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 xiii

The seeds of this book were sown two decades ago when, as a graduate student, I took a 
course in digital image processing and a separate course in computer vision. The former 
course was taught in the electrical engineering department, whereas the latter was taught in the 
computer science department. The former followed the traditional approach of beginning with 
1D signal processing, then moving to 2D image processing, Fourier transforms, filtering, and 
compression. The latter, on the other hand, began with image formation and edge detection, 
then covered segmentation, classification, stereo, and motion. Not only did the two courses 
from different departments cover distinct topics, but they also relied upon different underlying 
mathematical foundations, and they seemed to have non-overlapping goals: one course was 
more concerned with manipulating images as they existed, whereas the other course focused 
more on how the images were formed and how they related to the world. Overall, the experi-
ence left me with the distinct impression that the two fields have little in common.

Nothing could be further from the truth. Despite the fact that the fields of digital image 
processing and computer vision have traditionally been taught as separate courses— 
sometimes in separate departments—with little attention paid to their relationship, the two 
are in fact inseparable. Just as electricity and magnetism are taught together, or statics and 
dynamics, or algorithms and data structures, so too should image processing and computer 
vision. Over the past decade or so, it has become increasingly apparent that the overlap 
between these two fields can no longer be ignored, regardless of their distinct histories.

The title of this book was deliberately chosen to emphasize the seamless overlap between 
the two fields. Instead of Image Processing and Computer Vision, which could lead to the 
false impression that the two fields have little in common, the present title suggests that the 
two topics are intertwined and interrelated—two sides of the same coin. The term Image 
Processing is self-explanatory and carries the well-understood meaning, whereas the term 
Image Analysis is used to encompass all of computer vision while relaxing the often implicit 
restriction upon input modality (images taken by an optical camera). Together they form the 
dual field of Image Processing and Analysis.

Purpose
This book offers a comprehensive introduction to both of these exciting fields, in a format 
that is as accessible as possible. The text is designed for use in a senior-level undergraduate 
or first-year graduate course in computer science, electrical engineering, or related field 
of study. It should also serve as a useful reference for researchers and practitioners due to 
its emphasis upon real-world problems, practical algorithms, and implementation issues. 
The book covers hundreds of algorithms and techniques that are used every day in research 
and industry. It presents both the underlying mathematical concepts and principles behind 
these techniques, as well as detailed descriptions of the actual steps involved (in the form of 
pseudocode) in implementing the most commonly used algorithms. Throughout, an attempt 
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has been made to keep the presentation accessible to all levels of readers by keeping the 
explanations as simple as possible and focusing on the core concepts. The book assumes 
some knowledge of probability, linear algebra, signal processing, programming, and algo-
rithms and data structures. However, even readers deficient in these areas should be able to 
digest the essentials of the material without too much additional effort.

Selecting material for a book of this scope has been no easy task. In a rapidly-changing 
field such as computer vision, it is possible for a book to be obsolete even before it is 
published. Therefore, to help to maximize the relevance of the book, topics were selected 
according to the following criteria. First, any topic described in a research paper receiving 
at least a thousand citations was considered important enough to be included. Secondly, any 
algorithm or method that is widely used in industry, regardless of publication status, was 
deemed worthy of inclusion due to its practical relevance. Finally, foundational material 
was selected when it seemed necessary (or at least helpful) to understand other concepts. No 
doubt these principles were not applied perfectly: space limitations did not permit all topics 
to receive the attention they deserve, and some topics or papers may have been inadvertently 
overlooked. Nevertheless, it is hoped that this principled approach has resulted in a text that 
remains relevant for years to come (or at least until the ink dries on the page—or whatever 
is the digital equivalent).

The twin goals of comprehensiveness and accessibility are in tension with one another. 
Compre hensiveness involves both breadth of topics and depth of coverage. Some readers 
will no doubt find fault with my attempt to cover as many topics as I could with as much 
detail as I could. I confess to being guilty as charged. Indeed, I have intentionally painted 
both with a broad brush that covers tremendous ground for such a short book, as well as 
with a fine brush that insists upon mathematical and intellectual rigor wherever possible. 
To make the fire hose drinkable, however, I have tried my best to provide gentle introduc-
tions, to introduce topics in a graduated manner from simple to complex, to motivate the 
work with real-world examples, and to frequently bring the reader back to the “big picture” 
so as not to get lost in all the details. Nevertheless, my working assumption has been that, 
when in doubt, more information is better than less information, since the reader can always 
skip over material but cannot easily insert new material; I hope readers will agree with this 
philosophy.

One unique feature of the text is its approach to mathematical derivations and proofs. 
A common practice is to follow a long derivation with the result. By the time the result is 
reached, however, the reader has often become hopelessly lost in the details so as to forget 
the importance of the problem being addressed, and oftentimes readers are not even inter-
ested in the cumbersome process required to obtain the result, desiring only the result itself. 
To address this problem, I have, for the most part, followed the approach of presenting the 
result first, followed by the derivation later. This inversion of order serves both types of 
readers: anyone not interested in the derivation can simply skip it, whereas anyone curious 
about the details has access to them either at the time of reading or later for reference.

Organization
Two approaches for teaching image processing and computer vision are common: one 
begins with convolution and filtering, whereas the other starts with image formation, and in 
particular projective geometry. Neither of these approaches, however, is easiest for students: 
convolution and filtering are not the first operations that one considers when using an image 
editing program, and projective geometry involves abstract mathematical concepts that are 
intimidating for first timers. Moreover, these topics do not provide an underlying foundation 
for later topics, thus sometimes leaving students disappointed when they realize that their 
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effort to master the math early in the course does not pay off when they encounter later 
topics that do not leverage the same mathematical concepts.

In this book a different approach is used. After the first two introductory chapters, stu-
dents are presented immediately with extremely simple algorithms that allow them to appre-
ciate the process of manipulating 2D image data. In other words, students are not asked to 
wade through complicated mathematics before experiencing the joy and wonder of seeing 
the result of image transformations, and no pretense is made that a single underlying math-
ematical theory will guide them through the rest of the book. Rather, the math is woven 
through the chapters as necessary.

For example, converting an RGB image to grayscale is something that everyone should 
learn in the first week, and simple approximate algorithms are sufficient for nearly all prac-
tical applications. In contrast, the correct formula for conversion requires a great deal of 
math and several advanced concepts in order to properly describe the process. A judgment 
call must be made therefore, whether to burden the reader up front with all the details, or 
to delay introducing such an important topic until halfway through the book. In this book, 
the dilemma is resolved by presenting the simple algorithm up front, then delaying the 
more advanced algorithm until the proper prerequisite material has been covered. While the 
resulting fragmentation is admittedly suboptimal, it far surpasses the alternatives. To help 
minimize the impact of such fragmentation, footnotes are liberally sprinkled throughout the 
text to point out connections between topics as an aid to the reader.

Another reason it is so difficult to organize this material is that these fields are non-
linear webs of knowledge rather than a linear sequence of topics building on one another. 
Neither image processing nor computer vision easily lends itself to a linear progression, 
and neither field requires a single underlying mathematical foundation. A technique like 
graph cuts, for example, can be used to solve a variety of problems, so a judgment call 
must be made as to which problem with which to associate it, or whether to assign it a 
separate section. Mean-shift filtering is closely related to bilateral filtering, but mean-
shift segmentation belongs with other segmentation algorithms that have no relationship 
to bilateral filtering. Grayscale morphology is closely related to binary morphology, but 
there are many other algorithms for binary images that do not have analogs with grayscale 
imagery. The approach taken here is to make the math subservient to the problems being 
solved, with chapters and sections organized (with few exceptions) by problems to be 
solved rather than by the tools used to solve them. Again, footnotes help to connect the 
material in different sections.

Roughly speaking, the book begins with image processing and ends with computer 
vision, but I have deliberately tried to avoid introducing any artificial barriers between sec-
tions due simply to differences in their respective histories or communities. The book can 
be divided into three major areas:

• Basic Concepts (Chapters 1-2). An overview of the field, including motivating appli-
cations, along with some basic concepts in storing and accessing image data (Chapter 
1). Natural vision systems, followed by image formation and acquisition, and a fairly 
detailed look at imaging modalities and electromagnetic radiation (Chapter 2).

• Image Processing (Chapters 3-9). A variety of practical, easy-to-understand algorithms 
requiring little to no mathematical background for transforming images (Chapter 3) and 
processing binary images (Chapter 4). Spatial- and frequency-domain filtering (Chapters 
5 and 6), along with approaches for detecting edges and features (Chapter 7). Finally, 
compression (Chapter 8) and color representations (Chapter 9).

• Image Analysis (Chapter 10-13). The three core problems of computer vision / image 
analysis. First, techniques for segmenting dense pixels and fitting models to sparse data 
(Chapters 10 and 11). Then, methods for classifying pixels and images (Chapter 12). 
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Finally, problems involving multiple images, such as stereopsis, optical flow, camera 
calibration, and 3D reconstruction, along with the mathematics of projective geometry 
(Chapter 13).

There is enough material in the book for a two-course sequence on image processing and 
computer vision. The chapters follow a logical progression from simpler to more advanced 
topics, and there is inevitably some dependence between them. Nevertheless, the book has 
been designed to support a variety of different course types and academic schedules. Each 
chapter is relatively self-contained, so that it should be easy to select the chapters of inter-
est without worrying whether important prerequisite material has been skipped. Within 
each chapter, the simple concepts are presented first, followed by more advanced ones, 
thus providing flexibility in picking and choosing which topics to cover, depending on the 
goals of the course. In fact, in many cases the chapters can even be covered out of order, as 
necessitated by the interests of the instructor or the needs of the practitioner.

Instructor Resources
A variety of resources are available to instructors via Cengage Learning’s secure, password-
protected Instructor Resource Center. These resources include the Instructor’s Solution 
Manual, providing complete solutions to all problems from the text, as well as Lecture 
Note PowerPoint slides, algorithmic pseudocode and processed images in PowerPoint 
slides. To access these resources, please visit https://login.cengage.com.

xvi Preface
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Vision is, without a doubt, our most dominant sense. With our eyes, we are able to navigate through complicated 
environments, detect and recognize the faces of our friends, and identify items to purchase on a shelf at a store. We 
see an object and reach for it, without even appreciating the immense complexity of the sensing task we have just 

performed to determine not only what object we are looking at but also where it is located. Indeed, it is nothing short of 
a miracle that we are able to process the signals resulting from visual stimuli on our retinas in order to make sense of the 
world around us. This pervasive reliance on vision has formed metaphors that permeate our daily vocabulary, such as:

“Seeing is believing.” “A picture is worth a thousand words.” “Our company needs a vision statement.” 
“Don’t you see what this means?” “They are like the blind leading the blind.”

Inspired by the success of natural vision systems such as our own, it has long been the goal of scientists and engi-
neers to harness the power of imagery to accomplish otherwise impossible tasks. Achieving this goal requires program-
ming a computer to extract meaningful information from images, or, more generally, to use a computer to manipulate 
images in order to make the data that they contain more useful. The aim of this book is to introduce the basic concepts 
and algorithms necessary to prepare you to understand and use the algorithms for accomplishing this ambitious goal.

This is truly an exciting time to be studying this field. Not that long ago, such manipulation was restricted to research-
ers and specialists in the field, but nowadays any of us can acquire and manipulate digital imagery, given the ease with 
which we can snap a digital photograph or scan a document, and given the increasing levels of computational perfor-
mance available. The fact that you are reading this indicates that you probably have at least some desire to understand in 
a deeper way the underlying principles and techniques for taking advantage of this newfound opportunity, so welcome 
to the fascinating world of images!

C H A P T E R 1
Introduction
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2 Chapter 1 • Introduction

1.1 Image Processing and Analysis
This book covers both digital image processing and digital image analysis, where the adjec-
tive “digital” can safely be omitted these days since essentially all images are now available 
in digital form. In this chapter we will discover what exactly is meant by these two terms, 
how they relate to one another, and how their principles and algorithms are used every day 
in real-world systems. We will also cover some basic concepts regarding images, such as 
the representations used and the different types of images.

Since the fields of image processing and image analysis overlap significantly in their 
concepts, methods, and aims, it is difficult to know exactly where to draw the line between 
them. Nevertheless, a view that many have found helpful is to distinguish algorithms based 
on the type of output they produce. According to this view, image processing is the field 
of study in which algorithms operate on input images to produce output images, whereas 
image analysis is the field of study in which algorithms operate on images to extract 
higher-level information. In other words, an image processing algorithm outputs another 
image, whereas an image analysis algorithm outputs a nonimage type of data structure. 
Another way to think about the division is to consider image processing algorithms to be 
low-level in nature, whereas image analysis algorithms are more high-level, although not 
all algorithms are easily classified in this manner.

Three primary problems of image processing are shown in Figure 1.1. The first, known as 
enhancement, involves transforming an input image into another image so as to improve 
its visual appearance. An example of enhancement is to brighten an originally dark image, 
or to increase the contrast of an image to make the details more visible. Another example is 
to detect the intensity edges of an image in order to highlight the boundaries of objects, or 
to colorize a grayscale image (usually with false colors, known as pseudocolors) to make 
the different data values more distinguishable to a human observer. Restoration, the second 
problem, has as its purpose to restore an image that has been corrupted by some type of 
noise. The corruption may have been caused by noise introduced by the sensor, noise added 
during the transmission of the signal, or noise introduced by some external process. The 
third problem, compression, involves storing an image with fewer bits than are required 
by the original signal, while affecting viewing quality of the decompressed image as little 

Figure 1.1: Three 
example problems 
of image processing. 
Top: A dark image, an 
image corrupted by 
noise, and a clean image. 
Bottom: the results of 
contrast enhancement, 
image restoration, and 
compression. The latter 
shows intentionally poor 
quality to better illustrate 
the effects of the operation.
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1.1 Image Processing and Analysis 3

as possible. Compression algorithms can be applied either to a still image or to a video 
sequence. To solve these three types of problems, image processing utilizes concepts such 
as image transformations, linear and nonlinear filtering, and frequency-domain processing.

Three primary problems of image analysis are shown in Figure 1.2. Segmentation is the 
process of determining which pixels in an image belong together, that is, which pixels are 
projections of the same object in the scene. Segmentation can be viewed as a bottom-up pro-
cess in which pixels are grouped together based upon low-level, local properties of the pixels 
and their neighbors, without any model of the particular object in the scene that produced 
the group of pixels. In contrast, the problem of classification involves determining which 
pixels in an image belong to a model that has been created beforehand. Classification is 
a top-down process, relying upon a human trainer or some other system to facilitate the 
creation of the model to which the pixels will be compared. If you have ever seen the display 
on a digital camera outlining the faces of all the people, that is the result of classification. 
The third problem, shape from X, aims to recover the three-dimensional (3D) structure 
of the scene using any of a variety of techniques (hence the “X”), such as stereo, video, 
shading, or texture. To solve these three types of problems, image analysis utilizes concepts 
such as linear algebra, statistical analysis, projective geometry, and function optimization.

The goal of image analysis is for the computer to be able “to see,” because algorithms 
analyze images in order to extract useful information about the world. In this sense, 
image analysis is nearly synonymous with both machine vision and computer vision. 
Machine vision typically refers to systems in an industrial setting in which the placement 
of the camera and lighting conditions can be controlled, and the scene being viewed by 
the camera is, for the most part, two-dimensional (2D), such as parts on a conveyor belt. 
Computer vision, on the other hand, refers to systems operating on images taken in 
unstructured settings, such as those taken by ordinary people in everyday life using their 
personal digital cameras, or by a mobile robot navigating through unknown territory. We 
will often use these three terms interchangeably, since the distinction between them is too 
subtle to be important in most contexts. Nevertheless, as summarized in Table 1.1, it is 
proposed here to use the term image analysis to encompass techniques applicable to images 
from any type of sensor, optical or otherwise, whereas machine and computer vision refer to 
techniques that are applied to images obtained by a traditional camera capturing visible light.

Although the set of six core problems above is not necessarily exhaustive, it is truly 
remarkable how many problems that arise in practice are instances of one of them. 

Figure 1.2: Three 
example problems of 
image analysis. Top: 
input images. Bottom: 
From left to right, the 
results of color-based 
segmentation, human 
face detection (a type of 
classification), and 3D 
reconstruction.
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4 Chapter 1 • Introduction

For example, thresholding an image is really a segmentation problem, because the goal is 
to determine regions in the image whose pixels belong together. Edge detection is a type of 
classification problem, because the goal is to determine whether each pixel is an edge pixel 
or not. Tracking involves matching a query set of pixels in the current image to a model of 
the target captured in previous images, which is an inherent classification problem.† Image 
inpainting is a type of image restoration because it aims to reconstruct missing data in the 
image, and computed tomography is a type of shape from X because its goal is to determine 
the 3D structure of the object being viewed. And so on.

1.2 History and Related Fields
Some perspective can be gained by looking at a brief history. Image processing was born in 
the mid-1960s due to the convergence of two phenomena: First, the space program began 
to transmit priceless images of the moon back to earth, which happened to be distorted; 
and secondly, digital computers were becoming powerful enough to perform useful tasks 
such as removing that distortion. Before the decade was over, a wave of other applications 
of image processing began to assert themselves, such as medical imaging, remote sensing, 
and document image analysis. In the 1970s commercially viable machine vision systems 
were introduced to inspect manufactured parts for defects, a thriving industry that contin-
ues today. The 1980s saw the expansion of machine vision systems into the transportation 
industry, among other areas, as images were processed automatically to detect vehicles 
on the highway in a variety of weather and lighting conditions. Meanwhile, researchers in 
computer vision were laying the foundation of solutions to many problems in the field in 
the 1970s and 1980s. Although fundamental breakthroughs were achieved throughout the 
1990s, it was not until the mid-2000s that computer vision began to impact commercial 
products, thanks to the convergence of faster processing, inexpensive sensors, and the avail-
ability of large amounts of training data. Today the computer vision market is booming, with 
application areas multiplying faster than developers are able to tackle them.

Interwoven throughout this history is a rich interplay between image processing, image 
analysis, and several closely related fields, such as those illustrated in Figure 1.3:

Vision science. Scientists in psychophysics study the relationship between physical 
stimuli and the resulting perceptual sensations that they cause. Since the mid-19th cen-
tury, such scientists have spent considerable effort to understand how the human visual 
system operates by studying its reaction to different types of scenes and environmental 
conditions. This has given rise to heated debates between schools of thought like structur-
alism, gestalt psychology, ecological optics, and constructivism. Some of the more well-
known figures are Hermann von Helmholtz (1821–1894), who conducted some of the first 
psychophysical experiments, Max Wertheimer (1880–1943), one of the main proponents 
of gestalt psychology which emphasized grouping as the key to visual perception, and 
J. J. Gibson (1904–1979), one of the most influential researchers in visual perception of 

environment sensor algorithm output

image processing any any low-level (2D) another image

image analysis any any low- to high-level nonimage

machine vision industrial camera low-level (2D) nonimage

computer vision everyday camera mid- to high-level nonimage

TABLE 1.1: Comparison 
between image processing 
and analysis, machine 
and computer vision.

† This connection is particularly evident in the recent interest in “tracking by detection” approaches. (Note that 
detection is a type of classification.)
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the 20th century who contributed to the training of airplane pilots, in which they learned 
to orient themselves via visual cues on the ground. More recently, there has been a flurry 
of activity in cross-disciplinary work, in which psychophysical researchers apply compu-
tational models to more precisely characterize the operations of the human visual system, 
while computer scientists use techniques inspired by psychophysical models to propose 
new computational algorithms. The field at the intersection between these two approaches, 
known as vision science, has been important in establishing principles regarding perceptual 
quality for applications such as image compression. Nevertheless, while much progress 
has been made, the actual workings of the human vision system remain largely a mystery.

Photogrammetry. As its name suggests, photogrammetry involves making metric mea-
surements from photographs. Starting in the mid-19th century, sophisticated techniques 
were developed to facilitate the creation of accurate, detailed 3D terrain maps using images 
captured by cameras mounted on kites, balloons, and aircraft. Before the advent of digital 
computers, such calculations were carried out meticulously by hand by carefully measuring 
the image coordinates of points on high-resolution photographs, then using the machinery of 
projective geometry to infer 3D coordinates. Many of these techniques, such as triangulation 
and bundle adjustment, are still widely used today in automated 3D reconstruction systems.

Signal processing. With the advent of electronic forms of communication near the turn 
of the 20th century, such as radio, telephone, radar, and television, the need to process these 
one-dimensional (1D) electronic signals became important. The field of signal processing, 
and later digital signal processing, is concerned with filtering signals in order to reduce the 
effects of noise, enhance the information that is present, or make better use of the available 
bandwidth. The origins of image processing lie in the extension of one-dimensional digital 
signal processing techniques to two-dimensional images.

Computer graphics. While the goal of computer vision is to infer a model of the world 
from sensor data, the goal of computer graphics is the exact opposite: to create an image 
from a model of the world. As such, the two fields overlap in their shared use of the math-
ematics of geometric optics, in particular projective geometry. In recent years, there has 
been a surge of interest in applications that intersect both fields, such as augmented reality, 
urban and archaeological site modeling, medical visulization, facial animation, teleimmer-
sion, and telecollaboration. Motion capture of actors, as well as the automatic computation 
of optical flow, is used to produce a variety of special effects for movies, such as retiming, 
artificial motion blur, image-based animation, and non-photorealistic rendering.

Figure 1.3: Image 
processing and analysis, 
along with related fields 
(bottom rectangles) and 
sample applications (top 
ovals).
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6 Chapter 1 • Introduction

Machine learning. Machine learning is a branch of artificial intelligence concerned 
with developing systems whose output improves as more empirical data are provided; that 
is, a learning algorithm is able to generalize from its experience. A tight connection exists 
between machine learning and image analysis since two of the main areas of machine 
learning map directly into two of the main problems in image analysis. Image segmentation 
is an example of unsupervised learning, which aims to find clusters in data, whereas clas-
sification is an example of supervised learning, which makes decisions based upon labeled 
training data.† Since the introduction of the first successful face detection algorithms in the 
mid-1990s, the field of computer vision has been heavily influenced by the paradigm of 
machine learning. Many long-standing elusive problems are now beginning to be tractable 
by providing large amounts of training data to sophisticated machine learning algorithms 
that extract the desired underlying properties of the signals.

1.3 Sample Applications
Due to the explosion in the use of image processing and analysis over the past several 
decades, it is not difficult to find a myriad of real-world applications in which these 
technologies are used every day. Chances are pretty good, for example, that you or some-
one you know snapped a picture or video with your smartphone recently, which was 
subsequently compressed using techniques from image processing. In the same manner, 
machine vision is a thriving, mature, and growing multibillion dollar industry that is used 
to improve the quality of manufactured products. Although computer vision has only 
recently begun to find profitable niches, these application areas will inevitably multiply 
over the coming decades as the technology matures to handle the difficult issues that arise 
in unstructured settings. Some of the more important application areas of these fields are 
highlighted in Figure 1.4.

Industrial inspection. Machine vision systems are commonly used to inspect manufac-
tured parts for defects, particularly in the semiconductor industry where the sensed semicon-
ductor wafer is compared with a model template to detect defects. Similar systems are also 
used to identify missing components or broken traces on printed circuit boards, missing pills 
in pharmaceutical packaging, defects in fiber bundles, errors in packaging labels, or missing 
tamper bands on consumer products. Other systems inspect and measure machined parts 
such as automotive engines to ensure alignment and tolerance specifications are met, while 
yet others inspect food to identify foreign objects accidentally dropped in bread loaves, 
diseased corn, or blemishes in fried potatoes.

Document image analysis. Another mature application area is the automated analysis 
of documents. The postal service routinely uses optical character recognition (OCR) tech-
nology to automatically read the characters and numerals printed on envelopes to sort the 
mail. Similar methods have been used to build reading machines for the blind and automated 
license plate recognition (ALPR) systems to read the license plate numbers of vehicles from 
high-resolution cameras controlled by an external trigger. Comparing the captured image 
with a template is also one way that vending machines are able to verify that a dollar bill 
inserted in the machine is genuine. Using similar techniques, the now ubiquitous QR (quick 
response) codes are two-dimensional bar codes that are capable of being quickly read by 
smartphones to reveal product data or other information.

Transportation. Cameras mounted on poles on the side of the road are used to automati-
cally determine the volume of traffic and occupancy of the roadway by measuring pixel 

† The third area of machine learning, reinforcement learning, is not as obviously related, although it has been used 
in tracking and interactive systems.
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1.3 Sample Applications 7

changes in the video relative to a background image. Cameras installed at intersections are 
used to determine the presence of vehicles in individual lanes in order to control the traffic 
signal or to automatically take a snapshot of any driver who illegally runs a red light. Other 
systems count the number of vehicles passing through an intersection, inspect railroad 
tracks for fatigue or corrosion, or detect stray, fallen parts on an airport runway for safety 
purposes. Thermal infrared cameras are increasingly being used for their insensitivity to 
shadows, rain, glare, or other environmental conditions. Cameras are also being deployed 
on vehicles themselves, with integrated computer vision algorithms automatically detecting 
the headlights of oncoming vehicles, pedestrians in front of the vehicle, and inadvertent lane 
departure. They are also used to automate parallel parking.

Security and surveillance. Biometric devices are used to read fingerprints, recog-
nize irises, and identify faces for contact-free access control. X-ray security scanners at 
airports are able to detect banned objects in luggage, while full body scanners utilize the 
backscatter X-ray or millimeter waves. Security cameras installed around the perimeter of 
high-security areas, within public areas, or around places of business are primarily used 
for manual viewing either during an incident or afterward, although efforts have been made 
to automate the detection of intruders. Such cameras are also used to track people through 
shopping areas to determine purchasing habits and product interest. Underwater video 
cameras continuously watch for motionless people at the bottom swimming pools to alert 
lifeguards to save them from drowning.

Remote sensing. Information regarding the earth is collected by acquiring and process-
ing data from multiple spectral bands obtained by sensors on aircraft flying over specific 
locations or satellites orbiting the planet. Some of the goals of remote sensing are to identify 
land features, measure the amount of vegetation, locate ore deposits, measure the tem-
perature of land and water, and estimate changes in sea level. The large number of images 
collected continuously from orbiting satellites over the past several decades provides a 
long-term record of changes to the natural landscape due to either natural or human causes.

Figure 1.4: Sample 
applications. From left 
to right, top to bottom: 
industrial inspection, 
optical character 
recognition, tracking 
vehicles on a highway, 
detecting a drowning 
person at the bottom of 
a pool, photgrammetry, 
detecting tree roots 
in an underground 
image, medical imaging, 
robotic assembly, 
moviemaking.
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8 Chapter 1 • Introduction

Scientific imaging. Scientists in a variety of fields use imaging to study and measure 
phenomena of interest. Biologists track live cells in time-lapse microscopy images, bio-
image informaticists analyze cells using light or electron microscopy, and horticultural-
ists estimate tree health by measuring the growth of roots using cameras in underground 
minirhizotron tubes. Space scientists use triangulation from cameras that are miles apart to 
estimate wind direction, while astronomers use speckle imaging techniques to increase the 
resolution of ground-based telescopes for viewing faint stars and other distant phenomena. 
Chemists use atomic force microscopes (AFMs) to view extremely fine details such as the 
chemical bonds linking atoms in a molecule. For studying the flow of liquids or gases, par-
ticle imaging velocimetry (PIV) provides scientists with the instantaneous velocity profile 
of the flow field. Most scientific imaging is still done manually, with basic low-level image 
processing and analysis routines aiding the human viewer in conducting measurements.

Medical imaging. One of the largest areas of active research is medical imaging, in 
which images of the human body are captured using a variety of imaging modalities to 
detect tumors, diagnose diseases, verify whether a bone has been broken, and view neural 
activity in the brain to identify the region that is responsible for a certain type of processing. 
These different types of images are registered so that they may be overlaid on one another 
to create 3D models to aid visualization. Medical imaging is also used to guide surgery, and 
images captured from tiny images on the end of a catheter allow physicians to see the block-
age of arteries and other phenomena that would be difficult to sense otherwise. Although 
much effort has been spent automating medical image analysis, the images are primarily 
interpreted by a trained professional, as in scientific imaging.

Robotics. Commercial industrial robotic systems use machine vision for quality inspec-
tion during operations such as parts feeding, manufacturing assembly, arc welding, and 
automatic wire bonding. Computer vision also plays an important role in mobile robotics 
systems that navigate an environment, follow a certain person, or build a map of a building. 
Computer vision systems are just now beginning to reach levels of robustness that allow 
them to be deployed in real unmanned systems operating in unstructured environments, 
whether in smaller robotic systems or larger autonomous vehicles.

Entertainment. With the proliferation of cameras on smart phones, an emerging area 
is that of computational photography, in which specialized optics and image processing 
can be used to produce high dynamic range images, all-focus images, or high-resolution 
mosaics and panoramas. Another application area is human-computer interaction, in which 
natural user interfaces allow a user to control a computer by sending the user’s gestures from 
a camera. With the increasing availability of inexpensive depth sensors, such applications 
are becoming mainstream. In the sports world, cameras are used to display the location of 
first down markers in American football, the pitch speed in baseball, the angle of the shot 
in basketball, the location of the puck in hockey, the identities of boats in sailing races, and 
other metadata to enhance the visual experience for viewers. In the moviemaking industry, 
computer vision techniques are now the standard way of combining computer generated 
imagery (CGI) with live action footage by tracking features in the video to determine the 
camera motion.

1.4 Image Basics
In preparation for the material in the rest of the book, we now consider some of the basic 
concepts in storing and representing images, as well as some of the conventions that we will 
use. When a camera (or alternative imaging device like those we will see in the next chapter) 
forms an image of the scene, it captures in some way a likeness of the scene. In fact, the 
word image comes from the Latin word (imago) meaning “likeness,” which is why when 
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1.4 Image Basics 9

we look in the mirror we say that we see an image of ourselves, because the person inside 
the mirror looks just like us. Because the image captured by a camera is usually a digitized 
version of some two-dimensional sensory input, it is appropriately called a digital image.

1.4.1 Accessing Image Data
At its most basic level, then, a digital image is simply a discrete two-dimensional array of 
values, much like a matrix. We use width to refer to the number of columns in the image, 
and height to refer to the number of rows, so that the dimensions of the image are width by 
height, represented as width 3 height, and the aspect ratio is width divided by height, or 
width / height. Each element of the array is known as a pixel, which is short for “picture ele-
ment.” Pixel values are accessed by a pair of coordinates (x, y), where x and y are nonnegative 
integers. For a grayscale image I, the value v of the pixel at coordinates (x, y) is given by

 v 5 I 1 x, y 2  (1.1)

Sometimes we will find it more convenient to represent pixel coordinates using a vector. 
According to the standard convention, each vector is vertically oriented, while its transpose 
is horizontally oriented:

 x 5 cx
y
d 5 3x y 4T 5 1 x, y 2  (1.2)

where the boldface indicates a vector, and the superscript T indicates the transpose opera-
tor. We will use the vector and coordinate notation interchangeably, so that I 1 x, y 2 5 I 1 x 2 . 
In the case of a color image, each pixel contains multiple values, which we represent 
as another vector, v 5 I 1 x 2 , that contains the values of the different color channels,  
e.g., v 5 1 vred, vgreen, vblue 2 .

For accessing the pixels we adopt the convention that the positive x axis points to the 
right and the positive y axis points down, so that x specifies the column and y specifies the 
row, as depicted in Figure 1.5. We also assume zero-based indexing, so that the top-left pixel 
is at (0, 0). Other conventions are possible, but this coordinate system has the advantage 
that it is closely tied to the way images are typically stored in memory, and, although in 2D 
this is a left-handed coordinate system, in 3D the right-hand rule causes the z axis to point 
toward the scene along the camera’s optical axis, which is convenient when performing 3D 
reconstruction.

Despite the fact that an image is actually a 2D array, it is stored in memory as a 1D 
array. Sometimes images are stored in column major order, that is, the first column is 
stored, then the second column, then the third column, and so on until the last column. More 
commonly, however, they are stored in row major order, also known as raster scan order. 
Hearkening back to the days when images were displayed on a cathode ray tube (CRT) by 
an electron gun scanning the tube one row at a time, a scanline is one row of an image; 
raster scan order therefore refers to storing the first row, then the second row, then the 
third row, and so on until the final row. Since a CRT display always begins its scan at the 
top-left corner of the image and proceeds downward, this is the historical basis for setting 
the origin at the top-left pixel.

The elements of this 1D array have indices 0, 1, 2, c, n 2 1, where n 5 width #height 
is the number of pixels in the image, and the dot 1 # 2  indicates ordinary multiplication. If 
we let i refer to the index of this 1D array, then the first pixel at 1 x, y 2 5 1 0, 0 2  has the 1D 
index i 5 0. Assuming row major order, the second pixel at (1, 0) has the index i 5 1, the 
third pixel at (2, 0) has the index i 5 2, and so on. If the pixels are stored contiguously, then 
the last pixel of the first row at 1width 2 1, 0 2  has the index i 5 width 2 1, while the first 
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10 Chapter 1 • Introduction

pixel of the second row at (0, 1) has the index i 5 width. From this, it is easy to see that the 
1D index can be obtained from the 2D coordinates as follows:

 i 5 y #  width 1  x  (1.3)

and the inverse relationship is given by

 x 5 mod 1 i, width 2 5 i 2 y #  width (1.4)

 y 5 :i / width;  (1.5)

where mod (a, b) is the modulo operator that returns the remainder of a divided by b, and 
the floor operator :c; returns the largest integer that is less than or equal to c.

1.4.2 Image Types
Several types of images exist. In a grayscale image, the value of each pixel is a scalar 
indicating the amount of light captured. These values are quantized into a finite number of 
discrete levels called gray levels. If b is the number of bits used to store each pixel value 
(called the bit depth), then 2b is the number of gray levels, which we shall refer to as 
ngray. Usually there are eight bits (one byte) per pixel, so that ngray 5 2b 5 28 5 256. 
Therefore, in an 8-bit grayscale image, a pixel whose value is 0 represents black, whereas 
a pixel whose value is 255 represents white. All the bits of a black pixel are 0, whereas all 
the bits of a white pixel are 1, so using hexadecimal notation these values are 00 and FF, 
respectively. Some specialized applications such as medical imaging require more quantiza-
tion levels (e.g., 12 or 16 bits per pixel) to increase the dynamic range that can be captured, 
but we will generally assume 8 bits per pixel to simplify the presentation; the extension to 
larger bit depths is straightforward.
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Figure 1.5: Top: Image as 
a 2D array, showing the 1D 
index of each pixel. Bottom: 
Internal representation of 
image as a 1D array using 
row major order.
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1.4 Image Basics 11

In an RGB color image, the pixel values are triples containing the amount of light 
captured in the three color channels: red, green, and blue. Color images, therefore, 
usually require 24 bits per pixel, or one byte for each of the three color channels. For an 
RGB color image, a black pixel has hexadecimal value 000000, while a white pixel 
has value FFFFFF. Although the bytes could be stored in the order of red-green-blue 
(RGB), with blue as the lowest-order byte, most frame buffers and frame grabbers adopt 
the reverse convention in which the order is blue-green-red (BGR), so that red is stored as 
0000FF. The values for the different color channels are usually stored in an interleaved 
manner, that is, all three values for one pixel are stored before the three values of the next 
pixel, as in B0G0 

R0 
B1G1R1B2G2R2 c Bn21Gn21Rn21, where the subscript is the pixel 

index. An alternate approach is to store the color channels in a planar manner, so that 
the red, green, and blue channels are stored as separate one-byte-per-pixel images, as in 
B0 

B1B2 c Bn21G0G1G2 c Gn21R0 
R1R2 c Rn21. Either way, sometimes a fourth value 

is associated with each pixel, called the alpha value or the opacity, which is used for 
blending multiple images, as in B0G0 

R0  
A0 

B1G1R1A1B2G2R2 
A2 c Bn21Gn21Rn21An21, 

in which case 32 bits are associated with each pixel; an alpha value of 00 indicates complete 
transparency, whereas an alpha value of FF indicates that the color is fully opaque.

Although grayscale and RGB color images are used for capture and display, the 
processing of images leads to several additional types. First, there is the binary image, 
which arises from applying a propositional test to each pixel. The most common test is that 
of thresholding, in which case each pixel in the output image receives the logical value ON 
or OFF (or equivalently TRUE or FALSE, respectively) depending upon whether the value of the 
input pixel is above or below a given threshold. These logical values can be stored using 
one bit per pixel, (0 for OFF or 1 for ON), or they can be stored using one byte per pixel, 
where their values are usually 0 (hexadecimal 00) or 255 (hexadecimal FF). Although 
this latter practice is somewhat wasteful, it is often more convenient for both display and 
processing. We adopt the convention that OFF is displayed as black, whereas ON is displayed 
as white, when the binary image is displayed as an image; we reverse this convention when 
graphically depicting algorithms, where OFF is displayed as white, and a color such as blue or 
orange is used for ON. This minor inconsistency arises naturally from the fact that, although 
black is the color of a blank screen, white is the color of a blank piece of paper.

Another type of image is the real-valued image, or floating-point image, in which 
each pixel contains a real number, at least conceptually. In practice, the number is stored in 
the computer as an IEEE single- or double-precision floating point number, in which case the 
number requires 32 or 64 bits, respectively, to be stored. A single-precision number can repre-
sent any integer in the range 32224, 224 4 exactly, and it can represent any real number in the 
approximate range 321038, 1038 4 with an accuracy of about 1027. A double-precision num-
ber can represent any integer in the range 32253, 253 4 exactly, and it can represent any real 
number in the approximate range 3210308, 10308 4 with an accuracy of about 10216. Unlike 
signal processing, which often involves numerically delicate operations that require double-
precision, for image processing it is difficult to find situations for which single-precision is 
not sufficient. In fact, an increasingly common format stores images using half-precision, 
which requires just 16 bits per pixel. A half-precision number can represent any integer in the 
range 32211, 211 4 exactly, and it can represent any real number in the range 3265535, 65535 4 
with an accuracy of about 0.001. These numbers, which are summarized in Table 1.2, arise 
from the general rule that if e and s are the number of exponent and significand bits, respec-
tively, then the range of exact integers is 322s11, 2s11 4, the entire range is 3222e21

, 22e21 4, 
and the accuracy is s log10 2. Floating-point images are useful not only to store the results of 
arithmetic operations, but also for high dynamic range images and radiance maps.

Some image processing algorithms output an integer-valued image in which the value 
of each pixel is an integer. Integer-valued images arise whenever it is necessary to store 
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negative numbers or somewhat arbitrarily large numbers. For example, to label each pixel 
with the region to which it belongs, we obviously cannot store the result in a grayscale 
image if there are more than 256 regions. Similarly, the subtraction of two images, which 
will in general contain negative numbers, cannot be stored in a grayscale image. Although 
in practice an integer-valued image uses a finite number of bits per pixel (usually 32 or 
64), these values are large enough that the chance of overflowing the buffer is usually not a 
practical concern. A 32-bit integer, for example, can represent all integers between approxi-
mately 2109 and 109, and a 64-bit integer can represent the integers from approximately 
21019 to 1019, both of which are extremely large ranges.

Finally, images can have multiple channels. We have already seen, for example, that an 
RGB color image is an 8-bit image with three channels. Similarly, after transforming from 
RGB color space to another color space, the result can be stored as a multichannel image, 
either real-valued or 8-bit. Another common multichannel image type is a complex-valued 
image, which arises from computing the Fourier transform of an image. A complex-valued 
image contains two floating-point values for each pixel, one for the real component and 
one for the imaginary component. Similarly, a multichannel integer-valued image might 
store the (x, y) coordinates of another pixel associated with each pixel, or a set of regions 
to which the pixel might belong.

These image types are summarized in Table 1.3. In this book we shall exercise care to 
maintain the distinction between the different types in order to support applications for 
which speed and memory considerations warrant this extra level of detail. Real-time appli-
cations tend to squeeze the result into as few bits as possible, so that grayscale and RGB 
color images are commonly used not only for capture and display, but also for holding 
results that may conceptually be considered integers or real values. The reason for this is 
that, although memory itself is cheap, processing time is greatly affected by the amount of 
memory used, due to the relatively high cost of cache misses and page swaps. Although the 
type of image should either be clear from the context or mentioned explicitly, when in doubt 
it will always be safe to assume (if computation is not an issue) the most general model, 
namely that of a multichannel floating-point image. Such a model is flexible enough to hold 
all of the image types mentioned (grayscale, RGB color, binary, integer, real, complex, and 
other color spaces), as well as any others that you will ever encounter.

grayscale RGB color binary integer-valued real-valued complex-valued

channels 1 3 1 1 1 2

bit depth 8 24 1 32/64 32/64 64/128

value range 50, c, 2556 50, c, 25563 50, 16 Z R R2

TABLE 1.3: Common image types, shown with the number of channels, the most commonly encountered bit depth 
(number of bits per pixel), and the set of possible values. In the final three columns this set is conceptual  
only, since the integers Z and real numbers R are infinite sets.

number of bits range

precision sign exponent significand total integers reals accuracy

half 1 5 10 16 32211, 211 4 32104, 104 4 1023

single 1 8 23 32 32224, 224 4 321038, 1038 4 1027

double 1 11 52 64 32253, 253 4 3210308, 10308 4 10216

TABLE 1.2: Half-, single-, and double-precision floating point representations.
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1.4.3 Conceptualizing Images
We normally think of an image as a picture. That is, if we display the image so that the 
brightness of each tiny region on the screen or page is proportional to the value of a pixel, 
then the representation is easily interpreted by viewing it. There are several other ways to 
conceptualize an image, however, as shown in Figure 1.6, each of which provides additional 
insight into the algorithmic processing of images.

At its most basic level a digital image is stored in the computer as a discrete array of 
values, which can be visualized either by considering the raw pixel values themselves 
arranged in a 2D lattice, or equivalently as a height map, or 3D surface plot, where the 
height of each point is the value of the pixel. Alternatively, an image can be considered 
as a function that returns the value given the coordinates of a pixel. In this case, I(x, y) 
means to evaluate the function at the position (x, y). If x and y are restricted to nonnega-
tive integers in the domain of the image, then the function is equivalent to accessing a 
2D array. However, if we expand the domain of each axis of the function to the entire set 
of real numbers, then it allows us to capture the values of the image even when accessed 
out of bounds. For example, I 121, 21 2  makes no sense when I is viewed as a 2D array, 
because 121, 21 2  would cause a memory access violation; but when viewed as a func-
tion, I 121, 21 2  yields a value that is computed from the nearby pixels, e.g., the value of 
the nearest pixel. Similarly, the parameters to I(2.5, 3.5) would have to be rounded if the 
image were accessed as an array, but as a function we can define an appropriate interpola-
tion function to compute values between pixels.

Another way to conceptualize an image is as a set of pixels. In its most general form, 
this set contains triplets of values capturing both the coordinates and values of the pixels. 
For example, the grayscale image

 I 5 B3 8 0
2 9 4

R  (1.6)

can be represented as 5 1 0, 0, 3 2 , 1 1, 0, 8 2 , 1 2, 0, 0 2 , 1 0, 1, 2 2 , 1 1, 1, 9 2 , 1 2, 1, 4 2 6. 
However, this representation is most commonly used for binary images, where the set is 

Figure 1.6: Different ways to visualize an image: as a picture, as a height map, as an array of values, as a function, as a set, as a graph, 
and as a vector. The 5 3 4 array is a small portion of the image; the set contains the coordinates of all pixels in the array whose value is 
greater than 80; and the weights of the edges in the graph are the absolute differences between values in the array.
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14 Chapter 1 • Introduction

usually simplified to contain just the coordinates of those pixels whose value is on, that is, 5 1 x, y 2   :  I 1 x, y 2 5 ON6. For example, the binary image

 I 5 C1 0 1
1 1 1
1 0 1

S  (1.7)

can be represented as the set

 5 1 0, 0 2 , 1 2, 0 2 , 1 0, 1 2 , 1 1, 1 2 , 1 2, 1 2 , 1 0, 2 2 , 1 2, 2 2 6. (1.8)

An image can also be viewed as a graph, where each pixel of the image is a vertex in the 
graph, and each edge in the graph connects two pixels that are adjacent in the image. The 
weight associated with each edge is usually some measure of the similarity or dissimilarity 
in value between the two pixels. For example, the image in Equation (1.6) can be repre-
sented as a graph with 6 vertices and 7 edges, where the weights of the edges are given by 
the absolute difference between neighboring pixels:

5 8

7 5

411
3 8 0

492

Occasionally it is useful to view an image as a matrix. Since a matrix is a 2D array 
of values, this representation is easy to imagine. The only difficulty is that, for historical 
reasons, the conventions for matrices and images are different. Matrix entries are accessed 
using one-based indexing, so the top-left entry is at position (1, 1) rather than (0, 0). Also, 
matrices are indexed first by their row, then by their column, so the entry just to the right of 
the top-left entry is at position (1, 2), and an m 3 n matrix has m rows and n columns (as 
opposed to a w 3 h image, which has w columns and h rows). To avoid confusion, we will 
use boldface to indicate matrices, and we will access matrix entries using subscripts. Thus, 
if A is an m 3 n matrix whose 1 i, j 2 th entry is given by aij, we will write

 A5m3n6 5 D a11 a12
c a1n

a21 a22
c a2n

( ( f (
am1 am2

c amn

T  (1.9)

where the braces in the subscript of the matrix indicate its dimensions.
Finally, it is sometimes useful to view the image as a vector, which is obtained by either 

concatenating the columns of the image or by concatenating the rows and transposing the 
result. Adopting the latter approach, if we let vi 5 I 1 x, y 2  be the value of the pixel at (x, y) 
according to the 1D indexing of Equation (1.3), then the resulting vector is given by

 v 5 3v0  v1  v2  c  vn21 4T  (1.10)

where n is the number of pixels in the image. This vector is a point in an n-dimensional 
space, so if we let each pixel take on a real value for simplicity, then v [ Rn. The vector 
notation allows us to imagine linear transformations of the image that involve multiplying 
the vector by an m 3 n matrix T on the left-hand side to produce a new vector v r 5 Tv:

 v
 5m316r 5 T5m3n6v5n316  (1.11)

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



1.4 Image Basics 15

If T is the n 3 n identity matrix I 5n3n6, then the input is unchanged: v r 5 v. More inter-
estingly, T may be defined appropriately to translate or rotate the image, perform bilinear 
interpolation, downsample, upsample, crop, or extend past the borders as needed. Other 
linear operations, such as convolution and the Fourier transform, can also be represented in 
this way, as we shall see later in the book.

1.4.4 Mathematical Prerequisites and Notation
To successfully master the material in this book, it is necessary to be at least somewhat 
familiar with three areas of mathematical study. First, it is important to be comfortable 
with the basic concepts of linear algebra, such as matrices, vectors, matrix multiplication, 
and solving linear systems. Secondly, it is helpful to have some familiarity with probability 
and statistics, so that you know what is meant by joint probability, conditional probability, 
or a probability distribution function (PDF). Finally, the work will be easier if you already 
have been exposed to signal processing, so that discrete signals, convolution, and the Fou-
rier transform are not entirely new concepts. Having said that, this book aims to ease the 
transition as much as possible by explaining concepts at an elementary level, so that having 
some deficiencies in these areas should not prevent anyone from progressing through the 
material and digesting most of it.

Because image processing and analysis are at the intersection of a number of different 
mathematical traditions, developing a clear and consistent notation is a challenge. The goal 
of this book has been to strike a balance between using notation that is internally consistent 
on the one hand, while at the same time maintaining consistency with existing conventions 
whenever possible. The result is the following set of notational conventions, which are 
used throughout the book almost everywhere. This list may not be interesting upon first 
reading, but you may find it helpful to refer to it from time to time as you progress through 
the book. On a few occasions these conventions are violated in order to adhere to existing 
widely established conventions, but the context should make the meaning clear wherever 
this occurs.

g, c Lowercase Latin or Greek characters indicate scalars
g, c  Lowercase Latin or Greek characters also indicate functions of one 

variable
G, C  Uppercase Latin or Greek characters indicate functions of more than one 

variable
A Uppercase calligraphic Latin characters indicate sets
g(x) Either the 1D function g evaluated at x, or the function g itself
G (x, y) Either the 2D function G evaluated at (x, y) or the function G itself
g 1 # 2   The function evaluated at some value, where the variable name is unim-

portant or obvious
G 1 # , # 2   The function evaluated at some pair of values, where the variable names 

are unimportant or obvious
g[x] Brackets indicate a discrete array indexed by nonnegative integers
g# , g$ First and second derivatives of function
a 5 b The variable a is equal to b
a ; b The variable a is defined to be equal to b
g, c Boldface lowercase Latin or Greek characters indicate vectors
G, C Boldface uppercase Latin or Greek characters indicate matrices
G 5 3gij 4 The ij th element of matrix G is given by gij
gT Transpose of vector g
FG Matrix multiplication
#   Central dot indicates ordinary multiplication (also used for divergence)
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: Colon means either a range, as in 1:10, or “such that,” as in 5x : x , 06
~ Asterisk with a circle indicates convolution
R, Rn, Rm3n  Set of real numbers, set of vectors of n real numbers, set of m 3 n real 

matrices
Z, Za:b  Set of integers, set of integers from a to b, inclusive
O 1 # 2  Big O notation for asymptotic running time of algorithms
* Asterisk indicates ordinary multiplication (only used in pseudocode)
w  Long equal sign indicates test for equality (pseudocode)
d  Assignment (pseudocode)
d1  Assignment with addition; same as 15 in C/C11/Java (pseudocode)
d2  Assignment with subtraction; same as 25 in C/C11/Java (pseudocode)

1.4.5 Programming
It has been said that a person does not really know anything until he or she is able to write 
it down. In a similar way, a person does not really understand an algorithm until he or she 
is able to implement it. Therefore, the best way to learn image processing and analysis is by 
programming real algorithms on real images. To aid the reader in this endeavor, this book 
provides detailed pseudocode for many of the algorithms presented. Although the pseudo-
code may not be very interesting upon first reading, you will likely find it indispensable 
when you desire to acquire a deeper understanding of any given technique by implementing 
it yourself. The pseudocode has been written to balance between precision on the one hand 
and readability on the other. If you are proficient at a programming language, it should not 
be difficult to translate the pseudocode into actual working code.

By far the most common language used in learning image processing and analysis is 
MATLAB, or its open-source alternative, Octave. MATLAB has a clean syntax, is very easy 
to use, is interpreted rather than compiled, and comes with built-in visualization capabilities, 
an editor, and a debugger. In industry, however, the need for efficient computation requires 
the use of a lower-level language like C or C11, for which the most widely used library 
is OpenCV. OpenCV has extensive capabilities for loading and displaying images, con-
necting to cameras, and performing basic operations, as well as advanced algorithms like 
face detection and camera calibration. OpenCV also has bindings to other languages such 
as Python and Java for more rapid prototyping. Other libraries include CImg, vxl, ImageJ, 
and dozens of others. More information about these tools and libraries can easily be found 
by searching online.

1.5 Looking Forward
With these basics under our belt, we are now ready to begin tackling the topics of image pro-
cessing and analysis. As we do so, one word of caution is in order. In other fields of study, 
we are accustomed to dealing with convergent problems. A convergent problem is one 
in which there is a single unique solution, and the more one studies the problem the more 
one learns about it. In contrast, as pointed out by a well-known economist [Schumacher, 
1973], a divergent problem has no correct solution, and the more it is studied the more 
the answers seem to contradict one another. Image analysis, and to a lesser extent image 
processing, are full of divergent problems for which there is not a single unique solution but 
rather a variety of different solutions, each with its own merits and shortcomings. Therefore, 
do not be surprised if, when faced with a particular problem, you try the leading algorithms, 
only to discover that they fail miserably and that a completely different (and oftentimes far 
simpler) approach outperforms them all in the particular context in which you are working. 
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This chapter has presented an overview of image pro-
cessing and analysis, along with their relationship to 
machine and computer vision. A variety of alternative 
overviews of one or more of these fields can be found 
in various textbooks. Burger and Burge [2008] provide 
an easy-to-read introduction to the field of image 
processing, while Gonzalez and Woods [2008] present 
a more detailed treatment of the subject. For computer 
vision, Shapiro and Stockman [2001] provide an intro-
duction, whereas Forsyth and Ponce [2012] cover the 
subject at an advanced level, and Szeliski [2010] pro-
vides a readable treatment with a helpful summary of 
the latest research. Machine vision is covered thor-
oughly by Davies [2005]. A combined treatment of the 
fields can be found in the introductory text of Umbaugh 
[2010] or the more comprehensive book of Sonka et al. 
[2008]. For more historical texts, the classic books of 
Rosenfeld and Kak [1982], Jain [1989], Pratt [1991], 
Jain et al. [1995], or Castleman [1995] on image pro-
cessing; or the classic works of Marr [1982], Ballard 
and Brown [1982], Horn [1986], or Nalwa [1993] on 

computer vision can be consulted. For learning about 
3D computer vision, Trucco and Verri [1998] provide 
an easy-to-read treatment, while Hartley and Zisserman 
[2003] is the definitive resource. A myriad of mono-
graphs or edited works on more specialized topics can 
also be found but are too numerous to list here.

The latest research can be found in a variety of con-
ferences and journals. The leading conferences in image 
processing are International Conference on Image 
Processing (ICIP) and International Conference on Pat-
tern Recognition (ICPR), while the leading journal is 
IEEE Transactions on Image Processing. The leading 
conferences in computer vision are Computer Vision 
and Pattern Recognition (CVPR), International Confer-
ence on Computer Vision (ICCV), and European Con-
ference on Computer Vision (ECCV), while the leading 
journals are IEEE Transactions on Pattern Analysis and 
Machine Intelligence (PAMI) and International Journal 
of Computer Vision (IJCV). The leading venues for medi-
cal imaging research are IEEE Transactions on Medical 
Imaging and Medical Image Analysis.

Image analysis is a young field, and the solutions are elusive. While progress will undoubt-
edly continue over the coming decades to produce practical systems that process imagery to 
provide useful information, this will happen by continually questioning existing techniques 
and exploring new ones. Therefore whether you are a student, researcher, or practitioner, 
put on your creativity cap and be ready to think outside the box and try new approaches. 
After all, image analysis is for the most part a bag of tricks, so feel free to select whatever 
tricks you find in the bag, as well as any new tricks you develop on your own, in order to 
solve the problems that you encounter.

1.6 Further Reading

PROBLEMS

1-1 Define image processing and image analysis.

1-2 Even though machine vision and computer vision are nearly synonymous, there are 
some subtle distinctions between them. List at least two of these differences.

1-3 Image analysis, as defined in this book, is very closely related to computer vision. 
What is the key difference?

1-4 Image processing, as defined in this book, produces an output image from an input 
image. What are the two primary purposes for such output images?

1-5 Another way to categorize the information in this book would be in terms of low-, 
mid-, and high-level vision. Explain how you would map image processing, image analysis, 
machine vision, and computer vision into these alternative categories.

1-6 List three basic image processing problems and three basic problems in image analysis.
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1-7 Skim the table of contents to identify at least one topic for each of the six basic prob-
lems mentioned in the previous question (list the chapter and/or section number for each, 
along with the title). Can you identify a topic that overlaps more than one basic problem? 
Can you identify a topic that does not fit into any of the basic categories?

1-8 Explain the statement, “Computer vision is the inverse of computer graphics.”

1-9 The three main problems in machine learning are unsupervised learning, supervised 
learning, and reinforcement learning. Relate any two of these to the main problems in image 
analysis.

1-10 Provide the make and model of an automobile that processes images from one or more 
cameras permanently mounted on the vehicle, and explain the purpose of the processing. 
Search the Web if needed.

1-11 Give an example of an application that you have used personally in the past month 
that involves image processing and/or analysis.

1-12 List three psychologists whose work has been influential in understanding the human 
visual system.

1-13 Give a real-world example of technology using each of the following fields: (a) pho-
togrammetry, (b) signal processing, (c) computer graphics, and (d) machine learning.

1-14 Search the Web for job openings in computer vision. List three jobs that you found, 
along with the qualifications needed to apply.

1-15 Suppose we have the following image: I 5 B4 5 2
1 3 8

R . Using the conventions of 

this book, what are the values of I(0, 1), I(1, 1), and I(2, 1)?

1-16 Suppose an image has 640 columns and 480 rows and is stored in row-major order. 
Convert the coordinates 1 x, y 2 5 1 38, 52 2 , (592, 241), and (33, 0) to 1D indices. Con-
versely, convert the following 1D indices to (x, y) coordinates: i 5 8092, 24061, and 38190.

1-17 Equations (1.3) – (1.5) apply to an image stored in row-major order. Write the equiva-
lent expressions to convert between 2D coordinates and 1D indices for an image stored in 
column-major order.

1-18 Suppose the following 1D array of bytes in memory stores a 2 3 2 color image (in 
blue-green-red order): 52, 68, 31, 133, 192, 88, 255, 208, 32, 233, 161, 25.

a. Assuming that the image is stored in interleaved format, convert to planar format. What 
are the RGB values of the pixel at location (1, 1)?

b. Assuming that the image is stored in planar format, convert to interleaved format. What 
are the RGB values of the pixel at location (0, 1)?

1-19 Suppose the following 1D array of bytes in memory stores 8 consecutive pixels of a 
binary image: 0, 0, 0, 255, 255, 0, 255, 0. Show how to store these pixels in a single packed 
byte.

1-20 For increased fidelity, medical images are often stored using more than 8 bits. Sup-
pose you needed to store a 12-bit-per-pixel grayscale image. Would you try to pack 3 pixels 
into 2 bytes to avoid wasted bits? Why or why not?

1-21 Convert the following grayscale image to set notation: B112 195   48
 97 203 125

R .
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1-22 Convert the following 3 3 2 binary image back to array notation: {(1, 0), (0, 1), (2, 1)}.

1-23 Consider the following 2D array, which has 3 columns and 2 rows: B167   30 245
  41 127  87

R .

a. If the array is an image I, what is the value of I(1, 1)?

b. If it is a matrix A, what is the value of a11?

c. In which case would you write the dimensions as 2 3 3? As 3 3 2?

1-24 List three mathematical prerequisites for studying the material in this book.

1-25 Explain the difference between a convergent problem and a divergent problem.

1-26 Briefly explain why computer vision is so difficult.

1-27 Download a software library (e.g., OpenCV), and write a program to load an image 
from a file and display it in a window.
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Before delving into specific techniques for image processing and analysis, in this chapter we consider some of the 
fundamental concepts of imaging. Because most of the images you will encounter will already be digitized, it is 
not necessary to understand all the details presented in this chapter before proceeding through the rest of the 

book. Nevertheless, familiarizing yourself at least somewhat with the material of this chapter will better prepare you 
to appreciate the subtle distinctions that you will encounter, as well as to make it easy to refer back to this chapter later 
as needed. This chapter provides a quick tour of natural vision systems, with particular attention paid to the human 
visual system. Afterwards we proceed to the topics of image formation and acquisition, such as the pinhole camera 
model, lenses, sampling, and quantization, which are followed by a survey of alternative imaging modalities. Finally, a 
detailed look at the electromagnetic spectrum is presented.

C H A P T E R 2
Fundamentals of Imaging

2.1 Vision in Nature
We begin with a tour of natural vision systems, starting with a single photoreceptor, followed 
by the human visual system, and finally the visual systems of various animals. Since image 
processing is concerned with producing a new image with improved visual quality over the 
original, having some knowledge of human visual perception is necessary, and understand-
ing how animals are able to achieve amazingly robust behavior with little computational 
power can yield inspiration for developing our own digital image analysis algorithms.
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2.1.1 A Single Photoreceptor
The miracle of vision starts with the amazingly complex system of a single photoreceptor, 
which is the most fundamental component of any natural vision system. When a single pho-
ton of light hits a single photoreceptor, it sets off a wonderfully complex chain of events that 
leads to the surprising ability to see. In a nutshell, the events are as follows. The absorption 
of a photon causes a change in shape of a small organic molecule called retinal. This change 
in shape, in turn, causes the larger protein (called rhodopsin) holding the retinal molecule to 
change shape and bind itself to another protein (transducin), which causes another molecule 
(GTP) to bind to it. This newfound combination then goes around cutting any instances of 
another type of molecule (cGMP) that it encounters, thus reducing its concentration. This 
reduction in concentration causes an ion channel to close, which then reduces the flow 
of positively charged sodium ions into the cell. The resulting imbalance of charge causes 
another channel to close, which reduces the concentration of calcium ions. Since calcium is 
required by the neurotransmitter, this reduced level of calcium causes the neurotransmitter 
to slow down, which therefore indicates to the next cell that a photon has been absorbed.† A 
set of enzymes then goes to work to restore the rhodopsin to its original shape, to resynthe-
size cGMP, to restore the concentration of sodium ions, and so forth, so that the process can 
begin all over again. As you can see, the complexity involved in even this most basic step 
of vision, that of sensing a single photon, is quite impressive. In fact, some scientists call 
such a system “irreducibly complex,” because if any one of the many components does not 
function properly, then the entire system fails, and the process of vision cannot even begin.

2.1.2 Human Visual System
Individual photoreceptors are more useful if they are, in turn, packaged into an even larger 
system. In this section we consider the human visual system.

Structure of the Eyes
As shown in Figure 2.1, the human eyeball is approximately spherical in shape, covered 
by a transparent layer (called the cornea) in front and an opaque layer (called the sclera, 
the white part of the eye) everywhere else. Light rays enter the eyeball through the cornea, 
where they are bent before they pass through the aqueous humor, where they are bent 
again. These rays then pass through the small aperture known as the pupil, whose size is 
controlled by muscles attached to the iris, the colored circular region surrounding the pupil 
whose circular boundary with the sclera is known as the limbus. From the pupil the rays are 
bent yet again by the lens, whose thickness is controlled by the ciliary muscle in a process 
known as accommodation. The lens provides only about a third of the refractive power 
of the eyeball, the rest being achieved by the cornea and aqueous humor. Nevertheless, the 
accommodation of the lens is needed to focus the light to form an image on the retina at the 
back of the eyeball. After absorbing a photon, the photoreceptors in the retina are nourished 
by the layer between the sclera and retina called the choroid.

The retina consists of two types of photoreceptors. The 100 million or so rods are 
sensitive to low levels of light and able to generate a detectable photocurrent from as little as 
a single photon. The 6 million or so cones respond to normal, everyday light levels at which 
the rods are saturated. Color vision is possible because of the three types of cones, namely 
L-, M-, and S-cones, which respond primarily to long-, middle-, and short-wavelength 

†  One of the ironies of vision (at least in vertebrates) is that in its resting state the neurotransmitter of a photorecep-
tor constantly emits a signal, so that it is actually the lack of a signal that indicates the absorption of a photon. That 
is, unlike most ordinary sensory receptors (including invertebrate photoreceptors), which become depolarized in 
response to a stimulus, vertebrate photoreceptors become hyperpolarized.
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22 Chapter 2 • Fundamentals of Imaging

light, respectively. Colloquially these are known as red, green, and blue cones, although 
in fact the peak sensitivity of the three types is closer to yellow, green, and violet, as 
shown in Figure 2.2. Rods contain a protein called rhodopsin, while cones contain three 
different proteins called photopsins. According to the property of univariance, when 
a photopigment absorbs a photon of light, it generates the same response no matter the 
wavelength of the photon. That is, although a photoreceptor is more sensitive to some 
wavelengths than others and therefore is more likely to absorb some wavelengths than 
others, once the photon is absorbed, all information about the wavelength is lost. It is for 
this reason that different types of cones are needed for color vision.

The rods and cones are not distributed equally throughout the retina. As shown in 
Figure 2.3, no photoreceptors are present in the optic disc, also known as the blind spot. 
Otherwise, cones exist throughout the retina but are concentrated more heavily in the fovea, 
the central pit responsible for the greatest visual acuity. The fovea is within the macula 
lutea, the highly pigmented yellow spot near the center of the retina that absorbs harmful 
ultraviolet light to protect the retina. In the fovea, the cones are tightly packed to form a 
regular sampling array, with the centers of adjacent cells spaced approximately 2.5 mm, 
which is about the same as the spacing between pixels on a typical camera sensor. The 
fovea senses only about 5° of the visual field, which is slightly more than the width of both 

Figure 2.1 Cross section of 
the human eyeball.
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Figure 2.2 Relative sensitivity of the S-, M-, 
and L-cones of the human visual system to 
different wavelengths. These functions are 
also known as the cone fundamentals. Based 
on data from http://www.cvrl.org.
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your thumb joints when held together at arm’s length. The fovea is responsible for detailed 
pattern recognition, which can be demonstrated by attempting to read a book while fixating 
on two fingers covering the page; while you will have a general sense from your periphery 
that there are words on the page, it will be nearly impossible to recognize them. The cen-
tral portion of the fovea, known as the foveola, is one-fifth the size of the fovea, or 1° of 
the visual field, covering approximately the width of the nail of your index finger at arm’s 
length. No rods exist in the foveola, which explains why to view a faint star at night it is 
better to look slightly away from it, so that light from the star falls on the rods rather than 
on the cones. Except for the blind spot and foveola, rods are present throughout the retina, 
reaching their highest density about 20 degrees from the center.

In the fovea, S-cones account for approximately 6% of the cones, as shown in Figure 2.4, 
although like rods they are completely absent from the foveola. The increased spacing 
between S-cones (compared with M- and L- cones) matches the increased blurring of 
short wavelengths (compared with the blurring of longer wavelengths) due to chromatic 
aberration in the lens. The ratio of the number of M- to L-cones is highly variable among 
individuals, making it difficult to distinguish between the roles of these two types of cones. 
It is important to note that, even though the S-cones are less numerous in the retina, they 
are more sensitive to light than are L- and M-cones. As a result, it would be wrong to 
conclude that short wavelengths are less important, because in fact humans are able to 
distinguish between different shades of blue as well as they are between different shades 
of other colors.

Figure 2.3 Distribution 
of cones and rods in the 
retina. Based on B. A. 
Wandell. Foundations of 
Vision. Sunderland, Mass., 
Sinauer Associates, Inc., 
1995. 
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Figure 2.4 An actual photoreceptor mosaic, 1.25° from 
the center, pseudocolored to show the different types of 
cones: L (red), M (green), S (blue). From Hofer et al. [2005].
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Light does not land directly on the rods or cones but instead first passes through a layer of 
cells, the details of which are examined below. Such an arrangement is called an inverted 
retina. While at first glance this approach appears counterintuitive, there is in fact a good 
reason for this design. An inverted retina is needed so that the retinal pigment epithelium 
(RPE), which is attached to the choroid, is able to replenish the damaged photoreceptors. 
Since the RPE is opaque, if the retina were not inverted then the RPE would have to be in 
front of the photoreceptors, which would block the light and make it impossible for us to 
see at all. Moreover, in the fovea the cones are elongated, so that light falls directly on the 
cones without passing through other cells in the central portion of the retina, and hence the 
inverted retina does not have much effect on the detailed, central vision anyway. And even 
in the periphery where the light passes through additional cells, these cells are for the most 
part transparent.

Each of the two eyeballs is approximately 24 mm in diameter, and the spacing between 
them (called the interpupillary distance, or IPD) is approximately 60 to 70 mm. When 
a person views a point in the scene, the eyes are said to be fixated on the point, and the 
horizontal angle between the axes of the eyes is known as the vergence angle. The point 
of fixation projects onto the retina at the same location (that is, directly in the center of 

Figure 2.5 Retinal disparity is defined as the distance between corresponding points on the two retinas, after the retinas have been 
overlaid on top of one another and rotated so that their optical axes are coincident. Based on B. A. Wandell. Foundations of Vision. 
Sunderland, Mass., Sinauer Associates, Inc., 1995.
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the fovea) in both eyes. For all other points in the scene, the light rays project onto dif-
ferent locations on each retina depending on their location in the scene. The lateral shift 
between these locations is known as the disparity of the point. The locus of points in the 
scene that yield zero disparity is known as the horopter, and the theoretical horopter is 
the Vieth-Müller circle, which passes through the two lens centers and the fixation point, 
as shown in Figure 2.5. Because the disparity is related to the distance (or depth) to the 
point, computing the disparity is a key step toward determining the distance to a point, 
and hence to 3D perception. Stereo vision involves establishing correspondence between 
grayscale patterns in the two images to determine the depth to each point in the scene. 
The resulting fused image is known as a Cyclopean image (after the famous one-eyed 
mythical Greek monster), because the fused image almost seems to result from an addi-
tional sensor in the center of the head. Only points within a small area, known as Panum’s 
fusional area,† around the fixation point are fused into the Cyclopean image.‡ Outside 
this area the brain retains both images, a situation known as diplopia (“double vision”). 
To experience these phenomena, hold your finger in front of your face while focusing on 
the finger, and you will see one 3D finger that is fused from both images (the Cyclopean 
image); then without moving your finger focus on the scene in the distance, and you will 
see two fingers (diplopia).

Because of the fovea, your eyes do not look at a scene by staring at one spot for a 
long period of time. Instead, they jump erratically from one spot to another to allow high-
resolution imaging of various parts of the scene in order to build a full 3D mental picture. 
For example, as you read this page, your eyes are not fixating on a single point, nor are 
they moving with a continuous motion. Rather they jump from one word to another, giving 
your brain enough time to read the word (and surrounding text) and move on. These rapid 
movements are called saccades,§  and they are the fastest movements made by the human 
body. When a person looks at a photograph, for example, these saccades cause the person’s 
eye to jump from one location to another; the path of these movements is known as a scan 
path, an example of which is shown in Figure 2.6.

The Visual Pathway
Once light has been captured by the photoreceptors (rods and cones), the information is 
processed and transmitted via neurons, or nerve cells. A neuron contains many dendrites 
(inputs) and one axon (output). The outputs from many neurons are tied to the inputs of 
other neurons via connections known as synapses to form a neural network. As shown in 

† Section 13.2.1 (p. 625). 
‡ The Cyclopean image, along with Cyclopean coordinates, is covered in Chapter 13.
§ Pronounced seh-KAHD.

Figure 2.6 A scan path records the path traversed 
by a person when viewing a photograph, shown 
is a scan path of a photograph, showing that the 
viewer focused primarily upon the facial features 
and objects of interest, in order to build a complete 
mental model. 
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Figure 2.7, the photoreceptors connect directly to the inputs of either rod or cone bipolar 
cells, whose outputs then connect to the inputs of the ganglion cells. All visual signals 
must pass through these cells, since the outputs of the ganglion cells actually form the optic 
nerve, which exits the retina at the optic disc. An indirect pathway is also present due to the 
horizontal cells, which are connected to the receptors, as well as amacrine cells, which 
are connected to the bipolar and ganglion cells — neither has an identifiable axon.

Human vision is foveated, with the rods and surrounding cones contributing to the 
ambient (peripheral) component of vision that senses motion and continuity, while the 
cones in the fovea contribute to the focal (foveal) component of vision used to recognize 
detailed patterns such as text or faces. The ratio of rods to ganglion cells is approximately 
100:1 (“100 to 1”), meaning that the information from the rods is greatly compressed and 
aggregated. For this reason, rods do not provide good spatial acuity but instead trade high 
acuity for a high signal-to-noise ratio. On the other hand, the ratio of cones to ganglion 
cells, in the fovea at least, is 1:3, meaning that information from one cell maps to multiple 
ganglion cells. It is for this reason that foveal cones provide high spatial acuity.

The optic nerve (composed of the axons of the ganglion cells) causes the 5-degree-wide 
blind spot at the optic disc from 15 to 20 degrees from the center, on the side of the nose. 
At the optic chiasm the optic nerve splits: One half of the bundle goes to the left, while the 

Figure 2.7 After a 
photoreceptor absorbs a 
photon, the information is 
passed through several layers 
of cells before exiting via the 
optic nerve. Surprisingly, the 
light passes through these 
same layers of cells before 
landing on the photoreceptors.
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other half goes right, both terminating in the lateral geniculate nucleus (LGN). A com-
mon myth is that the left half of your brain processes data from your right eye, while the 
right half processes data from your left eye. In reality, the left half of your brain processes 
data from the right half of your visual field (containing information from the left half of 
both retinas), while the right half of your brain processes data from the left half of your 
visual field (containing information from the right half of both retinas). This is necessary 
for binocular stereo processing, so that the brain has access to information from both eyes 
in order to establish correspondence for disparity computation. Nevertheless, processing 
in the LGN is primarily monocular, with binocular processing reserved for the next step.

Information passes from the LGN to the visual cortex, which is at the rear of the brain. 
The visual cortex is composed of several different stages, called V1 through V5. Area V1 
is also known as the primary visual cortex, or striate cortex, while V5 is known as MT 
(middle temporal). Early cells in V1 are essentially locally tuned Gabor filters† that extract 
spatiotemporal features such as spatial frequency, orientation, temporal frequency, and 
motion direction. Beyond this, the actual inner workings of the visual cortex are largely a 
mystery. The currently accepted theory is that there are two streams of processing, namely, 
the dorsal stream, whose purpose is to analyze motion, locations of objects, and tracking, 
and the ventral stream, which is responsible for object recognition and representation. 
These streams are known as the “where pathway” and the “what pathway,” respectively.

Human Visual Perception
The human visual system can respond to levels of light ranging an astounding 14 orders of 
magnitude.‡ The eye, however, cannot process this entire dynamic range simultaneously but 
instead adapts using the different types of photoreceptors and by adjusting the size of the 
pupil. As shown in Figure 2.8, at low light levels the rods dominate, and the resulting mono-
chromatic vision in these conditions is known as scotopic vision, from the Greek word for 
“darkness.” At normal to higher light levels, the rods become saturated so that their responses 
are not meaningful, and the cones take over. The resulting color vision is known as photopic 
vision, from the Greek word for “light.” In between, there is a small range when both rods and 
cones respond, known as mesopic vision. It may be helpful to think of these three types of 
vision as being applicable, respectively, to starlight, sunlight, and moonlight, but keep in mind 
that photopic vision also includes most normal viewing conditions, such as indoor lighting.

† Gabor filters are covered in Section 6.6.7 (p. 321).
‡  To get a sense of the enormity of this range, imagine a device that could measure distance not only in kilometers 

but also in nanometers!

Figure 2.8 Scotopic, 
mesopic, and photopic 
vision at different light 
levels. While the human 
visual system is capable 
of sensing light in 
approximately a range of 
1014 overall (from 1026 
to 108 cd/m2), light can be 
sensed in a range of 103,  
at any particular state of 
adaptation.
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The luminous efficiency function (LEF) captures the relative sensitivity of the visual 
system to different wavelengths. As shown in Figure 2.9, the photopic LEF corresponds to 
normal light levels where the cones dominate due to the saturation of the rods, while the sco-
topic LEF corresponds to low light levels where the rods dominate due to the lack of sensitiv-
ity of the cones. The difference in peak wavelength is called the Purkinje effect and explains 
why objects appear to have a more bluish tint as the light dims. Not surprisingly, the scotopic 
LEF closely matches the rod spectral sensitivity function (SSF),† and the photopic LEF can 
be well approximated as a weighted combination of the cone  fundamentals of Figure 2.2.

At a particular state of adaptation, human vision can discern luminances across a range 
of about 1000 to 1, depending on conditions. A good monitor can reproduce luminances in 
a range of about 500 to 1, while a range of only 100 to 1 is possible from the reflectance 
of paper. If two different shades of gray are placed adjacent to one another, a person can 
discern the difference between them if their luminances differ by approximately at least 
1%, which is called the just-noticeable difference (JND); otherwise, their brightness is 
perceived to be the same. While this number is a helpful rule of thumb, it is important to 
keep in mind that it is only a rough approximation to the actual behavior, which is quite 
complex depending upon spatial frequency, temporal frequency, and overall light intensity.

The visual receptive field of a neuron is the retinal area in which light influences the 
neuron’s response. The receptive fields of neurons in the visual cortex are optimized for 
extracting efficient information using sparse coding constraints, where the learned recep-
tive fields arise from exposure to natural images. These neurons, like Gabor filters, perform 
local spatial frequency analysis to form edge and line detectors that respond to luminance 
information in the proper orientation and polarity. Unlike photoreceptors, which respond to 
absolute levels of light intensity, these later neurons produce outputs that are independent of 
the overall level because they respond to contrast (or change in light), in a process known 
as lateral inhibition. Similarly, the retinal ganglion cells exhibit center-surround receptive 
fields, in the shape of the Laplacian of Gaussian.‡

2.1.3 Animal Vision
In addition to the human visual system, nature provides us with an astonishing array of 
diverse vision systems. Studying such systems provides us with a fresh dose of humility 
when we learn how effortless it is for a simple low-level animal with very little processing 

† SSFs are covered in Section 9.2.1 (p. 405).

Figure 2.9 Photopic and scotopic 
luminous efficiency functions 
(LEFs). Based on data from  
http://www.cvrl.org.
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‡ The Laplacian of Gaussian is covered in detail in Section 5.4.1 (p. 242).
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power to robustly extract information from an image when we find it difficult to do the same 
even with powerful latest-generation computers. Studying such systems can also provide us 
with confidence that the particular problem that we are addressing can, in fact, be solved, 
if an existing animal demonstrates that particular capability. As a result, such systems can 
provide inspiration for designing artificial machines. This imitation of natural systems, 
known as biomimicry (or biomimetics), is an important approach to discovering novel 
solutions in both software and hardware. 

One example is the common housefly, which—like other insects—has compound eyes, as 
shown in Figure 2.10. In a compound eye, the photoreceptors are arranged in small groups 
called ommatidia. Each ommatidium views the world from a different direction, yielding a 
mosaic of images providing a fairly low-resolution representation of the scene. Even so, the fly 
has the fastest visual response in the animal kingdom, which is achieved by the photoreceptors 
physically contracting a tiny amount in response to light. Such mechanical response, in contrast 
to the chemical response of our own visual system, is extremely fast, and it is one of the reasons 
that the fly has the most maneuverable flight system. Flies maneuver by detecting optic flow, 
which is the relative motion of the surrounding environment projected onto the eye, thus inspir-
ing flying robotic systems that weigh just a few grams and can avoid obstacles using optic flow 
algorithms embedded on a tiny vision chip. Note that the ability of a fly to land effortlessly on 
a seemingly untextured surface proves that texture is always present in the world.

If the housefly wins the award for the fastest visual response, the hawk (and other raptors) 
wins for the highest visual acuity. A hawk, shown in Figure 2.11, can see a rabbit from a 
mile away, which is about 8 times better than human vision. With today’s aerial imagery, 
satellite images, and megapixel video cameras, similarly impressive resolutions are possible. 
Tigers and other cats also have excellent eyesight. Like most predators, their eyes are in 

Figure 2.10 The common 
housefly has the fastest 
visual response of any 
animal, leading to extreme 
maneuverability in flight. 
Tiny flying robots (such 
as this one from Centeye) 
have been inspired to 
mimic the housefly’s 
navigation ability based 
on optic flow.

Figure 2.11 Raptors, 
such as this hawk, have 
the highest visual acuity 
of any animal. Megapixel 
video cameras with 
similar ability are now 
commercially available. 
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front of their head, as shown in Figure 2.12; this overlap in the visual field of the two eyes 
enables the predator to estimate the distance to its target by means of stereo vision. The 
defenseless rabbit, on the other hand, has two eyes on the sides of its head, with very little 
overlap in their fields of view. While this makes the rabbit unable to perceive depth from 
stereo vision, it gives the creature a much wider field of view overall, thus enabling it to 
perceive when it is being threatened by a predator.

Sometimes the best way to extract useful information from light is to filter special wave-
lengths. Pit vipers, for example, have a heat-sensing pit organ between each eye and nostril 
to detect infrared light, as shown in Figure 2.13. Modern forward-looking infrared (FLIR) 
cameras also detect heat, making it much easier to find people or machinery in all weather 
conditions. At the other end of the spectrum, bees use ultraviolet filters to help them see 
their target when pollinating flowers, as shown in Figure 2.14. Since many flowers have 
low reflectance of ultraviolet light near the center, these filters simplify the detection of the 
flower center, providing a convenient natural landing pattern for the creature. Similarly, 
most birds can see four different color bands, similar to modern multispectral imaging 
equipment used for applications ranging from astronomy to medicine.

The mantis shrimp, shown in Figure 2.15, has arguably the most sophisticated eye in 
the animal kingdom. It can see 12 color dimensions (roughly half of the bands for visible 
light and half for ultraviolet). It has 4 filters to tune the pigments, it sees several planes of 
polarized light, and it can distinguish between left and right circularly polarized light. It 

Figure 2.12  
Predators such 
as this tiger have 
two eyes facing 
forward, so that 
it can estimate 
the distance to its 
intended prey via 
stereo vision. Prey 
such as this rabbit 
have eyes on the 
sides of the head, 
providing a much 
wider field of view 
to detect danger. 
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Figure 2.13 The loreal pit 
between the eye and nostril 
on a pit viper leads to an 
organ that detects heat via 
infrared light. Forward-looking 
infrared (FLIR) cameras detect 
warm bodies by examining 
the infrared portion of the 
spectrum, as seen in this 
thermal image. 
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2.1 Vision in Nature 31

can even convert linearly polarized light into circularly polarized light. The most surprising 
aspect of the shrimp is that it lives in the ocean at depths of 40 meters, where light is only 
a dim, filtered blue. The purpose of this fancy vision system, then, is not to detect the sur-
roundings so much as it is for communication: The shrimp communicate with each other by 
fluorescing their spots. Similarly, cephalopods such as squid, octopus, and cuttlefish have 
tiny hairlike membranes (called microvilli) in their photoreceptor cells that are oriented per-
pendicular to one another, enabling the animals to detect differences in polarized light, and 
they are able to produce polarized light patterns on their skin as a means of communication.

One of the most unique eyes is that of the lobster, shown in Figure 2.16. The eye of the 
lobster (as well as other long-bodied decapods) focuses not by refraction but by reflection. That 
is, instead of using a lens, light is focused using a honeycomb-like arrangement of mirror-lined 
tubes. These tiny facets are perfectly square and from a distance look like tiny graph paper. 
These square tubes are on a spherical surface, with flat shiny mirrors on the sides of the tubes. 
This precise geometrical arrangement allows the eye to focus parallel light rays from any direc-
tion. This principle is the inspiration behind a new generation of astronomical telescope that 
focuses X-rays using reflection, since no practical lens can focus such high-frequency waves.

The eyes of extinct trilobites have the amazing property that their calcite lenses are 
shaped almost exactly as needed to minimize lens aberration, as shown in Figure 2.17. 
In the 17th century, two different lens designs were developed by Descartes† 

†  René Descartes (DAY-cart) (1596–1650) was not only an influential figure in mathematics but also the father 
of modern philosophy, credited with the well-known saying, “I think therefore I am.” The Cartesian coordinate 
system is named after him.

Figure 2.14 Bees have 
ultraviolet filters enabling 
them to detect the flower 
center, which is helpful for 
pollinization. The middle 
image shows the flower 
(left) as it appears to a bee. 
Ultraviolet cameras are also 
used to detect heavenly 
bodies, such as the sun (right). 

Figure 2.15 The mantis shrimp has 
arguably the most sophisticated 
eye of all, which can detect 11 
different color bands and has 
sophisticated machinery to deal 
with polarized light. 
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and Huygens† according to optical principles to minimize lens aberration. As it turns out, 
the lenses of trilobites form an internal doublet structure that follows one or the other of 
these designs, depending upon the type of trilobite.

Other creatures that have unusual eyes are shown in Figure 2.18. The brittle star secretes 
calcite crystals that form microlenses, so its whole body is composed of little eyes. Simi-
larly, the scallop contains an array of eyes around its opening. The nautilus eye is unique 
in that it has no lens at all and therefore cannot focus light. The jumping spider has eight 
eyes in total: The two largest eyes in the front and center have four retinas stacked in layers, 
allowing the spider to judge distance by a technique called depth from defocus; the smaller 
eyes are called ocelli and feed into a distinct visual pathway. Other creatures, such as certain 
lizards and frogs, have an extra third eye called a parietal eye that contains a small lens and 
retina between their primary two eyes.

2.2 Image Formation
We now consider the process by which an image is formed on the surface of a sensor, focus-
ing our attention primarily upon the case of standard optical cameras capturing visible light; 
alternative imaging systems are discussed in a later section.

†  Christiaan Huygens (HIGH-guns) (1629–1695) was an influential Dutch mathematician and scientist who dis-
covered Saturn’s rings as well as its first moon.

Figure 2.16 The lobster 
eye focuses by reflection, 
not refraction, and is the 
inspiration for a new 
generation of telescope. Based 
on Denton, M.J., Nature’s 
Destiny: How the Laws of 
Biology Reveal Purpose in the 
Universe, ch. 15, The Free Press, 
New York/London, 1998

Reflector
units

Retina

Figure 2.17 The doublet 
structure of the trilobite 
lens follows the shape 
necessary to minimize lens 
aberration. Depending 
upon the type of trilobite, 
this shape is essentially 
identical to those deduced 
by Descartes and Huygens 
using the geometrical 
principles of optics. Based 
on E. N. K. Clarkson and 
R. Levi-Setti. Trilobite eyes 
and the optics of Descartes 
and Huygens. Nature 254: 
663-667, 1975.
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2.2 Image Formation 33

2.2.1 Light and the Electromagnetic Spectrum
From basic physics you may recall that light is an electromagnetic wave traveling through 
space. The wavelength l (measured in meters) of such a wave is the distance between 
successive peaks in the sinusoid, while the frequency n (measured in hertz) is inversely 
related to the wavelength. That is, l times n is the speed† of light in the medium. Visible 
light ranges in wavelength from about 380 nm to about 720 nm, or equivalently, 0.38 mm 
to 0.72 mm. A nanometer is one billionth of a meter, or 1029 5 .000000001 meters, so the 
wavelength of visible light is about a hundred times smaller than the diameter of a human 
hair, as shown in Figure 2.19. These short wavelengths explain why vision systems are able 
to achieve such accurate measurements of the world.

† Technically the phase velocity.

Figure 2.19 The 
wavelength of visible 
light is about 1/100th the 
diameter of a human hair. 

Figure 2.18 TOP: The 
entire body of the brittle 
star (left) is covered with 
little eyes (middle). The 
scallop (right) has eyes 
all around its opening. 
BOTTOM: The nautilus eye 
(left) has no lens and 
therefore cannot produce 
a focused image. The 
jumping spider (middle) 
has extra little eyes called 
ocelli. Creatures such as 
this frog (right) contain a 
third light-sensitive spot 
(the tiny blue dot) called 
a parietal eye between 
the two main eyes. 
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The visible spectrum is a tiny part of the entire electromagnetic spectrum, depicted in 
Figure 2.20. Since the color violet has the highest frequency (shortest wavelength) among 
visible light, waves with slightly higher frequency than that of violet are called “beyond vio-
let,” or ultraviolet (UV). Beyond ultraviolet light are X-rays and gamma rays. At moderate 
to high frequencies, an electromagnetic wave can alternatively be viewed as a stream of par-
ticles called photons, where a photon is a single quantum of light containing an amount of 
energy that is proportional to the frequency. This is known as the theory of wave-particle 
duality. The amount of energy in a photon is given by h times n, where the proportionality 
factor h < 6.626 3 10234 watts seconds squared 1W #  s2 2   is Planck’s constant.† The fact 
that energy increases with frequency means that a high-frequency photon contains much 
more energy than a visible light photon, which explains why X-rays and gamma rays are 
so dangerous.

On the other end of the visible spectrum, light whose frequency is slightly lower (wave-
length slightly longer) than that of red is known as being “below red,” or infrared (IR). 
Roughly speaking, three types of infrared light can be distinguished. Near infrared (NIR) 
light consists of wavelengths only slightly longer than that of visible light. Such light is 
prevalent in sunlight as well as indoor light sources, motivating camera manufacturers to 
insert filters on the inside of consumer cameras to reduce the influence of these wavelengths. 
At the same time, night vision is made possible by shining invisible near infrared light on 
the scene and removing the infrared filter from the camera to increase its sensitivity to this 
range of wavelengths, even when the scene appears to the unaided human eye to be dark. 
Mid infrared (MIR) light, also known as thermal infrared, has much longer wavelengths 
than visible light. Thermal infrared cameras do not require any artificial illumination but 
instead sense the electromagnetic radiation emitted by objects in the scene. Such cameras 
are typically expensive due to their need to cool the electronics to avoid confusing these 
thermal emissions with those of the device itself. Far infrared (FIR) light is used primar-
ily in astronomical applications. Beyond infrared, the electromagnetic spectrum contains 
microwaves (used in radar), and radio waves.

2.2.2 Plenoptic Function
Whenever light is present in a scene, the light rays bounce around the environment in a 
complicated manner as they repeatedly reflect off the surfaces in the scene. These rays carry 
all the information necessary to form an image of the scene at any point in space. Imagine, 

† Max Planck (1858–1947) revolutionized science with his proposal of quantum theory.

Figure 2.20 The 
electromagnetic 
spectrum consists of 
gamma rays and X-rays 
at one end, and radio 
waves and microwaves 
at the other end. The 
visible spectrum is 
between about 380 
and 720 nm. 
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2.2 Image Formation 35

for example, standing in a well-lit room full of various objects and looking at an empty 
area of one of the walls. At each point on the wall, rays of light that have interacted with 
surface points throughout the scene impinge the wall, so that there is enough information 
in that bundle of rays to produce a sharp, well-focused image of the room. In fact, there is 
enough information to produce many sharp, well-focused images of the room, each from a 
different point of view. However, the reason you will not see an image on the wall is because 
what you are looking at is the sum of all those images. Or, stated another way, an image is 
displayed on the wall, but it is so extremely defocused that it is unrecognizable.

The many bundles of light rays in the room are modeled by the plenoptic function. 
The plenoptic function (the prefix plen- comes from the Greek word meaning “complete”) 
specifies the radiance† along all light rays in a region of space, that is, along all light rays 
passing all locations (x, y, z) in all directions 1 u, f 2 , where u and f are two angles that 
uniquely specify the direction of a ray in 3D space. In other words, the plenoptic function 
models all images of the scene that could be taken if a camera were placed at any possible 
viewing position and any viewing angle. The plenoptic function is typically considered to 
be five-dimensional (5D) but could be extended by including other parameters, such as time, 
wavelength, polarization, or instantaneous phase, if desired.

In an area of free space, the values in the 5D plenoptic function are not independent of 
one another. Radiance is a measure of the energy along a ray of light, and radiance is defined 
so that its value does not change along a ray traveling through free space. As a result, the 
plenoptic function is equal if evaluated at any two location-directions 1 x1, y1, z1, u, f 2  
and 1 x2, y2, z2, u, f 2  such that the ray along the direction 1 u, f 2  passes through the two 
points 1 x1, y1, z1 2  and 1 x2, y2, z2 2  unimpeded. This observation motivates the definition 
of the light field, which is a 4D version of the plenoptic function in free space. The most 
common parameterization of the light field, called the light slab representation, uses two 
points 1 x1, y1 2  and 1 x2, y2 2 , each on a different parallel plane, which can be thought of as 
the collection of perspective images of one plane from a point on the other plane, as shown 
in Figure 2.21.

2.2.3 Pinhole Camera
To form a recognizable image, the light rays must be constrained somehow. One way to 
do this is to construct an empty, opaque box that is so tight that no light can enter the box. 
Then, a small hole the size of a pin is pierced into one side of the box,which allows light 
to enter the box only through the hole. The hole is called a pinhole, and the camera is 
therefore called a pinhole camera. A pinhole camera will cause a faint image to be pro-
jected onto the inner wall of the box opposite the pinhole, as shown in Figure 2.22. The 
image, however, is trapped inside the box. To view the image, one must either replace the 

†  The term radiance is precisely defined later in the chapter, but it basically refers to the amount of energy in a 
light ray.

Figure 2.21 The light field is a 
4-dimensional function of the 
radiance over position and direction. 
Shown is the light slab representation 
of the light field, in which each ray 
of light passes through two parallel 
planes. 

L (x1, y1, x2, y2)
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(x2, y2)
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side of the box with a translucent material and drape a dark cloth over the viewer (an early 
primitive type of camera called the camera obscura, which literally means, “dark room”), 
or the inner wall must be lined with a photosensitive material in order to capture the image 
for viewing at a later time. Either way, the pinhole camera can be thought of as a way of 
sampling the plenoptic function at the 3D location of the pinhole, allowing the light rays 
at all angles u and f to uniquely determine the image formed, subject only to the field of 
view of the camera.

Geometrically, an ideal pinhole camera consists of a point and (typically) a plane. 
The point, known as the focal point, is the pinhole through which all rays of light pass. 
The plane, known as the image plane, is the sensor surface on which the image is 
formed. The line through the focal point perpendicular to the image plane is known as 
the optical axis, and the distance from the focal point to the image plane along this line 
is the focal length.

A pinhole camera forms images via perspective projection: Light rays from the source 
reflect off the surface of an object in the scene, travel through the focal point (also called 
the center of projection), then land on the image plane. Consider a right-hand coordinate 
system so that its origin is the focal point, the positive z axis points toward the world along 
the optical axis, and the y axis points vertically, parallel to the columns of the image, as 
shown in Figure 2.23. If we let 1 xw, yw, zw 2  be the 3D coordinates of the world point, and 
(x, y) the 2D coordinates of its projection onto the image, it is easy to see from the figure 
that the two triangles in the y-z plane are similar because their angles are equivalent, lead-
ing us to conclude from what we know about similar triangles that the ratios of the lengths 
of their sides are equal: y/f 5 yw/zw, where f is the focal length and zw is the depth of the 
point (i.e., distance to the point from the focal point). By symmetry, in the x-z plane we 
have x/f 5 xw/zw. Rearranging yields the coordinates of the point where the imaging ray 
lands on the image plane:

 x 5 f 
x w

z w
 (2.1)

 y 5 f 
yw

z w
 (2.2)

Although in reality the image is upside down, these equations exactly describe the right-
side up image that would be created on a virtual image plane at a distance of f in front of 
the focal point, rather than at a distance of f behind it. This mathematical trick not only 

Figure 2.22 In a pinhole 
camera, light rays pass 
through the tiny aperture 
and form an upside-down 
image on the opposite wall. 
A camera obscura was an 
early form of pinhole camera 
in which light rays pass 
through the small aperture, 
reflect off the mirror, and 
form an image on the top 
horizontal surface near the 
rear of the enclosed box. 
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2.2 Image Formation 37

simplifies the equations by obviating any need for a minus sign but also makes it easier to 
visualize the imaging process by removing any need to imagine the image upside down. 
Notice that perspective projection involves a loss of dimension in going from 3D to 2D: 
Since any point in space along the light ray will project to the same point on the image 
plane, it is impossible to recover the third dimension (distance from the camera) without 
additional information.

Orthographic projection occurs when all the light rays are parallel to the image plane. 
In that case the nonlinear equations above become linear: x 5 xw, y 5 yw. Orthographic pro-
jection is an approximation of perspective projection in the unlikely scenario that the scene 
being viewed is far from the camera, close to the optical axis, and no bigger than the cam-
era’s sensor in size. A more realistic approximation is scaled orthographic  projection, 
which is orthographic projection with a single uniform scaling factor. It is easy to see that 
if the objects in the scene vary little in depth relative to their distance from the camera, then 
the distance zw to all points in the scene can be approximated with a constant z0, leading to

 x 5 f 
x w

z w
< a x w  (2.3)

 y 5 f 
yw

z w
< a y w, (2.4)

where a ; f/z 0 is the scaling factor. Like orthographic projection, scaled orthographic pro-
jection is linear. Scaled orthographic projection of a scene is mathematically equivalent to 
the orthographic projection of the scene onto a plane parallel to the image plane, followed 
by perspective projection of all the points in that plane, where this last step is simply a 
 uniform scaling, as shown in Figure 2.24. Scaled orthographic projection, also known as 
weak perspective projection,† is a reasonable approximation when either the depth 
varies little over the scene or the scene lies close to the optical axis. These two sufficient 

† Some authors distinguish weak perspective from scaled orthographic by allowing nonuniform scaling in the former.

Figure 2.23 Perspective 
projection caused by a pinhole 
camera, showing the focal 
point (pinhole), image plane, 
focal length, and optical axis. 
The light rays emitted by 
the light source reflect off 
the surface in the world and 
pass through the aperture to 
form an upside-down image 
on the image plane. This is 
mathematically equivalent 
to producing a rightside-up 
image on the virtual image 
plane in front of the focal point. 
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conditions are interrelated: An object near the optical axis may vary more in depth, while 
an object far from the optical axis must vary less in depth to achieve the same amount of 
error in approximation due to the simplified imaging model. Note that a long focal length 
restricts the field of view, causing the image to be formed by light rays that are nearly 
parallel to one another and hence ensuring that all visible objects are close to the optical 
axis. For this reason scaled orthographic projection is a good approximation when view-
ing distant objects with a zoom lens, as long as the camera remains at a roughly constant 
distance from the scene over time.

Affine projection is a generalization of scaled orthographic projection in which the 
light rays remain parallel to each other but are not required to be parallel to the optical axis. 
A special case of affine projection is paraperspective projection, in which light rays are 
projected in parallel along the direction from the focal point to the centroid of the object 
of interest onto a plane parallel to the image plane. The points on this plane then undergo 
perspective projection, which is mathematically equivalent to uniform scaling since the 
planes are parallel.

2.2.4 Camera with Lens
The ideal pinhole model remains important because even real cameras with lenses are 
well modeled mathematically as pinhole cameras, once the distortions due to the lens are 
accounted for. However, pinhole cameras themselves are not very practical because the 

Figure 2.24 Perspective, 
weak perspective (scaled 
orthographic), and 
paraperspective projection 
models. Based on V. S. Nalwa. 
A Guided Tour of Computer 
Vision. Reading, MA: Addison-
Wesley, 1993; S. E. Palmer. 
Vision Science: Photons to 
Phenomenology. Cambridge, 
Mass.: The MIT Press, 1999.
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2.2 Image Formation 39

tiny hole does not let in much light. Although it is possible to build a real pinhole camera 
that works, such a camera must be allowed to remain unmoved for several minutes in 
front of a perfectly static scene in order to gather enough photons for a quality image to 
be formed.

To build a more practical imaging device, the pinhole is replaced with a lens. A simplified 
lens consists of two spherical surfaces joined so that the centers of the spheres are collinear 
with the centers of the surfaces. Such a spherical lens has three basic parameters: the radii 
r1 and r2 of the two surfaces, and the refractive index n.† We make the common assumption 
known as Gaussian optics in which all light rays are paraxial, that is, they form small 
angles with respect to the optical axis. For such rays, assuming that the thickness of the lens 
is negligible, the relationship between the lens parameters and the focal length f is given by 
the lens maker’s formula, also known as the thin lens formula:

 
1
f

5 1 n 2 1 2  a 1
r1

2
1
r2
b  (2.5)

which follows the Cartesian sign convention in which light travels from left to right, and 
the sign of r1 or r2 is positive if the surface makes the light rays more convergent, or nega-
tive if it makes them more divergent. A surface that bulges out is called convex, whereas a 
surface that curves inward is concave, so r1 is positive if the left surface is convex, whereas 
r2 is positive if the right surface is concave, as shown in Figure 2.25. The Gaussian lens 
formula specifies the distance from the lens to the image si for an object at a distance of 
so from the lens:

 
1
f

5
1
so

1
1
si

 (2.6)

†  If the surrounding medium is not air (which has a refractive index very close to 1), then n is the ratio of the 
refractive index of the material and the refractive index of the surrounding medium.

Figure 2.25 Thin lens, thick 
lens, and double Gauss lens.
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If the thickness t of the lens is not negligible, then we have a thick lens, in which the 
relationship between the lens parameters and the focal length are given by the thick lens 
formula:

 
1
f

5 1 n 2 1 2  a 1
r1

2
1
r2

1
n 2 1

n
# t

r1r2
b  (2.7)

The Gaussian (paraxial) optical behavior of a thick lens is specified by three pairs of 
cardinal points along the optical axis. Of these, the front and rear focal points are the 
same as the focal points on either side of a thin lens. The front and rear nodal points are 
such that a light ray aimed at one of them will emerge from the other one at the same angle 
as the incoming ray. Similarly, a ray of light crossing the front principal plane at a certain 
distance from the optical axis appears to emerge from the rear principal plane at the same 
distance; these principal planes are defined as passing through the principal points and 
perpendicular to the optical axis. If the surrounding medium on both sides is the same, then 
each nodal point coincides with the nearest principal point. If, in addition, the lens is thin, 
the front and rear nodal/principal points coincide at the center of the lens. The principal 
point of a thin lens is therefore the center of the lens. More commonly, the term principal 
point refers to the intersection of the line passing through the center of the lens and the 
image plane.

Real lenses are neither thick nor thin but rather compound, in which several simple lens 
elements are combined to improve performance. One of the most successful and common 
compound lenses is the double Gauss lens, which consists of six simple lenses arranged 
in a nearly symmetric relationship. The optical power of a lens is the inverse of the focal 
length, measured in diopters (inverse meters). To a good approximation, the overall opti-
cal power of a compound lens system is simply the addition of the optical power of the 
individual lens elements.

The aperture of a camera is the opening through which light rays enter the lens on their 
way to the sensor. The ratio, f /d, of the focal length f to the diameter d of the aperture is a 
dimensionless quantity called the f-number. Since the area of a circular aperture is propor-
tional to the square of the diameter, if the diameter is decreased by "2, the amount of light 
is reduced by a factor of 2. The aperture setting is measured in f-stops, where a stop is a 
power of 2. That is, reducing the aperture by one stop means reducing the amount of light 
by a factor of 2, while increasing the aperture by one stop means increasing the amount of 
light by a factor of 2. The sensor size and focal length determine the angular field of view 
(FOV), which is given by 2u, where tan u 5 d/2 f. The aperture determines the depth of 
field (DOF), which is the range of distances in the scene that form acceptably sharp images. 
That is, at distances other than the focused distance, a point will project onto the image not 
as a point but rather as a blur spot, with the amount of lens blur defined by

 c 5
d 0s1 2 s2 0

s2
 (2.8)

where s1 is the distance to the plane that is in focus, s2 is the distance to the point, and c is 
the diameter of the circle of confusion. While this formula makes the convenient assump-
tion that a point is imaged as a circle, more generally the impulse response, or point 
spread function (PSF), specifies the shape that a point will take on the image plane. The 
Fourier transform of the PSF is the optical transfer function (OTF), whose magnitude is 
the modulation transfer function (MTF). Photographers refer to the aesthetic quality of 
the blur as the bokeh.†

† Pronounced BOH-keh.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



2.2 Image Formation 41

Lenses exhibit various types of aberrations, which include any deviation of the perfor-
mance of a lens from ideal. For example, distortion arises from the fact that the light rays do 
not necessarily follow straight lines when passing through the lens. The two most common 
types of distortion are barrel distortion and pincushion distortion, as shown in Figure 2.26. 
Distortion is more noticeable for lenses with small focal lengths (called fisheye lenses), 
which are designed to capture a wide field of view. Camera calibration usually includes 
nonlinear terms to account for such distortion. This bending of the light is often different for 
different wavelengths due to material dispersion, leading to chromatic aberration. Chro-
matic aberration is usually reduced by adjoining multiple lenses in an achromatic doublet, or 
by postprocessing the image inside the camera. When non-paraxial light rays enter the lens 
from the side, they reflect and scatter inside the lens, producing lens flare, which manifests 
itself as bright spots on the image due to a light source (such as the sun) that is outside the 
field of view.

Another aberration is known as vignetting† which is the darkening of an image away 
from the center. There are several types of vignetting, illustrated in Figure 2.27. Optical 
vignetting is caused by the fact that off-axis rays may not travel through all the lens ele-
ments in a complex lens. Mechanical vignetting is caused by obstruction of the light rays by 
external camera elements (such as the lens hood). Pixel vignetting is caused by the angular 
sensitivity of digital sensors. Natural vignetting is caused by the dependence of light inten-
sity on the angle u that the incoming ray makes with the optical axis. For any given pixel 
the irradiance‡ E falling on the sensor after passing through a simple lens is proportional 
to the radiance L:

 E 5 L 

p

4
 ad

f
b2

 cos4
 u (2.9)

† Pronounced vin-YET-ing. 
‡ Irradiance, the radiant power landing on a surface, is discussed in more detail later.

Figure 2.26 An undistorted 
image, barrel distortion, 
and pincushion distortion.
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42 Chapter 2 • Fundamentals of Imaging

where the proportionality constant is related not only to the f-number f /d, but also to the 
angle u. If we let E0 ; L 

p
4  1 d

f 2 2 be the on-axis 1 u 5 0 2  irradiance on the sensor for a given 
scene radiance L, and let E be the irradiance at a different point on the sensor, then their 
relationship is given by

 
E
E0

5 cos4
 u (2.10)

Since the light intensity decreases according to the cosine of the angle raised to the fourth 
power, this is known as the cosine fourth law. In practice this law is not important since 
most modern cameras are designed to compensate for this effect using, for example, a 
graduated neutral density filter that reduces the amount of light in the center of the lens to 
balance the effects of the law. The effects of most types of vignetting are negligible when 
using apertures smaller than an f-number of 8, represented as f /8.

2.2.5 A Simplified Imaging Model
Despite the intricate details of electromagnetic waves, radiometry, and lenses, a simple imag-
ing model that provides a reasonable approximation for many tasks specifies the irradiance 
E on the image sensor as the product of a lighting function L and a reflectance function R:

 E 1 x, y, l 2 5 L 1 x, y, l 2R 1 x, y, l 2  (2.11)

where E 1 x, y, l 2  is the irradiance at a point (x, y) on the sensor at wavelength l. In this 
model, the lighting function L models the light source(s) and all interreflections and shad-
ows, not according to their location in 3D space, but rather according to the light rays col-
lected at each point on the sensor. Similarly, the reflectance function R models how much 
light at wavelength l incident on the surface seen by the point (x, y) is reflected toward the 
sensor. Reflectance values vary from 0 (complete absorber) to 1 (perfect reflector). In other 
words, if every object in the scene were perfectly diffuse then E 1 x, y, l 2 5 L 1 x, y, l 2  for 
every point on the sensor and every wavelength. This imaging model is closely related to 
the notion of intrinsic images, in which multiple images of a static scene under different 
imaging conditions can be used to estimate the reflectance or other properties in the scene, 
as illustrated in Figure 2.28.

Figure 2.28 Intrinsic 
images are a mid-
level description of 
scenes determined 
by decomposing an 
image into constituent 
components, such as an 
illumination image and a 
reflectance image. Based 
on Y. Weiss, “Deriving 
intrinsic images from 
image sequences,” 
Proceedings of the 
International Conference 
on Computer Vision, pages 
68-75, July 2001.
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2.3 Image Acquisition 43

2.3 Image Acquisition
Once an image has formed on the surface of a sensor as an irradiance function, the infor-
mation must be converted by the sensor into a digital image, which is then transmitted or 
stored. The steps involved in this process are the focus of this section.

2.3.1 Sampling and Quantization
Let s 1l 2 , where 0 # s 1l 2 # 1, be the sensitivity of the sensor to a particular wavelength 
l. Then the image pixel value I(x, y) can be modeled as the integration of the irradiance 
function over the area of the pixel and over all wavelengths, after first multiplying by the 
sensitivity function:

 I 1 x, y 2 5 w a222E 1 x r, y r, l r 2 s 1l r 2  dx r dy r dl rb  (2.12)

where the primes indicate dummy variables. The integrals over wavelength and sensor 
position, in addition to an integration over time (which is not shown), perform the work 
of sampling to convert the continuous irradiance function into a discrete function defined 
only over the rectangular lattice of integer (x, y) coordinates. Quantization then assigns a 
discrete gray level to every pixel in order to represent its value in digital form. However, to 
avoid an artifact known as false contouring,† it is important not only that there is a sufficient 
number of gray levels but also that they are meaningfully spaced. This is accomplished by 
applying a nonlinear mapping known as gamma compression, described in detail below, 
prior to quantization. The function w includes both gamma compression and quantization, 
along with any sensor artifacts like blooming or noise.

2.3.2 Gamma Compression
The basic idea of gamma compression is shown in Figure 2.29. The raw measurement of 
light obtained by the sensor is transformed by a nonlinear mapping before transmission, 
storage, and/or manipulation. This step transforms the linear, physical light intensity into 
a perceptually uniform quantity, so that the pixel values in a digital image are not (in most 
cases) directly proportional to the amount of light collected by the sensor.

To understand gamma compression, we need to go back in time to consider an important 
fact of a now-obsolete technology. Cathode ray tubes (CRTs), which were the prevailing dis-
play technology for three-quarters of a century, have the curious property that the intensity of 
the light displayed on the screen is nonlinearly related to the applied voltage. More specifically, 
the transfer function of a CRT display follows a power law, in which the displayed intensity 
L (representing radiance or luminance) is proportional to the voltage V raised to some power:

 L 5 cV  
g

1 b (2.13)

† Also known as banding, a form of posterization.

Figure 2.29 Linear light 
intensities are gamma 
compressed by the camera 
into perceptually uniform 
quantities, which are then 
gamma expanded by 
the display.
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44 Chapter 2 • Fundamentals of Imaging

where g is the exponent of the power function, and the constants b and c are the blacklevel 
and contrast, respectively, of the CRT display. If the monitor is adjusted properly so that 
its blacklevel is zero (i.e., the black pixels just barely emit light), then b 5 0, leading to a 
simpler formulation:

 L 5 cV  
g (2.14)

Because of the widespread use of the Greek letter gamma 1g 2  for the exponent, this func-
tion is known as a gamma function. Figure 2.30 shows several plots of this function for 
different values of gamma, assuming c 5 1 for simplicity. If g . 1, the function is convex 
(curves upward) and is known as gamma expansion; if g , 1, the function is concave 
(curves downward) and is known as gamma compression; if g 5 1, the function is linear.

CRT displays have a typical value of gd < 2.2, where the subscript indicates that this 
is the gamma of the display. To counter this effect and to simplify the electronics, video 
engineers decided many years ago that the voltage inside a display should be proportional 
not to the intensity of light being displayed but rather to the intensity raised to the power of 
gc, where gc < 1/gd. Cameras were therefore designed to encode the image according to 
V 5 L i

gc, where Li is the incoming light intensity, while displays produced light according 
to L 5 V 

g
d 5 Li

g
cgd. Images encoded in such a way are said to be gamma compressed, and 

if the gammas are inverses of each other 1gd 5 1/gc 2  then they cancel each other 1L 5 Li 2  
so that the intensity displayed is the same as the intensity captured.

In practice, while the exponents used by the camera and display are nearly inverses 
of each other, they are not exactly so. In fact, when the image is expected to be viewed 
in lighting conditions different from those under which it was captured, the compression 
exponent gc is intentionally designed so that the product gcgd is not 1. The reason for this 
choice is a perceptual phenomenon known as simultaneous contrast in which the human 
visual system’s ability to discern contrast decreases in dark surroundings, as depicted in 
Figure 2.31. As a result, if a scene is captured in a bright outdoor setting but the resulting 
image (or movie) is viewed in a dim room or dark theater, it will lack contrast if displayed 
at the same intensity level. For this reason, various television and movie industry standards 
specify the viewing gamma (the product of the camera and display gammas) to be between 
1.0 and 1.2, so that the viewing experience is subjectively correct even though it is not 
necessarily mathematically correct. Today, video cards typically also have a lookup table 
(LUT) that provides an additional adjustment, and the viewing gamma is defined to take 
this into account as well.

Figure 2.30 Gamma function with 
different values of g.
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In addition to this curious property of CRT displays, there is another more foundational 
reason that television engineers chose to introduce gamma compression many decades ago. 
Due to an amazing coincidence, the compression of light intensity according to gc < 1/gd 
closely models the way in which the human visual system perceives light. In other words, 
although the doubling of the amount of light produces a physical intensity equal to twice 
the original, the perceived intensity is not increased linearly but rather nonlinearly according 
to a function quite similar to Li

g
c. Gamma compression therefore transforms a linear light 

intensity into a nonlinear quantity that is perceptually uniform. As a result, additive noise 
introduced in the transmission of a gamma-compressed analog video signal has minimal 
impact on visual perception, because a constant amount of additive noise affects the per-
ceived intensity by an equal amount regardless of the overall signal value. Without gamma 
compression, however, additive noise in dark regions would produce a much more notice-
able (and objectionable) effect on the viewing experience than noise added to bright regions. 
In the digital age this phenomenon still applies, particularly in the case of lossy compression 
which introduces additive noise to the image. JPEG and MPEG compression, for example, 
should always be performed on the nonlinear, perceptually uniform gamma-compressed 
signal rather than on the original linear signal, in order to minimize unacceptable artifacts. 
For the same reason, gamma compression prior to quantization results in a more effective 
use of the finite number of digital codes available. It is important therefore to view gamma 
compression not simply as an unfortunate relic necessary to maintain backward compatibil-
ity with now-obsolete CRT displays, but rather as an essential part of the image digitization 
and transmission process based upon timeless characteristics of human visual perception.

To see this connection between gamma compression and human visual perception, 
recall from our discussion on the human visual system that two luminances† can be 
discerned if their difference is at least 1% (approximately). That is, the contrast 
threshold of the human visual system is approximately D  L

L 5 1% 5 0.01. Also recall 
that for image reproduction purposes the range of luminances is about 100 to 1. Now 
suppose we were to digitize these luminances in equally spaced intervals, in increments of 
0.01, from 1 to 100, resulting in 9901 digital codes representing the luminance values of 
1.00, 1.01, 1.02, c, 99.98, 99.99, 100.00. The drawback of this approach would be that, 
while the consecutive codes at the lower end of the scale, say 1 and 1.01, are discernible, 
consecutive codes at the higher end of the scale, say 99.99 and 100.00, are not discernible at 
all. The reason for this is that 1 100.00 2 99.99 2 /100.00 5 0.01/100 5 0.0001 5 0.01%, 
which is much less than 1%, so that many codes at the higher end of the scale would be 

† Luminance, which is radiance multiplied by the sensitivity of the sensor, is discussed in more detail later.

Figure 2.31 Simultaneous 
contrast. The pixels inside the 
middle squares have the same 
luminance, but the pixels on 
the right appear brighter due 
to its surroundings. Therefore, 
if an image is displayed at 
the correct luminance in a 
dimmer environment than the 
one in which it was captured, 
it will appear to be lacking 
in contrast.
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wasted. On the other hand, if we were to digitize luminances in equally spaced intervals 
in increments of 1.00, the digital codes of 1, 2, 3, c, 98, 99, 100 would yield a barely 
discernible difference at the higher end but unacceptably large differences at the lower 
end, leading to objectionable false contouring. This is because 1 2 2 1 2 /1 5 1.0 5 100%, 
which is much greater than 1%.

A more effective use of the digital codes occurs when consecutive codes correspond to 
relative luminance differences of approximately 1%. If we let v be the gray level and L be 
the luminance, then this is expressed as

 0.01Dv 5
D L
L

 (2.15)

or

 
Dv
D L

5
1

0.01L
 (2.16)

where Dv 5 1 is understood to be the difference between two consecutive gray levels, and 
DL is the difference between the corresponding luminances. If we let w be the function 
that maps luminances to gray levels, i.e., v 5 w 1L 2 , the derivative of this function is 
dw/dL < Dv/DL. Therefore, the function f is the integral of the above expression, or

 w 1L 2 5 2 
1

0.01L
5 100 log L (2.17)

where log is the natural logarithm. This expression tells us that the desired nonlinear function 
that maps linear intensity to a perceptually uniform value is logarithmic. Table 2.1 compares 
this nonlinear coding with the two linear coding attempts just described. Linear coding 
requires approximately 100/0.01 5 10000 gray levels, or 14 bits, to cover the 100:1 range 
with an increment of 0.01, while an increment of 1.0 requires 100/1 5 100 gray levels, 
or 7 bits. In contrast, if the codes are spaced nonlinearly according to a ratio of 1.01, then 
only 1 log 100 2 / 1 log 1.01 2 5 463 gray levels, or 9 bits, are needed. The common 8-bit 
format, which owes its popularity to the widespread practice of grouping 8 bits into a byte 
in a digital computer, is sufficient for about a 50:1 ratio, roughly equivalent to traditional 
broadcast-quality television.

The assumption of a constant 1% threshold in Equation (2.15) is known as Weber’s law. 
Although Weber’s law is a good model of the transfer function of some cortical cells, it is not 

linear 14-bit codes linear 7-bit codes logarithmic 9-bit codes

gray level L DL/L gray level L DL/L gray level L DL/L

00000000000000 1.00 1.00% 00000 1.00 100.00% 000000000 1.00 1.00%

00000000000001 1.01 1.00% 00001 2.00 50.00% 000000001 1.01 1.00%

00000000000010 1.02 1.00% 00010 3.00 33.33% 000000010 1.02 1.00%

( ( ( ( ( ( ( ( (
10011010101010 99.98 0.00% 1100001 98.00 1.02% 111001100 98.01 1.00%

10011010101011 99.99 0.00% 1100010 99.00 1.01% 111001101 99.00 1.00%

10011010101100 100.00 0.00% 1100011 100.00 1.00% 111001110 100.00 1.00%

TABLE 2.1 Logarithmic coding is a more efficient use of the available bits than linear coding because it results in successive codes 
that differ by the contrast threshold of 1% across the entire range of luminances. In contrast, linear 14-bit coding waste bits in bright 
regions where successive gray levels look identical, and linear 7-bit coding produces objectionable artifacts in dark regions.
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an accurate model of human visual perception over all luminances.† As it turns out, a more 
accurate mapping between physical light intensity and perceived light intensity is obtained 
with a power-law function, known as Stevens’ power law:

 w 1L 2 5 cLg
h (2.18)

where gh < 0.5. Here we see the amazing coincidence that this gamma of the 
human visual system gh is nearly the same as the inverse of the CRT display gamma, 
gd , because 1/2.2 < 0.45. Therefore, the gamma compression of a camera produces nearly 
the same mapping as that of the human visual system, which justifies our saying that gamma-
compressed signals are perceptually encoded. Note that the power-law function with g , 1 
performs a similar operation to that of a logarithm function, since they both have similar con-
cave shapes. While the linear quantity L is referred to as the luminance as we saw earlier, the 
nonlinear quantity that captures human perception on a uniform scale is known as lightness.

One drawback of the gamma compression function w 1L 2 5 cLg is that its slope is infi-
nite at L 5 0, leading to high amplification of noise in dark regions of the image. To over-
come this problem, it is common practice to modify the function by specifying a linear 
section for values below some threshold t:

 w 1L 2 5 bmL if L # t1 1 1 P 2Lg
2 P otherwise

 (2.19)

where the slope m and offset P are set to ensure that the value and first derivative of the two 
sections of the function match at the point L 5 t:

 m 5
gtg21

tg 1g 2 1 2 1 1
 (2.20)

 P 5
1

tg 1g 2 1 2 1 1
2 1 (2.21)

The nonlinear transfer function obtained by modifying gamma compression is uniquely 
specified by the parameters g and t. There are two widely used standards that offer slightly 
different variations of gamma compression by choosing different values for these two param-
eters. Rec. 709,‡ the standard for high-definition television (HDTV) that was first approved 
in 1990, uses g 5 0.45 < 1/2.222 and t 5 0.018, leading to m 5 4.5 and P 5 0.099:

 w 709 1L 2 ; b4.5L if 0 # L , 0.018
1.099L0.45 2 0.099 if 0.018 # L , 1

 (2.22)

where the intensity L has been normalized to be in the range of 0 to 1.§ Six years after the 
approval of Rec. 709, sRGB was developed to standardize the RGB color space used for 
still images for display on computer monitors and printers. sRGB uses g 5 1/2.4 < 0.417 
and t < 0.0031308, leading to m 5 12.92 and P 5 0.055:

 wsRGB 1L 2 ; b12.92L if 0 # L # 0.0031308
1.055L11/2.42 2 0.055 if 0.0031308 , L # 1

 (2.23)

†  In fact, if b is the bit depth, it is easy to see from Table 2.1 that the ratio of the highest luminance to the lowest non-zero 
luminance is (1.01)n, where n 5 2b21.  For b 5 9 bits, this yields (1.01)511 ≈ 162, which is a reasonable number. But 
for b 5 16, the logarithmic model yields (1.01)65535 ≈ 10283, which is more than the number of atoms in the universe.

