | | om0 0 0 0 ke k|0 | 78128
g0 | |hs —hy . —hg 0O 0 0 0 ||5| | |08lll
g |0 0 ks —hy by —hy O 0 ||4 1.8625
gign(2) | 00 0 0 hy —hy by —ho|[2] |]|=4.2173
g%,()g,,(3)_ Lhy —hy O 0 0 0 hy —h || 9] |]|—4.8203]]

Qlow(0) hy hy hy, by 7.011
g | |k by hg by |] 20520 _
g2 (0) hs —hy hy —ho || 5.0445 |
gizn(1) h —hy hy —hy || 7.8128

Concatenating these values yields the result, in order of increasing frequency, as
W{gt=[52 103 —-09 25 08 19 —42 —48] Itis easy to verify that
both the 8 X 8 and 4 X 4 matrices above are orthogonal.

Notice that in this example we allowed the coefficients to “wrap around” the edge of the
matrix, which assumes periodicity in the signal (like circular convolution); this assump-
tion can be removed by extending the signal past the borders and increasing the number of
columns in the matrix to accommodate the shifting wavelet kernel.

6.6.6 2D Wavelet Transform

similar to 2D DFT or FFT

The wavelet transform is easily generalized to 2D. Usually the 2D wavelets are separable
so that they can be expressed as the multiplication of two 1D wavelets, in which case
Equations (6.181)—(6.182) can be extended as follows:

() = D 38 (2x + ky 2y + k)b (k) (k) (6.205)
ke ky downsample by 2

it D(xy) 2 Eg (2x + ke 2y + k) (k) (k) (6.206)

glfl}Ll))C y) = Ezg 2x + kx, 2y + ky)(;b(kx)d](ky) (6'207)

" Problem 6.35.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

similar to 2D DFT or FFT

downsample by 2

6.6 Discrete Wavelet Transform (DWT) 321

it D(x, 2 Eg 2x + ke 2y + k) (k) (k) (6.208)

where gg?(x y) = g(x,y) and g(x,y) is the original image. At each iteration the signal is

downsampled by two in each direction after applying the wavelet and/or scaling functions.
In this notation, g;; contains the low-frequency components in both directions, gz; con-
tains the high-frequency components in the x direction but the low-frequency components
in the y direction, g; g is the opposite, and gy contains the high-frequency components in
the diagonal direction. The downsampled low-frequency version is always fed as input
to the next level.

Due to separability, Equations (6.205)—(6.208) are easy to compute. Let gbe aw X h
image. First, ¢p and s are applied to the image in the horizontal direction to yield

g (xy) = 2e(2x + ky)o(k) (6.209)
gy (x,y) = 22+ k y)y (k) (6.210)

both of which are of size % X h. Then ¢ and ¢ are applied to the image in the vertical
direction to yield

g (x.y) = ;g(i)(x, 2y + k) (k) (6.211)
g (xy) = Egﬁ?(x 2y + k)¢ (k) (6.212)
D (xy) = Eg x,2y + k) (k) (6.213)
g y) = Ek)gﬁf)(x, 2y + k)y(k) (6.214)

all four of which are of size % X 4. In other words, after one iteration the w X & image
has been replaced by four images, each of which is one-fourth the size of the original. (Of
course, the order is arbitrary and can therefore be reversed, i.e., vertical before horizontal.)
Repeating this procedure using g%)L for subsequent iterations then yields the 2D wavelet
transform of the image. See Figure 6.29 for an example, where the normalization factor
from a lowpass convolution kernel was used instead of the wavelet normalization factor to
prevent the father wavelet from brightening the image.

6.6.7 Gabor Wavelets

The final wavelet that we will consider is the Gabor wavelet, which is a complex sinusoid
multiplied by a Gaussian window. In 1D, the wavelet is given by

_ —ax’ Jwx
X) = e ce
¥ (x) —_— —— (6.215)
Gaussian sinusoid

As with the Fourier transform, using complex numbers is just a mathematical con-
venience. Conceptually, the Gabor wavelet consists of even and odd components:

l,lf(X) = dleven(-x) +j‘7[’0dd(-x)’ where
Yoven(X) = e cos(wx) (6.216)

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

322

Figure 6.29 Animage (top-left) and
the gE‘) and gf.}) (top-right) that result
from convolving and downsampling
the image with the scaling and
wavelet functions. Note that together
gE” and gﬁ) have the same number

of pixels as the original image and
therefore contain the same amount of
information. Continuing the process
yields the four downsampled signals for
the first level of the wavelet transform
(bottom-right). The final discrete
wavelet transform (DWT) of the image

after three levels of processing

(bottom-left). Again, note that the
number of pixels is the same, and
therefore the transform is invertible.

information of frequency and location

Chapter 6 « Frequency-Domain Processing

o B

Stan Birchfield

Yoaa(x) = ¢~ sin(wx) (6.217)

where a = 1/(20?), o is the width of the Gaussian envelope, @ = 27f = 27/7 is the
angular frequency, fis the frequency, and 7 is the period of the sinusoid. The Gabor wavelet
has the property that it minimizes the uncertainty in the spatial and frequency domains.

A 1D Gabor wavelet is shown in Figure 6.30. The primary parameter is the frequency f
of the sinusoid (or equivalently, the period 7 = 1/f or angular frequency w = 27f). The
secondary parameter is k = o/, which governs the width of the Gaussian relative to the
period of the sinusoid. Recall from our discussion of the Gabor limit (see Figure 6.25) that
the Gaussian envelope should not be too wide or too narrow. Since 95.45% of the Gauss-
ian is captured within =2¢ and the Gaussian should capture approximately 1 period, it is
recommended to set k =~ 3, so that ¢ = § = #, or & = 2f2. This ratio works well when
the frequencies are spaced by 1 octave; for higher spacing, the ratio should be decreased
accordingly, e.g., k = 0.4 for a spacing of 1.5 octaves.

To apply the DWT to a 1D signal using Gabor wavelets, discrete kernels are first cre-
ated of the even and odd components at the highest frequency of interest which, according
to the Nyquist frequency mentioned earlier, restricts 7 > 2. Typically 7 = 3 at this finest
level. Discrete kernels are then constructed for the remaining frequencies of interest, reduc-
ing the frequency by some factor each time, until the minimum desired frequency. (If the
factor is 2, then the frequencies are spaced an octave apart.) The Gabor wavelets are then
applied to the signal by performing a convolution-like operation (computing the sum of an
elementwise product) at each frequency, except that the spatial shift is frequency-dependent,
typically approximately 7/2. This computes 4 ((x — a)/b), where the parameter a governs
the spatial shift, and b governs the frequency shift. The result is an overcomplete (assum-
ing appropriate spatial and frequency spacing) representation of the signal. Gabor wavelets

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

information of frequency and location

6.6 Discrete Wavelet Transform (DWT)

Figure 6.30 1D Gabor
wavelet, showing even
(left) and odd (right)

components, using o = 1

and 7 = 2.

323

Amplitude
Amplitude

are not orthogonal, so it is not possible to easily construct an invertible transform, making
them not well suited for use in compression. Instead, Gabor wavelets are useful for extract-
ing frequency information at different locations in the signal for the purpose of detecting
localized features in the signal.