‡ Formally known as ITU-R Recommendation BT.709.
§  Rec. 2020, used for UHDTV, uses the same transfer function as Rec. 709.  However, in 12-bit mode, the precision 

is increased to t 5 0.0181 and P 5 0.0993.
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as shown in Figure 2.32. Either way, the resulting nonlinear quantity is known as the 
grayscale value (or simply gray level), and since the nonlinear transfer function is designed 
to correspond closely to the power function of Steven’s law, generally speaking lightness 
and value can be thought of as synonyms. Note that in the case of a color image, Equation 
(2.23) is applied to the color channels separately, with L replaced by R, G, and B after 
normalizing to the range of 0 to 1.

It is important to note that modifying the gamma function by inserting a linear section 
changes the effective gamma of the function. The effective gamma is defined as the 
exponent of the gamma function (without the linear section) that best fits the curve (with 
the linear section). As a result, although the exponent of the Rec. 709 transfer function is 
0.45, its effective gamma is closer to 0.511. Similarly, although the exponent of sRGB is 
approximately 0.417, its effective gamma is closer to 0.455. In fact, both of these stan-
dards were designed by first specifying the desired effective gamma, then determining the 
exponent that best approximates that function. Because Rec. 709 is intended for viewing in 
dim environments, it was designed for a 1.125 viewing gamma, which is achieved using an 
effective camera gamma of 1/1.955555 < 0.511, since 2.2/1.955555 5 1.125, assuming a 
CRT gamma of 2.2. Empirically, this effective gamma of 0.511 is achieved pretty well using 
an exponent of 1/2.222222 5 0.45. sRGB, on the other hand, was designed for a viewing 
gamma of 1.0, because it is intended for typical office environments. With a CRT gamma of 
2.2, this yields 1/2.2 5 0.454545 effective camera gamma, which empirically is achieved 
with an exponent of 1/2.4 5 0.416666.

Having presented the concept of gamma compression in some detail, it is only appropriate 
to caution the reader that not all cameras perform gamma-compression. That is, some high-
end cameras offer the possibility of storing the raw non-gamma compressed image, using a 
large number of bits per pixel in order to prevent false contouring. Raw images are useful for 
some computer graphics work, as well as for measuring the actual radiance of the scene. Nev-
ertheless, unless you have good reason to believe otherwise, you should always assume that 
an image has been gamma compressed, especially with 8-bit-per-pixel-per-channel images.

2.3.3 CCD and CMOS Sensors
The light that falls onto the image plane is sampled by the sensor to produce values. These 
days, nearly all cameras are digital. The two most common digital sensors are CCD (charge-
coupled device) or CMOS (complementary metal-oxide semiconductor). Each consists of a 

Figure 2.32 Rec. 709 gamma function (left), and sRGB gamma function (right). In both cases, the effective gamma function closely 
follows the modified gamma function, while the power function (using the same exponent as the modified gamma function but 
without the linear segment) is noticeably different. The dashed black line indicates the linear section, which is valid only for L # t.
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dense array of photodiodes (typically spaced 1 to 5 mm apart) that convert light photons to 
electrons. In a CCD sensor, these electrons are collected and stored in local potential wells 
during exposure time and then read out by transferring electrons down the line of potential 
wells until they reach the readout register known as the horizontal shift register. Electrons 
in the horizontal shift register are then transferred one at a time to an amplifier that converts 
the collected electrons into a voltage. In a CMOS sensor, transistors next to each photodiode 
convert the electrons to a voltage.

CCD sensors dominated the digital camera industry for two decades before CMOS sen-
sors began to gain in popularity in the late 1990s. As a result, the CCD sensor is a more 
mature technology and produces superior image quality overall. In particular, in low light 
conditions CMOS sensors produce grainy images because the photons that land on the 
transistors next to the photodiodes are wasted. These transistors thus reduce the fill factor 
of CMOS sensors, which is the percentage of the pixel that collects light, as shown in 
Figure 2.33. However, CMOS sensors have now progressed to the point that the images 
captured by CMOS and CCD sensors in bright light settings are nearly indistinguishable in 
quality. The primary advantages of CMOS sensors is that they are less expensive to produce, 
consume less power, and are smaller and lighter. Moreover, CMOS sensors provide more 
flexibility: because CMOS pixel values can be read individually, a subset of the pixels called 
a region of interest (ROI) can be read from a CMOS sensor without reading the entire image, 
as opposed to the CCD sensor which requires an entire line to be read out. CMOS sensors 
can also achieve a wide dynamic range by resetting individual pixel wells when they near 
their capacity. Because the CMOS manufacturing process is identical to that used to produce 
processors and memory, CMOS sensors can include circuitry directly on the same chip to 
perform image processing operations such as stabilization or compression.

There are two dominant types of CCDs. A full-frame CCD has 100% fill factor because 
the entire sensor surface area collects light, but this type of CCD requires a mechanical shutter 
to prevent light from striking the photodiodes as the charge is read out. An interline transfer 
CCD, on the other hand, consists of masked columns between the photodiodes; when an 
exposure has ended, the charge is transferred from each photodiode to the adjacent masked 
column, which is then used to transfer the charge. Because an interline transfer CCD can 
read out the image even while light continues to strike the photodiodes, it has an electronic 
shutter which leads to much faster shutter speeds than are possible with a mechanical shutter.

Figure 2.33 Fill factor is 
the percentage of the pixel 
on the physical sensor that 
captures light. A full frame 
CCD has 100% fill factor, 
whereas an interline transfer 
CCD has significantly less 
fill factor. Based on http://
www.siliconimaging.com/
cmosfundamentals.htm, image 
from photobit.

Photodetector

Active amplifier

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



50 Chapter 2 • Fundamentals of Imaging

Video cameras are either progressive scan or interlaced. An interlaced camera divides 
each image frame of a video sequence into two alternating fields — an odd field and an even 
field. The odd field consists of the odd rows of the image, while the even field consists of 
the even rows of the image. By displaying the two fields in succession, the effective frame 
rate of the display is doubled while taking advantage of the human visual system’s tendency 
to blur information temporally. If the camera captures the two fields at different times, then 
a moving object will be shifted between the two fields, even within the same image frame. 
Interlaced cameras were the prevailing technology for analog video cameras, with 60 Hz 
(or 50 Hz, depending upon the country) power circuitry driving 60 Hz (or 50 Hz) field 
refresh rates, leading to effectively 30 Hz (or 25 Hz) frame rates for broadcast television. 
A progressive scan camera, on the other hand, captures the entire image frame simultane-
ously, without dividing it into fields. With the move toward digital formats and standards, 
progressive scan cameras are more popular, and interlaced cameras are all but obsolete.

To capture color, two approaches are common. Professional and other high-end cameras, 
where quality is more important than cost, use an optical device known as a trichroic prism 
to split the incoming light beam into the three separate beams of differing wavelengths, 
which are then sensed by three separate CCD sensors, one for each color channel. Together, 
the device is known as a three-CCD (3CCD) camera. A less expensive approach is to cover 
the sensor with a color filter array (CFA) (or color filter mosaic), which filters the wave-
lengths of the incoming light differently for the individual pixels. A common CFM is the 
Bayer filter, which blocks all but green light for alternating pixels throughout the sensor 
in a checkerboard pattern; of the remaining pixels, red and blue light filters are placed over 
alternating rows, as shown in Figure 2.34. With a Bayer filter, each pixel senses only one 
of the three colors. The remaining colors are estimated using a demosaicking algorithm 
that interpolates missing colors based on the colors sensed by neighboring pixels. Hav-
ing no such filters, a monochrome camera is responsive to a wider range of frequencies. 
Figure 2.35 shows the spectral sensitivity functions (SSFs) for typical CCD color and mono-
chrome video cameras.

Cameras contain a number of controls. The shutter speed, along with the aperture, con-
trols the amount of light allowed to strike the sensor. Automatic gain control (AGC) 
causes the camera to automatically adjust its exposure time to ensure that the output level 
remains relatively constant, which can yield widely differing values, even for consecutive 
image frames, when light sources enter or exit the scene. White balance is the proper 
adjustment of the relative intensities of the primary colors needed to ensure that the colors 
are captured properly.

Figure 2.34 A Bayer color filter 
placed over an image sensor 
is an inexpensive way to sense 
color using a single sensor. 
Green light is sensed by half 
the pixels in the checkerboard 
pattern, with the remaining 
pixels sensing blue or red in 
alternating rows. 
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There are three main sources of noise in an image sensor. Shot noise occurs at extremely 
low light levels due to the statistical nature of the discrete number of photons arriving in 
any given length of time. Another source is sensor noise, which includes the fixed pattern 
noise that arises due to differences in the individual pixel properties, as well as transfer 
noise, quantization noise, and the dark current that flows through a photosensitive device 
even when no photons are entering, leading to non-zero values regardless of the light level. 
The third source is readout (or amplifier) noise, which is added uniformly to the image 
by the amplifier used to convert electrons to voltage.

Other degradations in the image are possible. When the number of incoming photons 
exceeds the capacity of the photodiode to hold charge, the excess charge leaks out of the 
saturated photodiode into neighboring photodiodes, resulting in bright vertical streaks, 
an artifact called blooming. Although blooming has traditionally been a problem for 
CCD sensors, nearly all modern CCD sensors have anti-blooming protection to prevent 
the charges from overflowing, and CMOS sensors have never been affected. Glare is the 
presence of a bright light source that interferes with the ability to discern detail in the 
image. Another degradation is motion blur, which occurs when an object moves rapidly 
relative to the exposure time, causing streaking in the image in the direction of object 
motion, regardless of the sensor type. A related problem is the rolling shutter effect, 
which occurs in CMOS sensors that read out pixels sequentially rather than simultane-
ously, so that different pixels capture light entering the lens at different times. In the case 
of an analog video signal, line jitter refers to the random horizontal shift of rows of the 
image due to the inability of the phase-locked loop (PLL) circuitry to detect the start 
of the active line period perfectly. Similarly, if the signal is interlaced, then alternating 
lines of the image frame can show a moving object captured at different times, as shown 
in Figure 2.36.

Figure 2.35 Spectral 
sensitivities of a typical CCD 
color (top) and monochrome 
(bottom) video camera. 
Note that, in contrast to the 
human eye, CCD sensors are 
sensitive to near infrared 
light, up to approximately 
1000 nm. Cameras typically 
include an infrared filter 
that cuts off frequencies 
greater than about 700 nm. 
Based on http://www.
theimagingsource.com/
downloads/fwcamspecwp.en.
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2.3.4 Transmission and Storage
The digital image captured by the sensor is transmitted to the computer and either processed 
live or stored for later processing. Traditional video cameras transmit the video signal using 
analog waveforms, the three standards being NTSC (used in North America and Japan), 
SECAM (used in France and the former Soviet Union), and PAL (used most everywhere else). 
Based on an AC voltage frequency of 60 Hz, NTSC transmits even and odd image fields at 
60 Hz, leading to an effective frame rate of 30 frames per second (fps).† Specified originally 
in 1941 for black-and-white television and augmented in 1953 to include color, the NTSC 
format was discontinued as a broadcast signal in 2009 to make room for digital video trans-
mission. Also interlaced, PAL transmits image fields at 50 Hz for an effective frame rate of 25 
fps. NTSC, PAL, and SECAM use an aspect ratio of 4:3, resulting in an image resolution of 
approximately 640 3 480 and 768 3 576, respectively. The former is known as VGA resolu-
tion, while the latter is (after taking into account the non-square aspect ratio of older displays) 
4CIF. All three analog standards are known as composite video because the luminance 
and chrominance information is combined into a single signal, whereas component video 
separates the individual color channels into individual signals, resulting in higher fidelity. 
Component video is typically used in production studios and other high-end applications.

The original digital replacement for analog video was Rec. 601,‡ but this has been 
replaced by Rec. 709, which is the high-definition television (HDTV) standard mentioned 
earlier. The term HDTV encompass a variety of different resolutions, but they  typically 
use an aspect ratio of 16:9. Common HDTV formats are 1080i or 1080p, containing image 
frames of size 1920 3 1080 either interlaced or progressive, respectively, and 720p, contain-
ing 1280 3 720 progressive scan images. More recently, Ultra-high-definition television 
(UHDTV), defined by Rec. 2020, includes 3840 3 2160 and 7680 3 4320 video (known 
as 4K and 8K, respectively).

To take advantage of the human visual system’s insensitivity to color changes, the color 
information in digital video is often downsampled. Because the nonlinear version of chro-
minance is known as chroma (just as the nonlinear version of luminance is luma), this is 
known as chroma subsampling. The nomenclature is rather nonintuitive, but as summa-
rized in Table 2.2, J:a:b means that chroma is downsampled by h 5 J

a and v 5 2 a
a 1 b in the 

horizontal and vertical directions, respectively, so that the total amount of downsampling is 
hv 5 2 J

a 1 b, where J is nearly always equal to 4.§ For example, with 4:2:0 subsampling (the 
most common format), a 2 3 2 window of pixels contains 4 bytes of luma data (assuming 

†  Actually the frame rate of the standard was modified to 30/1.001 < 29.97 fps when color was introduced to 
reduce interference between the chroma subcarrier and the accompanying audio signal.

Figure 2.36 Interlacing. A 
half-black, half-white piece 
of paper is translated. Left: 
no motion, edge is sharp. 
Middle: motion, edge is 
blurred. Right: zoomed 
in. The length of each 
horizontal bar is the distance 
traveled in 1/60 of a second.

‡ Formerly known as CCIR 601.
§  A special case in the notation occurs when b 5 1 but a 2 1 (the final 2 columns of the table), in which v 5 4 
and therefore hv 5 4h; otherwise v 5 4 would require a or b to be negative.
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an 8-bit image) and 2 bytes of chroma data† since the chroma data is downsampled by 2 
in both directions). To allow for filter overshoot and undershoot, video standards typically 
do not allow pixels to use all the available values but instead reserve a certain amount of 
headroom and footroom, so that black has a value of 16, and white has a value of 235. 
(While luma ranges from 16 to 235, chroma ranges from 16 to 240.)

A digital image is stored as an array of values in memory or as a sequence of bytes in 
a file. A large number of file formats exist. Some of the most common include PNM, a 
barebones format for uncompressed images used by researchers that includes PGM (for 
grayscale) and PPM (for color); BMP, a simple format widely used for its connection to 
the Windows operating system; GIF, an unusual format that supports multiple images for 
animation but only a limited color palette, making it suitable to simple shapes and logos; 
PNG, an open-source successor to GIF that supports lossless compression; TIFF, a flexible 
format with an extremely wide range of options, making it important for high-end manipu-
lation of photographs but limiting its support in other applications such as Web browsers; 
JPEG, a widely-used format that makes use of lossy compression to reduce the file size; and 
JPEG 2000, a successor to JPEG that never gained widespread acceptance. The EXIF file 
format is increasingly being used, rather than the original JFIF format, to store JPEG files 
in order to allow metadata to be stored with the image, such as when and where the image 
was captured, the settings of the camera, the color space, and so forth. Another format is 
OpenEXR, which is used in the movie industry for high-dynamic range images using 16- or 
32-bit floating point numbers. For video, one option is to store the video as a sequence of 
JPEG frames, known as M-JPEG. More common file formats include the historic MPEG-1 
format, or the more recent MPEG-2, MPEG-4, AVI, and QuickTime formats, which come 
with a dizzying array of choices for the codec (compressor-decompressor).‡ The founda-
tional video compression standard is H.261, which is used by MPEG-1 and forms the basis 
for all later standards. The more recent standards are H.262 (used by MPEG-2 and DVD 
discs) and the ubiquitous H.264 (used by MPEG-4, Blu-ray discs, streaming Internet video, 
and HDTV broadcasts).

2.4 Other Imaging Modalities
Now that we have spent considerable effort explaining the imaging process for a standard 
optical camera, in this section we consider several alternate imaging modalities to help 
appreciate the great diversity of techniques for gathering images, as well as the peculiar 
properties of each.

† That is, 1 byte for CB and 1 byte for CR, see Section 9.5.3 (p. 427).
‡ Compression and decompression are discussed in more detail in Chapter 8.

4:4:4 4:2:2 4:2:0 4:1:1 4:1:0 4:4:0 4:4:1 4:2:1

horizontal chroma downsampling 1 2 2 4 4 1 1 2

vertical chroma downsampling 1 1 2 1 2 2 4 4

total chroma downsampling 1 2 4 4 8 2 4 8

number of luma bytes in 2 3 2 window 4 4 4 4 4 4 4 4

number of chroma bytes in 2 3 2 window 8 4 2 2 1 4 2 1

TABLE 2.2 The nomenclature for chroma subsampling is J:a:b, where J is nearly always equal to 4. From top to bottom, the rows are 
h 5 4/a, v 5 2a/(a 1 b), hv 5 8/(a + b), 4, and 8/hv; the final two columns show the special case when v 5 4. Boldface is used to  
indicate that 4:2:0 is the most common case.
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2.4.1 Consumer Imaging: Catadioptric, RGBD, and Light-Field
We mentioned earlier that some animals, like lobsters, focus light not by using lenses, but 
rather by using mirrors. In a similar way, cameras can be made that either focus or bend 
light using mirrors. A standard optical imaging system using a lens is called dioptric, while 
a camera that uses mirrors is called catoptric. Putting these two together, a system that 
uses both lenses and mirrors is called catadioptric. One of the most widely used catadi-
optric imaging systems is the omnidirectional sensor, in which a camera points upward 
at a hyperbolic (or parabolic) mirror, which allows the camera to see 360 degrees around 
the scene, as shown in Figure 2.37. Such a camera system has an effective focal point at 
the focus of the hyperboloidal-shaped (or paraboloid-shaped) mirror, so that it is called a 
central panoramic camera. The resulting image is donut-shaped, with approximately 
half the pixels wasted.

Another useful sensor is the RGBD camera that captures not only the RGB values for 
each pixel but also the depth of the scene point from the camera plane. Such sensors operate 
by either time-of-flight, stereo processing after projecting an invisible, infrared texture onto 
the scene to simplify the correspondence problem, or shape from shading. Currently the most 
popular sensors are the Microsoft Kinect, Asus Xtion, and Intel RealSense, which are revo-
lutionizing robotics and user interfaces due to their richer capturing modality. An entirely 
different approach is achieved by a light-field camera (also known as a plenoptic camera) 
that samples the light field using an array of microlenses; by tracing the rays of light using 
the appropriate computation, the image can be refocused after it has been captured, or it can 
be viewed as a 3D stereoscopic image whose appearance changes with the viewing angle.

2.4.2 Medical Imaging: CAT, PET, MRI, and Sonar
Medical applications use a variety of imaging technologies. One of the most well-known 
is X-ray radiography, which produces images by transmission rather than reflection. A 
generator emits X-rays toward an object of interest (such as part of a person’s body), and 
a detector measures the photons that make it to the other side, rather than being absorbed 
by the object. The high amount of calcium in bones, for example, along with their high 

Figure 2.37 An omnidirectional 
camera can be achieved by 
attaching a hyperbolic or 
parabolic mirror to an upward-
facing camera. Based on Valdir 
Grassi Junior and Jun Okamoto 
Junior, Development of an 
omnidirectional vision system, 
J. Braz. Soc. Mech. Sci. & Eng. 
vol. 28 no. 1 Rio de Janeiro Jan./
Mar. 2006, http://www.scielo.br/
scielo.php?script=sci_arttext&pi
d=S1678-58782006000100007
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density, causes them to absorb X-rays, which explains why bone structure is revealed so 
prominently in an X-ray. X-ray technology can also be used to capture 3D structure as an 
array of slices. The word tomography refers to imaging by slices, so this approach is known 
as computed tomography (CT). The term axial refers to the horizontal plane through 
the human body when standing upright, and since the slices are parallel to this plane, the 
approach is also known as computed axial tomography (CAT), so that CT scan and CAT 
scan are essentially synonymous. A patient is enclosed in a ring of scintillation detectors, 
and the X-ray emitting tube is rotated around the patient, collecting an image for each slice. 
Reconstruction of the patient’s body is then obtained using algorithms such as filtered back 
projection, or iterative reconstruction.

Another common technique is magnetic resonance imaging (MRI), which is safer than 
X-ray because it does not use ionizing radiation. Soft tissue in the human body contains 
water, and MRI uses powerful magnets to align the hydrogen nuclei (that is, protons) in 
these water molecules. A radio frequency (RF) signal pulse at the resonance frequency is 
emitted that systematically alters the alignment of the nuclei by flipping the spin of the pro-
tons. As the nuclei return to their original state, their motion generates an RF signal which 
is detected by receiver coils. MRI is widely used for medical diagnosis, and its extension 
called functional MRI (fMRI) uses MRI technology to detect change in magnetization 
between oxygen-rich and oxygen-poor blood to measure brain activity.

Positron emission tomography (PET) is another technique for nuclear imaging. A 
patient is injected with a radioactive isotope which, as it undergoes positron emission decay, 
emits a positron. The positron travels a short distance, decelerates, and then interacts with an 
electron. Both the electron and positron are annihilated, emitting a pair of gamma photons in 
opposite directions in the process, which are detected by a scintillator. Unlike CT or MRI, 
PET can detect details at the level of molecular biology.

Fluoroscopy is a way of obtaining real-time images of a patient using an X-ray image 
intensifier to convert the X-rays on the sensor to visible light for viewing by a radiologist. 
A popular fluoroscopy technique is digital subtraction angiography, in which a con-
trast medium has been injected into a structure; by subtracting the precontrast image, an 
enhanced image is obtained which enables a physician to more easily see the blood vessels 
for catheters and vascular imaging. Another technique is fluorescence in situ hybridiza-
tion (FISH) which is used to detect DNA sequences on chromosomes using fluorescent 
probes that bind to certain parts of chromosomes.

Finally, ultrasound does not use electromagnetic radiation at all but rather sound 
waves, which are longitudinal and require a medium for transmission. These broad-
band sound waves are reflected by the tissue, allowing real-time imaging of moving 
structures with no ionizing radiation. Ultrasound imaging is widely used for observing 
babies in the womb, as well as elastography, which is measuring the elastic properties 
of soft tissue.

2.4.3 Remote Sensing: SAR and Multispectral
Cameras are often attached to aircraft or satellites for remote sensing of the earth for appli-
cations in meteorology, agriculture, surveillance, and geology. To enable detailed sensing 
of the terrain in all weather conditions, these cameras typically sense multiple frequencies 
simultaneously. A multispectral sensor senses a small number of frequencies, typically 5 
to 7, while a hyperspectral sensor senses a much larger range of frequencies. Due to the 
larger number of frequencies, it is often not possible to build a 2D array that yields an image 
directly. Instead, either a whiskbroom sensor is used, in which a rotating mirror scans one 
pixel at a time, or a pushbroom sensor, which is a 1D linear array perpendicular to the 
direction of travel. Comparing the two alternatives, a pushbroom sensor is smaller, lighter, 
consumes less power, and has high reliability because it has no mechanical parts.
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The Landsat program is the longest-running program to gather satellite imagery of 
the earth’s surface, beginning in the 1970s and continuing to the present day. The latest 
version of Landsat uses a whiskbroom multispectral scanner with 8 spectral bands and 
an opto-mechanical sensor to collect information about earth from space, with calibration 
used to convert raw sensed values to absolute units of radiance. Another satellite imaging 
program is SPOT (Système Pour l’Observation de la Terre), which uses a pushbroom 
camera consisting of a linear array of CCDs to collect 5 spectral bands. The SPOT sensor 
is able to collect more photons than Landsat, so it has a higher signal-to-noise ratio. The 
AVIRIS (Airborne Visible InfraRed Imaging Spectrometer) instrument, which uses a 
hyperspectral sensor capable of collecting radiance in 224 contiguous spectral bands from 
400 to 2500 nm, is a more recent sensor mounted on aircraft for measuring the Earth’s 
surface atmosphere. In remote sensing, it is common to call the raw digital values from an 
uncalibrated sensor digital numbers (DNs), to distinguish them from physically meaning-
ful quantities such as radiance or reflectance.

Synthetic aperture radar (SAR) illuminates the scene with radio waves whose wave-
length ranges from one meter to millimeters. The received echo waveforms are detected and 
processed to form an image. SAR is usually mounted on a moving platform with a single 
beam-forming antenna attached to an aircraft or spacecraft. SAR is an advanced form of 
side-looking airborne radar (SLAR), which is essentially a virtual phased array. Related to 
SAR is ultra-wideband radar, whose signals are defined as having a bandwidth exceeding 
500 MHz or 20% the center frequency of radiation and are sometimes used for through-
the-wall imaging.

2.4.4 Scientific Imaging: Microscopy
A micrograph is an image obtained by connecting a camera to a microscope or  similar 
device to obtain a magnified image. An optical microscope, also known as a light 
 microscope, uses visible light and a system of lenses to focus the image. Some forms 
of light microscopy are bright field microscopy, in which the light shines below the 
sample, yielding a dark sample on a bright background; phase contrast microscopy, 
which exploits phase shifts that occur when light passes through media, thus avoiding the 
need to stain the specimen and allowing for in vivo imaging; and fluorescent microscopy, 
which illuminates the specimen with a nearly monochromatic light to excite fluorescent 
stains or proteins. Most fluorescent microscopes use epifluorescence, in which reflected 
light from the specimen combines with the emitted light, yielding a high signal-to-noise 
ratio. To reduce the out-of-focus light and improve the contrast, the recent approach of light 
sheet microscopy has been gaining in popularity. Another advanced approach is that of 
a confocal microscope, which uses point illumination and a beam splitter to allow 2D or 
3D imaging of the object with increased contrast and resolution. Further improvements in 
resolution are achieved using electron microscopes such as a scanning electron micro-
scope (SEM), which scans the surface using beams of electrons, or a scanning tunneling 
microscope (STM), which uses quantum tunneling.

2.5 A Detailed Look at Electromagnetic Radiation
You may know that there are three ways to transfer heat energy. If you pick up a pan from 
the stove, it will feel hot to the touch because of conduction. If you sit in front of a rotating 
fan, the fan will cool your skin due to the movement of the air, known as convection. Both 
of these methods require the source responsible for heat transfer to be nearby. In contrast, 
if you stand outside on a sunny day, you will feel warmth from the sun, even though the 
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sun is millions of miles away. This form of energy transfer, known as electromagnetic 
radiation, has nothing to do with the surrounding air, and it explains why the front side of 
your body is heated while the back side is not when you stand in front of a campfire.

Even though it may seem that we have already treated the imaging process with a fair 
amount of detail, to understand light on an even deeper level we have to consider precisely 
what is meant by this third form of energy transfer. The energy in electromagnetic radia-
tion is carried solely by electromagnetic waves, which are perfectly capable of traveling 
through a vacuum. In the following discussion we provide a more detailed description of 
these waves, the energy carried by them, and the ways in which they interact with the world 
around us.

2.5.1 Transverse Electromagnetic Waves
It is a fundamental principle of physics that a time-varying electric field causes, or induces, 
a time-varying magnetic field, and vice versa. Mathematically, this coupling is described in 
a set of equations known as Maxwell’s equations.† Let E and B be the 3D vector electric 
and magnetic fields, respectively. In a vacuum containing no electric charge (imagine space 
through which the sun’s rays travel), Maxwell’s equations in differential form are

 r #  E 5 0    r 3 E 5 2
@B
@ t

 (2.24)

 r #  B 5 0    r 3 B 5 P0 
m0 

@ E
@ t

 (2.25)

where @/@ t is the partial derivative with respect to time, r is the “dell” operator, and P0 and 
m0 are fundamental constants of nature, namely the permittivity and permeability of free 
space, respectively. The operator r #  (“dell dot”) is the divergence of a vector field, while 
r 3  (“dell cross”) is the curl.

In their most general form, Maxwell’s equations succinctly capture almost everything 
we know about electricity and magnetism, making them foundationally important for elec-
tric circuits, transmission lines, radio transmission, antenna design, communications, fiber 
optics, microwave ovens, waveguides, and sensing. While the details of these equations are 
beyond our scope of interest, what is important to note is that electric and magnetic fields 
are tightly coupled when they vary in time. This coupling, in fact, is the basis for the term 
electromagnetism. As E changes, the non-zero value of @E/@ t modifies the magnetic 
field; the changing value of B, in turn, modifies the electric field. From the first-order 
equations above, it is easy to derive second-order equations called the homogeneous 
electromagnetic wave equations:

 r2E 5 Pm 

@ 
2E

@ t 
2  (2.26)

 r2B 5 Pm 

@ 
2B

@ t 
2  (2.27)

where the Laplacian operator r2 5 r #r is the divergence of the gradient.‡ In these equa-
tions we have replaced P0 and m0 with the constants P and m appropriate for the medium, 

† James Clerk Maxwell (1831–1879) is widely considered one of the greatest physicists of all time.
‡ The gradient is covered in more detail in Section 5.3 (p. 234), while the Laplacian is discussed in Section 5.4.1 (p. 242).
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to emphasize that the equations are applicable to any simple (linear, isotropic,† and homo-
geneous), non-conducting medium containing no electric charge, which includes all media 
through which light travels, such as empty space, air, water, glass, or a variety of plastics. 
For non-metallic materials, m < m0 to an accuracy of one part in a billion, so we may safely 
assume m 5 m0. We will discuss the effects of P later in this section when we consider 
refraction.

Solutions to the homogeneous electromagnetic wave equations are electromagnetic 
waves. An electromagnetic wave consists of oscillating, coupled electric and magnetic fields 
propagating at a speed (phase velocity) of 1!Pm. The electric and magnetic fields are in-phase 
sinusoids (meaning they reach their maxima together) along the direction of propagation, 
and they are perpendicular not only to each other but also to the direction of propagation, 
so that E, B, and the propagation direction form a right-handed orthogonal set, as shown in 
Figure 2.38. For this reason such a wave is called transverse, hence the name transverse 
electromagnetic (TEM) wave. The polarization of the wave is described by the orienta-
tion of the fields. If the fields retain their direction as the wave travels, then the wave is said 
to be linearly polarized. Alternatively, if their direction changes (rotates) as the wave travels, 
then the wave is elliptically polarized (with circular polarization as a special case). In the 
latter case the handedness of the wave is the direction of the change in orientation, namely, 
whether the orientation rotates clockwise or counterclockwise. 

2.5.2 Radiometry and Photometry
To precisely describe the amount of energy transferred by electromagnetic radiation, several 
distinct quantities must be carefully defined. We begin by considering the simple example of 
a old-fashioned 60-watt incandescent light bulb radiating energy. The basic unit of energy is 
the joule (J), and the basic unit of power is the watt (W), which is defined as one joule per 
second. Therefore, this particular light bulb consumes 60 joules of energy per second, or 
equivalently, 60 watts of power. If all of this power were used for light (which it is not), then 
we would say that the radiant flux for the bulb is 60 watts. The integration of the radiant 
flux over a certain amount of time yields the total energy radiated by the light during that 
time, called radiant energy and measured in joules.

Oftentimes we are interested in the radiant flux in a particular direction. This quantity is 
known as radiant intensity, measured in watts per steradian 1W #  sr21 2 . Just as the radian 
is the unit of measure for a 2D angle, the steradian (sr) is the unit of measure for a 3D angle, 
also known as a solid angle.‡ Whereas a half-circle spans p radians, and a complete circle 

†  The term isotropic (from the Greek isos, equal, 1 tropos, way) means “the same in all directions.” The opposite 
term is anisotropic.

‡ The prefix ster- comes from the Greek word for solid, which is where we also get the word stereo.

Figure 2.38 Left: 
A transverse 
electromagnetic (TEM) 
wave with linear 
polarization. Right: A 
TEM wave with circular 
polarization. Based on D. 
K. Cheng. Field and Wave 
Electromagnetics. Addison 
Wesley, second edition, 
1989.

Magnetic
field (B)

Electric
field (E)

Direction of propagation
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spans 2p radians (the circumference of a unit circle), a hemisphere spans 2p steradians, 
and an entire sphere spans 4p steradians (the surface area of a unit sphere). Integrating the 
radiant intensity over all possible angles yields the radiant flux.

Now imagine a sphere centered at the light bulb. As the radius of the sphere increases, 
a point on the sphere gets farther from the light bulb and therefore receives less and less 
radiant intensity, because a constant solid angle yields a larger area on the sphere as the 
radius increases. This reduction motivates defining a new quantity, radiance, as the radi-
ant intensity divided by the cross-section area, measured in watts per steradian per square 
meter 1W #  sr21 #  m22 2 . Equivalently, radiance is the power per unit foreshortened area 
emitted into a unit solid angle. Along a ray of light emanating from the source, the radiance 
remains constant at all distances from the source. Therefore, radiance can be thought of as 
the amount of light along a ray traveling in any direction at any point in space.

Now suppose the light falls on a surface in the scene, such as the image sensor. The amount 
of radiant power that lands on a portion of the surface is called the irradiance, measured 
in watts per square meter 1W #  m22 2 . While radiance is a directional quantity, irradiance 
is not. Instead, it is the integration of the radiance of all incoming rays on an infinitesimal 
surface patch, after first considering the reduction in intensity due to foreshortening, 
which reduces the amount of incident light on the patch based on the angle between the 
surface normal and the incoming light ray. For example, if the light rays are parallel to the 
surface (that is, perpendicular to the surface normal), then the irradiance is zero because no 
light hits the surface.

These are the basic quantities of radiometry, which is the measurement of electro-
magnetic radiation, summarized in Table 2.3. Radiometry captures the rate at which light 
energy is emitted or absorbed when such power is sufficiently high that these quantities 
can be treated as continuous values, and when the light can be assumed to travel in straight 
lines according to geometrical optics. Radiometry is applicable not only to visible light but 
also to infrared, ultraviolet, and shorter wavelengths such as microwaves and radio waves. 
However, at high frequencies like X-rays and gamma rays, it is more appropriate to talk 
about individual photons, since the corpuscular nature of light makes the continuous quanti-
ties of radiometry less applicable.

Each quantity defined above also has a spectral version, namely spectral radiant flux, 
spectral radiant intensity, spectral radiance, spectral irradiance, and so forth. The 
spectral versions are normalized by wavelength, thus capturing the corresponding quantity 
per wavelength. If any spectral version is integrated over all wavelengths, it yields the non-
spectral version. The per wavelength contribution to any radiometric quantity is known as 
the spectral power distribution (SPD).

Related to radiometry is photometry, which is the measurement of electromag-
netic radiation after weighting each wavelength by the sensitivity of the human eye to 
that wavelength. For example, a radio wave might have large radiometric values but zero 
photometric values, since the human eye is not sensitive to radio waves. The basic unit in 

radiometry photometry meaning

radiant energy 1W #  s 2 luminous energy 1 lm #  s 2 energy

radiant flux (W) luminous flux (lm) power

radiant intensity 1W #  sr21 2 luminous intensity 1 lm #  sr21 2 power in a direction

radiance 1W #  sr21 #  m22 2 luminance 1 lm #  sr21 #  m22 2 power along ray

irradiance 1W #  m22 2 illuminance 1 lm #  m22 2 power incident on surface

TABLE 2.3 Quantities of radiometry and photometry. Note that W #  s 5 J, lm #  sr21 5 cd, lm #  m22 5 lux.
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photometry is the candela (cd), which is roughly the power emitted by one candle in any 
particular direction. Other units include the lumen (lm), which is a candela times a steradian, 
and lux, which is a lumen per square meter. By considering the sensitivity of the human eye, 
each radiometric quantity has a corresponding photometric quantity, with radiant replaced 
by luminous, and watt replaced by lumen.† Thus in photometry we have luminous energy 
instead of radiant energy, luminous flux instead of radiant flux, luminous intensity 
instead of radiant intensity, luminance instead of radiance, illuminance instead of irra-
diance, and so forth. Be sure not to confuse any of the precisely defined radiometric or 
photometric terms described here with the subjective term brightness, which refers to the 
perceptual sensation of light.

2.5.3 Blackbody Radiators
Electromagnetic radiation is closely connected with temperature. In our everyday experi-
ence, light sources such as incandescent bulbs, fire, and the sun are usually hot. Such light 
sources can be closely approximated as idealized objects known as blackbody radiators.‡ 
It may seem strange to use the term blackbody to refer to a brightly shining object, but the 
name stems from the fact that such an object absorbs all incident EM radiation, just as a 
completely black object absorbs all incident light. A blackbody radiator is in thermal equi-
librium with its surroundings, so that it emits and absorbs the same amount of EM radiation 
at any given wavelength (otherwise it would increase or decrease in temperature). Planck’s 
law expresses the spectral radiance of a blackbody radiator as a function of wavelength:

 Ll 1T 2 5
2 h c2

l5 1 e 

h c
l

 

k T 2 1 2
where h is the same Planck’s constant mentioned earlier,§ k < 1.38 3 10223 joules per 
kelvin 1 J #  K21 2  is Boltzmann’s constant,¶ and T is the absolute temperature. Blackbody 
radiance is plotted as a function of wavelength in Figure 2.39. The important aspect of this 
equation to note is that the amount of EM radiation emitted at any wavelength is based 
solely upon the constant temperature of the blackbody. This power per surface area is given 
by Stefan’s law (derived from Planck’s law) as sT  

4 in watts per square meter 1W #  m22 2 , 
where s 5 2p5k 

4/15c2h3 is Stefan’s constant.
Also derived from Planck’s law is Wien’s displacement law,* which says that the peak 

wavelength at which the most energy is radiated is inversely proportional to the tempera-
ture: lpeak 5 b/T, where b < 2.9 3 106 nm #  K is Wien’s displacement constant. At room 
temperature 1 27 8C < 818F 2 , the peak wavelength is 9.7 mm, which is very much in the far 
infrared band (recall that the visible spectrum ends around 0.7 mm). Because the energy is 
highly concentrated around the peak (approximately 70% of the energy emitted is between 
one half and twice the peak wavelength), the amount of energy in the visible band is effec-
tively zero. As the temperature of the blackbody increases, its intensity and frequency also 
increase, causing the peak wavelength to move from infrared to red to orange to yellow to 
white to blue to ultraviolet. Lower temperatures (red through yellow) are known as warm 
colors, while higher temperatures (bluish white) are known as cool colors. The difference 

†  For monochromatic light of 555 nm, 1 watt equals 683 lumens; at other wavelengths the conversion factor is 
multiplied by the photopic luminous efficiency function (LEF) described in Figure 2.9.

‡ Ludwig Boltzmann (1844–1906) was an Austrian physicist.
§ Section 2.2.1 (p. 33).
¶  Not all light sources are well modeled as blackbody radiators; light-emitting diodes (LEDs), for example, do 

not waste as much energy on heat because they do not emit significant amounts of infrared light.
* Wilhelm Wien (1864–1928) was a German physicist.
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between two light sources can be measured by taking the difference between the micro 
reciprocal degree (mired), defined as 106/ T, for each.

2.5.4 Interaction with a Surface
When an electromagnetic wave impinges on a surface, it interacts with the surface in one 
of three ways: the energy is either absorbed, reflected, or transmitted, as illustrated in 
Figure 2.40. Absorption turns the electromagnetic energy into other forms of energy, such 
as heat. Reflection and transmission, which allow the light to continue its journey, are more 
relevant to our purposes.

Reflection
An opaque surface is one that only absorbs and reflects light, with no transmission. At the 
extremes, there are two kinds of opaque surfaces, as shown in Figure 2.41. A specular surface 
is one in which incoming light from one direction reflects in only one direction. A specular 
surface is a good model for a completely smooth plane boundary. This is why if you take 
a piece of reflective material (a metal like aluminum or silver) and smooth it, you will get 

Figure 2.39 Blackbody radiance as a 
function of wavelength for different 
temperatures, using Planck’s law. T 5 80 8F

T 5 98.6 8F
T 5 200 8F
T 5 400 8F
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Figure 2.40 An EM wave 
interacts with a surface in one 
of three ways: absorption, 
transmission, or reflection. 

Transmission Absorption Reflection
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a mirror. When you look at a mirror, the light you see depends very much on the direction 
from which you are viewing. The reflection of a mirror is easy to model because the reflected 
radiance is equal to the incoming radiance, and the angle of incidence equals the angle of 
reflection. Glossy surfaces, such as the body of a polished automobile, are not pure mirrors but 
nevertheless reflect the incoming light in a small set of directions around the specular angle.

At the other extreme is a diffuse, or matte, surface, which reflects light in many direc-
tions due to either a rough surface shape or internal scattering of the light by molecules 
below the surface. An ideal diffuse surface that reflects equal luminance in every direction 
is called Lambertian.† Although the intensity of the light reflected from such a surface is 
proportional to the cosine of the angle between the surface normal and the direction of the 
incoming light ray, known as Lambert’s cosine law, this effect is canceled by the foreshort-
ening of the apparent area of the viewer. As a result, a Lambertian surface appears equally 
bright when viewed from any direction.

For a diffuse surface, the reflection coefficient r is the ratio of the reflected radiation to 
the incident radiation. It is a unitless number that ranges from 0 to 1, with 0 meaning that none 
of the radiation is reflected, and 1 meaning that all of it is reflected. The average reflection 
coefficient is known as the albedo (from the Latin albus, meaning “white”) of the surface, 
which also ranges from 0 to 1. A surface with albedo of 1 looks white, whereas albedo of 0 
looks black. Albedo is often used to describe the surface of the earth in different terrains: dark 
soil, for example, has an albedo as low as 0.05, while fresh snow has an albedo as high as 0.95.

Most real-world surfaces are not perfectly specular or diffuse. The intensity of light 
seen from everyday surfaces can usually be modeled as a weighted combination of the 
two extreme phenomena. The Phong reflection model is a widely-used empirical model 
that combines specular and diffuse reflection terms, along with a term for ambient light, to 
model the energy due to interreflections of other surfaces in the scene. Interreflections 
occur when light bounces off one surface, then another, then another, and so on, which cause 
regions to be illuminated that otherwise would be in shadow. More generally, a surface can 
be modeled by the bidirectional reflectance distribution function (BRDF), which is 
defined as the ratio of the radiance to the irradiance of a surface, measured in sr21:

 BRDF 1vi, vr 2 5
Lr 1vr 2
Ei 1vi 2  (2.28)

where Ei is the incoming irradiance, Lr is the outgoing (reflected) radiance, and vi and 
vr are the incoming and outgoing directions, respectively.‡ In the case of an ideal diffuse 

† Johann Heinrich Lambert (1728–1777), was a versatile Swiss scientist and mathematician.
‡  The directions are specified by two numbers indicating the angles in spherical coordinates, vi 5 1 ui, fi 2  and 

vr 5 1 ur, fr 2 . 

Figure 2.41 In specular 
reflection, incident light 
reflects in a single direction 
(as in a mirror). In diffuse 
reflection, incident light 
reflects in all directions 
equally. 

Specular Reflection Diffuse Reflection
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surface, the BRDF is a single number rb, which is related to the diffuse reflectance by a 
factor of p: r 5 prb. The BRDF is symmetric in the incoming and outgoing directions, 
so that BRDF 1vi, vr 2 5 BRDF 1vr, vi 2 , which is known as the Helmholtz reciprocity 
principle,† shown in Figure 2.42.

Transmission
Light that is neither absorbed nor reflected by the surface is transmitted through it. If light is 
transmitted through the material without being scattered, then the material is  transparent. 
On the other hand, a translucent material also allows light to pass, but the internal structure 
of the material causes scattering of the light rays. Either way, when the light hits the bound-
ary of the surface, its speed changes from 1!m0P1

 to 1!m0P2
, where P1 and P2 are the permittivi-

ties of the two media, assuming (as before) that m1 5 m2 5 m0.‡ As a result, the angle of the 
light with respect to the surface changes according to Snell’s law of  refraction, illustrated 
in Figure 2.43, which says that at the interface between two dielectric media the ratio of the 
sines of the angles is equal to the ratio of these speeds:

 
sin ut

sin ui
5 ÅP1

P2
5

n1

n2
 (2.29)

where ui is the angle between the incident light ray and the surface normal, ut is the 
angle between the transmitted light ray and the surface normal, and n1 5 "P1/P0 and 
n2 5 "P2/P0 are the indices of refraction. This bending of the light according to Snell’s 
law is the basic principle behind a lens.

When light passes from a higher permittivity to a lower one, that is, when n1 . n2, a 
surprising possibility arises. Rearranging the terms reveals

 sin ut 5
n1

n2
 sin ui (2.30)

†  Hermann von Helmholtz (1821–1894) made important contributions to diverse areas of science, including visual 
perception, color science, electrodynamics, and thermodynamics.

Figure 2.42 The bidirectional reflectance distribution function (BRDF) is a model of the reflectance of a surface as a function of the 
incoming and outgoing directions. According to the Helmholtz reciprocity principle, the BRDF outcome does not change if the direction 
of the light ray is reversed. 

Normal

vi
vo

Normal

vo
vi

‡  Note that the speed of the light is not constant. Rather, it is the speed of light in a vacuum that is the well-known 
fundamental constant in nature: c 5 1!P0m0

5 299, 792, 458 meters per second.
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so that the right hand side of the equation can be greater than 1, in which case ut does not 
exist at all! This is called total internal reflection, and it occurs when ui is greater than a 
certain critical angle that depends on the ratio n1/n2. Total internal reflection is the mecha-
nism behind fiber optics, in which a transparent core is surrounded by a material with a 
lower index of refraction, allowing light to pass through the fiber by continuous reflections 
with almost no loss. A natural example of this phenomenon is the mineral ulexite, which 
contains fibrous compact veins that act as fiber optic cables, transmitting light from one 
surface to the other. When the rock is polished on both sides and placed on top of, say, a 
newspaper, the words seem to leap to the top of the stone, as shown in Figure 2.44 — hence 
the nickname “television stone.”

Other Phenomena
Our brief tour in this section has only begun to explore the rich and complex capabilities of 
electromagnetic waves. For example, when the dimensions of objects are small compared 
with the wavelength of light, the wavelike properties of light become important, allow-
ing light to bend around the edges of an object or through tiny slits, causing diffraction 
and interference between different waves. There are two types of mathematical models 
commonly used to model diffraction: Fresnel diffraction describes what happens when 
the light wave is near the object, while Fraunhofer diffraction applies to plane waves at a 
distance.† Another phenomenon is iridescence, which occurs when a surface appears to 
change color due to the viewing angle, as in soap bubbles, peacock feathers, or some but-
terfly wings. When the material is anisotropic so that a ray of light is split into two rays, 
we have birefringence, a phenomenon exploited by a variety of applications. Circular 

† Pronounced fray-NELL and FROWN-hoof-uh.

Figure 2.43 Snell’s law of 
refraction (left) and total 
internal reflection (right). Note 
that 48.8 degrees is the angle 
of total internal reflection 
for water (assuming index of 
refraction = 1.33). Based on 
http://www.timbercon.com/
Total-Internal-Reflection.html
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Figure 2.44 Ulexite (television stone) is a naturally 
occurring rock with internal veins that act like fiber 
optic cables. 
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2.6 Further Reading 65

Excellent overviews of the human visual system can 
be found in the works of Wandell [1995] and Palmer 
[1999]. Another excellent reference on the inner work-
ings of vision is that of Hubel [1988]. A recent survey 
on the human visual system is provided by Krüger et al. 
[2013]. Pioneering work in this field is too numerous to 
cite, but the research studies on receptive fields by Hubel 
and Wiesel [1962] and Olshausen and Field [1996] are 
particularly well known and relevant. The irreducible 
complexity of a photoreceptor is well argued by Behe 
[1996], while the explanation of the need for an inverted 
retina can be found in Gurney [1999]. The cone funda-
mentals in Figure 2.2 come from the data provided online 
by Stockman and colleagues.†

The plenoptic function is due to Adelson and Bergen 
[1991], while the light field was independently pro-
posed by and Levoy and Hanrahan [1996] and Gortler 
et al. [1996] (where it was called the “lumigraph”); all 
of these can be traced to Gibson’s ambient optic array 
[Gibson, 1966] and even earlier to the integral camera 
of Lippmann near the turn of the 20th century. And in 
fact the term “light field” itself was coined by Gershun 
[1939]. Further detail regarding the sampling of the light 
field can be found in Ng [2006].

Standard image formation and acquisition is treated 
in any computer vision book, such as Forsyth and Ponce 
[2012] or Szeliski [2010]. Gamma compression is 

described in detail by Poynton [2003, 1998], who also 
maintains an online Gamma FAQ.‡ A complementary 
treatment of gamma compression can be found in the 
work of Stokes et al. [1996]. A description of how pixels 
are stored in a frame buffer, including resolution, color 
channels, and so forth, can be found in Glassner [1990]. 
Pawley [2006] provides a detailed overview of the imag-
ing process in the context of microscopy. Vignetting is 
described by Goldman [2010], while intrinsic images 
are due to Barrow and Tenenbaum [1978] and investi-
gated by Weiss [2001], Tappen et al. [2005], and Grosse 
et al. [2009]. For recent work on intrinsic images, see 
Imber et al. [2014]. Further information regarding CCD 
sensing and high dynamic range imaging can be found 
in Debevec and Malik [1997]. Another important consid-
eration that we did not have space to consider involves 
atmospheric effects; see, for example, the dark channel 
prior of He et al. [2009].

Electromagnetic waves are the subject of any standard 
text on electromagnetism, such as Cheng [1989]. Light 
and the electromagnetic spectrum are covered in standard 
physics texts, such as Gettys et al. [1989]. Radiometry and 
photometry are difficult subjects to grasp, with subtle dif-
ferences between the terms being extremely difficult to 
perceive for the uninitiated. For more information on the 
subjects, the reader may wish to consult the Illumination 
Fundamentals booklet from the Lighting Research Center.§

birefringence is caused by applying a magnetic field that changes the relative speed between 
left and right circularly polarized waves, known as the Faraday effect. Luminescence is 
the emission of light by a method other than heat, such as by a light-emitting diode (LED), 
which relies on electroluminescence. Other forms of luminescence include fluorescence, 
in which the wavelength of light changes upon reflection, and phosphorescence, when 
there is a time delay between the absorption and emission. Scintillation is the twinkling or 
flickering of a light source, including the flash of light produced by an ionizing event, used 
in the sensing mechanism of positron emission tomography (PET). As you can see from 
these examples, electromagnetic waves exhibit a variety of phenomena, many of which 
are useful in practical applications, beyond the simplifying assumptions that we normally 
consider when studying light rays.

2.6 Further Reading

† http://www.cvrl.org.
‡ http://www.poynton.com/PDFs/GammaFAQ.pdf.
§ http://www.opticalres.com/lt/illuminationfund.pdf.
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66 Problems

PROBLEMS

2.1 What is unusual about vertebrate photoreceptors, compared with most sensory 
receptors?

2.2 Explain the purpose of an inverted retina in the human eyeball. Give two additional 
reasons why the inverted retina does not cause significant distortion in the image.

2.3 List three parts of the human eyeball that refract light.

2.4 What are the actual names of the three types of cones, which are colloquially called 
red, green, and blue?

2.5 Define horopter.

2.6 Explained what is meant by foveated vision.

2.7 How do we know that the original signal captured by the rods is compressed by sub-
sequent cells before leaving the eyeball?

2.8 True or false: Your right eye is mapped to the left half of your brain, while your left 
eye is mapped to the right half of your brain.

2.9 Match each term on the left with with the lighting condition on the right.

scotopic vision sunlight

photopic vision moonlight

mesopic vision starlight

2.10 Cones do not work in the dark, because they are not sensitive enough. What about 
the converse: Do rods produce meaningful signals in everyday well-lit conditions? Why or 
why not?

2.11 Draw a labeled diagram of the human visual system, including at least ten parts 
indicated in bold in the text.

2.12 Why would it be tempting to conclude that short (blue) wavelengths are less important 
to the human visual system? Why is this conclusion false?

2.13 Suppose the following pairs of numbers indicate the luminances of the left and right 
halves of a piece of paper (ignore units): 100/101, 200/201, 300/301, 150/160, 250/260, 
350/360. Which can be discerned?

2.14 What is a receptive field?

2.15 Which cells in the visual pathway transform the signal similar to the Laplacian of 
Gaussian (LoG)?

2.16 The axons of which cells comprise the optic nerve?

2.17 What is unique about the lobster eye?

2.18 True or false: The speed of light is constant no matter what medium it is passing 
through.

2.19 Which has a longer wavelength: red light or blue light?

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203









Problems 67

2.20 Suppose a lens is made of a high-index plastic whose index of refraction is 1.74. If 
the speed of light is approximately 3 #108 m/s in a vacuum, what is the speed of light (phase 
velocity) as it passes through the lens?

2.21 What is the plenoptic function?

2.22 Describe the essential elements of a pinhole camera.

2.23 What are the wavelengths of visible light?

2.24 Which has a longer wavelength: radio waves or X-rays? Which is more dangerous, 
and why?

2.25 You are sitting at a stoplight listening to 102.1 FM on your old-fashioned radio, get-
ting a weak signal. You wish to roll the car to improve the signal. How far must you roll to 
move one wavelength? What is the ratio of this wavelength to that of green light?

2.26 Is scaled orthographic projection more appropriate for a zoom lens or a fisheye lens? 
Explain your answer.

2.27 Suppose we have a symmetric thin lens composed of two sections of a sphere glued 
together, where the radii of both sides are equal. Explain why 1 1

r1
2 1

r2
2  in Equation (2.5) 

is not equal to zero.

2.28 Apply the nonlinear transfer function from both Rec. 709 and sRGB in Equations 
(2.22) and (2.23) to the values L 5 0.2, 0.4, 0.6, and 0.8. Compute the difference for each 
value as a percentage of the answer for Rec. 709.

2.29 Will gamma compression become obsolete now that CRT displays are obsolete? Why 
or why not?

2.30 Specify the two sections of the modified gamma function with exponent g 5 0.5 and 
threshold t 5 0.1.

2.31 Explain the idea of effective gamma.

2.32 What is the name of the most popular color filter array (CFA)?

2.33 Explain the difference between a field and a frame of video.

2.34 List some similarities and differences between CCD and CMOS sensors.

2.35 How much is a CMOS sensor affected by blooming?

2.36 Why does black have the value 16 and not 0 in a digital image?

2.37 Explain what is meant by a Lambertian surface. What is albedo? Which is more likely 
to be Lambertian: a piece of cloth or a shiny piece of metal?

2.38 Which radiometric quantity is appropriate for a ray of light? What is the correspond-
ing photometric quantity?

2.39 Explain why a thermal infrared camera is able to measure the heat emanating from 
people and animals.

2.40 Suppose I am standing on the shore looking at a body of water. If the water has an 
index of refraction of 1.33, at what angle will I experience total internal reflection? How 
does the answer change if I am underwater looking up? In both cases, express the angle 
with respect to the vertical axis.
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2.41 A light field, which is 4D, can be represented as a 2D array of tiny 2D images. Indeed, 
this is the representation used by a light field camera. Explain how a 2D array of microlenses 
placed in front of the image sensor might be able to accomplish this.

2.42 Mathematically show the two sufficient conditions for scaled orthographic projec-
tion to closely approximate perspective projection. (Hint: Show from Equations (2.1)–(2.2) 
that bounding the error 0  f x w

z w 2 f x w
z 0
0 , P for some nominal depth z 0 implies x

z 0
 

0 dz 0
z 0 1 dz

# P
f , 

where z 5 z 0 1 dz, and P is a constant. Then interpret the result in terms of the two suf-
ficient conditions.)

2.43 Suppose a person is standing in front of a pinhole camera so that their face occupies 
a certain width in the image. If the person moves laterally so that the perpendicular distance 
to the camera is maintained, does the face width in the image change? Why or why not?

2.44 Consider two thin lenses, both symmetric and made of the same material. If one lens 
has twice the focal length of the other, what is the relationship between their radii?

2.45 In the case of a thin lens, what condition is necessary in order for a distinction between 
the focal points and nodal points to be important?

2.46 Suppose a camera has an f-number of 8. What is the aperture, expressed as a function 
of f ? What is the aperture of a camera whose light gathering ability is twice as great, also 
expressed as a function of f ?

2.47 List the four types of vignetting. Under what conditions are they important?

2.48 List the three ways of transferring energy. Of these, which one can travel through a 
vacuum?

2.49 What is the name of the set of equations that underlie all applications using 
electromagnetism?

2.50 Derive the homogeneous vector wave equations in Equations (2.26)–(2.27) from 
Maxwell’s equations in Equations (2.24) – (2.25). (Hint: It is not necessary that you 
understand what the divergence and curl operators actually do. Simply take the curl of 
(2.24), and apply the fact that the curl operator is linear. You will need the vector identity 
r 3 r 3 E 5 r 1r #E 2 2 r2E, and similarly for B.)
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In this chapter we discuss some of the simplest ways to transform an image into another image. These transformations 
fall into one of two types. In a point transformation, a pixel’s value is changed solely based upon its original value, 
without changing its location within the image. We consider several types of point transformations, such as graylevel 

transformations in which the pixel values are scalars, multispectral transformations that operate on images with mul-
tiple channels, and multi-image transformations that operate on more than one image. In a geometric transformation, 
the location of a pixel changes from the input image to the output image, but the value of the pixel does not change. 
Our discussion of geometric transformations includes both simple transformations that involve a one-to-one mapping 
from input to output pixels as well as more complex transformations that require interpolation.

C H A P T E R 3
Point and Geometric 

Transformations

3.1 Simple Geometric Transformations
We begin by considering simple geometric transformations in which the output pixel is 
dependent only upon a single input pixel. More general geometric transformations are 
considered later in the chapter.

3.1.1 Flipping and Flopping
Perhaps the simplest geometric transformation is to reflect the image about a horizontal or 
vertical axis passing through the center of the image, as shown in Figure 3.1. If the axis is 
horizontal, then the transformation flips the image upside down; whereas if it is vertical, 
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70 Chapter 3 • Point and Geometric Transformations

then the transformation flops the image to produce a right-to-left mirror image. A flip fol-
lowed by a flop (or equivalently, a flop followed by a flip, since order does not matter here) 
is referred to as a flip-flop.†

Consider, for example, the following 3 3 3 grayscale image and its reflections about the 
horizontal and vertical axes:C128 78 174

181 48 77
109 49 138

S FLOP
S  C174 78 128

77 48 181
138 49 109

S
T FLIPC109 49 138

181 48 77
128 78 174

S
In this example, flipping swaps the first and last rows, whereas flopping swaps the first 
and last columns. More generally, recall that for an arbitrarily sized width 3 height image, 
the columns are x 5 0, 1, c, width 21, while the rows are y 5 0, 1, c, height 21. 
Thus, all pixels in the first row have coordinates (x,0), while all pixels in the last row have 
coordinates 1 x, height 21 2 ; all pixels in the second row have coordinates (x,1), while all 
pixels in the penultimate (next-to-last) row have coordinates 1 x, height 22 2 ; and so on. 
Therefore, flipping involves swapping row y with row height 2 1 2 y, while flopping 
involves swapping column x with column width 2 1 2 x, as illustrated in Figure 3.2. 
If we let (x, y) be the coordinates of an input pixel, and 1 x r, y r 2  the coordinates of the cor-
responding output pixel, then the relationship between these coordinates can be expressed 
mathematically as follows:

x r 5 x        y r 5 height 2 1 2 y    1 flip 2   (3.1)

x r 5 width 2 1 2 x    y r 5 y              ( flop) (3.2)

Using these equations, the transformations are expressed as functions that define the map-
ping between each input pixel I (x,y) and its corresponding output pixel I r 1 x r, y r 2 :
 I r 1 x, height 2 1 2 y 2 5 I 1 x, y 2  1 flip, forward mapping 2   (3.3)

 I r 1width 2 1 2 x, y 2 5 I 1 x, y 2  1 flop, forward mapping 2   (3.4)

where in each case I is the input image and I r is the output image. These equations, known 
as forward mappings, instruct how to compute the destination coordinates from the source 
coordinates. Rearranging the equations yields inverse mappings, in which the source 
coordinates are computed from the destination coordinates:

† The terms flip and flop are widely used in the graphics community; the term flip-flop is introduced here as a natural consequence.

Figure 3.1 An image, 
and the result of 
flipping, flopping, 
and flip-flopping.

Image Flip Flip-flopFlop Sta
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3.1 Simple Geometric Transformations 71

 I r 1 x r, y r 2 5 I 1 x r, height 2 1 2 y r 2 1 flip, inverse mapping 2   (3.5)

 I r 1 x r, y r 2 5 I 1width 2 1 2 x r, y r 2  1 flop, inverse mapping 2   (3.6)

Although both the forward and inverse mappings are equivalent to each other in the simple 
case of flipping and flopping, the distinction between them is important with more compli-
cated transformations, as we shall see later.

Throughout this book we will be presenting a variety of different algorithms to pro-
cess images. To capture these algorithms precisely we present them using pseudocode. 
Pseudocode (which literally means “false code”) is a compromise between the two extreme 
alternatives of explaining an algorithm in human language (which leads to ambiguity) and 
providing actual working code (in which uninteresting details obscure the important steps). 
Pseudocode allows us to precisely express the steps of an algorithm in a manner detailed 
enough to aid implementation, but independently of any particular programming language.

The pseudocode for the algorithms to flip and flop an image using the forward mapping 
are shown as the procedures FlipImage and FlopImage in Algorithms 3.1 and 3.2, respec-
tively. Each of these procedures takes one input parameter, namely the image I, which can 
be of any type (grayscale, RGB, floating-point, or otherwise), and each procedure produces 
exactly one output, namely the upside-down or mirror-reversed image I r. The comments, 
which are set apart by a right-facing triangle (➤), help to explain what each line of the 
pseudocode is doing, although these particular procedures are so simple that there is really 
no need for comments at this point. Line 1 allocates memory to store the output image; we 
will often omit this step and assume that memory has already been allocated. Line 2 indi-
cates a “for loop” over all the pixels in the image. In this line the image is treated as a set, 
so that 1 x, y 2 [ I means a pixel in the image. Line 2 is therefore a compact way of saying, 
“for each pixel in image I,” which in many programming languages would be expressed as 
two separate for loops, one over x and another over y:

for y d 0 to height21 do

for x d 0 to width21 do

Figure 3.2 To flip an image 
(turn it upside-down), 
swap each row y with its 
corresponding row height 
2 1 2 y. Similarly, to flop 
an image (produce a mirror 
version), swap each column 
x with its corresponding 
column width 2 1 2 x.

Image

Image

Flip

Flop

height–1–y

width–1–x

Upside-down

Mirror

y

x
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72 Chapter 3 • Point and Geometric Transformations

or equivalently using a single for loop over the 1D index using Equation (1.3):

 for i d 0 to width #  height21 do

However, we use the set notation 1 x, y 2 [ I to simplify the presentation and to emphasize 
that the order in which the pixels are processed in this case does not matter. In Line 3 the 
image is treated as a 2D array, so that I (x, y) yields the value of pixel (x, y). This value is 
then copied to a different location in the output image I r. The left arrow 1 d 2  denotes the 
setting of a variable, performing the same role in our pseudocode as the equal sign 15 2  
in most programming languages. This notation should help to avoid confusion, because 
incrementing a variable, for example, will be written in our pseudocode as x d x 1 1 (or 
x d1 1) rather than x 5 x 1 1, which is not a valid mathematical statement. Once all pixels 
have been transformed, the resulting image is returned in Line 4.

3.1.2 Rotating by a Multiple of 90 Degrees
Another important geometric transformation is to rotate the image. Later in the chapter we 
will consider arbitrary rotation angles, but for now let us limit ourselves to rotations that are 
multiples of 90 degrees about the center of the image, which simplifies the problem consid-
erably by ensuring that the transformation is a one-to-one mapping from pixels in the input 
image to those of the output image. Figure 3.3 shows the result of rotating an image by mul-
tiples of 90 degrees. Note that rotating an image by 180 degrees is equivalent to a flip-flop.

Consider, for example, the clockwise 90-degree rotation of a width 3 height image, 
as illustrated in Figure 3.4, where each pixel (x, y) in the input image maps to the pixel 1 x r, y r 2  in the output image. From the figure it is not hard to see that the dimensions of the 
new-width 3 new-height output image are swapped with respect to those of the input image: 
new-width 5 height and new-height 5 width; and that I(x, y) maps to I r 1 height 2 1 2 y, x 2 , 
so that x r 5 height 2 1 2 y and y r 5 x, or

ALGORITHM 3.1 Flip an image by reflecting about a horizontal axis

FlipImage (I)

Input: image I of size width 3 height
Output: upside-down image I r

1 I r d  AllocateImage(width, height) ➤ Allocate memory for output image.
2 for 1 x, y 2 [ I do ➤ For each pixel in input image,
3    I r 1 x, height 2 1 2 y 2 d I 1 x, y 2  set corresponding pixel in output image.
4 return I r ➤ Return output image.

ALGORITHM 3.2 Flop an image by reflecting about a vertical axis

FlopImage (I)

Input: image I of size width 3 height
Output: mirror-reversed image I r

1 I r d  AllocateImage(width, height) ➤ Allocate memory for output image.
2 for 1 x, y 2 [ I do ➤ For each pixel in input image,
3   I r 1width 2 1 2 x, y 2 d I 1 x, y 2  set corresponding pixel in output image.
4 return I r ➤ Return output image.
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3.1 Simple Geometric Transformations 73

 I r 1 height 2 1 2 y, x 2 5 I 1 x, y 2    (3.7)

which is the forward mapping. Alternatively, we can rewrite the correspondence as x 5 y r 
and y 5 height 2 1 2 x r, leading to the inverse mapping:

 I r 1 x r, y r 2 5 I 1 y r, height 2 1 2 x r 2    (3.8)

As with flipping and flopping, these two approaches are equivalent since rotating about a 
multiple of 90 degrees is a one-to-one mapping.

Figure 3.3 An image 
rotated by 0, 190, 290, 
and 180 degrees.

08 1908 2908 1808

Figure 3.4 To rotate an image 
clockwise by 90 degrees, the 
pixel (x, y) in the input image is 
mapped to (x’, y’) in the output 
image. From the drawing, it 
is easy to see that x’ 5 new-
width 21 2 y 5 height  
2 1 2 y, and y’ 5 x.

width

Rotate 90°

x

y
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EXAMPLE 3.1 Rotate the following 3 3 2 grayscale image clockwise by 90 degrees, using both forward 
and inverse mapping approaches:

I 5 B105 90 35
228 207 52

R
Solution Considered as a forward mapping, Equation (3.7) indicates that the pixel at I(0,0) maps 

to I r 1 2 2 1 2 0, 0 2 5 I r 1 1, 0 2 ; the pixel at I(1,0) maps to I r 1 2 2 1 2 0, 1 2 5 1 1, 1 2 ; 
the pixel at I(2,1) maps to I r 1 2 2 1 2 1, 2 2 5 I r 1 0, 2 2 ; and so forth. Considered as 
an inverse mapping, Equation (3.8) indicates that the pixel at I r 1 0, 0 2  is mapped from 
I 1 0, 2 2 1 2 0 2 5 I 1 0, 1 2 ; the pixel at I r 11, 0 2  is mapped from I 1 0, 2 2 1 2 1 2 5 I 1 0, 0 2 ; 
the pixel at I r 1 1, 2 2  is mapped from I 1 2, 2 2 1 2 1 2 5 I 1 2, 0 2 ; and so forth. Either way, 
the result is as follows:B105 90 35

228 207 52
R  

ROTATE CLOCKWISE

h
 C228 105

207 90
52 35

S
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74 Chapter 3 • Point and Geometric Transformations

Similar reasoning can be applied to other multiples of 90 degrees. If we let 90m be the 
clockwise rotation angle, where m is an integer, then only four possible cases exist: A clock-
wise rotation of 90 degrees (the case we just considered in detail) occurs if the remainder 
of dividing m by 4 is 1, a counterclockwise rotation of 90 degrees occurs if the remainder 
is 3, a rotation of 180 degrees occurs if the remainder is 2, and no rotation occurs if the 
remainder is 0. Note that the image dimensions are swapped when the rotation is either 
clockwise 908 or counterclockwise 908, whereas the image dimensions are unchanged when 
the rotation is either 08 or 1808. The pseudocode for these cases, using inverse mapping, is 
shown in Algorithm 3.3, where we have used the notation of modulo arithmetic to specify 
the remainder, that is, mod(m,4) is the remainder of dividing m by 4.

3.1.3 Cropping an Image
Figure 3.5 shows the result of cropping a smaller region out of a larger image. The region 
to be cropped is specified by a rectangle, where the coordinates of the top-left pixel in 
the rectangle are given by (left, top), and the coordinates of the bottom-right pixel just 
outside the rectangle are given by (right, bottom). In other words, we adopt the common 
convention that the rectangle specified by the four parameters left, top, right, and bottom 
includes the pixels in the sets x [ 5left, c, right216 and y [ 5top, c, bottom216, 
so that the pixel (left,  top) is included but the pixel (right, bottom) is excluded. One 
advantage of this convention is that the number of pixels in the rectangle is given simply 
by 1 right 2 left 2 # 1 bottom 2 top 2 . The pseudocode of this procedure, which unlike the 
previous transformations considered is not one-to-one, is shown in Algorithm 3.4.

3.1.4 Downsampling and Upsampling
Another common operation is to downsample an image to produce a smaller image than the 
original. In general it is advised to smooth the image before downsampling to avoid aliasing 
artifacts, as discussed later in the chapter. For now, however, let us simply discard a subset of the 
pixels. For example, to downsample by a factor of 2, every other column and row are discarded:

 I r 1 x, y 2 5 I 1 2x, 2y 2            1 downsample by two 2   (3.9)

ALGORITHM 3.3 Rotate an image by a multiple of 90 degrees

RotateImageByMultipleOf90Degrees(I, m)

Input: image I of size width 3 height, signed integer m indicating the number of 90-degree turns
Output: image I r of size new-width 3 new-height, which is I rotated by 90m degrees clockwise

 1 case mod(m,2) of
 2   0: new-width d width, new-height d height ➤ Image dimensions remain the same.
 3   1: new-width d height, new-height d width ➤ Image dimensions are swapped.
 4 I r d  AllocateImage(new-width, new-height)
 5 for 1 x r, y r 2 [ I r do
 6   case mod(m,4) of
 7     0:   I r 1 x r, y r 2 d I 1 x r, y r 2  ➤ no rotation
 8     1:   I r 1 x r, y r 2 d I 1 y r, height 2 1 2 x r 2  ➤ 90 degrees clockwise
 9     2:   I r 1 x r, y r 2 d I 1width 2 1 2 x r, height 2 1 2 y r 2  ➤ 180 degrees
10     3:   I r 1 x r, y r 2 d I 1width 2 1 2 y r, x r 2  ➤ 90 degrees counterclockwise
11 return I r
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3.1 Simple Geometric Transformations 75

Similarly, an image can be upsampled to produce a larger image than the original. For 
best results, interpolation should be performed between pixel values to avoid pixelization 
artifacts, as discussed later. For now, however, simply replicate each pixel a certain number 
of times. For example, to upsample by a factor of 2, each row and column is copied twice:

 I r 1 x, y 2 5 I ajx
2
k , jy

2
k b      1 upsample by two 2  (3.10)

where the floor operator ensures that the input image is accessed by integer coordinates. 
Results of repeatedly downsampling and upsampling by a factor of two in both directions 
are presented in Figure 3.6.

Figure 3.5 An image and an 
automobile cropped out of the 
region of the image indicated by the 
red rectangle.

Image Cropped region

ALGORITHM 3.4 Crop an image

CropImage(I, left, top, right, bottom)

Input: image I, rectangle with corners (left, top) and 1 right21, bottom21 2
Output: cropped image I r of size new-width 3 new-height

1 new-width d right 2 left
2 new-height d bottom 2 top
3 I r d AllocateImage(new-width, new-height)
4 for 1 x r, y r 2 [ I r do
5  I r 1 x r, y r 2 d I 1 x r 1 left, y r 1 top 2
6 return I r

Figure 3.6 LEFT: An image and the result of downsampling by a factor of 2 and 4, respectively, in each direction. RIGHT: A cropped region 
and the result of upsampling by a factor of 2 and 4, respectively, in each direction.
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76 Chapter 3 • Point and Geometric Transformations

3.2 Graylevel Transformations
A geometric transformation, as we have just seen, changes a pixel’s location without chang-
ing its value. A complementary idea is that of a point transformation, which changes 
a pixel’s value without changing its location. To be a point transformation, it is required 
that the mapping be independent of the pixel’s coordinates as well as of the coordinates 
and values of all other pixels. In this respect point transformations can be considered as a 
special case of spatial-domain filtering, which we consider in detail later.† Spatial-domain 
filtering removes the latter restriction, allowing the output values to be dependent upon the 
values of other pixels.

The simplest type of point transformation is a graylevel transformation, which trans-
forms a grayscale input image into a grayscale output image:

 I r 1 x, y 2 5 f 1 I 1 x, y 2 2   (3.11)

where f is a function that maps the gray level of a pixel in the input image I to the gray 
level of a pixel in the output image I r. Graylevel transformations are used for many pur-
poses, such as contrast enhancement, nonlinearity correction, and binarization. If we let 
Z 0:255 5 50, 1, 2, c, 2556 be the set of integers between 0 and 255, inclusive, then for an 
8-bit grayscale image, f is a mapping from an element of the set Z 0:255 to another element 
of the same set, represented mathematically as

 f : Z 0:255 S Z
 0:255  (3.12)

and depicted graphically in Figure 3.7. Note that f is not dependent upon the coordinates x 
or y themselves but only upon the value of the image pixel.

Pseudocode to perform a graylevel transformation is presented as the generic procedure 
TransformGrayLevels in Algorithm 3.5. The procedure takes two input parameters: an 
image I and a function f  ‡. For each pixel in the image, the function f is called with the pixel’s 
gray level, and the return value of the function is then stored at the same location in the 
output image. After all pixels have been transformed, the resulting image is returned. Since 
the pixels’ locations do not change, and therefore x r 5 x and y r 5 y, there is no need to 
distinguish between the forward and inverse mappings, as is done with geometric 

† Chapter 5 (p. 215).
‡ In code f would be considered a function object or “functor.”

Figure 3.7 A graylevel transformation 
maps input gray levels to output gray 
levels. Based on http://www.unit.eu/cours/
videocommunication/Point_Transformation_
histogram.pdf
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3.2 Graylevel Transformations 77

transformations. Note that other variations of the same basic idea can be achieved by modi-
fying the procedure to suit the particular needs at hand. For example, instead of returning 
the output image by value, as is shown here, it may be preferable to pass a previously allo-
cated array into the procedure to store the output. Or, instead of using a separate output 
image to hold the result, an alternative would be to store the result in place, that is, to 
overwrite the pixel’s value using I 1 x, y 2 d f 1 I 1 x, y 2 2 . Such variations, which are common 
to all the pseudocode presented in this book, are left as exercises for the reader.

Graylevel transformations are also known as intensity transformations, but the former 
term has the slight advantage in emphasizing that the mapping is between discrete sets of 
values, as well as being more accurate when images are already gamma-compressed, in 
which case the values do not (strictly speaking) represent intensity anyway.† Nevertheless, 
the transformations presented in this section are easily extended to integer or floating-point 
images by simply removing the discretization, or to RGB images by applying the transfor-
mation to each color channel separately.

3.2.1 Arithmetic Operations
A useful class of graylevel transformations is the set of arithmetic operations, depicted in 
graphical form in Figure 3.8. The identity transformation maps each gray level to itself, 
thus rendering the image unchanged, whereas inversion reverses the gray levels to create 
a photographic negative. Addition and multiplication, as their names imply, simply add 
or multiply, respectively, a constant to each gray level, and the gain-bias transformation 
combines these two operations. Except for inversion, all of these transformations are 
monotonically nondecreasing, meaning that the ordering of gray levels does not change 
as a result of the mapping. That is, if z1 $ z2, then f 1 z1 2 $ f 1 z2 2 . When the transformation 

† Recall from Section 2.3.2 (p. 43) that gamma-corrected gray levels represent lightness, which is perceptually uniform; 
whereas intensity is proportional to the power in the electromagnetic wave, as explained in Section 2.5.2 (p. 58).

ALGORITHM 3.5 Transform gray levels of an image

TransformGrayLevels(I, f )

Input: grayscale image I, graylevel mapping f
Output: transformed image I r

1 for 1 x, y 2 [ I do
2   I r 1 x, y 2 d f 1 I 1 x, y 2 2
3 return I r

Figure 3.8 Arithmetic graylevel transformations. From left to right: identity, inversion, addition (bias), multiplication (gain), and gain-
bias transformation, where saturation arithmetic prevents the output from exceeding the valid range. Note that the slope remains 1 
under addition, while the mapping passes through the origin under multiplication.
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78 Chapter 3 • Point and Geometric Transformations

is monotonically non-decreasing, then the relative values of pixels remain the same, i.e., 
if one pixel is brighter than another in the input image, then it remains brighter in the 
output image.

Let us consider these operations in more detail. Apart from the identity function, the sim-
plest arithmetic operation is to invert each pixel’s value by subtracting it from the maximum 
gray level, which in the case of an 8-bit image leads to

 I r 1 x, y 2 5 255 2 I 1 x, y 2   (3.13)

resulting in an image that looks like the photographic negative of the input image. An 
example of graylevel inversion is shown in Figure 3.9, where the input and output gray 
levels of the pixels in a 5 3 5 window are

 E 7 21 25 38 76
27 45 58 88 155
28 46 96 163 216
40 55 123 216 226
42 55 94 173 201

U INVERTGRAYLEVELS
h

 E248 234 230 217 179
228 210 197 167 100
227 209 159 92 39
215 200 132 39 29
213 200 161 82 54

U
Note that for each pixel, the input and output values sum to 255.

Another arithmetic operation is to add a constant number, say b, to each pixel’s value:

 I r 1 x, y 2 5 I 1 x, y 2 1 b  (3.14)

which is one way to brighten a dark image. If I r were a floating-point or integer-valued 
image, we would have nothing more to say. But for grayscale images with a finite number 
of bits devoted to each pixel, we must concern ourselves with the possibility of overflow, 
which occurs when the result is too large to fit into those bits. For example, adding 75 to an 
8-bit pixel whose value is 200 would result in the value 275, which would exceed the stor-
age capacity of the pixel. The solution to this problem is to use saturation arithmetic in 
which results are clamped to the nearest valid value, leading to 200 1 75 5 255, which is 
obviously only valid if the plus sign is interpreted as saturation addition with a valid range 
of 0 to 255. As a result, we add an extra test to ensure that no value greater than 255 will 
attempt to be stored:

 I r 1 x, y 2 5 min 1 I 1 x, y 2 1 b, 255 2   (3.15)

Figure 3.9 An 8-bit grayscale 
image (left), and the inverted 
image obtained by subtracting 
each pixel from 255 (right). 
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3.2 Graylevel Transformations 79

An alternative approach to brightening or darkening an image is to multiply each pixel 
by a positive value:

 I r 1 x, y 2 5 cI 1 x, y 2   (3.17)

where c . 0 is a constant. As before, we must apply a minimum, 
I r 1 x, y 2 5 min 1 cI 1 x, y 2 , 255 2 , to prevent the result from exceeding the number of bits 
allowed for storage. If, in addition, c is a floating-point value and I r is a grayscale image, 
then we also must round the result to the nearest integer before storing.

Combining multiplication and addition yields the transformation

 I r 1 x, y 2 5 cI 1 x, y 2 1 b  (3.18)

where the constant c is called the gain and b is called the bias. Recall from the previous 
chapter that a standard television or computer monitor has two controls called the contrast 
and blacklevel (or brightness).†  Mathematically, the gain-bias transformation is identical 
to that of the contrast and blacklevel controls, as can be seen from comparing Equation 
(3.18) with Equation (2.13). Note that c plays the role of the contrast, while b governs the 
blacklevel. Together these two parameters are useful to increase both the overall gray levels 
as well as the contrast of a dark image. Figure 3.10 shows the effects of applying gain and 
bias to an image, using the pseudocode presented in Algorithm 3.6. Note that multiplication, 
which is implicit in the equation, is explicitly denoted using the asterisk (*) symbol in the 

† Section 2.3.2 (p. 43).

Moreover, if b is allowed to be negative (in which case the image will be darkened), an 
additional test is needed to ensure that negative results are clamped at zero. To handle 
the general case in which the sign of b is not known beforehand, clamping must occur at 
both ends:

 I r 1 x, y 2 5 min 1max 1 I 1 x, y 2 1 b, 0 2 , 255 2   (3.16)

Note that with saturation arithmetic, addition and subtraction are not necessarily inverses 
of each other.

EXAMPLE 3.2 Compute the result of adding either 100 or 2100 to the following 3 3 3 grayscale image, 
using saturation arithmetic:

I 5 C216 171 174
134 214 97
52 5 212

S
Solution For b 5 100, add 100 to each pixel and clamp the result at 255. For b 5 2100, subtract 

100 from each pixel and clamp the result at 0. These operations yield

 I 1 100 5 C255 255 255
255 255 197
152 105 255

S
 I 2 100 5 C116 71 74

34 114 0
0 0 112

S
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80 Chapter 3 • Point and Geometric Transformations

3.2.2 Linear Contrast Stretching
A closely related transformation specifies a line segment that maps gray levels between gmin 
and gmax in the input image to the gray levels grmin and grmax in the output image according 
to a linear function. Called linear contrast stretch, this transformation is given by

 I r 1 x, y 2 5
grmax 2 grmin

gmax 2 gmin
1 I 1 x, y 2 2 gmin 2 1 grmin  (3.19)

pseudocode to better reflect the appearance of actual code. Also note that addition and multi-
plication are special cases of this procedure, when c 5 1 and b 5 0, respectively. Grayscale 
inversion is also a special case, when b 5 255 and c 5 21, but in that case the procedure 
can be simplified since rounding and saturation arithmetic are not needed.

Figure 3.10 Improving 
image quality by applying 
gain or bias to an image. 
From left to right: Original 
image, brightened image 
by adding a constant value 1b 5 50 2 , higher contrast 
image by multiplying a 
constant value 1 c 5 2.5 2 . 
Source: Movie Hoop Dreams

ALGORITHM 3.6 Apply gain and bias to a grayscale image, using saturation arithmetic

ApplyGainAndBias(I, b, c)

Input: grayscale image I, constants b, c
Output: grayscale image I r with increased brightness and contrast

1 for 1 x, y 2 [ I do
2   I r 1 x, y 2 d MIN 1MAX 1ROUND 1 I 1 x, y 2 
c 1 b 2 , 0 2 , 255 2
3 return I r

EXAMPLE 3.3 Compute the output of Algorithm 3.6 on the following 3 3 3 grayscale image, with b 5 50 
and c 5 2, using saturation arithmetic:

I 5 C216 171 174
134 214 97
52 5 212

S
Solution For each pixel, we simply multiply the value by c and add b, then clamp the result:

APPLYGAINANDBIAS 1 I, 50, 2 2 5 C255 255 255
255 255 244
154 60 255

S
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3.2 Graylevel Transformations 81

It is easy to verify that that the minimum input value maps to the minimum output value, that 
is, I 1 x, y 2 5 gmin maps to I r 1 x, y 2 5 grmin. Similarly, the maximum input value maps to the 
maximum output value, that is, I 1 x, y 2 5 gmax yields I r 1 x, y 2 5 grmax. As a consequence, 
if some values in the input image are less than gmin or greater than gmax, then it is necessary 
to clamp the output of Equation (3.19) using min 1max 1 # , grmin 2 , grmax 2 .

One widely used application of linear contrast stretching is to display an integer-valued 
or floating-point image. Most displays require pixel values to be in the range of 0 to 255 for 
all color channels. Therefore, to maximize the output contrast, we usually take advantage 
of the full output range by setting grmin 5 0 and grmax 5 255, in which case Equation (3.19) 
simplifies to

 I r 1 x, y 2 5 ROUND ¢255 #  
I 1 x, y 2 2 gmin

gmax 2 gmin
≤   (3.20)

where gmin and gmax are the minimum and maximum of the values in the image, and round-
ing has been included for clarity. (Oftentimes, floating-point values are between 0.0 and 
1.0.) It is easy to see that this equation is identical to the gain-bias transform of Equation 
(3.18), with c 5 255/ 1 gmax 2 gmin 2  and b 5 2255 #  gmin/ 1 gmax 2 gmin 2 .

A piecewise linear contrast stretch, formed by combining several of these line seg-
ments, can model any graylevel transformation with arbitrary precision, given enough line 
segments. Figure 3.11 illustrates linear contrast stretching and piecewise linear contrast 
stretching.

EXAMPLE 3.4 Apply the piecewise linear contrast stretch shown in Figure 3.12 to the following 3 3 3 
grayscale image:

 C73 56 3
15 188 239
82 45 64

S
Solution From the figure, we see that the mapping contains 3 linear segments. In the first segment, 

any value less than 50 is mapped to 100. In the second segment, values between 50 and 
100 are linearly mapped to the range 100 to 200. In the third segment, values between 100 
and 255 are linearly mapped to the range 200 to 255. Plugging these values into Equation 
(3.19), the mapping can be expressed as

 I r 1 x, y 2 5 c100 if I 1 x, y 2 # 50
2 1 I 1 x, y 2 2 50 2 1 100 if 50 , I 1 x, y 2 # 100
55

155 1 I 1 x, y 2 2 100 2 1 200 if 100 , I 1 x, y 2   (3.21)

The value 64, for example, falls into the second category and therefore is mapped to 
2 1 64 2 50 2 1 100 5 128. The value 188 falls into the third category and is mapped to 1 55/155 2 #88 1 200 5 231 (after rounding). Applying the same procedure to the other 
values yields the following output image:C146 112 100

100 231 249
164 100 128

S
Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



82 Chapter 3 • Point and Geometric Transformations

3.2.3 Analytic Transformations
In addition to arithmetic operations, graylevel transformations can be specified using analytic 
functions such as the logarithm, exponential, or power functions, as shown in Figure 3.13:

 I r 1 x, y 2 5 log 1 I 1 x, y 2 2   (3.22)

 I r 1 x, y 2 5 exp 1 I 1 x, y 2 2   (3.23)

 I r 1 x, y 2 5 1 I 1 x, y 2 2 g   (3.24)

where g is a nonnegative real number and the necessary rounding and clamping are omitted 
for brevity. The logarithm is useful for squeezing images with a high dynamic range, such 
as the magnitude of the Fourier transform,† into a grayscale image with a small bit depth 
(typically 8 bits per pixel). The exponential is the inverse of the logarithm. The power func-
tion, as we saw in the previous chapter, is also known as the gamma function and is useful 
for gamma expansion 1g . 1 2  or gamma compression 1g , 1 2 . Most grayscale images 
are already gamma-compressed, in which case gamma expansion can be applied to convert 
it back into a radiance map by reversing the effects of gamma compression. On the other 
hand, if the image is in raw format, then gamma compression can be used to compress the 
radiance map into a perceptually uniform grayscale image.‡

† See Section 6.3.3 (p. 293) for an example.
‡ As explained in Section 2.3.2 (p. 43) , g < 2 for expansion, while g < 0.5 for compression.

Figure 3.11 Left: Linear contrast stretching maps all the gray levels between gmin and gmax to the range g’min to g’max . Middle: If g’min 5 0 
and g’max 5 255, then the full output range is used. RIGHT: A piecewise linear contrast stretch can model any graylevel transformation with 
arbitrary precision.
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Figure 3.12 An example piecewise linear 
graylevel mapping.
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3.2 Graylevel Transformations 83

3.2.4 Thresholding
Another important graylevel transformation is thresholding, which takes a grayscale 
image and sets every output pixel to 1 if its input gray level is above a certain threshold, or 
to 0 otherwise:

 I r 1 x, y 2 5 b1 if I 1 x, y 2 . t

0 otherwise
  (3.25)

where t is the threshold. The result is a binary image that, for some images at least, separates 
the foreground object(s) from the background, as shown in Figure 3.14. By convention, fore-
ground pixels are labeled ON, or 1, while background pixels are labeled OFF, or 0. Because 
thresholding produces a binary image as output, it is also known as binarization. Even 
though only one bit per pixel is needed to store a binary image, it is often more convenient 
to use one byte per pixel, setting the nonzero output values to 255 instead of 1, and storing 
the output as a grayscale image; this approach has the advantage that it allows the output to 
be displayed without scaling, and it also creates a bitwise mask in which all the bits in each 
pixel agree with each other, which can be used in masking.

3.2.5 Other Transformations
Several other transformations are worth mentioning. Density slicing (or graylevel slicing 
or intensity slicing), assigns all gray levels within a certain range to a certain value. For 
example, all gray levels between 128 and 164 might be mapped to 255. Figure 3.15 shows 
two versions of density slicing, one in which all gray levels outside this range are mapped 
to black (zero), and one in which all gray levels outside this range remain unchanged. Either 
way, density slicing is a useful way of highlighting some feature of interest that generates a 
relatively narrow range of values in the image. If multiple features generate multiple non-
overlapping ranges, then multiple slices can be combined, so that all gray levels within one 

Figure 3.13 Analytic graylevel 
mapping. From left to right: 
logarithm, exponential, 
gamma expansion 1g 5 2 2 , and gamma 
compression 1g 5 0.5 2 . 
All transformations are 
monotonically nondecreasing. 

Input

O
ut

pu
t

255

255

0
Input

O
ut

pu
t

255

255

0
Input

O
ut

pu
t

255

255

0
Input

O
ut

pu
t

255

255

0

Figure 3.14 An 8-bit 
grayscale image (left), 
and the binarized result 
obtained by thresholding 
with t 5 150 (right). 
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84 Chapter 3 • Point and Geometric Transformations

range map to one value, while all gray levels within another range map to a different value. 
We will see an example of density slicing in the next section.

Quantization, which discards one or more of the lower-order bits, is a staircase function 
as shown in Figure 3.16, with the number of stairs equal to 2b, where b is the number of bits 
per pixel retained. Since the higher-order bits typically contain more useful information than 
the lower-order bits, quantization is an easy way to reduce the storage requirements of an 
image without making it unrecognizable. For example, a pixel whose value is 163 (that is, 
10100011 in binary) in an 8-bit-per-pixel image can be stored as 160 (that is, 10100000 in 
binary) in a 6-bit-per-pixel image. Although some information has been lost, 160 is similar 
enough to 163 that for some purposes recognizability will not be significantly affected. Too 
much quantization, however, can seriously degrade the quality of the image, and there are 
better ways to achieve high compression ratios anyway,† so quantization should be used with 
care. An example of an image with varying levels of quantization is shown in Figure 3.17.

Bit-plane slicing is another transformation that is sometimes mentioned in the context 
of graylevel transformations. A bit plane is a binary image whose value at each pixel is the 
same as the appropriate bit in the corresponding pixel of the original image. As a result, the 
number of bit planes is equal to the number of bits per pixel. By convention these bit planes 
are called 0 through b 2 1, where b is the number of bits per pixel: Bit plane 0 is associated 
with the lowest-order bit, bit plane 1 with the second-lowest-order bit, and so on through bit 
plane b 2 1 with the highest-order bit. For an 8-bit-per-pixel image, b 5 8, so the highest-
order bits of all the pixels are stored in bit plane 7. Figure 3.18 shows the transformations 

† Compression is covered in Chapter 8 (p. 355).

Figure 3.15 Density slicing 
maps a range of input gray 
levels to a specific output gray 
level. All other input gray levels 
are either mapped to zero (left) 
or remain unchanged (right).
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Figure 3.16 Quantization discards the lower-order bits via a staircase function, with the number of stairs determined by the number of 
bits retained. From right to left: Only 1 bit is retained, so the gray levels in the dark half (less than 128) map to 0, while the gray levels 
in the bright half (above 127) map to 128 (binary: 10000000); 2 bits are retained, so gray levels are mapped to either 0, 64, 128, or 192; 
3 bits are retained, so all gray levels are mapped to either 0, 32, 64, 96, 128, 160, 192, or 224; all 8 bits are retained (no quantization, 
the identity function).
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3.2 Graylevel Transformations 85

for bit planes 4 through 7 (that is, the four highest-order bits), and Figure 3.19 shows the 
bit plane slices of an image. Note that bit plane 7 is identical to the result of thresholding 
the image with t 5 127 and multiplying by 255, and the lower-order bit planes resemble 
noise. Bit planes are not very useful on their own, but an image can often be represented 
with some fidelity by retaining the higher-order bit planes while discarding the lower-order 
bit planes, which is effectively quantization.

3.2.6 Lookup Tables
If the same transformation is to be performed many times, it is often more computation-
ally efficient to compute the transformation beforehand and store it as a lookup table 
(LUT). A lookup table is an array specifying the output gray level for any input gray 

Figure 3.17 From left-to-
right and top-to-bottom: 
An original 8-bit-per-pixel 
image of a fire hydrant and 
its quantized versions with 
7, 6, 5, 4, 3, 2, and 1 bit per 
pixel. Note that the image 
is quite recognizable with 
as few as 3 bits per pixel.

Figure 3.18 Bit-plane slicing transformations for the four highest-order bit planes. The transformation for bit plane 7 is identical, apart 
from scaling, to thresholding with a value of 127.
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Figure 3.19 From left-to-right and top-to-bottom: Bit planes 7, 6, 5, 4, 3, 2, 1, and 0 of the hydrant image. Note that the higher-order bit 
planes bear some resemblance to the original image, while the lower-order bit planes appear as noise. Bit plane 7 is identical, apart from 
scaling, to the quantization with 1 bit per pixel. The image reconstructed from the highest four bit planes (that is, 4 through 7) is shown 
in the bottom-left of Figure 3.17.

Sta
n B

irc
hfi

eld

Sta
n B

irc
hfi

eld

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



86 Chapter 3 • Point and Geometric Transformations

level. To transform an image, one simply needs to look up the appropriate output value 
in the LUT:

 I r 1 x, y 2 5 lut 3I 1 x, y 2 4   (3.26)

where lut is a one-dimensional array of 256 bytes (assuming an 8-bit image as input), and 
the bracket operator is used to select an element of the array. Any discrete graylevel trans-
formation can be implemented using a LUT.

3.3 Graylevel Histograms
A histogram is a simple but powerful technique for capturing the statistics of any type 
of data. The space in which the data reside is divided into bins, and the histogram records 
the number of occurrences in each bin. Throughout this book we will encounter a variety 
of different types of histograms, but in this section we focus on the graylevel histogram, 
which is a histogram of image gray levels. The space in which the gray levels reside is the 
discrete set of values 50, 1, c, 2556, and this space is divided into 256 bins, one for each 
gray level. The graylevel histogram is a one-dimensional array that stores for each gray level 
the number of pixels having that value. If n, is the number of pixels in the image with gray 
level ,, then the histogram h is an array with 256 values specified by

 h 3, 4 5 n,, , 5 0, c, 255

The graylevel histogram can be thought of as a summary of image data that captures only 
which gray levels occur, not where they occur. That is, all spatial information is discarded.

The computation of the graylevel histogram of an image is straightforward, as shown in 
Algorithm 3.7. After initializing each element of the array to zero, all the pixels in the image 
are visited, and each time a particular gray level is encountered, the appropriate element 
of the array is incremented. When the procedure has completed, each element of the array 
therefore stores the count of pixels for that particular gray level.

The normalized histogram h 3, 4 is computed from the histogram by simply dividing 
each value by the total number of pixels in the image. That is, if we let n ; width #  height, 
then h 3, 4 5 h 3, 4  /n for , 5 0, c, 255. The normalized histogram is the probability 
density function (PDF)† capturing the probability that any pixel drawn at random from 
the image has a particular gray level, so a255

,50
h 3, 4 5 1. Note that while h 3, 4 is an integer, 

h 3, 4 is a floating-point value. As shown in Algorithm 3.8, the computation of the normalized 
histogram requires just a single pass through the image.

† Since the image is discrete, h is technically a probability mass function (PMF), but the distinction is not important 
for our purposes.

ALGORITHM 3.7 Compute the graylevel histogram of an image

ComputeHistogram(I)

Input: grayscale image I
Output:  graylevel histogram h

1 for , d 0 to 255 do
2    h 3, 4 d 0
3 for 1 x, y 2 [ I do
4    h 3I 1 x, y 2 4 d11 ➤ h 3 I 1 x, y 2 4 d h 3 I 1 x, y 2 4 1 1
5 return h
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3.3.1 Interpreting Histograms
Graylevel histograms provide an easy way of visualizing the statistical properties of an 
image. The histogram of an image that is too dark, for example, will have large values for 
the bins with small indices and small values for bins with large indices. On the other hand, 
the reverse will be true for the histogram of an image that is too bright. If the image is 
overexposed, then a large number of pixels will be saturated at 255, which will be visible 
as a large spike in the histogram at h[255]. If the image has low contrast, then all the values 
in the histogram will be concentrated in a relatively narrow range, whereas a high contrast 
image will have values spread throughout the entire range. Some examples of images and 
their histograms are shown in Figure 3.20.

3.3.2 Histogram Equalization
Increasing the contrast of a low-contrast image involves distributing the pixel values of an 
image more evenly across the range of allowable values. We saw two approaches to achieve 
this effect in previous sections, namely, gain-bias modification and linear contrast stretch-
ing. The drawback of these methods is that they require someone to manually specify the 
parameters of the transformation. In this section we consider an alternate approach known 

ALGORITHM 3.8 Compute the normalized graylevel histogram of an image

ComputeNormalizedHistogram(I )

Input: grayscale image I
Output: normalized graylevel histogram h

1 h d  ComputeHistogram(I)
2 n d  width * height
3 for , d 0 to 255 do
4    h 3, 4 d h 3, 4  /n
5 return h

EXAMPLE 3.5 Compute the histogram and normalized histogram of the following 4 3 3 3-bit grayscale 
image:

I 5 C7 4 2 0
4 2 4 5
3 3 5 6

S
Solution Because it is a 3-bit image, there are only 23 5 8 possible gray levels. To compute the 

histogram, we simply count the number of times that each gray level appears in the image. 
The value 0 appears once, 1 appears not at all, 2 appears twice, 3 appears twice, 4 appears 
three times, and so forth. To compute the normalized histogram, each value in the histogram 
is divided by the total number of pixels in the image, which in this case is 4 #  3 5 12. The 
results are

 histogram: h 5 31 0 2 2 3 2 1 1 4
 normalized histogram: h 5 30.083  0.00  0.167  0.167  0.250  0.167  0.083  0.083 4
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as histogram equalization, which is completely automatic, extremely simple to imple-
ment, and parameter-free.

Histogram equalization first converts the PDF (captured by the normalized histogram) 
to a cumulative distribution function (CDF) by computing the running sum of the 
histogram:

 c 3, 4 5 a,
k50

 h 3k 4,  , 5 0, c, 255  (3.27)

The running sum can be computed efficiently by initializing the first element of the array 
according to c 30 4 5 h 30 4 and then updating c 3, 4 5 c 3, 2 1 4 1 h 3, 4 for each gray level ,.  
Once the CDF has been computed, a pixel with gray level , is simply transformed to 
, r 5 Round 1 255 #  c 3, 4 2 . The algorithm is straightforward, as shown in Algorithm 3.9, 
and an example is shown in Figure 3.21. Note that since the integral of a PDF is always 1, 
the CDF always evaluates to 1 at the largest value, and thus c 3255 4 5 1. As a result, the 
output , r is in the range from 0 to 255 as desired.

Figure 3.20 Images and 
their histograms. From left 
to right: an image with 
high contrast and many 
dark or bright pixels, a dark 
image with low contrast, 
and another high contrast 
image with good exposure. 
Note the spikes at 255 in 
the first and last images, 
indicating pixel saturation.

ALGORITHM 3.9 Perform histogram equalization on an image

HistogramEqualize(I)

Input: grayscale image I
Output: histogram-equalized grayscale image I r with increased contrast

1 h d COMPUTENORMALIZEDHISTOGRAM (I )
2 c d RUNNINGSUM 1 h 2
3 for 1 x, y 2 [ I do
4    I r 1 x, y 2 d Round 1 255 
 c 3I 1 x, y 2 4 2
5 return I r

RunningSum(a)

Input: 1D array a of length values
Output: 1D running sum s of array

1 s 30 4 d a 30 4
2 for k d 1 to length 2 1 do
3    s 3k 4 d s 3k 2 1 4 1 a 3k 4
4 return s
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3.3 Graylevel Histograms 89

Why does such a simple algorithm work? In other words, what is Line 4 (the heart 
of the algorithm) in HistogramEqualize doing? To gain some intuition, consider the 
example shown in Figure 3.22, in which we assume that the gray levels are continuous 
for simplicity. To emphasize their continuous nature, we will use z instead of , to des-
ignate a pixel value. The desired PDF p r 1 z 2 , which is the normalized histogram of the 
gray levels of the output image, should be flat. That is, given some constant d, the value 

e
ar1d

ar
p r 1 z 2 dz should be the same for any gray level a r. Since the algorithm uses the CDF 

q(z) of the original histogram to transform gray levels, this transformation is visualized 

Figure 3.21 The result of 
histogram equalization applied 
to an image. The increase in 
contrast is noticeable. The 
normalized histogram of the 
result is much flatter than 
the original histogram, but it 
is not completely flat due to 
discretization effects. Source: 
Movie Hoop Dreams.

EXAMPLE 3.6 Perform histogram equalization on the image of Example 3.5.

Solution The normalized histogram of the image was given by the previous example:

h 5 30.083 0.00 0.167 0.167 0.250 0.167 0.083 0.083 4
The cumulative histogram is obtained by computing the running sum of the normalized 
histogram:

c 5 30.083 0.083 0.250 0.417 0.667 0.834 0.917 1.00 4
Since it is a 3-bit image, the maximum gray level is ngray 5 23 2 1 5 7, so the map-
ping from input to output gray levels is determined by Round 1 7 #  c 3, 4 2 . For exam-
ple, gray level 2 maps to ROUND 1 7 #  0.250 2 5 ROUND 1 1.75 2 5 2, while gray level 4 
maps to ROUND 1 7 #  0.667 2 5 ROUND 1 4.67 2 5 5. This results in the following mapping: 
0 S 1, 1 S 1, 2 S 2, 3 S 3, 4 S 5, 5 S 6, 6 S 6, and 7 S 7, which yields the follow-
ing result: C7 4 2

4 2 4
3 3 5

S  
h

HISTOGRAMEQUALIZE
 C7 5 2

5 2 5
3 3 6

S
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90 Chapter 3 • Point and Geometric Transformations

in the lower-left plot of the figure, with gray level z along the horizontal axis transform-
ing to the new gray level z r 5 255 #  q 1 z 2  along the vertical axis. Since q is the integral 
of p, the area under the PDF for any interval corresponding to an output interval of d is 

e
q211ar1d2
q211ar2 p 1 z 2  dz 5 q 1 q21 1 a r 1 d 2 2 2 q 1 q21 1 a r 2 2 5 a r 1 d 2 a r 5 d. In other words, 

equally spaced intervals of width d along the axis of the new PDF capture equal numbers 
of pixels in the original PDF. The CDF thus provides a simple means of ensuring that an 
equal number of pixels contribute to an equally spaced interval in the output. Of course 
this analysis assumes that the gray levels are continuous — in practice the algorithm only 
produces an approximately flat output because of discretization effects.

An alternative, and slightly more mathematical, explanation is as follows. The goal is to 
apply a mapping z r 5 f 1 z 2  to convert the image I, whose normalized histogram is h, to the 
image I r, whose normalized histogram is h r. To maximize contrast, we want the normalized 
histogram to be flat, that is, h r 1 z 2 5 1, over all possible gray levels z. From basic prob-
ability theory, we know that if p(x) is a PDF over x and if y 5 f 1 x 2  is a transformation of 
the random variable x, then the PDF q(y) of the result is given by

 q 1 y 2 5 p 1 x 2 # 2dx
dy

2   (3.28)

Let the transformation f be the CDF of the input histogram:

 z r 5 f 1 z 2 5 c 1 z 2 5 2 
z

0
h 1 z 2 dz  (3.29)

where we assume 0 # z # 1 and 0 # z r # 1 for simplicity. Using Leibniz’s integral rule 
from calculus, the derivative is calculated as

 
dz r
dz

5
df 1 z 2

dz
5

d
dz

 B2z

0
h 1 z 2 dzR 5 h 1 z 2   (3.30)

Figure 3.22 Why histogram 
equalization works. In this 
example, the histogram of 
the original image is heavily 
weighted toward darker 
pixels. If we let the CDF be 
the mapping from the old 
gray level to the new one, the 
new PDF is flat and therefore 
weights all gray levels equally. 
This is because any interval of 
width d in the new histogram 
captures the same number 1d/255 2  of pixels in the 
original image. In this example 
the area within each orange 
region is identical. Note 
that discretization effects 
have been ignored for this 
illustration.
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Substituting z for x, z r for y, h for p, and h r for q into Equation (3.28) leads to

 h r 1 z r 2 5 h 1 z 2 # 2 dz
dz r

2 5 h 1 z 2  #  1

h 1 z 2 5 1   (3.31)

which is indeed the desired uniform distribution.

3.3.3 Histogram Matching
Instead of attempting to flatten the histogram as much as possible, sometimes the goal is 
to transform the histogram in a specific way. In this more general case, we wish to modify 
the image so that its histogram closely matches that of a given reference histogram. For 
example, we may have two images taken under different lighting conditions, and we wish 
to modify them so that they appear as if they had been taken under similar conditions. This 
procedure, called histogram matching (also known as histogram specification), is based 
on the same principle as that of histogram equalization.

Suppose we are given an image I with normalized graylevel histogram h, along with a refer-
ence normalized graylevel histogram href  

. Our goal is to apply a transformation to I to obtain 
an image I r whose normalized graylevel histogram is href  

. From Equation (3.29), we can apply 
the following transformations to flatten both h and href  

:

 z1r 5 c 1 z 2 5 2 
z

0
 h 1 z 2 dz   (3.32)

 z2r 5 cref 1 z r 2 5 2 
zr

0
 href 1 z 2 dz  (3.33)

The first equation transforms the gray level z in the input image to the gray level z1r in a 
histogram-equalized image. The second equation transforms the gray level z r in the output 
image to the gray level z2r in a histogram-equalized image. To make sure that z maps to z r, 
we simply set z1r 5 z2r, leading to the desired transformation:

 z r 5 f 1 z 2 5 cref
21 1 c 1 z 22   (3.34)

In other words, the inverse of the CDF of href  is applied to the CDF of h to yield the output 
gray level. The transformation is illustrated in Figure 3.23.

The pseudocode for histogram matching is presented in Algorithm 3.10. Although the 
idea is conceptually as simple as histogram equalization, the procedure is considerably 

Figure 3.23 Histogram matching. Given the CDF c of the original image and the desired CDF cref, histogram matching transforms an 
original gray level z to a new gray level z r by finding the value of z r such that c 1 z 2 5 cref 1 z r 2 . As before, discretization effects are 
ignored in this illustration.

255

1

Original CDF

Original gray level
z

c

c (z)

255

1

Desired CDF

Transformed gray level
z9

cref

cref (z9)
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more complicated due to the need to invert the reference CDF. During initialization in 
Lines 1–3, the two cumulative histograms, c and cref , are computed. Then, for each gray 
level ,, we find in Lines 5–9 the index , r such that cref 3, r 4 < c 3, 4. Because these are 
discrete histograms, an exact equality is not possible. Instead, we set , r to the maximum 
possible gray level, then decrement it until cref 3, r 4 , c 3, 4. This yields the largest value 
i such that cref   

3, r 4 # c 3, 4. (Alternatively, we could set , r to the smallest value such 
that cref  

3, r 4 $ c 3, 4.) The result is stored in a 1D array f, which is the histogram match-
ing function. After all possible gray levels have been processed, f is applied as a lookup 
table. Notice that in the pseudocode c and cref  could be replaced by c and cref , since the 
normalizations cancel when the histograms are compared.

3.4 Multispectral Transformations
While grayscale images are useful for many applications, even more compelling are 
multispectral images, which store multiple values for each pixel by capturing the amount 
of light in different bands of the electromagnetic spectrum. These bands typically include 
portions of either the visible spectrum or the infrared or ultraviolet regions, but may include 
other regions as well. All the pixel values for a given band are known as a channel, so that 
the collection of channels makes up the image. The most common multispectral image is 
the RGB image containing 3 channels corresponding to the red, green, and blue regions of 
the spectrum; other sources of multispectral images are remote sensing devices on satellites 
or aircraft as we discussed in the previous chapter.

A mapping in which either the input or output (or both) are multispectral images is called 
a multispectral transformation. In its most general form, this type of transformation can 
be represented as a mapping from a vector of values to another vector of values. If we let 
Ii 1 x, y 2  be the value of the ith band in image I, and let Ijr 1 x, y 2  be the value of the j th band 
in image I r, then the transformation of pixel (x,y) is

 3I1r 1 x, y 2   c  Inr 1 x, y 2 4 5 f 1 3I1 1 x, y 2   c  Im 1 x, y 2 4 2   (3.35)

ALGORITHM 3.10 Perform histogram matching on an image

HistogramMatch 1 I, href 2
Input: grayscale image I, reference normalized graylevel histogram href
Output: grayscale image I r whose normalized graylevel histogram closely matches href

 1 h d  ComputeNormalizedHistogram(I) ➤ Compute the normalized histogram of the image,
 2 c d  RunningSum 1 h 2  then compute the CDF of the image,
 3 cref d  RunningSum 1 href 2  as well as the desired CDF.
 4 for , d 0 to 255 do ➤ For each possible gray level ,, set f 3, 4 < cref

21 3c 1 , 2 4.
 5    , r d 255 This is done by finding , r such that cref 

3, r 4 < c 3, 4,
 6   repeat and setting f 3, 4 5 , r. To handle discretization effects,
 7      f  3, 4 d , r , r is set to the maximum possible gray level,
 8      , r d2 1 then repeatedly decremented
 9   while , r $ 0 and cref 

3, r 4 . c 3, 4 until cref 
3, r 4 # c 3, 4.

10 for 1 x, y 2 [ I do ➤ Once the mapping f has been determined,
11    I r 1 x, y 2 d f  3I 1 x, y 2 4 it is applied to all pixels in the image.
12 return I r
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where the input image I has m bands, the output image I r has n bands, and f is a mapping 
from an m-element vector to an n-element vector.

3.4.1 RGB Transformations
One such multispectral transformation is to convert an RGB image to a grayscale image, 
which involves a mapping from a three-channel image 1m 5 3 2  to a single-channel image 1 n 5 1 2 . The simplest approach one might consider would be to average the three values:

 I r 1 x, y 2 5
1
3

 1 IR 1 x, y 2 1 IG 1 x, y 2 1 IB 1 x, y 2 2   (3.36)

where IR, IG, and IB are the red, green, and blue channels of the input image. However, 
the resulting image will not look correct, because the human visual system is not equally 
sensitive to all frequencies. A significant improvement is obtained by increasing the weight 
of the green channel, since the human visual system is more sensitive to green than to the 
other bands:

 I r 1 x, y 2 5
1
4

 1 IR 1 x, y 2 1 2IG 1 x, y 2 1 IB 1 x, y 2 2   (3.37)

which has the advantage that the division by 4 can be easily and efficiently implemented as 
a bitwise shift to the right by two. This simple equation, shown as pseudocode in Algorithm 
3.11, is actually a decent approach to use in many practical applications, although we shall 
discuss a more accurate method later in the book that is preferred if computational time is 
not an issue.†

The reverse operation, namely to convert a one-byte-per-pixel grayscale image to a three-
byte-per-pixel image with RGB color channels, is straightforward and involves simply 
replicating the values:

 IRr 1 x, y 2 5 I 1 x, y 2    IGr 1 x, y 2 5 I 1 x, y 2    IBr 1 x, y 2 5 I 1 x, y 2   (3.38)

as shown in Algorithm 3.12. Note that the resulting RGB image will still look like a 
grayscale image when displayed, because the color information has been lost. Nevertheless, 
converting to RGB is useful for overlaying results on the image (see Figure 1.2), as well as 
for pseudocoloring, described later.

At first glance it may not be obvious why the reverse transformation does not use the 
same coefficients as the forward transformation. That is, why is the reverse transformation 
not IRr d I, IGr d 2I, and IBr d I, or something similar? The following example illustrates 
why such an approach would be fundamentally wrong.

† Section 9.5.6 (p. 428).

ALGORITHM 3.11 A simple, approximate RGB to grayscale conversion algorithm

RgbToGraySimple 1 IR, IG, IB 2
Input: RGB image with channels IR, IG, and IB
Output: grayscale image I r
1 for 1 x, y 2 [ IR do
2   I r 1 x, y 2 d 1 IR 1 x, y 2 1 2 * IG 1 x, y 2 1 IB 1 x, y 2 2 /4
3 return I r
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Various typical point transformations of an RGB image are displayed in Figure 3.24. In 
the first row, the three separate color channels are shown by setting, in turn, the other color 
channels to zero. For example, the red channel is visualized by setting

 IRr 1 x, y 2 5 IR 1 x, y 2    IGr 1 x, y 2 5 0   IBr 1 x, y 2 5 0   (3.39)

and similarly for green and blue. The second row shows a different way of visualizing 
these channels, where grayscale images were formed by simply copying the values from 
the appropriate color channel:

 IRr 1 x, y 2 5 IR 1 x, y 2   IGr 1 x, y 2 5 IR 1 x, y 2   IBr 1 x, y 2 5 IR 1 x, y 2   (3.40)

ALGORITHM 3.12 Grayscale to RGB conversion

GrayToRgb(I)

Input: grayscale image I
Output: RGB image with channels IRr , IGr , and IBr
1 for 1 x, y 2 [ I do
2    IRr 1 x, y 2 d I 1 x, y 2
3   IGr 1 x, y 2 d I 1 x, y 2
4    IBr 1 x, y 2 d I 1 x, y 2
5 return IRr , IGr , IBr

EXAMPLE 3.7 Suppose a pixel has RGB values R 5 126, G 5 222, B 5 94. Convert the pixel to grayscale 
according to Equation (3.37), then convert back to RGB using both Equation (3.38) and the 
non-replicating transformation. Is this new RGB value consistent with the grayscale value 
in both cases?

Solution Applying Equation (3.37) we have

grayscale 5
1
4

 1 126 1 2 1 222 2 1 94 2 5 166

Now, according to Equation (3.38) this grayscale value converts back to RGB as follows:

R 5 166  G 5 166  B 5 166

Note that this result is not the same as the original pixel’s RGB values, because the color 
information has been lost. Nevertheless, the values are internally consistent, because if we 
apply Equation (3.37) again, we arrive at the same grayscale value:

grayscale 5
1
4

 1 166 1 2 1 166 2 1 166 2 5 166

which is what we want.
However, if we apply the non-replicating transformation we get

R 5 166  G 5 2 1 166 2 5 332  B 5 166

Here we immediately see a problem, because G does not even fit into 8 bits. Moreover, when 
we convert back to grayscale we get

grayscale 5
1
4

 1 166 1 2 1 332 2 1 166 2 5 249

which is much brighter than the original pixel.
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and similarly for green and blue. Notice that skin contains significantly more red than 
green, and significantly more green than blue, which explains why the red image is so much 
brighter than the other two. Just below the original image in the first column, the purple face 
(swapped1) was obtained by swapping the three color channels:

 IRr 1 x, y 2 5 IG 1 x, y 2   IGr 1 x, y 2 5 IB 1 x, y 2   IBr 1 x, y 2 5 IR 1 x, y 2   (3.41)

Since red is the dominant color in the original image, blue is the dominant color in the result, 
leading to the purplish appearance. Similarly, swapping the color channels in the reverse 
order leads to a greenish appearance, shown as the light green face (swapped2). Finally, the 
bottom row displays three different versions of RGB to grayscale conversion of the original 
image. The average of the three channels, Equation (3.36), is too dark (gray1), but there is 
not much difference between the recommended simple conversion of Equation (3.37) 
(gray2) and the more correct version (gray3) described later.†

3.4.2 Pseudocolor
The transformation of Algorithm 3.12 is not the only way to produce an RGB image from 
a grayscale image. Instead of creating a colorless image, an alternate approach is to assign 

† Section 9.5.6 (p. 428).

Figure 3.24 TOP: Original 
RGB image and three 
separate color channels. 
MIDDLE: RGB image obtained 
by swapping the color 
channels, and same three 
color channels of original 
image shown as grayscale 
images. BOTTOM: RGB image 
obtained by swapping 
the color channels in 
the reverse order, and 
three different grayscale 
transformations of the 
original image. See text 
for details.
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an RGB value to each gray level based upon some criterion other than simply replicating 
the gray level three times. Because this process assigns colors not according to their actual 
appearance in the real world, the resulting image is known as a false color image, or 
pseudocolor image. One of the most common ways of pseudocoloring is to assign each 
range of values to a different RGB color — another form of density slicing that we con-
sidered in the previous section. You have probably seen the result of density slicing on 
weather satellite display, such as Geostationary Operational Environmental Satellite 
(GOES) infrared images. A geostationary satellite is one whose rotation is the same as 
the earth’s so that its position over the earth remains constant, enabling continuous moni-
toring of the same location. GOES satellite imagery is used to monitor severe weather 
conditions such as hurricanes and tornadoes, and to estimate rainfall for flash flood warn-
ings. GOES data includes both infrared images and water vapor images. In GOES infrared 
images, the mapping from 8-bit gray levels to the temperature t in degrees Celsius is†

 t 1 x, y 2 5 e57 2 1
2 I 1 x, y 2 if I 1 x, y 2 # 176

145 2 I 1 x, y 2 otherwise
  (3.42)

where a higher gray level means a lower temperature. This temperature mapping can be 
used to create a variety of different pseudocolorings, such as the following density slicing:

 I r 1 x, y 2 5 d I 1 x, y 2 if I 1 x, y 2 # 130
green if 130 , I 1 x, y 2 # 170
yellow if 170 , I 1 x, y 2 # 210
red if 210 , I 1 x, y 2 , 225

  (3.43)

so that red regions are the coldest, indicating clouds that are higher in elevation. Similarly, 
brighter values in the water vapor image indicate more moisture, so that yellow and red 
areas indicate rain. Figure 3.25 shows GOES infrared and water vapor images, along with 
the pseudocolor results using the same mapping.

Another popular remote sensing program is Landsat, which was mentioned in the previous 
chapter. Since the program’s inception, the Landsat hardware has undergone several revisions. 
Landsat 5, first launched in 1984 and decommissioned in 2013, used a Thematic Mapper 
(TM) sensor to collect 7 spectral bands: 3 visible channels, 3 near and mid infrared channels, 
and 1 thermal channel. These 7 bands are shown in Figure 3.26.‡ Since the first three bands 
correspond approximately to the blue, green, and red wavelengths, an RGB image of the area 
can be produced by combining these three images with appropriate weights (doubling the 
green and red). The first image of the last row shows the result of this combination.

Looking closely at the RGB image, you will notice that the peninsula in the northwest 
corner is sparsely populated, covered mostly with rolling hills of vegetation. This same 
area appears dark in the green and red images (bands 2 and 3) but bright in the near infra-
red images (bands 4 and 5). This is because live green plants absorb light in the longer 
wavelengths of the visible spectrum for photosynthesis, while they reflect near infrared 
light because their energy level per photon is too low to be useful for synthesizing organic 
molecules. As a result, a simple way to detect the presence of living, healthy, green vegeta-
tion is to compute the ratio of the red value to the near infrared value for each pixel, which 
is called the Ratio Vegetation Index (RVI):

 IRVIr 1 x, y 2 5
IIR 1 x, y 2
IRed 1 x, y 2   (3.44)

† From http://www.goes.noaa.gov/ECIR3.html
‡ Notice that the thermal channel's spatial resolution is significantly less than that of the other channels.
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where IRed is the spectral reflectance (ratio of reflected to incoming radiation) in the visible 
red band (approximately 580 to 680 nm) and IIR is the spectral reflectance in the near infra-
red band (approximately 720 to 1100 nm). One drawback of the RVI is that it ranges from 
0 to infinity, which is inconvenient. A more common approach, therefore, is to compute 
the difference between the bands normalized by the sum of the bands. This Normalized 
Difference Vegetation Index (NDVI) is functionally equivalent to the RVI:

 INDVIr 1 x, y 2 5
IRVIr 1 x, y 2 2 1
IRVIr 1 x, y 2 1 1

5
IIR 1 x, y 2 2 IRed 1 x, y 2
IIR 1 x, y 2 1 IRed 1 x, y 2    (3.45)

Since both of the input values are nonnegative, the NDVI value is between 21 and 11. 
High values (0.3 to 1.0) indicate live, green vegetation. Soils are generally in the range of 
0.1 to 0.2, water is near zero or slightly negative, and clouds and snow have values less 
than water. The bottom row of Figure 3.26 shows the NDVI computed using bands 3 and 
4, along with a pseudocolor output showing the vegetation, soil, and water detected by this 
simple approach.

3.4.3 Chromakey
Another simple but popular multispectral technique is chromakeying, which is widely 
used in the movie and broadcasting industry to separate foreground from background for the 
purpose of blending multiple images. For example, a weather forecaster stands and points in 
front of a blue screen, and all the pixels that do not contain blue are placed on top of a map, 
making it look like the forecaster (who, of course, is not allowed to wear blue) is pointing 
at the map. This is the traditional way of broadcasting weather forecasts on television, and 
it is similar to the way live action is blended with animation in movies.

While in theory the color can be anything (purple or orange, for example), in practice one 
of the three color channels is usually chosen. Historically blue was used, because blue is the 

Figure 3.25  
Pseudocolor display 
using density slicing 
of GOES infrared 
(top) and water 
vapor (bottom) 
images.
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98 Chapter 3 • Point and Geometric Transformations

farthest color from human skin color and because high-contrast film that was sensitive to 
only blue was widely available. The result, therefore, was known as bluescreening. More 
recently, the widespread use of digital video cameras that are more sensitive to green than to 
red or blue, combined with the use of digital video formats that also emphasize green over 
blue, have led to the dominance of using a green backdrop, known as greenscreening.

In the simplest possible implementation, a binary mask is produced from an RGB image 
by thresholding the amount of the particular color (green, for example):

 M 1 x, y 2 5 b1 if IG 1 x, y 2 . t

0 otherwise
  (3.46)

where t is a threshold. Better results are obtained if, instead of thresholding the color value, 
the value itself is retained and scaled between 0 and 1. Known as the alpha value (discussed 
in more detail later in this chapter), this approach leads to fewer artifacts around the fore-
ground / background edges.

3.5 Multi-Image Transformations
A multi-image transformation involves two or more input images. The multispectral 
transformations that we have just seen are a special case in which the different images are 
the individual spectral bands. More generally, though, multi-image transformations include 
images taken of the same scene at different times, or of different scenes entirely. The two 
basic types of multi-image transformations are arithmetic and logical operations, which are 
covered in this section, after which we describe several applications of these basic ideas.

Figure 3.26 7 bands of 
a Landsat image of the 
San Francisco Bay Area. 
The bottom row shows 
the RGB image obtained 
by combining bands 1, 2, 
and 3; the NDVI calculated 
using bands 3 and 4; and 
the pseudocolored image 
obtained by density slicing 
on the NDVI (blue indicates 
water, green indicates 
vegetation, and tan indicates 
soil). Notice the vegetation 
occurs outside the city itself 
in Marin County (upper 
peninsula in the image) and 
several parks (namely, the 
Presidio, Golden Gate Park, 
and San Bruno Mountain 
State Park on the lower 
peninsula). Source: http://
glcf.umd.edu, http://glcf.
umd.edu/data/landsat/

Band 1
0.4520.52 mm

blue

Band 2
0.5220.60 mm

green

Band 3
0.6320.69 mm

red

Band 5
1.5521.75 mm

mid IR

Band 6
10.4212.5 mm

thermal

Band 7
2.0822.35 mm

mid IR

RGB NDVI Pseudocolored NDVI

Band 4
0.7620.90 mm

near IR
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3.5 Multi-Image Transformations 99

Unlike the case of a single input image, multi-image transformations do not typically use 
saturation arithmetic but rather store the result as an integer-valued or floating-point image. 
However, when multiple operations are combined, the result is often stored directly into 
an 8-bit grayscale or 24-bit RGB output image without having to employ a floating-point 
image. For example, the absolute difference between two images computes for each pixel 
location the absolute value of the difference between the pixels:

 I r 1 x, y 2 5 0 I1 1 x, y 2 2 I2 1 x, y 2 0   (3.47)

Since the difference between two 8-bit pixels ranges from 2255 to 255, the absolute dif-
ference ranges from 0 to 255, and therefore no loss of information is incurred when storing 
the result. Similarly, the weighted average of two images, where the weights sum to 1, 
results in pixel values in the same range as the original. This operation, known as linear 
interpolation,† is conveniently written using a single parameter:

 I r 1 x, y 2 5 hI1 1 x, y 2 1 1 1 2 h 2 I2 1 x, y 2   (3.48)

where 0 # h # 1. Note that the operation produces a convex combination of the two inputs 
because the output is guaranteed to lie inclusively between them:

 min 1 I1 1 x, y 2 , I2 1 x, y 2 2 # I r 1 x, y 2 # max 1 I1 1 x, y 2 , I2 1 x, y 2 2
for any pixel coordinates (x,y).

† Also known as first-order Lagrange interpolation.

3.5.1 Arithmetic Operations
Earlier in the chapter we saw how to add a constant to an image, subtract a constant from an 
image (or subtract an image from a constant), and multiply an image by a constant. In such 
cases an output image was produced from a single input image and a parameter specifying 
the constant. In a similar manner, arithmetic operations can be used, without an additional 
parameter, to produce an output image from multiple input images. These images must have 
the same dimensions, because the arithmetic operator is applied to pixels at the same (x, y) 
coordinates in each image.

EXAMPLE 3.8 Compute the sum of the following 3 3 3 grayscale images:

I1 5 C216 171 174
134 214 97
52 5 212

S  I2 5 C 72 134 106
68 89 23
189 91 212

S
Solution The solution is obtained by straightforward addition without saturation, storing the result 

as an integer or floating-point value:

I1 1 I2 5 C288 305 280
202 303 120
241 96 424

S
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100 Chapter 3 • Point and Geometric Transformations

It is also common to apply logical operators to a pair of images in which one is a binary 
image while the other is a regular grayscale or RGB image. In such cases the binary image 
is interpreted as a mask, with 1s indicating the pixels of interest, and 0s indicating the 
pixels not of interest. The most common operator is and, which sets all the pixels in the 

3.5.2 Logical Operations
The standard logical, or Boolean, operators and, or, xor (exclusive or), and not (comple-
ment) produce a 0 or 1 as output, given 0s or 1s as input, as shown in Table 3.1. These 
operators apply naturally, therefore, to binary images. For example, given two binary images 
in which 1s indicate the objects of interest, the logical and produces an image containing 
1s where the objects intersect. Similarly, the logical or produces an image containing 1s 
where either of the objects appears, and the logical not produces an image containing 1s 
where the objects do not appear.

EXAMPLE 3.9 Compute (a) the absolute difference between the two images in the previous example and 
(b) the weighted average, with weights 0.1 and 0.9.

Solution If we apply rounding to the weighted average, both results fit into an 8-bit grayscale image:

(a)         0 I1 2 I2 0 5 C144 37 68
66 125 74
137 86 0

S   (3.49)

(b) Round 0.1I1 1 0.9I2 2 5 C 86 138 113
75 102 30
175 82 212

S   (3.50)

a b a AND b

0 0 0

0 1 0

1 0 0

1 1 1

TABLE 3.1 The truth tables of the standard logical operators.

a b a OR b

0 0 0

0 1 1

1 0 1

1 1 1

a b a XOR b

0 0 0

0 1 1

1 0 1

1 1 0

a NOT a

0 1

1 0

EXAMPLE 3.10 Apply the logical operators to the following two binary images:

I1 5 C1 1 0
1 1 0
1 1 0

S  I2 5 C0 0 0
0 1 1
0 1 1

S
Solution The results are straightforward:C0 0 0

0 1 0
0 1 0

S
('')''*

I1 AND I2

  

C1 1 0
1 1 1
1 1 1

S
('')''*

I1 OR I2

  

C1 1 0
1 0 1
1 0 1

S
('')''*

I1 XOR I2

  

C0 0 1
0 0 1
0 0 1

S
('')''*

NOT I1

  

C1 1 1
1 0 0
1 0 0

S
('')''*

NOT I2
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3.6 Change Detection
Suppose a stationary camera (mounted on a tripod, for example) observes a scene containing 
one or more moving objects. By comparing image frames in the video sequence, the moving 
objects (foreground) can be separated from the stationary objects (background). Although 
the problem of foreground / background segmentation is discussed more thoroughly in 
Chapter 10 , this approach of subtracting image frames is so simple and easy to implement 
that there is no need to delay introducing this powerful and widely used technique. There are 
two basic variations on the theme, depending upon whether a reference frame is available.  
Both variations are covered in this section.

3.6.1 Frame Differencing
One way to detect motion, known as frame differencing, is to compare successive image 
frames in the video sequence. The key insight is that, because the camera is stationary, the 
background pixel values should not change much, whereas the values of the pixels con-
taining the moving foreground will change considerably. Because we are not interested in 
whether the pixel gets brighter or darker, but rather only in the amount of difference, it is 
sufficient to compute the absolute difference between image frames. The simplest approach 
is to use two successive frames to compute a difference image:

 I r 1 x, y 2 5 0 It 1 x, y 2 2 It21 1 x, y 2 0 . t  (3.51)

image to 0 if the corresponding pixel in the binary image is 0 and leaves the remaining 
pixels intact. Equivalently, we can think of first extending each mask pixel by the num-
ber of bits per image pixel before applying the logical operator bitwise, as shown in the 
following example.

EXAMPLE 3.11 Apply the following binary mask M to the RGB image I below (of a gray square around a 
green dot), where pixel values are specified in hexadecimal notation:

I 5 C888888 888888 888888

888888 00FF00 888888

888888 888888 888888

S  M 5 C0 0 0
0 1 1
0 1 1

S
Solution First, extend the mask to have the same bit depth as the image, replicating the 1s or 0s as 

many times as needed:

M r 5 C000000 000000 000000

000000 FFFFFF FFFFFF

000000 FFFFFF FFFFFF

S
A bitwise and between the image and extended mask retains the 4 pixels in the lower-right 
corner, setting the others to 0:

MaskImage(I,M) 5 C000000 000000 000000

000000 00FF00 888888

000000 888888 888888

S
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where It is the frame at time t,  It21 is the previous frame, and t is some threshold. 
Unfortunately, this two-frame approach suffers from the double-image problem, that 
is, the difference image will contain foreground pixels not only where the foreground 
object is located in the current frame but also where it was in the previous frame. This 
problem can be solved using a third frame by applying the logical and to the two difference 
images computed using the two pairs of adjacent frames. The result, known as the double-
difference image (or three-frame difference), is given by

 I r 5 0 It 2 It21 0 . t  and  0 It11 2 It 0 . t  (3.52)

where It11 is the next frame in the sequence, and the pixel coordinates have been omitted for 
brevity. An alternate approach is to combine the absolute differences from all three image 
pairs using addition and subtraction prior to thresholding:

 I r 1 x, y 2 5 1 0 It21 2 It 0 1 0 It11 2 It 0 2 0 It21 2 It11 0 2 . t   (3.53)

which we call the triple-difference image. These two procedures are shown as 
Algorithms 3.13 and 3.14, and the results can be seen in Figure 3.27, where the absolute 
differences from the individual color channels have been combined to improve results over 
grayscale processing.

3.6.2 Background Subtraction
A background image is a reference image that does not contain any foreground objects. If 
a background image is available, then the foreground can be separated from the background 

ALGORITHM 3.13 Compute the double difference between three consecutive image frames

FrameDifferenceDouble 1 It21, It, It11, t 2
Input: successive images It21, It, and It11, and threshold t
Output: binary image indicating the moving regions

1 for 1 x, y 2 [ It do
2   d1 d 0 It21 1 x, y 2 2 It 1 x, y 2 0
3   d2 d 0 It11 1 x, y 2 2 It 1 x, y 2 0
4   I r 1 x, y 2 d 1 if d1 . t and d2 . t else 0
5 return I r

ALGORITHM 3.14 Compute the triple difference between three consecutive image frames

FrameDifferenceTriple 1 It21, It, It11, t 2
Input: successive images It21, It, and It11, and threshold t
Output: binary image indicating the moving regions
1 for 1 x, y 2 [ It do
2   d1 d 0 It21 1 x, y 2 2 It 1 x, y 2 0
3   d2 d 0 It11 1 x, y 2 2 It 1 x, y 2 0
4   d3 d 0 It11 1 x, y 2 2 It21 1 x, y 2 0
5   I r 1 x, y 2 d 1 if d1 1 d2 2 d3 . t else 0
6 return I r
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with just two images rather than three. This technique, known as background subtraction, 
is straightforward:

 I r 1 x, y 2 5 0 I 1 x, y 2 2 B 1 x, y 2 0   (3.54)

where I is the image and B is the background image.
One way to obtain a background image is to remove all foreground objects from the 

scene before taking the picture, or similarly, to take the picture before changing the scene. 
This latter approach is used in digital subtraction angiography (DSA), where a reference 
image is captured of a blood vessel before injecting it with dye to increase contrast. In many 
applications, however, it is not possible to exercise so much control over the environment. In 
such cases the best approach is to compute a mean image, or average image by adding suc-
cessive images in a video sequence to each other and then dividing by the number of images:

 I r 1 x, y 2 5
1
n

  an
i51

 
Ii 1 x, y 2   (3.55)

Figure 3.27 Detecting a 
moving object by frame 
differencing. LEFT COLUMN: 
Three image frames from 
a video sequence. SECOND 
COLUMN: The absolute 
difference between pairs 
of frames. THIRD COLUMN: 
Thresholded absolute 
difference. RIGHT COLUMN: 
Final result using double 
difference (top), triple 
difference (middle), 
and thresholded triple 
difference (bottom) 
methods.

Input images Absolute difference Thresholded Final

ALGORITHM 3.15 Compute the mean of a set of images

ComputeMeanImage 1I 2
Input: set of n images I 5 5Ii6i51

n

Output: mean image
1 for 1 x, y 2 [ I1 do
2   S 1 x, y 2 d 0
3   for i d 1 to n do
4     S 1 x, y 2 d1 Ii 1 x, y 2
5   I r 1 x, y 2 d S 1 x, y 2 /n
6 return I r

Sta
n B

irc
hfi

eld
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where Ii is the i th image and n is the number of images. Since the order does not matter, we 
can assume the images are collected in a set I 5 5Ii6i51

n . The procedure requires iterating 
through the images of this set and, for each pixel, adding the value of the pixel in the i th 
image to the sum obtained so far. To avoid the problem of overflow, an integer-valued (or 
floating-point) image S is needed to hold the sum for each pixel. The desired mean image 
I r is computed by dividing each pixel in S by n. If the camera is stationary and the fore-
ground objects are small and moving often enough, then the mean image will contain the 
appearance of the background of the scene, without any foreground objects. Figure 3.28, 
for example, shows the mean image computed from successively larger sets of images from 
a traffic camera. After 100 frames of video (approximately 3 seconds), the vehicles have 
disappeared, leaving only the background. It is easy to modify the procedure to update the 
mean image incrementally, thus making it applicable to arbitrarily long video sequences 
without having to store all the images. The result of using this mean image as a background 
image is shown in Figure 3.29.

One advantage of background subtraction over frame differencing is that it separates 
the foreground objects even when they cease moving for a period of time. On the other 
hand, one drawback is that objects that remain stationary for a very long time prevent the 
detection of other objects that might pass in front. A solution to this problem is to adap-
tively update the background, so that stationary objects blend with the background over 
time and the background image adapts to changing lighting conditions. Another issue is 
the distraction caused by slightly moving background objects, such as trees waving in the 
wind, which can be handled by using more sophisticated probabilistic models of 
pixel colors.†

† See Problem 3.40.

Figure 3.28 TOP: Five 
images from a video 
sequence. BOTTOM: Each 
column shows the mean 
image obtained using 
all the images up to and 
including the one above 
it. As time progresses 
the moving objects 
disappear, leaving only the 
background.

Frame 0 Frame 10 Frame 20 Frame 30 Frame 100

Figure 3.29 Background subtraction. From left to right: the background image, the current image, the absolute difference between the 
image and the background, and the thresholded absolute difference.

Background Image Absolute difference Thresholded
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3.7 Compositing
Another application of multi-image transformations is digital compositing, which is widely 
used in the movie industry to blend live action with computer graphics or to blend different 
areas of a computer graphic scene rendered by different pieces of software. If you have ever 
watched a movie with special effects, it is almost certain that you witnessed the results of 
digital compositing of 2D images. We begin with the simplest approach, namely dissolving, 
followed by compositing with binary masks, and then compositing with alpha values.

3.7.1 Dissolving
Suppose we have two input images IA and IB that are the same size as each other. The 
weighted combination between them is given by

 I r 1 x, y 2 5 wA 
IA 1 x, y 2 1 wB  

IB 1 x, y 2   (3.56)

where wA and wB are scalar weights. If we restrict wA 1 wB 5 1, then the output is a convex 
combination of the inputs, as mentioned earlier: I r 1 x, y 2 5 hIA 1 x, y 2 1 1 1 2 h 2 IB 1 x, y 2 , 
where h 5 wA/ 1wA 1 wB 2 . When h 5 0 the output is identical to the second image, when 
h 5 1 it is identical to the first image, and for other values the output is a blend of the two. By 
varying h from 1 to 0, the first image slowly dissolves into the second. This simple algorithm 
is often used to transition from one scene to another in movies, as shown in Figure 3.30.†

3.7.2 Compositing with Binary Masks
Now suppose that the two images are accompanied by binary masks MA and MB that define 
the support of the pixels. That is, MA 1 x, y 2 5 1 wherever the value IA 1 x, y 2  is valid, and 
MA 1 x, y 2 5 0 wherever the value IA 1 x, y 2  is invalid; and similarly for MB and IB. Invalid 
pixels can be ignored.

Since the masks are binary, exactly four cases exist for any given pixel. For each of these 
cases, one or more choices are available for the output pixel, as shown in Table 3.2. For 
example, if MA 1 x, y 2 5 MB 1 x, y 2 5 0, then the output pixel mask M r 1 x, y 2  must be 0, 
because both inputs are invalid. In that case, the value of the output RGB pixel I r 1 x, y 2  is 
irrelevant, which is indicated by the dot (·) in the table. If, on the other hand, MA 1 x, y 2 5 0 
but MB 1 x, y 2 5 1, then the output pixel mask can be 0 (invalid), or it can be 1 (valid) 
with the output RGB pixel set to the only valid input RGB pixel, namely IB 1 x, y 2 . If 
MA 1 x, y 2 5 MB 1 x, y 2 5 1, then three choices exist, because the pixel value can be selected 
from IA, from IB, or from neither.

Multiplying the number of entries in the third column of the table, there are exactly 
3 #2 #2 #1 5 12 possible ways of combining two images with binary masks. These 12 compositing 
operations are called the Porter-Duff operators and are illustrated in Figure 3.31. Of these 
operations, three are trivial, namely copy IA, copy IB, and clear; one is commutative, because 
IA xor IB 5 IB xor IA; and four are noncommutative. The latter include IA over IB, which 
places the first image over the second; IA in IB, which copies the first image only where it lies 
inside the second; IA out IB (short for IA “held out by” IB), which places the first image only 
where it lies outside the second; and IA atop IB, which combines the images within the second 
mask. The reverse versions are obtained by swapping the two operands. Table 3.3 shows the 
formulas for these compositing operations, which are obtained by inspection from the figure 
(using the simplest possible formulas for I r by ignoring invalid pixels outside the mask M r).

† If the images are not already aligned, then the dissolve is accompanied by a warp to align the images, which is 
called morphing, described in Section 3.9.7 (p. 126). Screenshots from the 2011 movie “The Adventures of Tintin.”
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The result of applying these binary compositing operators to a pair of images is shown 
in Figure 3.32. We only show the forward operators, in which the tree is IA and the house is 
IB; the reverse operators are left as an exercise. Note that some operators copy invalid pixels 
(i.e., pixels outside the mask) to the output image, even though they are still considered 
invalid (because they remain outside the output mask).

Figure 3.30 Two examples 
of dissolving one image 
into another. Source: 
Screenshots by WETA 
Digital Ltd. – © 2011 
Paramount Pictures. ‘The 
Adventures of Tintin’

IA

IB
1
4IA 13

4

IB
1
2IA 11

2

IB
3
4IA 11

4

IB

MA(x, y) MB(x, y) M'(x, y) I'(x, y)

0 0 0 ·

0 1 0,1 # , IB 1 x, y 2
1 0 0,1 # , IA 1 x, y 2
1 1 0,1,1 # , IA 1 x, y 2 , IB 1 x, y 2

TABLE 3.2 The four cases for any given pixel in compositing images with binary masks. For each case, the choices available for the 
output pixel are given in the last two columns, with a dot (·) meaning that the RGB value is irrelevant since the mask is zero. Each entry  
in the M r column is paired with an entry in the I r column.
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3.7.3 Compositing with Alpha Channels
One of the problems with binary masks is that they produce harsh, unnatural edges around 
the boundaries of objects when compositing two images, as evident from the figure. A better 
way is to associate with each image an alpha channel (sometimes called an opacity map) 
instead of a binary mask. The alpha channel is the same size as the image, and each pixel 
in the alpha channel is (conceptually at least) a floating-point value, typically between 
0 and 1, with 1 meaning that the associated RGB pixel is opaque and 0 meaning that it is 
transparent (or, equivalently, invisible or invalid). Pixels between 0 and 1 indicate varying 
degrees of opacity.

Let the alpha channels of the first input, second input, and output be given by aA, aB, 
and a r, respectively, and let the RGB images be IA, IB, and I r, as before. The general rule 
for compositing is to compute a convex combination of the RGB images and a weighted 
combination of the alpha channels:

  I r 1 x, y 2 5 h 1 x, y 2 IA 1 x, y 2 1 1 1 2 h 1 x, y 2 2 IB 1 x, y 2   (3.57)

  a r 1 x, y 2 5 fA 1 x, y 2aA 1 x, y 2 1 fB 1 x, y 2aB 1 x, y 2    (3.58)

Operation I' M'

clear 0 0

copy IA IA MA

IA over IB IA ^ MA 1 IB ^ MB ^ qMA MA 1 MB

IA in IB IA MA ^ MB

IA out IB IA MA ^ qMB

IA atop IB IA ^ MA 1 IB ^ qMA MB

IA xor IB IA ^ MA ^ qMB 1 IB ^ qMB ^ qMA MA ^ qMB 1 MB ^ qMA

TABLE 3.3 Formulas for compositing two images with binary masks. The formulas for the reverse versions of the non-commutative 
operations are easily obtained by swapping the operands. The caret 1^ 2  symbol refers to logical AND, the angle 1q 2  refers to logical NOT, 
and the plus 11 2  symbol indicates logical OR (which is equivalent to addition in these formulas due to mutual exclusion  
between the terms).

Figure 3.31 The twelve binary compositing operations. The first column shows the original two images. Columns 2 through 5 show 
the noncommutative operations, with the order of operands reversed in the two rows. The final column shows the CLEAR (top) and XOR 
(bottom) operations. In all cases the display shows the RGB image after applying the mask, i.e., I r AND M r, with black pixels indicating a 
mask value of 0.

COPY OVER IN OUT ATOP CLEAR / XOR
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where the fraction is given by

 h 1 x, y 2 5
fA 1 x, y 2aA 1 x, y 2

fA 1 x, y 2aA 1 x, y 2 1 fB 1 x, y 2aB 1 x, y 2 5
fA 1 x, y 2aA 1 x, y 2

a r 1 x, y 2    (3.59)

and the coefficients fA and fB are determined by the operation, as listed in Table 3.4.
By substituting the coefficients from Table 3.4 into Equations (3.57), (3.58), and (3.59), 

it is easy to derive the actual formulas for any of the 12 possible compositing operations. 
The formulas for the most common operators are given in Table 3.5, where the similarity 
with Table 3.3 should be evident by replacing MA with aA, the logical and (^) operator with 
multiplication, and the logical not 1q 2  operator with “one minus”. As a simple example, 
consider the computation IA over IB, where IB is a background image with aB 1 x, y 2 5 1 
everywhere. In that case, a r 1 x, y 2 5 1 everywhere, so that the output image is a simple 
convex combination of the two images according to the alpha channel of IA:

 I r 1 x, y 2 5 aAIA 1 1 1 2 aA 2 IB   (3.60)

as expected.

Figure 3.32 Common 
binary compositing 
operations applied to a pair 
of masked images. The top 
two rows show, from left to 
right: Original image IA and 
mask MA, original image IB 
and mask MB, and image I r 
and mask M r resulting from 
the four operations OVER, IN, 
OUT, and ATOP, respectively. 
The bottom row shows the 
result of ANDing each image 
with each mask.

OVERIA IB IN OUT ATOP

Operation fA fB

IA over IB 1 1 2 aA

IB over IA 1 2 aB 1

IA in IB aB 0

IB in IA 0 aA

IA out IB 1 2 aB 0

IB out IA 0 1 2 aA

IA atop IB aB 1 2 aA

IB atop IA 1 2 aB aA

IA xor IB 1 2 aB 1 2 aA

TABLE 3.4 Coefficients for the different compositing operations.
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3.7.4 Using Premultiplied Alphas
As evident from Figure 3.32, the image must first be multiplied by the mask before displaying, 
to avoid the possibility of displaying invalid pixels. Therefore, since the image must be multi-
plied by the alpha channel anyway, to save computation it is often preferred to premultiply the 
image by the alpha channel before processing. In this approach, all compositing operations 
are performed on premultiplied images, so that when it is necessary to display the image, no 
further multiplication is necessary. Although at first glance the resulting savings may not seem 
all that significant, this approach is actually widely used in the entertainment industry — keep 
in mind that a single movie contains hundreds of thousands of image frames at very high reso-
lution, so any possible reduction in computation cannot be dismissed. An additional advantage 
to using premultiplied images is that they are more easily interpretable visually because they 
do not show arbitrary colors for invalid pixels, which was also noted in the figure.

The premultiplied image values are defined as

  IA 1 x, y 2  ;  aA 1 x, y 2 IA 1 x, y 2   (3.61)

  IB 1 x, y 2  ;  aB 1 x, y 2 IB 1 x, y 2   (3.62)

   I r 1 x, y 2  ;  a r 1 x, y 2 I r 1 x, y 2    (3.63)

By substituting Equations (3.57) and (3.58) into Equation (3.63), it is easy to show that

  I r 1 x, y 2 5 fA 1 x, y 2 IA 1 x, y 2 1 fB 1 x, y 2 IB 1 x, y 2   (3.64)

  a r 1 x, y 2 5 fA 1 x, y 2aA 1 x, y 2 1 fB 1 x, y 2aB 1 x, y 2    (3.65)

Note that the first equation is actually simpler than Equation (3.57), and the second equation 
is copied from Equation (3.58) for completeness. When compositing it is important to always 
keep track of whether the images have been premultiplied by the alpha channel to avoid intro-
ducing artifacts.

3.8 Interpolation
As a 2D array of values, a digital image can be thought of as a sampling of an underlying 
continuous, gamma-compressed intensity function. The problem of interpolation is to 
estimate this underlying continuous function by computing pixel values at any real-valued 
coordinate pair in the image plane. In order to be a true interpolation function, the estimated 
continuous function must coincide with the sampled data at the sample points, although it 

Operation I' α'

IA over IB
1
a r

 1aA 
IA 1 1 1 2 aA 2aB  

IB 2 aA 1 1 1 2 aA 2aB

IA in IB IA aAaB

IA out IB IA aA 1 1 2 aB 2
IA atop IB aAIA 1 1 1 2 aA 2 IB aB

IA xor IB
1
a r

 1aA 1 1 2 aB 2 IA 1 1 1 2 aA 2aB  
IB 2 aA 1 1 2 aB 2 1 aB 1 1 2 aA 2

TABLE 3.5 Formulas for compositing two images with alpha channels for the most common operations. The formulas for the reverse  
versions are easily obtained by swapping the operands.
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110 Chapter 3 • Point and Geometric Transformations

is sometimes desirable to relax this requirement, as we shall see. In this section we describe 
several methods of interpolation, beginning with the simplest.

3.8.1 Nearest Neighbor Interpolation
Let I be a grayscale image defined over discrete locations x 5 0, c, width 21 and 
y 5 0, c, height 21, and let I ^ be the continuous underlying function defined for any 
real-valued coordinate location (x,y). For now, let us require Î  to be a true interpolation 
function, so Î 1 x, y 2 5 I 1 x, y 2  whenever x and y are integers that are within the image 
bounds. The simplest approach to interpolation, called nearest neighbor interpolation, 
returns the gray level of the pixel nearest the coordinates:

Î 1 x, y 2 ; I(min(max(Round(x), 0, width 21)), min(max(Round(y), 0, height 21))) (3.66)

although the notation is simplified considerably if bounds checking can be assumed:

 I ^ 1 x, y 2 ; I(Round(x), Round(y)) (3.67)

Note that even though (x,y) are real numbers, with nearest-neighbor interpolation the result 
is still a discrete gray level, I ^ 1 x, y 2 [ Z0:255.

3.8.2 Bilinear Interpolation
A more accurate approach is bilinear interpolation. As the name implies, bilinear inter-
polation is a 2D extension of 1D linear interpolation. If f is a 1D function, then recall that 
linear interpolation at a point f (x) computes a weighted average of the two nearest samples,† 
as illustrated in Figure 3.33:

 f  
^ 1 x 2 ; 1 1 2 a 2 f 1 x0 2 1 a

 
f 1 x0 1 1 2   (3.68)

where x0 ; :x; is the index of the nearest pixel to the left and a ; x 2 x0, 0 # a , 1 is the 
fractional distance between the real value x and the integer x0. To verify that this is a true 
interpolation, note that f  ^ 1 x 2 5 I 1 x0 2  when a 5 0, and f  ^ 1 x 2 5 f 1 x0 1 1 2  when a 5 1, 
so that the interpolation passes through the samples, as required.

Similarly, bilinear interpolation computes an appropriately weighted average of the four 
nearest pixels, i.e., the pixels in the surrounding 2 3 2 neighborhood, as shown in the 
figure. The nearest pixel up and to the left of the point is given by 1 x0, y0 2 , where x0 ; :x; 
and y0 ; :y; are integers. Again, the fractional part is what remains after subtracting the 
coordinates of the upper-left pixel coordinates: ax ; x 2 x0, ay ; y 2 y0, 0 # ax, ay , 1. 
The interpolated value is then the weighted average of the four nearby pixels:

  Î 1 x, y 2 5 ax ay 
I00 1 ax ay 

I10 1 ax 
ay 

I01 1 ax 
ay 

I11  (3.69)

where ax ; 1 2 ax, and ay ; 1 2 ay, and we define I00 ; I 1 x0, y0 2 , I10 ; I 1 x0 1 1, y0 2 ,  
I01 ; I 1 x0, y0 1 1 2 , I11 ; I 1 x0 1 1, y0 1 1 2 . To verify that this is a true interpolation, note 
that if x and y are integers, then x0 5 x, y0 5 y, and ax 5 ay 5 0, so that Î 1 x, y 2 5 I 1 x, y 2 ; 
and so on. The pseudocode is provided in Algorithm 3.16.

3.8.3 Bicubic Interpolation
Now suppose we want to interpolate between two adjacent data points for which we know 
not only their values but also their derivatives:

 f0 ; f 1 x0 2 ,   f1 ; f 1 x0 1 1 2 ,   f
#
0 5

df 1 x 2
d x

2
x0

,   f
#
1 5

df 1 x 2
d x

2
x011

  (3.70)

† Section 3.5.1 (p. 99).
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3.8 Interpolation 111

That is, an estimate of the derivative f
#
 of the underlying continuous function is available at 

the sampled points x0 and x0 1 1. In this case, more accurate results (at greater computa-
tional expense) are achieved via cubic interpolation, which is the third-order function that 
passes through the sampled values and also satisfies the derivatives. It is not difficult to 
show† that cubic interpolation is given by

f ^ 1 x 2 ; 1 2a3 2 3a211 2  f0 1 1a3 2 2a2 1 a 2  f#0 1 122a3 1 3a2 2  f1 1 1a3 2 a2 2  f#1 
   
(''')'''*

h0   
(''')'''*

h0r
('')''*

h1  
(')'*

h1r
  (3.71)

where h0, h0r, h1, and h1r are the cubic Hermite splines shown in Figure 3.34 alongside the 
coefficient functions used in linear interpolation, namely, 1 2 a and a. Note that f ^ 1 x 2 5 f0 

† Problem 3.32

Figure 3.33 TOP: Linear 
interpolation f ^ 1 x 2  at an 
arbitrary point x of a discrete 
function f  is computed as 
the weighted average of the 
two nearby sampled values, 
namely f 1 x0 2  and f 1 x0 1 1 2 , 
where x0 5 :x;. BOTTOM: Bilinear 
interpolation Î 1 x, y 2  at a point 
(x, y) of a discrete image I is 
computed as the weighted 
average of the four nearby gray 
levels, namely I00, I10, I01, and 
I11. The alternating white and 
shaded regions indicate the 
extent of the sampled pixels in 
the continuous domain.

a

ay

ax

1D function

2D function

f(x021)

f(x011)

f(x012)

x012x011

y011

y012

I01

I00

I11

I10

y021

x021 x011 x012x0

x

y0

y

x021

y

I(x, y0) ≈ (12ax)I00 1 axI10I(x, y011) ≈ (12ax)I01 1 axI11

x

x0 x

x

f(x0)
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and f  
#̂ 1 x 2 5 f

#
0 when a 5 0, while f̂ 1 x 2 5 f1 and f  

#̂ 1 x 2 5 f
#
1 when a 5 1, as desired; 

where

f  
#̂ 1 x 2 ;

d f̂

d x
5 1 6a2 2 6a 2 f0 1 1 3a2 2 4a 1 1 2 f#0 1 126a2 1 6a 2 f1 1 1 3a2 2 2a 2 f#1  (3.72)

Several ways of estimating the derivative are possible. The family of cardinal splines 
approximates the derivative as

 f
#
i <

1 2 t

2
1  fi11 2 fi21 2   (3.73)

where 0 # t # 1 is a tension parameter controlling the extent of the derivative’s influence. 
The most common choice is t 5 0, leading to

 f
#
i <

1
2
1  fi11 2 fi21 2   (3.74)

Substituting this expression into Equation (3.71) yields the popular Catmull-Rom spline:

 f̂ 1 x 2 5
1
2

 1 12a3 1 2a2 2 a 2 fb 1 1 3a3 2 5a2 1 2 2 f0
1 123a3 1 4a2 1 a 2 f1 1 1a3 2 a2 2 f2 2   (3.75)

ALGORITHM 3.16 Perform bilinear interpolation on an image at a point

InterpolateBilinear(I, x, y)

Input: image, floating-point coordinates (x, y)
Output: weighted average of gray levels of nearest four pixels

1 x0 d FLOOR 1 x 2
2 y0 d FLOOR 1 y 2
3 ax d x 2 x0

4 ay d y 2 y0

5 ax d 1 2 ax

6 ay d 1 2 ay

7 return ax 
 ay 
 
I 1 x0, y0 2 1 ax 
 ay 
 

I 1 x011, y0 2 1 ax 
 
ay 
 

I 1 x0, y011 2 1 ax
ay
I 1 x011, y011 2

Figure 3.34 Linear 
interpolation coefficient 
functions (left), and cubic 
Hermite splines (right). 
Note the similarity: h0 and 
h1 are smooth versions of 
the linear interpolation 
coefficient functions.
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or in matrix form:

f̂ 1 x 2 5
1
2

 3a3 a2 a 1 4D21 3 23 1
2 25 4 21

21 0 1 0
0 2 0 0

T D   

fb
f0
f1
f2

T    1Catmull-Rom 2   (3.76)

where we define [ ; 21 so that f
[

; f 1 x0 2 1 2 , and f2 ; f 1 x0 1 2 2 . Note that, whereas 
linear interpolation requires two nearby sampled values, Catmull-Rom spline interpolation 
requires four. Catmull-Rom spline interpolation is the most common variety of cubic inter-
polation, and we shall use the terms interchangeably from now on.

An alternate way of visualizing linear and cubic interpolation is shown in Figure 3.35. An 
interpolation kernel k(x) is defined over the continuous domain, and the interpolated value 
is the weighted sum of the neighboring samples, where the weights are chosen by centering 
the interpolation kernel over the desired position x, that is, f̂ 1 x 2 5 a i

  k 1 i 2 a 2 fi. In linear 
interpolation, for example, k(x) is the triangle function:

 k 1 x 2 5 b1 2 0  x 0 if 0  x 0 # 1
0 otherwise

                1 linear 2   (3.77)

so that

  f̂ 1 x 2 5 a1
i50

k 1 i 2 a 2 fi 5 k 12a 2 f0 1 k 1 1 2 a 2 f1   (3.78)

  5 1 1 2 0 2 a 0 2 f0 1 1 1 2 0 1 2 a 0 2 f1 5 1 1 2 a 2 f0 1 a
 
f1   (3.79)

Figure 3.35 TOP: Linear 
(left) and cubic (right) 1D 
interpolation kernels. The 
dashed line indicates  k(x) 
5 0 to emphasize that the 
cubic interpolation kernel 
contains negative values. 
BOTTOM: Interpolation 
involves shifting the kernel 
so that it is centered at the 
desired position x, then 
the neighboring samples 
are combined using the 
weights from the kernel.
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114 Chapter 3 • Point and Geometric Transformations

which is equivalent to Equation (3.68). For cubic interpolation, k(x) is defined as

 k 1 x 2 5
1
2

 #  c3 0 x 0 3 2 5 0 x 0 2 1 2 if 0 x 0 # 1
2 0  x 03 1 5 0  x 02 2 8 0  x 0 1 4 if 1 , 0  x 0 , 2
0 otherwise

    1 cubic 2   (3.80)

so that the cubic interpolation function evaluated at position x is computed as

 f̂ 1 x 2 5 a2
i521

k 1 i 2 a 2 fi 5 k 121 2 a 2 fx 1 k 12a 2 f0 1 k 1 1 2 a 2 f1 1 k 1 2 2 a 2 f2  (3.81)

 5
1
2

 1 1 121 2 a 2 3 1 5 121 2 a 2 2 1 8 121 2 a 2 1 4 2 fx
1 123 12a 2 3 2 5 12a 2 2 1 2 2 f0
1 1 3 1 1 2 a 2 3 2 5 1 1 2 a 2 2 1 2 2 f1
1 12 1 2 2 a 2 3 1 5 1 2 2 a 2 2 2 8 1 2 2 a 2 1 4 2 f2 2    (3.82)

With a bit of algebraic simplification, this expression can be shown to be equivalent to 
Equation (3.75).

Bicubic interpolation is an extension of this basic idea to 2D, in which the weighted 
sum of the values of the 16 pixels in the surrounding 4 3 4 neighborhood are computed:

 Î 1 x, y 2 5 a2
i521

a2 
j521

kij 
ax 

i11ay
j11   (3.83)

where the weights kij are determined by a linear combination of the 16 pixel values:

  

k
[[

0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 I
[[

k0[
0 0 0 0 22 0 2 0 0 0 0 0 0 0 0 0 I0[

k1[
0 0 0 0 4 210 8 22 0 0 0 0 0 0 0 0 I1[

k2[
0 0 0 0 22 6 26 2 0 0 0 0 0 0 0 0 I2[

k
[0

0 22 0 0 0 0 0 0 0 2 0 0 0 0 0 0 I
[0

k00 1 0 0 0 0 0 21 0 0 21 1 0 0 0 0 0 I00

k10 22 5 26 0 0 0 2 1 0 24 5 21 0 0 0 0 I10

k20 5  
 1
4

1 23 4 0 0 0 21 21 0 3 24 1 0 0 0 0 I20

k
[1

0 4 0 0 0 210 0 0 0 8 0 0 0 22 0 0 I
[1

k01 22 0 0 0 5 0 24 0 26 2 5 0 0 1 21 0 I01

k11 4 210 12 0 210 25 222 4 12 222 12 25 0 4 25 1 I11

k21 22 6 28 0 5 215 16 24 26 12 29 5 0 23 4 21 I21

k
[2

0 22 0 0 0 6 0 0 0 26 0 0 0 2 0 0 I
[2

k02 1 0 0 0 23 0 3 0 4 21 24 0 0 21 1 0 I02

k12 22 5 26 0 6 215 12 23 28 16 29 4 0 24 5 21 I12

k22 1 23 4 0 23 9 29 3 4 29 7 24 0 3 24 1 I22

 (3.84)

where I
[[

5 I 1 x0 2 1, y0 2 1 2 , and so forth. Deriving this 16 3 16 matrix is left as an 
exercise, but basically they are the coefficients necessary to ensure that the interpolated 
function maintains continuity in its values, first derivatives, and cross derivatives. Bicubic 
interpolation is illustrated in Figure 3.36, and the pseudocode is provided in Algorithm 3.17. 
Compared with bilinear interpolation, bicubic interpolation preserves finer detail but 
requires more computational expense.
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3.8.4 Keys Filters
Bicubic interpolation can be improved upon in two ways: first, by reducing its computa-
tional expense, and secondly, by relaxing the requirement that the weighting function k(x) 
be a true interpolation. (Relaxing this requirement tends to produce more visually pleasing 
results in practice than true interpolation.) To implement both of these improvements, we 
turn to the cubic convolution filter:

 f̂ 1 x 2 ; a2
i521

k 1 i 2 a 2 f 1 x0 1 i 2   (3.85)

where, as before, x0 ; :x; and a ; x 2 x0. This filter is applied to the image along the rows, 
then along the columns (or vice versa) in a separable manner, thus achieving an efficient 

Figure 3.36 Bicubic interpolation at 
a point (x, y) is a weighted average of 
the 16 nearby gray levels.

. . .. . .

. .
 .

. .
 .

(x, y)

I22I12I02

I  0

ay

ax

I I0

x0 x0 1 1

y0 1 1

y0

x0 2 1

y0 2 1

x0 1 2

y0 1 2

x

y

I1 I2

x

y

I00 I10 I20

I11I01 I21I  1

I  2

ALGORITHM 3.17 Perform bicubic interpolation (slow version)

InterpolateBicubicSlow (I, x, y)

Input: image, floating-point coordinates (x, y)
Output: weighted average of graylevel values of nearest 16 pixels
1 x0 d FLOOR 1 x 2
2 y0 d FLOOR 1 y 2
3 ax d x 2 x0

4 ay d y 2 y0

5 Compute kij, i 5 21, c, 2, j 5 21, c, 2 using Equation (3.84)

6 return a2

i521a2

j521
kij  

ax
i11 ay

 j11
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approximation to 2D bicubic interpolation.† The kernel k(x) is a piecewise cubic spline 
function specified by two parameters, b and c:

k 1 x 2 5
1
6

 c 1 12 2 9b 2 6c 2 0 x 0 3 1 1218 1 12b 1 6c 2 0 x 0 2 1 1 6 2 2b 2 if 0 x 0 , 112b 2 6c 2 0  x 03 

1 1 6b 1 30c 2 0  x 02  

1 1212b 2 48c 2 0  x 0  1 1 8b 1 24c 2 if 1 # 0  x 0 , 2
0 otherwise

  (3.86)

where b (for “B-spline”) governs the amount of smoothing, and c (for “cardinal spline”) is 
related to the spline tension.‡ It is easy to verify that, for any values of b and c, the kernel 
is continuous and symmetric about the origin, has a continuous first derivative, and pre-
serves the value of a constant input signal, a2

x521
k 1 x 2 5 1. Combining Equations (3.85) 

and (3.86) yields a more complete expression:

 f̂  1 x 2 5 a2
i521

k 1 i 2 a 2 fi
 5 k 121 2 a 2 fx 1 k 12a 2 f0 1 k 1 1 2 a 2 f1 1 k 1 2 2 a 2 f2
 5

1
6

 1 12b 2 6c 2 1 1 1 a 2 3 1 1 6b 1 30c 2 1 1 1 a 2 2 1 1212b 2 48c 2 1 1 1 a 2 1 1 8b 1 24c 2 2 fx
 1

1
6

 1 1 12 2 9b 2 6c 2a3 1 1218 1 12b 1 6c 2a2 1 1 6 2 2b 2 2 f0
 1

1
6

 1 1 12 2 9b 2 6c 2 1 1 2 a 2 3 1 1218 1 12b 1 6c 2 1 1 2 a 2 2 1 1 6 2 2b 2 2 f1
 1

1
6
1 12b 2 6c 2 1 2 2 a 2 3

 1 1 6b 1 30c 2 1 2 2 a 2 2
 1 1212b 2 48c 2 1 2 2 a 2  1 1 8b 1 24c 2 2 f2

 5
1
6

 3a3 a2 a 1 4D 2b 2 6c 12 2 9b 2 6c 212 1 9b 1 6c b 1 6c
3b 1 12c 218 1 12b 1 6c 18 2 15b 2 12c 26c
23b 2 6c 0 3b 1 6c 0

b 6 2 2b b 0

T D fb
f0
f1
f2

T  (3.87)

where fi ; f 1 x0 1 i 2 , as before.
The two parameters b and c govern the type of filter, allowing us to generate any smoothly 

fitting piecewise cubic filter. The resulting filter space is illustrated in Figure 3.37, with an 
overlay of the subjective quality as assessed by image processing experts on sample images. 
The vertical line along the left of the figure at c 5 0 contains the well-known family of 
B-splines, of which the uniform cubic B-spline 1 b 5 1, c 5 0 2  is the most famous:

 f ^ 1 x 2 5
1
6

 3a3 a2 a 1 4 D21 3 23 1
3 26 3 0

23 0 3 0
1 4 1 0

T  D  

fx
f0
f1
f2

T   (3.88)

Similarly, the horizontal line along the bottom of the figure at b 5 0 contains the family of 
cardinal splines that we considered in the previous section:

 k 1 x 2 5 c 1 2 2 c 2 0 x 0 3 1 1 c 2 3 2 0 x 0 2 1 1 if 0 x 0 # 1
2c 0  x 03 1 5c 0  x 02 2 8c 0  x 0 1 4c if 1 , 0  x 0 , 2
0 otherwise

  (3.89)

† Convolution and separability are covered in detail in Chapter 5.
‡ If t is the spline tension described in the previous section, then c 5 1

2 11 2 t 2 .
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 f ^ 1 x 2 5 3a3 a2 a 1 4 D 2c 2 2 c c 2 2    c
     2c c 2 3 3 2 2c 2c
2c 0 c    0
   0 1 0    0

T  D  

fx
f0
f1
f2

T   (3.90)

These splines incorporate no smoothing and hence are true interpolation filters, that is, 
f ^ 1 x 2 5 f 1 x 2  whenever x is an integer, which is easily seen from Equation (3.90) because 
f ^ 1 x 2 5 f0 when a 5 0.

From the figure notice that the visually pleasing filters tend to lie on or near the line

 b 1 2c 5 1.  (3.91)

Any filter satisfying this constraint is called a Keys filter. Substituting Equation (3.91) into 
Equations (3.86)–(3.87) reveals that Keys filters are parameterized as

k 1 x 2 5
1
6

 c 1 3 1 12c 2 0 x 0 3 1 126 2 18c 2 0 x 0 2 1 1 4 1 4c 2 if 0 x 0 , 1121 2 4c 2 0  x 03 1 1 6 1 18c 2 0  x 02 1 1212 2 24c 2 0  x 0 1 1 8 1 8c 2 if 1 # 0  x 0 , 2
0 otherwise

  (3.92)

f ^ 1 x 2 5
1
6

 3a3 a2 a 1 4D21 2 4c 3 1 12c 23 2 12c 1 1 4c
3 1 6c 26 2 18c 3 1 18c 26c

23 0 3 0
1 2 2c 4 1 4c 1 2 2c 0

T D  

fx
f0
f1
f2

T   (3.93)

where 0 # c # 0.5.
The Catmull-Rom spline is not only a cardinal spline but also a Keys filter, occur-

ring when b 5 0 and c 5 1
2, which is seen by substituting c 5 1

2 into Equation (3.93) and 

Figure 3.37 The space of smoothly fitting piecewise cubic filters, governed by the parameters b and c. The true interpolation filters are 
the cardinal splines, which satisfy b 5 0, while the B-spline cubics satisfy c 5 0. The Keys filters satisfy b 1 2c 5 1, with special cases 
being the Mitchell filter (b 5 1/3, c 5 1/3), the Catmull-Rom spline (b 5 0, c 5 0.5), and the standard uniform cubic B-spline (b 5 1,  
c 5 0). The color indicates subjective quality as assessed by image processing experts, with the “bad” regions exhibiting anisotropy, 
excessive ringing, blocking, aliasing, or smoothing artifacts. Based on D. P. Mitchell and A. N. Netravali. Reconstruction Filters in 
computer graphics. Computer Graphics (SIGGRAPH), 22(4):221-228, June 1988.
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118 Chapter 3 • Point and Geometric Transformations

comparing with Equation (3.76) . Although it is beyond our scope to prove this, Catmull-
Rom achieves third-order convergence with respect to the Taylor series approximation of 
the original signal, which is the best of any known filter. Catmull-Rom is therefore a popular 
filter that in practice tends to produce acceptable results without noticeable artifacts.

Nevertheless, the most widely used Keys filter is the Mitchell filter (also known as the 
Mitchell-Netravali filter), defined as b 5 1/3, c 5 1/3:

 k 1 x 2 < c1.167 0 x 0 3 2 2 0 x 0 2 1 0.889 if 0 x 0 , 1
20.389 0  x 03 1 2 0  x 02 2 3.333 0  x 0 1 1.778 if 1 # 0  x 0 , 2
0 otherwise

  (3.94)

 f ^ 1 x 2 < 3a3 a2 a 1 4D20.389 1.167 21.167 0.389
0.833 22 1.5 20.333

20.5 0 0.5 0
0.055 0.890 0.055 0

T D  

fx
f0
f1
f2

T   (3.95)

From the figure, it can be seen that the Mitchell filter lies even further from the objectionable 
regions than Catmull-Rom. In practice the Mitchell filter achieves a nice compromise 
between not enough smoothing and too much smoothing, making it a popular choice for 
image upsampling.

3.8.5 Lanczos Interpolation
Another important method is Lanczos interpolation,† whose interpolation kernel is the 
well-known sinc function multiplied by a truncated sinc function:‡

 k 1 x 2 5 b 1 sinc x 2 # 1 sinc x
a 2 if 2 a , x , a

0 otherwise
  (3.96)

where

 sinc x ;
sin px

px
   (3.97)

and a is an integer specifying the number of positive zero crossings to include. The first 
factor has zeros at integer values of x, while the second factor is the bell-shaped window 
function (known as the Lanczos window) that reaches zero at x 5 6a.

To interpolate a 1D discrete signal f, the weighted sum of the 2a values of the signal is 
computed, using the values of the interpolation kernel as weights. Typically a 5 2 or 3, 
where the kernel is known as Lanczos-2 or Lanczos-3, respectively. Figure 3.38 shows an 
example using the Lanczos-2 kernel, where x 5 9.2, x0 ; :x; 5 9, and a 5 x 2 x0 5 0.2. 
The value f 1 x0 2  is multiplied by k 12a 2 , the value f 1 x0 2 1 2  is multiplied by k 12a 2 1 2 , 
the value f 1 x0 1 1 2  is multiplied by k 12a 1 1 2 , and the value f 1 x0 1 2 2  is multiplied 
by k 12a 1 2 2 . More generally,

 f̂ 1 x 2 5 aa
i52a11

k 1 i 2 a 2 f 1 x0 1 i 2   (3.98)

† Cornelius Lanczos (1893–1974) made a number of important contributions to math and physics, including several 
numerical algorithms.
‡ Pronounced “sink”, the function in Equation (3.97) is the so-called normalized version. The unnormalized 
verison, sin x

x , omits p.
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3.8 Interpolation 119

Like the cubic convolution filters, Lanczos interpolation is applied horizontally, then 
vertically (or vice versa) to obtain an approximation to 2D interpolation.

One must be careful to distinguish between Lanczos interpolation, which we consider 
here, and Lanczos filtering, which we consider later.† In the latter, the rationale for using 
the sinc function is that it is the ideal low-pass filter, which makes sense in the context of 
filtering an image by convolving with a large kernel that has been sampled at integer posi-
tions. In interpolation, however, the kernel has only 4 or 6 values (depending upon whether 
a 5 2 or 3), and the kernel is sampled at non-integer positions.

Figure 3.39 shows the 1D interpolation kernels defining the different filters of this 
section, and Figure 3.40 compares the results of these filters on an example 1D signal. Note 
that the first six filters are true interpolations because they pass through all the sample points 
of the original signal, whereas the last two introduce some amount of smoothing. Although 
the negative lobes of Catmull-Rom, Mitchell, and Lanczos filters cause ringing in the signal, 
which is theoretically undesirable, this behavior actually improves visual appearance by 

† Section 6.4.1 (p. 296).

Figure 3.38 Interpolation of a 1D signal. Here the 
signal shown by the vertical lollipops is evaluated 
at x 5 9.2. The interpolation function is the smooth 
curve (Lanczos-2 in this case). The 4 green circles 
indicate the values of the interpolation function that 
are elementwise multiplied by the corresponding 
signal values, and then summed to yield the 
interpolated value.
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Figure 3.39 Various interpolation kernels, including those that introduce a small amount of smoothing. The “bad filter” is at b 5 0,  
c 5 1. Note that the last two kernels are not true interpolation functions, because they do not satisfy k(61) 5 k(62) 5 0.
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120 Chapter 3 • Point and Geometric Transformations

increasing acutance (edge contrast) in the image in a manner similar to the Mach bands 
phenomenon.‡ Note that nearest neighbor and linear methods produce sharp transitions, 
whereas the higher-order methods produce smoother results. The B-spline filter smooths 
too much, while the “bad filter” at b 5 0, c 5 1 causes excessive overshoot, or ringing. 
A good compromise is achieved by either the Mitchell or Lanczos-2 filters.

3.9 Warping
Armed with the ability to interpolate pixel values, in this section we consider arbitrary geo-
metric transformations from real-valued coordinates (x, y) to real-valued coordinates 1 x r, y r 2 :
 I r 1 x r, y r 2 5 I 1 x, y 2   (3.99)

where the mapping function  f : R2 S R2 specifies the transformation, or warping, from 
the input coordinates to the output coordinates:

 1 x r, y r 2 5 f 1 x, y 2   (3.100)

Since f is a function of two inputs that produces two outputs, another way to write the 
equation is to split it into two components:

  x r 5 fx 1 x, y 2   (3.101)

  y r 5 fy 1 x, y 2   (3.102)

where f 1 x, y 2 5 1  fx 1 x, y 2 , fy 1 x, y 2 2 .
Earlier in the chapter we discussed the distinction between forward and inverse mapping 

of coordinates. Unlike the simple transformations considered there, transformations involving 
real-valued coordinates do not involve a one-to-one mapping between the pixels of the input 
and output images. As a result, some pixels in the output image may not be touched by the 

‡ Section 6.4.3 (p. 303).

Figure 3.40 Comparison of 1D interpolation methods, some with smoothing, on an example signal. Overall the Catmull-Rom, Mitchell, 
and Lanczos-2 methods do the best job of providing a smooth fit to the signal without excessive overshoot or ringing.
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3.9 Warping 121

transformation, because the pixels that would have mapped to them are, in fact, out of bounds 
in the input image. At the same time, multiple pixels in the input image sometimes map to the 
same pixel in the output image due to discretization effects (imagine viewing a slanted plane, 
as illustrated in Figure 3.41). To ensure that all pixels in the output image are set exactly once, 
it is important not to loop over the pixels in the input, performing the forward transforma-
tion, but rather to loop over the pixels in the output, performing the inverse transformation:

 1 x, y 2 5 f  
21 1 x r, y r 2   (3.103)

where interpolation is used to calculate I (x, y). In this manner, the coordinates 1 x r, y r 2  in 
the output are guaranteed to be integers, even though the coordinates (x, y) in the input may 
be real-valued.

3.9.1 Downsampling and Upsampling Revisited
In Equations (3.9)–(3.10) we showed how to downsample or upsample an image by a factor 
of 2, without averaging the pixel values. In the more general case, let sx and sy be real-valued 
scaling factors in the horizontal and vertical directions, respectively:

 I r 1 x r, y r 2 5 I 1 sx  
x r, sy 

y r 2             1 downsample 2   (3.104)

 I r 1 x r, y r 2 5 I 1 x r/sx, y r/sy 2          1 upsample 2   (3.105)

where sx, sy $ 1. If sx 5 sy, then the transformation preserves the aspect ratio of the original 
image.

Although downsampling can be achieved by simply discarding pixels that are not needed 
(nearest-neighbor interpolation), it is better to compute output pixel values as an average of 
the neighboring input pixels to avoid aliasing.† Any of the interpolation methods can be used, 
with best results obtained by introducing a small amount of smoothing (i.e., not using a true 
interpolation filter). For example, if sx 5 sy 5 2, then the output pixel is computed as the 
weighted average of the pixel and its two immediate neighbors. This is achieved for two alter-
native techniques by setting a 5 0 in Equation (3.88) and Equation (3.95), respectively:

 f̂ 1 x 2 5 0.167f 1 x 2 1 2  1 0.666 f 1 x 2  1 0.167f 1 x 1 1 2           1 uniform cubic B-spline 2  (3.106)

 f̂ 1 x 2 5 0.055f 1 x 2 1 2 1 0.889f 1 x 2 1 0.055f 1 x 1 1 2     1Mitchell 2   (3.107)

† Aliasing is discussed in Section 6.1.3 (p. 275).

Figure 3.41  
A frontoparallel plane in the 
input is warped to a slanted 
plane in the output. The inverse 
transformation guarantees 
that every pixel in the output 
receives a value, whereas the 
forward transformation leads 
to some pixels not receiving 
values while others receive 
multiple values. Based on 
Burger and Burge: W. Burger 
and M. J. Burge. Digital Image 
Processing: An Algorithmic 
Introduction Using Java. 
Springer, 2008.

TargetSource

f

f21

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



122 Chapter 3 • Point and Geometric Transformations

When sx, sy . 2, additional neighboring pixels must be averaged, requiring techniques that 
will be explored in Chapter 5.†

Similarly, although upsampling can simply replicate pixels (nearest-neighbor interpola-
tion), to avoid blocking artifacts it is best to use a higher-order form of interpolation, such 
as the Mitchell filter. For example, with sx 5 sy 5 2 and substituting a 5 0.5 into Equation 
(3.95), the Mitchell filter applies

f̂ 1 x 2 5 20.035 f 1 x 2 1.5 2  1 0.535 f 1 x 2 0.5 2  1 0.535 f 1 x 1 0.5 2  2 0.035 f 1 x 1 1.5 2   (3.108)

There is a fundamental limit to how much upsampling can be performed, since we cannot 
recreate detail that was not present in the original image, and thus upsampling necessarily 
involves hallucinating information. Nevertheless, for higher scaling factors, more sophisti-
cated algorithms can be used to recover sharp edges and textures while suppressing artifacts; 
such algorithms are beyond our scope but are mentioned later as additional reading.

3.9.2 Euclidean Transformations
A number of different primitive geometric transformations are illustrated in Figure 3.42. 
Translation, for example, involves shifting the image by a certain amount tx horizontally 
and ty vertically:

  x r 5 x 1 tx  (3.109)
  y r 5 y 1 ty   (3.110)

whose inverse mapping is easy to obtain:

 Bx
y
R 5 f  

21 1 x r, y r 2 5 Bx r 2 tx
y r 2 ty

R   (3.111)

where interpolation is necessary to compute I(x, y) if tx and ty are not both integers. Although 
out-of-bounds values are typically set to the nearest pixel, as mentioned above, another pos-
sibility is to wrap the pixels around the other opposite side of the image, which is sometimes 
used in the case of a landscape background.

Another transformation is to rotate the image by a clockwise angle u:

 
Bx r

y r
R 5

 

Bcos u 2sin u
sin u cos u

R
('')''*

R

Bx
y
R  

 

  (3.112)

or x r 5 Rx, where x r 5 3x r y r 4T and x 5 3x y 4T. This equation specifies rotation about 
the origin in the upper-left corner of the image. Usually, however, we want to rotate about 
some point c 5 3cx cy 4T inside the image:

 x r 5 R 1 x 2 c 2 1 c   (3.113)

† Subsampling is also discussed in detail in Section 7.1.1 (p. 329).

Figure 3.42 Various geometric transformations applied to a square. From left to right: Identity, translation, rotation, uniform scaling, 
non-uniform scaling, shear, and projective transformation. Note that all transformations but the last one preserve parallel lines.
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3.9 Warping 123

Since a rotation matrix has the property that its inverse is its transpose, R21 5 RT, all we 
need to do to invert the equation is transpose the matrix, which means swapping the sign 
on the sine:

 
Bx

y
R 5

 

B cos u sin u
2sin u cos u

R
('')''*

RT

¢ Bx r
y r
R 2 Bcx

cy
R ≤ 1 Bcx

cy
R  

 

  (3.114)

Unless u happens to be a multiple of 90 degrees, interpolation will need to be performed, 
because x and y will not be integers for arbitrary values of u.

Conveniently, translation and rotation can be combined into a single Euclidean 
transformation: x r 5 R 1 x 2 c 2 1 c 1 t 5 Rx 1 t~:

 
Bx r

y r
R 5

 

Bcosu 2sinu

sinu cosu
R

('')''*
R

Bx
y
R 1 B t~x

t~y
R  

 

  (3.115)

where t~ ; S t~x t~yTT 5 2Rc 1 c 1 t. This can be viewed as either a rotation about c 
followed by a translation by t, or equivalently as a rotation about the origin followed by a 
translation by t~. Euclidean transformations preserve the shape and scale of an object.

By appending a 1 to each point, we obtain the 3 3 1 vectors 3x y 1 4T and 3x r y r 1 4T, which are the homogeneous coordinates of the points. Using homo-
geneous coordinates, Equation (3.115) can be rewritten as a single matrix multiplication:

 Cx r
y r
1
S 5 Ccos u 2sin u t~x

sin u cos u t~y

0 0 1
S Cx

y
1
S    (3.116)

which is convenient mathematically. Homogeneous coordinates are powerful 
representations that have many uses in computer vision and are covered in more detail later 
in the book.†

3.9.3 Similarity Transformations
Uniform scaling is achieved by multiplying all the coordinates by the same scalar k:

  x r 5 kx   (3.117)
  y r 5 ky   (3.118)

Similarity transformations are a superset of Euclidean transformations, because they 
include not only translations and rotations, but also uniform scaling:

 Cx r
y r
1
S 5 Ck cos u 2k sin u k t~x

k sin u k cos u k t~y

0 0 1
S Cx

y
1
S    (3.119)

Similarity transformations also preserve shape, but not necessarily size.

† See Section 13.4.1 (p. 654).
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3.9.4 Affine Transformations
A 2 3 2 matrix R is a rotation matrix if and only if its determinant is 1, i.e., det 1R 2 5 1. 
Removing this constraint to allow for any arbitrary, invertible 2 3 2 matrix leads to an 
affine transformation:

 Bx r
y r
R 5 Ba11 a12

a21 a22
R Bx

y
R 1 Ba13

a23
R    (3.120)

which can be rewritten as a single matrix multiplication using homogeneous coordinates:

 Cx r
y r
1
S 5 Ca11 a12 a13

a21 a22 a23

0 0 1
S Cx

y
1
S    (3.121)

To warp an image using an affine transformation, the matrix must be inverted:

 Cx
y
1
S 5

1
a11a22 2 a12a21

 C    a22 2a12     a23a12 2 a22a13

2a21    a11 2a23a11 1 a21a13

0 0    a11a22 2 a12a21

S Cx r
y r
1
S    (3.122)

Affine transformations include rotation, translation, and uniform scaling, since similarity 
transformations are a special case. In addition, affine transformations can change the scale 
nonuniformly:

  x r 5 sxx  (3.123)

  y r 5 syy   (3.124)

as well as produce something called shear, in which one coordinate is shifted by an amount 
proportional to the other coordinate:

  x r 5 x 1 ay  (3.125)

  y r 5 y   (3.126)

where sx, sy, and a are scalars. Together, these possibilities mean that a square can warp into 
a rectangle or parallelogram. Note that lines that are parallel to each other in the original 
remain parallel in the output.

3.9.5 Projective Transformations
A 2D projective transformation relaxes the constraint that the bottom row of the matrix 
be 30 0 1 4T, leading to an invertible 3 3 3 matrix H known as a homography:

 

Cx r
y r
1
S ~

 

Ch11 h12 h13

h21 h22 h23

h31 h32 h33

S
('')''*

H

Cx
y
1
S  

 

  (3.127)

With projective transformations, homogeneous coordinates become considerably more dif-
ficult to visualize and understand, because the left-hand side is not necessarily equal to, but 
rather is proportional to, the right-hand side. If we use l to represent this proportionality 
constant, then we can rewrite the equation as
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3.9 Warping 125

If l 5 0 then it is not possible to divide by it. Instead of this being an error, however, the 
resulting point is known as a point at infinity, which is closely related to the concept of a 
vanishing point. Points at infinity, and projective transformations in general, are covered 
in more detail later in the book.† Projective transformations subsume affine transformations, 
so they are capable of performing translation, rotation, non-uniform scaling, and shear. 
Projective transformations also have the ability to transform parallel lines into intersecting 
lines, such as occurs in a picture of railroad tracks captured from a low vantage point. Exam-
ples of various geometric transformations applied to an image are shown in Figure 3.43.

3.9.6 Arbitrary Warps
Projective (and therefore the special cases of affine, similarity, and Euclidean) warps can 
be captured succinctly in 3 3 3 matrix transformations using homogeneous coordinates. 
Such an approach can be used, for example, to warp the image to provide a bird’s-eye view 
given a perspective image of a planar ground (e.g., road or railroad tracks). Similarly, such 
a transformation can be used to intentionally distort the image so that when the image 
is projected onto a flat surface at an angle, it appears undistorted (a procedure known 

† Section 13.4 (p. 654).

 

lCx r
y r
1
S 5

 

Ch11 h12 h13

h21 h22 h23

h31 h32 h33

S
('')''*

H

Cx
y
1
S  

 

  (3.128)

where l 5 h31 
x 1 h32  

y 1 h33. Note that if the bottom row of the matrix is 30 0 1 4T 
as before, then l 5 1 for all possible values of x and y, and we are back to an affine trans-
formation. On the other hand, if l 2 1, then the output vector has a value in the last entry 
that is not equal to 1. To compute the true 1 x r, y r 2 , then, we must divide by l:

  x r 5
l x r
l

5
h11x 1 h12  

y 1 h13

h31x 1 h32  
y 1 h33

  (3.129)

  y r 5
ly r
l

5
h21x 1 h22 

y 1 h23

h31x 1 h32 
y 1 h33

   (3.130)

EXAMPLE 3.12 Apply the following projective transformation to the point (1,2):

 H 5 C7 3 2
2 4 8
1 3 2

S   (3.131)

Solution The homogeneous coordinates of the point are obtained by appending a 1 to (1,2), leading 
to 31 2 1 4T. Multiplying by the matrix H yields:

 Clx r
ly r
l

S 5 C7 3 2
2 4 8
1 3 2

S C1
2
1
S 5 C15

18
9
S   (3.132)

so that l 5 9 and therefore 1 x r, y r 2 5 1 15
9 , 18

9 2 5 1 15
9 , 2 2 .
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126 Chapter 3 • Point and Geometric Transformations

as keystone correction). Beyond projective warps, however, the mapping function f in 
Equation (3.103) can be any desired function, thus providing increased flexibility to allow 
an image that has been geometrically distorted in a nonlinear way (e.g., because of lens 
aberration or a catadioptric sensor) to be unwarped to provide a perspective view, or to 
define a spiral transform that swirls the image about its center to distort the image to create 
a visually pleasing effect, or to perform radial distortion to increase or decrease the number 
of pixels devoted to the center. The details of such warps are left as exercises to the reader.

3.9.7 Image Registration and Morphing
Finally, to close this chapter we mention that when two images are provided as input, it is 
sometimes desirable to align them so that they can be overlaid on top of one another. This align-
ment is known as image registration. Depending on the type of scene and the relationship 
between the images, the warp needed for image registration can vary from simple to complex. 
For example, if two images are taken of a planar scene from different locations, then they are 
related by a homography, which can be estimated by numerical techniques given correspon-
dences between the two images. However, if an airplane flies over non-flat terrain to take 
pictures, the resulting images cannot be perfectly aligned using such a 3 3 3 matrix, because 
trees or buildings will cause 3D parallax effects, which in turn will cause misalignment between 
pixels on those surfaces when the images are registered based on the ground plane motion.

If two images are not only registered but also dissolved into each other, we say they are 
morphed. A common example is to morph one person’s face into another by specifying a 
warping function that maps the corresponding features of one person’s face (eyes, nose, and 
mouth corners) into the corresponding features of the other person’s face, and to blend the 
pixel values over some number of image frames to provide the appearance of a continual 
blending from one image to the other when the sequence of frames is played back as a video. 
The warping of such nonlinear, complex surfaces as faces requires transformations that are 
local rather than global in nature.

Figure 3.43 Various 
geometric warpings 
applied to an image.

Image Translation Rotation Affine Projective

3.10 Further Reading
Most of the material in this chapter, such as graylevel 
transformations, graylevel histograms, histogram 
equalization, and histogram matching, can be found in 
any image processing textbook, such as Burger and Burge 

[2008] or Gonzalez and Woods [2008]. Multispectral 
transformations such as NDVI are described in the remote 
sensing literature, such as Campbell and Wynne [2011] or 
Lillesand et al. 2007]. Another popular approach for dealing 
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PROBLEMS

3.1. Given the following 4 3 4 grayscale image, perform the following operations: flip, 
flop, flip-flop, invert, and rotate clockwise by 90 degrees.D176 94 201 219

37 161 16 88
71 129 177 81
41 198 107 19

T
3.2. Based on Algorithms 3.1 and 3.2, write pseudocode to flip-flop an image.

3.3. Modify Algorithm 3.1 to perform the flipping in place, so that the output and input 
images occupy the same memory.

3.4. Modify the pseudocode of Algorithm 3.3 to rotate the image in place, using only 
enough additional storage to hold one pixel value at a time. (Only implement rotate clock-
wise by 90 degrees.)

3.5. Use 8-bit saturation arithmetic to compute the following: (a) 52 1 200, (b) 86 1 199, 
(c) 30 2 50, and (d) 32 1 11. Then repeat with 4-bit saturation arithmetic.

3.6. Using the 8-bit image in Problem 3.1, perform the following arithmetic operations, 
clamping where necessary: add 65, subtract 85, multiply by 2.

3.7. Compute the (a) sum, (b) difference, and (c) absolute difference of the following two 
8-bit images, using saturation arithmetic to store the result in another 8-bit image:

I1 5 D   19 171   91   68
123   99   74 195
  85   71 208   18
241 212 189   68

T    I2 5 D106   97 190   5
  81   64 183 82
  71 200 251 94
181   76     9 18

T

with multispectral data in remote sensing (but beyond our 
scope) is known as the Tasseled Cap Transformation, 
which is due to Kauth and Thomas [1976]. For a thought-
provoking discussion regarding the use of pseudocoloring, 
consult the work of Borland and Taylor [2007].

Background subtraction can be traced to the early 
work of Jain and Nagel [1979], which also addressed the 
problem of updating the background image once objects 
begin moving. The double-difference image for frame dif-
ferencing is originally due to Kameda and Minoh [1996]. 
A notable investigation of the topic of background sub-
traction was conducted by Toyama et al. [1999]. One of 
the most popular background subtraction algorithms is 
based on mixtures of Gaussians and is due to Stauffer and 
Grimson [2000], which was later updated by Zivkovic and 
van der Heijden [2006]. Additional approaches to back-
ground subtraction are that of Javed et al. [2002], which 
combines color and gradient information, and the texture-
based approach of Heikkila and Pietikainen [2006].

Anyone interested in learning more about digital com-
positing is encouraged to pick up the delightful book by 

Brinkmann [2008], which explains techniques widely used 
in the entertainment industry, as well as the terms flipping 
and flopping as they are commonly used in the computer 
graphics community. The classic paper on compositing is 
that of Porter and Duff [1984], which remains a readable 
and self-contained introduction. Another short introduc-
tion to compositing is the paper by Thompson [1990].

Cubic convolution interpolation filters were developed 
by Keys [1981], who also showed that the Catmull-Rom 
spline (without mentioning it by name) minimizes the 
reconstruction error. This work was later extended by 
Mitchell and Netravali [1988], who demonstrate that a 
small amount of smoothing improves the subjective quality 
of the reconstructed image — the Mitchell filter is a result 
of this study. A comparison of various interpolation meth-
ods is found in Turkowski and Gabriel [1990]. Another 
excellent description of 1D and 2D geometric transforma-
tions, warps, and interpolation methods can be found in 
the Burger and Burge book [2008]. For more recent work 
on sophisticated upsampling algorithms, consult Shan et 
al. [2008], HaCohen et al. [2010], or Kopf et al. [2007].
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3.8. Suppose you want to display the following floating-point image. Perform a linear 
contrast stretch to convert the pixels to 8 bits, mapping the smallest value to 0 and the 
largest value to 255: D0.327 0.945 0.559 0.381

0.181 0.252 0.080 0.950
0.240 0.399 0.737 0.148
0.986 0.170 0.246 0.447

T
3.9. Determine the lookup table (LUT) for the piecewise linear graylevel mapping given in 
Figure 3.12. (To avoid excessive writing, provide entries only for the gray levels divisible by 25.)

3.10. Generate the LUT for the operation I r 1 x, y 2 5 h # 1 1
h I 1 x, y 22 2.0, assuming I and I r are 

4-bit grayscale images. Set h to ensure that the maximum value of I maps to the maximum 
value of I r.

3.11. Threshold the image in Problem 3.1 with t 5 155.

3.12. Compute bit plane 7 and bit plane 4 for the image in Problem 3.1.

3.13. Compute the histogram, normalized histogram, and cumulative normalized histogram 
for the following 4-bit image: D5 8 3 7

1 3 3 9
6 8 2 7
4 1 0 9

T
3.14. Implement histogram equalization in your favorite programming language. Run your 
code on the image in Problem 3.13, as well as on a low-contrast image of your own.

3.15. Implement histogram matching, and run your code on the image in Problem 3.13, 
using the reference histogram href 5 31 1 1 0 2 2 2 0 4 3 4. Check by 
hand to verify that the output is correct.

3.16. If histogram equalization is applied twice to an image, that is, if it is applied to the 
result of histogram equalization, will the second application change the image or not? 
Explain why or why not.

3.17. Compute the grayscale equivalent for each of the following RGB triplets using both 
Equations (3.36) and (3.37), rounding to the nearest whole number: (a) (128,128,128), (b) 
(64,245,198), and (c) (255,253,128). Also, (d) for each color, compute the difference in 
grayscale between the two conversions.

3.18. Implement the RGB-to-grayscale conversion approaches of Equations (3.36) and 
(3.37), and run on a few sample images. Also run the RGB-to-grayscale conversion of some 
existing software application. Can you tell a difference in quality between the various outputs?

3.19. An alternative to the NDVI of Equation (3.45) is the Infrared Percentage Vegetation 
Index (IPVI), given by

 IrIPVI 1 x, y 2 5
IIR 1 x, y 2

IIR 1 x, y 2 1 IRed 1 x, y 2   (3.133)

Show that IPVI is functionally equivalent to NDVI, in that it is simply a linear transformation. 
Compute the transformation, and state the range of IPVI. What are the thresholds for 
detecting live green vegetation in IPVI?
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3.20. What temperature (in degrees Celsius) is represented by a pixel in a GOES infrared 
image with a value of 200?

3.21. Suppose you have an application for which you want to apply background subtrac-
tion. List some difficulties that might prevent the output from being perfect.

3.22. Compute the (a) double difference and (b) triple difference between the following 3 
consecutive frames, using the threshold t 5 40:

I1 5 D   18 168 94   67
120   97 78 198
  83   70 208   17
238 208 189   68

T   I2 5 D   21 168   92   71
122   71 191 227
  83 212   16 187
240 216 188   68

T   I3 5 D  20 171   92   70
 76 193   39 228
209   20   20 194
241 210 190   73

T
3.23. Explain the concept of dissolving and how it is used in the movie/film industry for 
digital compositing.

3.24. In addition to the 12 binary Porter-Duff operators (and their alpha-channel equiva-
lents), other compositing operators are possible. One of these is screen, defined as

 IA screen IB 5 1 2 1 1 2 IA 2 1 1 2 IB 2
where the pixel values are assumed to range between 0 and 1 to simplify the equation.

(a)  What does the screen operator do? (Hint: Assume IA and IB are the foreground and back-
ground, respectively, and examine what happens when the images are at their minimal 
or maximal values.)

(b)  Implement the screen operator and test it on two images, each with constant alpha 
channel of 0.5 for every pixel.

3.25. Another pair of compositing operators is dodging and burning. Dodging brightens 
certain pixels in an image, while burning darkens the pixels; in both cases the pixels are 
specified by a second binary image. One way to implement these operators is to add or 
subtract a constant, say 128, to every pixel in the image where the binary image is ON, using 
saturation arithmetic. Write the pseudocode for these two operators.

3.26. Suppose your computer has saturation arithmetic built-in, that is, 
a 1 b 5 min 1 a 1 b, 255 2  for byte operations, and so forth. (Such logic is common for 
CPUs with SIMD instructions such as MMX/SSE.) How would you modify your pseudo-
code in the previous problem?

3.27. The 12 Porter-Duff operators are as follows:

(a) clear

(b) copy IA

(c) copy IB

(d) IA over IB

(e) IB over IA

(f) IA in IB

(g) IB in IA

(h) IA out IB

(i) IB out IA

(j) IA atop IB

(k) IB atop IA

(l) IA xor IB

Apply these operators to the following two images with masks:

IA 5 C132 231 227
237 105 238
193   59 128

S MA 5 C255 255 0
255 255 0
    0     0 0

S IB 5 C43   79 116
56 246 184
36 119 162

S MB 5 C0     0     0
0 255 255
0 255 255

S
Show only the values of the valid pixels; indicate invalid pixels using an X.
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3.28. One of the 12 Porter-Duff operators is equivalent to (IA in IB) over IB. Which one 
is it?

3.29. Using the same values for IA and IB as in Problem 3.27, but with the following opacity 
values, compute (a) IA over IB, (b) IA in IB, and (c) IA atop IB.

aA 5 C1.0 0.5 0
0.5 0.4 0
0 0 0

S  aB 5 C0 0 0
0 0.2 0.6
0 0.6 1.0

S
3.30. The four operators in Figure 3.32 are not commutative. Briefly describe what the 
result of each operator would be if the order of the operands were reversed.

3.31. Given the following image, use bilinear interpolation to compute the value at 
(a) (0.1, 0.7), (b) (1.2, 0.5), (c) (1.3, 1.6), and (d) (2.8,1.7).C232 177   82     7

241   18 152 140
156 221   67     3

S
3.32. Show that Equation (3.71) passes through the values f0 and f1 and maintains the 
derivatives f

#
0 and f

#
1.

3.33. Derive the 16 3 16 bicubic interpolation matrix in Equation (3.84), using the central 
difference operator for derivatives.

3.34. The general form of a 1D symmetric cubic filter is given by

 k 1 x 2 5 ca3 0 x 0 3 1 a2 0 x 0 2 1 a1 0 x 0 1 a0 if 0 x 0 , 1
ar3 0

 

x 03 1 ar2 0
 

x 02 1 ar1 0
 

x 0 1 ar0 if 1 # 0  x 0 , 2
0 otherwise

 (3.171)

Show that if the value and derivatives are enforced to be continuous everywhere, and the 
coefficients sum to 1, then the 8 parameters are reduced to 2, leading to Equation (3.86).

3.35. Why is the Mitchell filter generally preferred over Catmull-Rom?

3.36. It can be shown that the Mitchell filter in Equation (3.95) is a linear combination of 
Catmull-Rom in Equation (3.76) and uniform cubic B-spline in Equation (3.88) Find the 
weighting coefficients.

3.37. List a popular filter for downsampling, and another for upsampling.

3.38. Find two images of a fairly static scene taken by a camera that panned and zoomed 
between the images. Manually click on two corresponding points on both images to com-
pute the scale and rotation between them, then use one of these corresponding points to 
compute the translation. Construct a similarity transform, and apply the transform to one 
of the images to bring the two images into approximate alignment.

3.39. Set up a stationary camera and capture a short video sequence of some moving 
foreground objects while the background remains stationary. Compute the mean image of 
the sequence to generate a background image, then use background subtraction to segment 
the foreground objects. Display the foreground objects that result from thresholding the 
absolute difference between the current image(s) and the background image.

3.40. Implement the popular background subtraction approach that uses mixtures of Gauss-
ians to model the background pixel colors, explained in Stauffer and Grimson [2000].
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In the previous chapter we examined simple operations to transform one image into another. In this chapter we 
continue the investigation by focusing on the special case of binary images. Our goal in this chapter is to cover 
well-known algorithms that are widely used in practice, while at the same time laying a foundation for later 

chapters. Binary images provide a natural excuse to introduce mathematical morphology, which is an approach to 
image processing that views a binary image as a subset of the plane, as well as other mathematical concepts such 
as the eigendecomposition of a matrix, which is useful for determining the orientation of a set of points in the 
plane. Unlike the previous chapter, the operations in this chapter are not restricted to those in which the output 
pixel is determined by a single input pixel.

C H A P T E R 4
Binary Image Processing

4.1 Morphological Operations
Recall that thresholding a grayscale image, or thresholding the result of an operation 
like background subtraction, produces a binary image in which foreground pixels have 
the value of 1, while background pixels have the value of 0. Logically, these values can 
be considered as ON or OFF, respectively. Figure 4.1 shows an example grayscale image 
of objects on a conveyor belt, along with a thresholded version. Such images are com-
mon in manufacturing environments, where machine vision techniques play an important 
role in ensuring that the parts being manufactured are without defects, are sorted into 
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132 Chapter 4 • Binary Image Processing

the proper bins, and so on. For such applications, it is often important to isolate the 
foreground objects from the background, as well as to compute properties of the objects 
for the purpose of classifying and manipulating them. Unfortunately, as seen from the 
figure, thresholding does not produce a perfect separation between the foreground and 
background. Although we will consider algorithms for automatically computing a thresh-
old value later,† on a difficult image like this one, the result will be noisy no matter what 
threshold value is chosen.

Morphological operations provide a powerful way to clean up such noise. The word 
morphology means “the study of shape,” and mathematical morphology is an entire 
branch of mathematics that has been developed to process images by considering the shape 
(or form) of the pixel regions. Mathematical morphology models binary images as sets 
by considering foreground (ON) pixels as subsets of the image plane. In the next chapter, 
we shall extend this concept to grayscale images, but for this chapter we focus on binary 
mathematical morphology.

4.1.1 Binary Image as a Set
A binary image is generally thought of as an array of values such that I(x,y) returns 1 
or 0 for each pixel location (x,y). Alternatively, as explained earlier,‡ a binary image can 
be represented as the set of coordinates of all the foreground (1-valued, or ON) pixels. 
These two representations are equivalent, and we can freely convert between them as 
desired.

† Chapter 10 (p. 444). 
‡ Section 1.4.3 (p. 13).

EXAMPLE 4.1 Write the set representation of the following binary image:

I 5 C1 0 1
0 1 1
0 0 0

S
Solution The set representation contains the coordinates of all the pixels with a value of 1. Using 

our coordinate system convention in which the x axis points to the right, the y axis points 
down, and the origin is the top-left pixel, this yields 5 1 0, 0 2 , 1 1, 1 2 , 1 2, 0 2 , 1 2, 1 2 6.

Figure 4.1 Left: A 
grayscale image of 
several types of fruit on a 
dark conveyor belt. Right: 
A binary image resulting 
from thresholding. The 
white pixels are ON and 
indicate the foreground, 
while the black pixels 
are OFF and indicate the 
background.

Sta
n B

irc
hfi

eld
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4.1 Morphological Operations 133

The two fundamental set operators are union and intersection. If A and B are sets of 
points in the plane, then the union of A and B is the set containing all points that are in 
either A or B (or both), while the intersection of A and B is the set containing all points 
that are in both A and B:

 A h B ; 5z : z [ A or z [ B6    (union) (4.1)

 A x B ; 5z : z [ A and z [ B6    (intersection) (4.2)

where z [ R2 is a point in the plane. Additional operators are the translation of the set A by 
the vector b, denoted Ab; the reflection of the set B about its origin (the flip-flop operator 
we saw in the previous chapter), denoted B̌; the logical complement qA containing all the 
points not in A, which is equivalent to replacing each 1 in the array with 0 and each 0 with 
1; and the difference A \ B between two sets containing all the points in A that are not in B. 
If we let a 5 1 ax, ay 2 [ A be a point in the first set, and let b 5 1 bx, by 2 [ B be a point 
in the second set, then these operators are summarized as follows:

 Ab ; 5z : z 5 a 1 b, a [ A6         (translation) (4.3)

 B̌ ; 5z : z 5 2b, b [ B6      (reflection) (4.4)

 qA ; 5z : z o A6               (complement) (4.5)

 A \ B ; 5z : z [ A, z o B6 5 A x qB      (difference) (4.6)

where 2b 5 12bx, 2by 2  indicates that the sign of both the x and y coordinates have 
changed. The application of these operators is shown in Figure 4.2, from which it is easy to 
see that z [ A x B implies z [ A h B, since any point in the intersection must also be 
in the union. As a result, the intersection is a subset of the union: A x B 8 A h B.

In addition, it is obvious that any point not in the union of A and B is also not in A and 
not in B; similarly, any point not in the intersection of A and B is either not in A or not in 
B. These are known as De Morgan’s laws:

 q 1A h B 2 5 qA x qB (4.7)

 q 1A x B 2 5 qA h qB (4.8)

EXAMPLE 4.2 A 3 3 3 binary image is represented by 5 1 0, 1 2 , 1 0, 2 2 , 1 1, 2 2 , 1 2, 2 2 , 1 2, 1 2 6. What is 
the array representation?

Solution  The array representation is obtained by placing a 1 at every location contained in the set, 
and 0 everywhere else:

I 5 C0 0 0
1 0 1
1 1 1

S
 

Figure 4.2 Set operators. The first two columns show two sets A and B in blue. Then, from left to right, shown are the union, intersection, 
shift of A by some amount b (not related to B), reflection about the origin (assumed to be at the center), complement, and set difference.

A 0

AAbA h B A\BA x BB B̌
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4.1.2 Minkowski Addition and Subtraction
The coordinates of two points can be added easily using vector addition, 
a 1 b 5 1 ax 1 bx, ay 1 by 2 , which leads naturally to a definition for the sum of two sets. 
The Minkowski addition† of two sets A and B is defined as the set of points resulting from 
all possible vector additions of elements of the two sets:

  A % B ; 5z : z 5 a 1 b, a [ A, b [ B6 (4.9)

  5 d
b[B

 5a 1 b : a [ A6 5 d
b[B
Ab (4.10)

In other words, Equation (4.9) says that A % B  is the set 5z6 such that for each point z in 
the set there is some a in A and some b in B whose sum is z. Equivalently, Equation (4.10) 
says that A % B  is the union of the sets resulting from translating A by each element of B.

The Minkowski subtraction of two sets is defined in an analogous manner:

  A * B ; 5z : z 2 b [ A, 4b [ B6  (4.11)

  5 t
b[B

 5a 1 b : a [ A6 5 t
b[B
Ab (4.12)

where the symbol 4 means “for all.” That is, Equation (4.11) says that A * B  is the set 5z6 
such that for each point z in the set and for all b in B, the point z 2 b is in A. Equivalently, 
Equation (4.12) says that it is the intersection of the sets resulting from translating A by 
each element of B.

These two operations are best understood by example. Although Minkowski addition and 
subtraction are defined for arbitrary point sets in the plane (and can be extended beyond the 
plane, as we shall see in the next chapter), our goal is to apply these concepts to images, 
that is, to discrete point sets in a square lattice in which the point coordinates are integers. 
Our example, therefore, highlights this case.

† The mathematician Hermann Minkowski (1864–1909) was a teacher of Albert Einstein.

EXAMPLE 4.3 Compute the Minkowski addition of the two discrete sets A1 and B shown in Figure 4.3, 
and the Minkowski subtraction of the two discrete sets A2 and B shown in the same figure.

Solution  The first set contains just two points: A1 5 5 1 0, 0 2 , 1 1, 0 2 6. The second set contains four 
points: B 5 5 1 0, 0 2 , 1 1, 0 2 , 1 0, 1 2 , 1 0, 2 2 6. Minkowski addition is computed by adding 
each element of B to each element of A1:

$%&[A1 $%&[B $%&[A
1
% B1 0, 0 2 1 1 0, 0 2 5 1 0, 0 2

 1 0, 0 2 1 1 1, 0 2 5 1 1, 0 2
 1 0, 0 2 1 1 0, 1 2 5 1 0, 1 2
 1 0, 0 2 1 1 0, 2 2 5 1 0, 2 2
 1 1, 0 2 1 1 0, 0 2 5 1 1, 0 2
 1 1, 0 2 1 1 1, 0 2 5 1 2, 0 2
 1 1, 0 2 1 1 0, 1 2 5 1 1, 1 2
 1 1, 0 2 1 1 0, 2 2 5 1 1, 2 2
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Properties
The Minkowski operators have a number of interesting properties. From the previous example, 
it is clear that Minkowski addition grows the foreground A1, whereas Minkowski subtraction 
shrinks the foreground A2. Formally, as long as the second set B contains the origin (which is 
nearly always the case in practice), then Minkowski addition is extensive, which means its 
output is a superset of the input, while Minkowski subtraction is anti-extensive, which means 
its output is a subset of the input. Similarly, if A1 is a subset of A2, then the result of either 
operator on A1 will be a subset of the result of the same operator on A2, a property known 
as increasing. Other properties are fairly easy to show, which are listed here for reference:

  A % B 5 B % A   (commutativity) (4.14)

  A * B 5 qB * qA   (non-commutativity) (4.15)

  1A % B 2  % C 5 A % 1B % C 2    (associativity, separability) (4.16)

  1A * B 2  * C 5 A * 1B % C 2    (separability) (4.17)

  1A % B 2  % C 5 1A % C 2  % B   (order does not matter) (4.18)

  1A * B 2  * C 5 1A * C 2  * B   (order does not matter) (4.19)

  A % B 8 A if 1 0, 0 2 [ B   (extensivity) (4.20)

  A * B 8 A if 1 0, 0 2 [ B   (anti-extensivity) (4.21)

  A1 % B 8 A2 % B if A1 8 A2   (increasing) (4.22)

  A1 * B 8 A 2 * B if A1 8 A
 2   (increasing) (4.23)

  A % 1B h C 2 5 1A % B 2  h 1A % C 2    (parallelism) (4.24)

  A * 1B h C 2 5 1A * B 2  x 1A * C 2    (parallelism) (4.25)

  1A x B 2  * C 5 1A * C 2  x 1B * C 2  (4.26)

  1A h B 2  % C 5 1A % C 2  h 1B % C 2  (4.27)

  q 1A % B 2 5 qA * B   (duality) (4.28)

  q 1A * B 2 5 qA % B   (duality) (4.29)

Since one point is repeated, the result is the set containing the 7 unique points: 
A1 % B 5 5 1 0, 0 2 , 1 1, 0 2 , 1 0, 1 2 , 1 0, 2 2 , 1 2, 0 2 , 1 1, 1 2 , 1 1, 2 2 6.  The figure shows that 
this set of points is the union of all the points in A1 when A1 is translated to every point in B.

Minkowski subtraction is less intuitive. Nevertheless, it is easy to show that (0, 0) is in 
A2 * B  because, for every element of B, their difference is in A2. On the other hand, the point 
(1, 0) is not in A2 * B,  because for the point b 5 1 0, 2 2 [ B, the difference is not in A2:

 $%&[B
 $%&[B1 0, 0 2 2 1 0, 0 2 5 1 0, 0 2 [ A2 1 1, 0 2 2 1 0, 0 2 5 1 1, 0 2 [ A21 0, 0 2 2 1 1, 0 2 5 121, 0 2 [ A2 1 1, 0 2 2 1 1, 0 2 5 1 0, 0 2 [ A21 0, 0 2 2 1 0, 1 2 5 1 0, 21 2 [ A2 1 1, 0 2 2 1 0, 1 2 5 1 1, 21 2 [ A21 0, 0 2 2 1 0, 2 2 5 1 0, 22 2 [ A2 1 1, 0 2 2 1 0, 2 2 5 1 1, 22 2 o A2()*

[A2*B

()*
oA2*B

 (4.13)

The figure shows that the set A2 * B  is the intersection of the sets of points resulting from 
translating A2 to every point in B.
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One particularly interesting property is that of duality. Two operators C and C r are 
said to be duals of each other with respect to complementation if qC 1A 2 5 C r 1qA 2 . 
It is not hard to see that Minkowski addition and subtraction are duals of each other with 
respect to complementation, because the former grows the foreground A (or, equivalently, 
shrinks the background qA), while the latter shrinks the foreground A (or, equivalently, 
grows the background qA). In other words, for a given B the same result is achieved if we 
complement the output or if we complement the input and change the operator. Duality is 
a powerful tool for proving properties.

Swapping the Order of the Operands
Due to the commutative property, it is not surprising that Minkowski addition can also be 
computed by leaving A stationary and instead shifting B, whereas in the above example 
we left B stationary and shifted A. Similarly, by combining the commutativity and duality 

Figure 4.3 Minkowski addition and subtraction, from Equations (4.10) and (4.12) , respectively. For both operations, the first set (A1 
or A2) is translated so that its origin is placed at each element of the second set 1B 2 . The union of the blue cells then yields A1 % B,  
while their intersection yields A2 * B.  In other words, each ON (blue) cell in A1 % B  is ON (blue) in at least one of the intermediate 
results, while each ON (blue) cell in A2 * B  is ON (blue) in all of the intermediate results. Colored cells are ON (value 1); white cells are 
OFF (value 0); and all pixels outside the 5 3 5 image are assumed to be OFF. The small black dots indicate the origins of the coordinate 
systems. (As explained later, this is the “center-in” approach.)
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properties, it is easy to show that Minkowski subtraction can be computed by leaving qA 
stationary and instead shifting qB:

  A % B 5 B % A  (4.30)

  5 5z : z 5 a 1 b, a [ A, b [ B6  (4.31)

  5 d
a[A

 5a 1 b : b [ B6 5 d
a[A
Ba  (4.32)

  A * B 5 qB * qA  (4.33)

  5 5z : z 2 a o B, 4a o A6  (4.34)

  5 t
aoA

 5a 1 b : b o B6 5 t
aoA

qBa (4.35)

Computations involving these swapped operands are illustrated in Figure 4.4.

Center-In Versus Center-Out
All the formulations of Minkowski addition and subtraction that we have seen so far are 
examples of what we call the “center-in” approach, in which the center of one set is placed 
only at certain locations, and the output is determined by examining the entire set (applying 

Figure 4.4 Alternate view of Minkowski addition and subtraction from Equations (4.32) and (4.35), which are obtained by swapping the 
order of the operands using the properties A1 % B 5 B % A1 and A2 * B 5 qB * qA2, respectively. For addition, the second set 1B 2  is translated so that its origin remains within the first set 1A1 2 , and the result is the union of all the ON (orange) cells. For subtraction, 
the second set 1B 2  is translated so that its origin remains outside the first set 1A2 2 , and the result is the intersection of all the OFF (non-
orange) cells. In other words, each ON (blue) cell in A1 % B  is ON (orange) in at least one of the intermediate results, while each ON (blue) 
cell in A2 * B  is OFF (non-orange) in all of the intermediate results. Equivalently, the result of subtraction is ON everywhere except where 
the pixel is ON (orange) in at least one of the intermediate results. (This is also the “center-in” approach.)
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either union or intersection). In contrast, the “center-out” approach performs a test at each 
location on all the elements of the set, then updates the value of the center element. In other 
words, the former approach treats the center element (i.e., the element at the origin) as an 
input to decide whether to even look at the other elements, whereas the latter approach 
treats the center element as the output that aggregates information from the other elements. 
All formulations of Minkowski addition or subtraction can be classified as either center-in 
or center-out.

The center-out approach to Minkowski addition finds the set of points z such that at 
least one point in the reflected B̌, when centered at z, intersects A. Similarly, Minkowski 
subtraction is the set of points z such that all the points in the reflected B̌, when centered 
at z, intersect A:

  A % B 5 5z : B̌z x A 2 06 (4.36)

  A * B 5 5z : B̌z 8 A6  (4.37)

The two approaches are summarized in Table 4.1. Despite the (perhaps surprising) need for 
a reflection, the center-out approach is more intuitive and easier to visualize than the center-
in approach, because the set B̌ is translated by every possible z, and a test is performed on 
the entire set. This is illustrated in Figure 4.5, where the equivalence of the center-in and 
center-out approaches is obvious by comparing with Figures 4.3 and 4.4.

4.1.3 Dilation and Erosion
Minkowski addition and subtraction lead naturally to the two fundamental morphological 
operators called dilation and erosion. As shown in previous examples, Minkowski addi-
tion grows (or “dilates”) the region by increasing its size, whereas Minkowski subtraction 
shrinks (or “erodes”) the region by decreasing its size. Examining Figure 4.5, however, 
reveals a problem: Minkowski subtraction A * B  yields the set of locations at which the 
reflected set B̌ fits entirely within A, whereas it is more natural to want the set of locations at 
which the original set B fits entirely within A; as a result, the erosion operator *̌ is defined 
to be Minkowski subtraction after first reflecting the second operand. Minkowski addition, 
on the other hand, exhibits no such reflection in its output, and therefore the dilation opera-
tor %  is identical to Minkowski addition:

  A % B ; A % B 5 5z : z 5 a 1 b, a [ A, b [ B6 (dilation) (4.38)

  A*̌B ; A * B̌ 5 5z : z 1 b [ A, 4b [ B6    (erosion) (4.39)

where the right-most equations are copied from Equations (4.9) and (4.11), changing the 
sign in the latter.

Structuring Elements
Up to now the two operands have been treated more or less equally. Typically, however, the 
first set, which we call I, is a binary image containing tens of thousands of pixels, whereas 

A ! B A " B
center-in 5z : z 5 a 1 b, a [ A, b [ B6

5 d b[B  
Ab 5 d a[A 

Ba

5z : z 2 b [ A, 4b [ B6
5 t b[B Ab 5 t aoAqBa

center-out 5z : B̌z x A 2 06 5z : B̌z 8 A6
TABLE 4.1 All formulations of Minkowski addition and subtraction can be classified into one of two categories, center-in or center-out.
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4.1 Morphological Operations 139

the second set B is a much smaller binary mask called a structuring element (SE).† From 
Equations (4.32) and (4.35) , the center-in formulation of dilation and erosion involves 
translating B across the image, performing a test on the central pixel, and updating the 
output of all the pixels under B:

 I % B 5 d
z[I

Bz        (dilation, center-in) (4.40)

 I *̌ B 5 t
zoI

qB̌z      (erosion, center-in) (4.41)

as shown in Algorithm 4.1. In the case of dilation, the output is initially set to OFF everywhere. 
Then, for every location (x,y), the structuring element B is overlaid on I centered at (x,y), 
and the value I (x,y) is tested. If I (x,y) is ON, then the output  I r is set to ON wherever B is 
ON. Ignoring border effects, I r will be the same size as I. Similarly, in the case of erosion, 
the output is initially set to ON everywhere. For every location (x,y), the structuring element 
B is overlaid on I centered at (x,y), and the value I (x,y) is tested. If I (x,y) is OFF, then the 
output I r is set to OFF wherever B is ON. In the code, note that x r 5 0, c, wB 2 1, and 
y r 5 0, c, hB 2 1, where wB and hB are the width and height of B, respectively. Typically 
the size of B is odd, in which case the floor of the half-width and half-height simplify to jwB

2
k 5

wB 2 1
2

 and jhB

2
k 5

hB 2 1
2

. The notation v r d OR v in Line 5 is a shorthand 

† Since SEs are usually stored as arrays rather than sets, from now on we use the non-calligraphic notation B rather 
than B for clarity; the two are mathematically equivalent.

Figure 4.5 Yet another view of Minkowski addition and subtraction, from Equations (4.36) and (4.37). For both operations, the reflected 
second set B̌ is translated throughout the space. For addition, the output is the union of the locations of the center of B̌ when at least 
one element of B̌ overlaps A1. For subtraction, the output is the union of locations of the center of B̌ when all elements of B̌ overlap A2. 
(This is the “center-out” approach.)
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140 Chapter 4 • Binary Image Processing

way of saying v r d v r or v, and similarly for v r d AND v, much like the operators 05  and  
&5 in the C programming language.

From Equations (4.36) and (4.37) , the center-out formulation of dilation and erosion 
involves translating B (or B̌) across the image, performing a test at each pixel, and output-
ting a value in the center:

 I % B 5 5z : B̌z x I 2 06      (dilation, center-out) (4.42)

 I *̌ B 5 5z : Bz 8 I6         (erosion, center-out) (4.43)

as shown in Algorithm 4.2. In the case of dilation, for every location (x, y) the reflected 
structuring element B̌ is overlaid on I, and the corresponding output value I r 1 x, y 2  is set to 
ON if there is an ON-pixel in I under at least one of the ON-pixels in B̌. The erosion I  *̌

 B is 
computed similarly. For every location (x, y) the structuring element B is overlaid on I, and 
the corresponding output value I r 1 x, y 2  is set to ON if there is an ON-pixel in I under all of 
the ON-pixels in B̌. In both cases, the reflection of B is accomplished by changing the signs 
in Line 4. It is no doubt ironic that, whereas the dilation (Minkowski addition) operator has 
avoided all mention of reflection until now, its center-out computation actually requires 
reflection, whereas the implementation of the erosion operator, which we might have 
expected to involve reflection, in fact requires none. For clarity, the situation is summarized 
in Table 4.2. Nevertheless, in case it is not already clear why dilation requires a reflection 
of the structuring element, an additional example is provided in Figure 4.6.

Using Dilation and Erosion for Noise Removal
The most common use of dilation and erosion is to remove noise. In this application, erosion 
and dilation are morphological filters that either remove anything smaller than the structuring 

ALGORITHM 4.1 Dilate or erode an image with a structuring element (center-in approach)

Dilate-CenterIn (I, B)

Input: binary image I and structuring element B
Output: binary image I r from dilating I with B

1 I r d OFF ➤ Initialize the output I r 1 x, y 2 d OFF for all (x,y).
2 for 1 x, y 2 [ I do ➤ For each ON-pixel in the input I,
3   if I 1 x, y 2 55 ON then overlay B at the pixel,
4     for 1 x r, y r 2 [ B do ➤ and set all pixels overlapping an ON-pixel in B to ON.
5        I r 1 x 1 x r 2 :wB

2 ;, y 1 y r 2 :hB
2 ; 2 d OR B 1 x r, y r 2  ➤ (i.e., I r d I r OR B.)

6 return I r

Erode-CenterIn (I, B)

Input: binary image I and structuring element B
Output: binary image I r from eroding I with B

1 I r d ON ➤ Initialize the output I r 1 x, y 2 d 1 for all (x, y).
2 for 1 x, y 2 [ I do ➤ For each OFF-pixel in the input I,
3   if I 1 x, y 2 55 OFF then overlay B̌ at the pixel,
4     for 1 x r, y r 2 [ B do and set all pixels overlapping an OFF-pixel in B̌ to OFF.
5       I r 1 x 2 x r 1 :wB

2 ;, y 2 y r 1 :hB
2 ; 2 d AND not B 1 x r, y r 2  ➤ (i.e., I r d I r AND q B̌.)

6 return I r
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element (erosion) or fill any gaps / holes smaller than the structuring element (dilation), and 
therefore the structuring element is usually a discrete approximation to a circular disk. The 
two most common structuring elements are the elementary structuring elements, which 
include a 3 3 3 cross of 1s (known as B4) and a 3 3 3 array of all 1s (known as B8):

 B4 5 C0 1 0
1 1 1
0 1 0

S        B8 5 C1 1 1
1 1 1
1 1 1

S   (4.44)

depicted graphically in Figure 4.7. The symmetry of such structuring elements means that 
there is no difference between Minkowski subtraction and erosion, because the structuring 
element is equal to its reflection. Also, the size and shape of the structuring element greatly 
simplify the implementation. In the case of B4, for example, the code in the outer for loop 

Operator Center-in Center-out

Minkowski addition No Yes

Minkowski subtraction No Yes

Dilation No Yes

Erosion Yes No

TABLE 4.2 Whether reflection of the second argument (structuring element) is needed for both center-in and center-out approaches for 
all operators. Note that Minkowski addition and dilation agree on both, since the operators are identical. Similarly, Minkowski subtraction  
and erosion disagree on both, since the definition of the latter already includes a reflection.

ALGORITHM 4.2 Dilate or erode an image with a structuring element (center-out approach)

Dilate-CenterOut (I, B)

Input: binary image I and structuring element B
Output: binary image I r from dilating I with B

1 for 1 x, y 2 [ I do ➤ For each pixel in the input I,
2   any d OFF initialize the output value to OFF.
3   for 1 x r, y r 2 [ B do ➤ Overlay B̌ on I, and if any ON-pixel in B̌
4     if B 1 x r, y r 2  and I 1 x 2 x r 1 :wB

2 ;, y 2 y r 1 :hB
2 ; 2  then overlaps an ON-pixel in I,

5        any d  ON then set the pixel in the output
6   I r 1 x, y 2 d  any to ON, else set it to OFF.
7 return I r

Erode-CenterOut (I, B)

Input: binary image I and structuring element B
Output: binary image I r from eroding I with B

1 for 1 x, y 2 [ I do ➤ For each pixel in the input I,
2   all d  ON initialize the output value to ON.
3   for 1 x r, y r 2 [ B do ➤ Overlay B on I, and if any ON-pixel in B overlaps
4     if B 1 x r, y r 2  and not I 1 x 1 x r 2 :wB

2 ;, y 1 y r 2 :hB
2 ; 2  then an OFF-pixel in I,

5        all d  OFF then set the pixel in the output
6   I r 1 x, y 2 d  all to OFF, else set it to ON.
7 return I r
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(Lines 2–6) can be replaced with a single line, leading to Algorithm 4.3. Similar code can 
be written using B8. Note, therefore, that the most widely used cases of dilation and erosion 
are extremely easy to implement.

Properties
It should be obvious that dilation and erosion inherit the properties of the Minkowski opera-
tors. All the properties in Equations (4.14) – (4.29) are also true for dilation and erosion by 
simply replacing *  with *̌ everywhere. The only exception is duality, which requires an 
additional reflection:

  q 1A % B 2 5 qA *̌ B̌     1 duality 2  (4.45)

  q 1A *̌ B 2 5 qA % B̌    1 duality 2  (4.46)

That is, dilation and erosion are duals of each other with respect to complementation and 
reflection, which is illustrated in Figure 4.8.

One of the more interesting properties is separability:

 A % 1B % C 2 5 1A % B 2  % C   1 separability 2  (4.47)

 A * ˇ 1B % C 2 5 1A *̌ B 2  *̌ C    1 separability 2  (4.48)

In other words, if we dilate an image by a structuring element B, then dilate it again with a 
different structuring element C, the result is the same as if we had dilated the image by the 
structuring element resulting from dilating B with C. A similar argument holds for erosion. 
As an example, B8 can be decomposed as follows:

B8 5 C1 1 1
1 1 1
1 1 1

S 5 C0 0 0
1 1 1
0 0 0

S  % C0 1 0
0 1 0
0 1 0

S 5 C0 1 0
0 1 0
0 1 0

S  % C0 0 0
1 1 1
0 0 0

S  (4.49)

since dilation is commutative. By dilating (or eroding) with the horizontal structuring ele-
ment, then dilating (or eroding) with the vertical structuring element, significant computation 

Figure 4.6 A simple example illustrating the need for reflecting the structuring element in “center-out” dilation. Left column: A 3 3 3 
binary image with a single ON pixel in the center (top), and an L-shaped 3 3 3 structuring element (bottom). Remaining columns: As the 
structuring element slides past the image (top), dilation sets the pixel in the output (bottom) corresponding to the central pixel of the 
structuring element to ON if there is overlap between the image and the structuring element. In all cases, colored pixels are ON, whereas 
white pixels are OFF. As can be seen, if an asymmetric structuring element is not first reflected, then the resulting dilation will exhibit an 
undesirable reflection.

Figure 4.7 The two most common structuring elements.

B4 B8
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can be avoided. This approach, which can be applied to rectangular structuring elements of 
all 1s of any size, is particularly beneficial for large structuring elements.

Another interesting property is parallelism, which allows us to dilate or erode piece by 
piece, then combine the results by union or intersection:

 A % 1B h C 2 5 1A % B 2  h 1A % C 2  (4.50)

 A *  ̌ 1B h C 2 5 1A * ˇ  B 2  x 1A * ˇ  C 2  (4.51)

For example, if we had three processors, we could decompose B8 as follows:

 B8 5 C1 1 1
1 1 1
1 1 1

S 5 C1 1 1
0 0 0
0 0 0

S  h C0 0 0
1 1 1
0 0 0

S  h C0 0 0
0 0 0
1 1 1

S  

perform dilation (or erosion) using a different structuring element with each processor, then 
combine the results using union (or intersection).

ALGORITHM 4.3 Dilate or erode an image with a B4 structuring element (center-out approach)

Dilate_B4(I)

Input: binary image I
Output: binary image I r from dilating I with the B4 structuring element

1 for 1 x, y 2 [ I do
2    I r 1 x, y 2 d I 1 x, y 2  or I 1 x 2 1, y 2  or I 1 x 1 1, y 2  or I 1 x, y 2 1 2  or I 1 x, y 1 1 2
3 return I r

Erode_B4(I)

Input: binary image I
Output: binary image I r from eroding I with the B4 structuring element

1 for 1 x, y 2 [ I do
2    I r 1 x, y 2 d I 1 x, y 2  and I 1 x 2 1, y 2  and I 1 x 1 1, y 2  and I 1 x, y 2 1 2  and I 1 x, y 1 1 2
3 return I r

5

5

A B

B̌

A % B 0(A % B)

%

*

0A * B0

A

Figure 4.8 The duality of dilation and erosion, namely, q 1A % B 2 5 qA *̌ B̌. Note that out-of-bounds pixels receive the value of their 
closest neighbor.
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Alternative Definitions and Notation
The reader is cautioned that the notation used for dilation and erosion varies among authors. 
The notation used in this book is summarized as follows:1Mink. addition/dilation 2    A % B 5 d

b[B
 Ab       A%̌B 5 d

b[B
 A2b   

   

1 reflected dilation 2  (4.52)1Mink. subtraction 2  A * B 5 t
b[B

 Ab      A*̌B 5 t
b[B

 A2b 1 erosion 2  (4.53)

By retaining the standard notation for Minkowski addition and subtraction while introducing 
the notation *̌ for erosion, the distinction between these concepts is clearly maintained. 
Many authors, such as Gonzalez and Woods [2008] and Davies [2005], reuse the Minkowski 
subtraction notation for erosion, leading to ambiguity in interpreting the symbol *.  Other 
authors, such as Serra [1982] and Soille [2003], not only use different notation but also 
define dilation to include a reflection (“reflected dilation”), in the same way that erosion 
includes a reflection. These differences are summarized in Table 4.3, where the top rows 
show how each author defines each term, using our notation to describe the definition; and 
the bottom rows show the notation used by these authors. When the structuring element is 
not symmetric, maintaining these distinctions is important.

4.1.4 Building Large Structuring Elements
We have just seen† that an SE is separable when it can be written as the dilation of two SEs. 
The dilation or erosion of an image with a separable SE is equivalent to two successive 
dilations or erosions, respectively, with the component SEs, as shown in Equations (4.46)–
(4.47). This property can be used to greatly decrease the number of computations needed 
when an SE is separable. For example, a 3 3 3 SE of all 1s is the dilation of a vertical SE 
of all 1s with a horizontal SE of all 1s:

 
B8 5 C1 1 1

1 1 1
1 1 1

S 5

 

C1
1
1
S

()*
L3,10,12

  %
 

31 1 1 4('')''*
L3,11,02   (4.54)

† Section 4.1.2 (p. 134).

This Book GW, Davies, SHB, SS Serra Soille

definition dilation A % B A % B A %̌ B A %̌ B

erosion A *̌ B A *̌ B A *̌ B A *̌ B

notation dilation A % B A % B A % B̌ dB 1A 2
erosion A *̌ B A * B A * B̌ eB 1A 2

TABLE 4.3 Comparison of the definition and notation for dilation and erosion among various authors (from left-to-right: Gonzalez and 
Woods [2008], Davies [2005], Sonka et al. [2008], Shapiro and Stockman [2001], Serra [1982], and Soille [2003]). The top rows present 
the definitions of the operators by the various authors with respect to our notation. All authors agree on the definitions, except that 
the last two authors introduce a reflection in the definition of dilation. The bottom rows present the notation used by the various 
authors. Ignoring the last column, all authors agree on the notation for dilation, whereas our notation for erosion differs from others’ 
by making the reflection explicit in the operator symbol. (Keep in mind, however, that in a “center-out” implementation, it is actually 
dilation, not erosion, that reflects the structuring element, even using the definitions in the middle two columns. See Table 4.2.)
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4.1 Morphological Operations 145

where Lr,1x,y2 indicates a straight line SE in the direction of (x,y) with length r. A variety 
of shapes of arbitrary size can be composed from this basic definition of a line, as shown 
in Figure 4.9:

 Squarer 5 Lr,11,02 % Lr,10,12  (4.55)

 Rectanglew,, 5 L w,11,02 % L ,,10,12  (4.56)

 Diamondr 5 Lr21,11,12 % Lr21,11, 212 % Diamond2  (4.57)

 Octagonr 5 Lr21,11,12 % Lr21,11, 212 % Lr,11,02 % Lr,10,12 (4.58)

 Octagonrr 5 Lr,11,12 % Lr,11, 212 % Lr,11,02 % Lr,10,12  (4.59)

where Diamond2 is identical to B4 in which the 1s are arranged in a plus sign. For the 
two types of octagon SEs, the following ordering relation can be shown to hold for all r: 
Octagonr ( Octagonrr ( Octagonr11 ( Octagonr11r .

4.1.5 Opening and Closing
One problem with dilation and erosion is that they inadvertently grow or shrink a binary 
object. For example, with a 3 3 3 structuring element, dilation extends the object by 1 
pixel around the border of the object, whereas erosion removes (in addition to noise) a 
1-pixel-thick border around the object. The solution to this problem lies in two additional 
morphological operations called opening (which is erosion followed by dilation) and 
closing (which is dilation followed by erosion):

 A + B 5 1A *̌ B 2  % B          (opening) (4.60)

 A ~ B 5 1A % B 2  *̌ B          (closing) (4.61)

Figure 4.9 Composing 
large structuring elements 
by dilating smaller ones. 
From top to bottom: 
Square3, Rectangle5,3, 
Diamond3, Octagon3,  
and Octagon3r.
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Equivalently, the opening of a set is the union of all the SEs that fit entirely within the set, 
whereas the closing of a set is the intersection of all translations of the complement of the 
SE such that it contains the set:

 A + B 5 d
z
5Bz : Bz 8 A6               (opening) (4.62)

 A ~ B 5 t
z
5qBz : A 8 qBz6 5 q ¢ d

z
5Bz : Bz 8 qA6≤   1 closing 2  (4.63)

It is easy to show that opening and closing are also duals of each other with respect to 
complementation and reflection:

 q 1A ~ B 2 5 1qA + B̌ 2       (duality) (4.64)

 q 1A + B 2 5 1qA ~ B̌ 2      (duality) (4.65)

The open and close operators are idempotent, meaning that repeated applications of open-
ing or closing do nothing:

 1A + B 2 + B 5 A + B       (idempotence) (4.66)

 1A ~ B 2 ~ B 5 A ~ B       (idempotence) (4.67)

It is easy to see that openings are anti-extensive, whereas closings are extensive.
If the foreground pixels are visualized as land and the background pixels as water, 

features can be defined, such as lakes, bays, channels, capes, isthmuses, and islands. 
Figure 4.10 illustrates some binary regions with these features, along with the results of 
dilation, erosion, closing, and opening. For simplicity we ignore discretization and imagine 
the structuring element in the shape of a circular ball (or disk). If the ball is rolled on the 
outer contour of the object, the result of dilation is the set of all points whose enclosing 
contour is defined by the path of the center of the ball. This operation fills the lakes, bays, 
and channels. Similarly, if the ball is rolled on the inner contour of the object, the result of 
erosion is the set of all points whose enclosing contour is defined by the path of the center of 
the ball. This operation removes capes, isthmuses, and islands. Note that dilation increases 

Figure 4.10 TOP: Dilation of a binary region by a circular structuring element can be visualized as rolling the disk along the outside of the 
region; the result is enclosed by the path of the center of the disk. The right column shows the result of closing (dilation followed by erosion), 
which fills lakes, bays, and channels. BOTTOM: Erosion can be visualized as rolling the disk along the inside of the region; the result is again 
enclosed by the path of the center of the disk. The right column shows the result of opening (erosion followed by dilation), which removes 
capes, isthmuses, and islands.
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the size of the region, whereas erosion decreases the size of the region. By following one 
operation after the other, the undesired features can be filtered without changing the overall 
size of the region. An example of applying various morphological operations to a binary 
image (obtained by thresholding a background subtraction result) is shown in Figure 4.11.

In addition to morphological openings, which we have just seen, there are also algebraic 
openings, which cannot be written as a single erosion followed by a dilation. The area 
opening, for example, removes all regions whose area (in terms of the number of pixels) is 
smaller than a given threshold. The area opening is equivalent to the union of all morphological 
openings with connected SEs whose size (in terms of the number of pixels) is equal to the given 
threshold. Similarly, there are algebraic closings. The area closing, for example, is the dual 
of area opening, given by the intersection of all morphological closings with connected SEs 
whose size is equal to the threshold. Another algebraic opening is the parametric opening, 
which is the union of all morphological openings by all subsets of the SE whose size is equal 
to the given threshold. Such operators are mathematically interesting but not widely used.