In 2D, the complex sinusoid is a plane wave, and the 2D Gaussian envelope is aligned
with the direction of the wave, given by the angle . If we let the coordinate transformation
bex’ =xcosf — ysinf,y" = xsin6 + ycos 6, then the 2D Gabor wavelet is

(!/(x’y) = ei(ax,2+3y,2)eij'

where, as before, @ = 1/(2(72), o is the width of the Gaussian envelope along the direction
of the wave, w = 2arf = 27/ is the angular frequency, fis the frequency, and 7 is the period
of the sinusoid. Typically we set 8 = a/4, so that the Gaussian is twice as wide in the direc-
tion orthogonal to the direction of the wave. A 2D Gabor wavelet is shown in Figure 6.31.

2D Gabor wavelets are characterized not only by their frequency but also by their ori-
entation in the plane. Thus, an appropriate spacing must be chosen not only in space and
frequency but also in orientation. Otherwise, 2D Gabor wavelets are applied in a manner
similar to 1D Gabor wavelets.

Figure 6.31 Gabor 2D wavelets are achieved by multiplying a plane wave sinusoid with a Gaussian window function aligned with the
direction of the wave propagation. Shown are the even (top) and odd (bottom) components, both as a 3D plot and as an image, using
o=171=20=30°andB = a/4

-0.5

5
v
5—6

-2
X

2

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

324 Chapter 6 « Frequency-Domain Processing

Studies have shown that mammalian visual systems apply filters similar to 2D Gabor
wavelets in order to extract spatially-localized frequency-dependent features from the retinal
image. The continuous Fourier transform of Equation (6.214) is

Voaor(@') = Flyp(x)} = e —oa (6.218)
which is a Gaussian centered at the angular frequency w. In fact, mammalian visual systems
encode information in a way that is more like a Gaussian shape on a logarithmic frequency
axis rather than a linear frequency axis. As a result, the log-Gabor wavelet has been pro-
posed, which has the following frequency response:

(log 2)

@ (6.219)

‘Plog—Gabor(w,) =e

where {/w is chosen to ensure that the width of the Gaussian in the frequency domain is
approximately one octave. If viewed on a linear frequency scale, log-Gabor wavelets have
an extended tail in the high frequencies. As a result, the log-Gabor wavelet spreads infor-
mation equally across the different frequencies, as opposed to the standard Gabor wavelet,
which overrepresents the low frequencies. Since the inverse of the Fourier transform in
Equation (6.219) cannot be obtained numerically, log-Gabor kernels in the spatial domain
must be obtained numerically.

6.7 Further Reading

The Fourier transform is due to the work of Fourier,
Lagrange, and others in the 18th and early 19th centu-
ries. The FFT algorithm is primarily due to Cooley and
Tukey [1965], although it was later realized that Gauss
had discovered a very similar algorithm around 1805. The
Lanczos filter is due to Duchon [1979], where the ker-
nel has between 19 and 51 elements sampled at integer
positions. Detailed explanations of the classic unsharp
masking technique for photographers (in a darkroom) is
provided in a series of articles by Bond [1996, 1997];
also see the article by Wainwright [2004]. Wavelets
were first invented by Haar [1910, 1911]. Daubechies

wavelets were first presented by Daubechies [1988].
Gabor’s contribution to time-frequency analysis can be
found in Gabor [1946], and an analysis of Gabor wave-
lets for image representation is due to Lee [1996]. Multi-
resolution analysis, and its connection with the pyramidal
algorithm, is described by Mallat [1989]; see also Mallat
and Zhong [1992]. Log-Gabor wavelets are described by
Field [1987]. For the use of wavelets for FBI fingerprint
compression, see the work of Bradley et al. [1993] and
Bradley and Brislawn [1994]. Space has not permitted us
to discuss the closely related concept of watermarking,
for which a seminal paper is that of Cox et al. [1997].

PROBLEMS

For each of the following continuous signals, state the frequency, and write the Fourier
transform: (a) cos 8¢, (b) cos (16t + 8), (c) sin 44t.

6.2. Prove that (a) for a continuous signal with even symmetry, its Fourier transform is
real and (b) for a continuous signal with odd symmetry, its Fourier transform is imaginary.

6.3. Explain the difference between the Dirac delta function and the Kronecker delta
function.

Explain the difference between the Nyquist rate and the Nyquist frequency.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

 ZeroV2

 ZeroV2

6.5. Explain why 44.1 kHz is a common audio sampling rate.

. Suppose a signal is sampled at 1000 Hz. For each of the following frequencies, state
whether aliasing will occur and, if so, what is the aliased frequency: (a) 300 Hz, (b) 600
Hz, (c) 1200 Hz.

A finite-duration, discrete signal is composed of 5 samples. List the discrete frequencies
that are captured by the DFT of the signal.

6.8. Show that Equation (6.16) is indeed the inverse of Equation (6.13), that is, that the two
expressions form a Fourier transform pair.

6.9. Explain why it is not recommended to directly implement Equation (6.1) in practice.

Compute the DFT of the discrete signal [3 8 1 7] both by hand and by using
an existing software package. Also compute the magnitude and phase of the DF T. What can
you infer about where the software package places the scaling factor?

lWhatistheDFTof[l 0 --- 0]

' Compute the DFT of the following signals. In each case explain the meaning of the
requencies captured by the DFT.

(a) cos %’Tx, sampledatx =0, ...,7
(b) sin %”x, sampledatx =0, ...,7
(¢) cos %’Tx, sampledatx =0, ..., 15
(d) cos %x, sampledatx =0, ..., 15

6.13. Find the cutoff frequency of the simple lowpass filter with kernel [I 1 1] in
inverse samples. Assume the cutoff frequency is where the Fourier transform reaches half
its maximum value.

6.14. Plot the basis functions for the 4-point DFT.

For a 32-element sequence, what is the equivalent negative frequency corresponding
to the following positive frequencies: (a) %, (b) 1357", (c) 1397"?

6.16. Suppose we wish to convolve a 5-element discrete signal with a 3-element discrete
kernel, using the circular convolution theorem. How much zero-padding is required?

6.17. (a) Compute the 2D DFT of the following grayscale image. (b) Multiply the image
by (—1)*"Y and repeat the computation. (c) How are the two results related?

151 222 160 88
79 24 23 197
143 78 152 92
84 123 71 209

6.18. Explain the Radon transform.

6.19. Explain why the shifted 2D DFT usually has large values along the horizontal and
vertical axes, forming the shape of a plus sign?

Suppose an image is rotated clockwise by 30 degrees. How does this change the 2D
DFT?

6.21. List the two primary applications for filtering.

6.22. Explain the following terms: (a) Gibbs phenomenon, (b) ringing, (c), overshoot, (d)
undershoot, (e) clipping.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

 ZeroV2

 ZeroV2

 ZeroV2

 ZeroV2

 ZeroV2

 ZeroV2

326

Problems

6.23. Explain why it is not possible in practice to apply an ideal low pass filter in the time
domain.

6.24. Given the following low pass convolution kernel, compute its corresponding high
pass convolution kernel by subtracting from an allpass filter (in the frequency domain):
2 4 6 4 2]

6.25. In Example 6.5 we showed that a particular 2D LoG kernel can be obtained by the
subtraction of a lowpass kernel from an allpass kernel:

1 1 1 1 0 0 O 1 1 1 1
-1 -8 1| =-31(0 1 O|—|1 1 1
3 9
1 1 1 0 0 O 1 1 1
highpass allpass lowpass

Show that this is also true for the other LoG kernels in Table 5.5, as well as for the LoG
kernel in Problem 5.29. Indicate which, if any, of these lowpass kernels is not Gaussian.

6.26. Explain the subtle differences between the terms unsharp masking, highboost filter-
ing, and high-frequency emphasis, as they are sometimes used.

6.27. Construct the two unsharp masking kernels for the case a = b = 2. How would you
decide which of the two kernels to use?

6.28. Explain the principle behind homomorphic filtering.
6.29. What is the primary drawback of the short-time Fourier transform?

6.30. Given the mother wavelet ¥ (x) = ,ll [2 4 6 -1 -3 —5], use
Equation (6.159) to compute the corresponding father wavelet ¢ (x). What is the value of
7 to ensure that the norm of the wavelet is 1?

6.31. What is the result in Example 6.8 if normalization is considered?
6.32. Show that the discrete Haar wavelet preserves the energy in a constant signal.

6.33. Suppose a mother wavelet is given by ﬁ [1 —3]. Adopting the approach of criti-
cal sampling to generate a complete wavelet transform, write all the basis functions for an
8-element input, using Table 6.2 and Equation (6.159).

6.34. Apply the FWT using D4 Daubechies wavelets to the input signal
gx)=[5 7 6 4 3 1 8 9]

6.35. Verify that D2 Daubechies wavelets have 1 vanishing moment, and D4 Daubechies
wavelets have 2 vanishing moments. That is, show that D2 or D4 applied to a constant
signal g(x) = a yields 0, and that D4 applied to a linearly sloped signal g(x) = mx + b
also yields 0.

6.36. How well does the discrete Haar wavelet preserve the energy in the signal
fix)=[1 7 3 0 5 4 2 9]ateachlevel?

6.37. This question is about representing the DWT as a matrix transform.

(a) Ifwelety =1/ \/2, write the 8 X 8 Haar DWT matrix in Equation (6.178) in terms of
v. Show how this matrix can be derived from repeated applications of Equation (6.189).

(b) Apply a similar procedure to compute the 8 X 8 matrix for the D4 Daubechies wavelet
from Equations (6.203)—(6.204). Verify that the D4 Daubechies basis functions (rows
of the matrix) are orthogonal.

6.38. Show that if the 2D signal f(x, y) is separable, then so is its Fourier transform
F(ky k).

6.39. Use the continuous Fourier transform to prove that Equation (6.98) is true for con-
tinuous signals.

6.40. Implement the 2D fast wavelet transform using Haar wavelets, and apply to a gray-
scale image.

6.41. As mentioned in the text, the fast wavelet transform is based upon multiresolution
analysis (MRA). Not all wavelets admit multiresolution analysis, but for those that do, their
father ¢ and mother y wavelets satisfy the following pair of equations for some sequence
of coefficients g and h:

b(1) = V2 h(k)p(2t — k) (6.220)

W) = V23 g(k)p(2t — k) (6.221)

The first equation, known as a refinement equation for the father wavelet, captures its
self-similarity at multiple resolutions, while the second equation captures the relationship
between the mother and father wavelets. Show that the continuous Haar wavelet satisfies
these two equations, and find the corresponding sequences g and h.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

Fdges and Features

in the image where the graylevel function changes drastically. Similarly, detecting and matching feature points
(also known as interest operators or corners) either within an image or between images is useful for a variety of
purposes. In this chapter we discuss these closely related problems.

For many applications it is important to be able to detect intensity edges in an image, which indicate locations

7.1 Multiresolution Processing

One of the curious properties of images is that objects can appear at any size. For example,
an upright person with a real-world height of 2 meters can occupy a region in the image
whose height is 4 or 400 pixels (or any number between or beyond), all depending on the
distance from the camera to the object, the focal length, and the sensor resolution. Con-
versely, an image region whose height is 10 pixels could be a person, a skyscraper, or a tiny
bug. This loss of scale information is a property unique to the imaging process, arising from
the projection of the 3D world onto a 2D image.

7.1 Multiresolution Processing

329

7.1.1 Gaussian Pyramid

One of the most common ways to deal with this loss of scale information is to -
_ For example, suppose we want to search an image to
find all the human faces, so we look for faces at a certain scale in the original image, then
downsample the image by a factor of 2 in each direction and look for faces at the same
scale in the downsampled version, then downsample again, and so on. A face that appears
to occupy, say, a 40 X 40 region in the original image will occupy only a 20 X 20 region
in the downsampled image, a 10 X 10 region in the twice downsampled image, and so
forth. As a result, faces at a variety of scales (and hence people at different distances to the
camera) can be detected using a relatively straightforward procedure that interleaves detec-
tion and downsampling.

Because each successive image is smaller than its predecessor, stacking the images on
top of one another yields the shape of a pyramid. For this reason the sequence of images is
known as an image pyramid. It is usually a bad idea to downsample an image directly,
because of the undesirable effect of aliasing;" instead, the image should first be smoothed
to remove the high frequencies.*f Among the many ways to smooth an image, the most popu-
lar is to convolve with a Gaussian kernel, leading to a Gaussian pyramid. Given an image
I(x, y), let us define the zeroth level of the Gaussian pyramid as the image itself:

19(x,y) = I(x, y) (7.1)

then let us define each successive image in the Gaussian pyramid as the downsampled,
smoothed version of the previous image:

1 9(x,y) = (1(x,y) ® Gauss,2(x,y)) 4 2 (7.2)

where i = 0, 1, ... is a nonnegative integer, and 7 | 2 means to downsample / by a fac-
tor of 2 in both horizontal and vertical directions. Notice that, in the absence of aliasing,
downsampling does not lose any information between the smoothed version of the image
and the downsampled, smoothed version. An example Gaussian pyramid with a downsam-
pling factor of 2 is shown in Figure 7.1.

Any of the standard 3 X 3 Gaussian kernels works well in practice. One advantage of
the kernel £ [1 2 1], for which o2 = 0.5, is that it satisfies the equal contribution
property, meaning that each pixel in the image contributes an equal amount to the down-
sampled version. To see this, suppose we have a 1D signal f and a Gaussian kernel given

Figure 7.1 Four levels
of a Gaussian pyramid,
obtained with o2 = 0.5
and a downsampling
factor of 2.

7O §) 18 7®

Stan Birchfield

" Aliasing is covered in Section 6.1.3 (p. 275).

Although aliasing, strictly speaking, refers to sampling a continuous signal, the effect of downsampling a discrete
signal is similar, because the original continuous signal can no longer be exactly reconstructed if the downsampling
is excessive.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

DannieSheng

DannieSheng

330

Chapter 7 - Edges and Features

by [a b al, where b = a. Then the elements of the smoothed signal f’ are given by
f1(1) =af(0) +bf(1) + af(2), f'(2) = af(1) + bf(2) + af(3), f'(3) = af(2) +
bf(3) + af(4), and so forth. When f' is downsampled by a factor of 2, every other element is
discarded. Suppose, for example, we keep the even elements and discard the odd ones; then
f'(2) = af(1) +bf(2) +af(3), f'(4) = af(3) + bf(4) + af(5), f'(6) = af(5) +
bf(6) + af(7), and so forth. Ignoring border effects, it is easy to see that each sample
f(@), where i is odd, contributes 2a, while each sample f(i), where i is even, contributes
b. Therefore, equal contribution among all pixels implies b = 2a. Since b + 2a = 1 for
normalization, this yields » = § and a = %, which is the Gaussian kernel just mentioned.