4.1.6 Hit-Miss Operator
Erosion can be used to define a simple approach to shape detection in a binary image. Sup-
pose we have a shape BON that we wish to detect in an image A. The erosion A*̂BON will find 
all places in the image where BON fits entirely within the foreground of A (meaning that every 
ON pixel in BON lines up with an ON pixel in A), but it will lead to spurious detections as well. 
To avoid these spurious detections, use another structuring element BOFF that contains the 
pixels that we do not want to be ON. These could be the inverse qBON of the shape, the outer 
boundary 1BON % B4 2 2 BON of the shape, or some other set of pixels. To detect the shape in 
the image, the hit-miss operator† uses erosion to find all the places in the image where 
BON matches the foreground and BOFF matches the background:

 A ~ 1BON, BOFF 2 ; 1A *̌ BON 2  x 1qA *̌ BOFF 2   (hit-miss operator) (4.68)

The hit-miss operator provides a simple approach to object detection, for which more robust 
techniques will be considered in Chapter 12.

Notice that the hit-miss operator takes two arguments, the second of which is a pair of 
SEs. We can combine these two SEs into a single ternary SE that holds one of three values 
for each pixel:

 B ; cON if BON 5 ON

OFF if BOFF 5 ON

DONT-CARE otherwise
 (4.69)

† The hit-miss operator is also known as the hit-and-miss transform or hit-or-miss transform, but the latter is inac-
curate since the parts are combined by conjunction rather than disjunction. Similarly, operator is more appropriate 
than transform because the coordinate frame does not change.

Figure 4.11 A binary image and the result of morphological operations: Erode, dilate, open, and close. Erosion removes salt noise but 
shrinks the foreground. Dilate fills pepper noise but expands the foreground. Opening and closing removes the respective types of noise 
while retaining the overall size of the foreground.

Input image Erode Dilate Open Close Sta
n B

irc
hfi

eld
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allowing us to write Equation (4.68) in a more compact form: 

 A ~ B  (hit-miss operator with ternary argument)

Figure 4.12 shows an example of the hit-miss operator applied to detect a simple smiley 
face pattern in an image. The foreground pattern contains the eyes and mouth, while the 
background pattern contains the negation of the foreground—except that the corner pixels 
are considered “don’t care.” The foreground pattern is found in the image at three places, in 
addition to several spurious readings along the bottom of the image. Notice that the detec-
tion in the upper-right is of a face for which a nose was added. The background pattern is 
also found in three places, including a detection of a face with a pixel missing from the 
mouth. When logically anded together, only the two unmodified faces are detected. Notice 
that the dont-care pixels do not have any effect on any of the detections. Figure 4.13 shows 
the hit-miss operator applied to another image for the purpose of detecting a particular letter 
(“e”) in an image of an English sentence.

4.1.7 Thinning
One application of the hit-miss operator is morphological thinning. Thinning a binary image 
involves removing pixels from the foreground (that is, setting pixels to OFF) while maintain-
ing as much as possible the structure and connectivity of the foreground regions. At its core, 
thinning takes an image and a ternary SE and removes all the points detected by the SE:

 I ⊟  B ; I 2 1 I ~ B 2 5 I x q 1 I ~ B 2  (4.70)

where the subtraction operator performs set differencing by setting all pixels that are ON in 
I ~ B to OFF in the output. Typically we want to thin an image using several ternary SEs, 
organized as either an ordered or unordered set. An ordered set is known as a sequence, 
in which case thinning applies the elements of the sequence in order, one at a time, to the 
output of the previous element. If we let B 5 1B1, B2, c, Bm 2  be a sequence of m ternary 
SEs, then the thinning operator is defined as

 I ⊟  B ; 1 1 I ⊟  B1 2  ⊟  B2 2  
c

  ⊟  Bm       1 sequential 2  (4.71)

Figure 4.12 Hit-miss operator. TOP: The foreground pattern BON, the background pattern BOFF, and the ternary representation B with 
X indicating DONT-CARE. BOTTOM: From left-to-right: The image A within which to search for the pattern, the negation qA of the image, the 
erosion of the image with the foreground pattern, the erosion of the negated image with the background pattern, and the final result, which 
shows two successful detections of the smiley face.

BON BOFF

0A

Ternary B

Image A Final result0A *̌ BOFFA *̌ BON
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On the other hand, if we let B 5 5B1, B2, c, Bm6 be an unordered set of m ternary SEs, then 
the thinning operator first flags all pixels that are detected by the SEs, then removes those pixels:

 I ⊟  B ; I 2 1 1 I ~ B1 2  h 1 I ~ B2 2  h c h 1 I ~ Bm 2 2    1 nonsequential 2  (4.72)

Either way, the equations above constitute one iteration of thinning with the set/sequence. 
Applying multiple iterations is straightforward:

 
I ⊟ n  B ; 1 1 1 I ⊟  B 2  ⊟  B 2 2  c  ⊟  B ('''''')''''''*

n iterations

 (4.73)

where n is the number of iterations. If the procedure is run until convergence, the 
computation is represented as I ⊟ ` B, so that repeated applications have no effect: 1 I ⊟` B 2  ⊟  B 5 I ⊟` B.

Figure 4.14 shows 8 ternary SEs that are commonly used for morphological thinning. 
The two basic SEs are

 BEDGE 5 C 0 0 0
X 1 X
1 1 1

S   BCORNER 5 CX 0 0
1 1 0
X 1 X

S
and the other 6 SEs are rotated versions of these. As a rough approximation, BEDGE and its variet-
ies detect points that are on an interior edge of a region, or that are protruding out of the region. 
Similarly, BCORNER and its varieties detect points that are on a corner or on a thin diagonal line.

Figure 4.13 The hit-miss operator applied to a binary image, with white indicating ON and black indicating OFF. TOP: From left-to-right: 
The image, the inverted image, the foreground pattern, and the background pattern. BOTTOM: From left-to-right: The erosion of the image 
with the foreground pattern, the erosion of the inverted image with the background pattern, the result of hit-miss, and the outlines of 
the detections overlaid on the original image.

Detections overlaid

BOFFBONA

A B0A *̌ B̌OFFA *̌ BON

0A

Figure 4.14 Structuring elements commonly used for 
morphological thinning. Colored pixels are ON, white pixels 
are OFF, and X indicates DONT-CARE. The top row shows the 4 
edge SEs, while the bottom row shows the 4 corner SEs.

Edge SEs:

Corner SEs:
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150 Chapter 4 • Binary Image Processing

Figure 4.15 shows the process of thinning a binary image using these 8 SEs as a 
sequence. The first SE is applied to the image, matching 5 pixels along the top that are then 
removed. Afterward, the second SE is applied, and no pixels are matched. The third SE is 
then applied, and 8 pixels along the bottom are matched and removed. The process contin-
ues until convergence, at which point the result is an approximation of the skeleton of the 
image, a topic covered in more detail later in the chapter.† When applied as a sequence, the 
order in which the SEs are applied does in fact matter, and it is generally recommended to 
apply BEDGE and its variants before applying BCORNER and its variants, within each iteration, 
so as to avoid unnecessarily shrinking the region. This is the approach taken in the example 
shown in the figure.

Figure 4.16 shows the process of thinning the same binary image using the same SEs 
as the previous figure. This time, however, the edge SEs are applied as a set, so that all 
edge pixels are first detected and removed. This process continues until convergence. Once 
no more changes are made to the image, the corner SEs are applied as a sequence, begin-
ning with the first one and continuing until convergence. This approach produces a thin-
ner skeleton than the approach in the previous example which, as we shall see later, is an 
improvement because the goal is usually to obtain the thinnest skeleton possible. Note from 
the figure that the corner SEs cannot be applied as a set, because then two adjacent pixels 
would be detected and deleted (i.e., the pixel just below the hashed pixel in the next-to-last 
graphic), leading to a disconnected skeleton.

4.1.8 Thickening
Thickening is the opposite of thinning. Thickening a binary image involves adding pixels 
to the foreground (that is, setting pixels to ON) while maintaining as much as possible the 

† Section 4.5.1 (p. 195).

Figure 4.15 Morphological thinning of a binary image using the SEs of Figure 4.14 treated as a sequence. The first SE matches pixels 
(indicated by hashed squares) along the top of the region, which are then removed. The second SE matches no pixels, while the third SE 
matches pixels along the bottom, which are then removed. This process continues until convergence, yielding an approximate skeleton 
of the original image.

Input image After second SEAfter first SE After third SE

After fourth SE After sixth SEAfter fifth SE After seventh SE

After eighth SE After ninth SE Final result

•••
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4.1 Morphological Operations 151

overall shape of the foreground regions. At its core, thickening takes an image and a ternary 
SE and adds all the points detected by the SE:

 I ⊞  B ; I h 1 I ~ B 2  (4.74)

where the union operator sets all pixels that are ON in I ~ B to ON in the output. Using X to 
represent DONT-CARE, commonly used SEs for thickening are

 BGROW-SE 5 C1 1 X
1 0 X
1 X 0

S  BGROW-SW 5 CX 1 1
X 0 1
0 X 1

S
and the rotated versions of these, which are all shown in Figure 4.17. BGROW-SE grows the 
region in the southeast (bottom-right) direction, BGROW-SW grows in the southwest (bottom-
left) direction, and so on. Note that the central pixel of thickening SEs are OFF, whereas the 
central pixel of thinning SEs are ON.

The process of morphological thickening of a binary image is shown in Figure 4.18. For 
brevity we simply show the input and output of the procedure, leaving the detailed steps as 
an exercise for the reader. Note that the thickening process fills the concavities of the region, 
resulting in an approximation to the convex hull, discussed later.† Thickening is not as sensi-
tive as thinning to the order in which the SEs are applied, so the distinction between set and 
sequence is less important. Comparing this figure with Figure 4.16, notice that the thinning 
SEs are designed to retain 8-connectedness of the foreground, while the thickening SEs are 
designed to thin 4-connected foregrounds. For example, if the original region in Figure 4.18 
were first thinned to an 8-connected region, thickening would have no effect because the 
SEs would not match anything. We will discuss 4- and 8-connectedness in more detail in 
the next section.

† See Section 4.4.8 (p. 187).

Figure 4.16 Morphological thinning of the 
same binary image using the same SEs as the 
previous example. In this case, however, the 
edge SEs are applied repeatedly as a set until 
convergence, before applying the corner SEs 
repeatedly as a sequence. In the first iteration 
pixels along the top, right, bottom, and left 
of the region are removed by the edge SEs. In 
the second iteration, 9 additional pixels are 
removed by the edge SEs. In the final iteration 
a single pixel is removed by one of the corner 
SEs, thus producing a thinner skeleton than in 
the previous example.

Image After edge SEs
(iteration 2)

After edge SEs
(iteration 1)

After corner SEs Final result

Figure 4.17 Structuring elements commonly 
used for morphological thickening.
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152 Chapter 4 • Binary Image Processing

An alternate approach to thickening the foreground is to thin the background. That is, the 
complement of the image is taken, thinning is applied until convergence, and the result is 
then complemented again. This approach is illustrated in Figure 4.19, from which it is clear 
that this approach does not yield the convex hull—rather it retains the approximate shape of 
the original region. One drawback of this approach is the lack of meaningful convergence. 
As we saw in Figure 4.18, thickening converges to a solution in a finite number of iterations, 
without regard to the size of the background in which the foreground is embedded. In this 
alternate approach, however, if the foreground were embedded in a much larger background, 
then the background would be repeatedly thinned until it reached the borders of the image, 
at which point the background size would be greatly reduced, thus causing the foreground 
region to have enlarged well beyond its original size.

4.2 Labeling Regions
Once the noise in a binary image has been removed (or at least reduced) using morphological 
operations, the next step is often to find regions of pixels in the image. Each region is a set 
of connected pixels and is assigned a unique label to distinguish it from other regions. In this 
section we consider basic definitions, followed by several algorithms for labeling regions.

4.2.1 Neighbors and Connectivity
The morphological algorithms of the previous section are the first algorithms we have con-
sidered that use neighbors of pixels to compute a result. A pixel q 5 1 qx, qy 2  is a neighbor 
of pixel p 5 1 px, py 2  if q is in the neighborhood of p, denoted q [N 1p 2 , where N 
is the neighborhood function. The most common neighborhoods used in image processing 
are shown in Figure 4.20:

Figure 4.18 Morphological thickening of a binary image 
using the SEs in Figure 4.17. Shown are the original image 
(left) and the final result after convergence (right). The 
thickened result is an approximation to the convex hull.

Input image Final result

Figure 4.19 Morphological thickening of the same binary image by thinning the background using the thinning SEs in Figure 4.14. TOP: 
The background (obtained as the complement of the original image), and the output after each iteration of morphological thinning. 
BOTTOM: The original image and the thickened output after each iteration, obtained by complementing the image above it.
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4.2 Labeling Regions 153

• The 4-neighborhood, denoted by N4, consists of the four pixels to the left, right, above, 
and below the pixel.†

• The D-neighborhood, denoted by ND, consists of the four pixels diagonal from the pixel.
• The 8-neighborhood, denoted by N8, consists of the eight closest pixels. That is, 
N8 5N4 h ND.

Note that the structuring element B4 that we encountered earlier is a set consisting of the 
central pixel and its 4-neighbors, whereas B8 consists of the central pixel and its 8-neighbors.

Any algorithm that uses neighbors must decide what to do when those neighbors do 
not exist. For example, in the case of dilation or erosion, when the structuring element is 
centered near the boundary of the image, some of its elements will extend past the image, 
placing them out of bounds. Although for simplicity the pseudocode presented in the previ-
ous section ignores this detail, in a real implementation a decision must be made how to 
handle these out-of-bounds pixels. While there is no agreed-upon solution for this problem, 
several common approaches are the following:

• Do not process boundary pixels. Keep the SE in bounds at all times and set the output 
pixels near the boundary to zero (or some other arbitrary value). This is the fastest and 
simplest solution and is acceptable if you do not care what happens near the border.

• Resize the SE. Near the border, shrink the SE so that it does not extend past the image 
border. For example, if we have a 3 3 3 SE of all ones, we could use a 2 3 3 SE of 
all ones near the left and right border, a 3 3 2 SE near the top and bottom borders, and 
2 3 2 SEs (with the center placed appropriately) near the four corners.

• Pad values outside the image. The most common approaches to padding are to replicate 
(that is, out of bounds pixels are assigned the value of the nearest pixel in the image), 
reflect (image values are mirror-reflected about the image border), wrap (image values 
are extended in a periodic wrap, which is what the discrete Fourier transform does 
implicitly), and set to constant. Note that this last option was used in the previous section, 
where we assumed that out-of-bounds pixels were OFF.

The type of neighborhood determines the type of adjacency. Two pixels are said to 
be adjacent if they have the same value (i.e., either ON or OFF in the case of a binary 
image) and if they are neighbors of each other. Pixels are said to be connected (or contigu-
ous) if there exists a path between them, where a path is defined as a sequence of pixels 
p0, p1, c, pn21 such that pi21 and pi are adjacent for all i 5 1, c, n 2 1. A region 
in an image is therefore a set of connected pixels. Not surprisingly, the two most common 
adjacencies are 4-adjacency and 8-adjacency, illustrated in Figure 4.21:

• Two pixels p and q in an image I are 4-adjacent if I 1p 2 5 I 1q 2  and q [N4 1p 2 ;
• Two pixels p and q in an image I are 8-adjacent if I 1p 2 5 I 1q 2  and q [N8 1p 2 .
In addition, the notion of 4- and 8-neighbors can be combined to yield m-adjacency (“mixed 
adjacency”):

• Two pixels p and q in an image I are m-adjacent if I 1p 2 5 I 1q 2  and (q [N4 1p 2  or  
(q [ND 1p 2  and N4 1p 2  x N4 1q 2 5 0)).

† In cellular automata theory, N4 is known as the von Neumann neighborhood, while N8 is the Moore neighborhood. 
J. von Neumann (1903–1957) was a pioneer in many areas and is perhaps most famous for the von Neumann 
architecture used in almost all computers today. E. F. Moore (1925–2003), the inventor of the Moore finite state 
machine, was a pioneer of artificial life.

Figure 4.20 Commonly used neighborhoods. From left to right: 
N4, N8, and ND.
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In other words, two pixels are m-adjacent if they are either 4-adjacent or 8-adjacent and 
there is not another pixel that is 4-adjacent to both of them. For all adjacencies, the neigh-
borhood relations are symmetric, so that q [N 1p 2  if and only if p [N 1q 2  for any 
neighborhood N.

Discretization introduces a subtle complication in dealing with adjacency. According 
to the Jordan curve theorem, any simple closed curve (called a Jordan curve) divides 
the plane into the interior region bounded by the curve and the exterior region which is the 
complement of the interior region unioned with the curve. Therefore, any continuous path 
from one region to the other intersects the curve. With discretization, however, it is easy 
to demonstrate scenarios in which a path from the background to the foreground does not 
intersect the discretized curve if the same adjacency is used for both foreground and back-
ground. The well-known solution to this problem is to use 4-adjacency for the foreground 
and 8-adjacency for the background, or vice versa.

4.2.2 Floodfill
Floodfill, also called seed fill, is the problem of coloring all the pixels that are connected 
to a seed pixel with some desired new color (where “color” refers to either an RGB triplet 
or gray level or binary value, depending on the image type). Several algorithms exist for 
performing floodfill, with the recursive version being particularly easy to explain. As shown 
in Algorithm 4.4, the algorithm takes the coordinates of a seed pixel p 5 1 x, y 2 , a new 
color, and an image, and it sets the colors of the pixels. (The pseudocode uses non-bold-face 
p (rather than p) to represent the pixel to emphasize that it is just like any other variable.) 
The seed pixel is examined and set to the new color after first storing the original color. The 
neighbors (either 4- or 8-), in turn, are examined and set to the new color if they are equal to 
the original color under the seed pixel. The neighbors of these pixels are then examined and 
set in the same manner, with the process recursively repeating until no neighboring pixels 
share the original seed pixel color. No value is returned, since the pixels are modified in 
place. Although this algorithm is simple to understand, it is never used in practice because, 
not only is recursion computationally inefficient due to the overhead of making function 
calls, but, more importantly, recursive floodfill will cause the stack to be overrun, because 
it is not uncommon for floodfilled regions to contain tens of thousands of pixels. And of 
course a stack overrun will cause the program to crash.

A more computationally efficient approach overcomes these problems by using a 
dynamic array of pixels called the frontier. In the initialization, the original color of the 
seed pixel is grabbed, the seed pixel is colored with the new color, and the coordinates of 
the pixel are pushed onto the initially empty frontier. Then the algorithm repeatedly pops 
a pixel off the frontier and expands all the adjacent pixels (the neighbors that still have the 
original color), where expansion involves setting the pixel to the new color and pushing its 
coordinates onto the frontier. The algorithm terminates when the frontier is empty. In the 
pseudocode of Algorithm 4.5, the algorithm performs a depth-first search if the frontier 
is implemented as a stack, because Push and Pop operate on the same end of the array. 
Alternatively, if the stack is replaced by a queue, then Push and Pop operate on opposite 
ends of the array, and the FIFO (first-in-first-out) operations cause a breadth-first search 

Figure 4.21 A binary region and the 4-, 
8-, and m-adjacency of its pixels. Note 
that m-adjacency removes the loops that 
sometimes occur with 8-adjacency.

Region 4-adjacency 8-adjacency m-adjacency
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instead. Either way the output is the same, so a stack-based frontier is recommended because 
its memory management is simpler. An example of the algorithm applied to a binary image 
is illustrated in Figure 4.22.

Variations on the algorithm are easy to obtain by making minor modifications to this 
basic pseudocode. One common variation is to leave the original input image intact and 
instead to change an output image. This variation is implemented in Algorithm 4.6, where 
each pixel O(x, y) in the output is set if the pixel I(x, y) in the input would have been changed 
by the previous algorithm. This version of the algorithm will be used in the next section for 
connected components, as well as later for segmentation.† It does not return a value, since 
it operates on the output image that is passed into the procedure.

An interesting connection exists between floodfill and dilation, namely that floodfill 
is equivalent to repeated conditional dilations. The conditional dilation of an 
image I with respect to another image C is defined as dilation followed by intersection:‡

 I %C B ; 1 I % B 2  x C (4.75)

† Section 10.1.3 (p. 450).
‡ Conditional erosion is defined similarly, by replacing the intersection operator with union and the dilation with erosion.

ALGORITHM 4.4 Perform floodfill on an image (stack-unfriendly version using recursion)

FloodfillRecursive(I, p, new-color)

Input: image I, seed pixel p, and new color
Output: all pixels in I connected to p are colored new-color

1 if I(p) 2  new-color then ➤ If pixel is already new color, then
2   orig-color d  I(p) terminate this branch in the recursion.
3   I(p) d  new-color ➤ Otherwise, set pixel to new color, and
4   for q [N 1 p 2  do recursively call the procedure on any
5     if I(q) 5  5 orig-color then neighbor having the same color.
6       FloodfillRecursive(I, q, new-color)

ALGORITHM 4.5 Perform floodfill on an image (fast version using frontier)

Floodfill(I, p, new-color)

Input: image I, seed pixel p, and new color
Output: all pixels in I connected to p are colored new-color

 1 orig-color d  I(p) ➤ If seed pixel is already new color,
 2 if orig-color 2  new-color then then terminate.
 3   frontier.Push(p) ➤ Otherwise, set frontier to seed pixel,
 4   I(p) d  new-color and set pixel to new color.
 5   while frontier.Size . 0 do ➤ As long as frontier is not empty,
 6     p d  frontier.Pop() examine a pixel from frontier;
 7     for q [N 1 p 2  do if any neighbor has the same color as
 8       if I(q) 5  5 orig-color then the original seed pixel color,
 9         frontier.Push(q) then set neighbor to new color,
10         I(q) d  new-color and add neighbor to frontier.
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The image I is called the marker image, while C is called the mask image. If B is an 
elementary structuring element (either B4 or B8) containing 1s only in pixels that are a 
distance of 1 from the center, then conditional dilation is also known as geodesic dilation 
of size 1, denoted I % C

1  B. The geodesic dilation of size n is therefore the repetition of n 
conditional dilations, each with the same elementary structuring element:

 
I % C

n  B ; 1 1 1 I %C B 2  %C B 2  c  %C B 2('''''')'''''*
n iterations

 (4.76)

We are usually interested in repeating conditional (or geodesic) dilation until convergence, 
a process known as morphological reconstruction by dilation:

 
I %C

` B ; 1 1 1 I %C B 2  %C B 2  c  %C B 2(''''')''''''*
k iterations

 (4.77)

where k is the smallest number such that I %C
k11 5 I %C

k . In other words, the dilations are 
repeated until they have no effect, I %C

` B 5 1 1 I %C
` B 2  %C B.

It is easy to see that the 4-neighbor floodfill of a 0-valued region in a binary image with 
seed pixel p is equivalent to P %qI

`  B4, where P is an image with a 1 at p and 0s everywhere 

ALGORITHM 4.6 Perform floodfill, saving the output in a separate image

FloodfillSeparateOutput(I, O, p, new-color)

Input: image I, seed pixel p, and new color preallocated output image O (same size as I)
Output: all pixels in O connected to p in I are colored new-color

1 orig-color d  I(p)
2 frontier.Push(p)
3 O(p) d  new-color
4 while frontier.Size . 0 do
5   p d  frontier.Pop()
6   for q [N 1 p 2  do
7     if I(p) 5  5 orig-color and O(q) 2  new-color then
8       frontier.Push(q)
9       O(q) d  new-color

Figure 4.22 Step-by-step illustration 
of the 4-neighbor FLOODFILL algorithm 
on a small image. The frontier is 
shown below the image. Starting 
from the seed pixel labeled 1, the 
interior region of white pixels is 
changed to yellow by the algorithm, 
while orange is used to indicate the 
pixels being considered in the current 
expansion. The labels are artificially 
introduced to aid in associating pixels 
in the image with those in the frontier.
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else. The first iteration computes 1P % B4 2  x qI, which includes the seed pixel and its 
4-neighbors. The next iteration grows the region to include the 4-neighbors of all of these 
pixels, but the intersection with the complement of the original image retains only those 
pixels whose value in the original image is 0. This process continues until the entire region 
is filled, at which time repeated iterations do not change the output.

Viewing floodfill as conditional dilations is valuable due to the extremely compact math-
ematical notation that can be used to describe the computation, as seen in the P %qI

`  B4 
above. Indeed, this ability to represent fairly complex operations using the basic building 
blocks of dilation or erosion is one of the strengths of mathematical morphology. On the 
other hand, conditional dilation is not used in practical implementations due to the substan-
tial computational overhead incurred by touching every pixel at each iteration.

Closely related concepts are opening by reconstruction and closing by 
reconstruction, defined as

 1 I %n B 2  *̌I
`

 B r              1 closing by reconstruction 2  (4.78)

 1 I *̌n B 2  %I
`

 B r              1 opening by reconstruction 2  (4.79)

which are the opening and closing, respectively, by reconstruction of I of size n. In other 
words, the image I is used as the mask image, whereas an eroded or dilated version of I is 
used as the marker image. The two SEs B and B r may be the same or they may be differ-
ent. Recall that morphological opening removes small objects, and the subsequent dilation 
restores the remaining objects. Similarly, opening by reconstruction (which is not a mor-
phological opening but rather an algebraic opening) also removes small objects but then 
restores the remaining objects exactly. In other words, all image features that do not contain 
the SE are removed, while the others are not changed.

4.2.3 Connected Components
Recall that two pixels are said to be connected if there is a path between them consisting of 
pixels all having the same value. A connected component is defined as a maximal set of 
pixels that are all connected with one another. The connected components of an image are 
the equivalence classes of the image with respect to the equivalence relation “is connected 
to,” where an equivalence relation is a reflexive, symmetric, and transitive relation that 
partitions a set into disjoint subsets (which are the equivalence classes).

Connected component labeling is the process of assigning a unique identifier to every 
pixel in the image indicating to which connected component it belongs. For example, this 
process is used to separate the various foreground objects in a binary image. Given a binary 
image with ON pixels signifying foreground and OFF pixels indicating background, the result 
of a connected component labeling algorithm is a two-dimensional array (the same size as 
the image) in which each element has been assigned an integer label indicating the region 
to which its pixel belongs. That is, all the pixels in one contiguous foreground region are 
assigned one label, while all the pixels in a different contiguous foreground region are 
assigned a different label, all the pixels in a contiguous background region are assigned yet 
another label, and so forth. Thus, connected components is a partitioning problem, because 
it assigns the image pixels to a relatively small number of discrete groups.

One way to implement connected components is by repeated applications of flood-
fill, starting each iteration with a new unlabeled pixel as the seed point. This is shown in 
Algorithm 4.7. Initially the output label array L is created to be the same size as the input 
image, all elements in this output array are unlabeled, and a global label is set to zero. Then 
the image is scanned, and whenever a pixel is encountered that has not yet been labeled, 
floodfill is applied to the image with that pixel as the seed pixel, filling the elements in the 
output array with the global label. The global label is then incremented, and the scan is 
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continued. This relatively simple procedure labels each pixel with the value of its contigu-
ous region. One advantage of this algorithm is that the regions are labeled with consecutive 
labels of 0, 1, 2, … so that the number of regions found is given by the global label.

A more common approach, sometimes known as the classic connected components 
algorithm, involves scanning the image twice, as shown in Algorithm 4.8. In the first 
pass, the image is sequentially scanned from left to right and from top to bottom, and 

ALGORITHM 4.7 Perform connected components by repeated applications of floodfill

ConnectedComponentsByRepeatedFloodfill(I)

Input: image I
Output: integer image L containing a label for each pixel

1 for 1 x, y 2 [ L do
2   L(x, y) d  unlabeled
3 next-label d  0
4 for 1 x, y 2 [ L do
5   if L 1 x, y 2 55  unlabeled then
6     FloodfillSeparateOutput(I, L, (x, y), next-label)
7     next-label d1 1
8 return L

ALGORITHM 4.8 Perform the classic union-find connected components algorithm

ConnectedComponentsByUnionFind(I)

Input: image I
Output: label image L containing a label for each pixel

 1 ➤ first pass
 2 for y d 0 to height 2 1 do ➤ Scan the image from top to bottom,
 3   for x d 0 to width 2 1 do from left to right.
 4     v d I 1 x, y 2  ➤ If pixel value
 5     if v 55 I 1 x 2 1, y 2  and v 55 I 1 x, y 2 1 2  then ➤ is the same as both neighbors,
 6       L 1 x, y 2 d L 1 x 2 1, y 2  then set the label to either label arbitrarily,
 7       SetEquivalence 1L 1 x 2 1, y 2 , L 1 x, y 2 1 2 2  and declare the labels equivalent.
 8     elseif v 55 I 1 x 2 1, y 2  then ➤ Otherwise, if pixel value is
 9       L 1 x, y 2 d L 1 x 2 1, y 2  the same as either neighbor,
10     elseif v 55 I 1 x, y 2 1 2  then then set label to the label
11       L 1 x, y 2 d L 1 x, y 2 1 2  of the appropriate pixel.
12     else ➤ If pixel value is different from both neighbors,
13       L(x, y) d  next-label then declare a new region,
14       next-label d 1 1 and increment the global label.
15 ➤ second pass
16 for 1 x, y 2 [ L do ➤ For each pixel,
17   L(x, y) d  GetEquivalentLabel(L(x, y)) traverse the equivalence table.
18 return L
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all the pixels are labeled with preliminary labels based on a subset of their neighbors. 
For 4-neighbor connectedness, the algorithm compares a pixel with its two neighbors 
above and to the left; for 8-neighbor connectedness, the pixel is also compared with the 
two neighbors diagonally above-left and above-right, as shown in Figure 4.23. While 
performing the preliminary labeling, an equivalence table is built to keep track of which 
preliminary labels need to be merged. In the second pass, the label of each pixel is set to 
the equivalence of its preliminary label, using the equivalence table. This approach is also 
known as a union-find algorithm because it performs the two operations of finding regions 
and merging them. It is the first algorithm we have considered where the order in which 
the pixels are processed matters.

An example of this 4-connected version of the algorithm at work can be seen in 
Figure 4.24, while the output on a real image is displayed in Figure 4.25. To extend the 
code to 8-neighbors, simply insert two additional tests comparing the pixel with its neigh-
bors I 1 x 2 1, y 2 1 2  and I 1 x 1 1, y 2 1 2 ; and set equivalences between any of the four 
neighboring pixels (left, above, above-left, and above-right) with the same value as the pixel. 
Note that out-of-bounds accessing has been ignored; to turn this pseudocode into executable 
code, bounds checking must be added in the if and elseif clauses, so that the top-left pixel 
(0, 0) in the image falls through to the else clause, and all remaining pixels along the top 
row and left column are only compared with existing pixels.

Algorithm 4.8 relies on two helper functions. The first function, SetEquivalence, sets 
the equivalence between two labels, storing the equivalence in a one-dimensional array of 
integers, equiv. The array is initialized with its own indices, i.e., equiv[i] d  i for all i. The 
convention is adopted that equiv[i] #  i, to avoid creating cycles in the data structure. In 
other words, the smallest label in each set is taken to be the representative label of the set. 
(It is assumed that the array grows dynamically in size or is created large enough to hold the 
total number of labels encountered.) The second helper function, GetEquivalentLabel, 
returns an equivalent label by simply accessing the array, using recursion to ensure that 

SetEquivalence(a, b)

 1 a r d  GetEquivalentLabel(a)
 2 b r d  GetEquivalentLabel(b)
 3 if a r . b r then
 4   equiv 3a r 4 d b r
 5 else
 6   equiv 3b r 4 d a r

GetEquivalentLabel(a)

 1 if a 5  5 equiv 3a 4 then
 2   return a
 3 else
 4   equiv[a] d  GetEquivalentLabel(equiv[a])
 5   return equiv[a]

Figure 4.23 Masks for the 4-neighbor and 8-neighbor versions of the 
classic union-find connected components algorithm. The colored pixels 
are neighbors of the central pixel that are examined by the algorithm.
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the smallest possible label has been found. While getting an equivalent label, the array 
is updated with the smallest possible equivalent label. An alternative is to traverse the 
equivalence table once between the two passes, after which GetEquivalentLabel(a) can 
simply call equiv[a] without having to resort to recursion.

Both algorithms for connected components are linear in the number of pixels. To be more 
precise, the union-find algorithm applied to an image with n pixels is O 1 na 1 n 2 2 , where a 1 n 2  
is the inverse Ackerman function that grows so extremely slowly that a 1 n 2 # 4 for any 
conceivable image.† The four-neighbor floodfill version requires touching most pixels seven 
times (to set the output to unlabeled in the initialization, to check whether the pixel has been 
labeled, and five times during the floodfill to set the pixel and check its label from the four 
directions); pixels along the border of two regions may require slightly more. The union-find 
algorithm involves touching each pixel just four times (the first pass, the second pass, and the 
check from the pixels to its right and below). Thus, in practice the union-find algorithm is 
slightly more efficient in run time despite the additional computation required by the equivalence 
table. However, one drawback of union-find is that it leaves gaps in the labels. That is, the final 
result might have (as in the example of Figure 4.24) a region 1 and a region 3, but no region of 
pixels labeled 2. This inconvenience can be removed by another pass through the equivalence 
table to produce a new equivalence table in which the base labels are sequential.

With either algorithm, it is easy to compute region properties such as area, moments 
(discussed later in the chapter), and bounding box. All of these quantities can be updated 
during the connected components algorithm with appropriate calculations each time an 
output pixel is set, with minimal overhead. The extension is left as an exercise.‡

† For example, a 1n 2 5 4 for an image with a googol n 5 110100 2  of pixels.
‡ Problem 4.28.

Figure 4.24 Classic union-find 
connected components algorithm on an 
example binary image. From left to right: 
The input image, the labels after the first 
pass, and the labels after the second 
pass. Below the image is the equivalence 
table, with green arrows pointing from 
a label to its equivalent label. Notice 
that the final image contains gaps; for 
example, no pixel is labeled 2.
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Figure 4.25 Because the connected components algorithm assumes neighboring pixels have the exact same value, it works best on 
images with a small number of values. Shown here are an input image quantized to four gray levels (left) and the result of connected 
components (right), pseudocolored for display.
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4.2.4 Boundary Tracing
Given a contiguous region of pixels found by a floodfill or connected components algorithm, 
it is oftentimes useful to find its boundary. We distinguish between the region boundary, 
which is the smallest set of pixels that encloses (in some sense) all the pixels in the region, 
and the hole boundary, which is the smallest set of pixels that encloses all the holes 
(if any) inside the region. If the region contains no holes, then the hole boundary is the 
empty set. The union of the region and hole boundaries is the complete boundary. In a 
discrete image, it is not trivial to define what is meant by “enclosing” a set of pixels. This 
difficulty leads to two alternatives: the inner boundary, which consists of all pixels in the 
region that are next to some pixel not in the region, and the outer boundary, which consists 
of all pixels not in the region that are next to some pixel in the region. If we let R be a region 
represented as a binary image, that is R 1p 2 5  ON if p is in the region, and R 1p 2 5  OFF 
otherwise, where p 5 1 x, y 2  is a pixel, then these definitions are given by

 inner boundary 5 5p : p [ R, Eq [N 1p 2 , q o R6 (4.80)
 outer boundary 5 5p : p o R, Eq [N 1p 2 , q [ R6 (4.81)

Technically, these definitions are for the inner complete boundary (with the inner region 
boundary and inner hole boundary as subsets) and the outer complete boundary (with 
the outer region boundary and outer hole boundary as subsets), respectively. Figure 4.26 
illustrates these definitions.

The inner complete boundary of the region can be computed easily enough via the dif-
ference between the region itself and an eroded version of the region:

 inner boundary 5 R AND q 1R * B 2  (4.82)

where B is either B4 or B8. That is, each pixel in the output is ON if and only if the corre-
sponding pixel in R is ON, but in the eroded version it is OFF. Similarly, the outer complete 
boundary can be computed using dilation:

 outer boundary 5 1R % B 2  AND q R (4.83)

However, outer boundaries should be computed with care because they cannot easily be 
represented for any region that touches the image border. In either case, the choice of 

Figure 4.26 A binary 
region with one hole, and 
different definitions of the 
boundary of the region. 
All results are shown using 
4-neighbors. Colored cells 
are ON, white cells are OFF.

Binary image Outer region
boundary

Outer hole
boundary

Outer complete
boundary

Inner region
boundary

Inner hole
boundary

Inner complete
boundary
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the structuring element B will affect the result in a nonintuitive way: B4 will produce an 
8-connected boundary (see Figure 4.26), whereas B8 will produce a 4-connected boundary.

While mathematical morphology provides a conveniently compact description of the 
boundary, procedures based on morphology—such as those in Equations (4.82)–(4.83)—only 
return the (unordered) set of pixels on the boundary. However, for some applications it is 
necessary to compute the boundary as a path, i.e., as an (ordered) sequence of pixels. A simple 
procedure for computing the boundary of a region as a path is the wall-following algorithm, 
also known as Moore’s boundary tracing algorithm.† The wall-following algorithm 
derives its name from the analogy of a blindfolded person desiring to traverse the edges of a 
room. By holding out his left arm stiff to the side and his right arm stiff in front, the person 
continually walks straight until either contact with the left wall has been lost (in which case 
the person turns left) or a wall is detected in front (in which case the person turns right).

In a similar manner, the wall-following algorithm traverses the boundary of a region 
by examining pixels in front and to the left, turning appropriately based upon the values 
of the pixels. The algorithm, shown in Algorithm 4.9, computes the clockwise inner 
boundary, but other variations are easily obtained with slight modifications. We adopt the 
convention of the Freeman chain code directions, shown in Figure 4.27, in which the 

† After G. A. Moore, unrelated to E. F. Moore of the Moore neighborhood.

ALGORITHM 4.9 Perform wall following

WallFollow(I)

Input: binary image I containing a single ON region
Output: clockwise sequence of pixels on the inner boundary of the region

 1  p d p0 d FindBoundaryPixel(I) ➤ Find first ON pixel from top-right corner.
 2  dir d 0 ➤ Set initial direction to the right.
 3 repeat
 4   boundary-path.Push(p)
 5   if Left (I, p, dir) 5  5 ON then ➤ Turn left and move forward.
 6     dir d  TurnLeft(dir)
 7     p d  MoveForward(p, dir)
 8   elseif Front(I,p,dir) 5  5 OFF then ➤ Turn right.
 9     dir d  TurnRight(dir)
10   else
11     p d  MoveForward(p, dir) ➤ Move forward.
12   until p 5  5 p0 and dir 5  5 dir0

13   return boundary-path

FindBoundaryPixel(I)

Input: binary image I containing a single ON region
Output: a pixel on the inner boundary of the region
 1 for y d 0 to height 2 1 do ➤ Scan from top to bottom
 2   for x d width 2 1 to 0 step 21 do  and from right to left
 3     if I(x,y) 5  5 ON then returning the first ON pixel encountered.
 4       return (x, y) ➤ (Note: The order of scanning affects the starting direction.)
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list of directions proceeds counterclockwise starting from the right (positive x axis). For 
4-neighbor connectedness, dir takes on values in the set 50, 1, 2, 36, while for 8-neighbor 
connectedness, dir takes on values of 50, 1, c, 76. With this convention, TurnLeft and 
TurnRight return the next and previous direction in the list, respectively, using modulo 
arithmetic: TurnLeft(dir) returns (dir 21, z), while TurnRight(dir) returns (dir 11, z),  
assuming z-neighbor connectedness. MoveForward computes the pixel attained after 
moving forward according to the current direction and the current pixel. Recalling that 
the y axis points down, this means MoveForward 1 x, y, 0 2  returns 1 x 1 1, y 2 , and 
MoveForward 1 x, y, 1 2  returns 1 x, y 2 1 2  if z 5 4, or 1 x 1 1, y 2 1 2  if z 5 8. An 
example of the wall-following algorithm is shown in Figure 4.28.

While the algorithm is straightforward, careful attention must be paid to the starting 
position. For example, if we select a random pixel inside the region and scan its neighbors 
iteratively until a boundary pixel is found, there is danger of finding a pixel on the hole 
boundary rather than the region boundary, in which case the wall-following algorithm will 
simply trace around the hole. Therefore, to ensure that FindBoundaryPixel returns a 
pixel on the region boundary, it is best to start from a pixel known to be outside the region 
(at the image border, for example), scanning until a boundary pixel is found. The starting 
direction must be facing in the general direction of the exterior. For the ending condition, 
it is necessary (as shown in the code) to test for both pixel location and direction to handle 
the case of a single-pixel-thick isthmus or cape (see Figure 4.9).

Wall following is useful for several tasks. To compute the perimeter of a region, for 
example, apply the 8-neighbor version of WallFollow, then compute the distance along 
the resulting path using the techniques described in the next section. The 8-neighbor version 

Figure 4.27 Freeman chain code 
directions for 4- and 8-neighbors.(copied 
from somewhere)

1

3

02

2

6

0

1

75

3

4

Figure 4.28 An example of 
wall following (clockwise 
4-connected inner region 
boundary), showing the 
first seven iterations of the 
algorithm, along with the final 
result. The arrow indicates the 
current direction.
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will trace exactly the same pixels that result from subtracting the B4-eroded image from the 
original region. As a result, the path computed by the 8-neighbor version contains pixels that 
are 4-neighbors of the background. It can be shown that consecutive pixels in the 8-neighbor 
path are m-adjacent.

The 4-neighbor version of wall following can be used as well, but in the resulting 
sequence of pixels the distance between any two consecutive pixels will be 1. As a result, 
the perimeter will be simply the number of pixels remaining after subtracting the eroded 
image from the original region, using B8 as the structuring element. The path computed by 
the 4-neighbor version contains pixels that are 8-neighbors of the background.

4.2.5 Hole Filling
Sometimes a region contains small holes, and it is desired to fill the holes. A conceptually 
simple way to do this is to use morphological reconstruction by dilation:

 region without holes 5 F %q`R B (4.84)

where F is a marker image with at least one ON-pixel somewhere along the border of the 
image (but outside the region), and R is a binary image with ON pixels inside the region 
and OFF pixels outside the region as well as inside the holes. A practical implementation of 
this approach uses floodfill to fill the background, after which the complement of the filled 
region yields the desired hole-free region. This approach is especially useful if it is desired 
to fill in all the holes of all the regions of the image. In such a case the marker image F 
should be set to F 5 Iborder x qI, where Iborder contains ON pixels along the border of the 
image and OFF pixels everywhere else.

If the region is small compared to the size of the image, then the approach just described 
wastes much computation in filling in the entire background. An alternative is to use wall 
following to find the region boundary (as distinguished from the hole boundary), then 
perform floodfill on the binary image consisting of just the region boundary. This same 
approach can also be used to fill in all the regions of an image by applying the procedure 
repeatedly.

4.3 Computing Distance in a Digital Image
For many applications, such as measuring the perimeter of a region or the length of an 
object, it is necessary to compute the distance between two pixels in an image. In this section 
we discuss various techniques for efficiently estimating such a quantity.

4.3.1 Distance Functions
Let p 5 1 px, py 2  and q 5 1 qx, qy 2  be the coordinates of two pixels in an image. A function 
d(p,q) of two vectors is a distance function (or metric) if it satisfies three properties:

• d 1p, q 2 $ 0 and d 1p, q 2 5 0 iff p 5 q    (non-negativity and reflexivity)
• d 1p, q 2 5 d 1q, p 2              (symmetry)
• d 1p, q 2 # d 1p, r 2 1 d 1 r, q 2          (triangle inequality)

for all possible coordinates p, q, r [ R2, where iff means “if and only if”. A function sat-
isfying only the first two conditions is called a semi-metric, an example being the quadratic 
function 7p 2 q 72 5 1 px 2 qx 2 2 1 1 py 2 qy 2 2.†

† A function satisfying, in addition to all three conditions above, a particular fourth condition that we shall describe 
later is called an ultrametric, as covered in Section 10.3.4 (p. 481).
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EXAMPLE 4.4 Show that the quadratic function does not obey the triangle inequality.

Solution As a counter-example, let p 5 121, 0 2 , q 5 1 1, 0 2 , and r 5 1 0, 0 2 . Then 
d 1p, q 2 5 4, d 1p, r 2 5 1, and d 1 r, q 2 5 1. Since 4 . 1 1 1, the triangle inequality does 
not always hold for the quadratic function, and therefore it is not a metric.

Three common distance functions (metrics) for pixels are the Euclidean distance, which 
is the square root of the quadratic function, and two other functions that are approximations 
to Euclidean:

 dE 1p, q 2 5 "1 px 2 qx 2 2 1 1 py 2 qy 2 2 (Euclidean)

 d4 1p, q 2 5 0px 2 qx 0 1 0py 2 qy 0      (Manhattan, or city-block)

 d8 1p, q 2 5 max 1 0px 2 qx 0 , 0py 2 qy 0 2    (chessboard)

The Manhattan distance is known as d4 because the pixels that are one unit of distance 
away are the 4-neighbors of the pixel, while the chessboard distance is known as d8 
because the pixels that are one unit of distance away are the 8-neighbors of the pixel. It 
is worth noting that Manhattan always overestimates Euclidean, while chessboard always 
underestimates it: d8 1p, q 2 # dE 1p, q 2 # d4 1p, q 2 . Moreover, the chessboard distance 
is never more than 30% away from the Euclidean distance, and the Manhattan distance is 
never more than 42% away:

 0.7dE 1p, q 2 , d8 1p, q 2 # dE 1p, q 2 # d4 1p, q 2 , 1.42dE 1p, q 2  (4.85)

The proof of these inequalities is left to the reader.†

These distance metrics are related to the vector norm. The L  
p-norm of a vector v [ Rn 

is defined as

 gv g
p

; aan

i51

0vi 0p≤ 1
p

 (4.86)

where vi is the ith element of v. The most common values of p are 1, 2, and `:7v 71 5 0v1 0 1 c1 0vn 0             1 absolute value-, or, L1-norm 2  (4.87)7v 72 5 "v1
2 1 c1 vn

2           1Euclidean-, or L2-norm 2  (4.88)7v 7` 5 max5 0v1 0 , c, 0vn 0 6          
1maximum-, or L`-norm 2  (4.89)

Where there is no subscript, the Euclidean-norm can safely be assumed: 7v 7 5 7v 72. It is 
easy to see that the L1-norm of v ; p 2 q is the Manhattan distance, the L2-norm is the 
Euclidean distance, and the L`-norm is the chessboard distance.

Another metric that should be mentioned in this context is the Mahalanobis distance. 
As we have just seen, if v is the vector from one point to another, then the Euclidean distance 
between those points is given by 7v 72 5 "vTv, which is the square root of the inner product 
of the vector with itself. The Mahalanobis distance introduces a covariance matrix within 
the inner product, "vT C21v, which has the effect of scaling the different axes differently:

 dMahal 1p, q; C 2 5 "1p 2 q 2TC21 1p 2 q 2     1Mahalanobis 2  (4.90)

where C is the covariance matrix. Obviously, if the covariance matrix is the identity matrix, 
then the Mahalanobis distance reduces to the Euclidean distance.

† Problems 4.31 and 4.32.
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4.3.2 Path Length
Now suppose that we wish to calculate the length of a specific path f between pixels p and 
q, which as we saw earlier is defined as a sequence of pixels beginning with p and ending 
with q such that each successive pixel in the path is adjacent to the previous pixel. Let no 
be the number of isothetic moves in the path, where an isothetic move is one that is hori-
zontal or vertical (i.e., the two pixels are 4-neighbors of each other). Similarly, let nd be the 
number of diagonal moves in the path (i.e., the two pixels are D-neighbors of each other). 
Generally the path will use m-adjacency, but if 4-adjacency is used, then nd is simply zero.

Even in a continuous space, the length of a path (or curve) is not always well-defined. 
Consider, for example, the well-known fractal question, “What is the length of the British 
coastline?” Depending upon the scale of interest, the resulting values can be significantly 
different from one another. Similarly, it is impossible to precisely define or solve the problem 
in a discrete image. Nevertheless, one reasonable approach is to sum the Euclidean distances 
between consecutive pixels along the path. Since the Euclidean distance between two pixels 
that are 4-neighbors of each other is 1, and the Euclidean distance between two pixels that are 
D-neighbors of each other is "2, this is equivalent to measuring the length of the path f as

 length 1f 2 5 no 1 nd"2                                          1Freeman 2  (4.91)

which is known as the Freeman formula . An alternate approach is to rearrange the node 
pairs and use the Pythagorean theorem to estimate the length of the curve as the hypot-
enuse of the resulting right triangle:

 length 1f 2 5 "nd
2 1 1 no 1 nd 2 2                              1Pythagorean 2  (4.92)

While the Freeman formula generally overestimates the length of a curve , the Pythagorean 
theorem usually underestimates it. Insight into the problem is obtained by noticing that the 
previous two equations can be written as special cases of the more general formula:

 length 1f 2 5 "nd
2 1 1 nd 1 cno 2 2 1 1 1 2 c 2 no    1Kimura 2  (4.93)

where c 5 0 for the Freeman formula and c 5 1 for the Pythagorean theorem. By setting c 
to 1

2, a compromise is achieved between overestimation and underestimation known as the 
Kimura method. In practice, this method works well, as shown in Figure 4.29.

4.3.3 Chamfering
We have seen how to compute the distance between two pixels, as well as the distance 
between two pixels along a specific path. But what if we want to compute a large number of 
distances? Such a problem arises, for example, when performing template matching using 
intensity edges, in which we need to compute distances between all the intensity edges in 
a template and their closest match in the image. For reasons of computational efficiency, it 
is not feasible to compute all of these distances directly. Instead, it is better to precompute 
a distance transform, which is an array that stores the distance from each pixel in the 
image to its nearest element in the set of interest (e.g., the intensity edges). A computational 
trick allows such an array to be computed efficiently using only a small number of passes 
through the image (usually just 2).

Let us define the (a,b) chamfer distance between pixel p 5 1 px, py 2  and pixel 
q 5 1 qx, qy 2  as da,b 1p, q 2 5 minf5ano 1 bnd6, where a and b are nonnegative values, no 
and nd are the number of isothetic and diagonal moves in the path f, respectively, and the 
minimum is computed over all possible paths between the two pixels. We shall assume that 
0 , a # b, in which case the (a,b) chamfer distance da,b is a metric. We also assume that 
b # 2a (known as the Montanari condition), which ensures that diagonal moves are not 
ignored. Rather than searching over all possible paths, simple observation reveals that the 
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shortest path always consists of a horizontal or vertical line segment, along with a diagonal 
line segment if the two pixels do not share the same column or row. That is, if we define 
dx 5 0px 2 qx 0  and dy 5 0py 2 qy 0 , then the distance between p and q is simply given by 
da,b 1p, q 2 5 ano 1 bnd, where nd 5 min 1 dx, dy 2  is the number of moves along the diago-
nal line segment and no 5 max 1 dx, dy 2 2 nd is the number of remaining isothetic moves. 
This single formula arises because the Montanari condition favors diagonal moves. If, on 
the other hand, the Montanari condition does not hold, then diagonal moves are ignored, 
in which case the distance is da,b 1p, q 2 5 a 1 dx 1 dy 2 , which is a scaled version of the 
Manhattan distance.

Assuming there is no obstruction between p and q, the Euclidean distance is usu-
ally considered the “correct” distance. Other distance functions, known as quasi-
Euclidean, are approximations to this Euclidean distance. It can be shown that the 
(a,b) chamfer distance that best approximates Euclidean is the one with a 5 1 and 
b 5 1"2

1 "!2 2 1 < 1.351, where the value of b is just slightly less than that used in 
the Freeman formula. A nearby integer ratio is 4/3, so if there is a need to avoid floating 
point computations, then d3,4 yields a reasonable approximation to the Euclidean distance 
(scaled by the factor 3). It is easy to see that if a 5 1 and b 5 `, the chamfer distance 
reduces to Manhattan because it ignores diagonal moves; or if a 5 1 and b 5 1, then it 
reduces to chessboard because it treats isothetic and diagonal moves equally. This rela-
tionship between Euclidean and quasi-Euclidean helps shed light on why this procedure 
is called chamfering. In woodworking, chamfering refers to the process of reducing the 
harsh 90-degree angles of a surface by introducing a beveled edge. In a similar manner, 
the chamfer distance in an image approximates the Euclidean distance by smoothing out 
the harsh corners of the Manhattan or chessboard distances by allowing appropriately 
weighted diagonal moves.

Figure 4.29 A discretized 
90-degree sector of a circle 
with radius 10, where purple 
lines indicate isothetic moves, 
and yellow lines indicate 
diagonal moves. The number 
of isothetic and diagonal 
moves are no 5 8 and 
nd 5 6, respectively. The true 
arc length is 10 1p/2 2 5 15.7. 
The estimated path length 
according to the three 
formulas is 16.5 (Freeman), 
15.2 (Pythagorean), and 
15.7 (Kimura).
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Computing the (a,b) chamfer distance is straightforward, as shown in Algorithm 4.10. 
It involves two passes through the image, with the first pass scanning the image from 
left-to-right and top-to-bottom, then the second pass scanning in the reverse direction. For 
each pixel, four of its 8-neighbors are examined in one direction, then the other four in the 
reverse direction. One can think of the algorithm as casting shadows from the foreground 
pixels in the two diagonal directions (southeast in the first pass, and northwest in the sec-
ond). After the first pass, the distances from every pixel to all of the pixels above and to the 
left have been computed, and after the second pass, the distances to all of the pixels have 
been computed.

In the pseudocode, d 1 x, y 2 5 ` if x or y is out of bounds, and ` is meant to represent 
a large number that is greater than any possible distance in the image. The chamfering 
algorithm is similar to connected components in that the manner in which boundary pixels 
should be handled is specified precisely: out-of-bounds pixels should simply be ignored, 
so that the minimum is computed over fewer than five values when the pixel is along the 
image border. Figure 4.30 shows an example of the chamfering algorithm applied to an 
image, while Figure 4.31 illustrates one use of the chamfer distance. For the special case of 
Manhattan distance (a 5 1 and b 5 `), the pseudocode simplifies to only require examin-
ing two of the 4-neighbors in each pass, as shown in Algorithm 4.11.

Since Manhattan always overestimates Euclidean, while chessboard always underesti-
mates it, a combination of the two can be used. One approach is to alternate the computa-
tions between the two distance metrics as the image is scanned; this requires two passes 
through the image, as usual. Another approach is to compute both d4 and d8 and then to 
combine the results: max 1 d8 1 p, q 2 , 23 d4 1 p, q 2 2 , which requires four passes through the 
image. Of course, as mentioned earlier, a good approximation can also be obtained by 
simply computing d3,4 and then dividing by three.

ALGORITHM 4.10 Compute the chamfer distance for all pixels in an image

Chamfer(I, a, b)

Input: binary image I, chamfer parameters a and b
Output: image D containing the distance of each pixel to the nearest ON pixel

 1 ➤ first pass
 2 for y d 0 to height 2 1 do
 3    for x d 0 to width 2 1 do
 4      if I 1 x, y 2 5 ON then
 5       D 1 x, y 2 d 0
 6     else
 7        D 1 x, y 2 d  min 1 `, a 1 D 1 x 2 1, y 2 , a 1 D 1 x, y 2 1 2 , 

b 1 D 1 x 2 1, y 2 1 2 , b 1 D 1 x 1 1, y 2 1 2 2
 8 ➤ second pass
 9 for y d height 2 1 to 0 step 21 do
10   for x d width 2 1 to 0 step 21 do
11     if I 1 x, y 2 2 ON then
12        D 1 x, y 2 d  min 1D 1 x, y 2 , a 1 D 1 x 1 1, y 2 , a 1 D 1 x, y 1 1 2 , 

b 1 D 1 x 1 1, y 1 1 2 , b 1 D 1 x 2 1, y 1 1 2 2
13 return D
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4.3.4 Exact Euclidean Distance
The chamfer distance approximations of the previous section are attractive due to their 
simplicity and computational efficiency. Nevertheless, exact Euclidean distances, if needed, 
can also be computed efficiently, with a running time that is linear in the number of pixels. 
Here we present a technique that, similar to computing the chamfer distance, requires 
just two passes through the image. Unlike the chamfer distance, however, this algorithm 
processes the image in one direction (rows or columns) in the first pass, then processes the 
orthogonal direction (columns or rows) in the second pass.

Consider a row of a binary image, which can be treated as a 1D function I(x). To find the 
distance from every pixel in the row to the nearest ON pixel in the row is straightforward. The 
key insight is to recognize that the squared Euclidean distance is given by the lower envelope 
of vertical parabolas whose vertices are placed at each (x, 0) for which I(x) is ON, as shown 
in Figure 4.32. For example, suppose that the entire image is 0 except for one ON pixel at 
x0. Then the Euclidean distance of any pixel in the image to the nearest ON pixel is given by 
d 1 x 2 5 "1 x 2 x0 2 2. Now, although in 1D it would be easy to cancel the square with the 
square root, such cancellation is not possible in 2D. Therefore, in anticipation of our later exten-
sion to 2D, let us consider the squared distance d2 1 x 2 5 1 x 2 x0 2 2. The shape of this function 
is obviously a vertical parabola with vertex at 1 x0, 0 2 . Now suppose the image consists of two 
ON pixels, one at x0 and one at x1. Then the squared distance from any pixel x to the nearest ON 
pixel would be the minimum of these two values, i.e., d2 1 x 2 5 min5 1 x 2 x0 2 2, 1 x 2 x1 2 26. 
Moreover, the two parabolas intersect halfway between the points at 1 x0 1 x1 2 /2, leading to

 d2 1 x 2 5 e 1 x 2 x0 2 2 if x , 1
2 1 x0 1 x1 21 x 2 x1 2 2 otherwise

 (4.94)

Figure 4.30 A binary image 
and its chamfer distance 
(brighter pixels indicate larger 
distances). 

Figure 4.31 For a region with concavities, its 
centroid may not even lie within the region. 
Therefore, the location with maximum 
chamfer distance (computed on the inverted 
image, so that the distance to the background 
is computed) is often a better estimate of 
the “center” of a region, because it yields the 
center of the largest part of the region.

Largest chamfer
value

Centroid
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This argument is easily extended for any number of ON pixels.
The first pass of the algorithm, therefore, scans the 1D function and creates an array of the 

x coordinates of all the ON pixels. The elements of this array correspond to the parabolas, so 
the array stores everything we need in order to compute the distance function for all pixels in 
the row. To use the array, we simply consider the pixels in the row sequentially and compute 
the squared distance 1 x 2 xk 2 2, where xk is the x-coordinate of the nearest parabola. The 
procedure for this first pass, shown in Algorithm 4.12, uses a dynamic array v to hold the 
x-coordinates of the parabolas and outputs a 1D array d r that is the same length as the input. 
(We use length to refer to the number of pixels in the 1D horizontal or vertical slice, which 
is either the width or height, respectively, of the original 2D image.) Lines 8–9 advance to 
the next parabola when x . 1

2 1 xk 1 xk11 2  by updating the index k of the current parabola.
Now that we have seen how to compute the squared distance of a 1D signal (which is 

the first pass of the algorithm), let us see how it fits into the rest of the procedure. Given a 
2D binary image I, let us construct a 2D function F so that

 F 1 x, y 2 5 b0 if I 1 x,y 2 5 ON

` otherwise
 (4.95)

Omitting the square root for simplicity, the 2D exact squared Euclidean distance function 
is therefore computed by finding, for each pixel (x, y), the nearest pixel 1 x r, y r 2  for which 
F 1 x r, y r 2 5 0:

 D2 1 x, y 2 5 min
xr,yr

 1 x 2 x r 2 2 1 1 y 2 y r 2 2 1 F 1 x r, y r 2  (4.96)

 

5 min
yr

 1min
xr

 1 x 2 x r 2 2 1 F 1 x r, y r 2 2 1 1 y 2 y r 2 2 
('''''')'''''*

first pass  
('''''''''')''''''''''*

 second pass         

 

(4.97)

ALGORITHM 4.11 Compute the Manhattan distance for every pixel using chamfering

ChamferManhattan(I)

Input: binary image I, chamfer parameters a and b
Output: image D containing the Manhattan distance of each pixel to the nearest ON pixel

 1 ➤ first pass
 2 for y d 0 to height 2 1 do
 3   for x d 0 to width 2 1 do
 4     if I 1 x, y 2 55 ON then
 5       D 1 x, y 2 d 0
 6     else
 7       D 1 x, y 2 d  min 1 `, 1 1 D 1 x 2 1, y 2 , 1 1 D 1 x, y 2 1 2 2
 8 ➤ second pass
 9 for y d height 2 1 to 0 step 21 do
10    for x d width 2 1 to 0 step 21 do
11      if I 1 x, y 2 2 ON then
12       D 1 x, y 2 d  min 1D 1 x, y 2 , 1 1 D 1 x 1 1, y 2 , 1 1 D 1 x, y 1 1 2 2
13 return D
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This separability of the horizontal and vertical processing is the trick that enables us to 
solve the problem efficiently. Separating the equation, we see that the two passes of the 
algorithm are similar:

D r2 1 x, y 2 ; min
xr

1 x 2 x r 2 2 1 F 1 x r, y 2     (first pass) (4.98)

D2 1 x, y 2 5 min
yr

1 y 2 y r 2 2 1 F r 1 x, y r 2      (second pass) (4.99)

where F r ; D r. The first pass, whose procedure we have just examined, can be simplified 
because F is either 0 or ` everywhere, and values of ` can be ignored because we seek the 
minimum. As hinted in Equation (4.97) , we shall describe the algorithm by processing the 
rows in the first pass, then the columns in the second pass; but the opposite order could just 
as easily have been adopted.

The second pass of the algorithm is slightly more complicated. The 1D function used as 
input in this case is not a row of the original binary image but rather a column of the output 
from the first pass. That is, after processing all the rows to compute the squared distances 

Figure 4.32 Computation of exact Euclidean distance from each pixel in a binary image to the nearest ON (blue) pixel. The first pass 
processes rows of the image to compute squared distances using the lower envelope of the parabolas. (The lower envelope is shown in 
red.) The second pass processes columns of the image using parabolas determined by the first pass. Based on P. F. Felzenszwalb and D. P. 
Huttenlocher. Pictorial structures for object recognition. International Journal of Computer Vision, 61(1): 55-79, Jan. 2005.
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along the rows, these values are then stored in a 2D array, whose columns are then processed 
in a similar manner to before. Let us imagine transposing this array, so that the variable x 
can continue to be used to index the 1D array even though it is a vertical slice of the origi-
nal image. In the second pass, the squared Euclidean distance is again given by the lower 

ALGORITHM 4.12 Compute the exact Euclidean distance for all pixels in a 1D binary image

ExactEuclideanDistance1DBinary(I)

Input: 1D binary image I with length length
Output: 1D array d r containing the squared Euclidean distance of each point to the nearest ON pixel

 1 ➤ compute lower envelope
 2 for x d 0 to length 2 1 do
 3   if I 3x 4 55 ON then ➤ Store the x coordinates of all ON pixels
 4     v.Push(x) (this captures the lower envelope of parabolas).
 5 ➤ fill in values
 6 k d 0
 7 for x d 0 to length 2 1 do ➤ For each pixel in the row
 8   while k # v. Size 2 2 and x . 1 v 3k 4 1 v 3k 1 1 4 2 /2 do advance to the next
 9      k d1 1 parabola if necessary.
10   d r 3x 4 d 1 x 2 v 3k 4 2 2 ➤ Evaluate the nearest parabola.
11 return d r

EXAMPLE 4.4  Compute the exact Euclidean distance of all pixels in Figure 4.32 to the nearest ON pixel.

Solution Along the first row, the first pixel is at a distance of 3 from the nearest ON pixel, the second 
pixel is at a distance of 2, the third pixel is at a distance of 1, and the remaining two pixels 
are at a distance of 0. Similarly, along the second row, the distances are 2, 1, 0, 0, and 0. 
Along the third row, the distances are 1, 0, 1, 0, and 0. Putting these together, the squared 
distance from each pixel to the nearest ON pixel along the same row is given byC9 4 1 0 0

4 2 0 0 0
1 0 1 0 0

S
Therefore, along the first column, we place a parabola at x 5 0 with vertex at d2 1 x 2 5 9, 
another one at x 5 1 with vertex at d2 1 x 2 5 4, and another one at x 5 2 with vertex at 
d2 1 x 2 5 1, where x is the row. The lower envelope of these parabolas yields the squared 
distances of 5, 2, and 1. Similarly, along the second column we place parabolas with vertices 
at d2 1 x 2 5 4, 2, and 0, and the lower envelope yields the squared distances of 2, 1, and 0. 
Along the third column the parabolas are placed with vertices at 1, 0, and 1, and the lower 
envelope yields 1, 0, and 1. Putting these values together yields the squared distances given byC5 2 1 0 0

2 1 0 0 0
1 0 1 0 0

S
Taking the square root yields the Euclidean distances shown in the figure.
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envelope of the parabolas, but this time a parabola is placed not only at the ON pixels but 
rather at every pixel. Moreover, the parabolas do not in general touch the x axis but instead 
are offset vertically. That is, the parabolas are placed so that each center is at 1 x, f r 1 x 2 2  for 
every x, where f r 1 x 2  is the squared distance from the first pass.

The procedure is given in Algorithm 4.13. First the rows are processed, then the columns. 
We use slice notation, so F(:,y) means the yth row of F, whereas F(x,:) means the xth column 
of F. The 1D subroutine requires us to keep track of k 1 1, which is the number of parabo-
las in the lower envelope, and two arrays. The array v has k 1 1 values so that v[k] is the 

ALGORITHM 4.13 Compute the exact Euclidean distance for all pixels in an image

ExactEuclideanDistance(I)

Input: binary image I
Output: image containing the Euclidean distance of each pixel to the nearest ON pixel

 1 ➤ Compute lower envelope along rows
 2 F d 1 1 2 I 2  
 ` ➤ F 1 x, y 2  is 0 for foreground, 1`  for background.
 3 for y d 0 to height 2 1 do  ➤ For each row,
 4   d r d  ExactEuclideanDistance1D(F(:, y)) process the row,
 5   for x d 0 to width 2 1 do and store the 1D result
 6     D r 1 x, y 2 d d r 3x 4 in a row of d.
 7 ➤ Compute lower envelope along columns
 8 for x d 0 to width 2 1 do ➤ For each column,
 9   d r d  ExactEuclideanDistance1D 1D r 1 x, : 2 2  process the column,
10   for y d 0 to height 2 1 do and store the 1D result
11     D r 1 x, y 2 d d r 3y 4 in a column of d.
12 return SquareRoot 1D r 2
ExactEuclideanDistance1D( f )

Input: 1D function f with length length
Output: 1D array d r containing the squared Euclidean distance of each point to the function f

 1  k d 0 ➤ k 1 1 is number of parabolas in lower envelope.
 2  v 30 4 d 0 ➤ v 3k 4  is horizontal coordinate of k 

th parabola in lower envelope.
 3  z 30 4 d 2` ➤ k 

th parabola is in lower envelope from z[k] to z 3k 1 1 4.
 4  z 31 4 d 1`

 5  ➤ Compute lower envelope
 6  for x d 1 to length 21 do
 7    ➤ x r is horizontal position of intersection of parabola at x and parabola at v[k]
 8    x r d 1 1 f 3x 4 1 x2 2 2 1 f 3v 3k 4 4 1 1 v 3k 4 2 2 2 / 1 2 
 1 x 2 v 3k 4 2 2
 9    if x r . z 3k 4 then ➤ Case 1: add parabola at x to lower envelope from x r to 1`.
10      k d1 1
11      v 3k 4 d x
12      z 3k 4 d x r
13      z 3k 1 1 4 d 1`

14    else ➤ Case 2: Remove parabola at v[k] from lower envelope
15      k d2 1  (we will add parabola at x in subsequent iteration),
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horizontal coordinate of the kth parabola in the lower envelope. The array z has k 1 1 values 
so that the kth parabola is in the lower envelope from z[k] to z 3k 1 1 4. That is, z keeps track 
of which parabolas define the lower envelope, while v keeps track of where the parabolas 
are located. Straightforward algebra reveals that two vertical parabolas with vertices at (x, 
f (x)) and 1 xk, f 1 xk 2 2  intersect at the horizontal position given by

 x r 5
1  f 1 x 2 1 x22 2 1  f 1 xk 2 1 xk

2 2
2 1 x 2 xk 2  (4.100)

When processing the parabolas sequentially in the second pass, two possible cases arise. 
In the first case, x r . z 3k 4, so the lower envelope must be modified to include the parabola 
from x starting at x r. In the second case, x r # z 3k 4, which indicates that the kth parabola is 
not part of the lower envelope and should therefore be removed. Note that Algorithm 4.12 
is just a special case of ExactEuclideanDistance1D when the input is binary, because 
the value of f is 0 for any parabola, which precludes case 2 (in Line 14) from occurring.

4.4 Region Properties
We now turn our attention to computing various properties of binary regions. Such proper-
ties are useful for classifying objects, detecting defects in manufactured parts, and pattern 
recognition, among other applications.

4.4.1 Moments
Many of the properties encountered in this section build on the foundational concept of 
moments. Let us represent an image region by a nonnegative mass density function 
f 1 x, y 2 $ 0 defined over the image domain, where the function generally returns larger val-
ues inside the region than outside. We will focus our attention on the simple case of a binary 
region in which f 1 x, y 2 5 1 inside the region and f 1 x, y 2 5 0 outside the region—imagine 
a region found by thresholding, for example. Nevertheless, the formulas for moments apply 
to any nonnegative function, such as the result of some algorithm that generates a probability 
map (but note that none of the following analysis requires a x,y   

f 1 x, y 2 5 1, as would be 
required by a probability density function).

Regular Moments
Given the discrete function f and nonnegative integers p and q, the pqth moment of a 2D 
region is defined as:

 mpq ; a
x
a

y
 
x 

p  y 
q  f 1 x, y 2  (4.101)

16      x d2 1 and advance to next.
17 ➤ Fill in values
18 k d 0
19 for x d 0 to length 2 1 do ➤ For each pixel in the row / column,
20   while z 3k 1 1 4 , x do advance to the next
21     k d 1 1 parabola if necessary.
22   d r 3x 4 d 1 x 2 v 3k 4 2 2 1 f 3v 3k 4 4 ➤ Evaluate the nearest parabola.
23 return d r
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We say that the pqth moment is of order p 1 q. Thus, the zeroth-order moment is m00, the 
first-order moments are m10 and m01, and the second-order moments are m20, m02, and m11. 
Computing these moments is easy, requiring a single pass through the image, as shown in 
Algorithm 4.14.

The centroid 1 x, y 2  of the region is defined as the weighted average of the pixels and 
is easily computed from the zeroth and first moments:

  1 x, y 2 5
1

a x,y   
f 1 x, y 2  ¢ a

x,y
 
x  f 1 x, y 2 , a

x,y
 
y  f 1 x, y 2 b  (4.102)

  5 ¢m10

m00
, 

m01

m00
≤  (4.103)

If f were a continuous function, it could be viewed as the mass density function of a solid 
planar body, the moments of which (by replacing the sums in Equation (4.101) with inte-
grals) capture the inertial properties of the body. The zeroth moment, for example, yields 
the mass of the body, while the centroid captures its center of mass, and the second-order 
moments are related to its moments of inertia. In the case of a binary function f, a cardboard 
cutout (or any other flat material with uniform mass density) with the same shape as the 
region will remain horizontal when suspended by a string attached at the centroid.

Central Moments
The regular moments that we have just defined will differ depending on where in the image 
the region is located. To provide translation invariance, the pqth central moment is defined 
as the pqth regular moment about the centroid:

 mpq ; a
x
a

y

1 x 2 x 2 p 1 y 2 y 2 q  f 1 x, y 2
It is easy to show that the central moments are functions of the regular moments:

 m00 5 m00  (4.104)

 m10 5 0  (4.105)

 m01 5 0  (4.106)

ALGORITHM 4.14 Compute the zeroth, first, and second-order moments of an image

ComputeMoments( f )

Input: image f
Output: zeroth-, first-, and second-order moments of the image

1 m00 d m10 d m01 d m20 d m02 d m11 d 0
2 for 1 x, y 2 [ f  do
3   m00 d m00 1 f 1 x, y 2
4   m10 d m10 1 x 
 f 1 x, y 2
5   m01 d m01 1 y 
 f 1 x, y 2
6   m20 d m20 1 x 
 x 
 f 1 x, y 2
7   m02 d m02 1 y 
 y 
 f 1 x, y 2
8   m11 d m11 1 x 
 y 
 f 1 x, y 2
9  return m00, m10, m01, m20, m02, m11
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 m20 5 m20 2 xm10  (4.107)

 m02 5 m02 2 ym01  (4.108)

 m11 5 m11 2 ym10 5 m11 2 xm01  (4.109)

These equations allow us to compute the central moments with just a single pass through 
the image, shown in Algorithm 4.15, and there is no need to compute m10 or m01 because 
they are always zero. It is easy to verify that the equations above are special cases of the 
general formula for computing central moments from regular moments:

 mpq 5 a
p

i50
a

q

j50

121 2 i1j¢p
i
≤ ¢q

j
≤  x2i  y2j mp2i,q2j (4.110)

where ¢n
k
≤ ;

n!
k! 1 n 2 k 2 ! is a binomial coefficient, and n! is the factorial of n.

Normalized Central Moments
Under a uniform scale change x r 5 ax, y r 5 ay, a 2 0, the central moments change 
according to mpqr 5 ap1q12mpq. This result is easily shown using the continuous formula-
tion of moments:

  mpqr 5 5 1 x r 2 x r 2 p 1 y r 2 y r 2 q f ¢ x r
a

, 
y r
a
≤  dx r dy r (4.111)

  5 5 1ax 2 ax 2 p 1ay 2 ay 2 q f 1 x, y 2a2 dx dy (4.112)

  5 ap1q12 5 1 x 2 x 2 p 1 y 2 y 2 q f 1 x, y 2  dx dy  (4.113)

 5 ap1q12mpq (4.114)

since, by change of variables, dx r 5 a dx and dy r 5 a dy. For the zeroth moment 1 p 5 q 5 0 2 , this yields m00r 5 a2m00. As a result, if we normalize a region’s central 

moment by dividing by m00
p1q12

2 , we obtain a quantity that does not change with scale, 

which can be seen as follows:

ALGORITHM 4.15 Compute the central moments of an image

ComputeCentralMoments( f )

Input: image f
Output: zeroth-, first-, and second-order central moments of the image

1 1m00, m10, m01, m20, m02, m11 2 d  ComputeMoments( f )
2 m00 d m00

3 x d m10/m00

4 y d m01/m00

5 m20 d m20 2 x 
 m10

6 m02 d m02 2 y 
 m01

7 m11 d m11 2 y 
 m10 ➤ (or equivalently, m11 d m11 2 x 
 m01)
8 return m00, m20, m02, m11
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mpqr1m00r 2 p1q12

2

5
ap1q12mpq1a2m00 2 p1q12

2

5
ap1q12mpq

ap1q12m00 

p1q12

2

5
mpq1m00 2 p1q12

2

 (4.115)

This observation leads to the definition of the pqth normalized central moment as

 hpq ;
mpq

m00
g  (4.116)

where g ; p 1 q 1 2
2  for p 1 q $ 2. The case p 1 q 5 1 is not included simply because 

m10 5 m01 5 0, as shown earlier. Other approaches to scale normalization are possible, 
such as mpq / 1m20 1 m02 2 g/2, which is also scale invariant as can be seen by using the same 
reasoning as above for dividing by m00

g .

Hu Moments
So far we have seen the central moments, which are invariant to translation, and the nor-
malized central moments, which are invariant to translation and uniform scaling. The Hu 
moments, which are invariant to translation, uniform scaling, and rotation, are natural 
extensions. These are given by

 f1 5 h20 1 h02

 f2 5 1h20 2 h02 2 2 1 4h11
2

 f3 5 1h30 2 3h12 2 2 1 1 3h21 2 h03 2 2

 f4 5 1h30 1 h12 2 2 1 1h21 1 h03 2 2

 f5 5 1h30 2 3h12 2 1h30 1 h12 2 3 1h30 1 h12 2 2 2 3 1h21 1 h03 2 2 4
1 1 3h21 2 h03 2 1h21 1 h03 2 33 1h30 1 h12 2 2 2 1h21 1 h03 2 2 4

 f6 5 1h20 2 h02 2 3 1h30 1 h12 2 2 2 1h21 1 h03 2 2 4 1 4h11 1h30 1 h12 2 1h21 1 h03 2
 f7 5 1 3h21 2 h03 2 1h30 1 h12 2 3 1h30 1 h12 2 2 2 3 1h21 1 h03 2 2 4

1 1 3h12 2 h30 2 1h21 1 h03 2 33 1h30 1 h12 2 2 2 1h21 1 h03 2 2 4
The first six values are also invariant to reflection, while f7 changes sign upon reflection, 
allowing us to distinguish between mirror images. (We call the first six values invariants, 
while the last value is a pseudoinvariant.) If hpq is replaced by mpq in these equations, the 
invariance to scale disappears while all other properties remain.

Zernike Moments
For rotational invariance, the complex Zernike† moments, which in practice exhibit 
reduced sensitivity to discretization noise, are even better than the Hu moments. Like the 
regular, central, and normalized central moments, but unlike the Hu moments, the complex 
Zernike moments can be computed for any order, thus enabling reconstruction of the region 
to arbitrary precision. To understand these moments, let us define a new coordinate system 
with its origin at the region centroid and scaled so that

 x
& ;

x 2 x
r

   y
& ;

y 2 y
r

 (4.117)

where r is the radius of a circle that entirely encloses the region of interest. It is easy to see 
that if x and y lie within a circle centered at 1 x, y 2  with radius r, then x~2 1 y~2 # 1, that is, 

† Pronounced ZERN-uh-kee.
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178 Chapter 4 • Binary Image Processing1 x~, y~ 2  lies within the unit circle. This is important because the complex Zernike moments 
derive their rotational invariance from the orthogonality of the Zernike polynomials, but 
this property only holds within the unit circle.

The complex Zernike moments of order p $ 0 are defined as a summation over the circle 
centered at 1 x, y 2  with radius r:

 Zpq ;
p 1 1

p a
x
a

y
 f 1 x, y 2V pq
 1 x~, y~ 2  (4.118)

with the restriction that p 2 0q 0 5 2n for some nonnegative integer n. As a result of this 
restriction, the moments are Z00, Z11, Z20, Z22, Z31, Z33, Z40, Z42, Z44, and so on. Usually the 
first 9 to 12 moments are computed. Although q can be negative, the moments with negative 
q do not contribute new information, since it can be shown that Zpq 5 Zp, 2q
  for any p and 
q, where the asterisk (*) denotes the complex conjugate.

Since the difference between p and 0q 0  is even, their sum must be even as well, so let us 
define n r to be the nonnegative integer such that p 1 0q 0 5 2n r. The function Vpq
  is then 
the complex conjugate of a Zernike polynomial of degree p and angular dependence q:

 Vpq 1 x~, y~ 2 ; a
n

m50

121 2m
 

1 p 2 m 2 !
m! 1 n 2 m 2 ! 1 n r 2 m 2 ! 1 x~2 1 y~2 2 p

2 2me  
j q u (4.119)

 5 a
p

k 5 0
 
q 0

p 2 k is even

Bpqk 1 x~2 1 y~2 2 k
2  e  

j q u  (4.120)

where tan u 5 y~/x~, j ; "21, and the second equality comes from substituting 
m 5 1 p 2 k 2 /2, leading to

 Bpqk 5 121 2 p2k

2  
ap 1 k

2
b!ap 2 k

2
b! ak 1 0q 0

2
b! ak 2 0q 0

2
b!

 (4.121)

The Zernike moments are related to the regular moments according to

 Zpq 5
p 1 1

p a
p

k 5 0
 
q

 
0

p 2 k is even 

a
kr

a50

 a
0
 

q 0
b50

1 7 j 2 b¢k r
a
≤ ¢ 0q 0

b
≤Bpqk mk22a2b,2a1b (4.122)

where k r 5 1
2 1 k 2 0q 0 2 , and the regular moments are computed according to the normalized 

coordinate system defined by x~ and y~. (Note that in this equation the sign of j is opposite 
the sign of q.)

4.4.2 Area
The area of a region is given by its zeroth moment m00 5 m00. For a binary region, this is 
simply the number of pixels in the region. Alternatively, given the pixels defining the bound-
ary (as in wall follow), the area of the polygon defined by these boundary pixels is given by

 area 5
1
2 a

n21

i50

1 xi11yi 2 xi yi11 2  (4.123)

Note that, given two binary images I1 and I2, we have

 area 1 I1 2 1 area 1 I2 2 5 area 1 I1 x I2 2 1 area 1 I1 h I2 2  (4.124)
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4.4.3 Perimeter
The perimeter of a region is typically computed by applying the Kimura distance to the 
boundary found by wall following. Similar to area, we have

perimeter 1 I1 2 1 perimeter 1 I2 2 < perimeter 1 I1 x I2 2 1 perimeter 1 I1 h I2 2  (4.125)

where the approximation is due to discretization effects.

4.4.4 Orientation
The orientation of a region is determined by the relationships between the x and y coordi-
nates of the pixels in the region. These relationships are captured by the 2 3 2 covariance 
matrix, which is defined as the expected value of the outer products of the pixel coordinates 
after shifting the coordinate system to the region centroid, multiplied by 
r 1 x, y 2 ; f 1 x, y 2 /a x,y f 1 x, y 2 , which is a normalized version of the mass density function 
so that a x,y r 1 x, y 2 5 1. If we let x 5 3x y 4T and x 5 3x y 4T be vector representa-
tions of the point (x,y) and centroid 1 x, y 2 , respectively, and E 3 # 4 the expected value,† then 
the covariance matrix is written as

 C52326 5 E 3 1 x 2 x 2 1 x 2 x 2Tr 1 x 2 4  (4.126)

 5
1

a x,y f 1 x, y 2  a
x,y

1 x 2 x 2 1 x 2 x 2Tf 1 x, y 2  (4.127)

 5
1

a x,y f 1 x, y 2  a
x,y

 Bx 2 x
y 2 y

R Bx 2 x y 2 yR  f 1 x, y 2  (4.128)

 5
1

a x,y f 1 x, y 2  a
x,y

 B 1 x 2 x 2 2 1 x 2 x 2 1 y 2 y 21 x 2 x 2 1 y 2 y 2 1 y 2 y 2 2 R  f 1 x, y 2  (4.129)

 5
1

a x,y f 1 x, y 2D a x,y 1 x 2 x 2 2 f 1 x, y 2 a x,y 1 x 2 x 2 1 y 2 y 2 f 1 x, y 2
a x,y 1 x 2 x 2 1 y 2 y 2 f 1 x, y 2 a x,y 1 y 2 y 2 2 f 1 x, y 2 T  (4.130)

 5
1

m00
 Bm20 m11

m11 m02
R  (4.131)

where the equalities follow from straightforward substitution, and the (optional) subscript 
on C indicates its dimensions. As can be seen, the covariance matrix of an image region is 
a simple function of its central moments.

Returning to our earlier physical analogy, the covariance matrix is part of the inertia 
moment tensor of the body. Just as the area captures the body’s resistance to linear forces, 
the values in this matrix capture the body’s resistance to rotational forces about the axes, 
as illustrated in Figure 4.33. The diagonal elements m20/m00 and m02/m00, known as the 
moments of inertia, capture the resistance of the body to rotation about the x and y axes, 
respectively, since 1 x 2 x 2  and 1 y 2 y 2  are distances to the axes. The off-diagonal element 
m11/m00, called the product of inertia, captures the twist that the body will undergo around 

† The expected value of a random variable Z with probability density function pZ 1 z 2  is defined as the mean of the 
distribution: a z z pZ 1 z 2 .
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Figure 4.33 The second-order 
moments are related to the 
moments of inertia of a flat rigid 
body with uniform mass density, 
represented here as an ellipse.

m20 m02

m11 5 0
. m20 m02

m11 5 0
, m20 m02

m11 , 0

y

x x x

y y

5

one axis when it is rotated around the other axis, which is related to the asymmetry of the 
body. Note that m11, unlike the other quantities, can be negative.

Every rigid, physical body has a figure axis, which is defined as the axis about which 
the moment of inertia is minimized. This axis passes through the centroid of the body. For 
a circular body, the axis is arbitrarily defined, but for an elongated body the figure axis will 
be aligned with the direction of elongation. For example, much less energy is required to 
rotate a baseball bat about its axis of symmetry than to swing the bat, so the baseball bat’s 
axis of symmetry is its figure axis.

The orientation of a 2D region is the angle u of its figure axis, which is related in a rather 
simple way to the second-order central moments:

 tan 2u 5 ¢ 2m11

m20 2 m02
≤  (4.132)

If the moments are computed using a standard image coordinate system with the positive 
x axis pointing right and the positive y axis pointing down, then the angle u will be clock-
wise with respect to the positive x axis. It would be tempting to invert this equation, but 
this would be wrong:

 u 2
1
2

 arctan ¢ 2m11

m20 2 m02
≤  (4.133)

Can you guess why? The inverse tangent function (arctan) returns an angle between 2p/2 
and p/2, so Equation (4.133) yields a value for u between 2p/4 to p/4, which of course 
does not represent the full range of possible line orientations. The solution to this problem 
is to keep the numerator and denominator separate, using their signs to compute an inverse 
tangent between 2p and p in the appropriate quadrant; multiplication by 1

2 then yields an 
angle between 2p/2 and p/2. Most programming languages have such a function, usually 
called Atan2 (y,x). Since the right side of Equation (4.132) indicates the rise over the run, 
the numerator is the argument for y, while the denominator is the argument for x, as shown 
in Algorithm 4.16.

While proving Equation (4.132) is left as an exercise for the reader, some insight into 
the problem of orientation can be gained from our physical analogy. For any rigid body, it 
is possible to rotate the coordinate system so that the product of inertia goes to zero, i.e., 
m11 5 0. When this occurs, the new x and y axes are aligned with the principal axes of 
inertia of the body (also known as the principal axes of rotation), one of which is the figure 
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4.4 Region Properties 181

axis. The moments of inertia about the principal axes of inertia are known as the principal 
moments of inertia. Rotating the coordinate system by u is the same as rotating the body 
by 2u, so let

 R52326 5 B cos u sin u
2sin u cos u

R  (4.134)

be the rotation matrix that causes this to happen, i.e., it aligns the x axis with the figure axis. 
Then, the covariance matrix in the new, aligned coordinate system is

  C52326r 5 E 3 1Rx 2 Rx 2 1Rx 2 Rx 2Tr 1 x 2 4  (4.135)

  5
1

a x,y f 1 x, y 2  a
x,y

 R 1 x 2 x 2 1 x 2 x 2TRTf 1 x, y 2  (4.136)

  5 R £ 1

a x,y f 1 x, y 2  a
x,y

1 x 2 x 2 1 x 2 x 2Tf 1 x, y 2≥ RT (4.137)

  5 RCRT (4.138)

where in the third line R and RT are pulled out of the summation because they do not depend 
on x or y, and the final equation results from comparing with Equation (4.127).

Since m11 5 0 in the aligned coordinate system, C r is a diagonal matrix. Thus, if we 
could determine the rotation matrix R that diagonalizes the covariance matrix, we would 
have an alternate way of determining the orientation u of the region. It turns out that this 
is easily done by eigendecomposition of the matrix. Recall that a 2 3 2 matrix has two 
eigenvalues, l1 and l2, and two corresponding eigenvectors, v1 and v2. Eigenvalues and 
eigenvectors are paired together, so l1 goes with v1, and l2 goes with v2. The eigenvalues 
and eigenvectors of a matrix reveal its structure. In the case of an arbitrary input vector x, 
the output vector x r 5 Cx does not necessarily have any obvious relationship to the input. 
However, when the input vector is an eigenvector of the matrix, then the output is a scaled 
version of the input:

 Cv1 5 l1v1    Cv2 5 l2v2 (4.139)

where the eigenvalues specify the amount of scaling. We can think of the eigenvectors as the 
characteristic frequencies of the matrix, with the matrix resonating at those frequencies simi-
lar to the way a tuning fork resonates in response to a sound wave at a particular frequency.

If we stack the eigenvectors into the columns of a matrix P ; 3v1 v2 4 and the eigenval-
ues of C into a diagonal matrix L ; diag 1l1, l2 2 , then we obtain a compact representation 
of the diagonalized covariance matrix:

 L 5 PTCP (4.140)

ALGORITHM 4.16 Compute the orientation of a region in an image

ComputeOrientation(I)

Input: binary image I containing a single ON region
Output: angle of major axis of binary region, clockwise from positive x axis

1 m00, m20, m02, m11 d  ComputeCentralMoments( I )
2 return (1/2) * Atan2 1 2m11, m20 2 m02 2
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which is easy to show as follows. Since C is real and symmetric, its eigenvectors are ortho-
normal (orthogonal and unit norm) as long as the eigenvalues are distinct.† Therefore, 
PT 5 P21. By substitution from Equation (4.139), we have

 CP 5 C 3v1 v2 4 5 3l1v1 l2v2 4 5 3v1 v2 4 Bl1 0
0 l2

R 5 PL (4.141)

or CP 5 PL. Multiplying both sides on the left by PT yields Equation (4.140).
Comparing Equation (4.140) with Equation (4.134), we see that PT plays the role of R 

by rotating the covariance matrix so that it becomes diagonal, and therefore

 P 5 RT 5 Bcos u 2sin u
sin u    cos u

R  (4.142)

so that v1 5 3cos u sin u 4T and v2 5 32sin u cos u 4T. Thus, the eigenvectors are the 
principal axes of the region, and, if we follow the common convention of ordering the 
eigenvalues so that l1 $ l2, then v1 yields the figure axis.

One final detail needs to be considered. There is a sign ambiguity in the eigenvectors, 
which can be seen in Equation (4.139), because if vi satisfies the equation, then so does 2vi, 
for i 5 1, 2. The ambiguity can also be seen in Equation (4.140), because 1PM 2TC 1PM 2  
is also equal to L, where M is any of the following:

 B1 0
0 1

R    B21 0
0 1

R    B1 0
0 21

R    B21 0
0 21

R  (4.143)

Geometrically, we note that the axis defined by u and the axis defined by u 1 p are the 
same, which is why 3cos u sin u 4T and 32cos u 2sin u 4T refer to the same axis. 
As a result, Equation (4.142) is slightly misleading, because our convention says that 
2p/2 , u # p/2, in which case cos u $ 0. But when the eigenvectors of C are com-
puted, there is no guarantee on the sign of any of the four values v11, v21, v12, and v22, where 
v1 ; 3v11 v21 4T and v2 ; 3v12 v22 4T. To adhere to our convention, then, we should flip 
the sign on v1 if v11 is negative. The angle u is therefore given by the arcsine (inverse sine) 
of v21, subject to the sign of v11, as shown in Algorithm 4.17.

Recall that an orthogonal matrix is one whose transpose is its inverse, e.g., R21 5 RT. 
A rotation matrix has an additional property; namely, its determinant is 11. Although P is 
guaranteed to be an orthogonal matrix,‡ its determinant is not constrained to be 11 but may 
instead be 21. Therefore, the matrix P may cause not only a rotation but also an undesir-
able mirror reflection, which yields a left-handed coordinate system—another reason that 
Equation (4.142) is misleading. As a result, even after correcting the sign of v1 according 
to our convention, care must be taken whether v2 or 2v2 yields the orthogonal axis in the 
righthand sense. Because of our convention on u, this means that we should use 2v2 instead 
of v2 if v12 is positive, if we care about producing a right-handed coordinate system from 
the axes. Note, however, that this correction is irrelevant if orientation is all that is desired.

4.4.5 Best-Fitting Ellipse
Suppose we have a binary region defined as the set of pixels inside an ellipse centered at 
the origin:

 ellipse region 5 5 1 x, y 2  : ax2 1 bxy 1 cy2 # 16 (4.144)

† If the eigenvalues are not distinct, the eigenvectors can nevertheless be chosen to be orthogonal.
‡ Somewhat confusingly, according to standard terminology a matrix is called orthogonal if its columns are 
orthonormal.
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with 4ac . b2 and a, c . 0 to ensure that the equation describes an ellipse (rather than a 
parabola or hyperbola). Conveniently, it can be shown that the second-order central moments 
of such a region are related to the coefficients of the ellipse in a simple way:

 C 5
1

m00
 Bm20 m11

m11 m02
R 5 h C c 2b

2

2b
2 a

S  (4.145)

where h ; 4 det 1C 2 , and det 1C 2 5 1m20m02 2 m11
2 2 /m00

2 5 h2

4  1 4ac 2 b2 2  is the deter-
minant of the covariance matrix, so that h 5 1/ 1 4ac 2 b2 2 . While proving the relation-
ship in Equation (4.145) is omitted here, its truth can be partially verified by recalling that 
covariance matrices are always positive semidefinite, which implies that det 1C 2 $ 0, or 
m20m02 $ m11

2 , which implies 4ac $ b2. It is also true that all the diagonal elements of a 
positive semidefinite matrix are nonnegative, so a, c $ 0. Another useful exercise is to gen-
erate actual binary elliptical regions according to Equation (4.144), measure their moments, 
and verify that Equation (4.145) holds.

The eigenvalues of C can be computed by solving the characteristic equation 
det 1C 2 lI52326 2 5 0, where I52326 is the 2 3 2 identity matrix, leading to

 l1,2 5
1

2m00
 am20 1 m02 6 "1m20 2 m02 2 2 1 4m11

2 b  (4.146)

where l1 takes the plus sign and l2 takes the minus sign, so that l1 $ l2. It is easy to show 
that the sum of the eigenvalues is the trace of the covariance matrix, l1 1 l2 5 tr 1C 2 51m20 1 m02 2 /m00, and that the product of the eigenvalues is its determinant, 
l1l2 5 det 1C 2 5 1m20m02 2 m11

2 2 /m00
2 . From the eigendecomposition of the previous sub-

section, we note that the eigenvalues are invariant to rotation, and their ratio is invariant to scale. 
Also note that, because C is positive semidefinite, both eigenvalues are real and nonnegative.

Every noncircular ellipse has a major axis and a minor axis, which are equivalent to 
the principal axes previously mentioned, with the major axis being identical to the figure 
axis. There is a simple relationship between the length of these axes and the eigenvalues of 
the covariance matrix:

 semimajor axis length 5 2"l1 (4.147)

 semiminor axis length 5 2"l2 (4.148)

ALGORITHM 4.17 Compute the orientation of a region in an image (eigendecomposition method)

ComputeOrientationByEigendecomposition(I)

Input: binary image I containing a single ON region
Output: angle of major axis of binary region, clockwise from positive x axis

1 m00, m20, m02, m11 d  ComputeCentralMoments(I )

2 C d 1
m00

 Bm20 m11

m11 m02
R

3 l1, l2, v1, v2 d  Eigen(C) ➤ l1 $ l2, v1 5 3v11 v21 4T, and v2 5 3v12 v22 4T
4 if v11 $ 0 then
5   return Asin 1 v21 2  
6 else
7   return Asin 12v21 2
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where the major or minor axis length is defined as the distance between the two intersection 
points of the ellipse boundary with the major or minor axis, respectively, and the semi-
major and semiminor axis lengths are one-half of these. (If the ellipse were a circle, then 
the axis length would be the diameter, and the semi-axis length would be the radius.) To 
verify that these equations are true, consider (without loss of generality) the simple case of 
an ellipse that is aligned with the coordinate axes, so that b 5 0, and the boundary of the 
ellipse is given by ax2 1 cy2 5 1. Such an ellipse crosses the x axis at x 5 6"1

a, and it 
crosses the y axis at y 5 6"1

c. Now suppose (also without loss of generality) the ellipse 
is wider than it is tall, so that a # c, which implies m02 # m20. Then, by substitution of 
Equation (4.145),

semimajor axis length 5 Å1
a

5 Åhm00

m02
5 Å4m20 m02 m00

m00
2   m02

5 Å4m20

m00
5 2"l1 (4.149)

semiminor axis length 5 Å1
c

5 Åhm00

m20
5 Å4m20 m02 m00

m00
2   m20

5 Å4m02

m00
5 2"l2 (4.150)

Since the eigenvalues are not affected by rotation, this result holds no matter the orientation 
of the ellipse. If a . c, then the roles of a and c are swapped in Equations (4.149)–(4.150), 
but Equations (4.147)–(4.148) still hold.

Thus we see that given any arbitrary binary 2D region, the “best fitting ellipse” of the 
region, which is defined as the ellipse with the same second-order central moments as 
the region, is given by a x 

2 1 2 b x y 1 c y 
2 5 1, where the coefficients are determined by 

Equation (4.145) after first computing the second-order central moments of the region. The 
major and minor axes of this ellipse are given by the eigenvectors of the covariance matrix 
formed from the second-order central moments, and the lengths of these axes are related to 
the square roots of the eigenvalues. In case it is not clear why a square root is needed, recall 
from Equation (4.141) that

 C 5 P Bl1 0
0 l2

R  PT (4.151)

so that diag 1l1, l2 2  is the covariance matrix after the region has been rotated by P so 
that it is axis-aligned. Therefore, these eigenvalues are indeed the variances: l1 5 s1

2 and 
l2 5 s2

2, and their square roots are the standard deviations: "l1 5 s1 and "l2 5 s2. 
Since standard deviations are lengths, this explains why length is proportional to the square 
root of the eigenvalue.

We can go a step further by considering the 2D Gaussian (or bell) curve. We will study 
the Gaussian in more detail in the next chapter, but for now let us note that the isotropic 
(meaning the same in all directions) 2D Gaussian is in the shape of a bell. The level set of 
a 2D function G(x, y) at level h is the set of points such that G 1 x, y 2 5 h, for some con-
stant h. Geometrically, the level set is the intersection of the function with the horizontal 
z 5 h plane, and it can be thought of as a horizontal slice through the function. Because 
an isotropic Gaussian is rotationally symmetric, its level set will take the shape of a circle. 
An anisotropic (meaning not the same in all directions) Gaussian, on the other hand, is 
not rotationally symmetric, and therefore its level set is in the form of an ellipse. For every 
2D elliptical region, there is an associated 2D Gaussian function with the same mean and 
covariance matrix, so that l1 and l2 are the variances of the two random variables of this 2D 
Gaussian. This analysis also gives meaning to the factor of 2 in Equations (4.147)–(4.148) , 
because it says that the ellipse captures 62si, i 5 1, 2, in each direction, or 95.45% of the 
area under the Gaussian curve.
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4.4.6 Compactness
Compactness is a measure of how close the pixels in the region are to the center of the 
region. Since the most compact shape is a circle, we define compactness as

 compactness 5
4p 1 area 21 perimeter 2 2 (4.152)

For a continuous region, compactness ranges from 0 to 1, with 1 indicating a circle, since the 
area of a circle with radius r is pr 

2, and its perimeter is 2pr. Note, however, that discretiza-
tion effects can cause the resulting compactness to be slightly greater than 1 for discretized 
shapes that resemble circles.

The area of an ellipse is a natural generalization of the area of a circle, with the semi-
major and semiminor axis lengths playing the role of the radius. If we let ,1 ; 2"l1 
and ,2 ; 2"l2 be these lengths, according to Equations (4.147)–(4.148), then the area is 
p,1,2. The perimeter of an ellipse is more difficult to calculate, but one approximation that 
works reasonably well is 2p"1 ,1

2 1 ,2
2 2 /2. Substituting into Equation (4.152) yields the 

compactness of an ellipse:

 compactness of ellipse <
2 #4p2,1,2

4p2 1 ,1
2 1 ,2

2 2 5
2,1,2

,1
2 1 ,2

2 5
2a

a2 1 1
 (4.153)

where a ; l1
l2

$ 1 is a scale factor relating the lengths of the axes, so that l1 5 al2. Note 
that the compactness is 1 for a 5 1 (circle), 4

5 5 0.8 for a 5 2, 8
17 < 0.47 for a 5 4, and 

so on.

4.4.7 Eccentricity
The eccentricity of a region measures its elongatedness—that is, how far it is from being 
rotationally symmetric around its centroid. Since the eigenvalues capture the variance in 
the two principal directions, the eccentricity of a region is defined as the difference between 
these variances, normalized by the larger variance. Similar to the axis lengths, we take the 
square root:

 eccentricity 5 Ål1 2 l2

l1
 (4.154)

which ranges from 0 (when the region is a circle) to 1 (when the region is a straight line). 
Substituting Equation (4.146) yields the eccentricity in terms of the moments:

eccentricity 5         
2"1m20 2 m02 2 2 1 4m11

2

m20 1 m02 1 "1m20 2 m02 2 2 1 4m11
2

5 Å 2b

tr 1C 2 1 b
 (4.155)

where b ; "tr2 1C 2 2 4 det 1C 2 , and tr2 1C 2  is the square of the trace of the covariance 
matrix. In the case of an axis-aligned ellipse, m11 5 0, and Equation (4.155) simplifies to

 eccentricity 1when axis-aligned 2 5 Å 0m20 2 m02 0
m20 1 m02 1 0m20 2 m02 0  (4.156)

Figure 4.34 shows an example of compactness and eccentricity.
Other definitions for eccentricity could be imagined, but there are several distinct advan-

tages to the definition in Equation (4.154). First, it matches the standard mathematical 

$
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definition of the eccentricity of an ellipse, which is the ratio of the distance between the 
ellipse foci to the length of the major axis. Thus, the eccentricity of the region is equivalent 
to the eccentricity of the best-fitting ellipse. Secondly, due to the normalization by l1, it is 
invariant to scale, which is a desirable property because it ties the eccentricity to the shape 
of the object without regard to its size in the image.

For comparison, an alternative definition that has been proposed by some authors is the 
ratio of the principal axes of inertia:

 Ål2

l1
5          

m20 1 m02 2 "1m20 2 m02 2 2 1 4m11
2

m20 1 m02 1 "1m20 2 m02 2 2 1 4m11
2

 (4.157)

which, when axis-aligned, reduces to

 Ål2

l1
5 Åm02

m20
 (4.158)

This definition shares many of the desirable properties of the definition above, except that it 
has to be interpreted in the opposite manner because it yields 1 for a circle and 0 for a line.  
To fix this problem, we could try to subtract the ratio from 1:

 1 2 Ål2

l1
 (4.159)

which also ranges from 0 (when the region is a circle) to 1 (when the region is a straight 
line). However, this definition has a more serious drawback in that there is no straightfor-
ward relationship between a change in the axis lengths and the corresponding change in the 
value of the eccentricity. For example, a doubling of the ratio of the two axis lengths does 
not lead to a doubling of the eccentricity. 

An even worse measure is the difference between the two eigenvalues:

 l1 2 l2 5
1

m00
 "1m20 2 m02 2 2 1 4m11

2  (4.160)

which ranges from 0 (when the region is a circle) to ` (when the region is a line). This 
definition suffers from two problems: a doubling of the difference between the two principal 
axes leads to a quadrupling of the eccentricity, and the eccentricity is dependent upon the 
scale of the region. 

Finally, the following definition is sometimes proposed:

 
1m20 2 m02 2 2 1 4m11

m00
 (4.161)

$

Figure 4.34 Left: A circle is 
the most compact shape, 
with a compactness of 1. 
Middle: A shape whose 
compactness is less than 1. 
Right: The eccentricity of 
the shape is computed as 
the eccentricity of the best-
fitting ellipse.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



4.4 Region Properties 187

but it is not clear what the justification for this measure is. Sometimes it is assumed to be 
the ratio of the principal axes of inertia, but this is not true, as we have just seen the correct 
formula in Equation (4.157). Moreover, this equation is fundamentally flawed because of the 
mismatch of units in the numerator, where one moment is added to the square of another. If 
we recall from Equation (4.114) that a scale change of a causes the second order moments 1m20, m02, and m11 2  to increase by a factor of a4, we notice that this same scale change 
causes the first term in the numerator to scale by a factor of a8, while the second term scales 
by only a4. This mismatch leads to unpredictable behavior in the overall quantity.

4.4.8 Convex Hull
A set of points in the plane is convex if any straight line between two points in the set lies 
entirely within the set. The convex hull of a set is the smallest convex set containing the set. 
The difference between the set and its convex hull is called the convex deficiency, which is 
sometimes used as a descriptor of the shape of the object. The convex deficiency is somewhat 
related to compactness, because compact shapes (i.e., those whose value is close to 1 accord-
ing to Equation (4.152) ) by their very nature have little to no convex deficiency; the con-
verse, however, is not necessarily true because elongated convex shapes such as ellipses or 
rectangles can have arbitrarily small values for compactness without any convex deficiency.

Given a set of points in the plane, we can think of the convex hull as being the region 
defined by the shape of a rubber band placed around the set. Consider a polygon defined by 
a clockwise sequence of vertices p0, p1, p2, c, pn. Each vertex is locally either convex 
or concave (the opposite of convex). If we sequentially remove each concave vertex until 
there are no more concave vertices, the resulting shape will be the convex hull, as shown in 
Figure 4.35. To test whether a vertex is locally concave, let vi ; pi 2 pi21 be the vector 
joining two consecutive vertices, pi21 and pi. Such a vector splits the entire plane into two 
half-planes, one to the right of the vector and one to the left. If the next vertex 1pi11 2  is 
in the left half-plane, then the middle vertex 1pi 2  is on a concavity, which means that it is 
in the interior of the convex hull and therefore definitely not on the boundary of the convex 
hull. On the other hand, if the next vertex is in the right half-plane, then the middle vertex 
is possibly on the boundary of the convex hull, depending upon additional information. In 
Figure 4.36, for example, p2 is to the right of the vector joining p0 and p1, and therefore 
the middle vertex 1p1 2  is, as far as we know based upon this single test, on the boundary 
of the convex hull. However, p3 is to the left of the vector joining p1 and p2, and therefore 
the middle vertex 1p2 2  is at a concavity and needs to be removed.

Mathematically, it is easy to test whether the third vertex is in the right or left half-plane 
defined by the vector joining the first two vertices. If we treat the vectors vi and vi11 as 
lying in a 3D space, then their cross product, vi 3 vi11, yields a vector perpendicular to the 
plane. According to the right-hand rule with our standard image coordinate system, if the 
z-coordinate of vi 3 vi11 is greater than 0, then pi11 lies in the right half-plane defined by 
vi; whereas if the z-coordinate of vi 3 vi11 is less than 0, then pi11 lies in the left half-plane 

Figure 4.35 LEFT: An arbitrarily-shaped 
region in the plane. RIGHT: The convex hull 
of the region is the shape that results from 
enveloping the region with a rubber band, 
which removes all concavities. All vertices 
are locally convex except for p2.
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188 Chapter 4 • Binary Image Processing

defined by vi. The sign of this z-coordinate is given by the sign of the determinant of a 
matrix containing the coordinates of the points, where pi 5 1 xi, yi 2 , and so on:

pi is bpossibly on boundary if d $ 0
definitely in interior if d , 0,

    where d ; det £Cxi21 yi21 1
xi yi 1

xi11 yi11 1
S≥ (4.162)

This test leads naturally to an algorithm for computing the convex hull of a contiguous 
binary region, shown in Algorithm 4.18. First wall following yields the boundary of the 
region as a sequence of pixels. Then we consider triplets of adjacent pixels along this 
boundary. For each triplet the test in Equation (4.162) is performed. If the third point is in 
the left half-plane, then as far as we know it might be one of the vertices of the convex hull, 
so the point is retained, and the algorithm continues. On the other hand, if it is in the right 
half-plane, then the previous point is at a concavity and is therefore definitely not a vertex of 
the convex hull because it lies in the interior of the convex hull. In this case, we remove the 
point and back up by one pixel in our traversal, then continue. By sequentially considering 
pixels along the boundary of the region and testing whether the next pixel is within or 
outside the right half-plane, a minimalistic sequence of half-planes can be generated so that 
all pixels in the boundary are within the convex hull defined by the intersection of these half 
planes. The points that remain at the end of this processing are the vertices of the polygon 
defining the convex hull. Note from the pseudocode that some additional logic is necessary 
to handle the special case of the initial pixel.

This consideration of half-planes also leads to an elegant definition of the convex hull 
in terms of mathematical morphology. More specifically, the convex hull is the intersection 
of the dilation of the region with the set of SEs containing half-planes at all orientations:

 convex hull 5 t
all u

 I % Bu (4.163)

where Bu is a half-plane at orientation u, as illustrated in Figure 4.37. In this context, a half-
plane SE has infinite extent with 1s on one side of a line and 0s on the other side. Suppose, 
for example, the region is dilated with a half plane defined by a vertical line passing through 
the origin, with 1s to the right of the line. Then, according to the definition of dilation, the 
dilation of the region with this SE yields a 1 anywhere to the left of the rightmost pixel in 
the region. That is, as the structuring element is translated to the left, there will always be 
overlap between the region and the structuring element. Only as the structuring element is 
translated to the right of the rightmost pixel is there no overlap, and hence a 0 output. The 
result is the same as if a rigid sheet were draped over the region with gravity pointing in 
the direction perpendicular to the line. As the line is rotated, different outputs result, and 
the convex hull is the intersection of all such dilations.

Figure 4.36 LEFT: The vertex p2 is to the 
right of the vector joining p0 and p1, and 
therefore p1 is, as far as we know based 
upon this single test, on the boundary of 
the convex hull. RIGHT: The vertex p3 is to 
the left of the vector joining p1 and p2, and 
therefore p2 is at a concavity and needs to 
be removed.
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4.4 Region Properties 189

Dilating a region with an infinite number of infinite SEs is (obviously) computationally 
prohibitive. However, as the number of orientations is increased, such an approach yields 
an increasingly good approximation to the true answer. Therefore, a reasonable approach 
is to dilate the region with the four half planes oriented along the cardinal directions (up, 
down, right, and left), then dilate with four planes oriented at 45 degrees from these (which 
yields northwest, northeast, southwest, and southeast), and so on, with an appropriate stop-
ping criterion. Even so, this approach is much more computationally intensive than the one 
presented above, and it results in only an approximation.

4.4.9 Euler Number
Topology is the study of properties of objects that are preserved under continuous deforma-
tions of the objects. Such deformations allow for bending, stretching, and compressing, but 
not tearing or sewing. The mathematical name for such a deformation is a homotopy,† 

† If the homotopy has an inverse, it is known as a homeomorphism. For example, the mapping from a circle to an ellipse 
(or jelly bean, for that matter) is a homeomorphism, because the mapping is one-to-one. On the other hand, the map-
ping from a circle to a line is just a homotopy because multiple points on the circle map to the same point on the line.

ALGORITHM 4.18 Compute the vertices of the convex hull of a binary image region

ComputeConvexHullVertices(I)

Input: binary image I with a single foreground (ON) region
Output: clockwise sequence of vertices defining the convex hull of the region as a polygon

 1 c d  WallFollow(I)
 2 c. PushBack(c[0]) ➤ Duplicate first vertex for wraparound
 3 i d 1 (c[c. LENGTH 2 1] 5 c[0]).
 4 while i , c. Length 21 do ➤ Consider vertices in order, and
 5   if IsClockwise 1 c 3i 2 1 4, c 3i 4, c 3i 1 1 4 2 ] then if pi21, pi, pi11 are convex,
 6     i d 1 1 then continue.
 7   else ➤ Otherwise they are concave,
 8     c. Remove(i) so remove vertex c[i], and
 9     i d 2 1 back up to previous vertex.
10 c. Pop() ➤ Remove duplicate vertex, and
11 if not IsClockwise(c[c. Length 21], c[0], c[1]) then remove first vertex
12   c. Remove(0) if concave.
13 return c

Is Clockwise 1 p1, p2, p3 2
Input: three points in the image plane (with x axis pointing right, y axis pointing down)
Output: whether the line from p2 to p3 is a clockwise rotation of the line from p1 to p2 (returns false if rotation 

is counterclockwise or points are collinear)

1 d d det £Cx1 y1 1
x2 y2 1
x3 y3 1

S≥ ➤ Compute determinant of 3 3 3 matrix, where  
 p1 5 1 x1, y1 2 , p2 5 1 x2, y2 2 , and p3 5 1 x3, y3 2 .

2 return d . 0 ➤ If determinant is positive, then clockwise rotation.
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190 Chapter 4 • Binary Image Processing

although they are more colloquially known as “rubber sheet deformations.”As an example, 
consider the letters “A” and “P”, as shown in Figure 4.38. By a continuous deformation 
(homotopy) of the points on the letter, one can be changed into another without affecting 
the connectivity (topology) of the region. That is, any path connecting any two points within 
one shape has a corresponding path in the other shape. In contrast, the letters “A” and “B” 
are not related by a homotopy, because the conversion from “A” to “B” requires tearing a 
hole (or joining two protrusions to create a hole). Similarly, the letters “A” and “C” are not 
related by a homotopy, because the conversion from “A” to “C” requires sewing up a hole. 
In both of these cases, there exist paths in one shape whose corresponding deformed paths 
in the other shape require passing through the hole of the other shape.

An important topological invariant is the Euler number† (or Euler characteristic), which 
is defined as the number of regions minus the number of holes:

 Euler number ; number of regions 2 number of holes  (4.164)

† Pronounced OIL-ur.

ALGORITHM 4.19 Fill in the convex hull of a binary image region

FillConvexHull(I)

Input: binary image I with a single foreground (ON) region
Output: pixels inside convex hull of region are set to ON

1 v d  ComputeConvexHullVertices(I)
2 xmin, xmax d  ComputePolygonCrossings(v)
3 for y d 0 to height 2 1 do
4   for x d xmin 3y 4 to xmax 3y 4 do
5     I 1 x, y 2 d  on

Figure 4.37 The convex hull of 
a region can be computed by 
the intersection of the dilation 
of the region by an infinite 
set of half planes of different 
orientations.
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4.4 Region Properties 191

To get a sense of this concept, the Euler numbers of the capital and lowercase letters of the 
English alphabet are shown in Table 4.4.

Given a region in the plane, suppose vertices are added to the boundary of the region, and 
edges (which can be straight or curved lines) are drawn between these vertices, as shown in 
Figure 4.39; the edges divide the region into one or more faces. Let us enforce the following 
rules: Every vertex has at least one edge connected to it, the region has at least one (implicit 
if necessary) vertex, a vertex is declared wherever the edges intersect, and the outer and hole 
boundaries count as edges, too. According to the Poincaré formula, the Euler number is then 
equivalent to the number of vertices minus the number of edges plus the number of faces:

Euler number 5 number of vertices 2 number of edges 1 number of faces (4.165)

where vertices and edges outside the region are not counted. This formula states that the 
Euler number is independent of how the region is divided by the vertices, edges, and faces. 
In the figure, for example, for the first region there is a single (implicit) vertex, a single 
edge (the outer contour), and a single face (the filled blue region), so the Euler number is 
1 2 1 1 1 5 1. If another vertex is added and an edge is drawn between the vertices, then 
there are 2 vertices, 3 edges (the outer contour has been split in two), and 2 faces, leading 
to 2 2 3 1 2 5 1; and similarly for the other tesselations.

Equation (4.165) hints that it might be possible to compute the Euler number from local 
operations. Indeed, the Euler number obeys the inclusion-exclusion principle, similar to 
the operation on sets:

 E 1 I1 h I2 2 5 E 1 I1 2 1 E 1 I2 2 2 E 1 I1 x I2 2  (4.166)

where I1 and I2 are two subsets of the plane, and E(I) is the Euler number of I, as shown in 
Figure 4.40. Now suppose we already know the Euler number of a subset I, and we want to 
calculate how much the Euler number will change if it is merged with another region DI. 
By substitution, we have

 DE ; E 1 I h DI 2 2 E 1 I 2 5 E 1DI 2 2 E 1 I x DI 2  (4.167)

Figure 4.38 TOP: The letters “A” and “P” are 
related by a homotopy, because there is a 
continuous deformation that relates the two 
shapes. BOTTOM: The letters “A” and “B” are not 
related by a homotopy, because there is not a 
continuous deformation that relates the two 
shapes. Rather, tearing the region to produce 
the extra hole is necessary (or sewing the hole 
in the case of the reverse transformation).

regions holes Euler letters

1 2 21 B g

1 1 0 A a b D d e O o P p q R

1 0 1 C c E F f G H h I J K k L l M m N n r S s T t U u V v W 
w X x Y y Z z

2 0 2 i j

TABLE 4.4 The Euler number of the lowercase and uppercase characters in the English alphabet.
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192 Chapter 4 • Binary Image Processing

where DE is the amount that the Euler number changes when the DI region is unioned 
with I. In other words, the change in the Euler number is the Euler number of the added 
subset minus the overlap between the subsets.

As an application of this principle, the Euler number can be determined by dividing the 
plane into strips and counting the number of convexities and concavities within the strips: 

Euler number 5 number of upstream convexities 2 number of upstream concavities (4.168)

where “upstream” points opposite the sweeping direction. In Figure 4.41, for example, 
the sweeping direction is horizontal (to the right), and the first strip contains 1 convexity, 
the second strip 1 convexity, and the third strip 1 concavity. The Euler number is therefore 
1 1 1 2 1 5 1, which is what we expect since there is 1 region with 0 holes. The rationale 
behind Equation (4.168) is that whenever a convexity is encountered, a new region appears, 
thereby increasing the Euler number, but a concavity joins two regions, thereby decreasing 
the Euler number.

It is not hard to imagine how the locally countable property of the Euler number could 
apply to a square lattice such as a binary image. As the image is swept from left to right 
and top to bottom, any time a 2 3 2 array of pixels is encountered with a 1 in the lower-
right corner and 0s in the other 3 pixels, there is a convexity. Similarly, any time there is a 
0 in the lower right corner and there are 1s in the other pixels, there is a concavity, as seen 
from a sweep from the top-left corner to the bottom-right corner. Therefore, it is not too 
surprising that the Euler number is related to the number of the first occurrence minus the 
number of the second occurrence.

In reality, the square lattice complicates this simple analysis, requiring us to sweep from 
all four cardinal directions (from the four corners of the image) and average the results. 
This leads to the algorithm presented in Algorithm 4.20. Every 2 3 2 array of pixels in the 
zero-padded image, overlapping as needed, is examined. Each of these arrays is known as 
a bit quad since it contains 4 binary pixels. Since each pixel is either ON or OFF, there are 

Figure 4.39 Various tesselations of a region whose Euler number is 1 (left) and 0 (right), showing that the Euler number is not 
dependent upon the particular tesselation chosen. Under each figure is the number of vertices minus edges plus faces according to 
Equation (4.165). Note there is implicitly at least one vertex, edges intersect at vertices, and external vertices or edges are not counted.

12111 = 1 22312 = 1 32513 = 1 12211 = 0 42612 = 0 22412 = 0

721216 = 1 22211 = 1 32311 = 1 62913 = 0 22311 = 0 42612 = 0

Figure 4.40 Euler number of the union of two 
regions is the sum of the Euler numbers of the 
individual regions minus the Euler number of the 
intersection.

22312 = 1 22211 = 1 22211 = 1 22210 = 1

1 2=
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24 5 16 possible bit quads. These are divided into 6 sets, depending upon the number and 
arrangement of the ON pixels:B0 0

0 0
R

(')'*
Q0

 
B1 0

0 0
R  c B0 0

0 1
R

('''')''''*
Q1

 
B1 1

0 0
R  c B1 0

1 0
R

('''')''''*
Q2

 
B1 1

1 0
R  c B0 1

1 1
R

('''')''''*
Q3

 
B1 1

1 1
R

(')'*
Q4

 
B1 0

0 1
R , B0 1

1 0
R

(''')'''*
QD

where Qi, i 5 0, c, 4 is the set of bit quads with i 4-connected ON pixels, and QD is the 
set of bit quads with ON pixels in the 2 corners. Note that Q1, Q2, and Q3 each contain 4 
elements, which vary from each other by 90-degree rotations.

Let ni refer to the number of times that type Qi appears. Then it can be shown that the 
Euler number of a binary image is given by:

  E4 1 I 2 5
1
4

 1 n1 2 n3 1 2nD 2     1 4-connectedness 2  (4.169)

  E8 1 I 2 5
1
4

 1 n1 2 n3 2 2nD 2     1 8-connectedness 2  (4.170)

where E4 is the Euler number assuming 4-connectedness for the foreground (and 
8-connectedness for the background), while E8 is the Euler number assuming 8-connectedness 
for the foreground (and 4-connectedness for the background).

Figure 4.41 Euler number 
is the number of convexities 
minus the number of 
concavities.

11121 = 1

Convexity
Convexity Convexity

Concavity

Concavity 1 2=

ALGORITHM 4.20 Compute the Euler number

ComputeEulerNumber(I, connectedness)

Input: binary image I, whether foreground is 4-connected or 8-connected
Output: the Euler number of I

 1 count d 0
 2 sign d 11 if connectedness 5  5 4 or 21 if connectedness 5  5 8
 3 for y d 0 to height do
 4   for x d 0 to width do ➤ For each pixel,
 5     n\ d I 1 x, y 2 1 I 1 x 2 1, y 2 1 2  examine ON pixels in 2 3 2 window.
 6     n/ d I 1 x 2 1, y 2 1 I 1 x, y 2 1 2  ➤ Note:  For out-of-bounds pixels, I(x, y) 5 0.
 7     if n\ 1 n/ 5  5 1 then ➤ If there is 1 ON pixel,
 8       count d 1 1 then increment counter.
 9     elseif n \ 1 n/ 5  5 3 then ➤ If there are 3 ON pixels,
10       count d 2 1 then decrement counter.
11     elseif (n \ 5  5 2 and n/ 5  5 0) or (n \ 5  5 0 and n/ 5  5 2) then ➤ If ON pixels
12       count d 1 2 
 sign are diagonal, then add or subtract 2.
13 return count / 4 ➤ Divide by 4 to get Euler number.
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Bit quads can also be used to compute the area and perimeter of a region:

  area 5
1
4

 1 n1 1 2n2 1 3n3 1 4n4 1 2nD 2  (4.171)

  perimeter 5 n1 1 n2 1 n3 1 2nD  (4.172)

where the first equation is identical to the zeroth moment we showed before, i.e., counting 
all the ON pixels (with appropriate handling of the image borders). The second equation, 
however, computes the length of the perimeter along the edges between pixels, rather than 
by connecting the centers of the pixels. Thus a 2 3 2 square region of 4 ON pixels has a 
perimeter of 8, not 4. If it is desired to estimate properties of an underlying continuous 
object that has been discretized, somewhat more accurate formulas are as follows:

  area 5
1
4

 1 n1 1 2n2 1 3.5n3 1 4n4 1 3nD 2  (4.173)

  perimeter 5 n2 1
1"2

 1 n1 1 n3 1 2nD 2  (4.174)

Of course, it is also possible to compute the Euler number by simply running the 
connected components algorithm while keeping track of whether each region is ON or 
OFF, as well as whether each OFF region touches the image border. The Euler number is 
then the number of ON regions minus the number of OFF regions that do not touch the 
image border.

4.5 Skeletonization
Another characteristic of a binary region is its skeleton. For the moment, let us ignore 
discretization effects and consider only continuous regions. With this simplification, there 
are two alternate but equivalent definitions of the skeleton, illustrated in Figure 4.42. In 
the first, known as Blum’s medial axis transform, we imagine a region of dry, flam-
mable grass, surrounded by dirt that does not burn. If the region is set on fire along its 
boundary, then the wave front of the fire will propagate inward. Assuming the grass burns 
at a constant rate throughout the region, the medial axis is defined as the set of points 
where two or more wave fronts meet, and the skeleton is defined as the medial axis. 
Alternatively, the skeleton is defined as the locus (i.e., set of locations) of the centers of 
all the maximal disks, where a maximal disk is a circle that fits entirely within the region 
and touches the boundary in at least two places. It is easy to verify that these definitions 
are equivalent.

A related concept is the quench function, which is defined as the radius of the associ-
ated maximal disk for each point on the skeleton, or (equivalently) the distance traveled by 
the wave front before it was quenched at the medial axis. It is easy to see that the skeleton 
and quench function together contain enough information to uniquely reconstruct the region.

Figure 4.43 shows six example binary shapes and their associated skeletons. The skeleton 
of a filled square (not shown) is an X, and the skeleton of a filled rectangle is similar except 
that the X is stretched along the longer dimension. Similarly, the skeleton of a filled circle is 
a point, while the skeleton of an ellipse is a line segment whose endpoints are the centers of 
the circles contained with the ellipse and tangent to the ellipse ends. The skeleton of a filled 
plus or X depends upon the shape of the region at the extremities; with rounded extremities 
(as shown in the figure), the skeleton does not reach to the boundary of the region, whereas 
with pointed extremities it does. Finally, the skeleton of a hollow square is a thin square on 
the inside, plus straight line segments pointing to each corner.
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4.5 Skeletonization 195

One of the first things you will notice about skeletons is that, even in their definition, they 
are extremely sensitive to noise. Even a tiny amount of noise can have a huge impact on the 
nature of the skeleton. Figure 4.44 shows two examples. In the first example, an otherwise 
perfectly noise-free filled rectangle is corrupted with a single pixel protruding from its side. 
This single pixel alters the skeleton (again, by definition, not dependent on any algorithm) 
to include a rather long protrusion from its middle segment to the boundary of the object. 
In addition, because the pixel is shaped like a square, this protrusion forks to touch the four 
corners of the pixel square as well. The fact that the skeleton, by definition, touches each 
corner of a region is even more problematic when discretization occurs. This phenomenon 
is illustrated in the second example, in which a circle is approximated by a set of pixels on 
a discrete lattice. Even ignoring all other sources of noise, the jagged edges from the pixel 
corners cause the skeleton to change shape beyond recognition from the simple point of the 
continuous circle. Notice that this phenomenon is due solely to the jagged corners; it occurs 
even when the skeleton itself is represented in the continuous domain.

To add to the problems already mentioned, it is not obvious how to translate the 
continuous definition of skeleton to the case in which the skeleton is represented discretely. 
In fact no definition has been found that works well in all cases, and instead we must settle 
for a reasonable approximation. That is, we seek a set of pixels (the discretized skeleton) 
that roughly corresponds (in some sense) to the true skeleton of a continuous shape obtained 
by interpolating the boundary points. As a result of this imprecision, there are two types of 
skeletonization algorithms. C-type (for “corner”) algorithms seek to preserve the skeleton 
segments that touch the corners of the region, whereas S-type (for “smooth”) algorithms 
seek to ignore the corners of the region and instead preserve only its overall shape. In the 
subsections that follow, we consider several approaches to skeletonization that fall into 
these two categories, all of which aim to compute a skeleton that is connected, maximally 
thin, and minimally eroded.

4.5.1 Skeletonization by Thinning
A common approach to skeletonization is to repeatedly thin the image until the result converges. 
We saw one version of this approach already, namely morphological thinning.† An ordered set 
of structuring elements (SEs) is applied repeatedly to the image until convergence, and the 
final result yields an approximation to the skeleton. At its core, each iteration of thinning 
identifies pixels that can be removed (that is, set to OFF) from the image without affecting the 
connectivity of the foreground regions, and while having minimal impact on their shape.

† Section 4.1.7 (p. 148).

Figure 4.42 The skeleton of a 
binary region is defined as the 
locus of points where the wave 
fronts of fires set to the boundary 
meet, or equivalently as the locus 
of the centers of the maximal balls.

Figure 4.43 Six different continuous shapes (blue) and their skeletons (thin red lines).
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By changing the test that identifies the pixels to remove, as well as changing the order 
in which to remove them, alternate skeletonization-by-thinning algorithms are obtained. 
Two such algorithms are described in the next two subsections, but first we must lay the 
groundwork by attempting to understand under what circumstances it is advisable to remove 
a pixel based on the values of its 8-neighbors. To do this, let us consider some fundamental 
characteristics of 3 3 3 binary patterns.

There are 28 5 256 possible 3 3 3 binary patterns with an ON pixel in the center, since 
there are 8 pixels around the center, and each pixel can take one of two values. Let s rep-
resent the number of ON pixels in this outer ring of 8 pixels. The number of 3 3 3 binary 
patterns with a particular value of s is given by “8 choose s”, represented mathematically 
as A 8

sB ; 8!
s! 1 8 2 s 2 !

, where n! ; n # 1 n 2 1 2 # 1 n 2 2 2  c 1 is the factorial operator for any 
positive integer n, and 0! ; 1. Substituting, we see that for s 5 0 there is just one pattern 
because A80B 5 1; for s 5 1 there are A81B 5 8 patterns; for s 5 2 there are A82B 5 28 pat-
terns; for s 5 3 there are A83B 5 56 patterns; for s 5 4 there are A84B 5 70 patterns; and so 
on. It is easy to verify that 1 1 8 1 28 1 56 1 70 1 56 1 28 1 8 1 1 5 256.† If we 
discard patterns that are identical except for a rotation and/or reflection, we are left with 
just 50 unique patterns, shown in Figure 4.45.

Let us define the connection number, represented as c, as the number of regions that 
are 8-connected to the central pixel (minus 1 if there is a 4-connected cross in the center). 
In other words, the connection number is the number of 8-connected foreground (ON) regions 
in the 3 3 3 pattern that would remain if the central pixel were set to OFF, minus the number 
of holes that would be created.‡ It turns out that c can be computed as the number of 0–1 
(OFF-ON) transitions around the 4-neighbors of the central pixel, plus the number of isolated 
foreground pixels in the corners:

 
c 5 c01,4 1 c010,c(')'*

021 transitions

(')'*
isolated corners

 (4.175)

If the pixels in a 3 3 3 neighborhood around a central pixel p0 are labeled as follows:

 Cp8 p1 p2

p7 p0 p3

p6 p5 p4

S  

then these quantities are computed as

  c01,4 ; 1 p1 
#
 p3 2 1 1 p3 

#
 p5 2 1 1 p5 

#
 p7 2 1 1 p7 

#
 p1 2  (4.176)

  c010,c ; 1 p1 
#
 p2 

#  p3 2 1 1 p3 
#
 p4 

#  p5 2 1 1 p5 
#
 p6 

#  p7 2 1 1 p7 
#
 p8 

#  p1 2  (4.177)

where the overbar means binary complement. In this equation, pi
#pj 5 1 iff pi 5 0 (OFF) and 

pj 5 1 (ON), otherwise 0; and pi
#pj

#pk 5 1 iff pi 5 0 (OFF), pj 5 1 (ON), and pk 5 0 (OFF).

† As an aside, this analysis generalizes to an elegant, non-obvious formula: 2n 5 a
n

i50

 ¢n
i
≤  for any integer n $ 0.

‡ Another term that is often used is the crossing number, represented by x, which is defined as twice the con-
nection number, that is, x ; 2c.

Figure 4.44 The definition of the skeleton of a region is very sensitive to noise in the input. LEFT: 
Even a single pixel can drastically affect the skeleton, such as this small protrusion that causes an 
entirely new branch to be added. RIGHT: Because a skeleton is required to touch each corner, the “true” 
skeleton of a discretized circle looks nothing like that of the continuous circle that it approximates.
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The values of s and c provide valuable information about the role of the central pixel. 
Examining the 50 unique 3 3 3 patterns, it is evident that a pixel with c . 1 connects 
multiple regions, that is, c is either the number of 8-connected regions that would result if 
the central pixel were set to OFF (if S 2 0 and c 2 0), or the number of holes created (if 
c 5 0). More specifically, a pixel with s 5 c 5 2 is in the middle of a line segment, a 
pixel with s 5 c 5 3 is at a T-junction, a pixel with s 5 c 5 4 is at an X-crossing, and 
a pixel with s 5 1 is at the end of a line segment. In all these cases, the pixel cannot be 
removed without disconnecting multiple regions, thus destroying the property that the thin-
ning algorithm retains the connectivity of the original region. By inspection, a more general 
statement can be made: removing (that is, setting to OFF) the central pixel whenever c 5 1 
retains connectivity of the regions. However, removing the pixel when s 5 1 erodes the 
region more than is necessary, thus violating our requirement of minimal erosion.

4.5.2 Sigma-Psi Algorithm
This analysis leads naturally to the sigma-psi (!- ) algorithm, which iterates through 
an image, examining pixels and deleting those for which s 2 1 and c 5 1. The process 
continues until convergence. Figure 4.46 shows the result of this algorithm on the same 

Figure 4.45 The 50 unique 3 3 3 binary patterns with ON in the center, along with their s value (number of ONs in the 8-neighbors) 
and c value (connection number). The remaining 206 patterns are obtained by rotating and/or reflecting these patterns, which does 
not affect either s or c. For all patterns with c 2 0, the connection number is the number of 8-connected foreground regions that 
result if the central pixel is set to OFF. For patterns with s 2 0 and c 5 0, setting the central pixel to OFF creates a hole. The purple 
boxes enclose the patterns whose central pixel is removed by the sigma-psi algorithm, while the green and brown asterisks indicate 
the patterns whose central pixel is removed by morphological thinning and Zhang-Suen, respectively. The former algorithm is more 
aggressive in removing pixels than the other two.

s 5 5:s 5 0:

s 5 1:

s 5 2:

s 5 3:

s 5 4:

s 5 6:

s 5 7:

s 5 8:

c 5 0 c 5 1** c 5 1 c 5 1 c 5 1

c 5 1 c 5 1** c 5 2 c 5 2 c 5 2

c 5 0

c 5 2 c 5 2 c 5 2 c 5 2 c 5 2

c 5 2 c 5 2 c 5 2 c 5 3 c 5 3

c 5 3 c 5 4

c 5 1** c 5 1 c 5 1 c 5 1* c 5 2

c 5 1** c 5 1* c 5 1** c 5 2 c 5 2

c 5 1* c 5 1*

c 5 1

c 5 0

c 5 1

c 5 2 c 5 2 c 5 2

c 5 2 c 5 2

c 5 1* c 5 1 c 5 2 c 5 2

c 5 0

c 5 0

c 5 1
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binary image as that of Figure 4.15. In this case the pixels were processed in order from 
top-to-bottom and from left-to-right. The result of this decision is that the skeleton tends to 
be shifted down in the image, because the pixels are removed in the order in which they are 
encountered. At first glance, it might appear that a solution to this problem of downward 
shifting would be to remove pixels in one-pixel-thick increments by simply flagging the 
pixels for deletion if they pass the s 2 1, c 5 1 test, deleting them all at once after the 
entire image has been examined, and then repeating this process until convergence. Unfor-
tunately, sigma-psi is too aggressive in the way that it flags pixels for deletion to adopt this 
approach. That is, if pixels are not deleted as they are encountered, the algorithm may lead to 
a disconnected skeleton. In the figure, for example, the pixel at location (7, 4), which is the 
third colored pixel from the right on the bottom row of the penultimate graphic, has s 5 4 
and c 5 1 and therefore would be flagged for deletion at the same time its neighbors are 
flagged. This conclusion is similar to our earlier statement that morphological thinning must 
process the corner SEs as a sequence rather than as a set to avoid disconnecting regions.

From the figure, it is clear that the sigma-psi algorithm is S-type, since it does not pro-
duce a skeleton that reaches to the corners of the regions. In contrast, the morphological 
thinning algorithm that we encountered previously is C-type, as can be seen by recalling the 
output in Figure 4.15, which does reach to the corners. Which type of skeleton is preferred 
depends upon the application.

4.5.3 Zhang-Suen Algorithm
A closely-related skeletonization-by-thinning method is the Zhang-Suen algorithm. 
Zhang-Suen repeatedly applies two subiterations to the image. In the first subiteration, 
pixels are flagged for removal if they meet the following 4 tests:

 a 2  2 # s # 6  (4.178)
 b 2  c01,8 5 1  (4.179)
 c 2  p1 

#
 p3 

#
 p5 5 0 (4.180)

 d 2  p3 
#
 p5 

#
 p7 5 0 (4.181)

where c01,8 is the number of 0-1 (OFF-ON) transitions along the 8-neighbors of p0, that is,

c01,8 ; 1 p1 
#
 p2 21 1 p2 

#
 p3 21 1 p3 

#
 p4 21 1 p4 

#
 p5 21 1 p5 

#
 p6 21 1 p6 

#
 p7 21 1 p7 

#
 p8 21 1 p8 

#
 p1 2  (4.182)

Once the entire image has been examined, the pixels that have been flagged are removed. In 
the second subiteration, pixels are flagged for removal if they meet four tests, the first two 
of which are identical to those above, while the latter two are slightly changed:

 c r 2  p1 
#
 p3 

#
 p7 5 0 (4.183)

 d r 2  p1 
#
 p5 

#
 p7 5 0 (4.184)

Figure 4.46 Skeletonization using the s-c algorithm. Each pixel is examined in turn, and if s 2 1 and c 5 1, then it is deleted. In the 
first pass, all the pixels along the border of the region are deleted. In the second pass, a number of additional pixels are deleted, with the 
particular pixels chosen being dependent upon the order in which they are examined. The final result is indeed a thinned version of the 
input. This is an S-type algorithm, because the segments touching the corners are not preserved.

Binary image After first pass After second pass Final result
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4.5 Skeletonization 199

As before, after the entire image has been examined, the pixels that have been flagged are 
removed. These two subiterations are repeated until convergence. Note that the two tests in 
Equations (4.180)–(4.181) , and the two tests in Equations (4.183)–(4.184) , are equivalent 
to the following two expressions, respectively:

 c, d 2    p3 or p5 or 1 p1 
#  p7 2  (4.185)

 c r, d r 2    p1 or p7 or 1 p3 
#  p5 2  (4.186)

That is, the first subiteration deletes points on the east or south boundaries, or on the north-
west corner, while the second subiteration deletes points on the north or west boundaries, 
or on the southeast corner. The result of Zhang-Suen on the same binary image is shown in 
Figure 4.47, where the similarity with sigma-psi is obvious.

4.5.4 NF2 Algorithm
An alternative to using thinning to perform skeletonization is to use the distance transform 
of the complement of the image, which yields the distance from each foreground pixel to the 
nearest background pixel. Peaks and ridges of the resulting distance function then indicate 
the points on the skeleton. However, since there is no simple way to detect the ridges of a 
2D function, algorithms based on such an approach tend to work poorly in practice, yielding 
instead disconnected skeletons or noisy results.

One of the more robust and effective techniques that is based on the distance function is 
known as NF2. This algorithm was developed in the robotics community for path planning 
and is therefore not widely known in the image processing community. The algorithm, 
presented in Algorithm 4.21, follows the wave front analogy, creating a frontier of pixels 
along the boundary of the region and allowing them to propagate inward at a constant rate. 
As the wave fronts propagate, the algorithm keeps track of, for each pixel on the frontier, 
the closest boundary pixel b 1 # 2  as well as the distance d 1 # 2  to that boundary pixel. When 
two wave fronts meet, the overlapping pixel is added to the skeleton S if their correspond-
ing boundary pixels are at least a small distance apart. This distance threshold, represented 
as t in the code, is typically set to a number between 2 and 6, depending on the expected 
noise level in the image. For simplicity, the pseudocode shows the version of the algorithm 
using the Manhattan distance, but other distance measures could be used if more accurate 
results are desired. Note that NF2 computes the distance transform on the fly rather than 
as a preprocessing step.

An example illustrating several steps of the execution of NF2 is shown in Figure 4.48. 
Initially, all pixels inside the region are set to a distance of infinity to their nearest boundary 
pixel, and all pixels on the boundary are set to a distance of 0. Then the frontier is created and 
allowed to propagate inward by a distance of 1 each iteration, thus computing the distance 
of each neighboring pixel, as well as determining when two wave fronts collide. Notice that 
NF2 tends to produce a fairly thin connected discrete skeleton. Another advantage to NF2 is 
its computational efficiency, because it does not require multiple passes through the image 
like the skeletonization-by-thinning algorithms do.

Figure 4.47  
The Zhang-Suen 
algorithm applied 
to a binary image. Binary image After first

subiteration
After second
subiteration

After third
subiteration

Final result
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ALGORITHM 4.21 NF2 algorithm for skeletonization (using Manhattan distance)

SkeletonByNF2(I)

Input: binary image I containing a single region R of ON pixels
Output: set S of pixels comprising skeleton of region
  ➤ Initialization

 1 for each pixel p [ R do ➤ For each pixel in region, initialize
 2   d 1 p 2 d ` its distance to nearest background pixel to infinity.
 3 for each pixel p o R do ➤ For each pixel in background,
 4   if there exists q [N 1 p 2  s.t. q [ R then if it is a boundary pixel, then
 5     d 1 p 2 d 0 set its distance to nearest background pixel to zero,
 6     b 1 p 2 d p set its nearest background pixel to itself,
 7     next-frontier. Push(p) and push the pixel onto the zeroth frontier.
  ➤ Main loop
 8 d d 0 ➤ Set distance to zero.
 9 repeat
10   frontier d  next-frontier  ➤ Copy the frontier generated in previous iteration.
11   for each p [ frontier do ➤ For each pixel in the frontier,
12     for each q [N 1 p 2  s.t. q [ R do if it has a neighbor inside the region
13       if d 1 q 2  5  5 ` then that has not yet been visited, then
14         d 1 q 2 d d 1 1 set the neighbor’s distance to one more than itself,
15         b 1 q 2 d b 1 p 2  set its nearest background pixel to be the same,
16         next-frontier.Push(q) and push the neighbor onto the next frontier.
17       elseif Dist 1 b 1 q 2 , b 1 p 2 2 . t then ➤ Otherwise, if background pixels are far
18         if p o S then enough apart, then the wave fronts meet; store only one
19           S.Push(q) of the pixels to avoid generating double-thick skeleton.
20   d d1 1 ➤ Increment the distance for the next iteration.
21 until frontier. Size 5  50 ➤ Repeat until frontier is empty.

Figure 4.48 Skeletonization using NF2. A binary input image, and the intermediate result using t 5 2 after Lines 2, 7, and 19, respectively, 
for d 5 0, followed by the intermediate results after Line 19 with d 5 1, 2, 3. Green indicates pixels on the skeleton as the algorithm 
proceeds, while blue is used in the final graphic to depict the skeleton.
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A comparison of the various skeletonization algorithms on two different binary images 
is shown in Figure 4.49. Here it is obvious that NF2, like morphological thinning, is C-type, 
whereas the others are S-type. C-type algorithms produce actual skeletons when the corners 
in the region are meaningful, but they produce noisier outputs when discretization effects 
obscure the true shape of the underlying continuous region. The thinning algorithms are 
all similar in their approach, but they differ both in the test used to determine whether to 
delete pixels, as well as the order in which the pixels are processed and deleted. By exami-
nation it is easy to verify that morphological thinning identifies a subset of the patterns 
detected by the sigma-psi algorithm for deletion, since c 5 1 and s 2 1 for all of the 
SEs in Figure 4.14. Similarly, Zhang-Suen is more conservative than sigma-psi, because 
several patterns that satisfy c01,4 5 1 have c01,8 2 1. These relationships are highlighted in 
Figure 4.45, where it is seen that only a subset of the pixels flagged for removal by sigma-
psi are flagged for removal by either morphological thinning or Zhang-Suen. In general, it 
should be kept in mind that skeletonization is a delicate process, and the output can vary 
widely depending upon the details of the implementation, as well as upon any postprocess-
ing used to clean up the result.

4.6 Boundary Representations
Earlier in the chapter† we discussed a variety of properties that can be computed of a binary 
region for the purpose of distinguishing the shape of the region from other shapes. In this 
section we continue that discussion, but here we focus on ways to represent the boundary 
of such a region. Since the interior of a region and its boundary are complementary, the 
representations discussed here can be thought of as a way to enrich those provided by the 
region properties considered earlier.

4.6.1 Chain Code
Given a binary region, the first step is to apply a boundary tracing algorithm (such as the 
one discussed earlier‡) to yield a sequence of pixels around the perimeter of the region. 

† Section 4.4 (p. 174).
‡ Section 4.2.4 (p. 161).

Figure 4.49  
Comparison of the 
various skeletonization 
algorithms on two 
different binary 
images.

Input image Morphological Sigma-psi Zhang-Suen NF2
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Treating each pair of consecutive pixels as vertices of a line segment, the sequence yields 
the simplest possible boundary representation, namely a polygon, which can represent the 
boundary with any arbitrary degree of precision by introducing or removing vertices with 
real-valued coordinates (perhaps interpolated between pixels). Nevertheless, the drawback 
of such a polygon representation is that it stores the absolute coordinates of the pixels, thus 
tying the representation to the actual location of the region in the image.

For distinguishing the shape of the boundary, generally we want to transform the 
sequence into a representation that is invariant to translation, rotation, and/or scale changes, 
as well as to the starting pixel. Perhaps the simplest, and certainly one of the oldest, tech-
niques for doing so is the chain code. The most famous chain code is the Freeman chain 
code, which we saw in Figure 4.27. In a chain code, only the first point’s absolute coor-
dinates are stored, while all other points are represented by their position relative to the 
previous point in the chain. Thus, if the first point’s coordinates are ignored, then the chain 
code provides a representation that is translation invariant. Figure 4.50 shows an example 
of a binary region and its 4-connected boundary, which is given by the following sequence 
of pixel coordinates: (1, 1), (2, 1), (3, 1), (4, 1), (4, 2), (5, 2), …, (1, 2). Using the 4 cardinal 
directions of the compass (east, north, west, and south), the second pixel is east of the first 
pixel, the 5th pixel is south of the 4th pixel, and so on, leading to the representation E-E-E-
S-E-E-S-E-W-S-W-W-S-W-W-N-W-N-N-N. By assigning the numerical values of 0, 1, 2, 
and 3 to these directions according to Figure 4.27, the Freeman chain code representation 
of this region is given by 00030030232232212111. Similarly, the 8-connected boundary 
is the sequence (1, 1), (2, 1), (3, 1), (4, 1), (5, 2), …, (1, 2), which is represented by E-E-E-
SE-E-SE-SW-W-SW-W-W-NW-N-N-N, or more compactly as 000707545443222. (Note 
that although 0 means east in both representations, the other numbers differ in their mean-
ing between 4- and 8-connectedness.) Like other representations, the chain code converts 
the 2D representation of pixel coordinates into a 1D representation, thus simplifying the 
description for matching.

To make the representation rotation-invariant, the relative positions of consecutive pix-
els can be encoded as the number of left- and right-hand turns. This representation can be 
thought of as a derivative of the chain code, and it can be generated easily as a by-product 
of the wall-following algorithm. For example, in a 4-connected boundary it is possible to 
drive forward (F), turn right (R), turn left (L), or make a U-turn (U). The derivative of the 
4-connected chain code above is therefore given by F-F-F-R-L-F-R-L-U-L-R-F-L-R-F-R-
L-R-F-F, or 00031031213013031300. Similarly, the derivative of the 8-connected chain 
code is F-F-F-R45-L45-R45-R90-R45-L45-R45-F-R45-R45-F-F, or 000717671707700, where 
the subscripts indicate the rotation angle in degrees.

4.6.2 Minimum-Perimeter Polygon
Another early approach to boundary representation is the minimum-perimeter polygon 
(MPP). From the original discretized region, let us create a continuous boundary using 
some method (which could be as simple as connecting the centers of the boundary pixels 

Figure 4.50 Simple binary 
region (left), with its 
4-connected boundary 
(middle) and 8-connected 
boundary (right).

Binary region 4-connected
boundary

8-connected
boundary
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to form a polygon). Then let us overlay a grid on the continuous boundary and mark the 
cells through which the boundary passes, where the grid resolution may or may not be 
the same as the original image resolution. If we imagine a rubber band that circumscribes 
the boundary but is required to remain inside the marked cells, the MPP is defined as the 
shape taken by the rubber band as it automatically stretches and compresses to minimize 
its internal energy.

From the example in Figure 4.51, it is easy to see that the rubber band will take the shape 
of a polygon whose vertices are one of two kinds: each vertex is either a convex corner of 
the 4-connected interior or the point opposite a concave corner of the 4-connected interior. 
In the figure the interior is white, and the convex corners are illustrated with white circles, 
while the vertices opposite the concave corners are illustrated with dark circles. It is easy 
to demonstrate that every convex vertex of the polygon is indeed a convex corner of the 
interior region, but the converse is not true. Similarly, every concave vertex of the polygon 
is a point opposite a concave corner of the interior, but the converse is not true. The actual 
algorithm for computing the MPP of a shape at a particular resolution is left as an exercise 
for the reader.

4.6.3 Signature
A common approach to representing the boundary of a region is via some type of signature. 
For all signature representations, the region is typically first rotated using the principal axis 
to ensure that the representation is independent of the starting pixel. Then the left-right 
ambiguity is resolved by projecting the region onto the principal axis and computing some 
property of the projection function, such as the side with the most mass.

The most basic type of signature is known as the centroidal profile, or r-u curve. This 
approach captures the distance r from the center of the region as a function of the angle u, as 
illustrated in Figure 4.52. Two drawbacks are obvious with this representation, illustrated in 
Figure 4.53. First, shapes with concavities might result in multivalued functions. Although 

Figure 4.51  
Continuous boundary 
(left), boundary overlaid 
on a discrete grid 
(middle-left), minimum-
perimeter polygon 
(MPP) (middle-right), 
and MPP displayed 
without the grid (right).

Continuous
boundary

Continuous boundary
on discrete grid

Minimum-perimeter
polygon (MPP)
on discrete grid

Minimum-perimeter
polygon (MPP)

Figure 4.52 The centroidal 
profile (r-u plot) of several 
shapes.
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u
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u

r
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we could simply record the minimum value, this solution results in a loss of information, 
making it impossible to recover the original shape from the function. Secondly, for regions 
with a large aspect ratio, uniform sampling of the angle does not lead to uniform sampling 
of the region boundary, causing some parts of the boundary to be represented in greater 
detail than other parts.

To ensure uniform sampling of the shape around the boundary, the distance r from the 
center can be plotted as a function of the arclength s as the boundary is traversed. This is 
known as the radial representation, or r-s curve. The resulting curve is guaranteed to be 
single-valued (i.e., a true function), but this representation introduces an ambiguity when-
ever the tangent passes through the centroid. To resolve the ambiguity, it is necessary to 
store an extra bit to capture whether the boundary turns back on itself.

An alternative representation is to store the angle c between a fixed reference line 
(e.g., the positive x-axis) and the tangent to the boundary at the point at arclength s. This 
is known as the tangential representation, or c-s curve. This curve can be thought of 
as a continuous version of the chain code representation. Horizontal lines in the c-s curve 
correspond to straight lines on the boundary, since the tangent angle c is not changing. If 
the c-s curve is monotonically increasing, then the shape is convex.

4.6.4 Fourier Descriptor
None of the boundary representations mentioned above explicitly attempts to be robust 
when there is noise in the input. One important type of noise is occlusion, which causes 
missing features in the boundary. Another type of noise is the high-frequency noise due to 
sampling resolution that can interfere with the overall shape in which we are interested. We 
will revisit this issue later when we consider ways to fit polylines to curves,† but for now 
we mention that the Fourier transform is naturally suited to provide a multiscale representa-
tion in which low-frequency components capture the overall shape, while high-frequency 
components respond to data that may not be of interest. By retaining only a few of the 
components, a faithful approximation to the boundary with a much more compact repre-
sentation can often be obtained.

In this approach, the sequence of pixel coordinates is treated as a vector-valued function 
of the arclength s. With a closed boundary, this is a periodic function, which is then expanded 
as a Fourier series (although in practice the discrete Fourier transform is always used‡). The 
Fourier series coefficients provide increasingly detailed representations of the boundary and 
therefore, depending upon the complexity of the boundary, it may often be faithfully 

† Section 7.3 (p. 341).
‡ For more details on the discrete Fourier transform, see Chapter 6 (p. 272).

Figure 4.53 One drawback to the centroidal profile is the possibility of multiple values for a given angle (left). Another drawback is that 
uniform sampling of the angles does not necessarily lead to uniform sampling along the boundary, particularly for a region with a large 
aspect ratio (middle, right).

u
r

u
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represented with just a few of the coefficients. With proper parameterization, it is also pos-
sible to ensure that the Fourier coefficients are translation-, rotation-, and scale-invariant.

4.6.5 B-Spline
B-splines (“basis splines”) were briefly mentioned in the previous chapter.† The term spline 
comes from building construction, where it refers to a thin, flexible strip of wood or metal; 
draftsmen later used splines for drawing curved lines, which led to its adoption as the name 
of a specific mathematical description of curved lines. In this section we cover the simplest 
type of B-spline, the uniform cubic B-spline, paying particular attention to some of the 
standard procedures for fitting and using this representation.

We should mention that B-splines are closely related to other popular types of curve 
representations. Hermite splines,‡ for example, are used to interpolate data when the first 
derivatives are available. Bézier curves are useful for modeling curves where intuitive 
user control of the curve is needed. Bézier curves are useful for short curves with small 
number of control points, whereas B-splines are appropriate for long continuous curves. 
NURBS (non-uniform rational B-splines) are a generalization of both B-splines and 
Bézier curves that are popular in the graphics community because of their ability 
to  handle both analytical shapes (conic sections) and freeform shapes in a 
consistent manner.

Computing a Point Along the Spline
A uniform cubic B-spline is represented as a sequence of control points qi, 
i 5 0, c, n 1 1 in the plane. Let us collect these points in a matrix Q of size 1 n 1 2 2 3 2, where the i 

th row of Q contains the i 
th control point qi. The spline is param-

eterized by a real parameter s, which varies from 1 to n, that is, 1 # s # n. A point on the 
spline is represented as x 1 s 2 5 1 x 1 s 2 , y 1 s 2 2 . Computing x (s) is fairly straightforward. 
First define the matrix M which contains the coefficients of the B-spline basis functions 
necessary to maintain C2 continuity (that is, continuity in the function itself, as well as in 
its first and second derivatives):

 M 5
1
6

 D21     3 23 1
   3 26    3 0
23     0    3 0
   1     4    1 0

T  (4.187)

which we saw earlier in Equation (3.88). Next, let i be the largest integer that is no 
greater than s, that is, i 5 :s;, and let a 5 s 2 i be the fractional leftover value, so that 
i 5 1, c, n, and 0 # a , 1. Then,

 x 1 s 2 5 3x 1 s 2  y 1 s 2 4 5 vTMQi (4.188)

where

 vT ; 3a3 a2 a 1 4  and  Qi ; Dqi21

qi

qi11

qi12

T  (4.189)

† Section 3.8.4 (p. 115).
‡ Section 3.8.3 (p. 110).
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Note that s 5 i 5 1 at the beginning of the spline, while s 5 i 5 n at the end of the spline; 
in both cases a 5 0, so that

  x 1 1 2 5
1
6

 1q0 1 4q1 1 q2 2  (4.190)

  x 1 n 2 5
1
6

 1qn21 1 4qn 1 qn11 2  (4.191)

Computing the Slope of a Spline
To compute the slope of the tangent of the spline at a point, simply take partial derivatives:

  
@ x 1 s 2
@ s

5 v rTMxi

  
@ y 1 s 2
@s

5 v rTMyi (4.192)

where

 v rT 5 33a2 2a 1 0 4 (4.193)

is the derivative of v with respect to a. The slope is then given by

 
@ y 1 s 2
@ x 1 s 2 5

@ y 1 s 2
@ s

 
@ s

@ x 1 s 2 5
v rTMyi

v rTMxi
 (4.194)

Constructing the Spline
Suppose we wish to interpolate a sequence of data points x1, x2, c, xn in the plane with 
a B-spline curve, where xi ; 1 xi, yi 2  is the i 

th data point. Interpolation implies that we 
set x 1 i 2 5 xi for i 5 1, c, n. Notice that, in the case of s being an integer, a 5 0, and 
therefore Equation (4.188) simplifies to the following:

 x 1 s 2 5
1
6

  31 4 1 4 Cqi21

qi

qi11

S  (4.195)

Collecting all the data points together yields

 Dx1

x2

(
xn

T 5
1
6

 D1 4 1 0 0 c 0
0 1 4 1 0 c 0

(
0 c 0 0 1 4 1

T  D q0

q1

(
qn11

T  (4.196)
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4.7 Further Reading
Mathematical morphology and morphological processing 
techniques trace their roots to work done at the Centre de 
Morphologie Mathématique in the Ecole des Mines de 
Paris in Fontainebleau, France beginning in 1964. The 
pioneers in this field were Matheron and Serra, the latter 
of whom heads the Center for Mathematical Morphol-
ogy to this day. The classic text in the field is that of 
Serra [1982], but it is a heavy mathematical read. For 
a more practical treatment, the work of Soille [2003] is 
recommended. Another well-known early paper in this 

field is that of Haralick et al. [1987]. For recent work 
on morphological processing (extended to 4D spatio-
temporal volumes) see the paper by Luengo-Oroz et al. 
[2012]. Minkowski addition is due to Minkowski [1901], 
but Minkowski subtraction was introduced a half-century 
later not by Minkowski himself but by Hadwiger [1950]. 
Apparently, the original version of Minkowski subtrac-
tion included a reflection: X * B 5 xb[BX2b,  but the 
general consensus for at least the past several decades 
has been to define it in the manner done in this chapter.

If the spline represents a closed curve, then the constraints simply wrap around:

 Dx1

x2

(
xn

T 5
1
6

  F4 1 0 0 0 c 1
1 4 1 0 0 c 0
0 1 4 1 0 c 0

(
0 c 0 0 1 4 1
1 c 0 0 0 1 4

V Dq1

q2

(
qn

T  (4.197)

and we set q0 5 qn and qn11 5 q1 to maintain C2 continuity. On the other hand, if the 
spline represents an open curve, then additional equations are needed to make the system 
invertible. One possible approach is to add two artificial data points:

  x0 ; 2x1 2 x2  (4.198)

  xn11 ; 2xn 2 xn21 (4.199)

which are chosen to linearly extend the curve at both ends. We also add two new con-
trol points, q21 and qn12, which disappear from the equations by setting q21 ; q0 and 
qn12 ; qn11. The result is

 D x0

x1

(
xn11

T 5
1
6

  G5 1 0 0 0 c 0
1 4 1 0 0 c 0
0 1 4 1 0 c 0
0 0 1 4 1 c 0

( ( ( ( ( f (
0 c 0 0 1 4 1
0 c 0 0 0 1 5

W D q0

q1

(
qn11

T  (4.200)

Thus, given x1, c, xn, either Equation (4.197) or Equation (4.200) can be solved for 
q0, c, qn11.
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The classic connected components algorithm, with 
an extra step to resolve the labels between the first and 
second pass through the image, is due to Rosenfeld and 
Pfaltz [1966]. The union-find algorithm, described by 
Tarjan [1975], was first incorporated into the classic 
connected components algorithm by Dillencourt et al. 
[1992]. Nowadays when people refer to the “classic 
connected components algorithm” they typically are 
referring to this more recent version that takes advan-
tage of union-find. For a recent paper on connected 
components and computing region attributes simul-
taneously, consult the paper by Gabbur et al. [2010]. 
There are numerous papers on connected components, 
such as that of Chang et al. [2004], which show how to 
compute connected components while simultaneously 
computing region contours (wall following). The wall-
following algorithm, also known as boundary tracing, 
contour tracing, the Moore neighborhood algorithm, 
or the Moore-neighbor tracing algorithm, is due to 
Moore [1968].

The Manhattan chamfer distance algorithm was 
originally described by Rosenfeld and Pfaltz [1966] in 
the same paper that introduced the classic connected 
components algorithm. Other early work on distance 
functions can be found in the papers of Rosenfeld 
and Pfaltz [1968] and Montanari [1968], where the 
Montanari condition is first described. The classic 
work on distance transforms and chamfer metrics that 
approximate Euclidean distance is the well-known 
paper of Borgefors [1986]. The exact Euclidean dis-
tance algorithm presented here is from Felzenszwalb 
and Huttenlocher [2004]; alternative approaches can be 
found in papers by Breu et al. [1995] and Maurer et al. 
[2003]. The Kimura distance function is from Kimura 
et al. [1999].

Moments can be found in any image processing 
book, such as Gonzalez and Woods [2008] or Jain 
[1989]. Hu moments were introduced by Hu [1962], 
while Legendre and Zernike moments were introduced 
by Teague [1980]. An overview of different types of 
moments, including geometric, Legendre, Zernike, 
pseudo-Zernike, rotational, and complex moments can 

be found in the work of Teh and Chin [1988], along with 
an experimental analysis that shows the superiority of 
Zernike and pseudo-Zernike moments for image recon-
struction. An example of an application using Zernike 
moments is that of Boland et al. [1998]. The formula 
for computing area can be found in Ballard and Brown 
[1982]. Some of the equations for the best-fitting ellipse 
are in Shapiro and Stockman [2001]. The equation for 
eccentricity, which is standard in the mathematical 
community, is almost entirely absent from the image 
processing literature, with one notable exception being 
the text by Burger and Burge [2008]; the alternate for-
mula for eccentricity in Equation (4.161) is found in the 
books by [Ballard and Brown 1982, p. 255] and [Jain 
1989, p. 392]. The approach of computing the convex 
hull by dilating with half planes of various orientations 
is described by Soille [2003].

The bit quad algorithm for computing the Euler 
number is due to Gray [1971]. Perhaps the most suc-
cessful use of the Euler number to date has been for 
automatic thresholding, as described by Rosin [1998] 
and Snidaro and Foresti [2003]. Some researchers have 
found Euler number to be one of the most clinically 
useful parameters for discriminating cervical abnor-
malities, see Pogue et al. [2000], and it has been used 
to a limited extent in document image processing, see 
Srihari [1986]. Morphological thinning as presented 
here uses the SEs found in Sonka et al. [2008]. The 
sigma-psi algorithm is described by Davies [2005] using 
the crossing number x 5 2c instead of the connection 
number c. The Zhang-Suen skeleton algorithm is from 
Zhang and Suen [1984], whereas NF2 is described in 
Barraquand and Latombe [1991]. Blum’s medial axis 
is from Blum [1967]. For a more recent application of 
skeletons, see the work on the shock graphs such as 
Giblin and Kimia [2003].

The Freeman chain code is from Freeman [1961]. The 
minimum-perimeter polygon (MPP) is first described by 
Sklansky et al. [1972]. The name B-spline was introduced 
in Schoenberg [1971], and there are many good resources 
on B-splines, such as the works of Bartels et al. [1987] 
and Mortenson [1997].

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



Problems 209

4.5 What is the difference between erosion and Minkowski subtraction?

4.6 Compute the dilation of the image A below using both center-in and center-out 
approaches. In both cases, do not reflect the structuring element B. In which approach is 
reflection necessary to ensure that the output exhibits the same orientation as the input?

A B

4.7 Prove Equation (4.15) from Equations (4.14), (4.28), and (4.29).

2

y

x
1

21
22

22 21 0 1 2

0

2

y

x x
1

21
22

22 21 0 1 2

0

2
1

21
22

22 21 0 1 2

0

y

A1 A2 B

PROBLEMS

4.1 Define mathematical morphology.

4.2 Write the set representation of the binary image A, and the array representation of the 
binary image B.

A 5 D1 1 1 0
0 1 0 0
1 1 1 0
0 0 0 0

T    B 5 5 1 1, 1 2 , 1 2, 1 2 , 1 1, 2 2 , 1 2, 2 2 , 1 3, 2 2 , 1 1, 3 2 , 1 3, 3 2 6
4.3 Apply the set operators of Figure 4.2 to the images A and B of the previous question, 
using b 5 1 1, 1 2 . That is, compute A h B, A x B, Ab, B̌, qA, and A \ B. Write the results 
as arrays.

4.4 Compute Minkowski addition for sets A1 and B, as well as Minkowski subtraction for 
sets A2 and B, shown below. Ignore the out-of-bounds pixels.

(a) Use the center-in approach.

(b) Repeat, using the center-out approach.
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4.10 Determine the skeleton of the image shown in the previous question using

(a) the sigma-psi algorithm.

(b) the Zhang-Suen algorithm.

4.11 Implement the NF2 algorithm and run it on the image of the previous questions as 
well as on a binary image of your choice.

4.12 Which of the labeled pixels below are 4-neighbors of the central pixel c? 8-neighbors? 
diagonal neighbors?

a b

c d

e

4.13 Implement the floodfill method of Algorithm 4.5 in your favorite programming lan-
guage. Test your code on the synthetic image of Figure 4.22, along with another image you 
create. Now modify the code to use 8 neighbors.

4.14 Implement the connected components method of Algorithm 4.8. Test your code on 
a synthetic image.

4.15 Compute the Euclidean, Manhattan, and chessboard distances from each pixel in a 
5 3 5 image to the central pixel. What shape do the isocontours take in each case?

4.9 Thin the following binary image using the SEs shown in Figure 4.14 using the two 
variations described in the text.

(a) Apply all 8 SEs as a sequence until convergence.

(b) Apply the 4 edge SEs as a set until convergence, then apply the 4 corner SEs until 
convergence.

4.8 Recall the fruit image at the beginning of the chapter, which is reproduced below for 
convenience. On the two thresholded results shown, identify the name that best describes 
each of the labeled artifacts A–E: lake, bay, channel, cape, isthmus, or island. Which mor-
phological operator (opening or closing) should be applied to the image on the left to remove 
noise? To the image on the right?

Sta
n B

irc
hfi

eld
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4.16 Implement the Manhattan chamfer distance algorithm of Algorithm 4.11. Find an 
interesting binary image, then test your program on it.

4.17 Given the following binary image:

I 5 C0 0 1
1 0 1
0 1 1

S
(a) Compute the zeroth-, first-, and second-order regular moments.

(b) Compute the zeroth-, first-, and second-order central moments.

(c) Compute the covariance matrix, along with its eigenvalues and eigenvectors.

(d) Find the parameters of the best-fitting ellipse.

(e) Compute the eccentricity, orientation, and axis lengths of the best fitting ellipse.

4.18  Define the convex hull, then draw the convex hull for the following shape.

4.19 What is the Euler number of each of the following shapes? Verify your results using 
the Poincaré formula of Equation (4.165)?

4.20 Prove each of the following equations for sets A, B, and C:

(a) A * 1B % C 2 5 1A * B 2  * C

(b) A *̌ 1B % C 2 5 1A *̌ B 2  *̌ C

(c) A % 1B h C 2 5 1A % B 2  h 1A % C 2
(d) A * 1B h C 2 5 1A * B 2  x 1A * C 2
(e) A *̌ 1B h C 2 5 1A *̌ B 2  x 1A *̌ C 2
4.21 Show that each of following expressions is equivalent to the statement,  
“A % B  is the set of points {z} such that for each z there is some a in A and some b in B 
whose sum is z.”

(a) A % B 5 5z : z 5 a 1 b, a [ A, b [ B6
(b) A % B 5 d b[B Ab

(c) A % B 5 d a[A Ba

(d) A % B 5 5z : A x 1 B̌ 2 z 2 06
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4.22 Show that each of the following expressions is equivalent to the statement, “A * B  
is the set of points {z} such that for each z and for all b [ B, the point z 2 b is in A.”

(a) A * B 5 5z : z 2 b [ A, 4b [ B6
(b) A * B 5 5z : z 2 a o B, 4a o A6
(c) A * B 5 5z : z 5 a 1 b, Ea [ A, 4b [ B6
(d) A * B 5 5z : z 5 a 1 b, 4a o A, Eb o B6
(e) A * B 5 t b[B Ab

(f) A * B 5 t
aoA

 qBa

(g)  A * B 5 5z : B̌z 8 A6 
4.23 In robotics and motion planning the Minkowski difference, usually denoted A * B,  
is not related to Minkowski subtraction at all but rather is equivalent to a reflected dilation, 
A %̌ B. Explain why this operation computes the set of locations at which a 2D robot 
A collides with object B assuming translation-only motion of the robot.

4.24 Demonstrate by a simple example that repeated applications of opening or closing 
do nothing.

4.25 Structuring elements are not always 3 3 3 arrays of 1s. Annular opening involves 
dilating an image by a donut-shaped structuring element (a ring of 1s with 0s in the middle). 
If A is an image of scattered tiny blobs, and B is an appropriately sized donut-shaped 
structuring element, then 1A % B 2  x A  removes all isolated regions in the image. Sketch 
a simple example to demonstrate this.

4.26 The floodfill algorithm as presented in Algorithm 4.5 performs essentially a depth-
first search of the space due to its use of a stack data structure. If a queue is used instead, 
then the algorithm will perform a breadth-first search. If the algorithm is modified to look 
not for identically colored pixels, but rather similarly colored pixels, then explain why a 
breadth-first search would be preferable.

4.27 If memory is limited, a fixed-memory floodfill algorithm can be designed using a 
variant of the wall-following algorithm. The boundary of the painted region is traced while 
painting new pixels adjacent to the boundary, until no such pixels exist. Such an algorithm 
is not used in practice because, although it is fairly efficient for nearly convex shapes, much 
time is wasted determining the next pixel to paint when it is applied to complex shapes. 
Nevertheless, write pseudocode for this algorithm.

4.28 Another alternative to the floodfill algorithm presented in this chapter processes scan-
lines rather than individual pixels. All the pixels reachable from the seed horizontally are 
painted, then the scanline above is examined and the reachable pixels painted, and so forth. 
When no more pixels can be painted, the process is repeated for the scanlines below the 
seed pixel. Thus, instead of pushing individual pixels onto the stack, this algorithm pushes 
the start (or end) coordinate of each disjointed set of horizontally connected pixels onto the 
stack. Write pseudocode for this algorithm.

4.29 The classic connected components algorithm of Algorithm 4.8 can easily be modified 
to calculate properties of the regions. Such quantities are updated during the algorithm by 
inserting appropriate calculations to update these quantities each time an output pixel is 
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set, with minimal overhead. Write pseudocode to show how to calculate the area, moments, 
minimum and maximum gray level, and bounding box. Also show how to calculate the Euler 
number, i.e., to count the number of regions and holes.

4.30 Write pseudocode for other variations of the wall-following algorithm:

(a) counterclockwise interior boundary

(b) 8-connected interior boundary

(c) 4-connected exterior boundary

4.31 Manually apply the wall-following algorithm on the image of the letter “D” in 
Figure 4.26.

(a) Use the 4-neighbor version of Algorithm 4.9. Verify that the output is an 8-connected 
boundary.

(b)  Use the modified 8-neighbor version you developed in Problem 4.30b. Verify that the 
output boundary is 4-connected.

4.32 Prove that the Manhattan distance always overestimates Euclidean, while the chess-
board distance always underestimates it: d8 1p, q 2 # dE 1p, q 2 # d4 1p, q 2 . Hint: Note that 
for any two nonnegative numbers a, b $ 0,

1
2

 1 a 1 b 2 #
1"2

 "a2 1 b2 # max 1 a, b 2 # "a2 1 b2 # a 1 b.

4.33 Prove that the chessboard distance is never more than 30% away from the 
Euclidean distance, and the Manhattan distance is never more than 42% away: 
0.7dE 1p, q 2 , d8 1p, q 2 # dE 1p, q 2 # d4 1p, q 2 , 1.42dE 1p, q 2 .
4.34  Apply the double angle formula, tan 2u 5 2 tan u

1 2 tan2 u, to Equation (4.132) to obtain 
equivalent expressions for the orientation of a region (assuming m11 [  0):

tan u 5
m022m20 1 "1m202m02 2 2 1 4m11

2

2m11
5

2m11

m202m02 1 "1m202m02 2 2 1 4m11
2

.

4.35 Show that the curve ax2 1 2bxy 1 cy2 5 1 is an ellipse if and only if ac . b2. Hint: 
Solve the equation for y, then examine what happens when x goes to infinity.

4.36 Prove that the orientation defined in Equation (4.132) describes the line about which the 
moment of inertia is minimized. (Hint: The moment of inertia of an object with mass density 

function f 1 x, y 2  about a line with angle u is given by b 1 x sin u 2 y cos u 2 2
 
 f 1 x,y 2 . 

To minimize, differentiate and set to zero.)

4.37 Prove that the orientation defined in Equation (4.132) is the angle of the eigenvector 
corresponding to the largest eigenvalue of the covariance matrix. (Hint: Solve the system 
of equations 1C 2 lI 2 v 5 0 for v1 and v2. Then use the definition v1 5 3cos u sin u 4T 
and the double angle formula for tangent to recognize that tan 2u 5

2v11v21

v11
2 2 v21

2 , where 
v1 5 3v11 v21 4T.)

4.38 Prove that the orientation defined in Equation (4.132) describes the line that mini-
mizes the sum of the squares of the perpendicular distances between the coordinates of the 
pixels in the region and the line.
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4.39 Given a perfect square rotated at some arbitrary angle, what does Equation (4.132) 
yield for the orientation? Explain.

4.40 Design a vision system to detect a binary template in an image. Assume that the tem-
plate is at the same scale as the image, so that only translation needs to be taken into account. 
Use the chamfer distance to efficiently compute a matching score associated with each 
location in the image. Write code to implement this procedure, and display the probability 
map showing the matching score for each location in the image (ignoring the borders). 
Also display a template-sized rectangle around the peak in the map.

4.41 Identify several different types of small, readily available objects, and gather several 
instances of each. Examples might be coins, buttons, pencils, keys, and so forth. Place the 
objects on a single-colored table or floor, and take a picture that looks down on the scene. 
Write code to threshold the image, clean up the noise, label the components, compute vari-
ous properties of the foreground regions, and automatically classify the regions according 
to the appropriate category. Now rearrange the objects, take another picture, and run the 
same code. Note your observations on whether the algorithm performed robustly on the 
new image.
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In Chapter 3 we explored a variety of simple point transformations in which each output pixel is a function of a single 
input pixel. An even more powerful class of transformations, known as spatial-domain filtering, occurs when each 
output pixel is a function of the input pixel and its neighbors. The two most common uses of spatial-domain filter-

ing are noise removal and edge detection, which are accomplished using lowpass and highpass filters, respectively. In 
this chapter we study both types of filters in the spatial domain, reserving frequency analysis of such filters to a later 
chapter. Because of the importance of the Gaussian (bell-curve) function, we spent a great deal of effort describing the 
creation, analysis, and use of Gaussian convolution kernels and their derivatives.

C H A P T E R 5
Spatial-Domain Filtering

5.1 Convolution
The most common way to filter an image in the spatial domain is convolution. We begin 
with the 1D case, then move to the 2D case, followed by a discussion about how convolution 
relates to other types of filters and operators.

5.1.1 1D Convolution
Let us begin with a simple example. Suppose we are given the 1D signal

 31 5 6 7 4
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and want to compute the average of each sample and its two neighbors. One way to view 
such a computation is to imagine another signal, called a kernel, consisting of three 1s that 
is slid across the original signal:

# 1 5 6 7 #
1 1 1

2
2

   

# 1 5 6 7 #
1 1 1

2
4

   

# 1 5 6 7 #
1 1 1

2
6

   

# 1 5 6 7 #
1 1 1

2
4.33

At each position, the values that are aligned vertically are multiplied by each other, then the 
products are summed and divided by 3. The output is therefore

 32 4 6 4.33 4
because 1 1 1 5 2 /3 5 2, 1 1 1 5 1 6 2 /3 5 4, and so on. Notice that when the kernel is 
near the beginning or end of the signal, the computation involves out-of-bounds pixels 
whose values are unknown (indicated by the dots). Some assumption must be made about 
these out-of-bounds samples in order to complete the computation. Any of the approaches 
discussed earlier† are applicable, but here we assume the values are 0 for simplicity.

The preceding example illustrates the important concept of convolution. More precisely, 
the discrete convolution of a 1D signal f with a kernel g is defined as‡

 f r 1 x 2 5 f 1 x 2  ~ g 1 x 2 ; a`
i52`

 f 1 x 2 i 2 g 1 i 2  (5.1)

  5 a
w2w~21

i52w~

 f 1 x 2 i 2 g 1 i 2  (5.2)

where we use the prime 1 r 2  to denote the output (so f r should not be confused with the 
derivative), w is the width (or, equivalently, the length) of the kernel, and the second equality 
assumes that g 1 x 2 5 0 for all x , 2w~  or x $ w 2 w~ . The origin w~  of the kernel indicates 
the location where the result is stored, which is usually defined to be the index nearest the 
center. That is, w~ ; :12 1w 2 1 2 ;, so that w~ 5 0 if the width is 1 or 2, w~ 5 1 if the width is 
3 or 4, and so on. For example, if we use underscore to indicate the origin,

  w 5 1  w~ 5 0    kernel: 31 4
  w 5 2  w~ 5 0    kernel: 31 1 4
  w 5 3  w~ 5 1    kernel: 31 1 1 4
  w 5 4  w~ 5 1    kernel: 31 1 1 1 4
although we oftentimes omit the underscore when the central element of the kernel is the 
origin, so 31 1 1 4 means 31 1 1 4. To ensure that the kernel has an unambiguous 
center, kernels are almost always created with an odd number of elements, in which case, 
w~  is referred to as the half-width (because w 5 2w~ 1 1, so that w~ 5 1

2 1w 2 1 2  without 
any need for performing the floor operation), and the equation above simplifies to

 f r 1 x 2 5 f 1 x 2  ~ g 1 x 2 5 a
w~

i52w~

f 1 x 2 i 2 g 1 i 2  (5.3)

† Section 4.1.3 (p. 138)
‡ Although convolution is often denoted by the symbol *, we use the notation ~ to avoid confusion with multipli-
cation and complex conjugate.
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Convolution is closely related to cross-correlation, which is defined as

 fcorrr 1 x 2 5 f 1 x 2 ~̌ g 1 x 2 ; a`
i52`

f  
 1 x 1 i 2 g 1 i 2 5 a
w2w~21

i52w~

f  
 1 x 1 i 2 g 1 i 2  (5.4)

where the superscript asterisk (*) indicates the complex conjugate. By comparing this 
equation with Equation (5.1), we see that if the signal is real, so that f 5 f  
, then the only 
difference between the two operations is that convolution reflects (flips) the kernel, whereas 
cross-correlation does not. Most of the kernels we will encounter are either symmetric, 
g 1 k 2 5 g 12k 2 , in which case f r 1 x 2 5 fcorrr 1 x 2 , or antisymmetric, g 1 k 2 5 2g 12k 2 , in 
which case f r 1 x 2 5 2fcorrr 1 x 2 . Therefore, it is usually okay to neglect to flip the kernel, as 
long as we remember to flip the sign of the result when the kernel is antisymmetric. Similarly, 
it is easy to see that convolution is always commutative, that is, f ~ g 5 g ~ f, whereas 
cross-correlation is commutative only when the signal is real and the kernel is symmetric.

A discrete signal is stored in memory as a 1D array of values with non-negative indices. To 
handle this detail, the kernel is typically shifted by w~ , defining g 3x 4 ; g 1 x 2 w~ 2  as the 1D 
array that holds the samples of the function g, where g[x] is valid for x 5 0, 1, c, w 2 1, 
in which case convolution can be rewritten as

 f r 1 x 2 5   f 1 x 2  ~ g 1 x 2 5 a
w21

i50
  f  3x 1 w~ 2 i 4 #  g 3i 4 (5.5)

For example, if g 1 # 2  is a three-element kernel defined for x [ 521, 0, 16, the array g 3 # 4 
contains values for i [ 50, 1, 26 such that g 30 4 5 g 121 2 , g 31 4 5 g 1 0 2 , and g 32 4 5 g 1 1 2 . 
Conveniently, note that w~ , which in this case is 1, is always the zero-based index of the 
central element of the kernel.

With this additional detail in mind, the pseudocode for 1D convolution is shown in 
Algorithm 5.1. As we saw in the preceding example, this code illustrates that convolution is a 
shift-multiply-add operation: viewing the signal f as a 1D image, the kernel is shifted (or slid) 
across the image, and at each pixel the elements of the kernel are individually multiplied 
(indicated by the asterisk) by the values in the image, followed by a summation of the resulting 
products. Brackets are used inside the pseudocode to emphasize that g[x] is merely accessing an 
element of the discrete array. While f r is actually defined for n 1 w 2 1 values according to 
Equation (5.5), where n is the length of the original signal, for simplicity we adopt the common 
image processing practice of setting the size of the output to be the same as that of the input. 
Also, near the two ends of the signal, the computation uses indices that exceed the size of f, as 
mentioned earlier; such out-of-bounds details have been omitted to avoid cluttering the code.

ALGORITHM 5.1 Convolve a 1D signal/image with a 1D kernel

Convolve1D( f, g)

Input: 1D signal f with length n, 1D kernel g with length w
Output: the convolution of f and g

1 w~ d : 1w 2 1 2 /2;
2 for x d 0 to n 2 1 do
3    val d 0
4    for i d 0 to w 2 1 do
5      val d val 1 g 3i 4 
 f 3x 1 w~ 2 i 4
6    f r 3x 4 d val
7 return f r
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The relationship between the input f and the output f r depends upon the type of the 
kernel g. Two types of kernels are common. Smoothing kernels perform an averaging of 
the values in a local neighborhood and therefore reduce the effects of noise. Such kernels are 
often used as the first stage of preprocessing an image that has been corrupted by noise, in 
order to restore the original image. Differentiating kernels, on the other hand, accentuate 
the places where the signal is changing rapidly in value and are therefore used to extract 
useful information from images, such as the boundaries of objects, for purposes such as 
object detection. Smoothing kernels are lowpass filters, whereas differentiating kernels 
are highpass filters. To avoid changing the overall gray level of the output, smoothing 
kernels have the property that all the elements of the kernel sum to one, a i

 g 1 i 2 5 1, 
whereas differentiating kernels have the property that all the elements of the kernel sum to 
zero, a i

 g 1 i 2 5 0, since the derivative of a constant image is zero. Smoothing kernels are 
usually symmetric, whereas differentiating kernels are either symmetric or antisymmetric 
depending on whether the order of differentiation is even or odd, respectively. In the next 
few sections we will consider these two types of kernels in more detail.

 Suppose we have an input signal f 5 38 24 48 32 16 4 with five elements, and a kernel 
g 5 1

4 31 2 1 4 with three elements. That is, n 5 5 and w 5 3. What is f ~ g, if we use 
replication to handle out-of-bounds values?

Solution As shown in Figure 5.1, first we extend the signal past the borders using the method of 
replication (which, in the case of extending by just one sample, is equivalent to reflection). 
Then we slide the kernel across the signal and record, at each pixel, the sum of the element-
wise multiplications. The output signal f r 5 312 26 38 32 20 4 is the same width as 
the input. It is important to notice that convolution must never be done in place; otherwise, 
if f and f r are stored in the same place in memory, then the values computed for f r will 
corrupt those being read from f.

EXAMPLE 5.1

Figure 5.1 An example of 
1D convolution.

48

Image Kernel

32 16 16248 1/41/21/48

38 32 202612=

1/41/21/4

1/41/21/4

1/2 1/41/4

1/4 1/2 1/4

1/4 1/2 1/4
32/4 + 16/2 + 16/4 = 20

8/4 + 8/2 + 24/4 = 12

8/4 + 24/2 + 48/4 = 26

24/4 + 48/2 +32/4 = 38

48/4 + 32/2 + 16/4 = 32
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5.1.2 Convolution as Matrix Multiplication
Sometimes it is convenient to view discrete convolution as the multiplication of a matrix 
by a vector to produce another vector: the input vector is formed from the original signal, 
the matrix is formed from the convolution kernel, and the output vector is the result of the 
convolution. For example, consider the 1D input signal f 5 38 24 48 32 16 4 and 
kernel g 5 1

4 31 2 1 4 that we saw earlier. It is easy to see that the following holds:

 

E12
26
38
32
20

U
()*

 

5

 

 

1
4

 E1 2 1 0 0 0 0
0 1 2 1 0 0 0
0 0 1 2 1 0 0
0 0 0 1 2 1 0
0 0 0 0 1 2 1

U 

('''''')''''''*
 

 

G 8
8
24
48
32
16
16

W
()*

 

  

(5.6)

where the left vector is simply the output f r 5 f ~ g shaped like a traditional column-
wise vector, the right vector is the input f after extending the signal by replication, and the 
matrix is constructed by sliding the convolution kernel g horizontally by one position for 
each successive row. More generally, if the input signal f has n elements and the convolu-
tion kernel g has w elements, then convolution can always be represented as the following 
matrix multiplication:

 f5n316r 5 G5n3nr6 
f5nr316 (5.7)

where G is the convolution matrix constructed from the kernel g, f is the extended input 
signal stored in vector format, f9 is the output as a vector, and n r 5 n 1 w 2 1. Typically 
n W w, so n < n r. (If we ignore the border effects and set n 5 n r, then the convolution 
matrix is a Toeplitz matrix, meaning that every diagonal descending from the top left to the 
bottom right contains a constant value.)

5.1.3 Convolution as Fourier Multiplication
It is also worth noting that convolution in the spatial domain is equivalent to multiplication 
in the frequency domain. That is, if f r 1 x 2 5 f 1 x 2  ~ g 1 x 2  is the convolution of two signals 
f and g, if F 5   f  6 and F 5g6 are the Fourier transforms of the two signals, respectively, and 
if F 5   f r6 is the Fourier transform of the output, then the latter is the multiplication of the 
former two: F 5   f r6 5 F 5   f  6 #  F 5  g6. An alternate way to compute the convolution of two 
signals, then, is the compute the inverse Fourier transform of the multiplication of the two 
Fourier transforms:

 f r 1 x 2 5 f 1 x 2  ~ g 1 x 2 5 F 
215F 5 f 1 x 2 6 #  F 5g 1 x 2 66 (5.8)

Two important points must be noted, however. Since multiplication is less expensive than 
convolution, this trick can result in significant computational savings when the convolu-
tion kernel is large, because the overhead of computing the forward and inverse Fourier 
transforms is less than the amount of computation saved by not having to slide the kernel. 
Therefore, this trick is widely used in signal processing, where convolution kernels can be 
large, and where frequency-domain filters are commonly inserted into the pipeline. In image 
processing, however, convolution kernels tend to have only a few elements, so that a direct 
implementation of convolution is usually faster. A second point is that the equation above 

f '
        

convolution matrix
     f

         
G
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220 Chapter 5 • Spatial-Domain Filtering

is true only in the case of circular convolution, that is convolution in which the signals are 
considered to be periodic. As a result, zero padding is necessary if linear convolution is 
desired. We will consider frequency-domain processing in more detail in the next chapter.

5.1.4 Linear Versus Nonlinear Systems
Before continuing, let us briefly consider filtering in general, to better appreciate how con-
volution fits into the larger context. In signal and image processing, as well as in related 
fields, a system is an operator that produces an output from an input. A system is said to be 
linear if both the scaling and additivity properties hold for all possible inputs:

  L 1a f 2 5 aL 1  f 2            1 scaling 2  (5.9)

  L 1  f1 1 f2 2 5 L 1
 
f1 2 1 L 1

 
f2 2    1 additivity 2  (5.10)

where L represents the system, so that L 1 f 2  is the output of applying the system to the 
input f, and a is a scalar. According to the scaling property, a scaled version of the input 
causes the output to be scaled by the same amount, while the additivity property says that 
the output resulting from the sum of two inputs is simply the sum of the two individual 
outputs. Together, these properties are referred to as superposition:

 L 1a1  
f1 1 a2   

f2 2 5 a1L 1  
f1 2 1 a2L 1  

f2 2   1 superposition 2  (5.11)

The system L is linear if and only if this equation holds for all inputs and all scalars. If a 
system is not linear, then it is said to be nonlinear.

Another important property involves the response of the system to a shifted version of the 
input. A system is called shift-invariant if a shift in the input causes a shift in the output by 
the same amount. More precisely, if f r 1 x 2 5 L 1  f 1 x 2 2  is the output of applying the system 
to the input signal f(x), then the system is shift-invariant if and only if

 f r 1 x 2 x0 2 5 L 1
  
f 1 x 2 x0 2 2  (5.12)

Linear shift-invariant systems,† i.e., systems that are both linear and shift-invariant, are 
particularly important due to their convenient mathematical properties. Such systems are 
perfectly described by convolution with a (possibly infinite) kernel:

 f r 1 x 2 5 f 1 x 2  ~ g 1 x 2 5 a`
i52`

f 1 x 2 i 2 g 1 i 2  (5.13)

A discrete linear shift-invariant system is perfectly described by its impulse response, 
which is defined as the output L 1 d 2  that results from applying the system to the function 
with a value of 1 at the origin and 0 everywhere else:

 d 1 x 2 5 b1 if x 5 0
0 otherwise

 (5.14)

also known as the Kronecker delta function. By setting  f to d in Equation (5.13), it should 
be easy to see that the impulse response of a linear shift-invariant system described by con-
volution is simply its convolution kernel.

Depending upon the impulse response, there are two types of linear shift-invariant 
systems. A finite impulse response (FIR) filter is a system for which the impulse 

† Mathematically, linear shift-invariant systems are identical to the more well-known linear time-invariant (LTI) 
systems from signal processing. The difference in nomenclature arises because with images the independent vari-
able is the pixel location rather than time.
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5.1.5 2D Convolution
Although 1D signals are easier to analyze, our goal is to perform filtering not on a 1D signal 
but rather on a 2D image. Thankfully, the extension of convolution to two dimensions is 
straightforward:

 I r 1 x, y 2 5 I 1 x, y 2  ~ G 1 x, y 2 5 a
w21

i50
a
h21

j50

I 1 x 1 w~ 2 i, y 1 h~ 2 j 2G 1 i, j 2  (5.15)

where w and h are the width and height of the kernel, respectively; h~ ; :12 1 h 2 1 2 ; is the 
half-height of the kernel, just like w~  is the half-width; and the kernel G is assumed to be 
shifted by w~  horizontally and h~ vertically, so that all indices are nonnegative. To convolve 
an image with a 2D kernel, simply flip the kernel about both the horizontal and vertical 
axes, then slide the kernel along the image, computing the sum of the elementwise multi-
plication at each pixel between the kernel and the input image, as shown in Algorithm 5.2.

response is finite in duration. FIR filters are perfectly described by convolution with a 
finite-length kernel. On the other hand, if the response continues forever, then we have an 
infinite impulse response (IIR) filter. Due to the impossibility of constructing a kernel 
with infinite duration, IIR filters are implemented using feedback from earlier computations. 
That is, unlike FIR filters, for which convolution must not be performed in place, IIR filters 
do perform their computation in place by storing the result into the same pixels that will be 
read in the next iteration, so that the output of the system is fed back as part of the input to 
the system. In practice, most filters are either linear FIR filters (and thus implemented using 
convolution) or nonlinear filters, although IIR filters can be used to perform fast filtering 
with large kernels. To develop some concrete appreciation for the differences between these 
types of filters, consider the following example.

EXAMPLE 5.2 Are the following systems linear or nonlinear, shift varying or shift-invariant, and FIR or IIR?

 1. f r 1 x 2 5 L 1  f 1 x 2 2 5 1  f 1 x 2 2 2

 2. f r 1 x 2 5 L 1  f 1 x 2 2 5 1
4 f 1 x 2 1 2 1 1

2 f 1 x 2 1 1
4 f 1 x 1 1 2

 3. f r 1 x 2 5 L 1  f 1 x 2 2 5 f r 1 x 2 1 2 1 f 1 x 2
Solution The three systems are analyzed as follows:

 1. This system squares the input. To see that this is nonlinear, notice that 1a f 1 x 2 2 2 2 a2 1  f 1 x 2 2 2 in general, thus violating the scaling principle. 
Nevertheless, it is shift-invariant, since the output at any given position is only 
dependent upon the input at that position. Since the concept of an impulse response 
is not meaningful in the case of nonlinear filters, we do not usually characterize 
them as being either FIR or IIR.

 2. This system is just a convolution of the input f with the kernel g 5 1
4 31 2 1 4. 

Therefore, it is a linear shift-invariant system that is also an FIR filter.

 3. This system is known as an accumulator because it sums all the values of f up to the 
present location: f r 1 x 2 5 a i  5  2`

x
 g 1 x 2 i 2  f 1 i 2 , where g(x) is 1 for all x $ 0 

and 0 otherwise (the unit step function). The impulse response of this system is the 
unit step function, which extends forever. Therefore, this is a linear shift-invariant 
system that is also an IIR filter.
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5.2 Smoothing by Convolving with a Gaussian
The simplest smoothing kernel is the box filter, in which every element of the kernel 
has the same value. Since the elements must sum to one, the elements of a box filter of 
length w each have the value 1/w. Some examples of box filters are 1

3 31 1 1 4, and 
1
5 31 1 1 1 1 4. In practice, kernels are usually created to have an odd length to avoid 
undesired shifting of the output.

5.2.1 Gaussian Kernels
Convolving a box filter with itself yields an approximation to a Gaussian kernel. The 
continuous 1D Gaussian function is the familiar “bell curve”, defined as

 gausss 2 1 x 2 ;
1"2ps 

2
 exp ¢2

x 
2

2s 
2 ≤  (5.16)

where s2 is the variance, and the normalization factor 1/"2ps2 ensures that 
e

`

2`
 gausss2 1 x 2  dx 5 1. The 1D and 2D Gaussians are shown in Figure 5.3. Earlier we 

explained that if a signal of length n is convolved with a kernel of length w, the length of 
the result is n 1 w 2 1. While we often choose to retain only the n values, sometimes it is 
necessary to retain all the values. For example, the simplest nontrivial box filter is 12 31 1 4,  
which, when convolved with itself, leads to

 
1
2

 31 1 4 ~ 
1
2

 31 1 4 5
1
4

 31 2 1 4 (5.17)

which is a kernel with w 5 3, w~ 5 1, g 30 4 5 1
4, g 31 4 5 1

2, and g 32 4 5 1
4. This discrete kernel 

approximates a Gaussian with s2 5 1
2. An additional iteration yields

 
1
4

 31 2 1 4 ~ 
1
4

 31 2 1 4 5
1
16

 31 4 6 4 1 4 (5.18)

ALGORITHM 5.2 Convolve an image with a 2D kernel

Convolve2D(I, G)

Input: 2D image I5width3height6, 2D kernel G5w3h6
Output: the 2D convolution of I and G

 1 h~ d : 1 h 2 1 2 /2;
 2 w~ d : 1w 2 1 2 /2;
 3 for y d 0 to height 2 1 do
 4    for x d 0 width 2 1 do
 5      val d 0
 6      for j d 0 to h 2 1 do
 7        for i d 0 to w 2 1 do
 8          val d1 G 1 i, j 2  
 I 1 x 1 w~ 2 i, y 1 h~ 2 j 2
 9      I r 1 x, y 2 d val
10 return I r
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5.2 Smoothing by Convolving with a Gaussian 223

which approximates a Gaussian with s2 5 1. Ignoring the normalization factor, these 
Gaussians can easily be remembered as the odd rows of the binomial triangle, also known 
as Pascal’s triangle,† with the 1 2k 1 1 2 th row approximating a Gaussian with s2 5 k/2, as 
shown in Figure 5.2. Similarly, the 1 k 1 1 2 th row of the trinomial triangle approximates a 
Gaussian with s2 5 2k

3 . For example, 1
3 31 1 1 4  approximates a Gaussian with 

s2 5 2
3, while

 
1
3

 31 1 1 4 ~ 
1
3

 31 1 1 4 5
1
9

 31 2 3 2 1 4 (5.19)

approximates a Gaussian with s2 5 4
3.

5.2.2 Computing the Variance of a Smoothing Kernel
To compute the variance of an arbitrary smoothing kernel g, one might be tempted to apply 
the formulas

  m 5
1
w a

i

g 1 i 2           1wrong 2  (5.20)

  s2 5
1
w a

i

1 g 1 i 2 2 m 2 2   1wrong 2  (5.21)

† Blaise Pascal (1623–1662) was a French mathematician who developed probability theory and proved that light 
travels through a vacuum; he also invented the mechanical calculator, hydraulic press, and syringe; and he made 
important contributions to Christian philosophy, most notably the famous Pascal’s Wager.

Figure 5.2 Binomial (left) and trinomial (right) 
triangles for constructing Gaussian kernels. The 12k 1 1 2 th row of the binomial triangle approximates 
a Gaussian with s2 5 k/2, while the 1 k 1 1 2 th row 
of the trinomial triangle approximates a Gaussian with 
s2 5 2k

3 , where k is a non-negative integer.

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1

1
1 1 1

1 2 3 2 1
1 3 6 7 6 3 1

1 4 10 16 19 16 10 4 1
Binomial triangle Trinomial triangle

Figure 5.3 A Gaussian is a bell curve. From left to right: The 2D isotropic Gaussian viewed as an image where the gray level of each 
pixel is proportional to the value of the Gaussian function at that point, the 2D isotropic Gaussian viewed as a surface in 3D, and the 1D 
Gaussian function (or, equivalently, a slice through the 2D Gaussian function, obtained by intersecting it with a vertical plane).
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but these compute the mean and variance of the values of the kernel, rather than the mean 
and variance of the kernel along the domain. The correct way is to calculate the mean and 
variance of the coordinates of the elements of the kernel, with the values serving as weights:

  m 5
a i

ig 1 i 2
a i

 g 1 i 2             1 correct 2  (5.22)

  s2 5
a i

1 i 2 m 2 2g 1 i 2
a i 

g 1 i 2    1 correct 2  (5.23)

As an example, the mean and variance of g 5 1
4 31 2 1 4 are

  m 5
1
4

 1 0 #  1 1 1 #  2 1 2 #  1 2 5 1  (5.24)

  s2 5
1
4

 1 1 0 2 1 2 2 #  1 1 1 1 2 1 2 2 #  2 1 1 2 2 1 2 2 #  1 2 5
1
2

 (5.25)

As mentioned earlier, with an odd-length kernel the center of the Gaussian is equal to the 
half-width, or m 5 w~ .

5.2.3 Separability
Given two 1D kernels, a 2D kernel can be constructed by convolving them with each other, 
with one oriented vertically and the other oriented horizontally. For example,

 
1
3

 C1
1
1
S  ~ 

1
3

 31 1 1 4 5
1
9

 C1 1 1
1 1 1
1 1 1

S  (5.26)

Since convolution itself is commutative, we could also write this by reversing the order of 
the kernels, but writing the vertical kernel first provides a helpful visual aid, because the 
result is the same as the matrix multiplication of the two vectors (i.e., the outer product of 
the two vectors).

When a 2D kernel can be decomposed into the convolution of two 1D kernels, we say 
that the kernel is separable. Every 2D axis-aligned Gaussian kernel is separable, such as 
the 2D isotropic Gaussian:

 Gausss2 1 x, y 2 ;
1

2ps 
2 exp ¢2

x 
2 1 y 

2

2s 
2 ≤  (5.27)

where the normalization 1/2ps2 is again designed to ensure that eeGausss2 1 x, y 2  dx dy 5 1. 
To show the separability of this function, apply the law of exponents to the convolution of 
an arbitrary 2D signal I(x,y) and a 2D isotropic Gaussian, ignoring the normalization factor 
for simplicity:

 I 1 x, y 2  ~ Gausss2 1 x, y 2 5 a
i
a

j

I 1 x 2 i, y 2 j 2  exp ¢2 1 i2 1 j2 2
2s2 ≤  (5.28)

  
5 a

i

 

Ba
j

I 1 x 2 i,y 2 j 2  exp ¢2j2

2s2 ≤ R
('''''')''''''*

I1x,y2 ~ gausss21y2  
exp ¢2i2

2s2 ≤
 

 (5.29)
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5.2 Smoothing by Convolving with a Gaussian 225

  5 1 I 1 x, y 2  ~ gausss2 1 y 2 2  ~ gausss2 1 x 2  (5.30)

  5 1 I 1 x, y 2  ~ gausss2 1 x 2 2  ~ gausss2 1 y 2  (5.31)

where one kernel is oriented vertically while the other is oriented horizontally. Thus we 
see that convolving I with Gausss2 1 x, y 2  is the same as convolving I with a vertical 1D 
Gaussian kernel gausss2 1 y 2 , followed by a horizontal 1D Gaussian kernel gausss2 1 x 2 ; or 
vice versa, since the order does not matter. As an example,

 I 1 x, y 2  ~ £ 1
16

 C1 2 1
2 4 2
1 2 1

S≥ 5 £I 1 x, y 2  ~ 
1
4

 C1
2
1
S≥ ~ a1

4
 31 2 1 4b  (5.32)

because

 
1
4

 C1
2
1
S  ~ 

1
4

 31 2 1 4 5
1
16

 C1 2 1
2 4 2
1 2 1

S  (5.33)

and because convolution is associative: 1 f ~ g1 2  ~ g2 5 f ~ 1 g1 ~ g2 2 . A discrete 2D 
kernel is separable if and only if all of its rows and columns are linearly dependent (i.e., 
scalar multiples of one another), meaning that the kernel (viewed as a matrix) is rank 1.

Another way to derive the separability of the Gaussian is to notice from Equations (5.16) 
and (5.27) that the 2D Gaussian can also be viewed as simply the product of two 1D Gaussians:

  Gausss2 1 x, y 2 ;
1

2ps 
2 exp ¢2

x 
2 1 y 

2

2s 
2 ≤  (5.34)

  5
1"2ps 

2
 exp ¢2

x 
2

2s2 ≤  
#

 

1"2ps 
2
 exp ¢2

y 
2

2s 
2 ≤  (5.35)

  5 gausss2 1 x 2 #gausss2 1 y 2  (5.36)

This equation is true for any point (x,y), which means that if we let g s2 be the 1D Gaussian 
kernel represented as a (vertically oriented) vector, then the 2D Gaussian is just the outer 
product of this vector with itself: Gausss2 1 x, y 2 5 gs2

 
gs2

T . In fact, this observation holds 
for any separable kernel, because the convolution of two 1D kernels in orthogonal directions 
is equivalent to the outer product of the two kernels when they are viewed as vectors. For 
example, the outer product ggT 5 31 2 1 4T 31 2 1 4 is given by

 C1
2
1
S 31 2 1 4 5 C1 2 1

2 4 2
1 2 1

S  (5.37)

which (ignoring the normalization factor) is equivalent to Equation (5.33).
Separable convolution is shown in Algorithm 5.3 using two 1D kernels, one for the hori-

zontal and one for the vertical operation. For simplicity this code assumes that the length of 
both kernels is the same, which is nearly always true in practice, although this assumption is 
not important. Note that convolution requires a temporary image to store the result of the first 
convolution, since convolution cannot be done in place. Note also that it is critical to con-
volve every row (that is, including the first and last) of the image for a horizontal kernel, and 
every column of the image for a vertical kernel. This is because the second convolution uses 
values computed in the first convolution. With a little extra work to handle out-of-bounds 
pixels, the values for all the pixels in the output image can be computed. If the 2D kernel 
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is of size w 3 w, then the amount of computation in separable convolution is O(2w) rather 
than O 1w2 2 , which can be a significant savings in computation over the full 2D convolution.

Just as 1D convolution can be viewed as matrix multiplication, so can 2D convolution. 
One way to achieve this is to stack all the pixels of the image row-by-row into a single 
vector, then form the convolution matrix G by stacking successively shifted versions of the 
different rows of the kernel to form an equation similar to Equation (5.7). However, when 
the kernel is separable there is a more compact, elegant notation:

 I r 5 Gh 
IGv

T (5.38)

where Gh is the convolution matrix constructed from the 1D kernel gh, Gv is the convolu-
tion matrix constructed from the 1D kernel gv, the 2D convolution kernel is gvgh

T, and I is 
the image I viewed as a matrix and extended appropriately to handle border issues. To see 
this result, notice from Equation (5.7) that Itmp ; GvIT convolves along the columns of I, 
and applying the convolution again to the transposed result convolves along the rows of I, 
yielding the final 2D convolution: I r 5 Gh 1 Itmp 2T 5 GhIGv

T.

5.2.4 Constructing Gaussian Kernels
To construct a 1D Gaussian kernel with an arbitrary standard deviation s, simply sample 
the continuous zero-mean Gaussian function gausss2 1 x 2 ; 1"2ps2 exp A2x 

2

2s2 B and normalize 

by dividing each element by the sum of all the elements, a i
 gausss2 3i 4, as shown in 

Algorithm 5.4. This sum is the zeroth moment of the signal. The property a i
 gausss2 3i 4 5 1 

is important to ensure that the overall brightness of the image does not change as a result 
of the smoothing. Another way to look at this is that the smoothing of a constant image 
should not change the image. Note that the continuous normalization factor 1"2ps2, which 

ALGORITHM 5.3 Convolve an image with a separable 2D kernel

ConvolveSeparable 1 I, gh, gv 2
Input: 2D image I5width3height6, 1D kernels gh and gv each of length w
Output: the 2D convolution of I and gv ~ gh

 1 ➤ convolve horizontal
 2 for y d 0 to height 2 1 do
 3    for x d w~  to width 2 1 2 w~  do
 4      val d 0
 5      for i d 0 to w 2 1 do
 6        val d val 1 gh 3i 4 
 I 1 x 1 w~ 2 i, y 2
 7      Itmp 1 x, y 2 d val
 8 ➤ convolve vertical
 9 for y d w~  to height 2 1 2 w~  do
10    for x d 0 to width 2 1 do
11      val d 0
12      for i d 0 to w 2 1 do
13        val d val 1 gv 3i 4 
 Itmp 1 x, y 1 w~ 2 i 2
14      I r 1 x, y 2 d val
15 return I r
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ensures e
`

2`
 gausss2 1 x 2  dx 5 1 in the continuous domain, can be ignored since it disap-

pears anyway when the discrete normalization step is performed. The discrete normalization 
step, however, cannot be ignored because the continuous normalization factor alone will not 
ensure that a i

 gausss2 3i 4 5 1, due to discretization effects. Also note in the pseudocode 
that we must subtract w~  from the index while constructing the kernel, since gausss2 1 x 2  has 
zero mean, but our discrete Gaussian kernel gausss2 3i 4 is centered around i 5 w~ .

Given a desired standard deviation, a reasonable approach to choosing an appropriate 
kernel half-width is the following:

 w~ < 2.5s 2 0.5 (5.39)

where the approximation indicates that a rounding of the value on the right-hand side 
must occur, since w~  is an integer. Line 1 of Algorithm 5.4 uses this expression, shown 
as pseudocode in Algorithm 5.5. To derive this expression, note that the central sample 
gauss 3w~ 4 in the discrete Gaussian approximates the region between x 5 20.5 and x 5 0.5, 
as shown in Figure 5.4. Similarly, the adjacent sample gauss 3w~ 1 1 4 approximates the 
region between x 5 0.5 and x 5 1.5, and an arbitrary sample gauss 3w~ 1 k 4 approximates 
the region between x 5 k 2 0.5 and x 5 k 1 0.5. Since w 2 1 5 2w~ 5 w~ 1 w~ , the final 
sample gauss 3w 2 1 4 approximates the region between x 5 w~ 2 0.5 and x 5 w~ 1 0.5. 
Therefore, a kernel of width w approximately captures the area

 2
w~10.5

2w~20.5
 gauss 1 x 2  dx

under the original continuous Gaussian function. You may know from the defini-
tion of a Gaussian that 68.27% of the area under the Gaussian is captured in the region 
s # x # s, 95.45% in the region 2s # x # 2s, as summarized in Table 5.1. By setting 
w~ 1 0.5 5 2.5s, 98.76% of the area under the Gaussian is captured, to ensure that the 

ALGORITHM 5.4 Create a 1D Gaussian kernel

CreateGaussianKernel 1s 2
Input: floating-point standard deviation s
Output: 1D Gaussian kernel (as an array with w elements)

1 w~ d  GetKernelHalfWidth 1s 2  ➤ Determine a reasonable halfwidth w~, using, e.g., Algorithm 5.5.
2 w d 2w~ 1 1 ➤ Compute the (odd) width w from the halfwidth w~.
3 norm d 0 ➤ Initialize the normalization factor to zero.
4 for i d 0 to w 2 1 do ➤ Construct the w-element kernel by sampling
5    gauss 3i 4 d exp 12 1 i 2 w~ 2  
 1 i 2 w~ 2 / 1 2 
 s 
 s 2 2  the continuous Gaussian function,
6    norm d1 gauss 3i 4 while keeping track of the normalization factor.
7 for i d 0 to w 2 1 do ➤ Apply the normalization factor

8    gauss 3i 4 d /  norm to ensure that aw21

i50
gauss 3 i 4 5 0.

9 return gauss

ALGORITHM 5.5 Compute the appropriate halfwidth of a 1D Gaussian kernel with a given standard deviation

GetKernelHalfWidth 1s 2
1 return Round 1 2.5s 2 0.5 2

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



228 Chapter 5 • Spatial-Domain Filtering

domain area under curve32s # 3 # s 4 68.27%322s # 3 # 2s 4 95.45%322.5s # 3 # 2.5s 4 98.76%323s # 3 # 3s 4 99.73%

TABLE 5.1 The area under the Gaussian curve within 
intervals defined by different factors of the standard 
deviation. This is sometimes called the 68 2 95 2 99.7 rule.

kernel well approximates a Gaussian. However, if a less accurate approximation is accept-
able, then the 2.5 factor multiplying the standard deviation can be reduced accordingly.

If gausss2 refers to a 1D Gaussian kernel with variance s2, then some common 1D 
Gaussian kernels are as follows:

  gauss0.25 5
1
8

 31 6 1 4  (5.40)

  gauss0.333 5
1
6

 31 4 1 4  (5.41)

  gauss0.375 5
1
16

 33 10 3 4  (5.42)

  gauss0.5 5
1
4

 31 2 1 4  (5.43)

  gauss1.0 5
1
16

 31 4 6 4 1 4  (5.44)

Note that Equation (5.39) returns the correct lengths for these variances, which are computed in 
the same manner described before. However, the variance of the discrete Gaussian kernel will 
in general be different from that of the underlying continuous Gaussian function from which 
it was sampled. From Table 5.2, we see that this difference in variance can be as high as 30%.

Now that we can create Gaussian kernels and convolve an image with horizontal and ver-
tical kernels, we can smooth an image by convolving with a 2D Gaussian kernel, as shown 
in Algorithm 5.6. Although the code shows the simplest case of an isotropic Gaussian, 
because that is the most common case, it would be easy to extend the code to the anisotropic 

Figure 5.4 A continuous Gaussian (blue curve) and its discrete approximation (black circles) for two different values of s. The shaded area 
under the rectangles approximates the area under the continuous curve between x 5 22.5s and x 5 12.5s. The width and half-width 
of the kernels are w 5 5, w~ 5 2 (for s 5 1.0), and w 5 15, w~ 5 7 (for s 5 3.0), according to w~ 1 0.5 5 2.5s and w 5 2w~ 1 1.
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Gaussian case. Results of convolving an image with 2D isotropic Gaussians with different 
variances are shown in Figure 5.5.

5.2.5 Evaluating Gaussian Kernels
In this section we examine in more detail the relationship between the width of the Gaussian 
kernel and its standard deviation. The reader should feel free to skip this section upon first 
reading.

Some authors have argued that it is not possible to build a faithful Gaussian kernel with 
just three samples 1w 5 3 2 . The argument is based on recognizing that there are conflicting 
constraints: Only a narrow (small s) Gaussian will be accurately represented by just three 
samples, but a narrow Gaussian in the spatial domain leads to a wide Gaussian (large s r) 
in the frequency domain, leading to aliasing.† This is because the Fourier transform of a 
Gaussian is F5expA2 x2

2s2B 6 ~  expA2 v2

2 1 1/s 2 2B, where v  is the angular frequency and 
s r 5 1/s is the standard deviation of the Fourier transformed signal.‡ To see this 
numerically, notice that capturing 98.76% of the Gaussian yields the constraint w $ 5s, 
where w is the width of the kernel, since the region from 22.5s to 2.5s has a width of 5s. 
Now because the sampling frequency is 1 sample per pixel, Nyquist’s sampling theorem 

† Aliasing is discussed in more detail in Section 6.1.3 (p. 275).
‡ The Fourier transform is covered in more detail in the next chapter.

Original s 5 5 pixels s 5 10 pixels s 5 20 pixels s 5 40 pixels

Figure 5.5 A 2304 3 1728 image, and the result of smoothing by convolving with an isotropic Gaussian with different standard 
deviations.

Sta
n B

irc
hfi

eld

kernel discrete σ2 continuous σ2 error

gauss0.25 5 1
8 31 6 1 4 0.25 0.28 10.7%

gauss0.333 5 1
6 31 4 1 4 0.333 0.36 7.4%

gauss0.375 5 1
16 33 10 3 4 0.375 0.42 10.7%

gauss0.5 5 1
4 31 2 1 4 0.5 0.72 30.6%

gauss1.0 5 1
16 31 4 6 4 1 4 1.0 1.17 14.5%

TABLE 5.2 The discrete 
Gaussian kernel has, 
in general, a different 
variance from the 
underlying continuous 
function from which it 
was sampled. Shown are 
the differences for several 
different values of s2.

ALGORITHM 5.6 Smooth an image by convolving with a 2D Gaussian kernel

Smooth 1 I, s 2
Input: image I, standard deviation s
Output: result of convolving I with a 2D isotropic Gaussian with s

1 gauss d  CreateGaussianKernel 1s 2
2 I r d  ConvolveSeparable(I, gauss, gauss)
3 return I r
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says the cutoff frequency is 0.5, implying a cutoff angular frequency of 2p 1 0.5 2 5 p. To 
keep 98.76% of the area of the Fourier transform between 2p and p, we must therefore 
(assuming w 5 3) set 2p $ 5s r 5 5 1 1/s 2 , which leads to s $ 5

2p 5 0.8. Putting the 
spatial constraint w $ 5s together with the frequency constraint s $ 0.8 implies w $ 5, 
assuming w is odd. In other words, this reasoning leads to the conclusion that the kernel 
must contain at least 5 samples to faithfully represent the Gaussian.

However, such a conclusion is unwarranted. The 3-element kernel is widely used in practice, 
and for good reason. A more appropriate question to ask is: What is the best that a 3-element 
kernel can do? Instead of requiring that the kernel capture 98.76% of the area of the Gaussian, 
let us seek a value for s that maximizes the area preserved in both the spatial and frequency 
domains. Let a represent the value such that this preserved area is in the region 
2as # 3 # as, so that w 5 2as. The same area is captured in the frequency domain 
when 2p 5 2as r, or s 5 1/s r 5 a/p. Since we are interested in the case w 5 3, we 
can  solve the equations as 5 1.5 and a/s 5 p for the two unknowns to yield 
a 5 "1.5p < 2.17 and s 5 "1.5/p < 0.69. From the definition of the Gaussian, this 
value of a 5 2.17 implies that 97% of the Gaussian is captured in both the spatial and frequency 
domains, which is quite acceptable for many applications. Moreover, it is interesting to note 
that this particular value of s2 5 0.48 1s 5 0.69 2  is very close to the s2 5 0.5 1s 5 0.71 2  
of the 3 3 1 kernel obtained by the binomial triangle. Therefore, according to the criterion of 
balancing the area under the spatial- and frequency-domain signals, s 5 0.69 is the optimal 
3 3 1 Gaussian kernel, which is closely approximated by gauss0.5 5 1

4 31 2 1 4.†
Now that we have seen that the best 3-element Gaussian kernel is very close to the 

one given by the binomial triangle, let us analyze the other kernels in the triangle. Table 
5.3 shows the first few of these kernels, along with the value for a (which indicates the 
preserved region 2as # x # as) and the area under the Gaussian curve (obtained using 
a Gaussian Q-function table). While the Gaussian is faithfully preserved in all cases, the 
binomial kernel is wider than it needs to be for increasing values of s. For example, with 
s 5 1.41, a width of w 5 7 would capture nearly 98.76% of the curve (since 5s < 7), but 
the binomial triangle uses w 5 9 to represent this Gaussian. The trinomial triangle results 
in more compact Gaussians, as can be seen from the bottom portion of the table.

Now let us examine how faithfully Equation (5.39) captures the corresponding Gauss-
ian. The formula in the procedure is w~ 5 Round 1 2.5s 2 0.5 2 . Therefore, this procedure 
will output half-width w~  if and only if w~ 2 0.5 # 2.5s 2 0.5 , w~ 1 0.5, assuming val-
ues halfway between integers round up. Solving for s yields w~ /2.5 # s , 1w~ 1 1 2 /2.5. 
Since w 5 2w~ 1 1, we can solve for a 5 w/2s, which corresponds to the preserved region 
x [ 32as, as 4. Table 5.4 shows the minimum and maximum values of a for each odd width 
w, along with the minimum and maximum values of the area under the curve. Here we see the 
Gaussian is faithfully represented and compact. In fact, the width computed is the same as that 
of the trinomial triangle in all examples shown. For values of s very near the lower end of each 
range, the kernels are not as compact as they could be. If this is a concern, the formula could 
be replaced by reducing the multiplicative factor, for example, w~ 5 Round 1 2.2s 2 0.5 2 .

5.2.6 Smoothing with Large Gaussians
As the width of the kernel increases, the amount of computation required to convolve a sig-
nal with the kernel increases proportionally. Therefore, as the variance increases, convolving 
with a Gaussian becomes increasingly expensive. One way to solve this problem could be 
to replace the single large convolution with multiple smaller convolutions, taking advantage 

† Nevertheless, perhaps it can be argued that 3 elements are not sufficient to accurately capture the derivative of a 
Gaussian, since the 3 3 1 first-and second-derivatives do not have a well-defined variance, Section 5.3.1 (p. 234) 
and Section 5.4 (p. 240).
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of the property that the convolution of two Gaussian kernels with variances s1
2 and s2

2 is a 
Gaussian with variance s1

2 1 s2
2;† therefore n repeated convolutions with gausss2 is equiva-

lent to a single convolution with gaussns2.
Unfortunately this approach generally increases, rather than decreases, the amount of 

computation needed. For example, suppose we want to convolve with gauss100 (that is, 
a Gaussian with s2 5 100). The straightforward approach would be to convolve with 
a kernel of halfwidth w~ 5 ROUND 1 2.5 1s 2 2 0.5 2 5 25, or width of 51. But accord-
ing to the preceding analysis, an equivalent approach would be to first convolve with 
gauss50, then convolve with gauss50 again. Since each of these kernels has halfwidth  
w~ 5 ROUND 1 2.5 1"50 2 2 0.5 2 5 17, or width of 35, this approach convolves with 71 
elements instead of 51, thus actually requiring more computation than the straightforward 
approach— a conclusion that is consistent with what we said about Pascal’s triangle, namely, 
that it leads to Gaussian kernels that are inefficient because they are too wide.

Nevertheless, a more computationally efficient approach can be achieved using the 
central limit theorem, which says that the repeated convolution of any nonnegative kernel 
with itself always converges (under very mild assumptions) to the shape of a Gaussian. 
More specifically, if we let bw be the box filter of width w, then n convolutions of the filter 
with itself approximates gausss2, where s2 5 n 1 1

12  1w2 2 1 2 , since the variance of bw is 1w2 2 1 2 /12. Thus, the variance of bw ~ bw ~ bw is 1w2 2 1 2 /4, while the variance of 

† See Problem 5.32.

w~ w 5 2w~ 1 1 s range a 5 w/2s range area max area min

1 3 [0.4,0.8) [3.75,1.88) – 93.99%

2 5 [0.8,1.2) [3.13,2.08) 99.83% 96.25%

3 7 [1.2,1.6) [2.92,2.19) 99.65% 97.15%

4 9 [1.6,2.0) [2.81,2.25) 99.50% 97.56%

TABLE 5.4 The area under the curve is well captured by Gaussian kernels given by GETKERNELHALFWIDTH. For standard deviations very near 
the lower end of each range, the kernels could be reduced in size while maintaining acceptable accuracy, but for the most part the  
representation is compact. The third and fourth columns use interval notation, e.g., 0.4 # s , 0.8.

a W 5 2a 1 1 trinomial kernel s2 5 2a
3

s a 5 w
2s area

1 3 1
3 31 1 1 4 0.67 0.82 1.84 93.42%

2 5 1
9 31 2 3 2 1 4 1.33 1.15 2.17 97.00%

3 7 1
27 31 3 6 7 6 3 1 4 2.00 1.41 2.47 98.65%

4 9 1
81 31 4 10 16 19 16 10 4 1 4 2.67 1.63 2.76 99.42%

a W 5 2a 1 1 binomial kernel s2 5 a
2 s a 5 w

2s area

1 3 1
4 31 2 1 4 0.5 0.71 2.12 96.60%

2 5 1
16 31 4 6 4 1 4 1.0 1.0 2.50 98.76%

3 7 1
64 31 6 15 20 15 6 1 4 1.5 1.22 2.86 99.58%

4 9 1
256 31 8 28 56 70 56 28 8 1 4 2.0 1.41 3.18 99.85%

TABLE 5.3 The area under the curve is well captured by Gaussian kernels given by the binomial and trinomial triangles. However, as s increases, 
the kernels waste computation because they are much wider than necessary to faithfully capture the Gaussian to a reasonable amount.
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bw ~ bw ~ bw ~ bw is 1w2 2 1 2 /3. As demonstrated in Figure 5.6, the convolution of a 
signal with a Gaussian can be well approximated as a series of convolutions with the box 
filter:

f ~ gausss2 < f ~ 1 bw ~ bw ~ bw ~ bw 2 5 1 1 1
 
f ~ bw 2  ~ bw 2  ~ bw 2  ~ bw (5.45)

where generally only 2 to 4 convolutions are needed to yield a good approximation.
Convolution with a box filter is extremely fast because, ignoring the normalization factor, 

the box filter simply sums the elements of the signal overlapping the kernel. For example, 
if we let f r 5 f ~ b 7, then at position x the computation is

f r 1 x 2 5 f 1 x 2 3 2 1 f 1 x 2 2 2 1 f 1 x 2 1 2 1 f 1 x 2 1 f 1 x 1 1 2 1 f 1 x 1 2 2 1 f 1 x 1 3 2  (5.46)

while at the next position 1 x 1 1 2 , the computation is

 f r 1 x 1 1 2 5 f 1 x 2 2 2 1 f 1 x 2 1 2 1 f 1 x 2 1 f 1 x 1 1 2 1 f 1 x 1 2 2 1 f 1 x 1 3 2 1 f 1 x 1 4 2  (5.47)

 5 f r 1 x 2 2 f 1 x 2 3 2 1 f 1 x 1 4 2  (5.48)

Figure 5.6 Repeated convolutions of a box filter leads to a Gaussian. The vertical bars (in blue) show the samples of discrete kernels 
obtained by convolving a box filter with itself, for w 5 3 (top), w 5 5 (middle), and w 5 7 (bottom); while the overlaid plots (in red) 
show the sampled Gaussians with the same variance as the kernels. After just a few convolutions, the approximation is extremely 
accurate, thus enabling efficient approximation of arbitrarily-sized Gaussians.
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Thus, as the kernel slides across the signal, each output value is computed by simply adding 
the new value and subtracting the old value—without any multiplication, and independent 
of the length of the kernel. In this way, the box filter of any length can be implemented 
efficiently (in constant time) by just one subtraction and one addition per column, as shown 
in Algorithm 5.7.

An equivalent approach is to first compute a running sum† of the signal, then add and 
subtract values from this running sum. Such an approach reveals that convolving with a box 
filter is equivalent to performing an integration over a window, followed by a differentiation 
(subtracting two values from each other). More generally, it can be shown that for any 
continuous signal f and kernel g, the convolution of the signal and kernel is equivalent to 
the convolution of the signal integrated n times with the kernel differentiated n times:

 f ~ g 5 £ 2
x

2`

c2
x

2`('')''*
n integrations

f 1 x 2 dx≥ ~ 
dng 1 x 2

dxn  (5.49)

where n is an arbitrary nonnegative integer. This fact is easy to prove using the Fourier 
transform (which we shall consider in more detail in the next chapter). Since integration in 
the spatial domain is equivalent to division by jv in the frequency domain, while differenti-
ation is equivalent to multiplication by jv, where j 5 "21 and v is the angular frequency, 
the multiplication and division cancel each other, so the convolution of the integral with the 
derivative is, in the frequency domain, nothing but F 5   f  6 #  F 5  g6   #  jv/jv 5 F 5   f  6 #  F 5  g6. 
Recalling that multiplication in the frequency domain is equivalent to convolution in the 
spatial domain, Equation (5.49) is established.

5.2.7 Integral Image
The running sum is easily extended to 2D, where it is known as the integral image.‡ Given 
a single-channel 2D image I, its integral image S is computed by scanning the image from 
the top-left to the bottom-right corners, computing the running sum as

 S 1 x, y 2 5 I 1 x, y 2 2 S 1 x 2 1, y 2 1 2 1 S 1 x 2 1, y 2 1 S 1 x, y 2 1 2  (5.50)

† Section 3.3.2 (p. 87).
‡ In computer graphics, the integral image is known as a summed area table (SAT).

ALGORITHM 5.7 Convolve a 1D signal/image with a 1D box kernel

ConvolveBox( f, w)

Input: 1D signal f with length n, 1D box kernel with length w
Output: the convolution of f and g

1 w~ d : 1w 2 1 2 /2;
2 val d 0
3 for i d 2w~  to w~  do
4   val d val 1 f  3i 4
5 for x d 0 to n 2 1 do
6   h 3x 4 d val
7   val d val 1 f  3x 1 w~ 1 1 4 2 f  3x 2 w~ 4
8 return h
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It is easy to see that S 1 x r, y r 2 5 axr

x50ayr

y50
I 1 x, y 2 . Once the integral image has been 

calculated (usually as a preprocessing step), then the sum of values inside any rectangle can 
be computed with simply one addition and two subtractions:

 a
x1

x5x0 
a
y1

 
y5y0

I 1 x, y 2 5 S 1 x0 2 1, y0 2 1 2 1 S 1 x1, y1 2 2 S 1 x0 2 1, y1 2 2 S 1 x1, y0 2 1 2  (5.51)

where 1 x0, y0 2  and 1 x1, y1 2  are the top-left and bottom-right coordinates of the rectangle, 
respectively.

5.3 Computing the First Derivative
Now that we have seen how to apply a lowpass filter to an image to perform smoothing, 
we turn our attention in this section to highpass filters. A highpass filter is one that preserves 
the local differences in the input signal, which can be detected by computing the derivative 
of the signal. Large values in the derivative indicate important parts of the signal, which 
we shall consider in more detail in Chapter 7 when we consider edge detection.

5.3.1 Gaussian Derivative Kernels
The simplest approach to estimating the derivative is to compute finite differences, which 
means to subtract one value in the signal from another. If the values are adjacent, this is 
equivalent to convolving with the kernel 31 21 4. Since this kernel has an even number of 
elements, the center of the kernel can be placed on either element, leading to the so-called 
forward difference kernel, 31 21 4, and backward difference kernel, 31 21 4. 
(If the convention of the origin appears reversed, remember that convolution flips the kernel 
before performing shift-multiply-add.)

In the real world, the input signal has typically been corrupted by some type of noise. 
That is, the input signal to which we have access is actually a combination of the under-
lying noise-free signal in which we are interested and noise that has unfortunately been 
mixed with the signal in some way. As a result, it is usually wise to perform at least some 
smoothing to the image before differentiating to help reduce the effects of such noise. This 
can be achieved by convolving the signal with a smoothing kernel before convolving with 
a differentiating kernel. The simplest smoothing kernel is 12 31 1 4, leading toaf 1 x 2  ~ 

1
2

 31 1 4b  ~ 31 21 4 5 f 1 x 2  ~ a1
2

 31 1 4 ~ 31 21 4b 5 f 1 x 2  ~ 
1
2

 31 0 21 4 (5.52)

where 1
2 31 0 21 4 is the central difference kernel. In other words, convolving the 

image with a smoothing kernel, then convolving the result with a differentiating kernel, is 
equivalent to convolving with another kernel that is the combination of the two, due to the 
associativity of convolution. Note that the origins of the two kernels must be different to 
avoid undesirable shifting of the signal:

 
1
2

 31 1 4 ~ 31 21 4 5
1
2

 31 1 4 ~ 31 21 4 5
1
2

 31 0 21 4 (5.53)

With larger smoothing kernels, computing finite differences between neighboring 
smoothed pixels does not yield favorable results. Instead, it is better to convolve the image 
with a smoothed differentiating kernel, which (since differentiation and convolution are 
associative) is equivalent to differentiating the smoothed signal:
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d

d x
 1   f 1 x 2  ~ g 1 x 2 2 5 f 1 x 2  ~ a d

d x
 g 1 x 2 b  (5.54)

where f is the input and g is the smoothing kernel. Since the Gaussian is the most common 
smoothing kernel, we focus our attention on the derivative of Gaussian, which is easily 
shown in the continuous domain to be just a scaled version of the x coordinate times the 
Gaussian:

d
d x

 gausss2 1 x 2 5
d
dx

 ¢ 1"2ps2
 exp a2x 

2

2s2 b ≤ 5 2
x

s2"2ps2
 exp ¢2x 

2

2s2 ≤ 5 2
x

s2 gausss2 1 x 2  (5.55)

For more compact notation, we denote this Gaussian derivative as g# ausss2 1 x 2 , with a dot 
over the letter “g”.

The overall shape of the Gaussian derivative kernel is evident in Figure 5.7. The function 
is antisymmetric, meaning g# auss 12x 2 5 2g# auss 1 x 2  for all x, and therefore it is zero at 
x 5 0. Once the Gaussian derivative kernel has been constructed, the derivative of the signal 
is computed by simply convolving with the kernel. Examining the antisymmetric shape, it is 
evident that such a convolution is actually computing a weighted average of all the values to 
the right of the kernel center and subtracting a weighted average of all the values to the left. 
This equivalent view of the procedure is also illustrated in the figure and is sometimes helpful 
in understanding the connection between finite differences and Gaussian derivative kernels.

To construct the 1D Gaussian derivative kernel, simply sample the continuous Gaussian 
derivative, then normalize. Similar to Gaussian normalization, which imposes the constraint 
that convolution with a constant signal should not change the signal, Gaussian derivative 
normalization imposes the constraint that convolution with a ramp should yield the slope 
(i.e., derivative) of the ramp. For example, suppose 3a b c 4 is an unnormalized differ-
entiating kernel. Convolution of the kernel with 30 1 2 4, which is a ramp signal with a 
slope of 1, is given by 0 #c 1 1 #b 1 2 #a (since convolution flips the kernel), and this result 
should equal 1. Since the Gaussian derivative crosses the y-axis at x 5 0, we know that the 
central element is zero, b 5 0, and therefore 2a 5 1, or a 5 1

2. Since the Gaussian deriva-
tive is antisymmetric, the normalized 3-element central difference operator is thus given by

 g# auss0.5 5
1
2

 31 0 21 4 (5.56)

More generally, it is easy to verify that normalization of a kernel of length w requires 
dividing each element of the kernel by aw21

i50
 i g# auss 3w 2 1 2 i 4, where g# auss 3i 4 is the 

ith element of the unnormalized kernel. Because the Gaussian derivative is antisymmetric, 

Figure 5.7 The 1D Gaussian 
derivative (left), along with 
an equivalent view of the 
operation (right) in which a 
weighted sum of the values 
on one side are subtracted 
from a weighted sum of the 
values on the other side.
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g# auss 3w 2 1 2 i 4 5 2g# auss 3i 4  for all i, assuming the kernel is odd width, so it may 
be easier to remember the normalization divisor as the negative of the first moment of 
the kernel: 2aw21

i50
 i g# auss 3i 4. Applying this reasoning to the unnormalized central 

difference operator 31 0 21 4, we find that the normalization divisor is given by 

aw21

i50
 i g# auss 3i 4 5 0 #1 1 1 #0 1 2 # 121 2 5 22, leading to Equation (5.56). The proce-

dure for constructing a Gaussian derivative kernel, shown in Algorithm 5.8, is similar to the 
one used to construct the 1D Gaussian kernel except for the normalization factor and the 
factor of i 2 w~  in Line 5, which is simply a shifted version of x. Note that an important step 
is missing from this code: after sampling, the value 1 1/w 2 aw21

i50
 i g# auss-deriv 3i 4 should be 

subtracted from each element to ensure that the sum of all the elements is zero; this should 
be performed before computing the normalization factor.

Note that, although we use g# ausss2 to denote the Gaussian derivative kernel with variance 
s2, there is no easy way to compute the variance of a derivative kernel, and in fact in the 
case of w 5 3 all Gaussian derivative kernels are identical no matter the variance. That is, 
1
2 31 0 21 4 is the only 3 3 1 Gaussian derivative kernel, because no matter how wide 
the Gaussian, the sample in the middle is zero, the two remaining samples are opposite each 
other, and the normalization procedure always cancels the values to leave the same 12 factor 
in front. As a result, the nominal variance of s2 5 0.5 was chosen somewhat arbitrarily. 
Also, keep in mind that although the normalization factor is needed in order to compute the 
slope of the function, in practice it can be ignored whenever the relative slope, rather than 
the actual slope, is all that is needed.

At first glance it may seem odd that the differentiating kernel ignores the central pixel. 
However, this is a natural consequence of the fact that the derivative of a Gaussian is zero at 
x 5 0. Another way to see this is that, because the kernel sums to zero and is antisymmetric, 
its central pixel has to be zero. If neither of these explanations is entirely satisfactory, per-
haps it will be helpful to note (as mentioned earlier) that the centralized difference operator 
actually averages the two slopes computed by the forward difference, f 1 x 1 1 2 2 f 1 x 2 , 
and the backward difference, f 1 x 2 2 f 1 x 2 1 2 . That is, if f r 1 x 2 5 f 1 x 2  ~ g# auss0.5, then

f r 1 x 2 5
1
2

 a f 1 x 2 2 f 1 x 2 1 2
1

1
f 1 x 1 1 2 2 f 1 x 2

1
b 5

f 1 x 1 1 2 2 f 1 x 2 1 2
2

 (5.57)

as shown in Figure 5.8.

ALGORITHM 5.8 Create a 1D derivative of a Gaussian kernel

CreateGaussianDerivativeKernel 1s 2
Input: floating-point standard deviation s
Output: 1D Gaussian derivative kernel

1 w~ d  GetKernelHalfWidth 1s 2
2 w d 2w~ 1 1
3 norm d 0
4 for i d 0 to w 2 1 do
5   gauss-deriv 3i 4 d 1 i 2 w~ 2  
 exp 12 1 i 2 w~ 2  
 1 i 2 w~ 2 / 1 2 
 s 
 s 2 2
6   norm d 2 i 
 gauss-deriv 3i 4
7 for i d 0 to w 2 1 do
8   gauss-deriv 3i 4 d / norm
9 return gauss-deriv
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5.3.2 Image Gradient
The derivative of a function of one variable is defined as

 
df

dx
; lim

DxS0
 
f 1 x 1 Dx 2 2 f 1 x 2

Dx
 (5.58)

The generalization of derivative to 2D is the gradient, the vector whose elements are the 
partial derivatives of the function along the two axes:

 rf 1 x, y 2 5 c @ f

@ x

@ f

@ y
dT

 (5.59)

where the superscript T denotes transpose. As shown in Figure 5.9, if the image is viewed 
as a surface z 5 f 1 x, y 2 , where z is the height of the surface at any point, the gradient is a 
vector pointing uphill. If we let d ; rf 1 x0, y0 2  be the gradient evaluated at a point 1 x0, y0 2 , 
and e ; 3x 2 x0 y 2 y0 4T be the vector from 1 x0, y0 2  to an arbitrary point (x,y), then the 
equation of the tangent plane to the surface at the point 1 x0, y0 2  is given by the inner product 
of the two vectors plus the value at that point: ẑ 5 dTe 1 f 1 x0, y0 2 .

Computing the image gradient requires convolving the image with a Gaussian kernel to 
reduce the effects of noise, then computing the partial derivatives in the orthogonal direc-
tions. Due to the associative property of convolution, this is equivalent to convolving the 
image with the partial derivatives of a 2D Gaussian:

  
@I 1 x, y 2

@x
5

@

@x
1 I 1 x, y 2  ~ Gauss 1 x, y 2 2 5 I 1 x, y 2  ~ 

@ Gauss 1 x, y 2
@x

 (5.60)

  
@I 1 x, y 2

@y
5

@

@y
1 I 1 x, y 2  ~ Gauss 1 x, y 2 2 5 I 1 x, y 2  ~ 

@ Gauss 1 x, y 2
@y

 (5.61)

Figure 5.8 The central difference operator is the average of the 
forward and backward differences, i.e., the average of the two slopes.
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Figure 5.9 The derivative 
of a 1D function (left), 
and the gradient of a 2D 
function (right).
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Continuous versions of these 2D convolution kernels are shown in Figure 5.10.
Thankfully, the partial derivative of a 2D Gaussian is separable, so that the convolution 

of an image I with the 2D kernel for the partial derivative is equivalent to two successive 
convolutions with 1D kernels:

 I 1 x, y 2  ~ 
@ Gausss2 1 x, y 2

@x
5 5 2

j

s2 I 1 x 2 j, y 2 h 2  exp b2 1 j2 1 h2 2
2s2 r  djdh (5.62)

 5 5 2
j

s2 I 1 x 2 j, y 2 h 2  exp b2h2

2s2 r  exp b2j2

2s2 r  djdh (5.63)

 5 2 2
j

s2 B2I 1 x 2 j, y 2 h 2  exp b2h2

2s2 r  dhR  exp b2j2

2s2 rdj (5.64)

 5 1 I 1 x, y 2  ~ gausss2 1 y 2 2  ~ g# ausss2 1 x 2  (5.65)

 5 1 I 1 x, y 2  ~ g# ausss2 1 x 2 2  ~ gausss2 1 y 2  (5.66)

where g# ausss2 1 x 2 5 d
dx gausss2 and where the final equation is due to the fact that the 

order of convolution does not matter. Similar analysis shows that the partial derivative in 
y is also separable:

  I 1 x, y 2  ~ 
@ Gausss2 1 x, y 2

@y
5 1 I 1 x, y 2  ~ gausss2 1 x 2 2  ~ g# ausss2 1 y 2  (5.67)

  5 1 I 1 x, y 2  ~ g# ausss2 1 y 2 2  ~ gausss2 1 x 2  (5.68)

Therefore, to compute the gradient of an image, we must differentiate along the x and y axes 
by convolving with a smoothing 1D kernel and a differentiating 1D kernel in the orthogonal 
direction. That is, to compute the partial derivative with respect to x, convolve with a 
horizontal derivative of a Gaussian, followed by a vertical Gaussian (or switch the order of 

Figure 5.10 The 2D 
Gaussian partial derivatives 
in the x and y directions, 
shown as 3D plots (top) and 
images (bottom).
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5.3 Computing the First Derivative 239

these two, since convolution is commutative); to compute the partial derivative with respect 
to y, convolve with a horizontal Gaussian, followed by a vertical derivative of a Gaussian.

The simplest 2D differentiating kernel is the Prewitt operator, which is obtained by 
convolving a 1D Gaussian derivative kernel with a 1D box filter in the orthogonal direction:

  Prewittx 5
1
3

 C1
1
1
S  ~ 

1
2

 31 0 21 4 5
1
6

 C1 0 21
1 0 21
1 0 21

S
  Prewitty 5

1
3

 31 1 1 4 ~ 
1
2

 C    1
   0
21

S 5
1
6

 C    1    1    1
   0    0    0
21 21 21

S
It can be shown that applying the Prewitt operator is equivalent to solving for the plane that 
minimizes the least-squares-error over the 3 3 3 window, where all the pixels are treated 
equally. Again, keep in mind that the normalization factor of 1

6 can be ignored in most 
applications.