Although a downsampling factor of 2 is convenient, sometimes it is desirable to downs-
ample the image by finer amounts to provide a less noticeable transition between levels of
the pyramid. For example, if we downsample by /2 =~ 1.19 each time, then successive
images are given by

I(Hl)(x,y) = (7 ’)(x y) ® Gauss,2(x,y)) { V2 (7.3)

where some form of interpolation should be used to facilitate downsampling by a non-
1ntegra1 amount. In this case 7 will be 5 1 15 =~ 0.84 as large as |) i each direction, 7 will
be 9y2 19)2 =~ (.71 as large, 19 will be 0. 19)3 =~ (.59 as large, and so forth. Conveniently, @
will be half as large as 1) in each direction, I® will be half as large as I, and 112 will
be half as large as / ®) Each reduction by a factor of two is known as an octave. Images
1@ through 7) are in the first octave, while 7 through 1 () are in the second octave. More
generally, if the downsampling factor is /2 = 2$, then there are n images per octave.
Since repeated convolutions with a Gaussian are equivalent to a single convolution with
a Gaussian whose variance is the sum of the individual variances, we define ¢'> = 702
to ensure that the overall smoothing between octaves is the same as between consecu-

tive levels of Equation (7.2). An example Gaussian pyramid with a downsampling factor
of /2 is shown in Figure 7.2.

Figure 7.2 Twelve levels of a Gaussian pyramid, obtained with o’> = 1 (0.5) = 0.125 and a downsampling factor of \4/5. Note that
1™ is half as large as 19 in each direction, and that /® is half as large as 1@,

7O

7®

§) ®

74 7© 7D
70 7(10) 70 -

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

DannieSheng

7.1 Multiresolution Processing

331

7.1.2 Laplacian Pyramid

bandpass filter

A Gaussian pyramid is a lowpass pyramid. For some applications a bandpass pyramid
is preferable, particularly for extracting image features such as interest points. Since the
Laplacian is a bandpass operator, convolving the image with a Laplacian of Gaussian (LoG)
kernel with increasing variance yields the Laplacian pyramid, which is the most popular
bandpass pyramid:

L (x, y) = (19(x,y) ® LoG(4 pox(x.y)) L (i + 1)d (7.4)

where d is the amount of downsampling between consecutive levels, so that (i + 1)d is
the total amount of downsampling in the (i + 1)™ level. Note the difference between this
equation and Equation (7.2): Here the images are not processed successively by feeding the
previous output from level i as input to level i + 1. Instead, the original image is convolved
each time with successively wider LoG kernels, with successively larger downsampling
factors—an extremely inefficient computation.

Thankfully there is a better way. Recall that the LoG is well approximated by the differ-
ence of two Gaussians (DoG)." As a result, the Laplacian pyramid can be computed by
successively smoothing and downsampling the image as in Equations (7.2) or (7.3), yielding
a Gaussian pyramid; then the consecutive slices in the Gaussian pyramid are subtracted from
one another to yield the Laplacian pyramid. However, there are two details that should be
kept in mind. First, in order to subtract consecutive levels of the Gaussian pyramid, the
previous image must be subtracted from its smoothed version before downsampling (so that
the two images being subtracted are the same size):

180 (x, y) = 19(x, y) ® Gauss,2(x, y) (7.5)
LD y) = 1850 (xy) = 19(x,y) (7.6)
10, y) = (150 (x) Ld (7.7)

where the levels of the Laplacian pyramid are given by L(l), L(z), L(3), and so forth.

Secondly, as hinted by the subscript on the variance in Equation (7.5), the variance of
the Gaussian might not be the same in each iteration. Recall from Equation (5.101) that the
LoG is well approximated by the difference of two Gaussians whose variances are related
by a constant ratio p*:

Gausszg> — 1 ® Gauss,> =~ (p — 1)0? LoG,- (7.8)

As a result, to ensure that the ratio remains constant, the standard deviation of the i
Gaussian-smoothed image should be set as

o, =p o (7.9)

sothat o, ;/o; = p forall i. Alternatively, if the Gaussian-smoothed images that are used in
constructing the Laplacian pyramid are from a traditional Gaussian pyramid as in Equations
(7.2) or (7.3), then the ratio of the variances of successive levels in the Laplacian pyramid
will not be constant.

To avoid the messiness of downsampling by a nonintegral amount, oftentimes down-
sampling is performed only when the factor is a power of two. As a result, all images within
each octave are of the same size, whereas images in the next octave are half as big (in each
direction) as those in the previous octave. As before, let n be the number of images per

" Section 5.4.2 (p. 245).

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

bandpass filter

DannieSheng

DannieSheng

332 Chapter 7 - Edges and Features

octave. Then d = \%, and each image 1 Sé)mp is downsampled by a factor of 2 only if i + 1
is divisible by n. For example, if n = 2, then [©) and 71V are the same size as each other, @
and 7 are half as large, 1 @ and 1 are one quarter as large, and so forth. To implement
this procedure, change Equation (7.7) to

197 0(x, y) = {(15;:,,})(x,y)) L2 ifmod(i+ 1,n) =0 (7.10)

(1 52:,:,} J(xy)) otherwise

An example Laplacian pyramid is shown in Figure 7.3. To ensure that each octave is con-
volved with the same sequence of variances relative to the image size, the variance ratio
should be set to p = 2". (To see this number, note that downsampling occurs after image
1 ("), which implies that o, = 20; combining with o,, = p"o(from Equation (7.9) reveals
p* = 2'27.) A reasonable choice for the initial variance is o3 = »(0.5), although other
choices are possible.

7.1.3 Scale Space

Returning to the Gaussian pyramid, if the downsampling step is omitted, then the procedure
of successive smoothing yields a stack of images, all the same size, which are increasingly
blurred. Since the sole purpose of downsampling is to avoid unnecessary processing of
redundant information, the stack of Gaussian-blurred images contains essentially the same
information as that of the Gaussian pyramid.

Now let us take this idea one step further. Consider the family of images obtained by
convolving the original image I(x,y) with Gaussian kernels having continuously increasing
variance:

I(x, v, t) =I(x, y) ® Gauss,(x, y) (7.11)

Figure 7.3 Laplacian pyramid with n = 2 images per octave. The images are successively convolved with a Gaussian, then
downsampled at the end of each octave to produce something that closely resembles a Gaussian pyramid. Differences between

successive Gaussian-smoothed images yield DoGs, which approximate LoGs. The initial variance is 3 (0.5) = 0.25, and the ratio
between successive standard deviationsis p = V2.

70

JAQ)

temp

1@ 0 Downsample by 2

I T

Sub‘iract \ @ 74 1S 75 It(eﬁ’zlp
Subtract ~ Subtract \/ \/
- - Sut;ct Slitract

t
LM L® L® L® LO® L©®

Subtract

Stan Birchfield

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

DannieSheng

DannieSheng

DannieSheng

7.1 Multiresolution Processing 333

where t = 0 is a continuous scale parameter that governs the amount of smoothing, and
I(x,y,0) = I(x,y). Treating x and y as continuous values as well, the resulting 3D con-
tinuous volume is known as the scale space of the image, and r = ¢ is the scale-space
parameter. Equivalently, the scale space can be seen as an embedding of the original
image into a one-parameter family of derived images constructed by convolving the origi-
nal image with a one-parameter family of Gaussian kernels of increasing variance, where
t is the parameter. Recall that the concept of scale space was briefly mentioned in the
context of the heat equation,’ since Equation (7.11) is identical to Equation (5.151). The
Gaussian pyramid, or rather the stack of Gaussian-blurred images, is simply a sampled
version of the scale space.