The Sobel operator is more robust, as it uses the Gaussian 1s2 5 0.5 2  for the 
smoothing kernel:

 Sobelx 5 gauss0.5 1 y 2  ~ g# auss0.5 1 x 2 5
1
4

 C1
2
1
S  ~ 

1
2

 31 0 21 4 5
1
8

 C1 0 21
2 0 22
1 0    1

S
 Sobely 5 gauss0.5 1 x 2  ~ g# auss0.5 1 y 2 5

1
4

 31 2 1 4 ~ 
1
2

 C    1
   0
21

S 5
1
8

 C    1    2    1
   0    0    0
21 22 21

S
The Scharr operator is similar to Sobel, but with a smaller variance 1s2 5 0.375 2  in 

the smoothing kernel:

 Scharrx 5 gauss0.375 1 y 2  ~ g# auss0.5 1 x 2 5
1
16

 C  3
10
  3

S  ~ 
1
2

 31 0 21 4 5
1
32

 C  3 0   23
10 0 210
  3 0   23

S
 Scharry 5 gauss0.375 1 x 2  ~ g# auss0.5 1 y 2 5

1
16

 33 10 3 4 ~ 
1
2

 C    1
   0
21

S 5
1
32

 C    3    10    3
   0      0    0
23 210 23

S
The advantage of the Scharr operator is that it is more rotationally invariant than other 3 3 3 
Gaussian kernels.

For completeness, we mention the classic Roberts cross operator,† which is the oldest 
pair of gradient kernels:

 Roberts1 5
1"2

 B1    0
0 21

R
 Roberts2 5

1"2
 B0 21

1    0
R

The Roberts kernels suffer from two drawbacks. First, they compute derivatives along the 
diagonal directions rather than along the x and y axes, which is more of an inconvenience 

† Lawrence G. Roberts (1937–), after writing the first Ph.D. dissertation in computer vision (in 1963), went on to 
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than any fundamental limitation. Secondly, because they have even dimensions, the kernels 
are not centered. That is, they do not compute the derivative at a pixel, but rather between 
pixels. Nevertheless, for some applications two-point differences are better than three-point 
central differences, because they use all pixels in the computation (as opposed to ignoring 
the central pixel) and because they are more compact.

Once we have computed the gradient of the image, it is often desirable to compute the 
magnitude of the gradient. A natural way to do this would be to compute the Euclidean norm 
of the gradient vector: 0rf  0 5 "f x 

2 1 f y
2, where fx and fy are the two components of the 

gradient vector, i.e., rf 5 3   fx fy 4T. A computationally efficient approximation can be 
obtained by computing the sum of the absolute values: 0rf  0 < 0   fx 0 1 0

   
fy 0 . A third option is 

to select the maximum of the two absolute values: 0rf  0 < max 1 0   fx 0 , 0   fy 0 2 . Note that these 
three choices are, respectively, the Euclidean, Manhattan, and chessboard distances† between 
the origin and the point 1 fx, fy 2 . The pseudocode to compute the image gradient is provided 
in Algorithm 5.9, using the Manhattan distance. For each pixel in the image, the partial 
derivatives in x and y are computed, then converted into a magnitude and phase representa-
tion. For other distance metrics, only Line 6 changes. Figure 5.11 shows the result of apply-
ing this computation to an image. Results of computing the gradient magnitude of an image, 
using different variances for the Gaussian, are shown in Figure 5.12.

5.4 Computing the Second Derivative
Just as the finite difference operator approximates the first derivative, the difference between 
differences approximates the second derivative. This can be seen in 1D by convolving the 
function with the noncentralized difference operator, then convolving the result again with 
the same operator:1  f 1 x 2  ~ 31 21 4 2  ~ 31 21 4 5 f 1 x 2  ~ 1 31 21 4 ~ 31 21 4 2 5 f 1 x 2  ~ 31 22 1 4 (5.69)

which yields the second-derivative convolution kernel 31 22 1 4. It turns out 
that, just as there is only one 3 3 1 kernel for computing the derivative of a Gaussian, 
this is the only 3 3 1 kernel for computing the second derivative of a Gaussian. Note 
that the normalization factor is 1, already included in the kernel. Another way to look 
at this is to express the first and second derivatives as d f/d x < f 1 x 2 2 f 1 x 2 1 2  and 
d2f/dx2 < 1 f 1 x 1 1 2 2 f 1 x 2 2 2 1 f 1 x 2 2 f 1 x 2 1 2 2 5 f 1 x 1 1 2 2 2f 1 x 2 1 f 1 x 2 1 2 , 
respectively.

† Section 4.3.1 (p. 164).

ALGORITHM 5.9 Compute the gradient of an image

ComputeImageGradient 1 I, s 2
1 gauss 5 CREATEGAUSSIANKERNEL 1s 2
2 gauss-deriv 5 CREATEGAUSSIANDERIVATIVEKERNEL 1s 2
3 Gx 5 ConvolveSeparable(I, gauss-deriv, gauss)
4 Gy 5 ConvolveSeparable(I, gauss, gauss-deriv)
5 for 1 x, y 2 [ I do
6     Gmag 5 0Gx 1 x, y 2 0 1 0Gy 1 x, y 2 0
7     Gphase 5 ATAN2 1Gy 1 x, y 2 , Gx 1 x, y 2 2
8 return Gmag, Gphase
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5.4 Computing the Second Derivative 241

For a function (or image) of two variables, the second-derivative in the x and y directions 
can be obtained by convolving with the appropriately oriented second-derivative kernel:

  
@ 

2I 1 x, y 2
@ x 

2 5 I 1 x, y 2  ~ 31 22 1 4 (5.70)

  
@ 

2I 1 x, y 2
@ y 

2 5 I 1 x, y 2  ~ C    1
22
   1

S (5.71)

while the cross-derivative is obtained as

 
@ 

2I 1 x, y 2
@ x @ y

5
@ 

2I 1 x, y 2
@ y @ x

5 I 1 x, y 2  ~ 
1
4

 C21 0    1
   0 0    0
   1 0 21

S  (5.72)

Figure 5.11 TOP: An image. 
LEFT: The partial derivatives 
of the image in the x and y 
directions, which together 
form the two components 
of the gradient of 
the image. RIGHT: The 
magnitude and phase of 
the gradient.

Original s 5 1 pixel s 5 5 pixels s 5 10 pixels s 5 20 pixels

Figure 5.12 An 816 3 612 image, and the gradient magnitude computed using an isotropic Gaussian with different standard deviations.
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where the latter kernel is obtained by convolving the centered first-derivative 12 31 0 21 4 
with an oriented version of itself:

1
2

 31 0 21 4 ~ 
1
2

 C    1
   0
21

S 5
1
2

 C    1
   0
21

S  ~ 
1
2

 31 0 21 4 5
1
4

 C21 0    1
   0 0    0
   1 0 21

S  (5.73)

Alternatively, using the non-centered first-derivative leads to a more compact but non-
centered cross-derivative kernel:

 31 21 4 ~ B    1
21

R 5 B    1
21

R  ~ 31 21 4 5 B21    1
   1 21

R  (5.74)

If larger kernels are desired, then the property that we saw with the first derivative, 
namely that differentiation of a smoothed signal is equivalent (in the continuous domain) 
to convolution with a differentiated Gaussian, can be used:

 
d 

2

d x 
2
1  f 1 x 2  ~ g 1 x 2 2 5 f 1 x 2  ~ ¢ d 

2g 1 x 2
d x 

2 ≤  (5.75)

In other words, a discrete, smoothed second-derivative kernel can be created by sampling 
the continuous second-derivative of the smoothing function. The second derivative of a 
Gaussian, in the continuous domain, is calculated to be

  g$ausss2 1 x 2 ;
d 

2

d x 
2 gausss2 1 x 2  (5.76)

  5
d

d x
 ¢2

x

s2 gausss2 1 x 2 ≤  (5.77)

  5 2
1

s2 ¢gausss2 1 x 2 1 x 

d gausss2 1 x 2
d x

≤  (5.78)

  5 2¢ 1
s2 2

x 
2

s 
4 ≤gausss2 1 x 2  (5.79)

where we use double dots to denote the second derivative. After sampling this continuous 
function, and shifting so that the sum of elements is zero normalization requires dividing 
each element by one-half the second centralized moment of the elements: 1

2 aw
&

i52w
& i

2
 

g!auss[i], where w~  is the halfwidth of the kernel, g!auss is the unnormalized kernel, and i 5 0 
refers to the central element of the kernel. The justification for this formula is that convolu-
tion with a parabola, y 5 x2, should yield the second derivative, which is 2. Note that with 
the second derivative it is important to use the centralized moment, whereas with the zeroth 
and first derivatives, either centralized or non-centralized moments produce the same result.

5.4.1 Laplacian of Gaussian (LoG)
Extending the previous discussion to 2D leads naturally to the Laplacian operator r2,  
which is defined as the divergence of the gradient of a function. While the concept of diver-
gence† is beyond our scope, in 2D Cartesian coordinates the Laplacian of an image is just 
the sum of the second derivatives along the two orthogonal axes:

 r2I 5 r #  rI 5 c @
@ x

@

@ y
d  c @ I

@ x
@ I
@ y

dT

5
@ 

2I

@ x 
2 1

@ 
2I

@ y 
2 (5.80)

† Section 2.5.1 (p. 57).
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Because of associativity, computing the Laplacian of a smoothed image is the same as 
convolving the image with the Laplacian of Gaussian (LoG):

@ 
2 1 I ~ Gauss 1 x, y 2 2

@ x 
2 1

@ 
2 1 I ~ Gauss 1 x, y 2 2

@ y 
2 5 I ~ ¢@ 

2 Gauss 1 x, y 2
@ x 

2 1
@ 

2 Gauss 1 x, y 2
@ y 

2 ≤  (5.81)

which is also known as the inverted “Mexican hat” operator because of its shape, shown 
in Figure 5.13. The LoG is rotationally symmetric and is a center-surround filter because 
it consists of a central core of negative values surrounded by an annular ring of positive 
values. As a result, it maintains a connection with biology, because certain cells in the retina 
perform center-surround operations and therefore function like LoG filters.† The LoG is 
actually not a lowpass or highpass filter but rather a bandpass filter, though small 3 3 3 
discrete LoG kernels operate essentially like highpass filters.

Not surprisingly, the 2D Gaussian second-derivative filter is separable:

 I 1 x, y 2  ~ 
@ 

2 Gauss 1 x, y 2
@x2 5 5 

1
s2 ¢1 2

j2

s2 ≤  I 1 x 2 j, y 2 h 2  exp b2 1 j2 1 h2 2
2s2 r  djdh

 5 5 
1

s2 ¢1 2
j2

s2 ≤  I 1 x 2 j, y 2 h 2  exp b2j2

2s2 r  exp b2h2

2s2 r  djdh

 5 2 B2 
1

s2 ¢1 2
j2

s2 ≤  I 1 x 2 j, y 2 h 2  exp b2j2

2s2 r  djR  exp b2h2

2s2 r  dh

 5 1 I 1 x 2  ~ g$auss 1 x 2 2  ~ gauss 1 y 2  (5.82)

 5 1 I 1 x 2  ~ gauss 1 y 2 2  ~ g$auss 1 x 2  (5.83)

Therefore, since the LoG is the sum of two separable kernels, it is no more expensive to 
compute than the gradient. But the LoG itself is not separable but rather the sum of two 
separable computations:

 
@ 

2 1 I ~ Gauss 2
@ x 

2 1
@ 

2 1 I ~ Gauss 2
@ y 

2 5 I 1 x, y 2  ~ ¢@ 
2 Gauss 1 x, y 2

@ x 
2 1

@ 
2 Gauss 1 x, y 2

@ y 
2 ≤  (5.84)

 5 1 I 1 x, y 2  ~ g$auss 1 x 2 2  ~ gauss 1 y 2   
  1 1 I 1 x, y 2  ~ g$auss 1 y 2 2  ~ gauss 1 x 2  (5.85)

† Section 2.1.2 (p. 21).

Figure 5.13 The Laplacian of Gaussian, presented as an image (left), a 2D plot (middle), and a 1D slice through the 2D plot (right). The 
center-surround nature of the operator is evident in the image, while the inverted Mexican hat shape is evident in the plots.
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A discrete LoG kernel is obtained by computing @ 
2 Gauss
@

 

x 
2 1 @ 

2 Gauss
@

 

y 
2  with the appropriate value 

for s, then sampling. For 3 3 3 kernels, the differentiating kernel is fixed as 31 22 1 4 
(because it is the only 3 3 1 second-derivative Gaussian kernel), and the smoothing kernel 
is determined by s. The simplest Laplacian kernel involves no smoothing and is therefore 
simply the sum of the horizontal and vertical second-derivative kernels (considered as the 
middle row and column, respectively, of a square matrix whose remaining elements are zero):

LoG0.0 5 31 22 1 4 1 C    1
22
   1

S 5 C0    0 0
1 22 1
0    0 0

S 1 C0    1 0
0 22 0
0    1 0

S 5 C0    1 0
1 24 1
0    1 0

S  (5.86)

where we let LoGs2 signify the isotropic LoG kernel with variance s2. As another example, 
for s2 5 0.25, we have 18 31 6 1 4 as the smoothing kernel, leading to

  
@ 

2 Gauss0.25

@ x 
2 5 31 22 1 4 ~ 

1
8

 C1
6
1
S 5

1
8

 C1   22 1
6 212 6
1   22 1

S  (5.87)

  
@ 

2 Gauss0.25

@ y 
2 5

1
8

 31 6 1 4 ~ C    1
22
   1

S 5
1
8

 C    1      6    1
22 212 22
   1      6    1

S  (5.88)

  LoG0.25 5
@ 

2 Gauss0.25

@ x 
2 1

@ 
2 Gauss0.25

@ y 
2 5

1
4

 C1      2 1
2 212 2
1      2 1

S  (5.89)

Repeating this procedure for other values of s2 yields alternative 3 3 3 LoG kernels, shown 
in Table 5.5.

The center-surround property is evident by noticing that in all of these 3 3 3 cases the 
kernel is equivalent to a scalar times the difference between the average value of the neigh-
bors and the value of the central pixel: r2I 5 h 1I 2 I 2 , where I is the average gray level of 
the 8-neighbors, and the scalar h is the negative of the central kernel weight. For example, 
convolving with LoG0.0, computes

 r2I 1 x, y 2 5 I 1 x 1 1, y 2 1 I 1 x 2 1, y 2 1 I 1 x, y 2 1 2 1 I 1 x, y 1 1 2 2 4 1 I 1 x, y 2  (5.90)

 5 4 1I 1 x, y 2 2 I 1 x, y 2 2  (5.91)

where

I 1 x, y 2 5
1
4

 1 I 1 x 1 1, y 2 1 I 1 x 2 1, y 2 1 I 1 x, y 2 1 2 1 I 1 x, y 1 1 2 2  (5.92)

so in this case h 5 4. Results of computing the LoG of an image, using different variances 
for the Gaussian, are shown in Figure 5.14.

s2 5 0.0 s2 5 0.167 s2 5 0.20 s2 5 0.25 s2 5 0.33 s2 5 0.530 1 0 4 1
12 31 10 1 4 1

10 31 8 1 4 1
8 31 6 1 4 1

6 31 4 1 4 1
4 31 2 1 4C0    1 0

1 24 1
0    1 0

S 1
6 C1      4 1

4 220 4
1      4 1

S 1
5 C1      3 1

3 216 3
1      3 1

S 1
4 C1      2 1

2 212 2
1      2 1

S 1
3 C1    1 1

1 28 1
1    1 1

S 1
2 C1    0 1

0 24 0
1    0 1

S
TABLE 5.5 Various discrete 3 3 3 LoG kernels. For each choice of variance, the middle row shows the 1D smoothing kernel, while  
the last row shows the resulting LoG kernel.
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5.4 Computing the Second Derivative 245

5.4.2 Difference of Gaussians (DoG)
The Laplacian of Gaussian (LoG) is closely connected to the difference of Gaussians 
(DoG). More specifically, a close approximation to the LoG is obtained by subtracting one 
Gaussian from another, where the variances of the two Gaussians have a particular relation-
ship to one another. To see this connection, simply differentiate the continuous gauss(x) 
with respect to the scale parameter s:

  
d gausss2 1 x 2

ds
5

d
ds

 ¢ 1"2p
 s21e21

2
 x2s22≤  (5.93)

  5
1"2p

 12s22 1 s21 1 x2s23 2 2  e2 x2

2s2 (5.94)

  5
1"2p

 a2
1

s2 1
x 

2

s4b  e21

2
 x 

2s22
 (5.95)

  5 2s ¢ 1
s2 2

x 
2

s 
4 ≤  gausss2 1 x 2  (5.96)

Comparing this result with the second derivative of the Gaussian in Equation (5.79) yields 
a surprising relationship:

 
d gausss2 1 x 2

ds
5 s 

d 
2 gausss2 1 x 2

dx 
2  (5.97)

Since we cannot actually compute the derivative of the Gaussian with respect to s, it is 
approximated using finite differences. From Equation (5.58) this yields

 
d gauss 1 x; s 2

ds
<

gauss 1 x; s 1 d 2 2 gauss 1 x; s 2
d

 (5.98)

where we introduce the notation gauss 1 x; s 2  to refer to gausss2 1 x 2 , and d is a small change 
in standard deviation. Combining this expression with Equation (5.97) yields

  gauss 1 x; s 1 d 2 2 gauss 1 x; s 2 < d s 

d 
2 gauss 1 x; s 2

dx 
2  (5.99)

  5 1r 2 1 2s 
2

 

d 
2 gauss 1 x; s 2

d x 
2  (5.100)

where r ; s 1 d
s  is the ratio of the two standard deviations. As d S 0 1r S 1 2 , the DoG 

approximates the scaled LoG. However, small values of d lead to low sensitivity of the 

Original s 5 1 pixel s 5 5 pixels s 5 10 pixels s 5 20 pixels

Figure 5.14 A 2304 3 1728 image, and the result of convolving with an isotropic LoG with different standard deviations.
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filter, because as the two Gaussians approach each other in width, their responses become 
identical. It has been found empirically that r 5 1.6 yields a reasonable tradeoff, leading to

 DoG 1 x; s 2 < 0.6s2 LoG 1 x; s 2  (5.101)

That the scaled LoG is well approximated by the difference of two Gaussians is shown in 
Figure 5.15.

The relationship in 2D is the same as that in 1D:

 
d Gauss 1 x, y 2

d s
5 s ¢@ 

2 Gauss 1 x, y 2
@ x 

2 1
@ 

2 Gauss 1 x, y 2
@ y 

2 ≤  (5.102)

To see this, note that a 2D, zero-mean isotropic Gaussian is given by

 Gauss 1 x, y 2 5
1

2ps2 exp ¢2
x 

2 1 y 
2

2s2 ≤  (5.103)

Differentiating twice with respect to x yields

  
@ 

2 Gauss 1 x, y 2
@ x2 5

@ 
2

@ x 
2 ¢ 1

2ps2 exp ¢2
x 

2 1 y2

2s2 ≤ ≤  (5.104)

  5
1

s2 ¢1 2
x 

2

s2 ≤  Gauss 1 x, y 2  (5.105)

and by symmetry,

 
@ 

2 Gauss 1 x, y 2
@ y2 5

1
s2 ¢1 2

y 
2

s2 ≤  Gauss 1 x, y 2  (5.106)

Putting these together yields

 LoG 1 x, y; s 2 5
@ 

2 Gauss 1 x, y 2
@ x 

2 1
@ 

2 Gauss 1 x, y 2
@ y2 5 ¢ x 

2 1 y 
2 2 2s 

2

2ps6 ≤  exp ¢2
x 

2 1 y 
2

2s2 ≤  (5.107)

 5 ¢ x 
2 1 y 

2

s 
4 2

2
s2 ≤  Gauss 1 x, y 2  (5.108)

Differentiating with respect to s yields

  
d Gauss 1 x, y 2

ds
5

d
ds

 ¢ 1
2ps2 exp ¢2

x 
2 1 y 

2

2s2 b ≤  (5.109)

  5 2
2
s

 ¢1 2
x 

2 1 y 
2

2s2 ≤  Gauss 1 x, y 2  (5.110)

Comparing Equation (5.108) with Equation (5.110) yields Equation (5.102).

Figure 5.15 LEFT: Two 
Gaussians whose ratio 
of standard deviations 
is 1.6. RIGHT: The 
difference of Gaussians 
(solid blue) and 1D 
Laplacian of Gaussian 
(solid red). The scaled 
DoG (dashed blue) 
approximates the LoG.
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5.5 Nonlinear Filters 247

5.5 Nonlinear Filters
All the filters we have considered so far in this chapter rely upon convolution and are there-
fore linear shift-invariant filters, as we have already explained. Although there exist filters 
that are linear but not shift-invariant, we will not spend time discussing these, since they 
are not commonly used. Instead, we turn our attention in this section to nonlinear filters, 
which do not obey the superposition principle. In this section we consider several important, 
widely-used nonlinear filters.

5.5.1 Median Filter
In choosing what type of filter to use, it is important to identify the type of noise that one 
expects to be present in the image. For example, the lowpass filter obtained by convolving 
with a Gaussian is the optimal filter for minimizing the effects of additive white Gaussian 
noise (AWGN). To understand what this means, imagine adding to each pixel of a noise-free 
image a random value drawn from a Gaussian distribution:

 I r 1 x, y 2 5 I 1 x, y 2 1 j,    j , N 1 0,s2 2  (5.111)

In this equation, I is the noise-free image, I' is the image corrupted by additive white Gauss-
ian noise, and j is the random value drawn independently for each pixel from a Gaussian 
distribution (also known as the normal distribution, hence the N ) with a mean of zero and 
a variance of s2.† Pseudocode for adding white Gaussian noise to an image is given in 
Algorithm 5.10, where we assume that a procedure exists called RandGaussian that gener-
ates a random value according to a Gaussian distribution, and we have made sure to clamp 
the value so that it stays within the image range (assuming a bit-depth of 8). Such a proce-
dure is sometimes used to create synthetically corrupted images for measuring the robust-
ness of algorithms.

Another type of noise is salt-and-pepper noise, in which each pixel is set to either the 
minimum (“pepper”) or maximum (“salt”) possible gray level, or it remains unchanged:

 I r 1 x, y 2 5 c0 if 0 # j , p
255 if p # j , p 1 q
I 1 x, y 2 otherwise

    j , U 1 0,1 2  (5.112)

where the random variable j is drawn from a uniform distribution between 0 and 1, inclu-
sive. The probability of a pixel becoming salt is p; and the probability of a pixel becoming 
pepper is q. It is easy to see that 0 # p # 1, 0 # q # 1, and 0 # p 1 q # 1.

† Considered as a random variable, we say that j is independent and identically distributed (i.i.d.).

ALGORITHM 5.10 Add independent Gaussian noise to an image

AddGaussianNoise(I,s)

Input: grayscale image I, standard deviation s of the Gaussian distribution
Output: image corrupted by additive Gaussian noise

1 for 1 x, y 2 [ I do
2    j d RandGaussian 1s 2
3    I r 1 x, y 2 d max 1 0, min 1 255, I 1 x, y 2 1 j 2 2
4 return I r
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For an image corrupted by salt-and-pepper noise, convolving with a Gaussian is a bad 
idea, because such an operation will change the values of all the pixels, even of those that 
are not corrupted. Moreover, such an operation will result in a blurry appearance due to the 
weighted averaging operation. A much better solution in such a case is the median filter, 
which replaces each pixel with the median of all the gray levels in a local neighborhood, gener-
ally defined by a square window. The median filter works on the assumption that a small per-
centage of the pixels has been corrupted. A comparison of the results of median filtering and 
Gaussian smoothing on an image corrupted by salt-and-pepper noise is shown in Figure 5.16. 

Computing the median of a set of values involves sorting the values, then selecting the one 
in the middle. Therefore, the standard median filter algorithm on an image is computationally 
demanding, because for each pixel we must perform O 1w2 log w 2  operations to sort the gray 
levels in the w 3 w window centered at the pixel. With a slight trick, a much more efficient 
O(w) algorithm is able to compute the exact same result as the standard algorithm. The key to 
this algorithm is to store the graylevel histogram of the pixels in the window, along with the 
median and the number of pixels whose gray level is less than or equal to the median. These 
two extra values of information can then be updated in (approximately) constant time for 
each pixel. This faster algorithm is shown in Algorithm 5.11. For simplicity, out-of-bounds 
details have been omitted from the pseudocode, and for compactness, the semicolons in lines 
11, 13, 15, and 17 allow multiple lines of code to be displayed on a single line.

5.5.2 Non-Local Means
A particularly effective way to reduce the effects of noise in an image is to compute a weighted 
average over all pixels in the image, a technique known as non-local means (NLM):

 I r 1 x, y 2 5
1
h

 a1xr,yr2 [I

wx,xrI 1 x r, y r 2  (5.113)

where h 5 a 1xr,yr2[I
 wx,xr is a normalization factor and wx,xr is the weight associated with 

the pixels  x 5 1 x, y 2  and  x r 5 1 x r, y r 2 , computed based on the similarity in appearance 
of the two graylevel patterns in the windows surrounding the pixels. As a result, similar-
looking regions have more influence on the outcome than regions whose appearance is far 
from the window around the target pixel. A typical implementation of non-local means, 
shown in Algorithm 5.12, compares pixels using a distance function:

 wx,xr 5 e2
d I

2 1 x, x r 2
2s2   (5.114)

where the distance function sums the difference in gray levels between corresponding pixels 
in some window W:

 dI 1 x, x r 2 5 a
d[W

I 1 x 1 d 2 2 I 1 x r 1 d 2  (5.115)

Original image Image corrupted by
salt-and-pepper noise

Image restored using
median filter

Image restored using
Gaussian filter

Figure 5.16 LEFT: An 816 3 612 image, and its corruption by salt-and-pepper noise. Right: The result of applying 3 3 3 median and Gaussian 
filters, respectively, to the corrupted image. Notice that the median filter removes the noise much better than the Gaussian filter does.
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Even more robust results can be achieved by applying a Gaussian weighting function to 
this window, so that pixels near the center achieve more influence over the computation of 
dI 1 x, x r 2 . This straightforward extension is left as an exercise for the reader.

5.5.3 Bilateral Filtering
Recall that the convolution of a signal f(x) with a kernel g(x) is given by sliding a flipped 
version of the kernel across the signal and computing the sum of the elementwise 
multiplications:

 f r 1 x 2 5 f 1 x 2  ~ g 1 x 2 5
1
h

 a
i

 f 1 i 2 g 1 x 2 i 2  (5.116)

where h 5 a i
 g 1 i 2  is the normalization factor. Convolution is a linear operation because 

it operates the same on every pixel, regardless of the value of the pixel.
Many applications benefit from also taking into account the values of the pixels during 

the filtering. This concept leads to the bilateral filter, which contains two kernels, a spatial 
kernel and a range kernel. The spatial kernel gs weights neighboring samples according to 
their proximity to the central sample, while the range kernel gr weights neighboring samples 
according to their similarity in value to the central sample:

f r 1 x 2 5 f 1 x 2  ⊚ 8 gs 1 x 2 , gr 1 z 2 9 5
1

h 1 x 2  a
i

 f 1 i 2 gs 1 x 2 i 2 gr 1  
f 1 x 2 2 f 1 i 2 2  (5.117)

ALGORITHM 5.11 Perform median filtering on an image

MedianFilter (I, w)

Input: grayscale image I, width w of square window for computing median
Output: median-filtered image

 1 w~ d : 1w 2 1 2 /2; ➤ Determine half-width.
 2 for y d 0 to height 2 1 do
 3    W d 5 12w~ , 2w~ 2 , c, 1w~ , w~ 2 6 ➤ 2D window of pixel coordinates.
 4    h d HISTOGRAM 1 I 1W 2 2  ➤ Compute graylevel histogram over window.
 5    med d MEDIAN 1 h 2  ➤ Compute the median of the pixels.

 6    nm d amed

i50
 h 3i 4 ➤ Number of pixels whose gray level is less than or equal to med.

 7    for x d 0 to width 2 1 do
 8       I r 1 x, y 2 d med ➤ Set output pixel to the median value.
 9       for y r d 2w~  to w~  do
10          v d I 1 x 2 w~ , y 1 y r 2  ➤ Update histogram by removing pixels along left edge.
11          h 3v 4 d2 1; if v # med then nm d2 1
12          v d I 1 x 1 w~ 1 1, y 1 y r 2  ➤ Update histogram by adding pixels along right edge.
13          h 3v 4 d1 1; if v # med then nm d1 1
14       while nm , :w 
 w/2; do ➤ Update the median.
15         med d1 1;  nm d1 h 3med 4
16       while nm . :w 
 w/2; do
17         nm d2  h 3med 4;  med d2 1
18 return I r
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where ⊚ indicates bilateral filtering, h 1 x 2 5 a i
 gs 1 x 2 i 2 gr 1  

f 1 x 2 2 f 1 i 2 2  is the nor-
malization factor, and the variable z is used to emphasize that the input values to gr are not 
pixel coordinates but rather gray levels. If the range kernel is the identity function, that is, 
gr 1  

f 1 x 2 2 f 1 i 2 2 5 1, then bilateral filtering reduces to convolution.
The extension to 2D is straightforward:

I r 1 x, y 2 5 I 1 x, y 2  ⊚ 8Gs 1 x, y 2 , gr 1 z 2 9 5
1

h 1 x, y 2 ai
a

j

I 1 i, j 2Gs 1 x 2 i, y 2 j 2  
gr 1 I 1 x, y 2 2 I 1 i, j 2 2  (5.118)

where h 1 x, y 2 5 a i
 a j

 Gs 1 x 2 i, y 2 j 2 gr 1 I 1 x, y 2 2 I 1 i, j 2 2  is the normalization fac-
tor. For the same reasons that Gaussian kernels are used in convolution, Gaussian kernels 
are also typically used in bilateral filtering:

 Gs 1 x, y 2 5 e2
x2 1 y2

2s 
s2     gr 1 z 2 5 e2 z2

2s 
r2 (5.119)

Because the bilateral filter weights pixels according to their proximity, it produces a 
smooth blur, and because it weights pixels according to their values, it tends not to smooth 
across intensity edges. The filter thus achieves edge-preserving smoothing, as shown in 
Figure 5.17. Within a fairly homogeneous region of intensity, bilateral filtering is similar to 
convolution, but near an edge, it only takes into account the pixels on the near side of the 
edge, thus preserving the edge. Unlike convolution, which after repeated applications even-
tually converges to a flat image in which every pixel takes on the average value in the image, 
bilateral filtering typically converges to an image in which every pixel is assigned the aver-
age value of the similar-colored pixels nearby.† Repeated applications of bilateral filtering 
thus yield a cartoon-like image, as shown in Figure 5.18.

† Actually, such convergence occurs only if the range kernel is truncated (e.g., set to zero after several standard 
deviations), or if the iterations are stopped when the change in the image is small — almost always the case in prac-
tice. With an infinite-support range kernel, bilateral filtering eventually leads to a flat image just like convolution.

ALGORITHM 5.12 Perform non-local means filtering on an image

NonLocalMeans(I, w)

Input: grayscale image I, set of pixels W specifying window
Output: smoothed image from applying non-local means filtering

 1 for 1 x, y 2 [ I r do ➤ For each pixel in the output image (same size as input image),
 2    val d 0 initialize value to zero,
 3    norm d 0 and normalization factor to zero.
 4    for 1 x r, y r 2 [ I do ➤ For each pixel in input image,
 5        d d 0  initialize distance to zero.
 6        for 1 dx, dy 2 [ W do ➤ Compute the dissimilarity between the two windows.
 7          d d1 I 1 x 1 dx, y 1 dy 2 2 I 1 x r 1 dx, y r 1 dy 2
 8        w d exp 12d 
 d/ 1 2 
 s 
 s 2 2  ➤ Set the weight to the similarity.
 9        val d1 w 
 I 1 x r, y r 2  ➤ Update the sum of the weighted pixels,
10        norm d1 w and the normalization factor.
11   I r 1 x, y 2 d val/norm ➤ Set the output pixel to the normalized value.
12 return I r
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There are three parameters in a Gaussian bilateral filter: the spatial standard deviation 
ss, the range standard deviation sr 

, and the number of iterations niter 
:

I r 1 x, y 2 5 I 1 x, y 2  ⊚ 
niter 8Gs 1 x, y 2 , gr 1 z 2 9 5 1 I 1 x, y 2  ⊚ 8Gs 1 x, y 2 , gr 1 z 2 9 2c ⊚ 8Gs 1 x, y 2 , gr 1 z 2 9('''''''''')'''''''''''*

repeated niter times

 (5.120)

The code to implement bilateral filtering is straightforward, as shown in Algorithm 5.13. 
Since the values of a Gaussian are nearly negligible beyond several standard deviations, we 
can limit the processing to a fixed-size window of radius 2.5ss in the spatial domain to limit 
computation. For relatively small values of ss, such a straightforward approach yields an 
algorithm that, while not necessary efficient, is nevertheless tolerable for many applications.

5.5.4 Bilateral Filtering for Large Windows
When the window size is large, bilateral filtering is extremely slow, requiring computation that 
is proportional to the size of the window for every pixel in the image. Just as we showed that 
Gaussian convolution can be achieved in constant O(1) per-pixel time by approximating the 

Figure 5.17 Bilateral filtering of a noisy step edge preserves the crisp edge as it smooths out the noise on either side of the edge. 
The top row shows the kernel at three locations: Far from the edge, the kernel approximates a Gaussian, whereas near the edge it 
approximates half a Gaussian.
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Figure 5.18 Repeated 
applications of bilateral 
filtering yield a cartoon-
like image in which 
the colors are flattened 
in local regions. The 
result (right) was 
obtained by applying 
niter 5 5 iterations of 
bilateral filtering on the 
input (left).
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Gaussian kernel with the convolution of box kernels, bilateral filtering with Gaussian kernels 
can also be achieved in constant O(1) per-pixel time by approximating the Gaussian range ker-
nel. Several approaches have been proposed for achieving such an efficient approximation. To 
understand how this is done for one such approach, let us first describe the notion of shiftability, 
after which we will see that the Gaussian can be well approximated by a raised cosine.

A function f 1 z 2  is said to be shiftable if for every translation t, we have

 f 1 z 2 t 2 5 a
n

i51

 ci 1 t 2fi 1 z 2  (5.121)

where ci are the interpolating coefficients, fi are the global basis functions, and n is the 
order of shiftability. Using shiftability, a local kernel can be decomposed into weighted 
sums of the basis functions. It can be shown that the only smooth functions that are shift-
able are composed of sums and products of the polynomials and exponentials. For example, 
consider the function

 f 1 z 2 5 a
n

i51

ai 
eai z (5.122)

It is easy to see that this function shifted by t can be expressed as the weighted sum of terms 
depending only upon z, using weights depending only upon t:

  f 1 z 2 t 2 5 a
n

i51

ai 
eai 1z2t2 (5.123)

  
5 a

n

i51 e2ait(')'*
ci1t2 ai 

eaiz(')'*
fi1z2  (5.124)

ALGORITHM 5.13 Perform bilateral filtering on an image

BilateralFilter 1 I, ss, sr, niter 2
Input: grayscale image I, standard deviations ss and sr of Gaussian spatial and range kernels, number niter of 

iterations
Output: bilateral-filtered image

 1 for k d 1 to niter do ➤ For each iteration,
 2   for 1 x, y 2 [ I do and for each pixel in the image,
 3       val d 0 initialize the value to zero,
 4       norm d 0 and the normalization factor to zero.
 5       for 1 dx, dy 2 [ W do ➤ For each pixel in a 62.5ss window,
 6           ds

2 d dx 
 dx 1 dy 
 dy compute squared spatial distance,
 7          dr d I 1 x, y 2 2 I 1 x 1 dx, y 1 dy 2  and range difference
 8          w d exp 12d s

2/ 1 2 
 ss
2 2 2  
 exp 12 1 dr 
 dr 2 / 1 2 
 sr

2 2 2  to compute weight.
 9          val d1 w 
 I 1 x 1 dx, y 1 dy 2  ➤ Accumulate weighted sum
10          norm d1 w and update normalization factor.
11       I r 1 x, y 2 d val/norm ➤ Set output to normalized weighted sum.
12   I d I r  ➤ Copy entire output image to input for next iteration.
13 return I r
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5.5 Nonlinear Filters 253

Another example of a shiftable function is the cosine: cos 1 z 2 t 2 5 cos 1 t 2  cos 1 z 2 1
sin 1 t 2  sin 1 z 2 , and similarly the sine: sin 1 z 2 t 2 5 cos 1 t 2  sin 1 z 2 2 sin 1 t 2  cos 1 z 2 . 
In other words, any sinusoid† can be expressed as the linear combination of two fixed 
sinusoids.

The key to making bilateral filtering efficient is to approximate the Gaussian. Among the 
many ways to approximate the Gaussian, one of the most effective for exploiting shiftability 
is that of the raised cosine, which is the cosine raised to some power. It can be shown that 
as the power increases, the raised cosine indeed converges to a Gaussian:

 lim
nS`

 ccosa gz"n
b d n

5 exp ¢2
g2z2

2
≤  (5.125)

where the scaling by "n prevents the expression from degenerating to zero almost everywhere. 
The rate of convergence of raised Gaussians is much faster than that of other expressions such 
as the Taylor series polynomials, thus requiring fewer terms to achieve a good approximation. 
A reasonable choice is n 5 3, as seen in Figure 5.19. Note that sr

2 < 1/g2, where sr
2 is the 

variance of the Gaussian, so that we can set g 5 sr
21 given some desired variance sr.

To see how to apply this technique, let us consider the case n 5 1. Although this yields 
a rather crude approximation to the Gaussian, it simplifies the math considerably, enabling 
us to develop some intuition before tackling the more difficult case n . 1. In other words, 
let the range kernel be given by a windowed Gaussian:

 gr 1 z 2 ; f 1 z 2 5 bcos 1gz 2 if 2a # z # a

0 otherwise
 (5.126)

where a ; p
2g so that the function is nonnegative and unimodal with a peak at z 5 0. 

Plugging this expression into the bilateral filter equation above yields

  f r1 x 2 5 f 1 x 2  ⊚ 8gs 1 x 2 , gr 1 z 2 9  (5.127)

  <
1

h 1 x 2  a
i

 f 1 i 2 gs 1 x 2 i 2  cos 1g 1  f 1 x 2 2 f 1 i 2 2 2  (5.128)

† Since the term sinusoid allows for arbitrary phase, it includes both sine and cosine.

Figure 5.19 The raised cosine approximates the Gaussian. The black line shows exp 12z2/2s2 2  for s 5 4. The red lines show the raised 
cosine, 3cos 1gz/"n 2 4n, for n 5 1, 2, and 3, where g 5 1/s. For n 5 2 the raised cosine still exhibits considerable oscillation, but for 
n $ 3 it well approximates the Gaussian shape. For n $ 20 (not shown), it is nearly indistinguishable from the Gaussian.
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254 Chapter 5 • Spatial-Domain Filtering

 5
1

h 1 x 2  a
i

 
 
f 1 i 2 gs 1 x 2 i 2 3cos 1g f 1 x 2 2  cos 1g f 1 i 2 2 2 sin 1g f 1 x 2 2  sin 1g f 1 i 2 2 4 (5.129)

 5
1

h 1 x 2  1 cos 1g f 1 x 2 2f1 1 x 2 2 sin 1g f 1 x 2 2f2 1 x 2 2  (5.130)

where we notice from the last expression that the basis functions are simply convolutions of 
modulations of the original signal with a standard spatial convolution kernel:

  f1 1 x 2 5 a
i

 
 
f 1 i 2  cos 1g f 1 i 2 2 gs 1 x 2 i 2 5 f 1 x 2  cos 1g f 1 x 2 2  ~ gs 1 x 2  (5.131)

  f2 1 x 2 5 a
i

 
 
f 1 i 2  sin 1g f 1 i 2 2 gs 1 x 2 i 2 5 f 1 x 2  sin 1g f 1 x 2 2  ~ gs 1 x 2  (5.132)

Similarly, the normalization factor is given by

 h 1 x 2 5 a
i

gs 1 x 2 i 2  cos 1g 1  f 1 x 2 2 f 1 i 2 2 2  (5.133)

 5 cos 1g f 1 x 2 2 a
i

 cos 1g f 1 i 2 2 gs 1 x 2 i 2 2 sin 1g f 1 x 2 2 a
i

 sin 1g f 1 i 2 2 gs 1 x 2 i 2  (5.134)

 5 cos 1g f 1 x 2 2  3cos 1g f 1 x 2 2  ~ gs 1 x 2 4 2 sin 1g f 1 x 2 2  3sin 1g f 1 x 2 2  ~ gs 1 x 2 4  (5.135)

This is a truly remarkable result because it shows that the bilateral filter with an approxi-
mate Gaussian range kernel can be written as a linear combination of convolutions with 
the spatial kernel.

Implementing this approach to bilateral filtering is straightforward. The input signal f (x) 
is multiplied pointwise by the function cos 1g f 1 x 2 2 , as well as by the function sin 1g f 1 x 2 2 . 
The results are then convolved with a Gaussian kernel with standard deviation ss to yield f1 
and f2, as in Equations (5.131) and (5.132). The two signals f1 and f2 are then multiplied 
pointwise by cos 1g f 1 x 2 2  and sin 1g f 1 x 2 2  again, respectively, and the results are subtracted 
to form the numerator in Equation (5.130). A similar approach, but without the original input 
signal f (x), yields the denominator h 1 x 2 , as in Equation (5.135). Dividing the numerator and 
denominator by each other yields the final result. Notice that every step of this algorithm 
is constant O(1) per-pixel time, if we use the trick shown earlier for reducing Gaussian 
smoothing to constant per-pixel time. The pseudocode for 2D bilateral filtering using this 
rather crude approximation of the Gaussian range kernel is given in Algorithm 5.14.

Now let us consider n . 1, which yields a much better Gaussian approximation. Using 
the expression cos u 5 1

2 1 eju 1 e2ju 2  and the binomial theorem, it can be shown that

 f 1 z 2 5 ccos a gz"n
b d n

5 a
n

i50

22n¢n
i
≤  exp aj 

1 2i 2 n 2gz"n
b  (5.136)

where j 5 "21. Note that we have n 1 1 terms, leading to 2 1 n 1 1 2  basis images. But if 
n is even, then the expression inside the summation is constant when i 5 n/2, thus reducing 
the number of basis images by 1.

Plugging this into the bilateral filter equation above yields

 f r 1 x 2 5 f 1 x 2  ⊚ 8 gs 1 x 2 , gr 1 z 2 9 (5.137)

 <  
1

h 1 x 2  a
i

  
f 1 i 2 gs 1 x 2 i 2  acosag 1   f 1 x 2 2 f 1 i 2 2"n

bbn
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 5
1

h 1 x 2  a
i

 f 1 i 2 gs 1 x 2 i 2  ¢ a
n

ir50

22n¢ n
ir
≤  exp ¢ j 

1 2ir 2 n 2g 1  f 1 x 2 2 f 1 i 2 2"n
≤ ≤

 
5

1
h 1 x 2  a

i

 f 1 i 2 gs 1 x 2 i 2£an

ir50

 

22nan
i r
b  exp aj 

1 2i r 2 n 2g f 1 x 2"n
b

('''''')''''''*
cir1 f 1x2 2 exp a2j 

1 2i r 2 n 2g f 1 i 2"n
b

(''''')'''''*
air1 f 1i2 2 ≥

 

 

where again we notice that the basis functions are simply convolutions of functions of 
the original signal, after multiplying by a complex exponential, with a standard spatial 
smoothing kernel. Similarly, the normalization factor is given by

 h 1 x 2 5 a
i

gs 1 x 2 i 2 acosag 1  f 1 x 2 2 f 1 i 2 2"n
bbn

 (5.138)

 5 a
n

ir50

 ¢22n¢ n
i r
≤  exp aj 

1 2i r 2 n 2g f 1 x 2"n
b ≤  ¢ a

i

 exp a2j 

1 2i r 2 n 2g f 1 i 2"n
b  gs 1 x 2 i 2 ≤

ALGORITHM 5.14 Perform fast bilateral filtering on an image using the crude approximation of a cosine for the range kernel

BilateralFilterFastButCrude 1 I, ss, sr, niter 2
Input: grayscale image I, standard deviations ss and sr of Gaussian spatial and range kernels (range kernel is 

approximated as a cosine) number niter of iterations
Output: bilateral-filtered image

 1 g d 1/sr ➤ Determine g from the standard deviation of the range kernel.
 2 for k d 1 to niter do ➤ For each iteration of the bilateral filter,
 3    for 1 x, y 2 [ I do compute the
 4       H1 1 x, y 2 d  cos 1g 
I 1 x, y 2 2  coefficient images H1 and H2

 5       H2 1 x, y 2 d sin 1g 
 I 1 x, y 2 2  (which are also used for normalization),
 6       G1 1 x, y 2 d I 1 x, y 2  
 H1 1 x, y 2  and the
 7       G2 1 x, y 2 d I 1 x, y 2  
 H2 1 x, y 2  basis images G1 and G2.
 8    Gr1 d  Smooth 1G1, ss 2  ➤ Smooth the basis images
 9    G2r d  Smooth 1G2, ss 2  by convolving with a spatial Gaussian, and
10    H1r d  Smooth 1H1, ss 2  smooth the normalization images
11    H2r d  Smooth 1H2, ss 2  by convolving with a spatial Gaussian.
12    for 1 x, y 2 [ I r do ➤ Set each pixel in the output (same size as input)
13       num d H1 1 x, y 2  
 G1r 1 x, y 2 1 H2 1 x, y 2  
 G2r 1 x, y 2  to the weighted sum
14       den d H1 1 x, y 2  
 H1r 1 x, y 2 1 H2 1 x, y 2  
 H2r 1 x, y 2  of basis images divided by
15       I r 1 x, y 2 d num/den weighted sum of normalization images.
16    I d I r
17 return I r
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This fast version of bilateral filtering, extended to 2D, is given in Algorithm 5.15, where 
FACT 1 n 2 5 n! is the factorial function, needed because Ani B 5 n!

i! 1 n 2 i 2 !.
Bilateral filtering is used for a variety of applications. Besides general denoising pur-

poses, it is widely used for tone mapping high-dynamic-range (HDR) images, as shown 
in Figure 5.20. The bilateral filter is applied to HDR intensity values in the log domain, 
followed by contrast reduction to yield low-dynamic-range (LDR) intensity values; glare 
reduction can be achieved in a similar manner. Bilateral filtering can also be used for low-
light enhancement (LLE) using two images of a scene, one taken with a flash and the other 
taken without a flash, as shown in Figure 5.21. The flash image captures detail, while the 
no-flash image captures the unmodified viewing conditions (original scene ambience), so 
applying the bilateral filter to the latter to remove noise and then applying a cross-bilateral 
filter to the former using the latter allows the two images to be combined to preserve the 
important properties of each.

ALGORITHM 5.15 Perform fast bilateral filtering on an image using the raised cosine for the range kernel

BilateralFilterFast 1 I, ss, sr, niter 2
Input: grayscale image I, standard deviations ss and sr of Gaussian spatial and range kernels (range kernel is 

approximated as a raised cosine) number niter of iterations
Output: bilateral-filtered image

 1 g d 1/sr

 2 n d 3 ➤ For a reasonable approximation, it is recommended that n $ 3.
 3 for k d 1 to niter do
 4   for i d 0 to n do
 5      ➤ Compute basis image Gir and coefficient image Di, along with Hir for normalization
 6     for 1 x, y 2 [ I do
 7       v d g 
 1 2 
 i 2 n 2  
 I 1 x, y 2 /SQRT 1 n 2  ➤ scalar
 8       b d FACT 1 n 2 / 1FACT 1 i 2  * FACT 1 n 2 i 2  * POW 1 2, 2n 2 2  ➤ scalar
 9       Hi 1 x, y 2 d 3cos 1 v 2  sin 1 v 2 4T ➤ 2 3 1 vector represents complex number
10       Gi 1 x, y 2 d I 1 x, y 2  
 Hi 1 x, y 2  ➤ 2 3 1 vector represents complex number
11       Di 1 x, y 2 d 3cos 1 v 2  sin 1 v 2 4T 
 b ➤ 2 3 1 vector represents complex number
12     Gir d  Smooth 1Gi, ss 2  ➤ Smooth real and imaginary channels separately.
13     Hir d  Smooth 1Hi, ss 2  ➤ Smooth real and imaginary channels separately.
14
15    ➤ For each pixel, divide the elementwise multiplication of the images.
16   for 1 x, y 2 [ I do
17     num d 0
18     den d 0
19     for i d 0 to n do
20       num d1 Di 1 x, y 2  
 Gir 1 x, y 2  ➤ multiplication of two complex numbers
21       den d1 Di 1 x, y 2  
 Hir 1 x, y 2  ➤ multiplication of two complex numbers
22   I r 1 x, y 2 d  Real(num / den) ➤ Extract real component after complex division.
23 I d I r
24 return I r
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5.5.5 Mean-Shift Filter
Another edge-preserving filter closely related to the bilateral filter is the mean-shift filter. 
In the mean-shift filter, each pixel iteratively moves in such a way as to seek the nearest mode 
in the joint spatial-range space until convergence. More specifically, let xi ; 1 xi, yi, vi 2  be 
the coordinates and value of the ith pixel, where I 1 xi, yi 2 5 vi. If we consider the set of 
points 5 1 xi, yi, vi 2 6i51

n , where n is the number of pixels in the image, as discrete samples of 
a probability distribution function (PDF), then an estimate f̂  of the underlying continuous 
PDF can be constructed as

 f̂ 1 x 2 5
1
n

 a
n

i51

 K ax 2 xi

h
b  ~  

1
n

 a
n

i51

 k ¢ 7x 2 xi 7 2
h2 ≤  (5.139)

where K 1 # 2  is the kernel function with bandwidth h, and where the rightmost part 
assumes that K 1 # 2  is a radially symmetric kernel, so that K 1 z 2  ~  k 1 7z 72 2 , where k 1 # 2  
is called the profile of the kernel K 1 # 2 , with z an arbitrary vector. Note that k 1 # 2  is only 
defined for nonnegative scalar values, and proportionality is used so that normalization 
constants can be ignored in the profile.

Figure 5.21 One of 
the more interesting 
applications of the 
bilateral filter is to 
combine a flash 
image (left) with 
a no-flash image 
(middle) to preserve 
both detail and the 
original viewing 
conditions of the 
scene (right).
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Figure 5.20 Tone mapping 
of high dynamic range 
images is often performed 
using bilateral filtering.
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Two popular kernels for mean-shift filtering are the Gaussian (or normal) kernel, and 
the Epanechnikov kernel, which are given (along with their profiles) as follows:

 KN 1 z 2 5
11 2p 2 d/2

 exp 121
2 7z 72 2        kN 1 z 2 5 exp 121

2 z 2  z $ 0

 KE 1 z 2 5 b d 1 2
2cd

 11 2 7 z 72 2 if 7 z 7 # 1
0 otherwise

    kE 1 z 2 5 b1 2 z if 0 # z # 1
0 if z . 1

 (5.140)

where cd is the volume of the unit d-dimensional hypersphere and d is the dimensionality 
of the space (d 5 2 for spatial coordinates, d 5 1 for range values). For example, with 
Gaussian kernels, Equation (5.139) becomes

 f̂ 1 x 2 ~
1
n

 an

i51

 exp ¢2
7x 2 xi 7 2

2h2 ≤  (5.141)

so that the bandwidth is the standard deviation. In the case of filtering images, x is 
not in a Euclidean space, since the spatial and range dimensions have different units. 
As  a result, it is necessary to use different bandwidth parameters for the different 
dimensions, so that k 1 7x 2 xi 72/h2 2  is replaced with k 1 7x 2 xi 72/hs

2 1 1 v 2 vi 2 2/hr
2 2 , 

where x ; 1 x, y 2  and xi ; 1 xi, yi 2 , and hs and hr are the spatial and range bandwidth 
parameters, respectively.

An extremum of the PDF can be found by differentiating Equation (5.139), which, if we 
let g 1 z 2 ; 2@ k 1 z 2 /@  x, yields:

   
@ f̂ 1 x 2
@  x

5 0 (5.142)

  ~ an

i51

 

@

@ x
 ¢k¢ 7x 2 xi 7 2

h2 ≤ ≤  1 x 2 xi 2  (5.143)

  5 an

i51

 g¢ 7x 2 xi 7 2
h2 ≤  1 xi 2 x 2  (5.144)

 (5.145)

Since the derivative of the exponential is an exponential, gN 1 z 2 5 1
2 kN 1 z 2  in the case of 

the Gaussian kernel, and gE 1 z 2 5 1 in the case of the Epanechnikov kernel. Let us define 
the kernel G 1 # 2  so that G 1 z 2 ~ g 1 7z 72 2 , then K 1 # 2  is called the shadow of G 1 # 2 . It is not 
difficult to see that the Epanechnikov kernel is the shadow of the uniform kernel, while the 
Gaussian kernel is the shadow of itself.

In Equation (5.145) we have labeled the weighted mean of the points using the kernel 
centered at x, as well as the difference between the mean and the current estimate x, where 
the latter is known as the mean-shift. Since the extremum occurs when the mean-shift 

5 Ban

i51

g ¢ 7 x 2 xi 72
h2 ≤ R

 

E  

an

i51
 g¢ 7x 2 xi 72

h2 ≤  xi

    U
             

2 x

('''')''''*
weighted mean('''''')''''''*

mean-shift

an

i51
 g¢ 7 x 2 xi 7 2

h2 ≤
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is zero, if we let x 
1t2 be the estimate for the t 

th iteration, then the estimate in the next 
iteration can be set to x 

1t112 5 x 
1t2 1 Dx 

1t2, where the difference between consecutive 
estimates Dx1t2 ; x1t112 2 x1t2 is just the mean-shift. This leads to the mean-shift filtering 
algorithm, which repeatedly sets the estimate to the weighted mean:

 x 
1t112 5

an

i51
 g¢ 7 x 

1t2 2 xi 72
h2 ≤  xi

an

i51
 g¢ 7 x 

1t2 2 xi 72
h2 ≤   (5.146)

for t 5 1, 2, c until convergence, where x 
102 is the initial estimate. The algorithm per-

forms gradient ascent, which can be seen by noticing from Equations (5.142) and (5.145) 
that the mean-shift vector is always proportional to the density estimate, and therefore it 
points toward the maximum increase in the density.

The mean-shift algorithm is guaranteed to converge as long as the kernel profile is con-
vex and monotonically decreasing, which are true for both the Gaussian and Epanechnikov 
kernels. For the latter, the algorithm converges in a finite number of steps, since the number 
of locations with unique mean values is finite. With a Gaussian, the algorithm requires an 
infinite number of steps, but it is easy in practice to terminate when the norm of the mean-
shift vector is below a threshold. The convergence of the algorithm arises from the automatic 
adaptation of the step size in the gradient ascent. From the denominator in Equation (5.146) 
we notice that regions of low-density values yield large step sizes, whereas high-density 
regions lead to smaller step sizes. Thus, as the estimate approaches the nearest extremum, 
the step sizes decrease until they reach zero, either actually or asymptotically.

The mean-shift filtering procedure is shown in Algorithm 5.16. In Line 2, 5x6 is initialized 
to the spatial coordinates and range value of a pixel in the image. Lines 4–11 contain the 
core procedure for updating x by accumulating the vector numerator and scalar denominator 

ALGORITHM 5.16 Apply the mean-shift filtering algorithm to an image

MeanShiftFilter 1 I, hs, hr 2
Input: grayscale image I, bandwidth parameters hs and hr
Output: output image I r resulting from the mean-shift (edge-preserving) filter

 1 for 1 x, y 2 [ I do ➤ For each pixel in the image,
 2    1 x r, y r, v r 2 d 1 x, y, I 1 x, y 2 2  initialize x 5 1 x r, y r, v r 2 .
 3    repeat
 4       num d 1 0, 0, 0 2  ➤ Loop through all
 5       den d 0 the other pixels in the image,
 6       for 1 xi, yi 2 [ I do accumulating the vector
 7        w d g 1 1 1 x r 2 xi 2 2 1 1 y r 2 yi 2 2 2 /hs

2 1 1 v r 2 vi 2 2/hr
2 2  numerator a g 1 # 2 xi,

 8        num d1 w 
 1 xi, yi, I 1 xi, yi 2 2  and scalar
 9        den d1 w denominator a g 1 # 2  of Equation (5.146),
10       mean-shift d num/den 2 1 x r, y r, v r 2  and updating x accordingly.
11       1 x r, y r, v r 2 d num/den ➤ This is repeated until the norm of the
12    until Norm(mean-shift) , t mean-shift vector is below a threshold.
13    I r 1 x, y 2 d v r Update the pixel value using the value in x.
14 return I r
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of Equation (5.146), looping through all the pixels in the image to compute the weighted 
average. After the algorithm has converged, the output gray level is set to the final gray 
level from the iterations, discarding the shift in spatial coordinates. Note that the algorithm 
requires four nested for loops, which explains why mean-shift filtering can be quite slow. In 
practice, the Gaussian kernel is typically truncated past 62.5hs or so, thus greatly reducing 
the amount of computation; the Epanechnikov kernel is truncated by definition. Note also 
that when the Epanechnikov kernel is used, the weight in Line 10 reduces to 1 for points in 
the hypersphere and 0 for points outside, since the Epanechnikov kernel is the shadow of 
the uniform kernel. An example of mean-shift filtering is shown in Figure 5.22.

The similarity between the bilateral filter and the mean-shift filter is obvious from 
studying Equations (5.118) and (5.146). In fact, the two equations are nearly identical in 
the case of the Gaussian kernel. The primary difference is that the bilateral filter updates 
the gray levels of the pixels without shifting the spatial coordinates of the pixels, whereas 
the mean-shift filter also shifts the spatial coordinates. Even though the shifted spatial 
coordinates are eventually discarded, this aspect of the computation is what enables the 
mean-shift algorithm to seek the nearest extremum of the PDF, and it is what guarantees 
that the algorithm converges to a cartoon-like image, whereas a bilateral filter that runs 
forever (without a truncated range kernel) will eventually yield a flat image in which all 
pixels have the same gray level.

5.5.6 Anisotropic Diffusion
In physics, diffusion refers to the movement of molecules from regions of high concen-
tration to regions of low concentration. If we allow the graylevel pixel values to indicate 
the amount of concentration, then diffusion applied to an image would darken the bright 
regions and brighten the dark regions. And if run forever, diffusion would eventually lead to 
an image in which every pixel has the same value, namely the mean of all the pixel values.

Consider, for example, the following procedure. Let I 
1t2 refer to the image after the 

tth iteration, with I 
102 ; I being the initial image. Then repeatedly smooth the image by 

computing for t 5 1, 2, c, a weighted average between each pixel and its 4-neighbors:

  I 
1t112 1 x, y 2 5 I 

1t2 1 x, y 2
  1l 1 I 

1t2 1 x 2 1, y 2 2 I 
1t2 1 x, y 2 2

  1l 1 I 
1t2 1 x 1 1, y 2 2 I 

1t2 1 x, y 2 2
Figure 5.22 An image 
(left) and the cartoon-
like result of mean-shift 
filtering (right), using 
hs 5 32 and hr 5 16.
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5.5 Nonlinear Filters 261

  1l 1 I 
1t2 1 x, y 2 1 2 2 I 

1t2 1 x, y 2 2
  1l 1 I 

1t2 1 x, y 1 1 2 2 I 
1t2 1 x, y 2 2

  5 1 1 2 4l 2 I 
1t2 1 x, y 2 1 4l  I  

1t2 1 x, y 2  (5.147)

where the scalar l governs the step size, and

I  
1t2 1 x, y 2 ;

1
4

 1 I 
1t2 1 x 2 1, y 2 1 I 

1t2 1 x 1 1, y 2 1 I 
1t2 1 x, y 2 1 2 1 I 

1t2 1 x, y 1 1 2 2  (5.148)

is the average of the 4-neighbors of the pixel at (x,y). To ensure convergence, 0 # l # 1
4; if 

l 5 1
4, then the computation simply replaces each pixel with the average of its 4-neighbors 

at each iteration; if l , 1
4, then the computation increases or decreases the pixel value to 

make it more like the average of its 4-neighbors.
Equation (5.147) is very similar to Gaussian smoothing, and it is easy to see that it will 

eventually lead to a flat image in which every pixel has the same value. This procedure 
is known as isotropic diffusion, because it propagates the pixel values in all directions 
(that is, all of the four cardinal directions, due to discretization effects) equally. In contrast, 
anisotropic diffusion means to smooth the image differently in the different directions. 
Typically, this involves smoothing the image everywhere except across intensity edges, like 
the edge-preserving smoothing behavior of the bilateral and mean-shift filters. In anisotropic 
diffusion, the image values are smoothed by repeatedly performing local averages, but doing 
so in a way that weights neighboring pixels less if they lie on an intensity edge. In this way, 
the anisotropic diffusion process blurs the image within regions but not across boundaries.

The implementation of anisotropic diffusion is straightforward. For any iteration t, only 
the latest 2D image I 

1t2 is stored, from which the diffusion coefficients are computed for each 
pixel and direction. To preserve image boundaries caused by intensity edges, let us define

 C 
1t2 1 x, y, Dx, Dy 2 ; g 1 0I 

1t2 1 x 1 Dx, y 1 Dy 2 2 I 
1t2 1 x, y 2 0 2  (5.149)

where C 
1t2 1 x, y, Dx, Dy 2  is the diffusion coefficient at pixel (x,y) in the direction 1Dx, Dy 2  

at iteration t, and g is a monotonically decreasing function, such as g 1 z 2 ; exp 12z 
2/s 

2 2  
or g 1 z 2 ; 1 1 1 z 

2/s 
2 221, where s is a scale parameter. Similar to the isotropic procedure 

above, the new value of a pixel as

  I 
1t112 1 x, y 2 5 I 

1t2 1 x, y 2
  1lC 

1t2 1 x, y, 21, 0 2 1 I 
1t2 1 x 2 1, y 2 2 I 

1t2 1 x, y 2 2
  1lC 

1t2 1 x, y, 11, 0 2 1 I 
1t2 1 x 1 1, y 2 2 I 

1t2 1 x, y 2 2
  1lC 

1t2 1 x, y, 0, 21 2 1 I 
1t2 1 x, y 2 1 2 2 I 

1t2 1 x, y 2 2
  1lC 

1t2 1 x, y, 0, 11 2 1 I 
1t2 1 x, y 1 1 2 2 I 

1t2 1 x, y 2 2  (5.150)

where 0 # l # 1
4 to ensure convergence.

To gain an appreciation for the underlying math, consider the family of continuous-
domain images obtained by convolving the original image I(x, y) with Gaussian kernels 
having continuously increasing variance:

 I 1 x, y, t 2 ; I 1 x, y 2  ~ Gausst 1 x, y 2  (5.151)

where t $ 0 is a continuous scale parameter that governs the amount of smoothing, 
I 1 x, y, 0 2 ; I 1 x, y 2 , and x and y are treated as continuous values as well. It can be shown 
that the resulting 3D volume defined in Equation (5.151) is the solution to the so-called 
heat equation, which is a physical equation describing the evolution of a heat distribution  
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262 Chapter 5 • Spatial-Domain Filtering

I(x, y, t) over time t in a homogeneous medium with isotropic conductivity, given an initial 
heat distribution I 1 x, y, 0 2 ; I 1 x, y 2 :
 

@I 1 x, y, t 2
@ t

5
1
2

 r 
2I 1 x, y, t 2  (5.152)

where r2 is the Laplacian operator. This heat equation is a type of diffusion equation. 
Note that in the physical equation the variable t is actual time, whereas in the implementa-
tion above it is “pseudo-time” that corresponds to the iteration of the algorithm. The fact 
that the Gaussian kernel is the unique kernel for solving this equation also follows from the 
fact that it is the Green’s function of this heat equation at an infinite domain.

Similarly, the continuous anisotropic diffusion equation states that the change over time 
is equal to the divergence of the weighted gradient:

 
@ I 1 x, y, t 2

@ t
5 r # 1C 1 x, y, t, D x, Dy 2rI 1 x, y, t 2 2  (5.153)

 5 C 1 x, y, t, D x, Dy 2r2I 1 x, y, t 2 1 1rC 1 x, y, t, D x, Dy 2 2TrI 1 x, y, t 2  (5.154)

where C 1 x, y, t, Dx, Dy 2  is the diffusion coefficient at pixel (x,y,t) in the direction 1Dx, Dy 2 , r #  is the divergence, r is the spatial gradient, and the second equation is obtained 
from the first by the product rule of differentiation, noting that r #rI 5 r2I. It is easy to 
see that this anisotropic equation reduces to the isotropic equation of Equation (5.152) if 
C 1 x, y, t, Dx, Dy 2 5 1

2, since rC 5 0 if C is constant. The implementations above arise 
from the approximation @ I 1 x, y, t 2

@
 

t < I 
1t112 1 x, y 2 2 I 

1t2 1 x, y 2 , and by using the 3 3 3 LoG 
kernel defined by s2 5 0.

5.5.7 Adaptive Smoothing
Closely related to anisotropic diffusion is the concept of adaptive smoothing. Adaptive 
smoothing simply computes a weighted average of the neighbors of a pixel, with weights 
that discourage smoothing across boundaries:

 I 
1t112 1 x, y 2 5

a i a j I 
1t2 1 x 1 i, y 1 j 2w1t2 1 x 1 i, y 1 j 2
a i a j w

1t2 1 x 1 i, y 1 j 2  (5.155)

where the summation is conducted over a local neighborhood of the pixel and the weights 
are defined to be inversely related to the magnitude of the image gradient:

 w1t2 1 x, y 2 ; expa2
7rI 1 x, y 2 7 2

2s2 b  (5.156)

where s is another scaling parameter. Comparing Equation (5.155) with Equation (5.118), 
it is clear that the bilateral filter is simply a special case of adaptive smoothing, with the 
particular choice of weights determined by Gaussian spatial and range kernels.

5.6 Grayscale Morphological Operators
Another important class of nonlinear image filters is that of morphological operators. In the 
previous chapter we discussed binary morphological operators, such as erosion, dilation, 
opening, and closing. These concepts can be naturally extended to grayscale images. 
Grayscale morphology is used for a variety of image processing tasks such as feature 
detection, segmentation, and sharpening.
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5.6 Grayscale Morphological Operators 263

5.6.1 Grayscale Dilation and Erosion
Recall from the previous chapter that a binary image can be viewed as a set of ON pixels, 
so that the dilation or erosion of a binary image is given by the union or intersection of 
translated versions of the structuring element placed within the image:

  I % B 5 d
d[B

Id 5 d
d[I

Bd 5 5d : B̌d x I 2 06     1 binary or grayscale 2  (5.157)

  I *̌ B 5 t
d[B̌

 Id 5 t
d[I

 qB̌d 5 5d : Bd 8 I6           
1 binary or grayscale 2  (5.158)

where d 5 1 dx, dy 2 , and we have shown both center-in and center-out formulations for 
completeness.

The extension to grayscale images is straightforward: just as a binary image can be 
viewed as a set of (x,y) coordinates such that I 1 x, y 2 5 ON, a grayscale image can be viewed 
as a set of (x,y,v) coordinates such that I 1 x, y 2 # v. In other words, if we view the grayscale 
image as a function of (x,y), then the image can be viewed as a set containing all the points 
at or below the function, as illustrated in Figure 5.23. Similarly, a grayscale structuring ele-
ment (SE) is the set of points at or below the grayscale function defining the SE. With this 
expanded understanding of the sets I and B, the definition of grayscale dilation and erosion 
remains identical to Equations (5.157) – (5.158) above except with d 5 1 dx, dy, dv 2  and 
with B̌ flipping not only dx and dy but also dv.

As an alternate view, recall that binary erosion sets the central pixel to ON if all of the 
pixels overlapping the SE are ON; otherwise it sets the central pixel to OFF. Similarly, binary 
dilation sets the central pixel of a binary image to ON if any of the pixels overlapping the 
reflected SE are ON; otherwise it sets the central pixel to OFF. Equating OFF and ON with the 
binary values 0 and 1, respectively, it is easy to see that this computation is equivalent to

  1 I % B 2 1 x, y 2 5   max1dx, dy2[B̌
   I 1 x 1 dx, y 1 dy 2   1 binary dilation 2  (5.159)

  1 I *̌ B 2 1 x, y 2 5   min1dx, dy2[B
  I 1 x 1 dx, y 1 dy 2    1 binary erosion 2  (5.160)

since 0 is the minimum binary value and 1 is the maximum binary value. Extending these 
definitions to grayscale images is straightforward:

 1 I % B 2 1 x, y 2 5     max1dx, dy, dv2[B̌
  I 1 x 1 dx, y 1 dy 2 2 dv     

1 grayscale dilation 2  (5.161)

Figure 5.23 A grayscale 
image can be viewed as the 
set of all 3D points (x, y, v) 
underneath the graylevel 
function. 0
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264 Chapter 5 • Spatial-Domain Filtering

 1 I *̌ B 2 1 x, y 2 5      min1dx, dy, dv2[B
   I 1 x 1 dx, y 1 dy 2 2 dv.  1 grayscale erosion 2  (5.162)

These expressions make it obvious what to expect from applying these operators to an 
image: dilation brightens an image, while erosion darkens it. (Note that in the case of 
dilation, dv in B̌ means 2dv in B, so that Equation (5.161) actually adds the value in B to 
the image gray level rather than subtracting it.) Note that, for grayscale dilation/erosion to 
achieve the exact same result as binary dilation/erosion, the foreground and background 
pixels in the SE must be set to 0 and 2`, respectively. For example, the grayscale versions 
of the B4 and B8 kernels of Equation (4.44) are, respectivelyC2` 0 2`

   0 0    0
2` 0 2`

S    and  C0 0 0
0 0 0
0 0 0

S
We distinguish between two kinds of grayscale structuring elements: a flat SE has the 

same value for all pixels in its domain, while a non-flat SE does not, where the domain is 
defined as the set of locations for which the SE has values greater than negative infinity. 
Thus, for example, the two SEs above are flat. Flat SEs are nearly always used in practice 
for reasons such as the following: it is difficult to select meaningful values for a non-flat SE, 
non-flat SEs can yield results outside of the valid range, and non-flat SEs incur significant 
additional computational burden.

5.6.2 Grayscale Opening and Closing
Grayscale opening and closing are defined in the same way as binary opening and closing:

  I ~  B 5 1 I % B 2  *̌ B   1 grayscale closing 2  (5.163)

  I + B 5 1 I *̌ B 2  % B   1 grayscale opening 2  (5.164)

Just as with the binary versions, the grayscale operators are duals of each other with respect 
to complementation and reflection:

  q 1 I % B 2 5 qI *̌ B̌       1 duality of grayscale dilation / erosion 2  (5.165)

  q 1 I *̌ B 2 5 qI % B̌       1 duality of grayscale dilation / erosion 2  (5.166)

  q 1 I ~  B 2 5 1qI + B̌ 2     1 duality of grayscale closing / opening 2  (5.167)

  q 1 I + B 2 5 1qI ~  B̌ 2   1 duality of grayscale closing / opening 2  (5.168)

Opening a grayscale image with an SE removes light details smaller than the SE, while 
closing removes dark details smaller than the SE. Results of grayscale dilation, erosion, 
closing, and opening on an image are shown in Figure 5.24.

Original image Grayscale
dilation

Grayscale
erosion

Grayscale
closing

Grayscale
opening

Figure 5.24 An image, and the result of applying grayscale dilation, erosion, closing, and opening, respectively, using a flat, circular 
structuring element.
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5.6.3 Top-Hat Transform
A particularly useful transform that builds on grayscale opening and closing is the top-hat 
transform, illustrated in Figure 5.25. The white top-hat (WTH) transform, also known as 
“top-hat by opening”, is the difference between the original image and the grayscale opening 
of the image and therefore preserves objects that are brighter than their surroundings, while 
the black top-hat (BTH) transform, also known as “top-hat by closing”, is the difference 
between the grayscale closing of the original image and the image itself and therefore pre-
serves objects that are darker than their surroundings:

  IWTHr 5 I 2 1 I + B 2    1white top-hat 2  (5.169)

  IBTHr 5 1 I ~  B 2 2 I  1 black top-hat 2  (5.170)

The self-complementary top-hat is defined as IWTHr 1 IBTHr , and it extracts all image 
structures that cannot contain the SE whatever their relative contrast. Because grayscale 
closing (like its binary counterpart) is extensive (assuming that the SE includes the ori-
gin) and because grayscale opening (also like its binary counterpart) is anti-extensive (also 
assuming that the SE includes the origin), the grayscale values in the output of the WTH or 
BTH are always nonnegative. It can be shown that the WTH is non-increasing and idem-
potent, while the BTH is neither idempotent nor increasing. The top-hat transform can be 
used to correct for uneven illumination, with WTH used for dark backgrounds and BTH for 
bright backgrounds. The top-hat transform with a large isotropic SE acts as a highpass filter, 
removing the low frequencies of the illumination gradient. Opening with a large SE, on 
the other hand, tends to remove relevant image structures but preserves the slowly varying 
illumination function. A simple neighborhood-based contrast operator is to take the image 
and add the WTH then subtract the BTH, i.e., 1 I 1 IWTHr 2 IBTHr 2 . Results of the various 
top-hat transforms on an image are shown in Figure 5.26.

Figure 5.25 White top-hat 
(WTH) transform (left), 
and black top-hat (BTH) 
transform (right).

I(x)

x

x

x

x

x

x

Image I

I(x)

Image I

I(x)I(x)

Opening I   B of image Closing I • B of image

I(x)

White top-hat transform I – (I   B)

I(x)

Black top-hat transform (I • B) – I
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The concepts of convolution, cross-correlation, and 
linear time- (or space-) invariant systems can be found 
in any good signal or image processing book (such as 
Oppenheim and Schafer [1999] or Jain [1989]), although 
the distinction between FIR and IIR filters is typically 
emphasized more in the signal, rather than image, pro-
cessing literature. While viewing convolution as matrix 
multiplication is not particularly useful in everyday 
applications, it does provide a natural means to study the 
set of all linear transformations of an image. Seitz and 
Baker [2009] call this concept filter flow and present an 
intriguing approach to estimate various transformations 
that fall within this set, such as geometric transforma-
tions, vignetting, radial distortion, lighting changes, blur, 
optical flow, and even stereo.

The importance of the Gaussian is widely known and 
used. For a thorough treatment regarding the evaluation 

of Gaussian kernels, with some alternate conclusions 
than those presented here, see Trucco and Verri [1998]. 
The concept of cascaded convolution, in which convolu-
tion with a Gaussian kernel is approximated by repeated 
convolutions with box filters, is due to Wells [1986]. 
The O(1) computation of Wells’s approach relies on the 
moving average, which is related to the summed-area 
table of Crow [1984] and the space-variant filtering with 
arbitrarily sized polynomial kernels of Heckbert [1986]. 
For a discussion of the need for diagonal convolution to 
preserve 2D circular symmetry in cascaded convolution, 
see Rau and McClellan [1997].

An alternate approach to efficient Gaussian convo-
lution, which is also independent of the width of the 
Gaussian, is to use IIR filters. This approach was first 
described by Deriche [1987, 1990] and later revisited to 
avoid having to recompute the coefficients of the filter 

5.6.4 Beucher Gradient
Another highpass filter is the Beucher gradient, which is defined as the difference between 
the grayscale dilation of the image and the grayscale erosion. Assuming an isotropic SE, this 
operator outputs the maximum variation within the disk rather than the slope. Nevertheless, 
the result of the computation approximates (and becomes equivalent to, as the radius tends 
toward zero) the norm of the traditional gradient vector. The Beucher gradient is the most 
common morphological gradient, but two other definitions of the morphological gradient 
are the half-gradient by erosion (or internal gradient), defined as the difference between the 
original image and the eroded image, and the half-gradient by dilation (or external gradient), 
defined as the difference between the dilated image and the original image.

To compute the directional gradient, one can use a line SE instead of an isotropic SE. 
One must be careful, however, to define the direction of the gradient as the perpendicular 
to the direction that outputs the minimum directional gradient, rather than the direction that 
outputs the maximum directional gradient. For example, a line SE applied to a line in the 
image outputs the same morphological gradient in all directions except for the direction of 
the line, where the output is zero.

5.7 Further Reading

Original image White top-hat Black top-hat Self-complementary
top-hat

Figure 5.26 An image, and the result of applying the white top-hat, black top-hat, and self-complementary top-hat transforms, 
respectively, using a flat, circular structuring element.
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5.7 Further Reading 267

in Deriche [1993]. A similar approach was adopted by 
Young and van Vliet [1995]. Yet another approach to 
efficient (though not constant-time) large-kernel convo-
lution, called hierarchical discrete correlation, can be 
found in Burt [1981]. The integral image is due to Viola 
and Jones [2004], which is based on earlier work in com-
puter graphics and fits within the more general boxlets 
framework of Simard et al. [1998].

The Roberts operator can be found in Roberts [1963], 
which many regard as the first publication in computer 
vision. Several years later, the Prewitt operator was 
developed by Prewitt [1970] in the context of biomedical 
image processing. The Sobel operator was first presented 
in a talk at the Stanford Artificial Intelligence Project in 
1968 by I. Sobel and G. Feldman entitled, “A 3x3 Iso-
tropic Gradient Operator for Image Processing,” but the 
earliest known reference to the operator in print remains 
Pingle [1969], who attributed it to Sobel. Ironically, this 
“isotropic” operator is (like other discrete kernels) not 
really isotropic once discretization effects are considered, 
leading to the development of the Scharr operator, which 
is described (in German) by Scharr [2000].

The use of Laplacian of Gaussian in image process-
ing is due to the pioneering work of Marr and Hildreth 
[1980], who also first proved the equivalency between the 
Laplacian of Gaussian and the Difference of Gaussians 
(in the limit). This theory influenced later work on scale 
space, including that of Witkin [1983] and Lindeberg 
[1990, 1994] which later influenced the popular SIFT 
feature detector of Lowe [2004]. The Gaussian pyramid 
was proposed almost simultaneously by the early papers 
of Burt [1981] and Crowley [1981], while the Laplacian 
pyramid is discussed in the works of Burt [1981], Burt 
and Adelson [1983], and Crowley [1981]. A more recent 
paper discussing efficient implementation details is that 
of Crowley et al. [2002].

The efficient O(w) median filter using the graylevel 
histogram is due to Huang et al. [1979]. A faster O(log w) 
algorithm can be found in Weiss [2006], but it is difficult 
to implement. An even faster, constant-time O(1) algo-
rithm that also makes use of the graylevel histogram and 
is quite easy to understand can be found in Perreault and 
Hëert [2007], where additional implementation details 
are provided to vectorize the computation, enabling the 
method to achieve approximately the same speed as that 
of Weiss in practice. The non-local means (NLM) algo-
rithm is due to Buades et al. [2005].

The origins of the bilateral filter can be traced to the 
nonlinear Gaussian filters of Aurich and Weule [1995] 
and the SUSAN framework of Smith and Brady [1997], 

although it was independently rediscovered by Tomasi 
and Manduchi [1998], who gave the filter its present 
name. An overview of the bilateral filter is given by 
Paris et al. [2009]. To improve computational effi-
ciency, several approaches have been proposed. Durand 
and Dorsey [2002] use the bilateral grid, whereas Weiss 
[2006] assumes that the spatial weight kernel is a box 
function. Porikli [2008] presents a variety of ways to 
achieve efficient O(1) computation of various forms 
of the bilateral filter using either integral histograms 
or the Taylor series expansion to express the Gaussian 
using power terms of the image. Other approaches are 
described by Chen et al. [2007] and Yang et al. [2009]. 
The efficient algorithm presented in this chapter is from 
Chaudhury et al. [2011], who show how to approxi-
mate the Gaussian using raised cosines, which provide 
a better approximation; in follow-up work, Chaudhury 
[2011] explains the concept of shiftability. An alter-
nate approach on fully connected graphs using polyhe-
dral lattices is in Adams et al. [2010], and a real-time 
implementation of the bilateral filter for computational 
photography applications is described in Rithe et al. 
[2013].

Anisotropic diffusion is due to Perona and Malik 
[1990], for which a good reference is Weickert [1998]. 
Adaptive smoothing is found in Saint-Marc et al. [1991]. 
Barash [2002] draws the connection between anisotropic 
diffusion, adaptive smoothing, and bilateral filtering, and 
fixes adaptive smoothing to make it consistent with the 
anisotropic diffusion equation; and in follow-up work 
Barash and Comaniciu [2004] also connect these with 
mean-shift. The original mean-shift algorithm, which 
has been called Gaussian blurring mean-shift (GBMS) 
because the original data values are changed each itera-
tion, can be found in Fukunaga and Hostetler [1975]. 
Interest in mean-shift was renewed by Cheng [1995], 
which introduced Gaussian mean-shift (GMS), the ver-
sion explained in this chapter. The difference between 
GBMS and GMS, including the superior performance 
of the latter, is explained by Rao et al. [2009]. Further 
developments to mean-shift, along with practical appli-
cations such as filtering and segmentation, are due to 
Comaniciu and Meer [2002]. Mean-shift has also been 
used for tracking by a variety of researchers, such as 
Comaniciu et al. [2003], Avidan [2005], and Birchfield 
and Rangarajan [2005].

The top-hat transform is due to Meyer [1979], while 
the Beucher gradient was introduced in Rivest et al. 
[1993]. For further information, consult either the book 
by Serra [1982] or the one by Soille [2003].
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PROBLEMS

5.1 Given the 1D kernel g 1 x 2 5 38 4 1 4 9 3 2 4 2 4, answer the 
following: a) What is its width? b) Half-width? c) Zero-based index of the central element?

5.2 Convolve the 1D input signal f 1 x 2 5 35 4 0 3 8 2 4  with the kernel 
g 1 x 2 5 1

4 31 2 1 4. To properly handle the borders, extend the input by replicating the 
values, and set the output length to be the same as the input. Would the result of cross-
correlation be the same as or different from that of convolution? Explain.

5.3 Convolve the 2D image I with the 2D kernel G, both given below. To properly handle 
the borders, extend the input by replicating the values, and set the output size to be the same 
as the input.

I 5 C5 4 0 3
6 2 1 8
7 9 4 2

S  G 5
1
16

  C1 2 1
2 4 2
1 2 1

S  

5.4 Repeat the computation of the previous problem using the separable version of the 
kernel. First convolve with the horizontal 14 31 2 1 4, then with the vertical 14 31 2 1 4.
5.5 Convolve the following grayscale image with a 3 3 3 Gaussian (computed using Pas-
cal’s triangle), minimizing the number of computations used. Handle borders by extension. 
What is the normalizing constant? D8 2 1 5

0 1 3 0
1 0 1 6
0 4 0 1

T
5.6 Write the convolution matrix associated with the convolution kernel 
g 1 x 2 5 1

14 31 3 6 3 1 4. Assume an input of length 5, and that the input is extended 
by replicating the values.

5.7 For each of the kernels below, specify whether it is a smoothing or a differentiating 
kernel.

(a) 1
32 32 4 6 8 6 4 2 4

(b) 1
6 31 2 3 2 1 0 21 22 23 22 21 4

(c) 1
9 39 1 21 29 4

(d) 1
11 31 9 1 4

5.8 For each of the smoothing kernels below, specify the normalizing constant a:

(a) 1
a 31 3 6 3 1 4

(b) 1
a 322 99 22 4

(c) 1
a 33 16 109 16 3 4

5.9 For each of the following filters, draw the impulse response, and specify whether it is 
FIR or IIR, where f is the input and f r is the output.

(a) f r 1 x 2 5 f 1 x 2 1 2 1 2 f 1 x 2 1 f 1 x 1 1 2
(b) f r 1 x 2 5 f 1 x 2 1 2 2 f 1 x 1 1 2
(c) f r 1 x 2 5 f 1 x 2 1 f r 1 x 2 1 2
5.10 Is the system f r 1 x 2 5 a f 1 x 2 1 b linear (in the sense defined in Section 5.1.4), where 
a and b are scalars? Why or why not?
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5.11 Compute the variance of the following kernel: 31 2 3 4 5 4 3 2 1 4.
5.12 Construct the 7 3 1 Gaussian kernel using the binomial triangle, including the nor-
malization. Compute its variance.

5.13 Construct a 3 3 1 Gaussian kernel by sampling a continuous Gaussian with s2 5 0.4. 
What is the resulting variance of the discrete kernel?

5.14 Construct a 1D Gaussian kernel by sampling the Gaussian function with s 5 1.8. Use 
Equation (5.39) to determine the length of the kernel, and be sure to normalize properly. 
What is the standard deviation of the kernel after sampling?

5.15 Is the following kernel separable? If so, then separate into two 1D kernels. If not, 
then state why not. C 3 6 9

6 12 18
12 24 36

S
5.16 Write the matrices Gv and Gh for applying the horizontal kernel gh 5 31 2 1 4T 
and vertical kernel gv 5 33 5 3 4T as the matrix multiplication in Equation (5.38) to a 
4 3 4 image with reflection.

5.17 Another way to compute the partial derivatives of a 2D array of pixel values is to fit 
a plane I 1 x, y 2 < ax 1 by 1 c to the values (in the least squares sense), then compute the 
partial derivatives of the plane.

(a)  Show that for a 3 3 3 array, the result of this procedure is identical to applying the 
Prewitt kernels.

(b)  What are the results of applying this procedure to 2 3 2, 4 3 4, or 5 3 5 arrays?

(c)  Show that the magnitude of the gradient computed using the Roberts' cross operator is the 
magnitude of the gradient computed using a 2 3 2 array multiplied by the factor !2.

5.18 Show that the Sobel kernels are equivalent to the convolution of 2 3 2 finite differ-
ence kernels along both axes with a 2 3 2 box filter.

5.19 We saw in Section 5.1.2 that a linear shift-invariant system can be represented as 
matrix multiplication. Does the same hold true for a linear shift-varying system? If so, then 
what property of such a matrix indicates whether a linear system is shift-invariant or not?

5.20  A scanline of a grayscale image has the following values: 37 5 3 2 5 0 8 9 4. Convolve this scanline with a) Gaussian, b) Gaussian 
derivative, and c) Gaussian second-derivative kernels, all with s2 5 0.5. Handle borders 
with reflection.

5.21 Explain why there is a) only one 3 3 1 Gaussian derivative kernel, and b) only one 
3 3 1 Gaussian second-derivative kernel.

5.22 Smoothing a digital image is similar to defocusing the lens of the camera, because 
both approaches result in a blurred image. Answer the following:

(a)  Can you think of any differences between the results of the two approaches? (Hint: 
Consider what happens to the image of a bright light.)

(b)  What shape should the convolution kernel be to simulate the defocusing ability of a lens?

5.23 Show that magnitude of the gradient is not isotropic when implemented discretely, by 
comparing and contrasting the Euclidean, Manhattan, and chessboard versions on the two 
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images below, using the Prewitt, Sobel, and Scharr operators. Which operator, and which 
metric, yields the most consistent behavior on these two inputs?C1 1 0

1 1 0
1 1 0

S  C1 0 0
1 1 0
1 1 1

S
5.24 Prove that the output of a discrete linear shift-invariant system is the convolution of 
the input signal and the impulse response. Hint: Express the input as the sum of weighted 
Kronecker delta functions, then apply the additivity, scaling, and shift-invariant properties.

5.25 The isotropic Gaussian is the only rotationally symmetric 2D function that is separable. 
Prove that it is rotationally symmetric. (Hint: A 2D function is rotationally symmetric if and 
only if 1@ f/@ x 2 y 5 1@ f/@ y 2 x.)

5.26 We have argued that in general, separable convolution is more efficient than non-
separable convolution. Can you imagine a scenario in which the separable implementation 
might actually be slower?

5.27 A 3 3 3 Laplacian of Gaussian (LoG) kernel applied to the image below should equal 
1, since the change in slope along the x direction is 1, and the change in slope along the y 
direction is 0. (That is, the slope between the first and second columns is zero, and the slope 
between the second and third columns is one, so the change in slope is 1 2 0 5 1.) Select 
four of the LoG kernels introduced in this chapter, and show that they all satisfy this criterion.C0 0 1

0 0 1
0 0 1

S
5.28 Is the following a LoG kernel? Why or why not?

1
3

 C    2 21    2
21 24 21
   2 21    2

S
5.29 Table 5.5 lists a number of different LoG kernels. Show that the following is also a 
LoG kernel, and compute its variance.

1
8

 C1      6 1
6 228 6
1      6 1

S
5.30 Derive the expression for the third-derivative Gaussian kernel, d 3

d x3 gausss2 1 x 2 .
5.31 Given the smoothing kernel gauss0.125 5 1

16 31 14 1 4, calculate the associated 
3 3 3 LoG kernel.

5.32 Prove that the convolution of two Gaussians is a Gaussian. For simplicity, assume 
continuous 1D signals.

5.33 Another way to verify the normalization of a LoG kernel is to convolve 
the kernel with the paraboloid x2 1 y2 and ensure that the result equals 4, since 
r2 1 x 

2 1 y2 2 5 @ 
2

@
 

x 
2 1 x 

2 1 y2 2 1 @ 
2

@
 

y 
2 1 x 

2 1 y2 2 5 2 1 2 5 4.

(a)  What is the 3 3 3 image that results from sampling the central part of the paraboloid 
x2 1 y2?

(b)  Using this image, select four of the LoG kernels introduced in this chapter, and show 
that they all satisfy this criterion.

(c)  Would the result be different if the image were obtained by sampling a non-central 
part of the paraboloid? Why or why not?
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5.34 We mentioned that convolution must not be performed in place. Show an example 
where performing convolution in place erases nearly all image information.

5.35 Prove that convolution is commutative.

5.36 State the 3 3 3 convolution kernel whose effect is to shift the image to the right by 
one pixel.

5.37 Describe a scenario in which the normalization factors associated with Gaussian 
derivatives are important.

5.38 What filter would you use to remove salt-and-pepper noise? Is this a linear or non-
linear filter?

5.39 Write pseudocode for implementing convolution with a box kernel of arbitrary size, 
computing the running sum to ensure that the procedure is computationally efficient.

5.40 In some applications, it is important to reverse the effects of convolution. If the kernel 
is known, how might this deconvolution be performed?

5.41 Show that the application of a 2D LoG kernel to a constant or ramp graylevel function 
yields zero.

5.42 Verify that convolving the signal 36 8 3 4 with the kernel 1
4 31 2 1 4 twice is 

identical to convolving the signal with 1
16 31 4 6 4 1 4.

5.43 Compute the integral image of the following grayscale image. Use the integral image 
to compute the sum of the inner 3 3 3 array of pixels.E218 87 246 63 175

106 161 231 32 207
16 141 136 140 202
86 253 55 112 188
73 85 165 209 99

U
5.44 Compute the a) grayscale dilation and grayscale erosion of the 5 3 5 image shown 
in the previous question, using a 3 3 3 flat SE consisting of all zeros (the grayscale version  
of B8). Then compute b) the grayscale closing and opening, and c) the white top-hat and 
black top-hat transforms. Handle borders with reflection.

5.45 In an attempt to remove noise, an image is convolved with a 3 3 3 Gaussian kernel 
composed from two 1D kernels, namely, the horizontal gauss0.5 kernel and the vertical 
gauss0.5 kernel. Then, to differentiate, the resulting smoothed image is convolved with 
horizontal 1

2 31 0 21 4 and vertical 1
2 31 0 21 4 kernels. Write the equivalent 2D 

kernels that, if the original image were convolved with them, would yield the same result. 
What do you notice about this kernel that is undesirable? What are the implications regard-
ing smoothing before differentiating?

5.46 Write code in your favorite language to construct the Gaussian, first-derivative, and 
second-derivative kernels, all parameterized by the standard deviation s. Then write code 
to apply these kernels to a grayscale image, computing the smoothed image, the gradient 
components in x and y, the gradient magnitude, and the LoG.

5.47 Implement both the bilateral and mean-shift filters and apply them to a grayscale 
image. Compare and contrast the two algorithms. Then apply them separately to the color 
channels of an RGB image. Describe the output that results.
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C H A P T E R 6
Frequency-Domain Processing

In the previous chapter we considered ways to transform an image by filtering in the spatial domain. A complementary 
approach is to filter in the frequency domain using the well-known principle that convolution in the spatial domain is 
equivalent to multiplication in the frequency domain. In this chapter we discuss the Fourier transform in an effort to 

explore this concept of the frequency domain, particularly as it relates to discrete signals. We then examine frequency-
domain approaches to filtering and their connection with spatial-domain filtering.

6.1 Fourier Transform
Suppose we have a one-dimensional continuous signal g (t), such as an audio signal contain-
ing speech or music. Oftentimes we want to be able to analyze such a signal by determin-
ing which frequencies are present. Such information can be used in a variety of ways, for 
example to classify the signal (whether it contains primarily high or low frequencies) or to 
filter the signal (to remove, for example, high-frequency noise or a low-frequency hum).
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6.1 Fourier Transform 273

6.1.1 Forward Transform
The standard technique for performing frequency analysis of a signal g(t) is to compute its 
Fourier transform† G( f ), which is defined as the integration of the signal after first mul-
tiplying by a certain complex exponential:‡

 G 1  f 2 ; F5g6 ; 2
`

2`

g 1 t 2 e2j2p ft dt  (6.1)

where F  indicates the Fourier transform, t indicates time (the domain of the original signal), 
f indicates frequency (the domain of the transformed signal), and j ; "21. If t is measured 
in seconds, then f is measured in inverse seconds, also known as hertz 1 1 Hz 5 1/sec 2 .

This equation, which at first glance may seem intimidating, can be made more under-
standable by applying Euler’s formula, e 

ju 5 cos u 1 j sin u:

 
G 1  f 2 5

 

2
`

2`

g 1 t 2  cos 2p ft dt
('''')''''*

Geven

1j

 

2
`

2`

2 g 1 t 2  sin 2p ft dt
(''''')''''*

Godd

 (6.2)

or G 1  f 2 5 Geven 1  
f 2 1 jGodd 1  

f 2 . Here we see that for any given frequency f, we obtain a 
measure indicating the presence of that frequency in the signal by multiplying the signal by 
a cosine and sine with frequency f and integrating them separately. Using complex numbers 
is just a convenient way of allowing us to express two separate quantities, Geven and Godd, 
in a single equation. We could just as easily have defined the Fourier transform to be a pair 
of numbers for each frequency: G 1  f 2 ; 1Geven 1  

f 2 , Godd 1  
f 2 2 , but this definition would 

lose some of the elegant mathematics that comes for free when we use complex numbers.
The reason we call these two numbers Geven and Godd is that the former captures the fre-

quency information in a signal with even symmetry, while the latter captures the frequency infor-
mation in a signal with odd symmetry. That is, Godd 5 0 for any signal with g 1 t 2 5 g 12t 2  
for all t, and Geven 5 0 for any signal with g 1 t 2 5 2g 12t 2  for all t. For a signal that has 
neither even nor odd symmetry, the two numbers together capture the frequency information.

We say that the function g is a time-domain signal if its domain is time (e.g., an audio 
signal), or a spatial-domain signal if its domain is some spatial coordinate (e.g., an image 
graylevel function along a row or column of a camera’s imaging sensor). In either case 
the Fourier transform is the standard way to convert the original signal into the frequency 
domain, and the math is the same for both. The resulting frequency-domain representation 
of the signal is like a reverse phone book in which the entries are sorted by phone number 
rather than by name. This alternate representation makes it easy to discover information that 
is hidden in the original signal, such as which frequencies are present.

To see how the Fourier transform works, let us consider a simple example.

† Joseph Fourier (1768–1830) was a French mathematician and physicist who also played a key, if indirect, role 
in deciphering the Rosetta Stone.
‡ In this chapter we depart from our usual practice of using capital letters to indicate 2D functions, in order to 
follow the common notation of using capital letters to denote frequency-domain signals.

EXAMPLE 6.1 Compute the Fourier transform of g 1 t 2 5 cos 2000 pt.

Solution This continuous signal is a pure even sinusoid with frequency f 5 1000 Hz 5 1 kHz. We 
expect, therefore, that the Fourier transform will contain only real values (Godd 5 0 because 
the signal has even symmetry), and that the Fourier transform will somehow indicate that 
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274 Chapter 6 • Frequency-Domain Processing

Figure 6.1 A continuous 
time-domain signal (left) 
and its Fourier transform 
(right). The latter reveals that 
the signal is a pure sinusoid 
with frequency 1000 Hz, 
since it contains two infinite 
spikes (Dirac deltas) at 
f 5 1 kHz and f 5 21 kHz. 
Note that the multiplicative 
factor 12 has no effect on the 
display. See the text for an 
explanation of the negative 
frequency.

22 21 0

cos 2000pt

1 2

20.8

20.4

0

0.4

0.8

t (milliseconds)
22 21 0 1 2
0

0.2

0.4

0.6

0.8

1

f (kHz)

(d( f 2 1000) 1 d( f 1 1000))1
2

the signal contains only a single frequency. From Euler’s formula it is not hard to show that 
cos u 5 1

2 1 e  
ju 1 e2ju 2 , which plugs into Equation (6.1) to yield

  G 1  f 2 5 2
`

2`

1
2

 1 e  
j 2000pt 1 e2j 2000pt 2 e2j 2p ft d t  (6.3)

  5
1
22

`

2`

1 e  
j 2p110002f 2  t 1 e2j 2p110001f 2  t 2  dt (6.4)

  5
1
2

 1 d 1  f 2 1000 2 1 d 1  f 1 1000 2 2  (6.5)

where d 1  f 2  is the Dirac delta function, which is defined (informally at least) as an infinite 
spike at the origin with unit area. In other words,

 d 1  f 2 f0 2 5 b` if f 5 f0
0 otherwise

 (6.6)

and e`

2`
d 1

  
f 2  d f 5 1. This Fourier transform pair is illustrated in Figure 6.1. In case you are 

wondering why there is a spike at both the positive and negative frequencies (or, rather, what 
is the meaning of a negative frequency), consider a spinning wheel. The Fourier transform 
captures the frequency at which the wheel spins, but it cannot distinguish whether the wheel 
spins clockwise or counterclockwise; the positive and negative frequencies indicate these 
two possibilities.

Although deriving Equation (6.5) from Equation (6.4) is not trivial, when we consider 
the inverse Fourier transform below we will show that Equation (6.5) is indeed the correct 
answer. Additional intuition can be gained by simply substituting values: for example, it 
is not surprising that G(  f  ) blows up at f 5 1000, since e  

j 2p110002f 2  t 5 e0 5 1, leading 

to e`

2`
1 dt, which is unbounded; similarly, it is not surprising that G 1  f 2 5 0 if f 2 1000, 

since e 
j 2p110002f 2  t is just a complex exponential, and the oscillations of sine and cosine 

functions cause their positive and negative portions to cancel each other when integrated.
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6.1.2 Inverse Transform
One of the convenient properties of the Fourier transform is that it is reversible. That is, the 
original signal can be recovered from its frequency-domain representation by computing 
the inverse Fourier transform, which surprisingly is defined in exactly the same way 
as the forward Fourier transform except for the sign in the exponent, and the fact that the 
integral is computed over frequency rather than over time:

 g 1 t 2 5 F 
215G6 ; 2

`

2`

G 1  f 2 e  
j 2p ft d f  (6.7)

For all practical purposes (that is, under rather mild mathematical assumptions), the forward 
and inverse transforms cancel each other, i.e., F 

215F5g66 5 g and F5F 
215G66 5 G.

EXAMPLE 6.2  Compute the inverse Fourier transform of G 1  f 2 5 1
2 1d 1

  
f 2 1000 2 1 d 1  f 1 1000 2 2 .

Solution To solve this problem, we make use of the sifting property of the Dirac delta function, 
namely,

 2
`

2`

h 1  f 2 d 1  f 2 f0 2  df 5 h 1  f0 2  (6.8)

for any function h( f ). The sifting property is easy to see, since the Dirac delta function 
multiplies the entire function by zero except for the value at f 5 f0. Plugging into 
Equation (6.7) yields

  g 1 t 2 5 2
`

2`

1
2

 1 d 1  f 2 1000 2 1 d 1  f 1 1000 2 2 e  
j 2p ft d f  (6.9)

 5
1
22

`

2`

d 1
 
f 2 1000 2 e  

j 2p f t d f 1
1
22

`

2`

d 1
 
f 1 1000 2 e  

j 2p ft d f  (6.10)

  5
1
2

 e  
j 2000 pt 1

1
2

 e2j 2000 pt (6.11)

  5 cos 2000pt  (6.12)
where the last equality arises from Euler’s formula. Thus we see that the forward transform 
of the previous example, which is difficult to derive analytically, is readily obtained by 
considering the problem in reverse. 

6.1.3 Sampling and Aliasing
When a continuous signal is sampled, it becomes a discrete signal. It would be natural to 
assume that some information is lost in the process of sampling, thereby making it impos-
sible to reconstruct the original signal from its samples. In fact, however, according to the 
Nyquist-Shannon sampling theorem,† it can be shown that if a certain condition holds 
true, then the discrete samples contain just as much information as the original signal, so 
that the original signal can be reconstructed exactly from the discrete samples. This condi-
tion is that the sampling rate must be greater than the Nyquist rate, which is twice the 

† H. Nyquist (1889–1976) and C. Shannon (1916–2001) were pioneers in information theory at AT&T Bell Labs. 
The latter’s Master’s thesis is sometimes considered the most important such work ever produced.
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highest frequency in the signal.‡ A signal that contains such a maximum frequency is called 
a band-limited signal, so this theorem only applies to band-limited signals.

Figure 6.2 shows a continuous signal sampled at three different frequencies. When the 
sampling frequency is greater than the Nyquist rate, we say that the signal is oversampled, 
in which case perfect reconstruction is possible. When the sampling frequency is lower 
than the Nyquist rate, the signal is undersampled, and important information about the 
signal is irrecoverably lost. Similarly, when the sampling frequency is exactly the Nyquist 
rate (i.e., two samples for each period of the highest frequency), the signal is critically 
sampled, and the original signal is also (just barely) unrecoverable.

When a signal is undersampled, aliasing occurs. An alias is an assumed name, so it is 
as if the high frequency (which is higher than half the sampling rate) shows up as a dif-
ferent frequency. If f is the frequency of the signal being sampled, and fs is the sampling 
rate, then the aliased frequency is given by 0  fs 

n 2 f 0 , where n 5 ROUND 1  f/fs 2 . (Note that 
if fs . 2 f, then n 5 0 and the aliased frequency is identical to the actual frequency, i.e., 
there is no aliasing.) In the right side of Figure 6.2, for example, f 5 1000 and fs 5 1250, 
so the aliased frequency is 01250 #1 2 1000 0 5 250, because n 5 ROUND 1 1000/1250 2 5 1. 
In other words, when the signal is sampled at t 5 0.8 ms, it has undergone 0.8 periods. The 
value at this time is exactly what would have been obtained by sampling a 250 Hz signal, 
which would have undergone only 0.2 periods. At this sampling rate, therefore, it is impos-
sible to tell a 1 kHz signal (the blue curve in the figure) from a 250 Hz signal (the red curve). 
This phenomenon is readily seen in old Western movies, where, as a wagon speeds up, its 
wheels appear at first to speed up, then slow down, then rotate in the opposite direction. For 
this reason, aliasing is also known as the “wagon wheel effect.”

6.1.4 Four Versions of the Fourier Transform
The Fourier transform introduced in Equation (6.1) is actually one of several variations of 
the concept. As we have just seen, signals can be either continuous or discrete, and they can 
be defined everywhere (infinite duration) or over a limited domain (finite duration). These 
choices lead to four versions of the Fourier transform, as shown in Table 6.1. The version we 
have considered so far is applicable to continuous, infinite duration signals, in which both the 
time and frequency values are defined for all real numbers. The discrete-time Fourier transform 

‡ Do not confuse the Nyquist rate (twice the highest frequency), which is a property of the signal, with the Nyquist 
frequency (half the sampling rate), which is a property of the sampling system.

Figure 6.2 A continuous 1 kHz time-domain sinusoid sampled with 3 different sampling frequencies: 5000 Hz (left), 2000 Hz (middle), 
and 1250 Hz (right). The Nyquist rate, which is twice the frequency of the signal, is 2000 Hz. Sampling at higher than the Nyquist rate 
preserves the information in the signal, while sampling at lower than the Nyquist rate leads to aliasing. In this case the frequency of the 
aliased signal (red curve) is 250 Hz.
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6.2 Discrete Fourier Transform (DFT) 277

(DT F T), on the other hand, applies to signals defined only for discrete values of the domain 
(but still extending forever), in which case the frequencies are defined only up to the value of 12 
due to the Nyquist-Shannon sampling theorem just mentioned. In the Fourier series, the roles 
are reversed, so that the continuous signal is represented as an infinite sum of weighted sinu-
soids. Finally, the discrete Fourier transform (DF T) applies to signals that have been sampled 
a finite number of times, so that both the samples and the frequencies are discrete and finite.

6.2 Discrete Fourier Transform (DFT)
In this chapter we focus our attention primarily on the last of the four versions, namely, the 
discrete Fourier transform (DFT). The DF T is arguably the most practical of the versions, 
since to be stored in a digital computer a continuous signal must be sampled a finite number 
of times. As a result, all real-world signals are stored as discrete, finite-duration signals, so 
that if you ever run across the Fourier transform of a real-world signal, you are probably 
looking at a DF T. Moreover, the discrete mathematics behind the DF T is much simpler 
than that of the continuous Fourier transform, making it much easier to establish results and 
recognize connections between different aspects of the theory. One of the nice properties of 
the DF T is that, unlike some of the other versions, it always exists.†

6.2.1 Forward Transform
Let g(x) be a 1D discrete signal with w samples. The DF T of g is defined as the summation 
of the signal after multiplying by a certain complex exponential:

 G 1 k 2 5 F 5g 1 x 2 6 5 a
w21

x50

g 1 x 2 e2j 2p k x/w  (6.13)

where x and k are integers. Recognizing the similarity between this equation and the continuous 
version in Equation (6.1) , we see that the discrete version replaces the integral with a summa-
tion, and f with k

w, so that the latter plays the role of a discrete frequency. Similarly, in the dis-
crete domain the sifting property is achieved with the Kronecker delta function, defined as

† The Fourier series, for example, only exists for signals that satisfy the Dirichlet conditions.

continuous discrete

infinite duration Fourier transform

G 1  f 2 5 e`

2`
g 1 t 2 e2j 2p f t d t

g 1 t 2 5 e`

2`
G 1  f 2 e  

j 2p f t d f

t [ R  f [ R

Discrete-time Fourier transform (DT F T)

G 1  f 2 5 a`

x52`
 g 1 x 2 e2j 2p f x

g 1 x 2 5 e
1

2

2
1

2

G 1  f 2 e  
j 2p f x d f

x [ Z  f [ 321
2, 

1
2 4

finite duration 
(periodic)

Fourier series

G 1 k 2 5 1
T2

 
T

2

2
T

2

 g 1 t 2 e2j 2p k t/ T d t

g 1 t 2 5 a`

k52`
G 1 k 2 e  

j 2p k t/T

t [ 32T
2, T2 4 k [ Z

Discrete Fourier transform (DF T)

G 1 k 2 5 aw21

x50
g 1 x 2 e2j 2p k x /w

g 1 x 2 5
1
w aw21

k50
G 1 k 2 e  

j 2p k x /w

x [ Z 0:w21 k [ Z 0:w21

TABLE 6.1 The four versions of the Fourier transform.
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 d 1 k 2 k0 2 5 b1 if k 5 k0

0 otherwise
 (6.14)

The DF T takes a discrete signal consisting of w samples 1 x 5 0, 1, 2, c, w 2 1 2  and 
produces an output also consisting of w samples 1 k 5 0, 1, 2, c, w 2 1 2 . Typically, the 
input signal is real-valued, whereas the output is complex-valued due to the use of complex 
exponentials. As with the continuous version, Equation (6.13) can be rewritten by noting 
that Euler’s formula, e 

ju 5 cos u 1 j sin u, allows us to express the complex exponentials 
in terms of sines and cosines:

 G 1 k 2 5 F 5g 1 x 2 6 5 a
w21

x50

g 1 x 2 acos 
2pk
w

 x 2 j sin 
2pk
w

 xb  (6.15)

where again it is obvious that f 5 k
w. This formula leads to a straightforward implementation 

for computing the DF T, presented in Algorithm 6.1. Although this pseudocode is per-
fectly valid, it is not widely used due to its inefficiency. A more efficient algorithm is the 
fast Fourier transform (FF T), which by a clever trick reuses intermediate computations 
to reduce the running time from O 1w2 2  to O(w log w) — a substantial improvement. All 
modern implementations of the DF T use some variation of the FF T algorithm, and most 
versions of the FF T algorithm require the length of the signal to be a power of 2, i.e., 
w 5 2n where n is an integer. If this condition does not hold, then the signal is zero-padded 
to increase its length to the next power of 2.

6.2.2 Inverse Transform
Like the continuous Fourier transform, the DF T is reversible. That is, given the DF T of a 
signal, the original signal can be recovered by applying the inverse DF T:

 g 1 x 2 5 F 
215G 1 k 2 6 5

1
w a

w21

k50

G 1 k 2 e  
j 2p k x /w  (6.16)

ALGORITHM 6.1 Compute the DF T of a 1D signal (slow version)

DiscreteFourierTransform 1 g 30 4, c, g 3w 2 1 4 2
Input: real 1D signal g of length w
Output: real 1Geven 2  and imaginary 1Godd 2  components of the DF T of g

1 for k d 0 to w 2 1 do
2    Geven 3k 4 d 0
3    Godd 3k 4 d 0
4    f d k/w
5    for x d 0 to w 2 1 do
6       Geven 3k 4 d Geven 3k 4 1 g 3x 4 
 cos 1 2 
 p 
 f 
 x 2
7       Godd 3k 4 d Godd 3k 4 2 g 3x 4 
 sin 1 2 
 p 
 f 
 x 2
8 return Geven, Godd

Again, the inverse transform is identical to the forward transform except for the sign of the 
exponential and the summation variable. The scaling factor 1

w is needed to ensure that the 
two transforms are inverses of each other, that is, F 

215F 5g66 5 g and F 5F 
215G66 5 G. 

But this factor may be placed in either transform, or alternatively 1!w may be placed in front 
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of both; what is important is that the multiplication of the two numbers is equal to 1
w. The 

implementation of the inverse transform is made clear using Euler’s formula:

 g 1 x 2 5 F 
215G 1 k 2 6 5

1
w a

w21

k50

G 1 k 2 ¢cos 
2pk
w

 x 1 j sin 
2pk
w

 x≤  (6.17)

 5
1
w a

w21

k50

1Geven 1 k 2 1 jGodd 1 k 2 2 ¢cos 
2pk
w

 x 1 j sin 
2pk
w

 x≤  (6.18)

 5 greal 1 x 2 1 jgimag 1 x 2  (6.19)
where

  greal 1 x 2  5  
1
w a

w21

k50

Geven 1 k 2  cos 
2pk
w

 x 2 Godd 1 k 2  sin 
2pk
w

 x  (6.20)

  gimag 1 x 2  5  
1
w a

w21

k50

Godd 1 k 2  cos 
2pk
w

 x 1 Geven 1 k 2  sin 
2pk
w

 x 5 0  (6.21)

Note that if g(x) is real, then gimag 1 x 2 5 0 for all x, so that the imaginary component can be 
discarded while computing the inverse DF T. This leads to Algorithm 6.2 as one way to com-
pute the inverse DF T. In practice the inverse FF T algorithm should be used for efficiency.

6.2.3 Properties
Several important properties of the DF T are fairly straightforward to prove from the 
definition:

• The DF T is linear. That is, if G 1 k 2 5 F 5g 1 x 2 6 and H 1 k 2 5 F  5h 1 x 2 6 are the Fourier 
transforms of two signals, then the Fourier transform of a weighted combination of the sig-
nals is simply the weighted combination of their Fourier transforms, using the same weights:

 F 5ag 1 x 2 1 bh 1 x 2 6 5 a F 5g 1 x 2 6 1 bF 5h 1 x 2 6 (6.22)

which follows from the definition of the DF T:

  F5ag 1 x 2 1 bh 1 x 2 6 5 a
w21

x50

1 ag 1 x 2 1 bh 1 x 2 2 e2j 2p k x/w  (6.23)

  5 aa
w21

k50

g 1 x 2 e2j 2p k x/w 1 ba
w21

k50

h 1 x 2 e2j 2p k x /w (6.24)

  5 a F 5g 1 x 2 6 1 bF 5h 1 x 2 6  (6.25)

ALGORITHM 6.2 Compute the inverse DF T of a 1D signal (slow version)

DiscreteFourierTransformInverse 1Geven 30 4, c, Geven 3w 2 1 4, Godd 30 4, c, Godd 3w 2 1 4 2
Input: real 1Geven 2  and imaginary 1Godd 2  components of the DF T of a real 1D signal
Output: real 1D signal greal of length w whose DF T is Geven 1 jGodd

1 for x d 0 to w 2 1 do
2    greal 3x 4 d 0
3    for k d 0 to w 2 1 do
4      f d k/w
5      greal 3x 4 d greal 3x 4 1 1

w 1Geven 3x 4 
 cos 1 2 
 p 
 f 
 x 2 1 Godd 3x 4 
 sin 1 2 
 p 
 f 
 x 2 2
6 return greal
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A compact way to state the linearity property is

 g 1 x 2  ()DFT
 G 1 k 2  (6.26)

 h 1 x 2  ()DFT
 H 1 k 2  (6.27)

ag 1 x 2 1 bh 1 x 2  ()DFT
 aG 1 k 2 1 bH 1 k 2  (6.28)

• The DF T is periodic. Given an input discrete signal of w samples, the DF T also is 
composed of w (possibly complex) samples. By convention, this DF T is defined as 
G 1 k 2 , k 5 0, c, w 2 1. But what if we try to evaluate Equation (6.13) for some arbi-
trary value of k? It is easy to show that G 1 k 2 5 G 1 k 1 nw 2  for any integer n, since

 e2j 2p 1k1nw2  x /w 5 e2j 2p k x /w # e2j 2p n x 5 e2j 2p k x /w (6.29)

where the last equality uses Euler’s formula to deduce e2j 2pn x 5 cos 2pn x 2 j sin 2pn x 5 1, 
since n and x are both integers. As a result, the DF T is periodic. This property of periodicity 
means that even though G(k) can be evaluated for any value of k, it can be uniquely repre-
sented using the same number of samples as the original signal, since G is simply replicated 
forever in both directions. Similarly, the function F 

215G 1 k 2 6 is periodic with the same 
period w and can be evaluated for any value of x, even though the original signal is defined 
only for x 5 0, c, w 2 1. Another way to look at this is that the DF T assumes that the 
original signal is defined over all possible integers but is periodic outside the values given. 
The periodicity of the original signal and the DF T are illustrated in Figure 6.3. In other words,

 g 1 x 1 nw 2 5 g 1 x 2  ()DFT
 G 1 k 2 5 G 1 k 1 nw 2 ,  x, k, n, w [ Z  (6.30)

EXAMPLE 6.3  Is each of the following discrete signals symmetric about the origin: 31 2 1 4, 34 3 3 4, 
and 35 0 5 4? (Recall that the underscore indicates the origin.)

Solution The first signal, 31 2 1 4, is obviously symmetric about the origin. Due to the period-
icity property of the DF T, the second signal 34 3 3 4 can be thought of as extending 
forever in all directions, i.e., 3c 3 3 4 3 3 4 3 3 4 3 3 c4, 
which is the same as 33 4 3 4, which also is symmetric about the origin. Applying 
the periodicity property to the third signal 35 0 5 4, we see that it is equivalent to 3c 5 0 5 5 0 5 c4, which is not symmetric about the origin.

Figure 6.3 Periodicity 
of the DF T. The discrete 
signal consisting of eight 
samples x 5 0, c, 7 (red, 
left) gives rise to the DF T 
consisting of eight samples 
k 5 0, c, 7 (red, right). 
If the DF T is evaluated for 
other values of k, or if the 
inverse DF T of the DF T is 
evaluated for other values 
of x, the signal repeats with 
period w 5 8.
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6.2 Discrete Fourier Transform (DFT) 281

• Computing the DF T of a shifted signal is the same as multiplying the DF T of the original, 
unshifted signal by an appropriate complex exponential. Known as the shift theorem, this 
property is easy to prove:

  F 5g 1 x 2 x0 2 6 5 a
w21

x50

g 1 x 2 x 0 2 e2j 2p k x /w  (6.31)

  5 a
w212x 0

xr52x 0

g 1 x r 2 e2j 2p k 1  xr1x 02/w  (6.32)

  5 a
w21

xr50

g 1 x r 2 e2j 2p k xr/we2j 2p k x 0 /w  (6.33)

  5 F 5g 1 x 2 6e2j 2p k x 0 /w  (6.34)

where the second line uses a change of variables x r 5 x 2 x0, and the third line follows 
from the periodicity of the DF T. In other words,

  g 1 x 2  ()DFT
 G 1 k 2  (6.35)

 g 1 x 2 x0 2  ()DFT
 G 1 k 2 e2j 2p k x 0 /w  (6.36)

Keep in mind that with discrete sequences the shift theorem only holds when x0 is an integer.

• Modulation, which is the dual of the shift theorem, states that multiplying a signal by a 
complex exponential causes a shift in the frequency domain:

  F 5  g 1 x 2 e  
j 2p k 0  x /w6 5 a

w21

x50

g 1 x 2 e  
j 2p k 0  x /we2j 2p k x /w (6.37)

  5 a
w21

x50

g 1 x 2 e2j 2p 1k2k 02  x /w  (6.38)

  5 G 1 k 2 k 0 2  (6.39)

where G 1 k 2 5 F5g 1 x 2 6. Substituting, we see that to shift by half the width of the signal, 
we must set k0 5 w

2, so that

 G¢k 2
w
2
≤ 5 F5g 1 x 2 e  

j p x6 5 F5g 1 x 2 121 2 x6 (6.40)

where the last equality follows from Euler’s formula and the fact that cos px is 1 if x is even, 
or 0 if x is odd, assuming x is an integer. Therefore, if the original signal is multiplied by 121 2 x, the resulting DF T will be centered. In other words,

g 1 x 2  ()DFT
 G 1 k 2  (6.41)

 g 1 x 2 e  
j 2p k 0  x /w ()

DFT
 G 1 k 2 k 0 2  (6.42)

g 1 x 2 121 2 x ()
DF T

 G ak 2
w
2
b  (6.43)

Like the previous property, these formulas only apply to discrete sequences when k0 is an 
integer. Therefore, when applying the latter formula be sure that the width of the signal is 
even, or the DF T will be shifted by a nonintegral amount, thus distorting the values.
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282 Chapter 6 • Frequency-Domain Processing

• The scaling property says that if the signal is stretched in the spatial domain, then the 
Fourier transform is compressed in the frequency domain, and vice versa:

 g 1 x 2  ()F  G 1 k 2  (6.44)

 g 1 ax 2  ()F  
1
a

 G ak
a
b  (6.45)

for a 2 0. Note that this property strictly holds only for the continuous Fourier transform. 
For the DF T this is only an approximation, since no matter the value of a (apart from the 
trivial case a 5 1), the scaling property involves noninteger indices.