The family of derived images in the scale space represents the original image at various
levels of scale, as shown in Figure 7.4. As ¢ increases, the amount of blurring of the image
increases, and the amount of preserved detail from the original image decreases. For the
scale space to be a meaningful representation of the image, it is important that several basic

roperties, called the scale-space axioms, should be satisfied. Among these axioms is the

In other words,

It can be shown that the Gaussian kernel is unique in that it is the only
convolution kernel that guarantees this result. The scale space, therefore, is usually con-
structed using the Gaussian kernel, and known as the Gaussian scale space.

In the case of a one-dimensional image, an extremum in the first derivative corresponds
to a zero crossing in the second derivative. Since maxima in 0I/0x usually indicate an
interesting location in the image — perhaps the boundary of an object — the zero cross-
ings of 9%I/0x? indicate potentially interesting locations. Since no new structure is intro-
duced by the Gaussian blurring, these zero crossings form curves in scale space that always
start and terminate at the original image, as shown in Figure 7.5. Empirically, there is a
close relationship between the length of the curves and the perceptual saliency of the
regions corresponding to them. Therefore, such an approach can be used to detect signifi-
cant image structures from the scale-space representation by looking for the cusp of the
longer second-derivative zero-crossing curves. The extension to a 2D image is straightfor-
ward, since an extremum in || V|| corresponds to a zero crossing in V2. We shall revisit
this concept later in the chapter.*

Figure 7.4 The Gaussian scale space of an image consists of a continuous 3D volume in which each slice is an increasingly blurred
version of the original image. Shown here are ten sample images from the scale space.
P——— P’ TTE— r' TTE— -

7 Section 5.5.6 (p. 260).
Section 7.4.6 (p. 347).

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

DannieSheng

DannieSheng

DannieSheng

DannieSheng

DannieSheng

DannieSheng

334 Chapter 7 - Edges and Features

Figure 7.5 An example of 1D scale space. Top: 1D

2 —_
signal (bottom) smoothed by convolving with Gaussian 7 -_
kernels with increasing variance (toward the top). —_—
Bottom: Zero-crossings of the second derivative form —_—
curves that always start and end at the bottom. Cusps — "
indicate the location and scale of significant image ,\/\/V\/:/—/\’\/\\/\
structures. ~———

~——— e
~— e AT
f__/\,v_/-/\f/\/\,\/-\"\

Undeberg (1994)

7 CuspW
|hn ﬂ. I 1 n\ Alﬂnm
7.2 Edge Detection

are pixels in the image where the [HSINORIOIICORCNNSIIE)
Sometimes these intensity edge pixels are known as edgels

(“edge elements”), analogous to pixels (“picture elements”). From an information-theoretic
point of view, these are the locations that carry the most information because the gray levels
at these pixels are the least predictable from the values of their neighbors. Intensity edges
retain a surprisingly large amount of information about the scene, as seen by the line draw-
ings in Figure 7.6, as compared with the original images in Figure 7.7. Viewing only the line
drawings, most human viewers can recognize these scenes effortlessly. Such demonstrations
suggest that intensity edges are important for natural and, hence, artificial vision; indeed, the
early days of computer vision were focused on line drawing images of polyhedral objects,
where it was shown that robust interaction with the world was possible—even with limited
algorithmic and computational complexity—using just the edges of the objects in the scene.

As shown in Figure 7.8, there are four types of intensity edges. The simplest and most
important type is the step edge, which occurs when a light region is adjacent to a dark
region. Line edges occur when a thin light (or dark) object, such as a wire, is in front of
a dark (or light) background. At a roof edge, the change is not in the lightness itself but
rather the derivative of the lightness. And, finally, a ramp edge occurs when the lightness
changes slowly across a region.

Figure 7.6 Intensity edges capture a rich representation of the scene. The scenes and objects in these line drawings are, with little
d|ff|culty, recognizable by the average human viewer. For the original images, turn to Figure 7.7.

D. B. Walther, B. Chai, E. Caddigan, D. M. Beck, and L. Fei-Fei, “Simpleline drawmgs sffice for functional MRI decoding of natural scene categories,Proceedings of the Nanona\A(ademy of Sciences (PNAS), 108(23):9661-9666, 2011.

" Lightness is defined in Section 2.3.2 (p. 43).

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

DannieSheng

DannieSheng

7.2 Edge Detection 335

D. B. Walther, B. Chai, E. Caddigan, D. M. Beck, and L. Fei-Fei, “Simple line drawings su ce for functional MRI decoding of natural scene categories,”Proceedings of the National Academy of Sciences (PNAS), 108(23):9661-9666, 2011.

Figure 7.7 The original images from which the line drawings shown in Figure 7. 6 were obtained.

‘We shall focus our attention primarily upon step edges. In. a step edge is accompanied
b_ which is either positive if the pixels get brighter as
one goes from left to right, or negative if the pixels get darker from left to right. Often
in which case onl

is important. Therefore, the
simplest way to find intensity edges in an image is to

illustrated in Figure 7.9, where the gradient can be computed using any of the standard
derlvatlve kernels that we studied earlier,” such as i H or the

For some applications a binary decision is needed, in which
case the gradient magnitude is
the

while for other applications it is better to retain
7.2.1 Canny Edge Detector

The Canny edge detector is a classic algorithm for detecting intensity edges in a gray-
scale image that, like the simple approach just described, relies on the gradient magnitude.
Even today, Canny remains a popular algorithm due to its good performance, computational
efficiency, and ease of implementation. The algorithm involves three steps, as shown in
Algorithm 7.1. First the gradient of the image is computed, including the magnitude and
phase. In the next step, calledﬁ any pixel is set to zero whose
gradient magnitude is not a local maximum in the direction (as indicated by the phase) of the
gradient. Finally, edge linking (also known as hysteresis thresholding or double thresholding*)
is performed to discard pixels without much support. The result is a binary image whose edge
pixels along one-pixel-thick boundaries are on, while all other pixels are oFr.
Non-maximum suppression is illustrated in Figure 7.10. The gradient magnitude of each
pixel is compared with the gradient magnitude of the two pixels along the direction of the
gradient vector. As shown in the figure, the gradient direction (also known as the phase)
is quantized into one of - different directions, and the pixel is compared with either its
neighbors to the left and right, its neighbors above and below, or its neighbors along one
of the diagonals, depending upon the phase For example if 6 is the clockwise angle from
the positive x axis, then 3 = 6 <7 or 3F = § + 7w < 3T, where 0 is the phase, causes
the pixel to be compared w1th its nelghbors above and below, where the latter test is needed

Figure 7.8 Four types of intensity edges. Step " Line

edge edge

/\ Roof _/_ Ramp
edge edge

7 Section 5.3.2 (p. 237).
¥ Section 10.1.3 (p. 450).

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

DannieSheng

DannieSheng

DannieSheng

DannieSheng

DannieSheng

DannieSheng

DannieSheng

DannieSheng

DannieSheng

DannieSheng

DannieSheng

DannieSheng

DannieSheng

DannieSheng

DannieSheng

DannieSheng

DannieSheng

336

Gradient magnitude |[VI|

Chapter 7 - Edges and Features

Thresholded gradient
magnitude

Stan Birchfield

Figure 7.9 Topr: An image and its partial derivatives in the x and y directions. Botrtom: The gradient magnitude and phase of the image,
along with the thresholded gradient magnitude.

to handle all possible values between —7 and 7. If the gradient magnitude of the pixel is
not at least as great as that of the two appropriate neighbors, it is artificially set to zero, as
presented in Algorithm 7.2.

As shown in Algorithm 7.3, the process of edge linking is very similar to the floodfill
procedure of Algorithm 4.5.” Any pixel whose non-maximum-suppressed gradient magni-
tude value is greater than a high threshold, 7, is a potential seed pixel. Floodfill is per-
formed from these seed pixels, with the expansion continuing as long as the pixel value is
greater than a low threshold, 7,,. The thresholds can be set manually or automatically. A
common way to set them automatically is to sort the gradient magnitude values in the image,
then set 7;¢; to the value that forces at least 100a% of the pixels to be edge pixels, then set
Thigh = BTiow, Where reasonable values are o = 0.1 and 8 = 0.2. Note that this is an

ALGORITHM 7.1 Detect intensity edges in an image using the Canny algorithm

Input:

grayscale image /, standard deviation o

Output: set of pixels constituting one-pixel-thick intensity edges

Gonag» Gphase < COMPUTEIMAGEGRADIENT (1, 07)
Giocatmax < NONMAXSUPPRESSION (G0, Gpase)
Tlows Thigh <~ COMPUTETHRESHOLDS (Glocalmax)
Iédges = EDGELINKING(Glocalmaxa Tlow, 'Thigh)
return I;;,,,

" Section 4.2.2 (p. 154).

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

7.2 Edge Detection

Figure 7.10 Non-maximum
suppression. The gradient
direction (or phase) 6 is
quantized into one of four
values, shown by the colored
wedges of the circle. The
quantized phase governs
which of the two neighbors
to compare with the pixel. If
the gradient magnitude of the
pixel is not at least as great as
both neighbors, then it is set
to zero. This has the effect of
thinning the edges, as shown
in the inset.

337

54 @ 23
0 @ 65
14 @ 16
£(VI) IVI|

Input

Output

Stan Birchfield

extremely simple computation, because if there are n pixels in the image and if the sorting
is performed in descending order, then 7/, is the gradient magnitude of the j pixel in the
list, where j = Rounp (an). An example of edge linking with hysteresis, which yields the
final Canny output, is shown in Figure 7.11.

Despite the ease with which the Canny edge detector is implemented, the algorithm is
undergirded by a rich theoretical foundation. For example, one question that arises from
the above discussion is how to select the filter for computing the gradient or, if the Gauss-
ian derivative is used, what value to choose for the standard deviation. As it turns out, a
large sigma yields a better signal-to-noise ratio (SNR), but a smaller sigma yields a more

ALGORITHM 7.2 Perform non-maximal suppression

NONMAXSUPPRESSION (G,

Input:

Gphase)

ags

gradient magnitude and phase

Output: gradient magnitude with all nonlocal maxima set to zero

1 for (x,y) € G,q do For each pixel,
2 0 < Gppase (%, y) adjust the phase
3 if0 =""then <0 — 7 to ensure that
4 if6 < —fthend <0 + 7 -T=0<%
5 if —F =0 <% thenneigh; < G, (x — 1,y), neighy <= G, (x + 1,y)

6 elseif § = 0 < 7 then neigh; <= G,,,(x — 1,y — 1), neighy < Gue(x + Ly + 1)

7 elseif ;7 = 0 < % then neigh; < G, (x,y — 1), neighy <= G (x,y + 1)

8 elseif 7 = 6 < 7§ then neigh; <= G,,,0(x — 1,y + 1), neighy <= Ge(x + 1,y — 1)

9 if v = neigh, AND v = neigh, then If the pixel is a local maximum
10 Glocaimax(%, y) < Gmag(x, y) in the direction of the gradient,
11 else then retain the value;
12 Grocaimar (%,) <0 otherwise set it to zero.

13 return Gy, . imax

338

Chapter 7 - Edges and Features

ALGORITHM 7.3 Perform edge linking

EDGELINKING (Gy eqimaxs Tiows Thigh)

Input:

local gradient magnitude maxima Gy, qjmax @long with low and high thresholds

Output: binary image 1,4, indicating which pixels are along linked edges
for (x,)’) € Glocalmax do
if Gocaimar(%,) > Thigh then
frontier PUSH(x, y)
Lges(q) < oN
while frontier. Size > 0 do
p < frontier. PoP()
for g € N(p) do
if Glocaimar(q) > Tiow then

1

O 00 3 O Lt B W N

—
=

11

return I/,

frontier PUSH(q)

e’dges(CI) <~ ON

accurate location for the edge—a dilemma known as the

To derive the optimal step detector, two criteria are specified: the detector should yield low
false positive and false negative rates (that is, good detection), and the detected edge should
be close to the true edge (that is, good localization). To quantify these two criteria, let the
true edge be given by an ideal step:

0 ifx<O0
- 7.12
8(x) {a ifx=0 (7.12)

where a is the height of the edge. Let the actual edge in the image be the true edge plus
noise: g(x) + &(x), where £(x) ~ N(0, n3) is zero-mean Gaussian noise with variance
n3. Let f(x) be the impulse response of the filter we are trying to find. The good detection
criterion seeks to minimize the signal-to-noise ratio (SNR), that is, the ratio of the response
of the filter to the true edge and the root-mean-square response of the filter to the noise:

0
y d
SNR = 3(f), where S(f) = s f(0dx] 7.13)

o VT P(x)dx

Figure 7.11 Edge linking with hysteresis, also known as double thresholding or hysteresis thresholding. Thresholding the gradient
magnitude with the low threshold produces too many edge pixels (left), while thresholding with the high threshold produces too few
edge pixels (middle). Edge linking with hysteresis combines the benefits of both (right), to produce the final Canny edge detector output.

<

Stan Birchfield

DannieSheng

7.2 Edge Detection

339

For the localization criterion, the reciprocal of the RMS distance of the marked edge
from the center of the true edge is used. Skipping the mathematical derivation, which is too
involved to cite here, this criterion is given by

LOC = ———=LA(f), where A(f) = £(0)]

VE[x5] ™o \% fﬁ}vfz(x)dx

where x, is the distance of the detected edge from the true edge, E[-] is the expectation,

and f = df/dx is the derivative of f. Notice that 3 (f) and A(f) are two measures of the
performance of the filter, and they depend only on the filter, not on the noise n, or the
magnitude a of the true edge.

The localization-detection tradeoff is now easily shown by scaling the domain of the
function: f'(x) = f(5), where v is a scaling factor. Substituting into Equations (7.13) and
(7.14),

(7.14)

S(f) =VyS(f) and A(f) = —=A(f) (7.15)

In other words, if the filter is stretched to make it larger (y > 1), then the detection response
increases, because a broader impulse response will have a larger SNR. At the same time, a
larger filter reduces the localization performance, because it integrates information far from
the edge. Multiplying the two criteria together achieves performance that is independent of
scale, X f)A(f), revealing that the optimal 1D step edge detector is a simple difference
operator or box filter:

(7.16)

x) = {—1 if x <0

1 ifx=0.