• The complex exponentials are orthogonal to one another:

 a
w21

k50

e  
j 2p k x /we2j 2p k xr/w 5 bw if x 5 x r

0 otherwise
 (6.46)

The first case 1 x 5 x r 2  is easy to show:

 a
w21

k50

e  
j 2p k 1x2xr2/w 5 a

w21

k50

e0 5 a
w21

k50

1 5 w (6.47)

The second case 1 x 2 x r 2  uses the well-known formula for the sum of a geometric series, 

aw21

k50
a 

k 5 1 1 2 a 
w 2 / 1 1 2 a 2 . Let us define d ; x 2 x r, then

a
w21

k50

e  
j 2p k d/w 5

1 2 e  
j 2p d

1 2 e  
j 2p d/w

5
e  

jp d 1 e2jp d 2 e  
jp d 2

e2jp d/w 1 e  
jp d/w 2 e2jp d/w 2 5 e  

jp 1w212  d/w sin pd

sin pd/w
5 0 (6.48)

where the last equality follows since sin pd 5 0 whenever d is an integer, and sin pd/w 2 0 
whenever d is not a multiple of w.

• The DF T of a real-valued signal exhibits Hermitian symmetry, which means that its real 
component is even-symmetric, and its imaginary component is odd-symmetric. This fol-
lows naturally from the fact that the cosine function is even-symmetric, whereas the sine 
function is odd-symmetric:

  Geven 12k 2 5 a
w21

x50

g 1 x 2  cos 12j 2p 12k 2 x /w 2 (6.49)

  5 a
w21

x50

g 1 x 2  cos 12j 2 pk x /w 2  (6.50)

  5 Geven 1 k 2  (6.51)

  Godd 12k 2 5 a
w21

x50

g 1 x 2  sin 12j 2p 12k 2 x /w 2  (6.52)

  5 a
w21

x50

2 g 1 x 2  sin 12j 2 pk x /w 2  (6.53)

  5 2Godd 1 k 2  (6.54)

That is, a real g(x) leads to a Hermitian G(k), and therefore 0G 12k 2 0 5 0G 1 k 2 0  and 
/G 12k 2 5 2/G 1 k 2 . The converse is also true: a Hermitian G(k) leads to gimag 1 x 2 5 0 
for all x. When frequency-domain filters are introduced in Section 6.4, we will ensure that 
the filters also are Hermitian, so that the imaginary components remaining after the inverse 
DF T will be zero (at least to the level of machine precision).
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• Even and odd symmetry. The DF T of a real-valued, even-symmetric signal is also 
real-valued and even-symmetric. The DF T of a real-valued, odd-symmetric signal is 
purely imaginary-valued and odd-symmetric. These properties arise because the sum of 
an odd function about the origin is zero, and the product of an even and odd function is 
odd. From Equation (6.15),

g 1 x 2  is even ) G 1 k 2  is real, even :  G 1 k 2 5 a
x

g 1 x 2  cos 
2pk
w

 x 2 ja
x

     g 1 x 2  sin 
2pk
w

x

   
('')''*

 
even #odd 5 odd

g is odd ) G 1 k 2  is imaginary, odd :  G 1 k 2 5 a
x

g 1 x 2  cos 
2pk
w

 x    2ja
x

g 1 x 2  sin 
2pk
w

 x
('')''*

odd #  even 5 odd

Thus, even-symmetric kernels, such as Gaussian or Laplacian of Gaussian, have frequency 
responses that are real and even, while odd-symmetric kernels, such as the derivative of 
Gaussian, have frequency responses that are imaginary and odd.

• Parseval’s theorem states that the energy is preserved in the frequency domain, where 
the energy is defined as the sum of the squares of the magnitudes of the elements:

 a
w21

x50

0g 1 x 2 02 5 a
w21

k50

0G 1 k 2 02 (6.55)

This property is also known as the unitarity property of the DF T.

• The DC component of the signal is captured by G(0), which is just the sum of the values 
in g(x), i.e., G 1 0 2 5 aw21

x50
g 1 x 2 , since e0 5 1. For this reason, G(0) is referred to as the 

DC component, where this term alludes to the direct current in an electrical circuit—that 
is, the amount of current flowing through the wire, ignoring oscillations.

• Convolution in the time (or spatial) domain is equivalent to multiplication in the 
 frequency domain, and vice versa:

 g1 1 x 2  ~ g2 1 x 2  ()DFT
 G1 1 k 2G2 1 k 2  (6.56)

 g1 1 x 2 g2 1 x 2  ()DFT
 

1
w

 G1 1 k 2  ~ G2 1 k 2  (6.57)

It is important to note, however, that due to the periodicity of the DF T the convolution here 
is circular convolution, and hence this is known as the circular convolution theorem. If 
standard convolution is desired, the signals must be zero-padded with a sufficient number 
of values first, as explained next.

6.2.4 Zero Padding
It is often said that convolution in the time domain is equivalent to multiplication in the fre-
quency domain. While this statement is true for continuous-time infinite-duration signals, spe-
cial care must be taken in applying it to discrete signals. We cannot convolve two discrete signals 
by simply computing the DF T of each, multiplying the results, and computing the inverse DF T, 
for two reasons. First, as mentioned above, multiplication in the frequency domain is actually 
equivalent to circular convolution in the spatial domain, so if regular convolution is desired, 
we must first zero pad one of the signals. Secondly, if the two signals are of different lengths, 
then their Fourier transforms will have different lengths, thus precluding their multiplication; 
again zero-padding is the answer. The following example should make these concepts clear.

0

0
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284 Chapter 6 • Frequency-Domain Processing

While the forward and inverse DF Ts are difficult to verify without a computer, the final 
results are easily computed using the standard spatial-domain techniques that we have 
already studied. The circular convolution of g and h allows the first and last values of the 
signal to wrap around when the convolution kernel is at the borders:

  grcirc 1 0 2  5  1 # 4 1 2 # 6 1 1 # 4 5 20  (6.65)

  grcirc 1 1 2  5  1 # 6 1 2 # 4 1 1 # 1 5 15  (6.66)

  grcirc 1 2 2  5  1 # 4 1 2 # 1 1 1 # 0 5 6  (6.67)

  grcirc 1 3 2  5  1 # 1 1 2 # 0 1 1 # 1 5 2  (6.68)

  grcirc 1 4 2  5  1 # 0 1 2 # 1 1 1 # 4 5 6  (6.69)

  grcirc 1 5 2  5  1 # 1 1 2 # 4 1 1 # 6 5 15  (6.70)

or grcirc 1 x 2 5 320 15 6 2 6 15 4. Linear convolution is obtain in the same manner, 
except that g is zero padded as necessary:

  g r 1 0 2  5  1 # 0 1 2 # 6 1 1 # 4 5 15 (6.71)

  g r 1 5 2  5  1 # 1 1 2 # 4 1 1 # 0 5 9  (6.72)

and so forth.

EXAMPLE 6.4  Suppose we want to convolve the input signal g 5 36 4 1 0 1 4 4 with the lowpass 
Gaussian filter h 1 x 2 5 31 2 1 4, where the underscore indicates the value at the origin. 
Show how to zero pad the signals for a frequency-domain implementation of (a) circular 
convolution, and (b) linear convolution.

Solution (a) Obviously we cannot simply multiply the DF Ts because they are of different lengths. 
Instead, we must zero pad the kernel and use the periodicity property. Let us define 
hzeropad 1 x 2 ; 30 0 1 2 1 0 4 5 32 1 0 0 0 1 4,  whose DF T is 34 3 1 0 1 3 4. The DF T of the signal is 316 9 1 0 1 9 4. The circular 
convolution is obtained from the inverse DF T of the multiplication of the two DF Ts:

 grcirc 1 x 2 5 g 1 x 2  ~ hzeropad 1 x 2 5 F 
215 316 #  4  9 #  3  1 #  1  0 #  0  1 #  1  9 #  3 4 6 (6.58)

 5 F 
215 364 27 1 0 1 27 4 6  (6.59)

 5 320 15 6 2 6 15 4  (6.60)

(b) For linear convolution, we also need to zero pad the input signal to prevent the convolu-
tion kernel from wrapping past the signal boundary. To ensure both signals are of the same 
length, we also need to add additional zeros: By the periodicity property,

 gzeropad 1 x 2  5  30 6 4 1 0 1 4 0 4 5 36 4 1 0 1 4 0 0 4 (6.61)

 hzeropad 1 x 2  5  30 0 0 1 2 1 0 0 4 5 32 1 0 0 0 0 0 1 4  (6.62)

The linear convolution is then given by

 g r 1 x 2 5 g 1 x 2  ~ h 1 x 2  5  F 
215F5gzeropad6 

#
 F5hzeropad66 (6.63)

 5  315 15 6 2 6 9 4  (6.64)
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6.2 Discrete Fourier Transform (DFT) 285

6.2.5 Magnitude and Phase
Often it is convenient to convert the real and imaginary components of the Fourier transform 
into polar coordinates:

 G 1 k 2 5 Geven 1 k 2 1 jGodd 1 k 2 5 0G 1 k 2 0e 
j/G1k2 (6.73)

where Geven 1 k 2  and Godd 1 k 2  are the real and imaginary parts of G, respectively, and

  0G 1 k 2 0 5  "Geven
2 1 k 2 1 Godd

2 1 k 2  (6.74)

  /G 1 k 2  5  tan21¢ Godd 1 k 2
Geven 1 k 2 ≤  (6.75)

are the magnitude and phase, respectively.
Filters are characterized by their phase, of which there are three types. By far, the most 

common type of digital filter is zero-phase, which means that /G 1 k 2 5 0 for all k. As 
we have just seen, a real-valued convolution kernel with even symmetry about the origin 
yields a real-valued Fourier transform with even symmetry about the origin, and is therefore 
a zero-phase filter. All Gaussian filters, such as 31 2 1 4, and all Laplacian of Gaussian 
filters, such as 31 22 1 4, where the underscore indicates the origin, are zero-phase.

If the kernel is real-valued with even symmetry about an index other than the origin, 
then it is linear-phase. For example, 31 2 1 4  is linear-phase. This is easy to see 
from the shift theorem, since a shift of the signal by x0 causes the Fourier transform 
to be multiplied by e2j2pkx0/w, indicating that the phase is 22pkx0/w, which is a linear 
function of k. Linear-phase filters are common in signal processing due to the need for 
causal processing, but they are uncommon in image processing. However, as we just 
saw, a real-valued convolution kernel with odd symmetry about the origin yields a purely 
imaginary Fourier transform with odd symmetry about the origin. More precisely, the 
magnitude of the Fourier transform is even, while the phase is either 6 p/2 everywhere. 
Such filters are considered generalized linear phase and can, for all practical purposes, 
be treated as linear-phase. All first-derivative Gaussian filters, such as 31 0 21 4, fall 
into this category.

Finally, nonlinear-phase filters arise when dealing with old-fashioned analog circuitry 
or IIR filters. However, as long as we work with convolution (and hence digital FIR filters), 
we will not encounter these.

6.2.6 Interpreting Discrete Frequencies
One aspect of the DF T that may not be obvious at first is how to interpret discrete frequen-
cies. To overcome this difficulty, let us consider the simple example of the continuous signal 
g 1 x 2 5 cos 2p

8  x, shown in the left side of Figure 6.4. If g is a spatial-domain signal and 
x is expressed in meters, then the frequency of the signal is 1

8 cycles per meter, while the 
period of the signal (which is the inverse of the frequency) is 8 meters per cycle. Indeed, as 
can be seen from the figure, the signal repeats every 8 meters, so that g 1 x 1 8 2 5 g 1 x 2, or 
more generally, g 1 x 1 8n 2 5 g 1 x 2 , where n is an arbitrary integer.

Now if the continuous signal is sampled at locations x 5 0, 1, c, 7, we obtain the 
discrete signal shown in the right side of the figure, where the units of x are now samples 
rather than meters. Therefore, the frequency of the discrete signal is 1

8 cycles per sample, 
while the period of the signal is 8 samples per cycle. Like radians, “cycle” is a dimensionless 
unit that can be ignored whenever convenient, so it is equivalent to say that the frequency 
is 18 inverse samples, while the period is 8 samples.

Although it is obvious from the shape of the plot that the signal is exactly one period of 
a cosine waveform, keep in mind that the DF T computation operates solely on the eight 
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sampled values in the right side of the figure: 1, 1!2, 0, 2 1!2, 21, 2 1!2, 0, 1!2. Applying 
Equation (6.13) yields

  G 1 0 2 5 1e0 1
1"2

 e0 1 0 e0 1 c1
1"2

 e0 5 0  (6.76)

  G 1 1 2 5 1e0 1
1"2

 e2j 2p/8 1 0e2j 4 p/8 1 c1
1"2

 e2j14 p/8 5 4  (6.77)

  G 1 2 2 5 1e0 1
1"2

 e2j 4p/8 1 0 e2j 8p/8 1 c1
1"2

 e2j 28 p/8 5 0  (6.78)

  (  (6.79)

  G 1 7 2 5 1e0 1
1"2

 e2j 14 p/8 1 0e2j 28 p/8 1 c1
1"2

 e2j 98 p/8 5 4 (6.80)

which is summarized as

 G 1 k 2 5 b4 if k 5 1 or k 5 7
0 otherwise

 (6.81)

and displayed in Figure 6.5. There is a spike at k 5 1 and another spike at k 5 7; or equiva-
lently at f 5 1

8 and f 5 7
8, since w 5 8. The first spike is what we expect, since the original 

continuous signal has a period of 8 meters, and therefore the discrete signal has a period of 

Figure 6.4 LEFT: A continuous 
spatial-domain signal cos 2p

8  x 
is sampled at locations 
x 5 0, 1, c, 7. RIGHT: The 
discrete signal resulting from 
the sampling. Note that the 
units for the domain have 
changed from meters to 
samples.
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Figure 6.5 LEFT: The DF T of the discrete signal shown in the right side of Figure 6.4, shown as a function of the discrete index k. MIDDLE: 
The DF T shown as a function of f 5 k/w, where w 5 8 is the number of samples in the original discrete signal. RIGHT: The DF T of the 
discrete signal shifted to show positive and negative frequencies.
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8 samples. To understand the spike at k 5 7, recall from our discussion on periodicity that 
f 5 w 2 1

w  is the same as f 5 21
w, so in this case f 5 7

8 is the same as f 5 21
8. Therefore, this 

additional frequency of f 5 7
8, which at first glance appears extraneous, is actually none other 

than the negative of the frequency that we already know is present in the signal. In fact, the 
relationship between f 5 1

8 and f 5 21
8 can be observed in the sum of complex exponentials:

 cos 2p f x 5
1
2

 1 e2p f x 1 e22p f x 2  (6.82)

so that a sinusoid can be thought of as containing both the positive and negative frequencies. 
One way to visualize this relationship is to display the values for which k $ 1

2 to the left of 
the values for which k , 1

2, as shown in the right side of the figure.

6.2.7 Basis Functions
The DF T illustrates a foundational concept in signal analysis, namely basis functions. A 
basis function is a scalar function defined over the same domain as the original signal that, 
when linearly combined with other basis functions, yields the signal:

 g 1 x 2 5 a
k

ak 
ck 1 x 2  (6.83)

where g is the signal, ak is the kth scalar weight, and ck 1 x 2  is the kth basis function, defined 
over the same domain as g. Rearranging Equation (6.83) into matrix form yields

 

D g 1 0 2
g 1 1 2
(

g 1w 2 T(')'*
g

5

 

 

Dc0 1 0 2 c1 1 0 2 c cw 1 0 2
c0 1 1 2 c1 1 1 2 c cw 1 1 2

( ( f (
c0 1w 2 c1 1w 2 c cw 1w 2 T(''''''')'''''''*

C

Da0

a1

(
aw

T
(')'*

a
 (6.84)

that is, g 5 Ca, or a 5 C21 g. It is easy to see that the basis functions are given by the  columns 
of C, i.e., C 5 3c0 c1

c cw 4, where ck ; 3ck 1 0 2 ck 1 1 2 c ck 1w 2 4T is 
the kth basis function in vector form. If C is orthogonal, then C21 5 CT, in which case 
a 5 CTg, and the basis functions are equivalently given by the rows of CT.

The simplest set of basis functions is 5ek6k51
w , where ek ; 30 c 0 1 0 c 0 4T 

is a vector of zeros with a one in the kth position:

  g 1 x 2 5  3g 1 0 2 g 1 1 2 g 1 2 2 c g 1w 2 1 2 4
  5     g 1 0 2 31 0 0 c 0 4
   1g 1 1 2 30 1 0 c 0 4
   1g 1 2 2 30 0 1 c 0 4

(

   1g 1w 2 1 2 30 0 0 c 1 4
The basis functions define a transform such that

  ak 5 a
w21

x50

g 1 x 2 ek 1 x 2  (6.85)

  g 1 x 2 5 a
w21

k50

ak 
ek 1 x 2  (6.86)

where ek 1 x 2  is the x 
th element of ek.
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Notice that ek is simply the unit vector along the kth axis in a Cartesian space. For 
example, suppose for simplicity that the signal consists of just two samples: g(0) and 
g(1). If we think of the signal as a vector g 5 3g 1 0 2 g 1 1 2 4T, it is trivial to see that 
g 5 g 1 0 2 31 0 4T 1 g 1 1 2 30 1 4T. In this example, e0 5 31 0 4T and e1 5 30 1 4T 
are the basis functions, and g(0) and g(1) are the weights that cause the linear combination 
of the basis functions to exactly represent the original signal g. As shown in Figure 6.6, the 
signal can be visualized as a point (g(0), g(1)) in the plane, e0 and e1 are unit vectors along 
the axes, and the weights g(0) and g(1) are obtained by projecting the signal onto the basis 
functions: g 1 0 2 5 gTe0 and g 1 1 2 5 gTe1.

The DF T operates in much the same way. The forward DF T performs an analysis of 
the signal by determining the contributions of the various frequencies in the signal, while 
the inverse DF T performs a synthesis of the signal as a weighted sum of sines and cosines. 
The sines and cosines at different frequencies are the basis functions of the DF T, and the 
weights for any particular signal are given by the output of the DF T applied to the signal. 
Basis functions, as in the case of simple unit axes or in the case of Fourier sines and cosines, 
are often orthogonal to one another, but we will see examples later in this chapter of non-
orthogonal basis functions.

6.2.8 DFT as Matrix Multiplication
Sometimes it is helpful to consider the DF T as the multiplication of a matrix by a vector. 
That is, if we let g be the vector containing the input signal, and g F  the vector containing the 
frequency-domain representation, then g F 5 Fw 

g is the forward DF T, while g 5 Fw
21g F  is 

the inverse DF T, where Fw is the w 3 w normalized DF T matrix, obtained by rearranging 
Equation (6.13) in matrix form:D G 1 0 2

G 1 1 2
(

G 1w 2 1 2 T('')''*
gF

5

 

 

1"w
 E1 1 1 c 1

1 e2j 2p/w e2j 4 p/w c e2j 2 p 1w212/w
1 e2j 4p/w e2j 8 p/w c e2j 4 p 1w212  /w

( ( ( f (
1 e2j 2p1w212/w e2j 4 p 1w212/w c e2j 2p 1w212  

2/w

U
('''''''''''')''''''''''''*

Fw

 D g 1 0 2
g 1 1 2
(

g 1w 2 1 2 T('')''*
g  

 (6.87)

where the ikth element is given by 1 1/"w 2 e2j 2p i k /w, if i and k are zero-based indices. 
The basis functions are given by the columns of Fw

21. Since the matrix is both orthogonal 
and symmetric, Fw

21 5 Fw
T 5 Fw, these are the same as the columns (or rows) of Fw. 

These basis functions are orthogonal to one another, that is, fi
T fk
 5 0 if i 2 k, where fi is 

the i 
th column of F, and * is the complex conjugate. Because of the normalization factor, 

all the basis functions have unit norm, that is, 7fi 72 5 fi
T fi
 5 1 for all i. Recall in our 

Figure 6.6 In a standard Cartesian coordinate system, unit 
vectors along the coordinate axes act like basis functions, with 
the elements of a vector being equivalent to the projection of 
the vector onto these vectors. Shown are the basis functions 
e0 and e1 along the x and y axes, respectively.

g 5 (g(0), g(1))

g(0)

g(1)

e0

e1
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earlier definition of the DF T that the forward and inverse normalization factors can be 
set arbitrarily as long as their product is 1/w. Here we distribute the normalization factor 
equally, with 1/"w in the forward transform and 1/"w in the inverse transform, which 
ensures that Fw is a unitary matrix (the complex version of an orthogonal matrix), so that 
Fw

TFw
 5 Fw
Fw
T 5 I5n3n6, where I5n3n6 is the n 3 n identity matrix. Therefore, since Fw 

is symmetric, its inverse is its complex conjugate 1F21 5 F
 2 , which is what we expect 
because the inverse DF T is exactly the same as the forward DF T except for the sign of 
the complex exponential.

6.3 Two-Dimensional DFT
Now that we have established the foundation of the discrete Fourier transform, we are ready 
to discuss its application to image processing. The 2D DF T is a natural extension of the 1D 
case: simply replace the single frequency k with two frequencies in the two directions, kx 
and ky, so that kx/w becomes kx  

x/w 1 k y 
y/h. That is, if g (x,y) is a 2D signal (such as an 

image) defined over the domain x 5 0,1, c, w 2 1 and y 5 0, 1, c, h 2 1, then the 
forward and inverse DF Ts are given by

  G 1 kx, ky 2 5 a
w21

x50

 a
h21

y50

g 1 x, y 2 e2j 2pxTf                 1 forward DFT 2 (6.88)

  g 1 x, y 2 5
1

wh
 a
w21

kx50

 a
h21

ky50

G 1 kx, ky 2 e  
j 2p xTf   1 inverse DFT 2  (6.89)

where x 5 3x y 4T and f 5 3k x

w
k y

h 4T, so that xTf 5
k x  

x
w 1

k y 
y

h . As with the 1D transform, 
keep in mind that the placement of the scaling factor 1/wh is arbitrary.

6.3.1 Separability
A straightforward implementation of the 2D DF T is shown in Algorithm 6.3. The frequency 
representation G is stored in the same manner as a complex image would be, with two num-
bers per element (the real and imaginary components). Lines 1–2 loop over all the elements 
in this 2D array, computing the values by performing an elementwise sum in Lines 9–10 
according to Equation (6.88), taking advantage of Euler’s formula. The pseudocode is ter-
ribly inefficient, with an asymptotic running time of O 1w4 2 , assuming w < h.

The speed can be increased substantially by taking advantage of the fact that the 2D DF T 
is separable. To see that this is indeed the case, simply expand Equation (6.88), substitute 
the product of the exponents for the exponent of the sums, and recognize that the exponents 
in the product are themselves dependent upon only one of the two variables, either x or y:

  G 1 k x, k y 2 5 a
w21

x50

 a
h21

y50

g 1 x, y 2 e2j 2 p 1k x  x /w1k y y/h2  (6.90)

  
5 a

w21

x50

 

¢ ah21

y50
g 1 x, y 2 e2j 2p k y y/h≤

('''')''''*
Gy1x; ky2 e2j 2p kx  x /w 

 

 (6.91)

where Gy 1 x; ky 2  is the 1D DF T of column y of g(x,y). This equation says that the 2D DF T 
can be computed by first computing the 1D DF T of each column independently, then 
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290 Chapter 6 • Frequency-Domain Processing

computing the 1D DF T of the resulting rows. Of course due to symmetry this order can be 
reversed by processing the rows first, then the columns, without affecting the result. The 
separable algorithm is shown in Algorithm 6.4. First the DF T is computed of each row of 
the image, storing the result in the corresponding row of a temporary array. (The colon 
operator selects all the values in the row.) Then the DF T is computed of each column of the 
temporary array. Note that in the first iteration all the input values are real, whereas in the 
second iteration the values are complex, thus necessitating the call to the DiscreteFourier 
TransformComplex procedure we saw before, which is here abbreviated DF TC. The 
running time of this pseudocode for the 2D DF T is O 1w3 2 . To further increase speed a real 
implementation would use the FF T to compute the 1D DF Ts of the separable algorithm, 
leading to a running time of O 1w2 log w 2 .

The separability of the 2D DF T leads to an elegant, compact representation of the 2D 
DF T using matrix notation, similar to Equation (5.38):

 GF 5 FhGFw (6.92)

where G is the original 2D signal (or image) treated as a w 3 w matrix; Fw is the w 3 w 1D 
DF T matrix given in Equation (6.87); Fh is the h 3 h 1D DF T matrix defined in the exact same 

ALGORITHM 6.3 2D DF T (slow version)

DiscreteFourierTransform2D(I)

Input: grayscale image I of size width 3 height
Output: real 1Geven 2  and imaginary 1Godd 2  components of the 2D DF T of I

 1 for ky d 0 to height21 do
 2    for kx d 0 to width21 do
 3       Geven 1 kx, ky 2 d 0
 4       Godd 1 kx, ky 2 d 0
 5       fx d kx/width
 6       fy d ky/height
 7       for y d 0 to height21 do
 8        for x d 0 to width21 do
 9           Geven 1 kx, ky 2 d1 I 1 x, y 2  
 cos 1 2 
 p 
 1   fx 
 x 1 fy 
 y 2 2
10           Godd 1 kx, ky 2 d2 I 1 x, y 2  
 sin 1 2 
 p 
 1   fx 
 x 1 fy 
 y 2 2
11 return Geven, Godd

ALGORITHM 6.4 2D DF T (separable version, still slow)

DiscreteFourierTransform2DSeparable(g)

Input: grayscale image I of size width 3 height
Output: real 1Geven 2  and imaginary 1Godd 2  components of the 2D DF T of I

1 for y d 0 to height21 do
2   Tempeven 1:, y2 , Tempodd 1:, y2 d DiscreteFourierTransform 1 g 1 0, y 2 , c, g 1width21, y 2 2
3 for x d 0 to width21 do
4   Geven 1 x, : 2 , Godd 1 x, : 2 d DFTC 1Tempeven 1 x, 0 2 , c, Tempeven 1 x, height21 2 ,

Tempodd 1 x, 0 2 , c, Tempodd 1 x, height21 2 2
5 return Geven, Godd
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manner but substituting h for w in Equation (6.87); and GF  is the 2D DF T of G. This result 
is easy to derive and illustrated in Figure 6.7. Let gi

T be the ith row of G containing the values 
in the ith (zero-based index) row y 5 i of the original 2D signal g(x, y), oriented horizontally; 
that is, GT 5 3g0

c gh21 4. The vector Fwgi is therefore the 1D DF T of those values, 
oriented vertically. Let Temp ; FwGT be a temporary matrix (the same size as GT) whose 
columns are the 1D DF Ts of the columns of GT. If we transpose this matrix and premultiply 
it by Fh, then we will compute the 1D DF Ts along the vertical direction of the original signal, 
yielding the desired result: GF 5 FhTempT 5 Fh 1FwGT 2T 5 FhGFw

T 5 FhGFw, where 
the last equality follows from the symmetry of the 1D DF T matrix, as we saw earlier. Note 
that if the original signal G is square, then Equation (6.92) reduces simply to GF 5 FwGFw.

6.3.2 Projection-Slice Theorem
The projection of a continuous function g(x, y) of two variables onto a line at some orienta-
tion u is the 1D function that results from integrating the function along rays perpendicular 
to the line. Let us define a slice through a 2D continuous function G 1 fx, fy 2  at u as the 1D 
function obtained by ignoring all values except those along the line. The projection-slice 
theorem, also known as the Fourier slice theorem, says that the Fourier transform of the 
projection of g onto a line through the origin is the same as the 1D slice of G at the same 
orientation, where G 5 F5g6. In other words, the Fourier transform of the projection is the 
slice of the Fourier transform, as shown in Figure 6.8.

This theorem is easily proved for the case of a horizontal slice along the x-axis:

  G 1 fx, 0 2 5 2
`

2`

 2
`

2`

g 1 x, y 2 e2j 2p fx  x d x d y  (6.93)

  
5 2

`

2`

 

B2`

2`

g 1 x, y 2 d yR
(''')''*

gp1x2 e2j 2p fx  x d x
 

 (6.94)

  5 F 5gp 1 x 2 6  (6.95)

Figure 6.7 The 2D DF T as 
a pair of matrix multiplies, 
utilizing the principle 
of separability. The 1D 
DF T matrix is multiplied 
by the transpose of the 
original signal (treated as 
a matrix) to compute the 
1D DF Ts along the rows 
of G (columns of GT). Then 
this result is premultiplied 
by the 1D DF T matrix to 
compute the 1D DF Ts along 
the columns of G, yielding 
the 2D DF T GF.
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292 Chapter 6 • Frequency-Domain Processing

where gp 1 x 2 5 eg 1 x, y 2 dy is the projection of g onto the x-axis. In other words, a hori-
zontal slice through the Fourier transform at fy 5 0 is identical to the Fourier transform 
of the projection of the original signal onto the x-axis. It will be obvious that the theorem 
applies along any orientation, after we show (later in this section) that a rotation of the 
image yields a rotation of the Fourier transform by the same amount in the same direc-
tion. This theorem also applies to the case of a discrete function, although when u is not 
an integral multiple of 90 degrees, discretization effects cause the two functions to only 
approximate each other.

The projection-slice theorem is important in the reconstruction of an object from images 
of its slices. Imaging by slices is known as tomography, and the process of recovering 
an object from image slices is known as tomographic reconstruction. CAT scans (from 
computed axial tomography),† for example, operate by collecting cross-sectional slices 
through an object at various orientations. At each orientation, the sensor accumulates the 
light that passes through the object along a line, a process that is essentially a natural inte-
gration because the amount of radiation detected along a line is related to the sum of all 
the absorbances of the material along that line. Mathematically, the integration of a signal 
along all possible lines is known as the Radon transform, and it is widely used in tomo-
graphic reconstruction. By the projection-slice theorem, the 1D Fourier transform of the 
slices obtained by the sensor is equivalent to the slices of the 3D Fourier transform of the 
(unknown) original signal. It is easy to see that the original signal can be recovered (in theory 
at least) by computing the inverse 3D Fourier transform of the combined 1D Fourier trans-
forms of the slices, although in practice more numerically stable approaches are often used.

† Section 2.4.2 (p. 54).

Figure 6.8 Projection-slice 
theorem.
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6.3.3 Displaying the 2D DFT
To display the 2D DF T of an image, the first step is to separate it into two 2D arrays contain-
ing the magnitude and phase, respectively. The phase is linearly scaled to the range of the 
display (typically 0 to 255) and shown as a grayscale image. If this same procedure were 
followed for the magnitude, however, the display would show a purely black image with a 
single bright pixel in the top-left corner. This top-left pixel, in a manner analogous to the 
1D situation that we discussed earlier, captures the DC component, which is typically so 
much larger than the other values that they all appear to be zero, as shown in Figure 6.9.

To overcome this problem, it is common practice to display the logarithm of the mag-
nitude instead, as shown in Figure 6.10. This display, however, still does not reveal the 
structure of the DF T magnitude very well because the DC component is in the top-left 
corner. To shift it to the center of the image, the four quadrants of the DF T should be 
cropped and pasted in a manner similar to the approach taken in the 1D case described 
earlier. In other words, if we imagine dividing the DF T into 4 quadrants, with the top-left 
labeled A, the top-right labeled B, the bottom-left labeled C, and the bottom-right labeled 
D, then the data must be shifted so that the order of display is (from top-left to bottom-
right) D-C-B-A. A simple handy trick to do this, from Equation (6.43), is to simply mul-
tiply the value of each pixel in the signal by 121 2 x1y prior to computing the DF T, since 
F 5g 1 x, y 2 121 2 x1y6 5 G 1 k x 2 w

2, k y 2 h
2 2 , where G 1 kx, k y 2 5 F

 
5g 1 x, y 2 6, and w and h 

are the width and height, respectively, as shown in Figure 6.11.
Another way to think about this procedure is to remember from the periodicity property 

that the DF T treats the signal as if it were replicated forever in all directions, and therefore 
the DF T is replicated in all directions as well. To illustrate this, Figure 6.12 shows the image 
replicated four times. If the DF T were applied to each of these images separately, we would 
have 4 DF Ts, each with quadrants A, B, C, and D, and each containing the DC component† 
at the top-left corner of the A quadrant. When the DF T is applied to the combined image, 
the resulting DF T is simply the concatenation of all 16 quadrants. The information in the 
four central quadrants, namely D-C-B-A, is identical to that in the DF T of the single image, 
but rearranged so that the DC component appears in the center, which is what we want. This 
manner of rearranging the display also reveals that the values along the middle of the image 
in both the horizontal and vertical directions are significantly larger than all the other values; 
there will be more about this in the next section.

† Please note that the two quadrants named C and D are unrelated to the direct current (DC) acronym.

Figure 6.9 Slice through the 
magnitude of the 2D DF T (first 
row). This first row includes the 
DC component, shown as a 
circle (’o’). Left: Without the log, 
the dynamic range is so great 
that nearly all frequencies 
appear to have zero 
contribution. Right: Applying 
the logarithm reduces the 
dynamic range to increase 
visibility of the components.
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6.3.4 Linear Image Transforms
The properties of the 1D DF T outlined in Section 6.2.3 also apply to the 2D DF T, namely 
linearity, periodicity, shift theorem (an important application of which we just saw), modula-
tion, orthogonality, Hermitian symmetry, unitarity, and so forth. Other properties generally 
hold as well, and the extension from 1D to higher dimensions is usually straightforward 
and obvious.

One such property is as follows. Suppose we have a continuous signal g(x) with Fourier 
transform G(f), and we want to find the Fourier transform of the related signal g 1 x r 2 , where 
x r and x are related by a linear transform:

 x r 5 Ax  (6.96)

where A is a square matrix. It is easy to show that the Fourier transform of the transformed 
signal is given by

g 1 x 2  ()F  G 1 f 2  (6.97)

 g 1 x r 2  ()F  
1

det 1A 2  G 1 f r 2  (6.98)

where f r 5 A2Tf. This expression is only approximately true for the DF T because of 
discretization issues but is nevertheless quite important in practice.

For example, suppose the coordinate system of the image is rotated by an angle u so that 
x r 5 Ax, where x 5 3x y 4T and f 5 3 fx fy 4T. Then

 A 5 R u 5 Bcos u 2sin u
sin u    cos u

R  (6.99)

Figure 6.11 Multiplying the image by 121 2 x1y prior to taking the DF T causes the result to be shifted so that the DC component is in 
the center. On the right is shown the logarithm of the magnitude of the DF T of the post-multiplied image.
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Figure 6.10 An image and its 2D DF T shown as magnitude and phase. (To increase the dynamic range of the display, the log of the 
magnitude is shown.) The DC component, which is the top-left corner of the magnitude, is difficult to see.
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so that

 g 1 x r, y r 2  ()F  G 1  fxr, fyr2  (6.100)

where f9 5 Af 5 Ruf, because for a rotation matrix, Ru
2T 5 Ru, and det 1Ru 2 5 1. In 

other words, the frequencies rotate in the same direction as the image. We now have an 
explanation for the bright horizontal and vertical lines in the middle of the shifted DF T in 
Figure 6.12. These lines arise from the sharp contrast between the top and bottom rows of 
the original image, as well as between the left and right columns, which are visible in the 
figure. If these wrapping effects of the DF T were not so overwhelming, then the DF T would 
more clearly reveal the dominant gradient directions in the image.

Another specific linear transform that appears often in practice is scaling. In 2D, scaling 
of the form x r 5 ax, y r 5 by involves

 A 5 Ba 0
0 b

R   (6.101)

and therefore

 g 1 ax, by 2 ()F  
10ab 0   G a fx

a
, 

fy
b
b  (6.102)

That is, shrinking in one domain causes expansion in the other.

Figure 6.12 Top: The 
DF T treats the input as 
a replicated input, and 
produces a replicated 
output. Bottom: It is 
easier to visualize the 
DF T by shifting it so that 
the DC component is in 
the center, which causes 
no loss of information. 
The quadrants A, B, C, 
and D present in the 
original DF T output 
are also present in the 
shifted output, just in a 
different order.
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6.4 Frequency-Domain Filtering
One of the important applications of the DF T is to filter an image. In the previous chapter we 
looked at spatial-domain techniques to filter an image, whereas here we consider frequency-
domain techniques. In reality these two approaches are often equivalent due to the circular 
convolution theorem, which says that the Fourier transform of the convolution of two signals 
is equivalent to the multiplication of their Fourier transforms. In other words, if g(x,y) and 
h(x,y) are two signals, and if g r 5 g ~ h, then it is also true that

 G r 1 kx, ky 2 5 G 1 kx, ky 2H 1 kx, ky 2  (6.103)

where G r 5 F5g r6, G 5 F5g6, and H 5 F5h6. An alternate way of obtaining the desired 
result is therefore to compute the inverse Fourier transform of the multiplication of the two 
Fourier transforms:

 g r 1 x, y 2 5 F 
215F5g 1 x, y 2 6F5h 1 x, y 2 66  (6.104)

assuming that appropriate care has been taken in zero-padding. As discussed earlier, this is 
an FIR filter with h as the impulse response and H as the frequency response, assuming g 
is the original signal.

There are two primary reasons for considering frequency-domain approaches. First, it 
is often more intuitive to design and analyze filters in the frequency domain. That is, even 
if a filter is eventually implemented as a spatial convolution, it is usually much easier to 
understand the purpose of the filter by studying its frequency response than by using the 
weights of the convolution kernel. Secondly, multiplication is less computationally expen-
sive than convolution, so in some circumstances (e.g., large kernels) the frequency-domain 
implementation can be faster than the spatial-domain implementation, despite the overhead 
required to compute forward and inverse Fourier transforms. However, be aware that this 
argument is more applicable in signal processing than it is in image processing because large 
kernels are rarely necessary in the latter, due to the prevalency of multiresolution analysis, 
which we consider in the next chapter.

Whether spatial- or frequency-domain, filtering is used primarily for two applications: 
namely, restoration and enhancement. In restoration, the goal is to remove the effects of 
noise that has, in some way or another, degraded the image quality from its original condi-
tion (or its potential condition, if the corruption occurred prior to capture). Enhancement, 
on the other hand, involves accentuating or sharpening features to make the image more 
useful, going beyond simply a pure, noise-free image. In previous chapters we saw tech-
niques for restoration, such as Gaussian smoothing and median filtering, and we also saw 
techniques for enhancement, such as histogram equalization and level slicing. In this section 
we consider how to accomplish these goals via frequency-domain methods using lowpass, 
highpass, and bandpass filters.

6.4.1 Lowpass Filtering
A lowpass filter allows low frequencies to pass through while attenuating high frequencies. 
In image processing, pixels whose values are similar to their neighbors remain relatively 
unchanged, while sharp transitions are smoothed. Lowpass filtering is used primarily for 
restoration—that is, to remove noise that has corrupted the signal.

Ideal Lowpass Filter
The ideal lowpass filter, also known as the box filter, perfectly passes all frequencies 
below a certain cutoff, while perfectly attenuating all frequencies above the cutoff. The set 
of frequencies below the cutoff is called the passband, while the set of frequencies above 
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the cutoff is called the stopband. The frequency response of a filter will be denoted as 
H( f ), which is a complex function of the frequency f, so that H 5 0H 0ej/H, where 0H 0  is 
the magnitude and /H is the phase, as mentioned before. While the phase is an important 
consideration in the design of causal filters for time-domain signal processing, it is not 
very important for image processing because convolution kernels can be centered on the 
output pixel, thus incurring no shift in the spatial domain. Therefore, we will assume 
/H 5 0 for the rest of our discussion, allowing us to focus solely upon the magnitude of 
the frequency response of the filters we encounter, since H 5 0H 0 . The magnitude of the 
ideal lowpass filter is

 0Hilp 1  
f 2 0 5 b1 if f # fc

0 otherwise
 (6.105)

where fc is the cutoff frequency. Equation (6.105) shows the 1D continuous case for simplic-
ity, but the extension to the discrete 2D case is straightforward:

 0H 1 kx, ky 2 0 5 b1 if d 1 kx, ky 2 # dc

0 otherwise
 (6.106)

where dc is the discrete cutoff frequency, and

 d 1 kx, ky 2 5 0 0 Ckx 2 w
2, ky 2 h

2D 0 0 5 Åakx 2
w
2
b2

1 aky 2
h
2
b2

 (6.107)

is the distance from the origin in frequency space.
The convolution kernel associated with the ideal lowpass filter is given by its inverse 

Fourier transform:

  h 1 x 2 5 2
`

2`

 Hilp 1  
f 2 e  

j 2 p f x d f 5 2 fc

2fc

 e  
j 2 p f x df  (6.108)

  5
1

j 2 px
 1 e  

j 2p fc x 2 e2j 2p fc x 2 5
sin 2p fc  

x
px

5 2 fc sinc 2 fc  
x  (6.109)

where sinc x ; sin px
px  is the normalized sinc function.† Equation (6.105) is called a rect 

function since, when plotted, it looks like a rectangle. Thus, the Fourier transform of a sinc 
function is a rect function, and vice versa. To apply the ideal lowpass filter in the frequency 
domain, simply compute the Fourier transform of the signal, then multiply all frequencies 
above the cutoff frequency by zero. To apply the same filter in the spatial domain, convolve 
the signal with the sinc kernel.

A fundamental principle in filter design is that there is no perfect filter, and therefore 
the best we can do is to strike a practical balance between the various trade-offs in order 
to achieve the desired performance. The reason for this limitation is that no filter can have 
a finite extent in both the spatial and frequency domains. In other words, every filter must 
extend either infinitely in space, infinitely in frequency, or infinitely in both. To say this 
another way, no filter can be both bandlimited and timelimited. A bandlimited filter is 
one whose values in the frequency domain are zero for all f . fmax, where fmax is some 
constant. A timelimited filter is one whose values are zero in the time (or spatial) domain 
for all x . xmax, where xmax is some constant.

Consider, for example, Figure 6.13, which shows the ideal lowpass filter being applied 
to a 1D signal. With the ideal lowpass filter, H( f ) has finite extent, but h(x) extends forever. 
Since it is not possible to convolve a signal with a kernel (such as sinc) that has an infinite 

† Section 3.8.5 (p. 118).
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domain, the ideal lowpass filter is not realizable in the spatial domain. Another drawback 
of the sinc function is that it oscillates about the y-axis. Therefore, even the ideal lowpass 
filter is not a perfect filter because it gives rise to ringing in the output signal. Ringing, 
which occurs when the output signal contains oscillations that are not present in the input 
signal, is related to the Gibbs phenomenon, which occurs when a function with a jump 
discontinuity (such as the rect function) is approximated by a finite number of Fourier 
coefficients. Ringing is generally considered undesirable because it causes the signal to 
overshoot or undershoot, which can cause the signal to be clipped to the maximum or mini-
mum value, thus further distorting the shape of the signal. In the example of Figure 6.14, 
which illustrates the process of applying a lowpass filter to an image, ringing is evident.

Figure 6.13 The function sin 1 f1x 2 1 sin 1 f2x 2  filtered by an ideal lowpass filter. In the frequency domain, the Fourier transform of the 
signal is multiplied by a box function. Equivalently, in the spatial domain, the signal is convolved with a sinc function. In this example 
the filter successfully removes the high-frequency component from the signal, leaving only the low-frequency component.
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Figure 6.14 The process of frequency-domain filtering.  From left to right:  The DFT of the image is computed and multiplied by the 
frequency-domain filter, followed by the inverse DFT to yield the filtered image.  Notice in this example that the ideal lowpass filter 
causes significant ringing in the output.
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Windowing
Any filter can be implemented in either the spatial or frequency domains. That is, we can imple-
ment the filter either as a finite array of values in the frequency domain (in which case it will 
have infinite extent in the spatial domain), or as a finite array of values in the spatial domain 
(in which case it will have infinite extent in the frequency domain). Either way, it is necessary 
to multiply the filter by a window function, which is a nonnegative function that decreases 
monotonically from the center, such as the rect function or any of various bell-shaped curves.†

Let us consider what happens if we multiply (in the spatial domain) the sinc kernel by a 
rect window function. Since multiplication in the spatial domain is equivalent to convolution 
in the frequency domain, this is equivalent to (in the frequency domain) convolving the rect 
function (which is the Fourier transform of the sinc) with the sinc function (which is the 
Fourier transform of the rect). As can be seen from Figure 6.15, the windowing operation 
results in ripples in the frequency domain response of the filter.

Gaussian Lowpass Filter
This fundamental trade-off between the extent of the filter in the spatial and frequency 
domains leads naturally to the Gaussian lowpass filter, which is defined as

 0Hglp 1  
f 2 0 5 e2f/2fc

2
 (6.110)

where the standard deviation fc of the Gaussian plays the role of the cutoff frequency. It 
can be shown that the Gaussian filter is the perfect balance between the extent in the two 
domains, in the sense that it is the shape that minimizes the product of the spatial- and 
frequency-domain functions. Because the Fourier transform of the Gaussian is another 
Gaussian and the Gaussian is a monotonic function on either side of the mean, it is easy 
to see that filtering with a Gaussian does not yield any ripples (in the frequency domain) 
or produce any ringing (in the spatial domain). However, one of the drawbacks of the 
Gaussian is its very mild roll-off from the passband to the stopband, unlike the steep 

† Such as the Hann, Hamming, or Bartlett-Hann window functions.

Figure 6.15 When the ideal lowpass filter (left) is multiplied by a window function (middle), the resulting filter exhibits ripples (right). 
Note that the bottom middle plot shows the absolute value of the sinc function. 
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roll-off of the windowed box function. These two alternatives are analogous to underdamped 
and overdamped control systems, where a quick response time goes hand-in-hand with 
overshooting and ringing. The result of Gaussian lowpass filtering on an image, with 
different variances, is shown in Figure 6.16.

Butterworth Lowpass Filter
Filter design is a delicate process that has been studied extensively by the signal processing 
community for decades. To overcome the undesired effects of the simplistic rect and Gaussian 
filters, filter designers have proposed a number of more sophisticated filters. One of the more 
common is the elliptic filter, which is a general type of filter that allows the designer to 
independently specify the amount of ripple in the passband and stopband. As the amount of 
ripple goes to zero in the passband or stopband, the elliptic filter is well approximated by a 
Chebyshev filter. If the ripple goes to zero in both the passband and stopband, the elliptic filter 
approximates a Butterworth filter. The Butterworth filter is also known as the maximally 
flat filter (since all derivatives exist and are zero at the origin), and it is generally considered a 
good compromise between various trade-offs and is therefore widely used in signal processing 
applications. The magnitude-squared of the Butterworth lowpass filter of order n is given by

 0Hblp 1  
f 2 02 5

1
1 1 1  f/fc 2 2n  (6.111)

Taking the square root of this expression yields the magnitude of the filter, from which it is 
clear that the frequency response is 0Hblp 1  

f 2 0 5 1/"2 at the cutoff frequency f 5 fc, for 
any value of n. Unlike the elliptic and Chebyshev filters, the Butterworth filter is monotonic 
in both the passband and stopband. While the Butterworth roll-off for order n 5 2 is noto-
riously slow, as n increases, the shape of the Butterworth approximates the ideal lowpass 
filter, as shown in Figure 6.17.

Sometimes you will see this equation without the square:

 0Hsblp 1  
f 2 0 5

1
1 1 1  f/fc 2 2n  (6.112)

which could be called the “sloppy Butterworth”. While the sloppy Butterworth does not 
possess any particularly interesting spectral properties (and is therefore not used in signal 
processing applications), its simplicity (i.e., lack of a square root) makes it a somewhat 
popular choice for the more forgiving area of image processing, where specific spectral 
properties are much less important than the overall shape of the function.

s 5 40 pixels21 s 5 20 pixels21 s 5 10 pixels21 s 5 5 pixels21Original image

Figure 6.16 An image, and the result of Gaussian low-pass filtering in the frequency domain with different variances.  The top row 
shows the DFT of the image and the magnitude of the frequency response of each filter.  The smoothed images are the inverse DFT of 
the multiplication of the image DFT with the various filter frequency responses.  Note that a large variance in the frequency domain 
yields less smoothing, whereas a small variance yields more smoothing.
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Lanczos Filter
When the sinc function is multiplied by the first lobe of another sinc function, the result is 
the Lanczos filter,† which is a high-quality filter that is widely used in image processing, 
particularly for smoothing an image before downsampling. Because of its high computa-
tional requirements compared to simple Gaussian kernels,‡ however, it is not well suited to 
real-time applications. While the Lanczos filter can be implemented in the spatial domain 
as easily as the frequency domain, it belongs in this chapter because it is more easily 
explained in relation to the ideal lowpass filter.

To understand the details of the Lanczos filter, recall that the Fourier transform of a rect 
function is a sinc function, and vice versa. More specifically, if t and b are scaling factors 
in the spatial and frequency domains, respectively, then we have the following Fourier pairs:

 rectax
t
b 5 c1 if 0x 0 #

t

2
0 otherwise

  ()
F     

t sinc 1 tf 2 5
sin pt f

pt f
 (6.113)

 b sinc 1bx 2 5
sin pbx

pbx
  ()

F
  rect a f

b
b 5 c1 if 0  f 0 # b

2

0 otherwise
 (6.114)

The Lanczos convolution kernel is the product of two kernels, one that performs the work 
of the ideal lowpass filter, and one that performs windowing. For an ideal lowpass filter with 
cutoff frequency fc, we have b 5 2fc, leading to

 w1 1 x 2 5 2 fc 
sinc 1 2 fc  

x 2 5 2 fc 
sin 2p fc  

x

2p fc  
x

5
sin 2p fc  

x
px

 (6.115)

For the window function, we apply the first lobe of another sinc:

 w2 1 x 2 5 csincA x
w~ B 5

sin p x
w~

p x
w~

if x 5 2w~ , c, w~

0 otherwise
 (6.116)

where w 5 2w~ 1 1 is the width of the kernel. Multiplied together, these two yield the 
Lanczos convolution kernel:

 h 1 x 2 5 w1 1 x 2w2 1 x 2 5
sin 2p fc 

x
px

 #  
sin p 

x
w~

p 
x
w~

    x 5 2w~ , c, w~  (6.117)

‡ Section 5.2 (p. 222).

Figure 6.17 The magnitude of the 
Butterworth lowpass filter for n 5 1 to n 5 5 
(solid lines). As n increases, the Butterworth 
response approaches the ideal lowpass filter 
(dashed line).
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† Recall the closely-related concept of Lanczos interpolation in Section 3.8.5 (p. 118).
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Smaller kernels exhibit more noticeable ringing, while larger kernels result in wasted com-
putation because they do not yield noticeable improvement in the output quality. Typical 
values for w lie in the range of 19 to 31.

6.4.2 Highpass Filtering
In the frequency domain, the magnitude of a highpass filter is just the magnitude of an 
allpass filter minus the magnitude of the corresponding lowpass filter. Since an allpass filter 
does not attenuate any of the frequencies, it has the value 1 everywhere, leading to

 0Hhighpass 1   
f 2 0 5 1 2 0Hlowpass 1   

f 2 0  (6.118)

which is illustrated in Figure 6.18 for an ideal lowpass filter.
Applying this equation to the lowpass filters of the previous section yields the following:

 0Hihp 1  
f 2 0 5 b1 if f $ fc

0 otherwise
    (ideal highpass filter) (6.119)

 0Hbhp 1  
f 2 0 5 1 2 Å 1

1 1 1  f/fc 2 2n  (Butterworth highpass filter) (6.120)

  0Hsbhp 1  
f 2 0 5

1
1 1 1  fc/f 2 2n       (sloppy Butterworth highpass filter) (6.121)

 0Hghp 1  
f 2 0 5 1 2 e2f/2fc

2
       (Gaussian highpass filter) (6.122)

When the filter is zero-phase, the filter is equal to its magnitude, H 1   f 2 5 0H 1   f 2 0 , thus 
simplifying Equation (6.118) to Hhighpass 1   

f 2 5 1 2 Hlowpass 1   
f 2 . This leads to a simple 

relationship in the spatial domain between convolution with a highpass kernel hhp and its 
corresponding lowpass kernel hlp:

  g r 1 x 2 5 g 1 x 2  ~ hhp 1   
f 2  (6.123)

  5 F  
215G 1   f 2Hhp 1   

f 2 6  (6.124)

  5 F  
215G 1   f 2 1 1 2 Hlp 1   

f 2 2 6  (6.125)

  5 F  
215G 1   f 2 6 2 F  

215G 1   f 2Hlp 1   
f 2 6  (6.126)

  5 g 1 x 2  ~ 1 d 1 x 2 2 hlp 1 x 2 2  (6.127)

  5 g 1 x 2 2 g 1 x 2  ~ hlp 1 x 2  (6.128)

where Equation (6.127) follows from Equation (6.125) , and Equation (6.128) follows from 
Equation (6.126). To derive Equation (6.127), recall that the Fourier transform of a Dirac 
delta function is

 G 1   f 2 5 2 d 1 x 2 e2j 2p f x d x 5 1 (6.129)

from the sifting property in Equation (6.8), so that the inverse Fourier transform of an allpass 
filter is a delta function. The result of Gaussian highpass filtering on an image, with different 
variances, is shown in Figure 6.19.

Figure 6.18 A highpass filter 
is the allpass filter minus a 
lowpass filter

Allpass filter

f
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Lowpass filter
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s 5 5 pixels21 s 5 10 pixels21 s 5 20 pixels21 s 5 40 pixels21Original image

Figure 6.19 An image, and the result of Gaussian high-pass filtering in the frequency domain with different variances.  The top row 
shows the DFT of the image and the magnitude of the frequency response of each filter.  Bright values indicate frequencies that are 
passed, whereas dark values indicate frequencies that are attenuated.
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6.4.3 Bandpass Filtering
A bandpass filter rejects both low and high frequencies, instead passing only frequencies 
in a certain band. The ideal bandpass filter is

 0H 1  f 2 0 5 b1 if flo # f # fhi

0 otherwise
 (6.130)

where the passband is between flo and fhi.

Laplacian of Gaussian (LoG) filter
By far the most common bandpass filter for image processing is the Laplacian of Gaussian 
(LoG) filter, which we saw in the previous chapter:

 0H 1  f 2 0 5 2f  
2e2f / 2  fc

2
 (6.131)

This expression follows from the well-known formula for the Fourier transform of the nth 
derivative of an arbitrary function g:

 F e d 
ng 1 x 2
dx 

n f 5 1  jf 2 nG 1  f 2  (6.132)

by letting g and G be the Gaussian, letting n 5 2, and recognizing that j 
2 5 21. The LoG 

filter is sometimes known as the Laplacian filter.
It is worth noting that 3 elements are not sufficient to capture the bandpass nature of the 

Laplacian. In the previous chapter we noted that the only 3 3 1 second-derivative Gauss-
ian kernel is 31 22 1 4. The DF T of this kernel is 323    0   23 4, which removes the 
low-frequency DC component while passing the other high frequency. In other words, every 
3 3 3 LoG kernel acts like a highpass filter. To keep the DF T nonnegative (and hence zero-
phase) we typically use the negative LoG kernel 321    2   21 4, whose DF T is 33 0 3 4. 
It is easy to see that the negative LoG kernel is just the scaled difference between allpass 
and lowpass filters:

 
321 2  21 4(''')'''*

highpass

5 3 £
 

30 1 0 4('')''*
allpass

2
1
3

 

31 1 1 4('')''*
lowpass

≥
 

 (6.133)

or in 2D,
Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203







304 Chapter 6 • Frequency-Domain Processing

 

C    0 21    0
21    4 21
   0 21    0

S
(''')'''*

highpass

5 h
 §

 

C0 0 0
0 1 0
0 0 0

S
('')''*

allpass

2
1
6

 

C0 1 0
1 2 1
0 1 0

S
('')''*

lowpass

¥  (6.134)

where h 5 6. Since the convolution of the image with an allpass filter is just the image 
itself, we have

 I ~ 12LoG 2 5 h 1 I 2 I ~ hlowpass 2  (6.135)

where hlowpass is the 3 3 3 lowpass kernel and h is the associated scaling factor. Table 6.2 
provides the lowpass kernels for several 3 3 3 LoG kernels, along with their scaling factors.

Given the following lowpass kernel:

 hlowpass 1 x, y 2 5
1
9

 C1 1 1
1 1 1
1 1 1

S 5
1
3

 C1
1
1
S  ~ 

1
3

 31 1 1 4  (6.136)

find the equivalent LoG kernel that satisfies Equation (6.6), and find the scaling factor h.

Solution An image does not change when it is convolved with the allpass filter. Combined with the 
linearity property of convolution, this yields

  I r 1 x, y 2  5  h 1 I 1 x, y 2 2 I 1 x, y 2  ~ hlowpass 1 x, y 2 2  (6.137)

   5  h £I 1 x, y 2  ~ C0 0 0
0 1 0
0 0 0

S 2 I 1 x, y 2  ~ 
1
9

 C1 1 1
1 1 1
1 1 1

S  ≥ (6.138)

  5 h £I 1 x, y 2  ~ £ C0 0 0
0 1 0
0 0 0

S 2
1
9

 C1 1 1
1 1 1
1 1 1

S≥ ≥  (6.139)

  5 I 1 x, y 2  ~ 
h

9
 C21 21 21

21    8 21
21 21 21

S  (6.140)

The convolution kernel in the final line is recognized as the LoG0.33 kernel of Table 5.5, 
multiplied by 2h, where h 5 3. The result is shown in the penultimate column of Table 6.2.

EXAMPLE 6.5 

Unsharp Masking and Highboost Filtering
The Laplacian leads to a popular way to enhance an image known as sharpening. This 
approach takes advantage of a peculiarity of the human visual system, namely that neurons 
in the retina distort the intensity values based on neighboring intensities. Such a distortion 
is evidenced in the well-known Mach bands illusion, illustrated in Figure 6.20, which 
reveals that the human brain perceives exaggerated intensity changes near intensity edges. 
Capitalizing on this phenomenon, the sharpening trick to image enhancement introduces 
artificial Mach bands by exaggerating intensity edges.

Sharpening is almost always performed with a Laplacian kernel, and it can be done in 
either the spatial or frequency domain. In the spatial domain, simply subtract a blurred 
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Figure 6.20 The Mach 
bands illusion. Left: Image 
consisting of dark and 
light regions, with a linear 
transition between them. 
The human visual system 
hallucinates a dark band left 
of the transition and a bright 
band right of the transition. 
Right: 1D slice through the 
image, showing the actual 
graylevel function and the 
perceived function.
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TABLE 6.2 The lowpass kernels associated with various LoG kernels. The first two rows show the discrete 3 3 3 LoG kernels 
from Table 5.5, along with their variances s2. The next four rows show the corresponding 3 3 3 lowpass kernel h1owpass 
so that I ~ 12LoG 2 5 h 1 I 2 I ~ hlowpass 2 , along with the 3 3 1 generator for the separable lowpass kernel and its 
variance ss

2, and the associated scaling factor h. (The 3 3 3 lowpass kernel in the first column is not separable.)

C0    1 0
1 24 1
0    1 0

S 1
6 C1      4 1

4 220 4
1      4 1

S 1
5 C1      3 1

3 216 3
1      3 1

S 1
4 C1      2 1

2 212 2
1      2 1

S 1
3 C1    1 1

1 28 1
1    1 1

S 1
2 C1    0 1

0 24 0
1    0 1

S
s2 5 0.0 s2 5 0.167 s2 5 0.20 s2 5 0.25 s2 5 0.33 s2 5 0.5

1
6 C0 1 0

1 2 1
0 1 0

S 1
36 C1   4 1

4 16 4
1   4 1

S 1
25 C1 3 1

3 9 3
1 3 1

S 1
16 C1 2 1

2 4 2
1 2 1

S 1
9 C1 1 1

1 1 1
1 1 1

S 1
4 C1 0 1

0 0 0
1 0 1

S
2 1

6 31 4 1 4 1
5 31 3 1 4 1

4 31 2 1 4 1
3 31 1 1 4 1

2 31 0 1 4
2 ss

2 5 0.333 ss
2 5 0.40 ss

2 5 0.5 ss
2 5 0.67 ss

2 5 1.0

h 5 6 h 5 6 h 5 5 h 5 4 h 5 3 h 5 2

version of the image from the image, then add the result back to the original image. Insert-
ing scaling factors a and b, this is represented mathematically as

  I r 1 x, y 2  5  I 1 x, y 2 1 1 aI 1 x, y 2 2 b I 1 x, y 2 2  (6.141)

   5  I 1 x, y 2 1 1 aI 1 x, y 2 2 bI 1 x, y 2  ~ hlowpss 2  (6.142)

   5  1 1 1 a 2 b 2 I 1 x, y 2 1 bI 1 x, y 2  ~ hhighpass  (6.143)

   5  1 1 1 a 2 b 2 I 1 x, y 2 1
b
h

 I 1 x, y 2  ~ 12LoG 1 x, y 2 2  (6.144)

where  I 1 x, y 2  is a blurred version of the image, hhighpass 5 hallpass 2 hlowpass is the 2D 
highpass kernel, 2LoG is the zero-phase negative-LoG kernel, and the last equality follows 
from Equation (6.135) when the kernel is 3 3 3. This technique is known as either unsharp 
masking or highboost filtering. Sometimes the former name is reserved for the case 
when a 5 b 5 1, while the latter term is reserved for the case when a 5 b . 1, but such 
a distinction seems unnecessary since all cases involve boosting, or emphasizing, the high 
frequencies. The process of unsharp masking is illustrated in Figure 6.21.

The expression in Equation (6.144) is equivalent to the following convolution:

 I r 1 x, y 2 5 I 1 x, y 2  ~ hUSM 1 x, y 2  (6.145)
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Figure 6.22 The process of image sharpening:  The image is convolved with the LoG, and the result is subtracted from the original 
image.  The edge in the right column appears sharper than that in the left column.

Original image Image minus lowpass Sharpened image

Figure 6.21 From left to right:  An image of Saturn’s moon Dione, the result of subtracting the low-pass filtered version of the image 
from itself, and the sharpened image resulting from adding this subtraction back to the original image.

NA
SA

where

 hUSM ; 1 1 1 a 2 b 2 hallpass 2
b
h

 LoG  (6.146)

Different choices for the LoG kernel lead to different convolution kernels, such as

 hUSM,0.0 1 x, y 2  5  C0 0 0
0 1 1 a 2 b 0
0 0 0

S 2
b
6

 C0    1 0
1 24 1
0    1 0

S 5
b
6

 C    0 21    0
21 6

b 1 1 1 a 2 2 2 21
   0 21    0

S , or (6.147)

 hUSM,0.33 1 x, y 2  5  C0 0 0
0 1 1 a 2 b 0
0 0 0

S 2
b
3

 #  1
3

 C1    1 1
1 28 1
1    1 1

S 5
b
9

 C21 21 21
21 9

b 1 1 1 a 2 2 1 21
21 21 21

S  (6.148)

Figure 6.22 shows the results of sharpening an image using unsharp masking via 
Equation (6.148).

Due to the circular convolution theorem, the equivalent representation of unsharp mask-
ing in the frequency domain is

 I r 1 x, y 2 5 F 
215F5I 1 x, y 2 6 #  HUSM 1 kx, ky 2 6 (6.149)

where

 HUSM 1 kx, ky 2 5 F5hUSM6 5 1 1 1 a 2 b 2 1 bHhighpass 1Kx, ky 2  (6.150)
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where the highpass filter Hhighpass is, in the 3 3 3 case, the DF T of the scaled negative-
LoG kernel. The filter HUSM is sometimes known as a high-frequency-emphasis filter.

In case you are wondering about the name “unsharp masking”—which may seem odd 
since it is a technique used to sharpen an image—the term comes from the old days of pho-
tography (before the digital age). A picture taken by a camera would be stored on a piece of 
film called a “negative.” In a darkroom a light would be shone through the negative to produce 
a positive image, which was then developed using special chemicals. To accomplish unsharp 
masking, the light would first be shone through a thin piece of glass to create a slightly out-of-
focus positive image, which would then be aligned with the original in-focus negative image 
for another round of exposure. Light shining simultaneously through the in-focus negative 
and out-of-focus positive images would then create the unsharp masked version.

6.4.4 Homomorphic Filtering
In an earlier chapter† we looked at the notion of intrinsic images, in which a 2D image is 
decomposed into the individual causes of the image such as illumination and reflectance. 
Homomorphic filtering is a simple and classic technique to separate these two 
components—that is, to estimate a model that explains for each pixel the contribution due 
to light shining in the scene and the contribution due to the surface reflecting the light.

In Equation (2.11) we saw that the irradiance E at a point (x,y) is the product of the light 
L and the surface reflectance R:

 E 1 x, y 2 5 L 1 x, y 2R 1 x, y 2  (6.151)

where we have ignored the dependency on wavelength for simplicity. Taking the Fourier 
transform of both sides does not help, because there is no formula relating the product of 
two DF Ts:

 F5E 1 x, y 2 6 2 F5L 1 x, y 2 6F5R 1 x, y 2 6  (6.152)

However, if we first take the logarithm of the image (which, after gamma expansion, we 
assume to be the irradiance), then a simple relationship emerges:

  log E 1 x, y 2 5 log L 1 x, y 2 1 log R 1 x, y 2  (6.153)

  F5log E 1 x, y 2 6 5 F5log L 1 x, y 2 6 1 F5log R 1 x, y 2 6  (6.154)

Typically the lighting function L contains primarily low frequencies, while the reflectance 
function R contains more high-frequency information. In homomorphic filtering, the DF T 
of the logarithm of the image is computed, then the result is filtered using a lowpass or 
highpass filter to process reflectance and lighting differently. Finally, the exponential of the 
inverse DF T of the result is computed. Figure 6.23 shows the results of homomorphic filter-
ing on an image to reveal details in the shadows that are not visible in the original image.

† Section 2.2.5 (p. 42).

Original image Homomorphic filtered Increased gain Increased bias

Figure 6.23 Left:  An image with severe shadows, and the result of homomorphic filtering using a high-frequency filter to reduce the 
influence of lighting.  Right:  the result of multiplying the image by a constant and adding a constant to the image, for comparison.  
Note the ability of homomorphic filtering to reveal details in the shadow of the canon that are not visible in any of the other images.
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6.5 Localizing Frequencies In Time
As we have seen throughout this chapter, the Fourier transform is a handy technique for 
extracting frequency information from a 1D or 2D signal, as well as to filter such informa-
tion. A serious drawback of the Fourier transform, however, is that it only indicates the 
presence of a certain frequency in the signal without providing any information about the 
location of that frequency within the signal. In other words, although the Fourier transform 
indicates which frequencies are present in the signal, it does not tell us anything about where 
they are located.

Musical notation, such as that shown in Figure 6.24, provides a helpful way to look at 
this problem. Such notation captures not only which notes are played, but also when they are 
played. The original 1D time-domain signal is, in some sense, a projection of this notation 
onto the time axis, making it easy to determine when the notes are played but not so easy to 
determine which notes are played. The Fourier transform, on the other hand, can be thought 
of as a projection of this notation onto the frequency axis, making it easy to determine which 
notes are played but not when they are played. What we desire is a way to transform the 
original signal that captures both types of information.

6.5.1 Gabor Limit
To better understand this trade-off, suppose you want to play a short pulse of a note on a 
musical instrument, like a flute. You place your fingers carefully over the flute and blow 
into the mouthpiece for a brief period of time. The question is, How long should you blow? 
If the pulse is too short, then it will not be easy to tell which note was played, but if your 
pulse is too long, then it will not be easy to tell when the note was played (because it will 
not appear as a pulse anymore). In the former case the pulse cannot be localized in frequency, 
whereas in the latter case it cannot be localized in time. This fundamental trade-off is 
captured in the Gabor limit,† which says that a signal cannot be localized simultaneously 
in both frequency and time.

The Gabor limit forces us into a fundamental trade-off between localizing in frequency 
and localizing in time. If our goal is to balance this trade-off the best we can, then it is 
clear that the duration of the pulse should be related to the frequency that we are trying to 
localize. That is, a high-frequency tone should receive a shorter pulse, while a low-frequency 
tone should receive a longer pulse, as illustrated in Figure 6.25. The pulse should be long 
enough to capture at least one period (or cycle) of the tone, but not so long as to capture 
an unnecessarily large number of periods. Since the period is inversely proportional to the 
frequency, this tells us that the desired pulse duration should also be inversely proportional 
to the frequency.

† Dennis Gabor (1900–1979), in addition to his work on wavelets, is best known for inventing holography, for 
which he received the Nobel Prize in Physics.

Figure 6.24 Musical notation is a convenient 
way of expressing frequencies as they occur 
in time. The 1D time-domain signal can be 
thought of as the projection of this musical 
notation onto the time axis, while the 1D 
frequency-domain representation is the 
projection onto the frequency axis.
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6.5.2 Short-Time Fourier Transform (STF T)
One approach to capturing time-localized frequencies of a signal is to slide a window 
function (e.g., a Gaussian) across the signal and at each location in time compute the 
Fourier transform of the windowed signal. This approach, known as the short-time Fourier 
transform (STF T) or the windowed Fourier transform, is computationally expensive 
because it requires computing many Fourier transforms for a single signal. More importantly, 
it violates the principle of the Gabor limit, which says that we should multiply the signal 
by a windowing function whose width is inversely related to the frequency we are trying 
to capture. In other words, high frequencies need narrow windows, while low frequencies 
require wide windows; but the ST F T multiplies the signal by the windowing function 
before extracting the frequencies, and thus it subjects all frequencies to the same windowing 
function. It is unavoidable, then, that the windowing function will be too wide for high 
frequencies and too narrow for low frequencies. What we need is a way to adaptively adjust 
the windowing function applied to the signal based on the frequencies that we are seeking 
to extract from the signal. While this goal might at first glance appear to be enormously 
difficult (or even impossible), there is in fact a simple, computationally efficient way to 
achieve it: namely, the wavelet transform.

6.6 Discrete Wavelet Transform (DWT)
The key idea of the wavelet transform is to determine the locations of frequencies in a signal 
in such a way that the frequencies are taken into account when determining their location. 
Like the Fourier transform, the wavelet transform can be either discrete or continuous, and 
it can be applied to either infinite-duration or finite-duration signals. We will focus our 
attention primarily upon the discrete wavelet transform (DWT) because it is both easier 

Figure 6.25 The duration of 
a pulse of a pure frequency 
should be determined 
by the frequency. Shown 
here are two signals (high-
frequency on the left, 
low-frequency on the right) 
modulated by two different 
window functions (short-
duration window on top, 
long-duration window on 
bottom). In the top-right 
the pulse is too short, so 
that the frequency is not 
discernible, whereas in the 
bottom-left the pulse is too 
long, making it difficult to 
precisely locate the pulse. 
In the top-left and bottom-
right, the width of the pulse 
is appropriately chosen.
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to understand and more practical. But for the most part, the discussion below will apply 
equally well to any of the versions.

Like the Fourier transform, whose basis functions are sines and cosines, the wavelet 
transform also projects the signal onto basis functions. Starting with a mother wavelet, 
denoted by c 1 x 2 , the wavelet transform basis functions are obtained by scaling and shifting 
the mother wavelet:

 ca,b 1 x 2 ;
1"a

  c ajx 2 b
a

k b  (6.155)

where the translation b determines the location of the wavelet, and the scaling (or dila-
tion) a . 0 governs its frequency. Note that c 5 c1,0. The normalization 1!a ensures that 7ca,b 1 x 2 7  is unaffected by a or b. For a discrete signal, both a and b are integers, and the 
floor operator is necessary to ensure that the argument to the mother wavelet is an integer; 
for a continuous signal, the floor operator can be removed, and a and b allowed to be real.

The discrete wavelet transform (DWT) of a 1D discrete signal g(x) is a 2D array of 
values G(a,b), where each element in the array is the sum of the elementwise product of the 
signal with the appropriate wavelet function:

 G 1 a,b 2 ; a
x

g 1 x 2ca,b 1 x 2  (6.156)

This equation clearly reveals that the wavelet transform is by its very nature massively 
redundant, because it replaces a 1D function g(x) with a 2D function G(a,b). If a and b 
are allowed to take on any integer values, then the transform is overcomplete, because it 
contains more information than is necessary to represent the original signal faithfully. The 
beauty of the wavelet transform is that this redundancy can be removed and still retain all 
the essential information by spacing a and b appropriately. For a signal with length w, we 
typically set a 5 2 

j and b 5 2ak, where j 5 0, c, log2 w 2 1 and k 5 0, c, w
2a 2 1, 

so that successive frequencies are separated by an octave, and the translation keeps neigh-
boring wavelets well-separated. This is called critical sampling, and it yields sparse basis 
functions that balance the competing design goals of accurately representing the signal 
while not being too redundant, just as the Gabor limit tells us to do. A wavelet transform 
that is critically sampled is called complete, because it retains exactly the information of 
the original signal, enabling the inverse to be computed.

As an example, when w 5 8, we have j [  50, 1, 26, with the values of k depending 
upon j as shown in Table 6.3. Each of the entries in the table yields one of the wavelet basis 
functions for w 5 8, so that there are just 7 basis functions (4 in the first row, 2 in the second 
row, and 1 in the bottom row). As a result, when an 8-element signal is projected onto the 
basis functions using Equation (6.156), only 7 values will be obtained as outputs, meaning 
that information has been lost. Thus, in our attempt to remove the redundant information, 
we removed too much information. This problem is easily corrected by augmenting with 
an additional basis function, which in general is needed to preserve all the information in 
the original signal, whenever critical sampling is performed.

j a k b

0 1 0,1,2,3 0,2,4,6

1 2 0,1 0,4

2 4 0 0

TABLE 6.3 The values of a and b needed to generate a complete wavelet basis for an 8-element input.
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6.6 Discrete Wavelet Transform (DWT) 311

This additional basis function, often called the father wavelet (or scaling function), is 
denoted f 1 x 2 , analogous to the mother wavelet c 1 x 2 . Oftentimes, the wavelet transform 
is orthogonal, meaning that the mother and father wavelets form an orthonormal basis for 
the space when translated by even multiples:

a
x

c 1 x 2 2i 2c 1 x 2 2j 2 5 a
x

f 1 x 2 2i 2f 1 x 2 2j 2 5 b1 if i 5 j
0 otherwise

 (6.157)

a
x

c 1 x 2 2i 2f 1 x 2 2j 2 5 0 (6.158)

where i and j are arbitrary integers. To create a father wavelet orthogonal to the mother 
wavelet, simply reverse the order of the values and negate every other element:

  f 1 x 2 5 121 2 x11c 1w 2 1 2 x 2  (6.159)

where w is the length of the kernel, which is even.† 

6.6.1 Haar Wavelets
The simplest and oldest type of wavelet is the Haar wavelet.‡ In the continuous domain 
the Haar mother wavelet is simply two adjacent boxcar functions§ of opposite sign:

 c 1 x 2 5 c1 if 0 , x , 1
2

21 if 12 , x , 1
0 otherwise

 (6.160)

and the wavelet functions are critically sampled, as shown in Figure 6.26. In the discrete 
domain the Haar mother wavelet is a sequence of 1s followed by a sequence of21s, along 
with some scaling. Not only are Haar wavelets the easiest way to learn about the wavelet 
transform, they also form the basis of widely used techniques, such as the features used in 
commercially available face detectors. This popularity stems from the speed at which they 
can be computed due to their reliance upon simple sums and differences. 

The discrete Haar mother wavelet is just a 1 at x 5 0 and a 21 at x 5 1, appropriately 
scaled so the norm is 1:

 c 1 x 2 ;
1"2

 c   1 if x 5 0
21 if x 5 1
   0 otherwise

 (6.161)

† If necessary, simply append a zero element to the end of the discrete wavelet to make w even.
‡ Alfréd Haar (1885–1933) was a Hungarian mathematician.
§ A boxcar function is constant over some particular interval but zero everywhere else.

Figure 6.26 Haar basis functions are based 
on boxcar functions. Shown are the mother 
(left) and father (right) wavelets.
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To represent the Haar wavelet as a discrete array, simply ignore the zeros (which implicitly 
extend the array in both directions):

  f 1 x 2 5
1"2

 31 1 4    1 father wavelet 2  (6.162)

  c 1 x 2 5
1"2

 31 21 4  1mother wavelet 2  (6.163)

where the father wavelet is obtained by the QMF relation in Equation (6.159). Note that c acts 
like a highpass filter, and indeed ax

 c 1 x 2 5 0. Similarly, f acts like a lowpass filter, but unlike 
a lowpass convolution kernel, the sum of the elements is not 1, but rather the energy of the signal 
is 1. That is, ax

 f 1 x 2 2 1 but ax
 f2 1 x 2 5 1; as a result, the father wavelet has the effect 

of increasing the overall level of the signal, which, in the case of an image, brightens the image.  
Because of the quadrature mirror relation, the energy in the highpass filter is also 1: ax

 c2 1 x 2 5 1.

EXAMPLE 6.6 Show that the discrete Haar wavelet satisfies (6.159) and is orthogonal.

Solution The length of the kernels is w 5 2. From Equation (6.163) we have c 1 0 2 5 2c 1 1 2 5 1!2. 
Plugging into Equation (6.159) yields

  f 1 0 2 5 121 2 1c 1 2 2 1 2 0 2 5 2c 1 1 2 5
1"2

 (6.164)

  f 1 1 2 5 121 2 2c 1 2 2 1 2 1 2 5 c 1 0 2 5
1"2

 (6.165)

which indeed matches Equation (6.162). It is easy to show that Equations (6.157) – (6.158) 
are satisfied:

 a 1"2
b2

1 a 1"2
b2

5 a 1"2
b2

1 a 2
1"2

b2

5 1 (6.166)

 a 1"2
b2

2 a 2
1"2

b2

5 0 (6.167)
 

EXAMPLE 6.7 Write the translated and scaled versions c1,1 and c2,0 of the Haar mother wavelet in 
Equation (6.161).

Solution Setting b 5 1 causes the wavelet to shift to the right by 1:

 c1,1 1 x 2 5
1"2

 c   1 if x 5 1
21 if x 5 2
   0 otherwise

 (6.168)

since c1,1 1 x 2 5 c 1 x 2 1 2 . Similarly, setting a 5 2 causes the width of the wavelet to 
expand by 2:

 c2,0 1 x 2 5
1
2

 e    1 if x 5 0
   1 if x 5 1
21 if x 5 2
21 if x 5 3
   0 otherwise

 (6.169)

since c2,0 1 x 2 5 1!2 c 1 :x2; 2 . Note that the normalization factor ensures that the energy in the 
signal remains constant: 7c1,0 1 x 2 7 5 7c1,1 1 x 2 7 5 7c2,0 1 x 2 7 5 1. The results are plotted in 
Figure 6.27.
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The basis functions for the discrete Haar wavelet transform are the scaled and translated 
versions of the mother wavelet, along with the appropriately scaled father wavelet. For a 
signal with w 5 8, for example, these scales and translations are given by the values in 
Table 6.3. Ignoring normalization for simplicity, the scaled father wavelet 1  j 5 2, a 5 4 2  
consists of eight 1s, and the correspondingly scaled mother wavelet consists of four 1s 
followed by four 21s. At the next scale 1  j 5 1, a 5 2 2 , the width of the latter wavelet 
is reduced by a factor of 2, so it consists of two 1s followed by two 21s, with 0s filling 
in the remaining elements. At this scale the translation is either b 5 0 or b 5 4, to avoid 
overlap of the nonzero elements of the wavelet functions within a scale. At the finest scale 1  j 5 0, a 5 1 2 , the width of the nonzero elements of the wavelet function is only 2, with 
translations of 0, 2, 4, and 6. These basis functions can be summarized as shown in Table 
6.4, where the positive sign 11 2  indicates the number 11, while the negative sign 12 2  
indicates the number 21. These basis functions are displayed in Figure 6.28.

Figure 6.27 The wavelets of Example 6.7. From left to right: the discrete Haar mother wavelet, a translated version, and a scaled version.
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EXAMPLE 6.8 Compute the discrete wavelet transform, using the Haar wavelet, of the 1D signal 
g 1 x 2 5 31 7 3 0 5 4 2 9 4, ignoring normalization for simplicity.

Solution To compute the DWT, simply sum the elementwise products of the signal with the basis 
functions. Because the basis functions consist of only 11s or 21s, this procedure requires 
simply adding or subtracting values. If we let G(0, 0) indicate the DC component obtained 
from the scaled father wavelet, then this yields:

 G 1 0, 0 2 5 1 1 7 1 3 1 0 1 5 1 4 1 2 1 9 5 !�31�! (6.170)

 G 1 4, 0 2 5 1 1 7 1 3 1 0 2 5 2 4 2 2 2 9 5 !�29�! (6.171)

 G 1 2, 0 2 5 1 1 7 2 3 2 0 5 !�5�! (6.172)

 G 1 2, 4 2 5 5 1 4 2 2 2 9 5 !�22�! (6.173)

 G 1 1, 0 2 5 1 2 7 5 !�26�! (6.174)

 G 1 1, 2 2 5 3 2 0 5 !�3�! (6.175)

 G 1 1, 4 2 5 5 2 4 5 !�1�! (6.176)

 G 1 1, 6 2 5 2 2 9 5 !�27�! (6.177)

The final wavelet transform then consists of these 8 values, which we arrange by conven-
tion as the low frequency component followed by the components of increasingly higher 
frequencies: W5g6 5 331, 29, 5, 22, 26, 3, 1, 27 4. As we shall see later, this transform 
is invertible, so the original signal can easily be recovered from these 8 values.
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6.6.2 DWT as Matrix Multiplication
Just as we showed that the discrete Fourier transform (DF T) can be viewed as matrix mul-
tiplication,† so can the discrete wavelet transform (DW T). For an 8-element signal, for 
example, the Haar wavelet matrix is

HG 10 2
G 11 2
G 12 2
G 13 2
G 14 2
G 15 2
G 16 2
G 17 2

X 5
1"2

  H 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2
1/2 1/2 1/2 1/2 21/2 21/2 21/2 21/2

1/"2 1/"2 21/"2 21/"2 0 0 0 0
0 0 0 0 1/"2 1/"2 21/"2 21/"2
1 21 0 0 0 0 0 0
0 0 1 21 0 0 0 0
0 0 0 0 1 21 0 0
0 0 0 0 0 0 1 21

X  Hg 10 2
g 11 2
g 12 2
g 13 2
g 14 2
g 15 2
g 16 2
g 17 2

X 

('''''''''''''''''')''''''''''''''''''*
H8

 

(6.178)

where we define G(i) to be the ith element in the output, as in Equations (6.170) – (6.177). 
It is easy to verify that this matrix is orthogonal, that is, H8H8

T 5 H8
TH8 5 I58386.

6.6.3 Fast Wavelet Transform (FWT)
In the previous example, scaled versions of the wavelet function were repeatedly applied. 
Examining Equations (6.170) – (6.177), we notice that this approach involves a fair amount 
of redundant computation. A much faster approach, known as the fast wavelet transform 
(FWT), simply computes the high- and low-frequency components first, then downsamples 
the low-passed signal and repeats until the length of the signal is too small to continue.

More specifically, if g is the signal, f is the lowpass kernel, and c is the highpass kernel, 
then the computation at a single resolution is given by

  glow 1 x 2 5 1 g ~̌ f 2 T 2 5 a
k

g 1 2x 1 k 2f 1 k 2  (6.179)

† Section 6.2.8 (p. 288).

j k a b basis function

2 0 4 0 f4,0 5 hj 3               4
2 0 4 0 c4,0 5 hj 3               4
1 0 2 0 c2,0 5 hj 3               4
1 1 2 4 c2,4 5 hj 3               4
0 0 1 0 c1,0 5 hj 3               4
0 1 1 2 c1,2 5 hj 3               4
0 2 1 4 c1,4 5 hj 3               4
0 3 1 6 c1,6 5 hj 3               4

TABLE 6.4 Basis functions for an 8-element discrete Haar wavelet, where 1 means 11, and 2 means 21. The scaling factors 
are given by hj 5 221

 
j112/2 5 1!2a

, which leads to 1
2!2

 for the first 2 rows, 12 for the next 2 rows, and 1!2
 for the bottom 4 rows.

1 1 1 1 1 1 1 1

1 1 1 1 2 2 2 2

1 1 2 2 0 0 0 0

0 0 0 0 1 1 2 2

1 2 0 0 0 0 0 0

0 0 1 2 0 0 0 0

0 0 0 0 1 2 0 0

0 0 0 0 0 0 1 2
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  ghigh 1 x 2 5 1 g ~̌ c 2 T 2 5 a
k

g 1 2x 1 k 2c 1 k 2 , (6.180)

where the subsampling operator is defined as 1 g T k 2 1 x 2 5 g 1 kx 2 . In other words, we can 
conceptually think about convolving (or, rather, cross-correlating, since the kernel is not 
flipped, hence the symbol ~̌) the signal g with the kernels f and c, then downsampling 
both results by 2 to get the lowpass and highpass signals—which is shown in the middle 
of the equations. But in reality the wasted computation is avoided by shifting the kernels 
by 2 samples each time—shown on the right of the equations.

After the low- and high-frequency components have been computed for one resolution, 
the low-frequency component is used as the signal for the next resolution. That is, at resolu-
tion i, Equations (6.179) – (6.180) become

  glow
1i112 1 x 2 5 1 glow

1i2  ~̌ f 2 T 2 5 a
k

glow
1i2 1 2x 1 k 2f 1 k 2  (6.181)

  ghigh
1i112 1 x 2 5 1 glow

1i2  ~̌ c 2 T 2 5 a
k

glow
1i2 1 2x 1 k 2c 1 k 2  (6.182)

where glow
102 ; g is the original signal. Since the signal is downsampled by 2 each iteration, the 

method is straightforward if the length w of the signal is a power of 2; if not, then zero-padding 
is necessary. The final wavelet transform is given by stacking the high-frequency components 
at all levels, along with the low-frequency component at the lowest level, into a vector.

Pseudocode for the FWT is provided in Algorithm 6.5, where Lines 3 and 5 indicate a 
concatenation of the lowpass and highpass components. Unlike the FF T, whose descrip-
tion was omitted from the text due to its rather extensive bookkeeping, the FW T is easy to 
understand and implement, particularly in the case of Haar wavelets. In fact, the wavelet 
transform is one of those rare cases in which no engineering trade-off has to be made: Not 
only does the wavelet transform provide more information than the Fourier transform, but 
the algorithm to compute it is much simpler to implement and faster to run. If w is the length 
of the signal, the FWT can be computed in linear O(w) time, compared with the O(w log w) 
asymptotic running time for the FF T.

Figure 6.28 The 8 basis functions for a complete 8-element discrete Haar wavelet.
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ALGORITHM 6.5 Compute the discrete wavelet transform of a 1D signal using Haar basis functions

FastWaveletTransformHaar 1 g 30 4, c, g 3w 2 1 4 2
Input:  real 1D signal g of length w, which is a power of 2
Output: DWT of g (low frequency followed by increasingly higher frequencies)

1 Glowpass, Ghighpass d HAARONELEVEL 1 g 30 4, c, g 3w 2 1 4 2
2 if w 5  5 2 then
3    return 3Glowpass Ghighpass 4
4 else
5    return 3FASTWAVELETTRANSFORMHAAR 1Glowpass 2 Ghighpass 4
HaarOneLevel 1 g 30 4, c, g 3w 2 1 4 2
1 for k d 0 to w2 2 1 do
2    v0 d g 32 
 k 4
3    v1 d g 32 
 k 1 1 4
4    Glowpass 3k 4 d v0 1 v1

5    Ghighpass 3k 4 d v0 2 v1

6 return Glowpass, Ghighpass

EXAMPLE 6.9 Apply the fast wavelet transform (FWT) to the signal g102 5 g 1 x 2 5 31 7 3 0 5 4 2 9 4 
using Haar wavelets. Ignore normalization for simplicity.

Solution Ignoring the normalization factors, simply add and subtract pairs of adjacent elements of 
the signal:

1 1 7 5     8   3 1 0 5  3  5 1 4 5  9  2 1 9 5   11
1 2 7 5 !�26�!   3 2 0 5 !�3�!   5 2 4 5 !�1�!   2 2 9 5 !�27�!

Then repeat the same procedure on the sums:

8 1 3 5 11 9 1 11 5 20
8 2 3 5 !�5�!    9 2 11 5 !�22�!

and again:
11 1 20 5 !�31�!
11 2 20 5 !�29�!

Using the convention of Algorithm 6.5, the outlined results are concatenated in reverse 
order, so that the low-frequency component comes first. The resulting wavelet transform is 
therefore W5g6 5 331 29 5 22 26 3 1 27 4, which is exactly the same 
result obtained in Example 6.8 .

Alternatively, Equations (6.181) and (6.182) can be applied:

 g112 1 x 2 5
1"2

 31 1 7 3 1 0 5 1 4 2 1 9 4 5
1"2

 38 3 9 11 4 (6.183)

 ghigh
112 1 x 2 5

1"2
 31 2 7 3 2 0 5 2 4 2 2 9 4 5

1"2
 B!�26�! !�3�! !�1�! !�27�!R  (6.184)

At the next resolution,

 g122 1 x 2 5
1
2

 38 1 3 9 1 11 4 5
1
2

 311 20 4  (6.185)
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6.6.4 Inverse Wavelet Transform
Just as the Fourier transform admits an inverse, so does the wavelet transform. In the case 
of the DWT, the matrix formulation just introduced makes it easy to discover the inverse. 
For example, the forward Haar transform is

 Bv0r
v1r
R 5

1"2
 B1    1

1 21
R  Bv0

v1
R  (6.189)

where v0 ; g 1 2x 2 , v1 ; g 1 2x 1 1 2 , v0r ; glow 1 x 2 , and v1r ; ghigh 1 x 2 . It is easy to see that 
the matrix is its own inverse, so that

 Bv0

v1
R 5

1"2
 B1    1

1 21
R  Bv0r

v1r
R  (6.190)

As with the Fourier transform, the specific values of the forward and inverse normalization 
factors are not important, as long as their product is (in the case of Haar) 1"2

 #  1"2
5 1

2. There-
fore, an alternative is to place the normalization factor entirely in the inverse transform, 
which is oftentimes more convenient:

  Bv0r
v1r
R 5 B1    1

1 21
R  Bv0

v1
R  (6.191)

  Bv0

v1
R 5

1
2

 B1    1
1 21

R  Bv0r
v1r
R  (6.192)

Recalling the definitions of v0, v1, v0r, and v1r, and carefully noting the resolution, the inverse 
Haar wavelet transform in Equation (6.192) can be rewritten as

  g1i212 1 2 x 2 5
1
2

 1 glow
1i2 1 x 2 1 ghigh

1i2 1 x 2 2  (6.193)

  g1i212 1 2 x 1 1 2 5
1
2

 1 glow
1i2 1 x 2 2 ghigh

1i2 1 x 2 2  (6.194)

The pseudocode is provided in Algorithm 6.6.

 ghigh
122 1 x 2 5

1
2

 38 2 3 9 2 11 4 5
1
2

 B!�5�! !�22�!R  (6.186)

and at the final resolution,

 g132 1 x 2 5
1

2"2
 311 1 20 4 5

1

2"2
 B!�31�!R  (6.187)

 ghigh
132 1 x 2 5

1

2"2
 311 2 20 4 5

1

2"2
 B!�29�!R  (6.188)

which is the same result as before except for the scaling factors. To see that the normaliza-
tion factors preserve the energy in the original signal, note that

 12 1 72 1 32 1 02 1 52 1 42 1 22 1 92 5 185

 a 31

2"2
b2

1 a 29

2"2
b2

1 a5
2
b2

1 a22
2

b2

1 a 26"2
b2

1 a 3"2
b2

1 a 1"2
b2

1 a 27"2
b2

5 185.
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ALGORITHM 6.6 Compute the inverse DWT of a 1D signal using Haar basis functions

FastInverseWaveletTransformHaar 1G 30 4, c, G 3w 2 1 4 2
Input:  DWT G of a real 1D signal (low frequency followed by increasingly higher frequencies)
Output: real 1D signal g of length w whose DWT is G
1 if w 5  5 2 then
2    return HaarOneLevelInverse 1G 30 4, c, G 3w 2 1 4 2
3 else
4    first-half d G 30 4, c, G 3w2 2 1 4
5    second-half d G 3w2 4, c, G 3w 4
6    return [FastInverseWaveletTransFormHaar(first-half) second-half]

HaarOneLevelInverse 1G 30 4, c, G 3w 2 1 2
1 for k d 0 to w2 2 1 do
2    v0 d G 3k 4
3    v1 d G 3k 1 w

2 4
4    g 32 
 k 4 d 1 v0 1 v1 2 /2
5    g 32 
 k 1 1 4 d 1 v0 2 v1 2 /2
6 return g

EXAMPLE 6.10 From the previous example, we have that W 5 31 7 3 0 5 4 2 9 4 6 5331 29 5 22 26 3 1 27 4, using the simplified normalization of 
Equation (6.191). Apply the inverse fast wavelet transform to the result to verify this result.

Solution Applying Equation (6.192) to the first two values of the inverse wavelet transform yields:

 f 122 32n 4 5
1
2

 331 1 129 2 4 5 311 4  (6.195)

 f 122 32n 1 1 4 5
1
2

 331 2 129 2 4 5 320 4  (6.196)

Concatenating the values yields f 122 3n 4 5 311 20 4. At the next resolution, these two val-
ues are combined with the next two in the sequence:

 f 112 32n 4 5
1
2

 311 1 5 20 1 122 2 4 5 38 9 4  (6.197)

 f 112 32n 1 1 4 5
1
2

 311 2 5 20 2 122 2 4 5 33 11 4  (6.198)

Interleaving these values for the even and odd indices yields f 112 3n 4 5 38 3 9 11 4. 
These four values are then combined with the final four:

 f 102 32n 4 5
1
2

 38 1 126 2 3 1 3 9 1 1 11 1 127 2 4 5 31 3 5 2 4 (6.199)

 f 102 32n 1 1 4 5
1
2

 38 2 126 2   3 2 3  9 2 1  11 2 127 2 4 5 37 0 4 9 4 (6.200)

Again interleaving these values yields the final result: f 102 3n 4 5 31 7 3 0 5 4 2 9 4, 
which is what we expect.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



6.6 Discrete Wavelet Transform (DWT) 319

Note that the fast wavelet transform (FWT) operates on the signal at multiple resolutions. 
First the sums and differences are computed at the original resolution. Then the sums are used 
to effectively subsample the signal, and the sums and differences are computed on a signal that 
contains half as many samples as the original. This process of computing sums and differences 
and downsampling is repeated until the signal is too small to continue. As we shall see in the next 
chapter, there is a close connection between the FWT and the well-known pyramidal decomposi-
tion of an image; an operation is applied to repeatedly subsampled versions of the signal to reveal 
frequency information at each scale. The underlying theory behind these algorithms is known 
as multiresolution analysis (MRA), and it applies to critically sampled wavelet transforms.

6.6.5 Daubechies Wavelets
Despite the simplicity and popularity of Haar wavelets, the abrupt transitions of the box-
car functions yield objectionable artifacts that are unacceptable for some applications. A 
generalization of Haar wavelets are Daubechies wavelets—in fact, Haar is a special case 
of Daubechies. Recall that a wavelet family is defined entirely by the mother wavelet, but 
that the father wavelet (or scaling function) is needed for computational efficiency by the 
DWT algorithm. Like Haar wavelets, Daubechies wavelets are orthogonal, so that the father 
wavelet is determined from Equation (6.159).

The key idea behind the Daubechies wavelet is to achieve the highest number of vanish-
ing moments for a defined support width. A smooth signal can be locally approximated by 
a polynomial, and the moments of the signal are a measure of how similar the signal is to 
the powers of x in the polynomial. A vanishing moment occurs when the moment is zero, in 
which case the signal bears no resemblance, and therefore the low-order polynomial features 
of the signal are removed by the wavelet transform, leaving only higher-order features. Thus, 
the number of vanishing moments are related to the compression ability of the wavelet, so 
that the Daubechies wavelets are designed to attain the maximum compression (in some 
sense) for a given amount of computation (support width).

Daubechies wavelets are defined given a certain kernel width, which is an even number 
ranging from 2 to 20. The Daubechies D2 wavelet is identical to the Haar wavelet, D4 is 
the simplest non-Haar Daubechies wavelet, and so forth. The number of vanishing moments 
is given by half the number, so D2 has 1 vanishing moment (constant signals transform 
to zero), D4 has 2 vanishing moments (linearly sloped signals transform to zero), and so 
forth. It is beyond our scope to discuss how to construct these kernels, but it is important to 
note that Equation (6.159) makes it easy to determine the scaling kernel from the wavelet 
kernel, and vice versa. Specifically, we simply reverse the order of the values and negate 
every other element. For example, the scaling and wavelet kernels for D2 are given by

  f 1 x 2 5
1"2

 31 1 4 5 30.70710678 0.70710678 4       1D2 scaling 2  (6.201)

  c 1 x 2 5
1"2

 31 21 4 5 30.70710678 20.70710678 4  1D2 wavelet 2  (6.202)

while the scaling and wavelet kernels for D4 are given by

 f 1 x 2 5
1

4"2
 31 1 "3 3 1 "3 3 2 "3 1 2 "3 4

 < 30.48296291 0.83651630 0.22414387 20.12940952 4        1D4 scaling 2  (6.203)

 c 1 x 2 5
1

4"2
 31 2 "3 23 1 "3 3 1 "3 21 2 "3 4

 < 320.12940952 20.22414387 0.83651630 20.48296291 4   1D4 wavelet 2  (6.204)
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6.6.6 2D Wavelet Transform
The wavelet transform is easily generalized to 2D. Usually the 2D wavelets are separable 
so that they can be expressed as the multiplication of two 1D wavelets, in which case 
Equations (6.181) – (6.182) can be extended as follows:

  gLL
1i112 1 x, y 2 5 a

kx

a
ky

gLL
1i2 1 2x 1 kx, 2y 1 ky 2f 1 kx 2f 1 ky 2  (6.205)

  gHL
1i112 1 x,y 2 5 a

kx

a
ky

gLL
1i2 1 2x 1 kx, 2y 1 ky 2c 1 kx 2f 1 ky 2  (6.206)

  gLH
1i112 1 x, y 2 5 a

kx

a
ky

gLL
1i2 1 2x 1 kx, 2y 1 ky 2f 1 kx 2c 1 ky 2  (6.207)

Note that the sum of the elements of each wavelet kernel is 0, the sum of the elements of 
each scaling function is "2, and the norm of each kernel is 1. Verifying the vanishing 
moments is left as an exercise.†

† Problem 6.35.

EXAMPLE 6.11 Apply the fast wavelet transform (FWT) to the signal g102 5 g 1 x 2 5 31 7 3 0 5 4 2 9 4 
that we saw in Example 6.9 using D4 Daubechies wavelets. For simplicity, assume 
periodicity.

Solution If we let f 1 x 2 5 3h0 h1 h2 h3 4, so that h0 < 0.48, h1 < 0.84, h2 < 0.22, and 
h3 < 20.13, then the lowpass and highpass values from the finest resolution are computed 
as follows:

Hglow
112 1 0 2

glow
112 1 1 2

glow
112 1 2 2

glow
112 1 3 2

ghigh
112 1 0 2

ghigh
112 1 1 2

ghigh
112 1 2 2

ghigh
112 1 3 2

X 5 Hh0 h1 h2 h3 0 0 0 0
0 0 h0 h1 h2 h3 0 0
0 0 0 0 h0 h1 h2 h3

h2 h3 0 0 0 0 h0 h1

h3 2h2 h1 2h0 0 0 0 0
0 0 h3 2h2 h1 2h0 0 0
0 0 0 0 h3 2h2 h1 2h0

h1 2h0 0 0 0 0 h3 2h2

X H1
7
3
0
5
4
2
9

X < H 7.011
2.0520
5.0445
7.8128
!�0.8111�!
!�1.8625�!
!�24.2173�!
!�24.8203�!

X
At the next level we haveD glow

122 1 0 2
glow
122 1 1 2

ghigh
122 1 0 2

ghigh
122 1 1 2 T 5 Dh0 h1 h2 h3

h2 h3 h0 h1

h3 2h2 h1 2h0

h1 2h0 h3 2h2

T  D 7.011
2.0520
5.0445
7.8128

T < D !�5.2222�!
!�10.2778�!
!�20.9208�!
!�2.4698�!

T
Concatenating these values yields the result, in order of increasing frequency, as 
W5g6 < 35.2 10.3 20.9 2.5 0.8 1.9 24.2 24.8 4. It is easy to verify that 
both the 8 3 8 and 4 3 4 matrices above are orthogonal.

Notice that in this example we allowed the coefficients to “wrap around” the edge of the 
matrix, which assumes periodicity in the signal (like circular convolution); this assump-
tion can be removed by extending the signal past the borders and increasing the number of 
columns in the matrix to accommodate the shifting wavelet kernel.
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  gHH
1i112 1 x, y 2 5 a

kx

a
ky

gLL
1i2 1 2x 1 kx, 2y 1 ky 2c 1 kx 2c 1 ky 2  (6.208)

where gLL
102 1 x, y 2 ; g 1 x, y 2  and g (x,y) is the original image. At each iteration the signal is 

downsampled by two in each direction after applying the wavelet and/or scaling functions. 
In this notation, gLL contains the low-frequency components in both directions, gHL con-
tains the high-frequency components in the x direction but the low-frequency components 
in the y direction, gLH is the opposite, and gHH contains the high-frequency components in 
the diagonal direction. The downsampled low-frequency version is always fed as input 
to the next level.

Due to separability, Equations (6.205) – (6.208) are easy to compute. Let g be a w 3 h 
image. First, f and c are applied to the image in the horizontal direction to yield

  gL
112 1 x, y 2 ; a

k

g 1 2x 1 k, y 2f 1 k 2  (6.209)

  gH
112 1 x, y 2 ; a

k

g 1 2x 1 k, y 2c 1 k 2  (6.210)

both of which are of size w
2 3 h. Then f and c are applied to the image in the vertical 

direction to yield

  gLL
112 1 x, y 2 5 a

k

gL
1i2 1 x, 2y 1 k 2f 1 k 2  (6.211)

  gHL
112 1 x, y 2 5 a

k

gH
1i2 1 x, 2y 1 k 2f 1 k 2  (6.212)

  gLH
112 1 x, y 2 5 a

k

gL
1i2 1 x, 2y 1 k 2c 1 k 2  (6.213)

  gHH
112 1 x, y 2 5 a

k

gH
1i2 1 x, 2y 1 k 2c 1 k 2  (6.214)

all four of which are of size w
2 3 h

2. In other words, after one iteration the w 3 h image 
has been replaced by four images, each of which is one-fourth the size of the original. (Of 
course, the order is arbitrary and can therefore be reversed, i.e., vertical before horizontal.) 
Repeating this procedure using gLL

1i2  for subsequent iterations then yields the 2D wavelet 
transform of the image. See Figure 6.29 for an example, where the normalization factor 
from a lowpass convolution kernel was used instead of the wavelet normalization factor to 
prevent the father wavelet from brightening the image.

6.6.7 Gabor Wavelets
The final wavelet that we will consider is the Gabor wavelet, which is a complex sinusoid 
multiplied by a Gaussian window. In 1D, the wavelet is given by

 
c 1 x 2 5

 

e2ax2

()*
Gaussian

 
#
 

 
e 

jvx
()*
sinusoid

 (6.215)

As with the Fourier transform, using complex numbers is just a mathematical con-
venience. Conceptually, the Gabor wavelet consists of even and odd components: 
c 1 x 2 5 ceven 1 x 2 1 jcodd 1 x 2 , where

  ceven 1 x 2 5 e2ax2
 cos 1vx 2  (6.216)
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  codd 1 x 2 5 e2a
 
x 

2
 sin 1vx 2  (6.217)

where a 5 1/ 1 2s2 2 , s is the width of the Gaussian envelope, v 5 2pf 5 2p/t is the 
angular frequency, f is the frequency, and t is the period of the sinusoid. The Gabor wavelet 
has the property that it minimizes the uncertainty in the spatial and frequency domains.

A 1D Gabor wavelet is shown in Figure 6.30. The primary parameter is the frequency f 
of the sinusoid (or equivalently, the period t 5 1/f  or angular frequency v 5 2pf ). The 
secondary parameter is k ; s/t, which governs the width of the Gaussian relative to the 
period of the sinusoid. Recall from our discussion of the Gabor limit (see Figure 6.25) that 
the Gaussian envelope should not be too wide or too narrow. Since 95.45% of the Gauss-
ian is captured within 62s and the Gaussian should capture approximately 1 period, it is 
recommended to set k < 1

2, so that s 5 t
2 5 1

2 f , or a 5 2 f 2. This ratio works well when 
the frequencies are spaced by 1 octave; for higher spacing, the ratio should be decreased 
accordingly, e.g., k < 0.4 for a spacing of 1.5 octaves.

To apply the DWT to a 1D signal using Gabor wavelets, discrete kernels are first cre-
ated of the even and odd components at the highest frequency of interest which, according 
to the Nyquist frequency mentioned earlier, restricts t . 2. Typically t < 3 at this finest 
level. Discrete kernels are then constructed for the remaining frequencies of interest, reduc-
ing the frequency by some factor each time, until the minimum desired frequency. (If the 
factor is 2, then the frequencies are spaced an octave apart.) The Gabor wavelets are then 
applied to the signal by performing a convolution-like operation (computing the sum of an 
elementwise product) at each frequency, except that the spatial shift is frequency-dependent, 
typically approximately t/2. This computes c 1 1 x 2 a 2 /b 2 , where the parameter a governs 
the spatial shift, and b governs the frequency shift. The result is an overcomplete (assum-
ing appropriate spatial and frequency spacing) representation of the signal. Gabor wavelets 

Figure 6.29 An image (top-left) and 
the gL

112 and gH
112 (top-right) that result 

from convolving and downsampling 
the image with the scaling and 
wavelet functions. Note that together 
gL
112 and gH

112 have the same number 
of pixels as the original image and 
therefore contain the same amount of 
information. Continuing the process 
yields the four downsampled signals for 
the first level of the wavelet transform 
(bottom-right). The final discrete 
wavelet transform (DWT) of the image 
after three levels of processing  
(bottom-left). Again, note that the 
number of pixels is the same, and 
therefore the transform is invertible.

(0)g 5 gLL

G 5 W(g)

(1)gL
(1)gH

(1)gLL
(1)gLH

(1)gHL
(1)gHH Sta

n B
irc

hfi
eld
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are not orthogonal, so it is not possible to easily construct an invertible transform, making 
them not well suited for use in compression. Instead, Gabor wavelets are useful for extract-
ing frequency information at different locations in the signal for the purpose of detecting 
localized features in the signal.

In 2D, the complex sinusoid is a plane wave, and the 2D Gaussian envelope is aligned 
with the direction of the wave, given by the angle u. If we let the coordinate transformation 
be x r 5 x cos u 2 y sin u, y r 5 x sin u 1 y cos u, then the 2D Gabor wavelet is

 c 1 x, y 2 5 e21axr21byr22e 
jvxr

where, as before, a 5 1/ 1 2s2 2 , s is the width of the Gaussian envelope along the direction 
of the wave, v 5 2pf 5 2p/t is the angular frequency, f is the frequency, and t is the period 
of the sinusoid. Typically we set b 5 a/4, so that the Gaussian is twice as wide in the direc-
tion orthogonal to the direction of the wave. A 2D Gabor wavelet is shown in Figure 6.31.

2D Gabor wavelets are characterized not only by their frequency but also by their ori-
entation in the plane. Thus, an appropriate spacing must be chosen not only in space and 
frequency but also in orientation. Otherwise, 2D Gabor wavelets are applied in a manner 
similar to 1D Gabor wavelets. 

Figure 6.30 1D Gabor 
wavelet, showing even 
(left) and odd (right) 
components, using s 5 1 
and t 5 2.
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Figure 6.31 Gabor 2D wavelets are achieved by multiplying a plane wave sinusoid with a Gaussian window function aligned with the 
direction of the wave propagation. Shown are the even (top) and odd (bottom) components, both as a 3D plot and as an image, using 
s 5 1, t 5 2, u 5 308, and b 5 a/4.
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The Fourier transform is due to the work of Fourier, 
Lagrange, and others in the 18th and early 19th centu-
ries. The FF T algorithm is primarily due to Cooley and 
Tukey [1965], although it was later realized that Gauss 
had discovered a very similar algorithm around 1805. The 
Lanczos filter is due to Duchon [1979], where the ker-
nel has between 19 and 51 elements sampled at integer 
positions. Detailed explanations of the classic unsharp 
masking technique for photographers (in a darkroom) is 
provided in a series of articles by Bond [1996, 1997]; 
also see the article by Wainwright [2004]. Wavelets 
were first invented by Haar [1910, 1911]. Daubechies 

wavelets were first presented by Daubechies [1988]. 
Gabor’s contribution to time-frequency analysis can be 
found in Gabor [1946], and an analysis of Gabor wave-
lets for image representation is due to Lee [1996]. Multi-
resolution analysis, and its connection with the pyramidal 
algorithm, is described by Mallat [1989]; see also Mallat 
and Zhong [1992]. Log-Gabor wavelets are described by 
Field [1987]. For the use of wavelets for FBI fingerprint 
compression, see the work of Bradley et al. [1993] and 
Bradley and Brislawn [1994]. Space has not permitted us 
to discuss the closely related concept of watermarking, 
for which a seminal paper is that of Cox et al. [1997].

PROBLEMS

6.1. For each of the following continuous signals, state the frequency, and write the Fourier 
transform: (a) cos 8pt, (b) cos 1 16t 1 8 2 , (c) sin 44t.

6.2. Prove that (a) for a continuous signal with even symmetry, its Fourier transform is 
real and (b) for a continuous signal with odd symmetry, its Fourier transform is imaginary.

6.3. Explain the difference between the Dirac delta function and the Kronecker delta 
function.

6.4. Explain the difference between the Nyquist rate and the Nyquist frequency.

Studies have shown that mammalian visual systems apply filters similar to 2D Gabor 
wavelets in order to extract spatially-localized frequency-dependent features from the retinal 
image. The continuous Fourier transform of Equation (6.214) is

 CGabor 1v r 2 5 F5c 1 x 2 6 5 e21vr2v22/a  (6.218)

which is a Gaussian centered at the angular frequency v. In fact, mammalian visual systems 
encode information in a way that is more like a Gaussian shape on a logarithmic frequency 
axis rather than a linear frequency axis. As a result, the log-Gabor wavelet has been pro-
posed, which has the following frequency response:

 Clog-Gabor 1v r 2 5 e2
1log vr

v  

22
21log z

v
  

22  (6.219)

where z/v is chosen to ensure that the width of the Gaussian in the frequency domain is 
approximately one octave. If viewed on a linear frequency scale, log-Gabor wavelets have 
an extended tail in the high frequencies. As a result, the log-Gabor wavelet spreads infor-
mation equally across the different frequencies, as opposed to the standard Gabor wavelet, 
which overrepresents the low frequencies. Since the inverse of the Fourier transform in 
Equation (6.219) cannot be obtained numerically, log-Gabor kernels in the spatial domain 
must be obtained numerically.

6.7 Further Reading
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6.5. Explain why 44.1 kHz is a common audio sampling rate.

6.6. Suppose a signal is sampled at 1000 Hz. For each of the following frequencies, state 
whether aliasing will occur and, if so, what is the aliased frequency: (a) 300 Hz, (b) 600 
Hz, (c) 1200 Hz.

6.7. A finite-duration, discrete signal is composed of 5 samples. List the discrete frequencies 
that are captured by the DF T of the signal.

6.8. Show that Equation (6.16) is indeed the inverse of Equation (6.13), that is, that the two 
expressions form a Fourier transform pair.

6.9. Explain why it is not recommended to directly implement Equation (6.1) in practice.

6.10. Compute the DF T of the discrete signal 33 8 1 7 4 both by hand and by using 
an existing software package. Also compute the magnitude and phase of the DF T. What can 
you infer about where the software package places the scaling factor?

6.11. What is the DF T of 31 0 c 0 4?
6.12. Compute the DF T of the following signals. In each case explain the meaning of the 
frequencies captured by the DF T.

(a) cos 2p
8  x, sampled at x 5 0, c, 7

(b) sin 2p
8  x, sampled at x 5 0, c, 7

(c) cos 2p
8  x, sampled at x 5 0, c, 15

(d) cos 2p
16  x, sampled at x 5 0, c, 15

6.13. Find the cutoff frequency of the simple lowpass filter with kernel 31 1 1 4 in 
inverse samples. Assume the cutoff frequency is where the Fourier transform reaches half 
its maximum value.

6.14. Plot the basis functions for the 4-point DF T.

6.15. For a 32-element sequence, what is the equivalent negative frequency corresponding 
to the following positive frequencies: (a) 7p

32 , (b) 15p
32 , (c) 19p

32 ?

6.16. Suppose we wish to convolve a 5-element discrete signal with a 3-element discrete 
kernel, using the circular convolution theorem. How much zero-padding is required?

6.17. (a) Compute the 2D DF T of the following grayscale image. (b) Multiply the image 
by 121 2 x1y and repeat the computation. (c) How are the two results related?D151 222 160 88

79 24 23 197
143 78 152 92
 84 123 71 209

 T
6.18. Explain the Radon transform.

6.19. Explain why the shifted 2D DF T usually has large values along the horizontal and 
vertical axes, forming the shape of a plus sign?

6.20. Suppose an image is rotated clockwise by 30 degrees. How does this change the 2D 
DF T?

6.21. List the two primary applications for filtering.

6.22. Explain the following terms: (a) Gibbs phenomenon, (b) ringing, (c), overshoot, (d) 
undershoot, (e) clipping.
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6.23. Explain why it is not possible in practice to apply an ideal low pass filter in the time 
domain.

6.24. Given the following low pass convolution kernel, compute its corresponding high 
pass convolution kernel by subtracting from an allpass filter (in the frequency domain): 32 4 6 4 2 4.
6.25. In Example 6.5 we showed that a particular 2D LoG kernel can be obtained by the 
subtraction of a lowpass kernel from an allpass kernel:

1
3

 

C1    1 1
1 28 1
1    1 1

S
(''')'''*

highpass

5 23
 

§
 

C0 0 0
0 1 0
0 0 0

S
('')''*

allpass

2
1
9

 

C1 1 1
1 1 1
1 1 1

S
('')''*

lowpass

¥
 

Show that this is also true for the other LoG kernels in Table 5.5, as well as for the LoG 
kernel in Problem 5.29. Indicate which, if any, of these lowpass kernels is not Gaussian.

6.26. Explain the subtle differences between the terms unsharp masking, highboost filter-
ing, and high-frequency emphasis, as they are sometimes used.

6.27. Construct the two unsharp masking kernels for the case a 5 b 5 2. How would you 
decide which of the two kernels to use?

6.28. Explain the principle behind homomorphic filtering.

6.29. What is the primary drawback of the short-time Fourier transform?

6.30. Given the mother wavelet c 1 x 2 5 1
h 32 4 6 21 23 25 4, use 

Equation (6.159) to compute the corresponding father wavelet f 1 x 2 . What is the value of 
h to ensure that the norm of the wavelet is 1?

6.31. What is the result in Example 6.8 if normalization is considered?

6.32. Show that the discrete Haar wavelet preserves the energy in a constant signal.

6.33. Suppose a mother wavelet is given by 1"10
 31 23 4. Adopting the approach of criti-

cal sampling to generate a complete wavelet transform, write all the basis functions for an 
8-element input, using Table 6.2 and Equation (6.159).

6.34. Apply the FWT using D4 Daubechies wavelets to the input signal 
g 1 x 2 5 35 7 6 4 3 1 8 9 4.
6.35. Verify that D2 Daubechies wavelets have 1 vanishing moment, and D4 Daubechies 
wavelets have 2 vanishing moments. That is, show that D2 or D4 applied to a constant 
signal g 1 x 2 5 a yields 0, and that D4 applied to a linearly sloped signal g 1 x 2 5 mx 1 b 
also yields 0.

6.36. How well does the discrete Haar wavelet preserve the energy in the signal 
f 1 x 2 5 31 7 3 0 5 4 2 9 4 at each level?

6.37. This question is about representing the DWT as a matrix transform.

(a)  If we let g ; 1/"2, write the 8 3 8 Haar DWT matrix in Equation (6.178) in terms of 
g. Show how this matrix can be derived from repeated applications of Equation (6.189).

(b)  Apply a similar procedure to compute the 8 3 8 matrix for the D4 Daubechies wavelet 
from Equations (6.203)–(6.204). Verify that the D4 Daubechies basis functions (rows 
of the matrix) are orthogonal.
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6.38. Show that if the 2D signal f(x, y) is separable, then so is its Fourier transform 
F 1 kx, ky 2 .
6.39. Use the continuous Fourier transform to prove that Equation (6.98) is true for con-
tinuous signals.

6.40. Implement the 2D fast wavelet transform using Haar wavelets, and apply to a gray-
scale image.

6.41. As mentioned in the text, the fast wavelet transform is based upon multiresolution 
analysis (MRA). Not all wavelets admit multiresolution analysis, but for those that do, their 
father f and mother c wavelets satisfy the following pair of equations for some sequence 
of coefficients g and h:

  f 1 t 2 5 "2a
k

h 1 k 2f 1 2t 2 k 2  (6.220)

  c 1 t 2 5 "2a
k

g 1 k 2f 1 2t 2 k 2  (6.221)

The first equation, known as a refinement equation for the father wavelet, captures its 
self-similarity at multiple resolutions, while the second equation captures the relationship 
between the mother and father wavelets. Show that the continuous Haar wavelet satisfies 
these two equations, and find the corresponding sequences g and h.
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For many applications it is important to be able to detect intensity edges in an image, which indicate locations 
in the image where the graylevel function changes drastically. Similarly, detecting and matching feature points 
(also known as interest operators or corners) either within an image or between images is useful for a variety of 

purposes. In this chapter we discuss these closely related problems.

C H A P T E R 7
Edges and Features

7.1 Multiresolution Processing
One of the curious properties of images is that objects can appear at any size. For example, 
an upright person with a real-world height of 2 meters can occupy a region in the image 
whose height is 4 or 400 pixels (or any number between or beyond), all depending on the 
distance from the camera to the object, the focal length, and the sensor resolution. Con-
versely, an image region whose height is 10 pixels could be a person, a skyscraper, or a tiny 
bug. This loss of scale information is a property unique to the imaging process, arising from 
the projection of the 3D world onto a 2D image.
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7.1.1 Gaussian Pyramid
One of the most common ways to deal with this loss of scale information is to process 
the image at multiple resolutions. For example, suppose we want to search an image to 
find all the human faces, so we look for faces at a certain scale in the original image, then 
downsample the image by a factor of 2 in each direction and look for faces at the same 
scale in the downsampled version, then downsample again, and so on. A face that appears 
to occupy, say, a 40 3 40 region in the original image will occupy only a 20 3 20 region 
in the downsampled image, a 10 3 10 region in the twice downsampled image, and so 
forth. As a result, faces at a variety of scales (and hence people at different distances to the 
camera) can be detected using a relatively straightforward procedure that interleaves detec-
tion and downsampling.