However, the problem with a box filter is that it causes many local maxima to be detected. To
solve this problem, a third criterion is introduced, called the single response constraint,
which says that the detector should return only one point for each true edge point. In other
words, it must minimize the number of local maxima around the true edge created by noise.
Solving this numerical optimization problem yields a signal whose shape is nearly the same
as the derivative of a Gaussian. Extending this reasoning to 2D, the gradient computed from
the partial derivatives of a 2D Gaussian are used and steered to the appropriate 1D direction
across the edge.

7.2.2 Marr-Hildreth Operator

There is a close relationship between the first and second derivatives, because first-derivative
extrema are accompanied by second-derivative zero crossings. In other words, if f{x) is a
1D function of x and if df/dx is a maximum at x = x, then d° f/dx> = 0 at x = x,. Since
the function is discretely sampled, instead of looking for coordinates where the second
derivative is exactly zero (an extremely rare phenomenon), we instead look for coordinates
where the second derivative changes sign, the so-called zero crossings. Extending this
logic to 2D, the maxima of the image gradient are accompanied by zero crossings in the
LoG. Therefore, instead of using the gradient magnitude to compute intensity edges, we
can use the zero crossings of the Laplacian of Gaussin (LoG), as shown in Figure 7.12.
This approach is known as the Marr-Hildreth operator, and it predates the Canny edge
detector by several years. Although the LoG still has other applications, such as the sign of
the LoG as a texture pattern, its use as an edge detector is primarily of historical interest,

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

340

Figure 7.12 Animage, with
the result of applying the
Laplacian of Gaussian (LoG)
and the sign of the Laplacian
of Gaussian (sLoG). The zero
crossings of the LoG are an
approach to edge detection
that is not widely used due
to the drawback of isotropic
smoothing.

Chapter 7 «

Edges and Features

Image

Zero crossings

LoG

Sign of the LoG (sLoG)

Stan Birchfield

since it has all but been replaced by the gradient magnitude for that purpose. The primary
drawback of the LoG is that it is isotropic, meaning that it smooths across as well as along
edges, as opposed to the gradient vector, which can be used to treat pixels differently across
and along the edge, as is done by the Canny algorithm.

7.2.3 Frei-Chen Edge Detection

Another approach to edge detection that is largely of historical interest is that of Frei-Chen.
This approach uses a set of nine 3 X 3 kernels to provide an orthogonal basis for the
9-dimensional space of 3 X 3 subimages:

V2

—1

1
W= ——| o0
R

[
W,=——|V2
RN
oo UL
CVE[v)

V2 -1
0 0
Va1
0 —1]
0 -\V2
0 -1 |
-1 2]
0 -1

1 0

-1
0

-1

0
1

0
0
0

0]
1
\f

[\

1
W7=6
Wy = —

Wo

1 -2
-2 4
1 -2
-2 1
1 4
-2 1

1

_1

3
1

(7.17)

1 (7.18)

(7.19)

Let b be the 9-element vector obtained by reshaping the 3 X 3 subimage surrounding a

pixel, and let w; be the 9-element vector obtained by reshaping the kernel W, in the same
manner. The first four vectors (w;, w,, ws, w,) form the basis for the edge subspace, while

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

7.3 Approximating Intensity Edges with Polylines 341

the next four (ws, wg, W7, Wg) form the basis for the line subspace. Edges are therefore
detected by projecting vector b onto the edge subspace:

0,440 = arccos (7.20)

with smaller values indicating the likelihood that the pixel is an edge point. Alternatively,
large values of

4

> (win)?

7.21
" (7.21)

indicate an edge point.

7.3 Approximating Intensity Edges with Polylines

Once the intensity edges have been found, as described in the previous section, it is often
desirable to approximate the edges with a more abstract representation such as line seg-
ments or parametric curves. In this section we focus on polylines, which are sequences of
line segments. The first step is to store the edgels as an ordered sequence of points, rather
than as an unordered set of points, which is easily accomplished with rather minor modifi-
cations to the Canny algorithm. Next, the polylines are fit to the point sequence using any
of several techniques.

7.3.1 Douglas-Peucker Algorithm

The classic algorithm for fitting a polyline to a sequence of points is the -
ﬁ (also known as the Ramer-Douglas-Peucker algorithm), illustrated
in Figure 7.13. First, a straight line called the [N is drawn from the first to
the last point. For each intermediate point, its distance to the line is computed. If all such
distances are below a threshold, then the intermediate points are discarded. Otherwise the
point with the maximum distance to the anchor-floater line is retained, called the critical
point for that anchor-floater line. The sequence is then subdivided at the critical point, and
the process is repeated for two new anchor-floater lines, one from the start to the critical
point, and the other from the critical point to the end. This process continues recursively
until all points are within the specified tolerance of the anchor-floater lines.

7.3.2 Repeated Elimination of the Smallest Area

One drawback of the Douglas-Peucker algorithm is that it is [S, because it treats
the points associated with each anchor-floater line separately. A holistic approach that con-
siders all points in each iteration involves repeatedly eliminating the point with the least
effective area, where the effective area is the area of the triangle formed by the point, its
predecessor, and its successor. Points with a small effective area have little influence on the
perception of the complete polyline and can thus be eliminated without significantly affect-
ing the overall shape. This approach thus progressively eliminates geometric features from
the smallest to the largest, repeating the process until the effective area of all points is above
some threshold. Note that this approach sequentially determines which point to eliminate,

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

342 Chapter 7 - Edges and Features

Sequence of points Iteration 1 Iteration 2 Iteration 3 Final polyline

Figure 7.13 The Douglas-Peucker algorithm recursively subdivides a polyline by computing the largest distance (orange line) from the
points in the polyline to the anchor-floater lines (blue lines).

as opposed to Douglas-Peucker which sequentially determines which point to retain. One
minor extension to the algorithm is to store the eliminated points in a list sorted by their
effective area, which allows the original curve to be fitted to arbitrary resolution on the fly.

7.4 Feature Detectors

While an edge detector finds pixels where the magnitude of the gradient is large, a feature
point detector (or interest operator) seeks pixels where the graylevel values vary locally
in more than one direction, as shown in Figure 7.14. Such pixels are interesting because
they are unique and distinguishable from other pixels using only the local information in the
immediate neighborhood. Such pixels are called feature points (or interest points). Since

these feature points lie, among other places, at the corners formed by two perpendicular
lines, they are sometimes called*

7.4.1 Moravec Interest Operator

One of the earliest feature detectors was the Moravec interest operator. Given a pixel
x = (x,y) in an image I, let R be the set of pixels in a small neighborhood around the
pixel. Although the image patch R can be any set of pixels, it is often a square window, say
3 X 3, centered at the pixel. The Moravec operator shifts the pixels horizontally by a small
amount and compares the difference between the original graylevel pattern and the shifted
version. Then the process is repeated by shifting the pixels vertically by a small amount,
comparing the difference in the same way. More precisely, let

er(Ax) = D (I(x) — I(x + Ax))? (7.22)

XER

Figure 7.14 Animage (left) with feature points overlaid in red (right). These feature points were detected with the Tomasi-Kanade
operator, but similar results are obtained with other feature detectors. Note that feature points do not occur in untextured areas or along
intensity edges, but rather where the graylevel values vary in multiple directions.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

DannieSheng

7.4 Feature Detectors

343

be the sum of squared differences (SSD) between the image patch and its shifted ver-
sion, where Ax = (Ax, Ay) is the shift. If the difference is large in both directions, then the
patch is interesting because it contains graylevel variation in multiple directions. Moravec
defines the cornerness of a pixel as the minimum SSD as the window is shifted left, right,
up, and down:

cornerness = min {ex(—1,0), ex(1,0), ex(0, —=1), e (0,1)}, (Moravec) (7.23)

where the cornerness of a pixel indicates how locally interesting it is.

An example of the Moravec operator applied to a synthetic image of an aligned square,
a rotated square, and a circle is shown in Figure 7.15. Examining the aligned square, it
is clear that the pixels fall into one of three categories: 1) Where the scene is untextured,
none of the SSD values is high; 2) where there is an intensity edge, some of the SSD values
are low while others are high; and 3) where there is a corner, all of the SSD values are
high. Therefore, the Moravec interest operator correctly detects the corners of the aligned
square. However, it is obvious from the diagonal edges of the rotated square and along
the sides of the circle that the operator suffers from being anisotropic (i.e., not rotation-
ally invariant).

7.4.2 Harris Corner Detector

A more robust interest operator can be derived by expanding I(x + Ax) using the first-
order Taylor series:

ol
I(x + Ax) = I(x) + (Ax)Taf (7.24)
X
Substituting into (7.22) and introducing an optional weighting function 0 = w(x) = 1, to
allow some pixels to count more than others, yields

(i) = 3 v (an9LY 7.25
= S0 (0T (g)’() (gf{)T (Ax) (7.26)
- (a7 2" (5959 v o
= (Ax)TZ(Ax) Z (7.28)

Figure 7.15 From left to right: A synthetic image, the SSD of each pixel as the image is shifted left and up, and the cornerness as measured
by the Moravec interest operator. High cornerness values occur at the corners of the aligned square, as well as along all diagonal lines.

Image

Cornerness

344

Chapter 7 - Edges and Features

where Z is a symmetric 2 X 2 matrix composed of the outer products of the gradient vectors
of the pixels in the window:

Z = EW(X) |: I%(X) Ix(x)ly(x)i| — |:Zx nyi| (7-29)

2
= L(x)1,(x) I;(x) Ty 2y

where I, = 01/0x and I, = d1/0y denote the partial derivatives of the image along the
coordinate axes, so that the gradient is given by VI = 91/0x = [I, Iy]T; and where

2 = Exw(x)li(x), 7y = Exw(x)lg(x), and z,, = Exw(x)lx(x)ly(x) are the

elements of Z. Typically the weighting function is either uniform to treat all pixels equally,
or a Gaussian to weight pixels near the center of the window more than those far away.

The matrix Z, which is determined solely by first derivatives, goes by various names.
Some authors call it the gradient covariance matrix, because if w(x) = ﬁ and the mean
is zero, then Equation (7.29) is the covariance matrix of the gradient vectors of the pixels
inside the window. Other authors refer to it as the autocorrelation matrix, the structure
tensor, or the second moment matrix, due to the connection between the covariance and
second moments exhibited in Equation (4.145). It is also known as the Hessian matrix but,
as we shall see later, this term should be avoided due to the confusion it can cause.

Since, as we saw earlier, the covariance matrix fits an ellipse to the data so that the principal
axes of the ellipse are captured by the eigenvalues of the matrix, these eigenvalues are crucial
to understanding the structure of the covariance matrix. Three cases are possible: if both
eigenvalues are large, then the pixel values vary in multiple directions, making the pixel region
uniquely distinguishable from its local surroundings; if one eigenvalue is large while the other
is small, then the region straddles an intensity edge; finally, if both eigenvalues are small, then
the region is untextured because the gradient magnitude is small for all pixels in the region.

To find distinguishable features, then, a search is conducted for pixels whose gradient
covariance matrix contains two large eigenvalues. One of the most popular approaches to
feature detection is the Harris corner detector,* which measures cornerness using the trace
and determinant of the matrix:

cornerness = det(Z) — k (trace(Z))? (Harris) (7.30)
= 2,2, — 23, — k(z, + z,)? (7.31)
=)\1)\2 - k(Al +)\2)2 (7.32)

where A; and A, are the eigenvalues of Z, and the second equality comes from the fact that
the determinant of a square matrix is the product of its eigenvalues, while its trace is the sum
of its eigenvalues, which we showed earlier.’ The constant & is a small factor whose value is
typically recommended to be in the vicinity of 0.04. The second term is used to reduce the
chance of selecting a point with a single very large eigenvalue. Note that since the eigenval-
ues are inherently invariant to rotation, Harris features are largely invariant to rotation as
well. In fact, repeated studies have shown variations of Harris to be some of the most reliable
detectors in the presence of image rotations, illumination transformations, and perspective
deformations. Another advantage of Harris is that the determinant / trace trick simplifies the
computation by eliminating the need to compute square root, and it also eliminates the pos-
sibility of dividing by zero, since the eigenvalues are not computed explicitly.

" Section 4.4.5 (p. 182).

* The Harris detector is sometimes known as the Plessey operator, after the name of the company employing the
inventor at the time of discovery.
¥ Section 4.4.5 (p. 182).

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

7.4 Feature Detectors 345

7.4.3 Tomasi-Kanade Feature Detector

An alternative to Harris is the Tomasi-Kanade operator (also known as the Shi-Tomasi
operator), which measures cornerness using the minimum eigenvalue:

cornerness = min({A;, A,}) = A, (Tomasi-Kanade) (7.33)

where the final equality assumes that the eigenvalues have been sorted in decreasing order,
sothat A; = A,. Recall that the eigenvalues are obtained by solving the characteristic equa-
tion det(Z — Mg 2y) = 0, leading to

1
A = 2<(zx +z) — \/(zx —z,)* + 4zfy> (7.34)

which is the same as Equation (4.146). Tomasi-Kanade requires more computation than
Harris and has generally been found to be slightly less robust, though the performances of
the two are quite comparable.

A less well-known alternative is to divide the determinant by the trace:

1 Ctrace(Z) A+ A 1 1

corerness det(Z) MA, A, Ay

(parallel resistors) (7.35)

which treats the eigenvalues like parallel resistors in an electrical circuit. If two resistors
r and r, are connected in parallel, then the combined resistance is r, where % = ,17 + ,1; It
is easy to show that the combined resistance is never greater than the smallest resistor, and
likewise, the cornerness is never greater than the smallest eigenvalue:

Ay _ det(Z)

= =A 7.36
2 trace(Z) 2 (7.36)

To avoid divide-by-zero errors, simply add a small number to the denominator or avoid the
division whenever both eigenvalues are smaller than a threshold.

Contour plots of Harris, Tomasi-Kanade, and parallel resistors, along with the determi-
nant of the matrix, versus A; and A, are given in Figure 7.16. All the measures have similar
shapes because they all attempt to maximize the two eigenvalues. Note that the isocontours
of the determinant are the lines A, = 1/A,, with asymptotes A; = 0 and A, = 0. As a
result, one large eigenvalue can overcome an arbitrarily small eigenvalue. Harris avoids this
problem by subtracting the square of the trace, thus penalizing situations where one of the
eigenvalues is small. The asymptotes of Tomasi-Kanade are A; = A, = ¢, where c is the
cornerness value, whereas the asymptotes of both Harris and parallel resistors are angled in
slightly to decrease the effects of one small eigenvalue.

7.4.4 Beaudet Detector

The Hessian of a function is a matrix containing the second-order partial derivatives of the
function. Therefore, the Hessian of the region surrounding a pixel is given by

n= 3wl [10 | .

w