Because each successive image is smaller than its predecessor, stacking the images on 
top of one another yields the shape of a pyramid. For this reason the sequence of images is 
known as an image pyramid. It is usually a bad idea to downsample an image directly, 
because of the undesirable effect of aliasing;† instead, the image should first be smoothed 
to remove the high frequencies.‡ Among the many ways to smooth an image, the most popu-
lar is to convolve with a Gaussian kernel, leading to a Gaussian pyramid. Given an image 
I(x, y), let us define the zeroth level of the Gaussian pyramid as the image itself:

 I 
102 1 x, y 2 ; I 1 x, y 2  (7.1)

then let us define each successive image in the Gaussian pyramid as the downsampled, 
smoothed version of the previous image:

 I 
1i112 1 x, y 2 ; 1 I 

1i2 1 x, y 2  ~ Gausss2 1 x, y 2 2 T 2 (7.2)

where i 5 0, 1, c is a nonnegative integer, and I T 2 means to downsample I by a fac-
tor of 2 in both horizontal and vertical directions. Notice that, in the absence of aliasing, 
downsampling does not lose any information between the smoothed version of the image 
and the downsampled, smoothed version. An example Gaussian pyramid with a downsam-
pling factor of 2 is shown in Figure 7.1.

Any of the standard 3 3 3 Gaussian kernels works well in practice. One advantage of 
the kernel 1

4 31 2 1 4, for which s2 5 0.5, is that it satisfies the equal contribution 
property, meaning that each pixel in the image contributes an equal amount to the down-
sampled version. To see this, suppose we have a 1D signal f and a Gaussian kernel given 

† Aliasing is covered in Section 6.1.3 (p. 275).
‡ Although aliasing, strictly speaking, refers to sampling a continuous signal, the effect of downsampling a discrete 
signal is similar, because the original continuous signal can no longer be exactly reconstructed if the downsampling 
is excessive.

Figure 7.1 Four levels 
of a Gaussian pyramid, 
obtained with s2 5 0.5 
and a downsampling 
factor of 2.
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330 Chapter 7 • Edges and Features

by 3a b a 4, where b $ a. Then the elements of the smoothed signal f r are given by 
f r 1 1 2 5 a f 1 0 2 1 b f 1 1 2 1 a f 1 2 2 ,  f r 1 2 2 5 a f 1 1 2 1 b f 1 2 2 1 a f 1 3 2 ,  f r1 3 2 5 a f 1 2 2 1
b f 1 3 2 1 a f 1 4 2 , and so forth. When f r is downsampled by a factor of 2, every other element is 
discarded. Suppose, for example, we keep the even elements and discard the odd ones; then 
f r 1 2 2 5 a f 1 1 2 1 b f 1 2 2 1 a f 1 3 2 ,  f r 1 4 2 5 a f 1 3 2 1 b f 1 4 2 1 a f 1 5 2 ,  f r 1 6 2 5 a f 1 5 2 1
b f 1 6 2 1 a f 1 7 2 , and so forth. Ignoring border effects, it is easy to see that each sample 
f (i), where i is odd, contributes 2a, while each sample f (i), where i is even, contributes 
b. Therefore, equal contribution among all pixels implies b 5 2a. Since b 1 2a 5 1 for 
normalization, this yields b 5 1

2 and a 5 1
4, which is the Gaussian kernel just mentioned.

Although a downsampling factor of 2 is convenient, sometimes it is desirable to downs-
ample the image by finer amounts to provide a less noticeable transition between levels of 
the pyramid. For example, if we downsample by 4"2 < 1.19 each time, then successive 
images are given by

 I 
1i112 1 x, y 2 ; 1 I 

1i2 1 x, y 2  ~ Gausssr2 1 x, y 2 2  T  4"2 (7.3)

where some form of interpolation should be used to facilitate downsampling by a non-
integral amount. In this case I 

112 will be 1
1.19 < 0.84 as large as I 

102 in each direction, I 
122 will 

be 11 1.19 2 2 < 0.71 as large, I 
132 will be 11 1.19 2 3 < 0.59 as large, and so forth. Conveniently, I 

142 
will be half as large as I 

102 in each direction, I 
182 will be half as large as I 

142, and I 
1122 will 

be half as large as I 
182. Each reduction by a factor of two is known as an octave. Images 

I 
102 through I 

132 are in the first octave, while I 
142 through I 

172 are in the second octave. More 
generally, if the downsampling factor is "n

2 5 2
1
n, then there are n images per octave. 

Since repeated convolutions with a Gaussian are equivalent to a single convolution with 
a Gaussian whose variance is the sum of the individual variances, we define s r2 ; 1

n s2 
to ensure that the overall smoothing between octaves is the same as between consecu-
tive levels of Equation (7.2). An example Gaussian pyramid with a downsampling factor  
of

4"2 is shown in Figure 7.2.

Figure 7.2 Twelve levels of a Gaussian pyramid, obtained with s r2 5 1
4 10.5 2 5 0.125 and a downsampling factor of 

4
 "2. Note that 

I 
142 is half as large as I 

102 in each direction, and that I 
182 is half as large as I 

142.
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7.1.2 Laplacian Pyramid
A Gaussian pyramid is a lowpass pyramid. For some applications a bandpass pyramid 
is preferable, particularly for extracting image features such as interest points. Since the 
Laplacian is a bandpass operator, convolving the image with a Laplacian of Gaussian (LoG) 
kernel with increasing variance yields the Laplacian pyramid, which is the most popular 
bandpass pyramid:

 L1i112 1 x, y 2 ; 1 I 
102 1 x, y 2  ~ LoG1i112s2 1 x, y 2 2 T 1 i 1 1 2 d (7.4)

where d is the amount of downsampling between consecutive levels, so that 1 i 1 1 2 d is 
the total amount of downsampling in the 1 i 1 1 2 th level. Note the difference between this 
equation and Equation (7.2): Here the images are not processed successively by feeding the 
previous output from level i as input to level i 1 1. Instead, the original image is convolved 
each time with successively wider LoG kernels, with successively larger downsampling 
factors—an extremely inefficient computation.

Thankfully there is a better way. Recall that the LoG is well approximated by the differ-
ence of two Gaussians (DoG).† As a result, the Laplacian pyramid can be computed by 
successively smoothing and downsampling the image as in Equations (7.2) or (7.3), yielding 
a Gaussian pyramid; then the consecutive slices in the Gaussian pyramid are subtracted from 
one another to yield the Laplacian pyramid. However, there are two details that should be 
kept in mind. First, in order to subtract consecutive levels of the Gaussian pyramid, the 
previous image must be subtracted from its smoothed version before downsampling (so that 
the two images being subtracted are the same size):

  I temp 

1i112 1 x, y 2 ; I 
1i2 1 x, y 2  ~ Gausssi

2 1 x, y 2  (7.5)

  L1i112 1 x, y 2 ; I temp
1i112 1 x, y 2 2 I 

1i2 1 x, y 2  (7.6)

  I 
1i112 1 x, y 2 ; 1 I temp

1i112 1 x, y 2 2 T d (7.7)

where the levels of the Laplacian pyramid are given by L112, L122, L132, and so forth.
Secondly, as hinted by the subscript on the variance in Equation (7.5), the variance of 

the Gaussian might not be the same in each iteration. Recall from Equation (5.101) that the 
LoG is well approximated by the difference of two Gaussians whose variances are related 
by a constant ratio r2:

 Gaussr2s2 2 I ~ Gausss2 < 1r 2 1 2s2 LoGs2 (7.8)

As a result, to ensure that the ratio remains constant, the standard deviation of the ith 
Gaussian-smoothed image should be set as

 si ; ri s0 (7.9)

so that si11/si 5 r for all i. Alternatively, if the Gaussian-smoothed images that are used in 
constructing the Laplacian pyramid are from a traditional Gaussian pyramid as in Equations 
(7.2) or (7.3), then the ratio of the variances of successive levels in the Laplacian pyramid 
will not be constant.

To avoid the messiness of downsampling by a nonintegral amount, oftentimes down-
sampling is performed only when the factor is a power of two. As a result, all images within 
each octave are of the same size, whereas images in the next octave are half as big (in each 
direction) as those in the previous octave. As before, let n be the number of images per 

† Section 5.4.2 (p. 245).
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332 Chapter 7 • Edges and Features

octave. Then d 5 "n
2, and each image I temp

1i2  is downsampled by a factor of 2 only if i 1 1 
is divisible by n. For example, if n 5 2, then I 

102 and I 
112 are the same size as each other, I 

122 
and I 

132 are half as large, I 
142 and I 

152 are one quarter as large, and so forth. To implement 
this procedure, change Equation (7.7) to

 I 
1i112 1 x, y 2 ; b 1 I temp

1i112 1 x, y 2 2 T 2 if mod 1 i 1 1, n 2 5 01 I temp
1i112 1 x,y 2 2 otherwise

 (7.10)

An example Laplacian pyramid is shown in Figure 7.3. To ensure that each octave is con-
volved with the same sequence of variances relative to the image size, the variance ratio 
should be set to r 5 2

1
n. (To see this number, note that downsampling occurs after image 

I 
1n2, which implies that sn 5 2s0; combining with sn 5 rns0 from Equation (7.9) reveals 

r2 5 2
2
n.) A reasonable choice for the initial variance is s0

2 5 1
n 1 0.5 2 , although other 

choices are possible.

7.1.3 Scale Space
Returning to the Gaussian pyramid, if the downsampling step is omitted, then the procedure 
of successive smoothing yields a stack of images, all the same size, which are increasingly 
blurred. Since the sole purpose of downsampling is to avoid unnecessary processing of 
redundant information, the stack of Gaussian-blurred images contains essentially the same 
information as that of the Gaussian pyramid.

Now let us take this idea one step further. Consider the family of images obtained by 
convolving the original image I(x,y) with Gaussian kernels having continuously increasing 
variance:

 I 1 x, y, t 2 ; I 1 x, y 2  ~ Gausst 1 x, y 2  (7.11)

Figure 7.3 Laplacian pyramid with n 5 2 images per octave. The images are successively convolved with a Gaussian, then 
downsampled at the end of each octave to produce something that closely resembles a Gaussian pyramid. Differences between 
successive Gaussian-smoothed images yield DoGs, which approximate LoGs. The initial variance is 12 10.5 2 5 0.25, and the ratio 
between successive standard deviations is r 5 "2.
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7.1 Multiresolution Processing 333

where t $ 0 is a continuous scale parameter that governs the amount of smoothing, and 
I 1 x, y, 0 2 ; I 1 x, y 2 . Treating x and y as continuous values as well, the resulting 3D con-
tinuous volume is known as the scale space of the image, and t 5 s2 is the scale-space 
parameter. Equivalently, the scale space can be seen as an embedding of the original 
image into a one-parameter family of derived images constructed by convolving the origi-
nal image with a one-parameter family of Gaussian kernels of increasing variance, where 
t is the parameter. Recall that the concept of scale space was briefly mentioned in the 
context of the heat equation,† since Equation (7.11) is identical to Equation (5.151). The 
Gaussian pyramid, or rather the stack of Gaussian-blurred images, is simply a sampled 
version of the scale space.

The family of derived images in the scale space represents the original image at various 
levels of scale, as shown in Figure 7.4. As t increases, the amount of blurring of the image 
increases, and the amount of preserved detail from the original image decreases. For the 
scale space to be a meaningful representation of the image, it is important that several basic 
properties, called the scale-space axioms, should be satisfied. Among these axioms is the 
causality criterion, which ensures that the number of local extrema does not increase as 
we proceed to coarser levels of scale. In other words, the maxima are flattened while the 
minima are raised. It can be shown that the Gaussian kernel is unique in that it is the only 
convolution kernel that guarantees this result. The scale space, therefore, is usually con-
structed using the Gaussian kernel, and known as the Gaussian scale space.

In the case of a one-dimensional image, an extremum in the first derivative corresponds 
to a zero crossing in the second derivative. Since maxima in @I/@x usually indicate an 
interesting location in the image — perhaps the boundary of an object — the zero cross-
ings of @ 

2I/@ x 
2 indicate potentially interesting locations. Since no new structure is intro-

duced by the Gaussian blurring, these zero crossings form curves in scale space that always 
start and terminate at the original image, as shown in Figure 7.5. Empirically, there is a 
close relationship between the length of the curves and the perceptual saliency of the 
regions corresponding to them. Therefore, such an approach can be used to detect signifi-
cant image structures from the scale-space representation by looking for the cusp of the 
longer second-derivative zero-crossing curves. The extension to a 2D image is straightfor-
ward, since an extremum in 0 0rI 0 0  corresponds to a zero crossing in r2I. We shall revisit 
this concept later in the chapter.‡

† Section 5.5.6 (p. 260).
‡ Section 7.4.6 (p. 347).

Figure 7.4 The Gaussian scale space of an image consists of a continuous 3D volume in which each slice is an increasingly blurred 
version of the original image. Shown here are ten sample images from the scale space.
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334 Chapter 7 • Edges and Features

7.2 Edge Detection
Intensity edges are pixels in the image where the intensity (or, more precisely, graylevel) 
function changes rapidly. Sometimes these intensity edge pixels are known as edgels 
(“edge elements”), analogous to pixels (“picture elements”). From an information-theoretic 
point of view, these are the locations that carry the most information because the gray levels 
at these pixels are the least predictable from the values of their neighbors. Intensity edges 
retain a surprisingly large amount of information about the scene, as seen by the line draw-
ings in Figure 7.6, as compared with the original images in Figure 7.7. Viewing only the line 
drawings, most human viewers can recognize these scenes effortlessly. Such demonstrations 
suggest that intensity edges are important for natural and, hence, artificial vision; indeed, the 
early days of computer vision were focused on line drawing images of polyhedral objects, 
where it was shown that robust interaction with the world was possible—even with limited 
algorithmic and computational complexity—using just the edges of the objects in the scene.

As shown in Figure 7.8, there are four types of intensity edges. The simplest and most 
important type is the step edge, which occurs when a light region is adjacent to a dark 
region. Line edges occur when a thin light (or dark) object, such as a wire, is in front of 
a dark (or light) background. At a roof edge, the change is not in the lightness† itself but 
rather the derivative of the lightness. And, finally, a ramp edge occurs when the lightness 
changes slowly across a region.

Figure 7.5 An example of 1D scale space. Top: 1D 
signal (bottom) smoothed by convolving with Gaussian 
kernels with increasing variance (toward the top). 
Bottom: Zero-crossings of the second derivative form 
curves that always start and end at the bottom. Cusps 
indicate the location and scale of significant image 
structures.

s2

x

Cusps2

x

Figure 7.6 Intensity edges capture a rich representation of the scene. The scenes and objects in these line drawings are, with little 
difficulty, recognizable by the average human viewer. For the original images, turn to Figure 7.7.

† Lightness is defined in Section 2.3.2 (p. 43).

D. B. Walther, B. Chai, E. Caddigan, D. M. Beck, and L. Fei-Fei,  “Simple line drawings sffice for functional MRI decoding of natural scene categories,” Proceedings of the National Academy of Sciences (PNAS), 108(23):9661-9666, 2011.
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7.2 Edge Detection 335

We shall focus our attention primarily upon step edges. In 1D, a step edge is accompanied 
by a large value in the first derivative, which is either positive if the pixels get brighter as 
one goes from left to right, or negative if the pixels get darker from left to right. Often the 
orientation of the edge is not important, in which case only the absolute value of the first 
derivative (in 1D) or the magnitude of the gradient (in 2D) is important. Therefore, the 
simplest way to find intensity edges in an image is to compute the gradient magnitude, as 
illustrated in Figure 7.9, where the gradient can be computed using any of the standard 
derivative kernels that we studied earlier,† such as Prewitt, Sobel, Scharr, Roberts, or the 
sampled Gaussian derivative. For some applications a binary decision is needed, in which 
case the gradient magnitude is thresholded, while for other applications it is better to retain 
the non-thresholded values.

7.2.1 Canny Edge Detector
The Canny edge detector is a classic algorithm for detecting intensity edges in a gray-
scale image that, like the simple approach just described, relies on the gradient magnitude. 
Even today, Canny remains a popular algorithm due to its good performance, computational 
efficiency, and ease of implementation. The algorithm involves three steps, as shown in 
Algorithm 7.1. First the gradient of the image is computed, including the magnitude and 
phase. In the next step, called non-maximum suppression, any pixel is set to zero whose 
gradient magnitude is not a local maximum in the direction (as indicated by the phase) of the 
gradient. Finally, edge linking (also known as hysteresis thresholding or double thresholding‡) 
is performed to discard pixels without much support. The result is a binary image whose edge 
pixels along one-pixel-thick boundaries are ON, while all other pixels are OFF.

Non-maximum suppression is illustrated in Figure 7.10. The gradient magnitude of each 
pixel is compared with the gradient magnitude of the two pixels along the direction of the 
gradient vector. As shown in the figure, the gradient direction (also known as the phase) 
is quantized into one of four different directions, and the pixel is compared with either its 
neighbors to the left and right, its neighbors above and below, or its neighbors along one 
of the diagonals, depending upon the phase. For example, if u is the clockwise angle from 
the positive x axis, then 3p

8 # u , 5p
8   or  3p

8 # u 1 p , 5p
8 , where u is the phase, causes 

the pixel to be compared with its neighbors above and below, where the latter test is needed 

† Section 5.3.2 (p. 237).
‡ Section 10.1.3 (p. 450).

Figure 7.8 Four types of intensity edges. Step
edge

Line
edge

Ramp
edge

Roof
edge

Figure 7.7 The original images from which the line drawings shown in Figure 7. 6 were obtained. 

D. B. Walther, B. Chai, E. Caddigan, D. M. Beck, and L. Fei-Fei, “Simple line drawings su ce for functional MRI decoding of natural scene categories,” Proceedings of the National Academy of Sciences (PNAS), 108(23):9661-9666, 2011.
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336 Chapter 7 • Edges and Features

to handle all possible values between 2p and p. If the gradient magnitude of the pixel is 
not at least as great as that of the two appropriate neighbors, it is artificially set to zero, as 
presented in Algorithm 7.2.

As shown in Algorithm 7.3, the process of edge linking is very similar to the floodfill 
procedure of Algorithm 4.5.† Any pixel whose non-maximum-suppressed gradient magni-
tude value is greater than a high threshold, thigh, is a potential seed pixel. Floodfill is per-
formed from these seed pixels, with the expansion continuing as long as the pixel value is 
greater than a low threshold, tlow. The thresholds can be set manually or automatically. A 
common way to set them automatically is to sort the gradient magnitude values in the image, 
then set thigh to the value that forces at least 100a% of the pixels to be edge pixels, then set 
thigh 5 b tlow, where reasonable values are a 5 0.1 and b 5 0.2. Note that this is an 

† Section 4.2.2 (p. 154). 

Figure 7.9 TOP: An image and its partial derivatives in the x and y directions. BOTTOM: The gradient magnitude and phase of the image, 
along with the thresholded gradient magnitude.

Phase \I Thresholded gradient
magnitude

Gradient magnitude 0 0∇I 0 0

Image I ∂I / ∂x ∂I / ∂y

ALGORITHM 7.1 Detect intensity edges in an image using the Canny algorithm

Canny(I, s)

Input: grayscale image I, standard deviation s
Output: set of pixels constituting one-pixel-thick intensity edges

1  Gmag, Gphase d ComputeImageGradient 1 I, s 2
2  Glocalmax d NonMaxSuppression 1Gmag, Gphase 2
3  tlow, thigh d ComputeThresholds 1Glocalmax 2
4  Iedgesr d Edgelinking 1Glocalmax, tlow, thigh 2
5 return Iedgesr
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7.2 Edge Detection 337

extremely simple computation, because if there are n pixels in the image and if the sorting 
is performed in descending order, then thigh is the gradient magnitude of the j 

th pixel in the 
list, where j 5 ROUND 1a n 2 . An example of edge linking with hysteresis, which yields the 
final Canny output, is shown in Figure 7.11.

Despite the ease with which the Canny edge detector is implemented, the algorithm is 
undergirded by a rich theoretical foundation. For example, one question that arises from 
the above discussion is how to select the filter for computing the gradient or, if the Gauss-
ian derivative is used, what value to choose for the standard deviation. As it turns out, a 
large sigma yields a better signal-to-noise ratio (SNR), but a smaller sigma yields a more 

ALGORITHM 7.2 Perform non-maximal suppression

NonMaxSuppression 1Gmag, Gphase 2
Input: gradient magnitude and phase
Output: gradient magnitude with all nonlocal maxima set to zero

 1 for 1 x, y 2 [ Gmag do ➤ For each pixel,
 2    u d Gphase 1 x, y 2  adjust the phase
 3    if u $ 7p

8  then u d u 2 p to ensure that
 4    if u , 2p

8  then u d u 1 p  2p
8 # u , 7p

8 .
 5    if  2p

8 # u , p
8  then neigh1 d Gmag 1 x 2 1, y 2 , neigh2 d Gmag 1 x 1 1, y 2

 6    elseif p8 # u , 3p
8  then neigh1 d Gmag 1 x 2 1, y 2 1 2 , neigh2 d Gmag 1 x 1 1, y 1 1 2

 7    elseif 3p
8 # u , 5p

8  then neigh1 d Gmag 1 x, y 2 1 2 , neigh2 d Gmag 1 x, y 1 1 2
 8    elseif 5p

8 # u , 7p
8  then neigh1 d Gmag 1 x 2 1, y 1 1 2 , neigh2 d Gmag 1 x 1 1, y 2 1 2

 9    if v $ neigh1 and v $ neigh2 then  ➤ If the pixel is a local maximum
10       Glocalmax 1 x, y 2 d Gmag 1 x, y 2  in the direction of the gradient,
11    else then retain the value;
12       Glocalmax 1 x, y 2 d 0  otherwise set it to zero.
13 return Glocalmax

Figure 7.10 Non-maximum 
suppression. The gradient 
direction (or phase) u is 
quantized into one of four 
values, shown by the colored 
wedges of the circle. The 
quantized phase governs 
which of the two neighbors 
to compare with the pixel. If 
the gradient magnitude of the 
pixel is not at least as great as 
both neighbors, then it is set 
to zero. This has the effect of 
thinning the edges, as shown 
in the inset.

u

/(∇I) 0 0∇I 0 0

u

54 72 23

14 21 16

33 65 42
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338 Chapter 7 • Edges and Features

accurate location for the edge—a dilemma known as the localization-detection tradeoff. 
To derive the optimal step detector, two criteria are specified: the detector should yield low 
false positive and false negative rates (that is, good detection), and the detected edge should 
be close to the true edge (that is, good localization). To quantify these two criteria, let the 
true edge be given by an ideal step:

 g 1 x 2 5 b0 if x , 0
a if x $ 0

 (7.12)

where a is the height of the edge. Let the actual edge in the image be the true edge plus 
noise: g 1 x 2 1 j 1 x 2 , where j 1 x 2 , N 1 0, n0

2 2  is zero-mean Gaussian noise with variance 
n0

2. Let f (x) be the impulse response of the filter we are trying to find. The good detection 
criterion seeks to minimize the signal-to-noise ratio (SNR), that is, the ratio of the response 
of the filter to the true edge and the root-mean-square response of the filter to the noise:

 SNR 5
a
n0

 S 1  f 2 ,   where  S 1  f 2 ;
0 e0

2w~  f 1 x 2d x 0"ew~
2w~ f 

2 1 x 2d x
 (7.13)

ALGORITHM 7.3 Perform edge linking

EdgeLinking 1Glocalmax, tlow, thigh 2  
Input: local gradient magnitude maxima Glocalmax, along with low and high thresholds
Output: binary image Iedgesr  indicating which pixels are along linked edges
 1 for 1 x, y 2 [ Glocalmax do
 2    if Glocalmax 1 x, y 2 . thigh then
 3       frontier.Push(x, y)
 4       Iedgesr 1 q 2 d ON

 5 while frontier. SIZE . 0 do
 6    p d frontier. Pop()
 7    for q [ N 1 p 2  do
 8       if Glocalmax 1 q 2 . tlow then
 9        frontier.Push(q)
10         Iedgesr 1 q 2 d ON

11 return Iedgesr

Figure 7.11 Edge linking with hysteresis, also known as double thresholding or hysteresis thresholding. Thresholding the gradient 
magnitude with the low threshold produces too many edge pixels (left), while thresholding with the high threshold produces too few 
edge pixels (middle). Edge linking with hysteresis combines the benefits of both (right), to produce the final Canny edge detector output.
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7.2 Edge Detection 339

For the localization criterion, the reciprocal of the RMS distance of the marked edge 
from the center of the true edge is used. Skipping the mathematical derivation, which is too 
involved to cite here, this criterion is given by

 LOC 5
1"E 3x 0

2 4 5
a
n0

 L 1  f
#
 2 ,   where  L 1  f

#
 2 ;

0  f# 1 0 2 0"ew~
2w~  f

# 2 1 x 2 d x
 (7.14)

where x 0 is the distance of the detected edge from the true edge, E 3 # 4 is the expectation, 
and f

#
5 d f/d x is the derivative of f. Notice that S 1  f 2  and L 1  f

# 2  are two measures of the 
performance of the filter, and they depend only on the filter, not on the noise n0 or the 
magnitude a of the true edge.

The localization-detection tradeoff is now easily shown by scaling the domain of the 
function: f r 1 x 2 ; f 1 x

g 2 , where g is a scaling factor. Substituting into Equations (7.13) and 
(7.14),

 S 1   f r 2 5 "g S 1   f 2   and  L 1  f
#
 r 2 5

1"g
 L 1   f

#
 2  (7.15)

In other words, if the filter is stretched to make it larger 1g . 1 2 , then the detection response 
increases, because a broader impulse response will have a larger SNR. At the same time, a 
larger filter reduces the localization performance, because it integrates information far from 
the edge. Multiplying the two criteria together achieves performance that is independent of 
scale, S 1   f 2L 1  f

#
 2 , revealing that the optimal 1D step edge detector is a simple difference 

operator or box filter:

 f 1 x 2 5 b21 if x , 0
1 if x $ 0.

 (7.16)

However, the problem with a box filter is that it causes many local maxima to be detected. To 
solve this problem, a third criterion is introduced, called the single response constraint, 
which says that the detector should return only one point for each true edge point. In other 
words, it must minimize the number of local maxima around the true edge created by noise. 
Solving this numerical optimization problem yields a signal whose shape is nearly the same 
as the derivative of a Gaussian. Extending this reasoning to 2D, the gradient computed from 
the partial derivatives of a 2D Gaussian are used and steered to the appropriate 1D direction 
across the edge.

7.2.2 Marr-Hildreth Operator
There is a close relationship between the first and second derivatives, because first-derivative 
extrema are accompanied by second-derivative zero crossings. In other words, if f(x) is a 
1D function of x and if d f /d x is a maximum at x 5 x0, then d 

2 f /d x 
2 5 0 at x 5 x0. Since 

the function is discretely sampled, instead of looking for coordinates where the second 
derivative is exactly zero (an extremely rare phenomenon), we instead look for coordinates 
where the second derivative changes sign, the so-called zero crossings. Extending this 
logic to 2D, the maxima of the image gradient are accompanied by zero crossings in the 
LoG. Therefore, instead of using the gradient magnitude to compute intensity edges, we 
can use the zero crossings of the Laplacian of Gaussin (LoG), as shown in Figure 7.12. 
This approach is known as the Marr-Hildreth operator, and it predates the Canny edge 
detector by several years. Although the LoG still has other applications, such as the sign of 
the LoG as a texture pattern, its use as an edge detector is primarily of historical interest, 
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340 Chapter 7 • Edges and Features

since it has all but been replaced by the gradient magnitude for that purpose. The primary 
drawback of the LoG is that it is isotropic, meaning that it smooths across as well as along 
edges, as opposed to the gradient vector, which can be used to treat pixels differently across 
and along the edge, as is done by the Canny algorithm.

7.2.3 Frei-Chen Edge Detection
Another approach to edge detection that is largely of historical interest is that of Frei-Chen. 
This approach uses a set of nine 3 3 3 kernels to provide an orthogonal basis for the 
9-dimensional space of 3 3 3 subimages:

W1 5
1"8

 C21 2"2 21
   0        0    0
   1    "2    1

S  W4 5
1"8

 C"2 21        0
 21    0        1
    0    1 2"2

S  W7 5
1
6

 C    1 22    1
22    4 22
   1 22    1

S  (7.17)

W2 5
1"8

 C     1 0     21"2 0 2"2
    1 0     21

S                W5 5
1
2

 C    0 1    0
21 0 21
   0 1    0

S     W8 5
1
6

 C22 1 22
   1 4    1
22 1 22

S  (7.18)

W3 5
1"8

 C        0 21 "2
       1    0  21
2"2    1     0

S                W6 5
1
2

 C21 0    1
   0 0    0
   1 0 21

S            W9 5
1
3

 C1 1 1
1 1 1
1 1 1

S  (7.19)

Let b be the 9-element vector obtained by reshaping the 3 3 3 subimage surrounding a 
pixel, and let wi be the 9-element vector obtained by reshaping the kernel Wi in the same 
manner. The first four vectors (w1, w2, w3, w4) form the basis for the edge subspace, while 

Figure 7.12 An image, with 
the result of applying the 
Laplacian of Gaussian (LoG) 
and the sign of the Laplacian 
of Gaussian (sLoG). The zero 
crossings of the LoG are an 
approach to edge detection 
that is not widely used due 
to the drawback of isotropic 
smoothing. Image LoG

Zero crossings Sign of the LoG (sLoG) Sta
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7.3 Approximating Intensity Edges with Polylines 341

the next four (w5, w6, w7, w8) form the basis for the line subspace. Edges are therefore 
detected by projecting vector b onto the edge subspace:

 uedge 5 arccos      
a4

i51
 1wi

Tb 2 2

a9

i51
 1wi

Tb 2 2
 (7.20)

with smaller values indicating the likelihood that the pixel is an edge point. Alternatively, 
large values of

 
a4

i51
 1wi

Tb 2 2

bTb
 (7.21)

indicate an edge point.

7.3 Approximating Intensity Edges with Polylines
Once the intensity edges have been found, as described in the previous section, it is often 
desirable to approximate the edges with a more abstract representation such as line seg-
ments or parametric curves. In this section we focus on polylines, which are sequences of 
line segments. The first step is to store the edgels as an ordered sequence of points, rather 
than as an unordered set of points, which is easily accomplished with rather minor modifi-
cations to the Canny algorithm. Next, the polylines are fit to the point sequence using any 
of several techniques.

7.3.1 Douglas-Peucker Algorithm
The classic algorithm for fitting a polyline to a sequence of points is the Douglas-
Peucker algorithm (also known as the Ramer-Douglas-Peucker algorithm), illustrated 
in Figure 7.13. First, a straight line called the anchor-floater line is drawn from the first to 
the last point. For each intermediate point, its distance to the line is computed. If all such 
distances are below a threshold, then the intermediate points are discarded. Otherwise the 
point with the maximum distance to the anchor-floater line is retained, called the critical 
point for that anchor-floater line. The sequence is then subdivided at the critical point, and 
the process is repeated for two new anchor-floater lines, one from the start to the critical 
point, and the other from the critical point to the end. This process continues recursively 
until all points are within the specified tolerance of the anchor-floater lines.

7.3.2 Repeated Elimination of the Smallest Area
One drawback of the Douglas-Peucker algorithm is that it is suboptimal, because it treats 
the points associated with each anchor-floater line separately. A holistic approach that con-
siders all points in each iteration involves repeatedly eliminating the point with the least 
effective area, where the effective area is the area of the triangle formed by the point, its 
predecessor, and its successor. Points with a small effective area have little influence on the 
perception of the complete polyline and can thus be eliminated without significantly affect-
ing the overall shape. This approach thus progressively eliminates geometric features from 
the smallest to the largest, repeating the process until the effective area of all points is above 
some threshold. Note that this approach sequentially determines which point to eliminate, 

$
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342 Chapter 7 • Edges and Features

as opposed to Douglas-Peucker which sequentially determines which point to retain. One 
minor extension to the algorithm is to store the eliminated points in a list sorted by their 
effective area, which allows the original curve to be fitted to arbitrary resolution on the fly.

7.4 Feature Detectors
While an edge detector finds pixels where the magnitude of the gradient is large, a feature 
point detector (or interest operator) seeks pixels where the graylevel values vary locally 
in more than one direction, as shown in Figure 7.14. Such pixels are interesting because 
they are unique and distinguishable from other pixels using only the local information in the 
immediate neighborhood. Such pixels are called feature points (or interest points). Since 
these feature points lie, among other places, at the corners formed by two perpendicular 
lines, they are sometimes called corner points.

7.4.1 Moravec Interest Operator
One of the earliest feature detectors was the Moravec interest operator. Given a pixel 
x 5 1 x, y 2  in an image I, let R be the set of pixels in a small neighborhood around the 
pixel. Although the image patch R can be any set of pixels, it is often a square window, say 
3 3 3, centered at the pixel. The Moravec operator shifts the pixels horizontally by a small 
amount and compares the difference between the original graylevel pattern and the shifted 
version. Then the process is repeated by shifting the pixels vertically by a small amount, 
comparing the difference in the same way. More precisely, let

 PR 1Dx 2 ; a
x[R

1 I 1 x 2 2 I 1 x 1 Dx 2 2 2 (7.22)

Figure 7.13 The Douglas-Peucker algorithm recursively subdivides a polyline by computing the largest distance (orange line) from the 
points in the polyline to the anchor-floater lines (blue lines).

Iteration 2Iteration 1Sequence of points Iteration 3 Final polyline

Figure 7.14 An image (left) with feature points overlaid in red (right). These feature points were detected with the Tomasi-Kanade 
operator, but similar results are obtained with other feature detectors. Note that feature points do not occur in untextured areas or along 
intensity edges, but rather where the graylevel values vary in multiple directions.
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7.4 Feature Detectors 343

be the sum of squared differences (SSD) between the image patch and its shifted ver-
sion, where Dx 5 1Dx, Dy 2  is the shift. If the difference is large in both directions, then the 
patch is interesting because it contains graylevel variation in multiple directions. Moravec 
defines the cornerness of a pixel as the minimum SSD as the window is shifted left, right, 
up, and down:

 cornerness ; min 5PR 121, 0 2 , PR 1 1, 0 2 , PR 1 0, 21 2 , PR 1 0, 1 2 6,   1Moravec 2  (7.23)

where the cornerness of a pixel indicates how locally interesting it is.
An example of the Moravec operator applied to a synthetic image of an aligned square, 

a rotated square, and a circle is shown in Figure 7.15. Examining the aligned square, it 
is clear that the pixels fall into one of three categories: 1) Where the scene is untextured, 
none of the SSD values is high; 2) where there is an intensity edge, some of the SSD values 
are low while others are high; and 3) where there is a corner, all of the SSD values are 
high. Therefore, the Moravec interest operator correctly detects the corners of the aligned 
square. However, it is obvious from the diagonal edges of the rotated square and along 
the sides of the circle that the operator suffers from being anisotropic (i.e., not rotation-
ally invariant).

7.4.2 Harris Corner Detector
A more robust interest operator can be derived by expanding I 1 x 1 Dx 2  using the first-
order Taylor series:

 I 1 x 1 Dx 2 < I 1 x 2 1 1Dx 2T
 

@ I
@ x

 (7.24)

Substituting into (7.22) and introducing an optional weighting function 0 # w 1 x 2 # 1, to 
allow some pixels to count more than others, yields

  PR 1Dx 2 < a
x[R

w 1 x 2 a 1Dx 2T@ I
@ x

b2

 (7.25)

  5 a
x[R

w 1 x 2 1Dx 2T a @I
@ x

b  a @I
@ x

bT

 1Dx 2  (7.26)

  
5 1Dx 2T

 

a
x[R

 w 1 x 2  a @I
@ x

b  a @I
@ x

bT

(''''')''''*
Z

 
1Dx 2

 

 (7.27)

  5 1Dx 2TZ 1Dx 2  (7.28)

Figure 7.15 From left to right: A synthetic image, the SSD of each pixel as the image is shifted left and up, and the cornerness as measured 
by the Moravec interest operator. High cornerness values occur at the corners of the aligned square, as well as along all diagonal lines.

Image ϵR (21, 0) ϵR (0, 21) Cornerness
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where Z is a symmetric 2 3 2 matrix composed of the outer products of the gradient vectors 
of the pixels in the window:

 Z ; a
x[R

w 1 x 2  B I x
2 1 x 2 Ix 1 x 2 Iy 1 x 2

Ix 1 x 2 Iy 1 x 2 I y
2 1 x 2 R 5 B zx zxy

zxy zy
R  (7.29)

where Ix ; @
 
I/@ x and Iy ; @

 
I/@ y denote the partial derivatives of the image along the 

coordinate axes, so that the gradient is given by rI 5 @ I/@ x 5 3Ix Iy 4T; and where 
z x ; ax

 w 1 x 2 I x
2 1 x 2 , z y ; ax

 w 1 x 2 I y
2 1 x 2 , and zx y ; ax

 w 1 x 2 Ix 1 x 2 Iy 1 x 2  are the 
elements of Z. Typically the weighting function is either uniform to treat all pixels equally, 
or a Gaussian to weight pixels near the center of the window more than those far away.

The matrix Z, which is determined solely by first derivatives, goes by various names. 
Some authors call it the gradient covariance matrix, because if w 1 x 2 5 10R 0  and the mean 
is zero, then Equation (7.29) is the covariance matrix of the gradient vectors of the pixels 
inside the window. Other authors refer to it as the autocorrelation matrix, the structure 
tensor, or the second moment matrix, due to the connection between the covariance and 
second moments exhibited in Equation (4.145). It is also known as the Hessian matrix but, 
as we shall see later, this term should be avoided due to the confusion it can cause.

Since, as we saw earlier,† the covariance matrix fits an ellipse to the data so that the principal 
axes of the ellipse are captured by the eigenvalues of the matrix, these eigenvalues are crucial 
to understanding the structure of the covariance matrix. Three cases are possible: if both 
eigenvalues are large, then the pixel values vary in multiple directions, making the pixel region 
uniquely distinguishable from its local surroundings; if one eigenvalue is large while the other 
is small, then the region straddles an intensity edge; finally, if both eigenvalues are small, then 
the region is untextured because the gradient magnitude is small for all pixels in the region.

To find distinguishable features, then, a search is conducted for pixels whose gradient 
covariance matrix contains two large eigenvalues. One of the most popular approaches to 
feature detection is the Harris corner detector,‡ which measures cornerness using the trace 
and determinant of the matrix:

  cornerness ; det 1Z 2 2 k 1 trace 1Z 2 2 2    1Harris 2  (7.30)

  5 z x 
z y 2 z x y

2 2 k 1 z x 1 z y 2 2  (7.31)

  5 l1l2 2 k 1l1 1 l2 2 2  (7.32)

where l1 and l2 are the eigenvalues of Z, and the second equality comes from the fact that 
the determinant of a square matrix is the product of its eigenvalues, while its trace is the sum 
of its eigenvalues, which we showed earlier.§ The constant k is a small factor whose value is 
typically recommended to be in the vicinity of 0.04. The second term is used to reduce the 
chance of selecting a point with a single very large eigenvalue. Note that since the eigenval-
ues are inherently invariant to rotation, Harris features are largely invariant to rotation as 
well. In fact, repeated studies have shown variations of Harris to be some of the most reliable 
detectors in the presence of image rotations, illumination transformations, and perspective 
deformations. Another advantage of Harris is that the determinant / trace trick simplifies the 
computation by eliminating the need to compute square root, and it also eliminates the pos-
sibility of dividing by zero, since the eigenvalues are not computed explicitly.

† Section 4.4.5 (p. 182).
‡ The Harris detector is sometimes known as the Plessey operator, after the name of the company employing the 
inventor at the time of discovery.
§ Section 4.4.5 (p. 182).
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7.4.3 Tomasi-Kanade Feature Detector
An alternative to Harris is the Tomasi-Kanade operator (also known as the Shi-Tomasi 
operator), which measures cornerness using the minimum eigenvalue:

 cornerness ; min 1 5l1, l26 2 5 l2     1Tomasi-Kanade 2  (7.33)

where the final equality assumes that the eigenvalues have been sorted in decreasing order, 
so that l1 $ l2. Recall that the eigenvalues are obtained by solving the characteristic equa-
tion det 1Z 2 lI52326 2 5 0, leading to

 l2 5
1
2

 a 1 zx 1 zy 2 2 "1 zx 2 zy 2 2 1 4z x y
2 b  (7.34)

which is the same as Equation (4.146). Tomasi-Kanade requires more computation than 
Harris and has generally been found to be slightly less robust, though the performances of 
the two are quite comparable.

A less well-known alternative is to divide the determinant by the trace:

 
1

cornerness
;

trace 1Z 2
det 1Z 2 5

l1 1 l2

l1l2
5

1
l1

1
1
l2

     1 parallel resistors 2  (7.35)

which treats the eigenvalues like parallel resistors in an electrical circuit. If two resistors 
r1 and r2 are connected in parallel, then the combined resistance is r, where 1

r 5 1
r1

1 1
r2

. It 
is easy to show that the combined resistance is never greater than the smallest resistor, and 
likewise, the cornerness is never greater than the smallest eigenvalue:

 
l2

2
#

det 1Z 2
trace 1Z 2 # l2 (7.36)

To avoid divide-by-zero errors, simply add a small number to the denominator or avoid the 
division whenever both eigenvalues are smaller than a threshold.

Contour plots of Harris, Tomasi-Kanade, and parallel resistors, along with the determi-
nant of the matrix, versus l1 and l2 are given in Figure 7.16. All the measures have similar 
shapes because they all attempt to maximize the two eigenvalues. Note that the isocontours 
of the determinant are the lines l2 5 1/l1, with asymptotes l1 5 0 and l2 5 0. As a 
result, one large eigenvalue can overcome an arbitrarily small eigenvalue. Harris avoids this 
problem by subtracting the square of the trace, thus penalizing situations where one of the 
eigenvalues is small. The asymptotes of Tomasi-Kanade are l1 5 l2 5 c, where c is the 
cornerness value, whereas the asymptotes of both Harris and parallel resistors are angled in 
slightly to decrease the effects of one small eigenvalue.

7.4.4 Beaudet Detector
The Hessian of a function is a matrix containing the second-order partial derivatives of the 
function. Therefore, the Hessian of the region surrounding a pixel is given by

 H ; a
x[R

 w 1 x 2  BIxx 1 x 2 Ixy 1 x 2
Ixy 1 x 2 Iyy 1 x 2 R  (7.37)

where Ix x ; @
 

2 I/@ x 
2, Iy y ; @

 

2 I/@ y 
2, and Ix y ; @2 I/@ x @ y are the second derivatives. The 

Beaudet detector† uses these second derivatives and is defined as the determinant of the 
Hessian:

 cornerness ; Ix x  
Iy y 2 I x y

2        1Beaudet 2  (7.38)

† Also known as the DET operator.
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The Beaudet measure is related to the Gaussian curvature of the signal, and it is rotation 
invariant.

As mentioned earlier, the second moment matrix Z in Equation (7.29) is sometimes 
referred to as the Hessian, because it is an approximation to the Hessian of 12 I 

2 1 x 2 :
 
@ 

2

@ x 
2 a1

2
 I 

2 1 x 2 b 5
@

@ x
 ¢ I 1 x 2  

@ I 1 x 2
@ x

≤ 5 a@ I 1 x 2
@ x

b2

1 ¢ I 1 x 2  

@ 
2I 1 x 2
@ x 

2 ≤ < I x
2  (7.39)

 
@ 

2

@ y 
2 a1

2
 I 

2 1 x 2 b 5
@

@ y
 ¢ I 1 x 2  

@ I 1 x 2
@ y

≤ 5 a@ I 1 x 2
@ y

b2

1 ¢ I 1 x 2  

@ 
2I 1 x 2
@ y 

2 ≤ < I y
2  (7.40)

 
@ 

2

@ x @ y
 a1

2
 I 

2 1 x 2 b 5
@

@ x
 ¢ I 1 x 2  

@ I 1 x 2
@ y

≤ 5 a@ I 1 x 2
@ x

 
@ I 1 x 2
@ y

b 1 ¢ I 1 x 2  

@ 
2I 1 x 2
@ x @ y

≤ < Ix 
Iy  (7.41)

where the approximations ignore the second-order terms. We avoid using this name because 
of the confusion that can result, since the Hessian is a matrix of second derivatives, whereas 
Z is a matrix of first derivatives.

Figure 7.16 Contour plots 
of various cornerness 
measures versus the two 
eigenvalues of the gradient 
covariance matrix.
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7.4.5 Kitchen-Rosenfeld
The classic Kitchen-Rosenfeld interest point detector combines first- and second-order 
derivatives to find the maximum curvature along an intensity isocontour, weighted by the 
nonmaximum-suppressed gradient magnitude:

 cornerness ;
Ix x 

I y
2 1 Iy y 

I x
2 2 2 Ix y 

Ix 
Iy

I x
2 1 I y

2       1Kitchen-Rosenfeld 2  (7.42)

The Kitchen-Rosenfeld detector, like Beaudet, is no longer widely used.

7.4.6 SIFT Feature Detection
Despite the success of Harris and the other variants just mentioned, an even more popular 
approach is the SIFT feature detector (for Scale Invariant Feature Transform), which 
is illustrated in Figure 7.17. The first step of SIF T is to build a Laplacian pyramid of the 
image. If s is the number of scales per octave at which the features are detected, then the 
pyramid uses s 1 3 Gaussians per octave; in the figure s 5 2, so the difference between 
2 1 3 5 5 Gaussians yields 4 LoG-approximated images, from which the two scales are 
processed. The second step is to determine, for every pixel and for every scale, whether the 
pixel is a local maximum among its 26 neighbors (8 in the same image, 9 at the next small-
est scale, and 9 at the next largest scale). A final step discards pixels in untextured areas or 
along intensity edges.

For each local maximum in scale space just detected, its position can be refined by 
repeatedly solving a linear system to yield floating-point coordinates. More specifically, a 
second-order Taylor series expansion is computed of the scale space image:

 I 1 x 1 Dx 2 < I 1 x 2 1
@I 1 x 2T

@ x
 1Dx 2 1

1
2

 1Dx 2T
 

@ 
2I 1 x 2
@ x2  1Dx 2  (7.43)

Figure 7.17 SIF T features are detected by computing a Laplacian pyramid, then looking for local maxima among the 26 neighbors of a 
pixel. For each octave in this drawing there are 5 Gaussians, 4 LoGs (approximated by DoGs), and two scales (indicated by red arrows); 
the remaining two LoGs are used only in the neighborhood computation.
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348 Chapter 7 • Edges and Features

where x ; 3x y s 4T. Taking the derivative of this function and setting it to zero yields

 
@ I 1 x 2T

@ x
1

@ 
2I 1 x 2
@ x2  1Dx 2 5 0 (7.44)

or

 Dx 5 2a@ 
2I 1 x 2
@ x2 b21

 
@I 1 x 2
@ x

 (7.45)

Once this minimization has stabilized, the value at that point can be computed by plugging 
the computed value of Dx into Equation (7.43) using only the linear term for simplicity:

 I 1 x 1 Dx 2 < I 1 x 2 1
@ I 1 x 2T

@ x
1Dx 2  (7.46)

The popularity of the SIF T feature detector is due to its leveraging of scale space to find 
features regardless of their scale in the image.

7.5 Feature Descriptors
Once features have been detected in multiple images using one of the techniques described 
above, the features are often matched across the images. For example, suppose we have an 
image of a known object from a database, along with a query image that contains the object 
at some arbitrary position, orientation, and scale. By matching features between the two 
images, we can infer whether the object is present and, if so, the pose at which the object is 
located. In order for such an approach to work, it is necessary to compute and match feature 
descriptors that are invariant to changes in pose and illumination.

7.5.1 SIFT Feature Descriptor
Among the many features descriptors that have been proposed, one of the most widely 
used is the SIFT feature descriptor. Although the SIF T feature descriptor typically goes 
hand-in-hand with the SIF T feature detector, this is not necessary, since the descriptor can 
be applied anywhere in the image. The algorithm works as follows. Once a feature has been 
detected using the SIF T feature detector or some other means, the first step is to sample the 
image gradient magnitudes and orientations in the neighborhood surrounding the feature, 
using the scale at which the feature was detected to specify the size of the neighborhood and 
amount of gradient smoothing. The dominant gradient orientation is computed in a manner 
similar to the one described earlier, and all gradient orientations are rotated relative to this 
orientation, to make the computation invariant to image rotation. The gradient magnitudes 
are then weighted by a single Gaussian (whose width is determined by the scale of the 
detected feature) in order to increase the weight of pixels near the center.

The gradient vectors are quantized into one of several possible orientations and then 
accumulated over discrete spatial regions into a 3D histogram over space and scale. For 
example, Figure 7.18 shows the gradients of all the pixels in an 8 3 8 neighborhood sur-
rounding the feature; there are 8 possible orientations, and 8 #8 5 64 gradient vectors which 
are accumulated into a 4 3 4 grid. The orientations of the gradient vectors of the 16 pixels 
in the top-left subarray are accumulated in the histogram bins associated with the top-left 
cell of the keypoint descriptor array, the values in the top-right subarray are accumulated 
in the histogram bins associated with the top-right cell of the keypoint descriptor array, and 
so forth. Each gradient vector votes for the appropriate bin in the histogram with a weight 
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7.5 Feature Descriptors 349

proportional to the gradient magnitude, using trilinear interpolation to distribute values to 
neighboring bins in a robust manner. The values in the 3D histogram are then concatenated 
to form a vector that describes the feature. Because the figure shows 8 orientations and 
2 #2 5 4 subarrays, this example yields a 32-dimensional vector, but in practice there are 
usually 8 orientations and 4 #4 5 16 positions, leading to a 128-dimensional vector. To 
achieve illumination invariance, the vector is normalized to unit length by dividing by its 
L2-norm.

Figure 7.19 shows an application of SIF T feature detections and descriptors. On the left 
are images of a toy frog and toy train from a database. In the middle is the query image. 
On the right are the detected feature points that match features in the database, along with 
the detected objects that were obtained by aggregating the results of the individual features. 
Notice that the objects are detected despite significant difference in pose, as well as occlusion.

7.5.2 Gradient Location and Orientation Histogram (GLOH)
An extension of the SIF T descriptor is the gradient location and orientation histogram 
(GLOH). As with SIF T, the gradient of the image is computed, and the gradient orientations 
are accumulated in a histogram. However, instead of using a rectangular grid of pixels, a 
log-polar grid is used to specify 17 spatial bins from 2 annuli and 8 orientations, in addition 
to one bin in the center, as shown in Figure 7.20. With 16 quantized gradient orientations, 
the histogram contains 17 #16 5 272 bins, which are then reduced to a 128-element vector 

Figure 7.18 The SIF T feature 
descriptor is computed by 
accumulating the orientations 
of the gradient vectors in a 
neighborhood of the feature 
point into a 3D array over 
position and orientation.

Image gradients Keypoint descriptor

Figure 7.19 SIF T feature matching results. SIF T feature descriptors from the query image (middle) are matched against descriptors from 
the database (left) to detect objects at various poses and lighting conditions, and even with severe occlusion (right).
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350 Chapter 7 • Edges and Features

using PCA† applied to a large database of image patches. GLOH feature descriptors have 
been shown to be slightly more distinctive than SIF T descriptors when matching images 
with rotation, scale, and viewpoint changes.

7.5.3 Shape Context
A closely related descriptor designed specifically for binary images is the shape context. 
As shown in Figure 7.21, the shape context of a point on the boundary of an object is com-
puted as a 2D histogram over spatial locations arranged in a log-polar grid similar to that of 
GLOH, except that the center is also divided into wedges. With 5 radii and 12 angles, the 
resulting histogram contains 60 bins. Each bin of the histogram contains the sum of edge 
points within the region defined by the bin. Note that gradient orientation is not used, and 
all edge points contribute equally to the histogram. The shape context has been used suc-
cessfully in matching binary shapes.

7.5.4 Histogram of Oriented Gradients (HOG)
Another popular image descriptor is the histogram of oriented gradients (HOG), which 
is a vector of concatenated histograms of gradient orientations. Since the SIF T feature 
descriptor is also a vector of concatenated histograms of gradient orientations, it can in some 
sense be thought of as a HOG. However, the term HOG is usually reserved for a descriptor 
computed over a dense rectangular region of the image rather than just at a feature point.

The HOG descriptor was developed in the context of pedestrian detection. A 6 4 3 128 
rectangular window is slid across the image, and at each location the HOG descriptor of the 
window is computed and then evaluated‡ to determine whether a pedestrian is in the window. 
The window is divided into a dense array of non-overlapping cells consisting of 8 #8 5 6 4 
pixels. Within each cell a histogram of gradient orientations is computed by allowing each pixel 

† Section 12.3.5 (p. 589).
‡ Using the techniques of Chapter 12 (p. 560)

Figure 7.20 The GLOH feature descriptor involves sampling 
gradient orientations in a log-polar grid.

Figure 7.21 The shape 
context captures the 
shape of a binary region 
by counting the number 
of edge pixels in a log-
polar grid. From left to 
right: A binary shape, the 
log-polar grid, and the 
resulting histogram at a 
particular point.
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7.6 Further Reading 351

The Laplacian pyramid is due to Burt and Adelson [1983], 
where a description of the equal contribution property can 
also be found. Mallat [1989] is the classic paper that links 
wavelets, multiresolution analysis, and pyramid algo-
rithms. Scale space is introduced in the paper by Witkin 
[1983]. A thorough discussion of the Gaussian and Lapla-
cian pyramids and their relationship to scale space can be 
found in Lindeberg [1994]. An even more in-depth treat-
ment of scale space can be found in Lindeberg [1993]. The 
causality criterion and the concept of the deep structure of 
the image are due to Koenderink [1984], where the Hes-
sian matrix is also discussed. Babaud et al. [1986] show 
the uniqueness of the Gaussian kernel for constructing a 
scale space. Applications of scale space to feature detec-
tion can be found in Canny [1986], Mallat and Zhong 
[1992], Lindeberg [1998a], and Lindeberg [1998b].

Everyone should read the delightful early paper of 
Attneave [1954], which connects intensity edges with the 
notions of predictability and redundancy. The early work 
on interpreting line drawing images of polyhedral objects 
is due to Roberts [1963], Huffman [1971], and Clowes 
[1971]. The Marr-Hildreth edge detector was proposed 

by Marr and Hildreth [1980], which was replaced by the 
classic work of Canny [1986]. Canny's paper is a dense 
read but contains some real gems for anyone patient 
enough to read it carefully. The sign of the Laplacian of 
Gaussian is used by Nishihara [1984]. Although space 
has not permitted a thorough discussion, edge detectors 
have been compared empirically using Pratt's figure of 
merit, see Abdou and Pratt [1979], and by the approach of 
Bowyer and Phillips [1998]. For a more recent approach 
to edge detection, see the probability of boundary (Pb) 
detector by Martin et al. [2004].

The Douglas-Peucker line-fitting algorithm is due to 
Douglas and Peucker [1973], which was slightly pre-
ceded by the independent work of Ramer [1972] — hence 
the name Ramer-Douglas-Peucker. Hershberger and 
Snoeyink [1992] propose a speedup to Douglas-Peucker 
with a worst-case running time of O(n log n), whereas 
Douglas-Peucker is O 1 n2 2 . The algorithm to repeatedly 
eliminate the smallest area is due to Visvalingam and 
Whyatt [1992].

The Moravec interest operator is from Moravec 
[1977]. The classic operators of Beaudet [1978] and 

to cast a weighted vote for its orientation, where the weight is given by its gradient magnitude, 
and the orientations are quantized into either 9 possibilities (if 0° to 180° orientations are used, 
that is, the sign of the gradient is ignored) or 18 possibilities (if 0° to 360° orientations are 
used). The cells are grouped into overlapping blocks, where each block contains 2 #2 5 4 
neighboring cells. To provide some amount of illumination invariance, the histograms of the 
cells within a block are concatenated to form a vector, and the vector is then normalized by 
dividing by its L2-norm. Note that, because blocks are overlapping, each cell's histogram is 
used multiple times to create the vectors for the blocks within which it lies. As with any com-
puter vision algorithm, many variations of this approach are possible by changing the shape of 
the cells, the manner of normalization, and so forth, but the description presented here is of 
one of the more common variations. Due to their dense nature, HOG descriptors are able to 
capture subtle variations in the window, making them enormously successful in the task of 
detecting pedestrians and other shape-based object classes.

7.6 Further Reading

Figure 7.22 Histograms of oriented gradients (HOGs) are widely used for pedestrian detection.
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Kitchen and Rosenfeld [1982] are primarily of historic 
interest only, having been replaced by more recent 
approaches. The Harris feature detector, which is still 
widely used, is presented in Harris and Stephens [1988]. 
The Tomasi-Kanade detector was first described by 
Tomasi and Kanade [1991], although it is more widely 
known from the paper by Shi and Tomasi [1994], which 
explains the alternate name of Shi-Tomasi. Although the 
second-moment matrix is called the Hessian in Baker and 
Matthews [2004] in the context of Gauss-Newton mini-
mization for point feature tracking, the term Hessian is 
usually reserved for the matrix of second-derivatives, as 
in Bay et al. [2008]. Several widely cited studies have 
been conducted to compare different feature detectors, 
such as that of Schmid et al. [2000] and Mikolajczyk and 
Schmid [2005], which have largely concluded that Harris 
(or some variation of it) is the most repeatable. Another 
interesting study is that of Kenney et al. [2005], which 
concluded that Tomasi-Kanade is the best feature detector 
according to a particular set of axioms.

The SIF T feature detector and descriptor were intro-
duced by Lowe [2004], the GLOH descriptor is from 

Mikolajczyk and Schmid [2005], the shape context is due 
to Belongie et al. [2002], and HOG is presented in Dalal 
and Triggs [2005]. A number of other feature detectors 
and/or descriptors have emerged over the years, such as 
SURF from Bay et al. [2008], FAST from Rosten and 
Drummond [2006], and DAISY from Tola et al. [2010]. 
Other work of historical interest is the discovery of recep-
tive fields in the human visual system by Hubel and 
Wiesel [1962] and Olshausen and Field [1996] and the 
local jets of Koenderink and van Doorn [1987]. Another 
relevant piece of work is that of Ozuysal et al. [2007] on 
fast keypoint recognition.

We did not have space to discuss texture in detail, but 
the classic work of Julesz [1981] and Julesz and Ber-
gen [1983] on textons should be consulted for historical 
context. Another classic work on texture is that of Laws 
[1980]. Steerable filters were introduced by Freeman 
and Adelson [1991]. A remarkably simple and effective 
algorithm for texture synthesis can be found in the well-
known work of Efros and Leung [1999]. Additional infor-
mation on visual texture can be found in the overview of 
Tuceryan and Jain [1993].

PROBLEMS

7.1 Given that the area (i.e., the number of pixels) of the original image is a, and the 
downsampling factor is 

4"2,

(a) Compute the area of the following levels of a Gaussian pyramid: I 
112, I 

122, I 
152, I 

162.
(b)  Verify that the following relation holds:

area of I 
112

area of I 
122 5

area of I 
152

area of I 
162

7.2 Assuming a downsampling factor of 2, calculate the family of 5-element symmetric 
kernels that satisfies the equal contribution property. Do any of these kernels look familiar 
from Pascal's triangle?

7.3 Suppose we wish to construct a Gaussian pyramid with n 5 3 images per octave.

(a) What is the downsampling factor?

(b)  How should s r2 be chosen to ensure that the overall smoothing between octaves is 
s2 5 1.2?

7.4 Suppose we wish to construct a Laplacian pyramid with n 5 5 images per octave.

(a)  What should be the variance ratio r in order to ensure that each octave is convolved 
with the same sequence of variances relative to the image size?

(b)  What variance should be applied for pyramid levels 1, 2, and 3 (i.e., what are s0
2, s1

2, s2
2)?

7.5 Explain why the causality criterion is important in computing the scale space.
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7.6 List the four types of intensity edges.

7.7 Explain why the Canny edge detector fails at the intersection of two lines.

7.8 Perform non-maximal suppression on the following gradient magnitude and phase 
images. (Compute results only for the inner 3 3 3 array.)

3 3 3 3 3

3 10 9 5 3

3 20 8 7 3

3 5 30 10 3

3 3 3 3 3

magnitude

0 0 0 0 0

0 0 24p
8

0 0

0 10p
8

6p
8

0 0

0 4p
8

0 2p
8

0

0 0 0 0 0

phase

7.9 Explain the localization-detection tradeoff.

7.10 Why is the Marr-Hildreth operator a bad edge detector?

7.11 Stacking the Frei-Chen kernels into 1D vectors, verify that they form an orthonormal 
set.

7.12 We looked at ways to detect step edges. Describe how you might go about detecting 
ridge edges.

7.13 Use the Douglas-Peucker algorithm to fit a polyline to the following sequence of 
points. Set the threshold to 1.5, where 1 is the length of a square in the grid. Show the output 
after each step of the algorithm.

7.14 How is the Harris corner detector better than the Moravec interest operator?

7.15 Explain why you would want to perform non-maximum suppression after computing 
the Harris cornerness measure on the pixels of an image. How would you modify the non-
maximum suppression procedure of Algorithm 7.2 to apply to Harris?

7.16 Derive the closed-form expression for the eigenvalues of a 2 3 2 gradient covariance 
matrix.

7.17 Prove that the trace of a 2 3 2 covariance matrix is the sum of its eigenvalues, and 
that the determinant of the matrix is their product. Is this true for any 2 3 2 matrix?

7.18 Given the following directional derivatives, compute Harris and Tomasi-Kanade cor-
nerness measures of the central pixel, assuming a 3 3 3 window and uniform weighting 
for all the pixels in the window.

Ix 5 C25 29    5
   7    3 28
26    9    3

S      Iy 5 C    2 27 26
21    8    9
25    2    3

S
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7.19 What is the Hessian of a function? Why is it potentially confusing to use the term 
Hessian to refer to the gradient covariance matrix?

7.20 True or false: the Scale Invariant Feature Transform (SIF T) is invariant to translation, 
rotation, and scale.

7.21 Explain the difference between a feature detector and a feature descriptor.

7.22 Implement the detection of sparse features points in an image. Use either the Harris 
corner detector or the Tomasi-Kanade method of thresholding the minimum eigenvalue to 
compute a measure of “cornerness” for every pixel in the image, using a small 3 3 3 win-
dow for constructing the gradient covariance matrix. Then perform non-maximal suppres-
sion to set the “cornerness” to zero for every pixel that is not a local maximum in a 3 3 3 
neighborhood (using either 4 - or 8-neighbors). Note that, unlike Canny, this non-maximum  
suppression will not care about the direction in which neighbors lie relative to the pixel, but 
instead will consider all the pixels in the neighborhood at once. You may also want to either 
enforce a minimum distance between features, or to simply allow no more than 1 feature 
in each 8 3 8 image block.

7.23 Implement the Canny edge detector. Your code should accept a single scale parameter 1s 2  as input. There should be three steps to your code: gradient estimation, non-maximum 
suppression, and thresholding with hysteresis (i.e., double-thresholding). For the gradient 
estimation, convolve the image with the derivative of a Gaussian (i.e., convolve with a 2D 
Gaussian derivative, implemented using the separable property), rather than computing 
finite differences in the smoothed image. Do not worry about image borders; the simplest 
solution is to simply set the border pixels in the convolution result to zero rather than extend-
ing the image. Automatically compute the threshold values based upon image statistics. 
Display intermediate results (e.g., the two x2 and y2 gradient components, the gradient 
magnitude and angle, and the edges before thresholding), in addition to the final result.
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In this chapter we consider the problem of image compression, whose purpose is to reduce both storage size and 
transmission time by representing an image using fewer bits than would be required otherwise. The two primary 
approaches to compression are lossless compression, in which absolutely no information about the original image 

is lost, and lossy compression, in which the image is approximated in such a way that the distortions are not objection-
able. While there is some truth to the statement that compression is all about impatience (if we simply wait a few years, 
then storage and transmission rates will increase, due to Moore’s Law), the topic of compression is here to stay thanks 
to the huge size of images and videos, the large compression ratios that can be achieved, and the insatiable appetite 
of consumers for more and more data.

C H A P T E R 8
Compression

8.1 Basics
It should come as no surprise that images and videos take up a huge amount of storage 
space. For example, a raw, uncompressed image taken by a 5-megapixel consumer-level 
camera requires 5 #106 pixels #  24 bits per pixel/8 bits per byte 5 15 megabytes. mega-
bytes. So if you were to take an average of 10 photographs per day, then over a period of 
ten years you would accumulate

15 megabytes per picture #  10 photographs per day #  3652.5 days per decade 5 548 gigabytes
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of image data. Similarly, a raw, uncompressed 2-hour HDTV movie requires

 120 minutes #  60 
seconds
minute

 #  30 
frames
second

 #  1920 #  1280 
pixels
frame

 #  3 
bytes
pixel

5 1.6 #  1012 bytes

or almost 2 terabytes; a collection of 1000 movies would therefore require 2 petabytes. On 
a typical image-sharing website, hundreds of millions of photographs are uploaded every 
day, amounting to several exabytes per year of images.† These numbers are staggering, and 
although we are starting to reach the point where memory is cheap enough that we can begin 
to think about storing large collections of raw images and videos at home or on a server, 
limited transmission speeds and the desire to store these data on mobile devices, not to 
mention rapidly increasing rates of content creation, continue to motivate the need for 
compressing and decompressing the data.

An overview of a compression/decompression system is provided in Figure 8.1. A stream 
of bits (in our case an image) is fed to a compressor, which converts the stream to a smaller 
stream of bits. This new stream is then either stored as a file on disk or transmitted across a 
network, where on the other end a decompressor restores the original image. Sometimes 
the compressor and decompressor are known as a coder and decoder, respectively, so that 
the software part of the system is collectively known as a codec.

When we say that the decompressor restores the original image, we must make an impor-
tant distinction because there are two types of compression. In lossless compression, the 
restored image is exactly the same as the original image, so that no information has been 
lost. Lossless compression techniques are applicable to any type of data, such as text, an 
image, a database of addresses, or a file containing an executable. On the other hand, the 
image restored by lossy compression is only similar to the original image. Lossy compres-
sion techniques are applicable to data arising from real-world measurements, such as an 
audio signal, a photographic image, or a signal captured by some other type of sensor. In 
such data, certain aspects of the data are more important than others, both because of noise 
in the signal and the inability of the human perceptual system to distinguish certain subtle 
characteristics of the data. By taking into account these perceptual inequities, the informa-
tion that is lost by a well-designed lossy compression algorithm will not be noticeable to 
the person viewing the restored image.

The key idea behind compression is the distinction between data and information. 
Data are the bits, stored in the computer and, taken in and of themselves, carry no inherent 
meaning. Information, on the other hand, can be thought of as the message being conveyed 
by the data, or rather the meaning that can be inferred from the data. This distinction is made 
clear in the following example.

† A megabyte is a million 1106 2  bytes; a gigabyte is a billion 1109 2  bytes; a terabyte is a trillion 11012 2  bytes; a 
petabyte is a million billion 11015 2  bytes; and an exabyte is a billion billion  11018 2  bytes.

EXAMPLE 8.1 Suppose you want to share with someone the number 3.1415926535897932384626433832…
What is the data, and what is the information?

Solution If you were to send this number as a series of digits, it would literally take forever. On the 
other hand, if you were to agree with the receiver beforehand that the Greek letter p repre-
sents the number, then you could simply send only a small number of bits. In this context, 
the information is the ratio of a circle’s circumference to its diameter, while the data is either 
the infinite string of digits or the single Greek letter. Obviously, the latter is a much more 
efficient encoding of the information than the former.
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An important characteristic of the efficiency of the compression process is the 
compression ratio, which is defined as the ratio of the number of bits used to store the 
original image to the number of bits used to store the compressed image:

 compression ratio ;
number of bits in uncompressed image
number of bits in compressed image

 (8.1)

In most cases the compression ratio will be greater than 1, and it is typically on the order of 
5:1 (read “5 to 1”), 10:1, or even 100:1, depending upon the type of data.

Compression takes into account the fact that there is often redundancy in the data 
being used to carry or store the information. As a result, the same amount of information 
can be represented with less data. Redundancy—which can be thought of as the “wasted 
space” in the data—refers to the unnecessary repetition in the data used to store or transmit 
the information. Without redundancy, data compression is impossible. The compression 
ratio is bound by the relative redundancy, which is defined as the difference between the 
number of bits used in the uncompressed signal and the number of bits needed to represent 
the information, normalized by the former:

 relative redundancy ;
number of bits used 2 number of bits needed

number of bits used
 (8.2)

leading to the following bound:

 relative redundancy $ 1 2
1

compression ratio
 (8.3)

For example, if 90% of the data is extraneous, then the relative redundancy is 90%, or 0.90, 
in which case the compression ratio can be no more than 10:1 without losing information.

8.1.1 Redundancy in an Image
There are three causes of redundancy. Coding redundancy refers to the fact that not all 
bit patterns (usually called symbols) are equally likely. For example, in an English sentence 
the letter “E” is much more likely than the letter “Q”. So if the same number of bits is used 
to represent all letters, the bits will be used inefficiently. A more efficient coding scheme, 
therefore, assigns fewer bits to the letters that appear more frequently and more bits to the 
letters that appear less frequently. Similarly, if the graylevel histogram of an image is not 
flat, then not all pixel values are equally likely; in the case of a dark image, for example, the 
pixels with smaller values are more likely than the ones with larger values. By representing 
the more likely values with fewer bits and the less common values with more bits, a more 
efficient image representation can be achieved.

A second type of redundancy is called interpixel redundancy, which refers to cor-
relation between pixels. If the pixels are in the same image, then this is known as spatial 
redundancy; whereas if they are in adjacent frames of a video sequence, it is known as 

Figure 8.1 In a typical compression / decompression system, an image is first compressed, then the compressed image is either 
stored or transmitted, after which it is decompressed to yield either the original image (in the case of lossless compression) or an 
approximation to it (in the case of lossy compression).

Original
image

Compressed
image Uncompressed

imageCompressor Decompressor
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temporal redundancy. To understand spatial redundancy, the correlation between pairs 
of pixels separated by d along a row of the image is computed as

 corr 1 d 2 5
1

width r
 a
widthr21

x50

 I 1 x, y 2 I 1 x 1 d, y 2  (8.4)

where width r ; width 2d. For a typical photograph the normalized value corr 1 1 2
corr 1 0 2  will be 

between 0.90 and 0.98, which means that neighboring pixels are usually highly correlated. 
In other words, it is easy to predict the next pixel’s value (or at least a good approximation) 
from the current pixel’s value. For example, in the following image:

 D 33 33 34 33
33 62 62 62
62 62 145 145

145 146 145 145

T  (8.5)

if we were to simply predict that each pixel’s value is the same as the previous pixel’s value 
(considered in row-major order), we would be correct more than 50% of the time. Moreover, 
the difference between the predicted and actual values would almost always be less than 32, 
so that fewer than 5 bits per pixel (on average) would be needed instead of the full 8 bits.

Finally there is psychovisual redundancy, which refers to the fact that not all errors are 
noticeable to a human observer. While the first two forms of redundancy are used by loss-
less compression techniques, this last one is required by lossy compression. For example, 
consider the following grayscale image:

 D32 33 254 255
33 32 255 254
33 33 255 254
32 33 255 255

T  (8.6)

If these values were displayed as an image, your eyes would be drawn to the sharp inten-
sity edge between the smaller values on the left and the larger values on the right; and the 
relatively minor differences between 32 and 33 on the left, and between 254 and 255 on the 
right, would likely not be noticeable at all. Therefore, if all the pixels with value 32, say, 
were changed to 33, and all the pixels with value 254 were set to 255, the resulting image 
would require fewer bits to encode (since then only two gray levels would be used), but 
the difference would not even be noticed at all when the values were viewed as an image. 
Lossy compression takes advantage of such imperceptible differences to yield even greater 
compression ratios than would be possible using lossless compression alone.

8.1.2 Graphic Drawings Versus Photographs
In considering the difference between lossy and lossless compression, it is important to keep 
in mind that there are, roughly speaking, two types of images. Photographs captured by a 
camera contain a continuous range of colors (or gray levels), so that although neighboring 
pixels generally have similar values, it is rare for them to have the exact same value. Graphic 
drawings, on the other hand, often use a limited palette of colors, and they often contain 
large single-colored regions in which neighboring pixels have the exact same value.

Lossless compression relies on both coding and interpixel redundancy. Because photo-
graphs contain very little of these, lossless compression does not yield impressive results 
on this type of image. (Compression ratios rarely exceed 2:1.) Applied to a graphic image, 
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however, lossless compression will often yield compression ratios of 20:1 or even 100:1, 
a huge savings. Therefore, as a general rule, graphic images should be compressed using 
lossless techniques.

Lossy compression, on the other hand, takes advantage of the psychovisual redundancy 
present in photographs in order to compress more than would be possible with lossless tech-
niques alone. Depending upon the desired quality of the output, lossy compression ratios 
are typically on the order of 10:1 for an image or 100:1 for a video. Lossy compression 
should therefore, as a general rule, be applied to photographs and videos. While lossless 
compression can also be applied to photographs if it is required to ensure that no informa-
tion has been lost (e.g., medical or space images), one should almost never apply lossy 
compression to a graphic image, because not only will the compression ratio actually be 
worse with lossy than with lossless compression, but the lossy compression will also result 
in undesirable visible artifacts in the output. It is not that graphic images do not contain 
any psychovisual redundancy, but rather that the human visual system is quite capable of 
detecting the sharp edges that occur in graphic drawings, and lossy compression tends to 
blur these edges as an unintended artifact. Examples of these two types of images and the 
effects of lossy compression are shown in Figure 8.2.

8.1.3 Information Theory
The branch of mathematics underlying lossless compression is known as information 
theory, which provides the tools necessary to answer questions such as how to deter-
mine the theoretical lower limit of the amount of data needed to encode a certain amount 

Figure 8.2 Grayscale photograph (top) versus binary graphic drawing (middle). Uncompressed, both 8-bit-per-pixel images contain 
400 kB of data; with lossless compression they require 235 kB and 3 kB, respectively. As the quality of the lossy compression (in this case 
JPEG) is decreased, the size decreases. However, even a large reduction in quality for a graphic image does not reduce the file size as low 
as lossless compression. The bottom row displays the horizontal graylevel profile across one of the bright lines in the graphic, showing 
the degradation due to lossy compression. Even though the artifacts of lossy compression are not noticeable in the image at the low 
resolution displayed here, the signal has been significantly degraded, and for no benefit.
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of information. A key quantity for answering such questions is entropy. You may have 
encountered this term before as a measure of disorder in a thermodynamic system: When the 
system is highly ordered it has low entropy, but when it is disordered it has high entropy—
and nature always tends toward the latter. Similarly, in information theory, entropy is used 
to describe the amount of unpredictability in a data stream: a data stream that is highly 
ordered (predictable) has low entropy, while an unorganized stream has high entropy. And 
just as maximum entropy is obtained by a random thermodynamic system, so in information 
theory maximum entropy is obtained by a random data stream.

It is important to note that entropy does not address the notion of “meaning” or “useful 
content” at all. As a result, when we say that entropy captures the amount of information in a 
stream, we are using the term “information” in a very narrow sense; in its broadest sense, the 
term is difficult to define and elusive to quantify. For example, when listening to a high quality 
lecture from a brilliant luminary, we might say that the presentation contains a large quantity 
of information, whereas a poorly given talk by a politician who simply repeats key phrases 
that the constituents want to hear may contain little useful information. If both the lecture and 
the political speech are encoded by digitizing the audio waveforms captured by the micro-
phones into a sequence of bytes, both sequences might very well contain the same, or similar, 
amounts of entropy, even though the amount of useful content is vastly different between 
them. Nevertheless, despite this limitation, entropy is a simple measure that captures many 
of the properties that we intuitively expect in a measure of information, and therefore the 
entropy of a stream is widely used as a measure of the amount of information in the stream.

Entropy of a Single Random Variable
Entropy is formally defined in the following way. Suppose a random variable X can 
take on any one of several possible outcomes x [ X, with probabilities given by p(x). 
For example, a coin has two possible outcomes, so that the set X  contains two elements, 
X 5 5HEADS, TAILS6; the two possibilities for the random variable are X 5 HEADS or 
X 5 TAILS; and the probabilities of these assignments are p(Heads) and p(Tails), respec-
tively. The entropy of X is given by the negative of the weighted average of the logarithm 
of the probabilities:

 H 1X 2 5 2a
x[X

 p 1 x 2  log p 1 x 2  (8.7)

where the probabilities are the weights, and the letter H is the standard symbol for entropy. 
To understand this formula, it is helpful to think of the information content in an indi-
vidual outcome as the unpredictability of the outcome, or equivalently the amount of 
surprise that the outcome generates when it is encountered. More likely outcomes are less 
surprising, whereas less likely outcomes are more surprising, so the information content 
log 1

p 1 x 2 5 2log p 1 x 2  in a single outcome x increases when p(x) decreases, and vice versa. 
When an outcome is certain to occur, its probability is 1, and therefore its information 
content is zero. The value 2p 1 x 2  log p 1 x 2  in Equation (8.7) is the information content in 
an outcome weighted by the probability of that outcome occurring, and the summation is 
taken over all possible outcomes. The following example makes this clear.

EXAMPLE 8.2 What is the entropy of each of the following random variables:

(a) Flipping an unfair coin that is heads on both sides?
(b) Flipping a standard, fair coin?
(c) Rolling a fair 4-sided die (a pyramid with a triangular-shaped base)?
(d) Rolling a standard, fair 6-sided die?
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In three of the four cases above, all outcomes are equally likely, and therefore the 
probability mass function of the random variable is uniform. This is the case of maximum 
entropy. When the probability mass function is less uniform, the entropy (and hence the 
amount of information) decreases.

Solution First, let us propose answers based on intuition, without using the formula in Equation (8.7):

(a)  The probabilities are p(Heads) 5 1 and p(Tails) 5 0. Whenever the coin is flipped, 
it will always show heads. As a result, there is no unpredictability in the coin flip, and 
hence no surprise. Therefore, the information content of heads is zero. Although the 
information content of tails is infinite (we would definitely be surprised to see tails show 
up as the result of the flip!), its probability is zero and therefore does not change the 
overall information content, which is zero.

(b)  When the fair coin is flipped, it is difficult to predict which outcome will occur, since 
p(Heads) 5 p(Tails) 5 1

2. But the outcome will be either heads or tails, and these two 
states can be stored in a single bit (“binary digit”) of data. The information in the fair 
coin toss is therefore 1 bit.

(c)  The probability of any particular side is 1
4, and therefore it requires 2 bits to store the 

outcome of a single roll.
(d)  The probability of any particular side is 16. Intuitively, because there is more uncertainty 

in the outcome, we expect there to be slightly more information content than in the 
4-sided die.

Not surprisingly, applying Equation (8.7) yields the same answers:

(a)  entropy of 2-headed coin flip: H 1X 2 5 20 log2 0 2 1 log2 1 5 0 bits  (8.8)

(b)  entropy of fair coin flip: H 1X 2 5 20.5 log2 
1
2

2 0.5 log2 
1
2

5 1 bit (8.9)

(c)  entropy of fair 4-sided die roll: H 1X 2 5 4 a20.25 log2 
1
4
b 5 2 bits  (8.10)

(d)  entropy of fair 6-sided die roll: H 1X 2 5 6 a2
1
6

 log2 
1
6
b < 2.585 bits  (8.11)

where the convention 0 log 0 5 0 has been used. Note that the base of the logarithm changes 
only the units in which the answer is expressed; here base-2 is used, so these results are in 
bits.

EXAMPLE 8.3  Compute the entropy of the random variable associated with the toss of an unfairly weighted 
coin, with p(Heads) 5 1

4, and p(Tails) 5 3
4.

Solution  The information content in each of the 2 possible outcomes is

information content in Heads outcome 5 2log2 
1
4

5 2 bits (8.12)

information content in Tails outcome 5 2log2 
3
4

< 0.415 bits  (8.13)

These results tell us that the Tails outcome, which is much more predictable than the Heads 
outcome, has less information content. This is because we would be correct 75% of the time 
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Entropy of a Sequence of i.i.d. Random Variables
What if we are interested in a sequence of experiments, such as a sequence of coin tosses or 
die rolls? Two scenarios are common, covered in this and the following subsection. In the 
first scenario, the individual experiments are assumed to be independent and identically 
distributed (i.i.d.), meaning that the outcome of each experiment is independent of all the other 
experiments and the probability of the different outcomes remains the same throughout all the 
experiments (that is, the probability mass function does not change). A simple example of i.i.d. 
variables would be the outcomes of a series of coin flips: the outcome of each flip is independent 
of all the other flips, and the properties of the coin do not change. The entropy of a sequence 
of n i.i.d. experiments is simply nH(X), where H(X) is the entropy of an individual experiment.

if we were to simply guess tails each time. However, whenever the coin flip results in heads, 
we are surprised, because heads events are more rare.

The entropy of the coin flip is given by the weighted average of the information content 
of the individual outcomes, or

 H 1X 2 5 2
1
4

 log2 
1
4

2
3
4

 log2 
3
4

< 0.25 1 2 2 1 0.75 1 0.415 2 < 0.811 bits (8.14)

Notice that the information content in the coin flip has reduced as a result of the bias, 
because there is more predictability in the outcome.

EXAMPLE 8.4 Compute the entropy of a sequence of ten flips of the unfairly weighted coin above, with 
the distribution of p 1HEADS 2 5 1

4 and p 1TAILS 2 5 3
4 for each flip. Assume the outcomes of 

the flips are independent of one another.

Solution Since the experiments are i.i.d., the entropy is same for each flip: H 1Xi 2 < 0.811 from the 
example above. Therefore simply multiply the number of experiments by the entropy of 
each experiment to yield the entropy of the sequence:

 H 1X1:10 2 5 10H 1Xi 2 5 10 1 0.811 2 5 8.11 bits (8.15)

A fundamental result of information theory is Shannon’s source coding theorem,† 
which says that the optimal encoding of a sequence is bounded by its entropy. In other 
words, given a sequence of symbols assumed to be i.i.d. outcomes of a random variable 
generated according to some probability mass function, the average codeword length per 
symbol can be no less than the entropy of a single experiment. This theorem is important 
because it gives us a theoretical limit on how much we can expect to losslessly compress 
any given data stream, under this assumption.

Entropy of a Stationary Sequence of Random Variables
In the second scenario, the sequence of experiments is assumed to be the result of a 
stationary random process, which means that the joint probability distribution of any sub-
set of the sequence of random variables does not change with respect to shifts in the time 
index. For example, in a stationary process, p 1Xi, Xi11 2  is the same no matter the value 
of i. Stationarity can be thought of as a generalization of independence, because a process 

† Claude Shannon (1916–2001) is known as the “father of information theory.” He wrote what is widely regarded as 
the most important master’s thesis (1937) of all time, because it proposed the basic concept underlying all modern 
digital computers, namely applying Boolean algebra to digital circuit design.
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of i.i.d. random variables is always stationary, but the random variables in a stationary 
sequence are not necessarily independent of each other.

A first-order Markov chain is a sequence of random variables in which the conditional 
probability given the immediately previous variable is the same as the conditional prob-
ability given all the previous variables:

 p 1Xi 
0
 
Xi21 2 5 p 1Xi 

0
 
X1, X2, c, Xi21 2  (8.16)

In other words, if the value of the immediately preceding outcome (in this case Xi21) is 
known, then everything that we need to know in order to predict the current outcome (in this 
case Xi) is known as well. The Markov chain assumption is particularly useful when study-
ing stationary processes, because it simplifies the computation of entropy. Furthermore, in 
the case of a stationary process, p 1Xi 

0
 
Xi21 2  is the same no matter the value of i.

The entropy rate of a stochastic process captures how the entropy of the sequence grows 
with the length of the sequence. It can be shown that the entropy rate of a stationary Markov 
stochastic process is simply the conditional entropy H 1Xi 

0
 
Hi21 2 , where conditional entropy 

is related to entropy in the same way that conditional probability is related to probability. If the 
Markov chain has stationary distribution μ and transition matrix P, the entropy rate is given by

 H 1X1:n 2 5 H 1Xi 
0
 
Hi21 2 5 2a

i, j

 mi 
p 1  j 0 i 2  log p 1  j 0 i 2  (8.17)

where X1:n refers to the random process with n timesteps, mi is an element of μ, and p 1  j 0 i 2  
is an element of P. It can be shown that the minimum expected codeword length per symbol 
of a stationary process is given by the entropy rate of the process. The key word here is 
“expected,” which says that while there is no theoretical bound on the compression of a sta-
tionary process as there is for an i.i.d. process; we can expect that on average the minimum 
codeword length is given by the entropy rate. Therefore, the entropy rate of a stationary 
process and the entropy of each variable in an i.i.d. process can be considered as being more 
or less equivalent from a practical point of view, because both give us a way to quantify the 
amount of compression that can be realistically achieved.

EXAMPLE 8.5 Suppose a binary random process outputs a stream of bits such that 90% of the time the next 
bit is identical to the previous bit. What is the entropy rate of this process?

Solution This is a stationary Markov random process. A typical sequence might look something like this:

0000000000011111111100000000001111111111 c
where the length of each run of 0s or 1s will be, on average, 10. Clearly this is not an i.i.d. 
process, since each bit is heavily dependent upon the previous bit. Overall, however, 0 is 
just as likely as 1, so the stationary distribution is uniform: m0 5 m1 5 1

2. The transition 
matrix is given by p 1 0 00 2 5 p 1 1 01 2 5 0.9 and p 1 0 01 2 5 p 1 1 00 2 5 0.1. Therefore, from 
the equation above we have

 H 1X1:n 2 5 2
1
2

 1 0.9 2  log2 0.9 2
1
2

 1 0.9 2  log2 0.9 2
1
2

 1 0.1 2  log2 0.1 

2
1
2
1 0.1 2  log2 0.1  (8.18)

 5 20.9 log2 0.9 2 0.1 log2 0.1 < 0.47 bits   (8.19)

Therefore, we can expect to compress this stream by about a factor of 2.
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A source code w for a random variable is a mapping from values (or symbols) to code 
words, which are bit strings. For example, the uncompressed image above would typically 
be represented by the mapping

 w 1 0 2 5 000

 w 1 1 2 5 001

 w 1 2 2 5 010

 w 1 3 2 5 011

 w 1 4 2 5 100

 w 1 5 2 5 101

 w 1 6 2 5 110

 w 1 7 2 5 111

which requires 3 bits per pixel to store the image. With 16 pixels total, the uncompressed 
image above would be stored as a sequence of 48 bits:

1 1 1()*
7

 
0 1 1()*

3
 
0 1 0()*

2
 
0 0 0()*

0
 
0 0 0()*

0
 
0 1 0()*

2
 
0 1 1()*

3
 
0 0 1()*

1
 
1 1 1()*

7
 
0 1 0()*

2
 
0 1 1()*

3
 
0 1 1()*

3
 
0 1 0()*

2
 
0 1 1()*

3
 
1 0 1()*

5
 
1 0 0()*

4

where we have assumed row-major ordering of the pixels.

8.2 Lossless Compression
Now that we have considered the basic principles of information theory, let us examine 
several algorithms for lossless compression that are based on these principles.

8.2.1 Huffman Coding
One way to view an image is as the result of an i.i.d. process. In other words, the sequence 
of pixel values is considered as the outcome of a large number of experiments, each of which 
draws a pixel value according to some probability distribution. In the case of a grayscale 
image, for example, each byte is treated as the output of an unfairly weighted 256-sided die, 
with the probability of each gray level given by a probability mass function.

EXAMPLE 8.6 What is the probability mass function of the following 4 3 4 image? For simplicity, assume 
only 3 bits per pixel, so ngray 5 8.D7 3 2 0

0 2 3 1
7 2 3 3
2 3 5 4

T
Solution Without additional information, the best approximation to the probability mass function is 

obtained by computing the normalized graylevel histogram, i.e., by counting the percent-
age of each gray level’s occurrence. The gray level 0 occurs 2 times, the gray level 1 occurs 
1 time, the gray level 2 occurs 4 times, and so forth. This leads to the following probability 
mass function:

p 10 2 5
2

16
  p 11 2 5

1
16

  p 12 2 5
4

16
  p 13 2 5

5
16

  p 14 2 5
1

16
  p 15 2 5

1
16

  p 16 2 5
0

16
  p 17 2 5

2
16
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Instead of assigning the same number of bits to each pixel regardless of its symbol, data 
compression can be achieved by assigning shorter codewords to the more frequent symbols 
and longer codewords to the less frequent symbols. This is called a variable-length code. 
In the example above, the symbol 3 should be represented by the shortest codeword, since 
it is the most common; while the symbol 6 should be represented by the longest codeword, 
since it is the least common. The codeword length is the number of bits in the codeword, 
and the expected codeword length is the weighted average of the codeword lengths, with 
weights given by the probability mass function:

 expected codeword length 5 a
x[X

0w 1 x 2 0  p 1 x 2  (8.20)

where 0w 1 x 2 0  is the length of the codeword w 1 x 2 .
Huffman coding is a simple algorithm that generates a set of codes with the mini-

mum expected codeword length. In other words, under the assumption that the symbols 
were generated independently according to the probability mass function and under the 
constraint that each symbol is coded separately from the other symbols, Huffman coding 
is optimal. The Huffman algorithm is straightforward, forming a binary tree by starting 
with each symbol as a leaf node, then iteratively combining the two least likely nodes, 
where the probability of a node is the sum of its own probability with all the probabilities 
of its children.

Figure 8.3 illustrates the algorithm applied to the example image above. In the first 
iteration, the two least likely symbols have probabilities 0

16 and 1
16. Notice that there is a tie 

here, and we are free to break the tie however we decide. A Huffman code is not guaran-
teed, therefore, to be unique. In this case we choose (somewhat arbitrarily) to combine the 
symbols 5 and 6, for a combined probability of 1

16. In the next iteration, the two least likely 
symbols both have probabilities 1

16, but again the tie is broken arbitrarily by merging symbol 
4 with symbol 5–6. This procedure is repeated until all the nodes are merged under a single 
root. The binary labels 0 and 1 are then assigned to the two branches proceeding from each 
non-leaf node, and the codeword for each symbol is given by the concatenation of these 
labels. Notice that the most likely symbols receive the shortest codewords, while the rarest 
symbols receive the longest codewords. Keep in mind that this is simple example; in a real 
implementation the nodes would be stored in a priority queue to make it easy to determine 
the two least likely symbols for any given iteration. Also, the branches in the tree usually 
cross one another, because the combined nodes are not guaranteed to be contiguous ranges 
of the leaves as they are here.

EXAMPLE 8.7 Compute the entropy of the image in Example 8.6.

Solution The entropy is given by Equation (8.7), using the probabilities already computed:

 entropy 5 2
2
16

 log2 
2
16

2
1
16

 log2 
1
16

2
4
16

 log2 
4
16

2
5
16

 log2 
5
16

 2
1
16

 log2 
1
16

2
1
16

 log2 
1
16

2
0
16

 log2 
0
16

2
2
16

 log2 
2
16

 < 2.52 bits per pixel.

According to Shannon’s source coding theorem, this result gives us the smallest possible 
expected codeword length of any algorithm based on the i.i.d. assumption.
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Using this Huffman code, the compressed image would be stored as a sequence of 42 bits:

1 1 1()*
7

 
1 0()*

3

 
0 1()*

2

 
0 0 0()*

0

 
0 0 0()*

0

 
0 1()*

2

 
1 0()*

3

 
0 0 1()*

1

 
1 1 1()*

7

 
0 1()*

2

 
1 0()*

3

 
1 0()*

3

 
0 1()*

2

 
1 0()*

3

 
1 1 0 1 0(')'*

5

 
1 1 0 0(')'*

4

In this particular example, the small amount of savings is hardly worth it, even though only 
42/16 < 2.62 bits are used per pixel on average, which is close to the theoretical limit. In 
practice, however, Huffman coding can yield a significant amount of compression when the 
probability mass function is less uniform than this one.

Huffman coding yields what is known as a prefix code. In a prefix code, no codeword 
is a prefix of any other codeword. To decompress a compressed image, therefore, we sim-
ply need to scan the bitstream one bit at a time and, whenever a sequence of bits has been 
accumulated that matches a codeword in the codebook, the corresponding symbol is output. 
For example, suppose the first bit is a 1. If the next bit is 0, we know that the codeword is 
10, which represents the symbol 3. But if the next bit is another 1, then the sequence is 11, 
which is not a codeword, indicating that we must continue grabbing bits.

Huffman coding is not typically applied to the raw image pixel values but is nevertheless 
widely used as a means of compressing values resulting from another type of compression. 
For example, both JPEG compression and the CCITT encoding used by fax machines apply 
modified Huffman algorithms to the results of run-length encoding. Huffman coding is also 
used by the Deflate algorithm, which is used by the file compression programs PKZIP, gzip, 
and ZIP, as well as by PNG image files, where Huffman coding is applied to the output of 
a precompression predictive filter, described in more detail later in the chapter.

8.2.2 Lempel-Ziv Encoding
We have just seen that, if the source is i.i.d. and the probability distribution is known, then 
Huffman coding is optimal. Why, then, is there a need for anything else? Well, first of all, 
Huffman coding requires the distribution (or equivalently the codebook or binary tree) to 
be transmitted along with the compressed bitstream—an additional overhead that detracts 
from the savings obtained by compression. Second, it is often the case that the probability 
distribution is unknown, or the source is not i.i.d. Third, Huffman coding must process the 
source twice: once to construct the probability distribution (from which the codebook is 
produced), and another time to perform encoding.

Figure 8.3 An illustration of 
the Huffman algorithm on 
the image of Example 8.6. The 
8 symbols are the leaf nodes, 
whose values are in green. 
By successively combining 
the two least likely symbols, 
we arrive at a tree structure 
that yields the optimal code. 
The final codewords are at the 
bottom in red.
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A final drawback of Huffman coding is that it assumes a fixed block size. For example, 
in Example 8.6 each triplet of bits was treated as a pixel and encoded, which leads to an 
entropy of 2.52 bits per pixel. But different block sizes lead to different values for the 
entropy, with increasingly larger block sizes typically leading to lower entropy (and hence 
higher theoretical compression), but more overhead due to a larger codebook. This is illus-
trated in the following example.

EXAMPLE 8.8 Compute the entropy of the image in Example 8.6 with block sizes of 1, 2, 3, and 4 bits.

Solution In row-major order, the uncompressed image is represented by the following bitstream:

111011010000000010011001111010011011010011101100

This bitsream contains 24 ones and 24 zeros. Using a block size of 1 bit, the probability 
mass function is given by p 1 0 2 5 p 1 1 2 5 24/48 5 0.5. The entropy is 1 bit per block, or 
3 bits per input pixel. No compression is possible.

Considered as a bitstream of 2-bit blocks, the image is

11 10 11 01 00 00 00 00 10 01 10 01 11 10 10 01 10 11 01 00 11 10 11 00

leading to a probability mass function of p 1 00 2 5 6/24, p 1 01 2 5 5/24, p 1 10 2 5
7/24, p 1 11 2 5 6/24. From Equation (8.7) the entropy is therefore

entropy 5 2
1
4

 log2 
1
4

2
5
24

 log2 
5
24

2
7
24

 log2 
7
24

2
1
4

 log2 
1
4

< 1.99 bits per block   (8.21)

or 2.98 bits per pixel, which is just slightly better than what was achieved with 1-bit blocks. 
3-bit blocks were covered in Example 8.7, leading to an entropy of 2.52 bits per pixel, a 
considerable improvement.

Considered as a bitstream of 4-bit blocks, the image is

1110 1101 0000 0000 1001 1001 1110 1001 1011 0100 1110 1100

leading to a probability mass function of

p 1 0000 2 5 2/12 p 1 0100 2 5 1/12 p 1 1000 2 5 0/12 p 1 1100 2 5 1/12
p 1 0001 2 5 0/12 p 1 0101 2 5 0/12 p 1 1001 2 5 3/12 p 1 1101 2 5 1/12
p 1 0010 2 5 0/12 p 1 0110 2 5 0/12 p 1 1010 2 5 0/12 p 1 1110 2 5 3/12
p 1 0011 2 5 0/12 p 1 0111 2 5 0/12 p 1 1011 2 5 1/12 p 1 1111 2 5 0/12

From Equation (8.7) we have

entropy 5 24a 1
12

 log2 
1
12

b 2
1
6

 log2 
1
6

2 2 a 3
12

 log2 
3
12

b < 2.64 bits per block   (8.22)

or 1.32 bits per pixel, allowing even more compression.
Summarizing, for this example the entropy varies significantly depending upon the block 

size:

number of bits per block entropy per pixel

1 3.00 bits

2 2.98 bits

3 2.52 bits

4 1.32 bits
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To overcome these limitations, we turn our attention to universal source coding, which 
refers to a coding procedure that does not depend on the probability mass distribution of 
the source. One popular procedure for universal data compression, known as Lempel-Ziv, 
is easy to implement and achieves a rate of compression that asymptotically (as the length 
of the sequence tends to infinity) approaches the source entropy. Instead of assuming that 
the input process is i.i.d., as does Huffman coding, Lempel-Ziv only assumes that the input 
is stationary. In fact, Lempel-Ziv leverages inter-pixel redundancy in order to compress the 
sequence. Like Huffman coding, a variant of Lempel-Ziv is used by the Deflate algorithm, 
which is used by the popular PNG image file format, as explained later.

The key idea behind Lempel-Ziv is to look for subsequences that have appeared before. 
For example, suppose the input is the bitstream from Example 8.8:

111011010000000010011001111010011011010011101100

Now suppose the bits are scanned from left to right, and a comma is inserted every time we 
encounter a subsequence that we have not encountered before. Thus, the first 1 is new to us, 
so we place a comma after it. But the second 1 has been encountered before, so we refrain 
adding a comma until after the third 1, since the subsequence 11 is new to us. Continuing 
this procedure leads to the following:

1, 11, 0, 110, 10, 00, 000, 001, 0011, 00111, 101, 00110, 1101, 001110, 1100

Unlike Huffman coding, which builds the codebook only after processing the entire stream, 
Lempel-Ziv builds the codebook, also known as the dictionary, on the fly as the data are 
compressed. Dictionary entries consist of (index, bit) pairs, where index is the index of the 
dictionary entry containing the prefix, and bit is the bit appended to the prefix to obtain the 
subsequence corresponding to this entry. If we let dict[i] refer to the ith dictionary entry, and 
assuming that dict[0] refers to the empty subsequence, the input can thus be represented as10, 1 2()*

dict 314 , 
1 1, 1 2()*
dict 324 , 

10, 0 2()*
dict 334 , 

12, 0 2()*
dict 344 , 

11, 0 2()*
dict 354 , 

13, 0 2()*
dict 364 , 

16, 0 2()*
dict 374 , 

16, 1 2()*
dict 384 , 

18, 1 2()*
dict 394 , 

19, 1 2()*
dict 3104 , 15, 1 2()*

dict 3114 , 19, 0 2()*
dict 3124 , 14, 1 2()*

dict 3134 , 110, 0 2()*
dict 3144 , 

1 4, 0 2()*
dict 3154

where the dictionary is illustrated in Figure 8.4. The first subsequence of 1 is represented by 
the dictionary entry (0,1), because it is 1 appended to the empty sequence. The next subse-
quence of 11 is represented by (1,1), because it is 1 appended to the sequence given by dict [1]. 
The process continues to the final subsequence of 1100, which is represented by (4,0) since it 
is 0 appended to dict [4], which itself is 0 appended to dict [2], which is the subsequence 11.

If we assume that the dictionary has 16 entries, then each entry requires 5 bits (4 for the 
index, and 1 for the appended bit). Therefore, the original sequence of 48 bits has been trans-
formed into a sequence of 5 #15 5 75 bits, which might make it appear that Lempel-Ziv is 
not very good at compression. In practice, however, on longer input sequences the compres-
sion ability of Lempel-Ziv is significant and—as mentioned above—approaches the entropy 
of the source. It is also important to keep in mind that there are many implementation details 
that are omitted from this simple example that can be used to further improve performance.

8.2.3 Lempel-Ziv-Welch Algorithm
One variant of Lempel-Ziv is the Lempel-Ziv-Welch (LZW) algorithm, which also builds 
the dictionary on the fly as the data are compressed. The trick behind LZW is to notice that 
the bit appended to each dictionary entry is not needed. Therefore, a dictionary entry in LZW 
consists only of the index of the previous dictionary entry. The patented LZW algorithm is 
used by the GIF image file format but is not widely used anymore since GIF has largely been 
replaced by PNG. In fact, PNG stands for “PNG is not GIF” and was developed intentionally 
to avoid the patent restrictions† of LZW by reverting to the simpler version of Lempel-Ziv.

† The patent has since expired.
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LZW encoding works as follows. An initial alphabet size is determined, and the diction-
ary is initialized for each symbol of the alphabet. We will assume without loss of generality 
that the input is scanned a single bit at a time, as in the Lempel-Ziv example of the previous 
section, so that the alphabet has two entries: X 5 50, 16, and the dictionary is initialized with 
dict 30 4 5 0 and dict 31 4 5 1. To avoid confusing the input bits with the dictionary indices, let 
us introduce the letters A ; 0 and B ; 1 to represent the input bits, so that X 5 5A, B6, and 
the dictionary is initialized with dict 30 4 5 A and dict 31 4 5 B. As the input is scanned, the 
dictionary is searched to find the longest subsequence in the dictionary that matches the input. 
When such a match cannot be found, the index of the previous dictionary entry (that is, the 
one corresponding to the subsequence without the most recent bit) is output, and the sequence 
(with the most recent bit) is added to the dictionary. For example, suppose AAB is represented 
in the dictionary by dict[3], but AABA is not in the dictionary yet. If AABA is encountered, 
then 3 will be output, and AABA will be added to the dictionary after the last entry. The pro-
cess continues until the entire input has been scanned, as presented in Algorithm 8.1.

Figure 8.4 An illustration of the dictionary 
created by the Lempel-Ziv algorithm on the 
bitstream of Example 8.8. Each dictionary 
entry captures a subsequence composed of 
a bit (in red) appended to the subsequence 
of its parent, with successively longer 
subsequences farther down in the tree. For 
example, the subsequence of dict [14] is 
001110, which is 0 appended to dict [10].

0

dict [15] 0

0

0

0

0

0

0

1

1

1

1

1

1

1

dict [2]
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dict [5]

dict [11]

dict [13]

dict [4]
dict [8]dict [7]

dict [6]

dict [3]

dict [9]

dict [10]

dict [14]

dict [12]

EXAMPLE 8.9 Suppose we have a 3-bit sequence beginning with A. What is the output of LZW on all four 
possible input sequences?

Solution Since the dictionary is initialized with only two entries, when the second bit is encountered, 
there is no match in the dictionary. At this point LZW will output 0 (since the first bit is A), 
and AX will be added to the dictionary, where X is the second bit. The four possible input 
sequences are the following, with a stopcode (represented by #) appended to each input:

• A,AA,#. dict 32 4 5  5 AA from the first 2 bits. When the third A is encountered, the sub-
sequence AA is in the dictionary, so nothing is output until the stop code is encountered. 
At this point the subsequence is AA#, which is obviously not in the dictionary, causing 
2 to be output for all but the last symbol. The output is therefore 02.

• A,A,B,#. dict 32 4 5  5 AA from the first 2 bits. When the third bit of B is encountered, the 
subsequence AB is not in the dictionary, so 0 is output. When the stop code is encoun-
tered, B# is not in the dictionary, so 1 is output for B. The output is therefore 001.

• A,B,A,#. dict 32 4 5  5 AB from the first 2 bits. When the third bit of A is encountered, the 
subsequence BA is not in the dictionary, so 1 is output. When the stop code is encoun-
tered, 0 is output for the final A. The output is therefore 010.

• A,B,B,#. dict 32 4 5  5 AB from the first 2 bits. When the third bit of B is encountered, 
the subsequence BB is not in the dictionary, so 1 is output. When the stop code is 
encountered, 1 is output for the final B. The output is therefore 011.
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To summarize

 AAA )  02

 AAB )  001

 ABA )  010

 ABB )  011

Not that the outputs are unique, even though LZW discarded the appended bit used by 
the more basic Lempel-Ziv algorithm.

LZW decoding, whose pseudocode is given in Algorithm 8.2, works as follows. The 
encoder and decoder must agree on the alphabet size beforehand, and the dictionary is 
initialized for each symbol of the alphabet in the exact same way as the encoder. The input 
stream consists only of dictionary indices, so the decoder must build up the dictionary on 
the fly in the exact same way as was done by the encoder. The first value is guaranteed to 
be a valid index into the dictionary, so the corresponding symbol is immediately output, 
and the decoder begins to build the largest matching subsequence as that symbol. As 
the input is scanned, beginning with the second value, two situations are possible. If the 
index encountered is already in the dictionary, then the subsequence corresponding to 
that entry is output, and an entry is added to the dictionary corresponding to the longest 
matching string so far with the first bit of the subsequence from the dictionary appended. 
On the other hand, if the index is not yet in the dictionary, then an entry is added to the 
dictionary corresponding to the longest matching subsequence so far with the first bit of 
the longest matching subsequence appended; after which this dictionary entry is output. 
The reason behind this decision is that the only situation in which the encoder could 
have output an index not yet in the dictionary is if the current subsequence ends with the 
same symbol with which it begins. The next example will help to illustrate this perhaps 
nonintuitive principle.

ALGORITHM 8.1 Lempel-Ziv-Welch compress / encode

LempelZivWelchEncode 1  f, A 2
Input: 1D array f of symbols from an alphabet A
Output: Bitstream representing the compressed array
 1 for i d 0 to 0A 0 2 1 do ➤ Initialize dictionary to contain all symbols.
 2   dict 3i 4 d ai  ➤ ai is i 

th symbol of A.
 3 next-index d 0A 0
 4 match d 0  ➤ Initialize longest matching string.
 5 repeat
 6   a d read next value from input array
 7   match r d  Concatenate(match, a)
 8   if dict 3i 4 5  5 match r for some i then  ➤ match r is in dictionary,
 9     match d match r  so continue to build longest matching string.
10   else ➤ Longest matching string has been found,
11     output i for which dict 3i 4 5  5 match  so output index of match, and
12     dict 3next-index 4 d match r  add match r to dictionary.
13     next-index d 1 1  ➤ Increment next-index, and
14     match d a  reset longest matching string.
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To summarize

 02 )  AAA

 001 )  AAB

 010 )  ABA

 011 )  ABB

To better understand the mechanics of the LZW algorithm, let us consider a more 
thorough example.

EXAMPLE 8.10 Decode the streams from the previous example.

Solution The dictionary is initialized as before with two entries. The first index encountered is 0, so A 
is output, and A also becomes the longest matching substring. The four streams are as follows:
• 02. When 2 is encountered, it is noticed that dict[2] does not exist, so we cannot look 

in the dictionary to find the corresponding subsequence. However, we know that the 
encoder added an entry dict 32 4 5  5 AX, where X is unknown, and we know that if the 
second symbol had been a B, then the third symbol would have caused a subsequence 
like BX, which would definitely not be in the dictionary, and therefore 1 would have 
been output as the second index. Therefore, the second symbol must have been an A, 
and therefore dict 32 4 5  5 AA.

• 001. All of these indices are in the initial directory, so the original sequence is trivially 
recovered by looking in the dictionary to find AAB.

• 010. Similarly, the original sequence is easily found from the dictionary as ABA.
• 011. Similarly, the original sequence is easily found from the dictionary as ABB.

ALGORITHM 8.2 Lempel-Ziv-Welch decompress / decode

LempelZivWelchDecode 1  f r, A 2
Input: Compressed bitstream f r containing the indices of dictionary entries
Output: Original uncompressed 1D array of symbols

 1 for i d 0 to 0A 0 2 1 do ➤ Initialize dictionary to contain all symbols.
 2   dict 3i 4 d ai  ➤  ai is i 

th symbol of A.
 3 next-index d 0A 0
 4 k d read next value from bitstream
 5 output dict [k]
 6 match d val d dict 3k 4
 7 repeat
 8   k d read next value from bitstream
 9   if k , next-index then ➤ dict[k] exists, so
10     val d dict 3k 4  get val from dictionary, and
11     dict [next-index] d  Concatenate(match, val[0]) add new match to dictionary.
12   else ➤ dict[k] does not yet exist, so
13     dict [next-index] d  Concatenate(match, match[0]) add new match to dictionary, and
14     val d dict 3k 4  get val; note k 5  5 next-index.
15   next-index d 1 1 ➤ Increment next-index.
16   output val
17   match d val
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match a match r in dictionary? dictionary output comment

dict 30 4 d A
dict 31 4 d B initialization

0
A

A
A

A
AA

Yes
No dict [2] d  AA 0 dict [0] 5  5 A

A
AA

A
B

AA
AAB

Yes
No dict [3] d  AAB 2 dict [2] 5  5 AA

B A BA No dict [4] d  BA 1 dict [1] 5  5 B

A
AA

AAB

A
B
A

AA
AAB

AABA

Yes
Yes
No dict [5] d  AABA 3 dict [3] 5  5 AAB

A
AA

AAB
AABA

A
B
A
B

AA
AAB

AABA
AABAB

Yes
Yes
Yes
No
No dict [6] d  AABAB 5 dict [5] 5  5 AABA

B
BA

A
B

BA
BAB

Yes
No dict [7] d  BAB 4 dict [4] 5  5 BA

B
BA

BAB

A
B
#

BA
BAB
BAB#

Yes
Yes
No 7 dict [7] 5  5 BAB

In other words, the output of LZW compression is 0213547, which encodes the input in 
the following way:

0()*
A

2()*
AA

1()*
B

3()*
AAB

5()*
AABA

4()*
BA

7()*
BAB

EXAMPLE 8.11 Encode the following 4 3 4 image using Lempel-Ziv-Welch. For simplicity, assume only 1 
bit per pixel, so ngray 5 2, and use a 3-bit dictionary.D0 0 0 1

0 0 1 0
0 1 0 1
0 1 0 1

T
Solution As before, to avoid confusing the pixel values with the dictionary indices, let us assign 

A ; 0 and B ; 1, so that the image in row-major order is given by AAABAABAABABABAB. 
Initially, the dictionary is as follows:

dict 30 4 5 A dict 31 4 5 B dict 32 4 5 ? dict 33 4 5 ? dict 34 4 5 ? dict 35 4 5 ? dict 36 4 5 ? dict 37 4 5 ?

Processing the data sequentially yields the following:
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In Example 8.11 the 16-bit input has been transformed to a 21-bit output, since there are 
7 indices and 3 bits per index. Again, it is difficult to devise a simple example that showcases 
LZW’s ability to actually compress data. Nevertheless, as was mentioned in the discussion 
above regarding Lempel-Ziv, LZW does achieve asymptotically optimal compression as the 
length of the input tends toward infinity, and for typically sized inputs LZW is quite com-
petitive with other algorithms. Although not discussed here, an important way to reduce the 
wasted bits in the compressed sequence is to progressively increase the number of bits for 
transmitting each index as the number of indices grows. That is, at first only 1 bit is output 
for the index, then once the dictionary entry dict[2] is added, 2 bits are output for all indices, 
since 2 bits are required to represent the number 2 in binary, and so on.

EXAMPLE 8.12 Use Lempel-Ziv-Welch to decode the bitstream 0213547 of the previous example.

Solution We assume that the encoder and decoder have agreed beforehand that there is 1 bit per 
symbol and 3 bits per dictionary entry.
The dictionary is initialized in the same manner. Processing the data sequentially leads to 
the following:

match k
dict[k] 
exists? val dictionary output comment

dict 30 4 d A initialization

dict 31 4 d B

0 Yes A A dict [0] 5  5 A

A 2 No AA dict [2] d  AA AA

AA 1 Yes B dict [3] d  AAB B dict [1] 5  5 B

B 3 Yes AAB dict [4] d  BA AAB dict [3] 5  5 AAB

AAB 5 No AABA dict [5] d  AABA AABA

AABA 4 Yes BA dict [6] d  AABAB BA dict [4] 5  5 BA

BA 7 No BAB dict [7] d  BAB BAB
 

Since we have allowed only 8 dictionary entries, the simplest approach would be to use 
3 bits per index, leading to the following bitstream:

000()*
A

010()*
AA

001()*
B

011()*
AAB

101()*
AABA

100()*
BA

111()*
BAB

which requires 21 bits. Since the uncompressed image required only 16 bits, this is hardly 
a savings. With a longer input, however, the dictionary eventually adapts to the structure 
of the input, and LZW can be shown to asymptotically approach the entropy of the input.
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Another important issue required in an actual implementation regards what to do when 
the dictionary is full. One approach is to flush the dictionary when that occurs and begin 
building it again. Another approach is to replace the entries that are used least, in order to 
allow the dictionary to adapt to the input over time. In fact, an adaptive approach is useful 
for all of the compression algorithms that we have studied thus far, because image statistics 
can vary significantly for different parts of an image.

8.2.4 Arithmetic Coding
Another compression technique is known as arithmetic coding. Instead of attempting to 
code the individual symbols of the input, arithmetic coding encodes the entire sequence 
at once by transforming it into a single real number between 0 and 1. The encoder com-
putes the probability mass function of the input symbols, which it then converts into a 
cumulative mass function by successively adding the values. Since the cumulative mass 
function is a monotonic function that begins at 0 and ends at 1, it can be used to divide 
the interval between 0 and 1 into subintervals corresponding to the symbols. The encoder 
reads the first symbol and determines to which subinterval it corresponds. It then divides 
this subinterval in the same manner as it divided the original interval, and the process is 
repeated with the next symbol of the sequence. By continuing to subdivide the interval 
in this manner, eventually the encoder reaches a subinterval associated with the entire 
sequence. It then proceeds to represent this real number as a binary number with enough 
digits to guarantee that it can be uniquely decoded. This binary number is then the code 
for the sequence. Although it may not be obvious at first glance, arithmetic coding can 
be seen as a generalization of Huffman coding that is better able to handle probabilities 
that deviate significantly from powers of 2, because it takes the entire sequence into 
account during coding. In fact, Hufmman and arithmetic coding correspond closely 
to one another when the probabilities in the probability mass function are a power of 
2 (e.g., 1

2 or 1
4). Nevertheless, arithmetic coding is not as widely used as the other meth-

ods, despite being included in the obscure parts of the specifications of several image 
file formats.

8.2.5 Run-Length Encoding
One of the simplest and oldest lossless compression algorithms is run-length encoding 
(RLE). The idea is to encode n consecutive identical symbols x as the pair (n,x). An image is 
then encoded as a sequence of these length-value pairs. Run-length encoding does not per-
form well on photographs, where adjacent pixels are almost never exactly equal, but it can 
be used quite effectively on line drawings or graphic images which contain large sections of 
identically colored pixels. RLE is also applied to JPEG coefficients after first transforming 
and quantizing image blocks, as we shall see later in the chapter.

Run-length encoding is particularly effective on binary (black-and-white) images, and 
is therefore used in the CCITT compression standard for fax machines. With only two pos-
sible colors per pixel, there is a high probability that neighboring pixels will be identical. 
Moreover, with only two possible values, it is sufficient to store only the length, rather than 
the length and the value. As long as there is an agreed-upon convention about which value 
occurs first, all the other values can be determined by assuming that they alternate between 
adjacent runs (otherwise they would have been combined into a single run). One convention 
is to specify the first value of each row, which allows rows to begin with different values 
(a form of adaptation mentioned earlier). Another convention is to assume that every row 
begins with a certain color (white, for example) and then to allow the length of the first run 
of the row to be zero.
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It is common practice to achieve even greater compression by applying a variable-length 
coding scheme like Huffman coding to the results of run-length encoding.

8.2.6 Predictive Coding
Another simple but effective method of compression is predictive coding, in which both 
the encoder and decoder utilize an identical filter to predict the next value based on previ-
ous values. If the filter accurately models the imaging process, then the prediction error 
(i.e., the difference between the predicted and actual values) will be small. Predictive coding 
is typically used as a prefilter to produce differences that are then encoded using an entropy-
based scheme such as Huffman coding. This differencing process reduces the statistical 
dependencies between adjacent pixels and typically results in a signal with lower entropy 
than the original values.

If fi is the ith actual value of a 1D input signal (e.g., an image scanline), and f̂ i is the 
ith predicted value, then the simplest approach is to predict the value of the pixel to be the 
same as that of the previous pixel:

 f̂i 5 fi21 (8.23)

so that the prediction error is the difference between adjacent pixel values:

 Pi ; fi 2 f̂i 5 fi 2 fi21 (8.24)

We call this the copycat predictor, and its prediction error is identical to the result of 
convolving the image with the kernel 31 21 4. It is an amazing fact of nature that essen-
tially any photograph of any scene will yield a copycat prediction error whose histogram 
is shaped like the one in Figure 8.5. Mathematically, this function can be modeled as a 
Laplace distribution, also known as the double exponential distribution, given by

 c 1 x 2 5
1

x"2
  e2

0  x 0  "2
s  (8.25)

Compared with the rounded shape of the Gaussian distribution, the Laplace distribution has 
high kurtosis, meaning that the distribution is sharply peaked, with small tails and rapid 
drop-off away from the mean. As a result, the standard deviation and entropy of the copycat 
prediction error will be significantly smaller than those of the original signal. Even a highly 
textured scene will result in some reduction, but with less textured scenes one can expect 
more dramatic reduction, oftentimes on the order of 2:1.

EXAMPLE 8.13 Compute the run-length encoding of the following row of bits from a binary image:

000001111100000001111111000000110000000111111111

Solution The row consists of 5 0s, followed by 5 1s, followed by 7 0s, followed by 7 1s, and so forth. 
The resulting RLE is therefore the following sequence of length-value pairs:1 5, 0 2 , 1 5, 1 2 , 1 7, 0 2 , 1 7, 1 2 , 1 6, 0 2 , 1 2, 1 2 , 1 7, 0 2 , 1 9, 1 2
Adopting the convention that the row begins with the value 1, this leads to the following 
sequence of lengths:

0, 5, 5, 7, 7, 6, 2, 6, 9

If we assume that we need 4 bits per length, then the original sequence of 48 bits has been 
compressed to just 36 bits.
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In 2D, the prediction of a pixel is usually based not only on previous pixels on the 
same row but also on pixels of previous rows. Let , ; I 1 x 2 1, y 2 , u ; I 1 x, y 2 1 2, and 
d ; I 1 x 2 1, y 2 1 2  be the pixel values left, up, and diagonally left-and-up, respectively, 
from the pixel p ; I 1 x, y 2  to be predicted. As the image is scanned left-to-right and top-
to-bottom, all three of these neighboring pixels will have been encountered prior to the 
pixel p. A particularly useful predictor, called the planar predictor, is given by treating 
the ,, u, and d values as “heights” of the pixels, and fitting a plane through the three 3D 
points 1 x 2 1, y, , 2 , 1 x, y 2 1, u 2 , and 1 x 2 1, y 2 1, d 2 , leading to p̂ 5 , 1 u 2 d, or

  Î planar 1 x, y 2 ; I 1 x 2 1, y 2 1 I 1 x, y 2 1 2 2 I 1 x 2 1, y 2 1 2('')''*
       

('')''*
      

('')''*
      

(''')'''*
p̂      ,        u         d

 (8.26)

To see this result, note that the 3D point halfway between the first two points is 1 x 2 1
2, y 2 1

2, 
1
2 1 , 1 u 2 2 , so that p̂ 5 d 1 2 1 1

2 1 , 1 u 2 2 d 2 5 , 1 u 2 d. Alterna-
tively, note that the horizontal gradient is u 2 d and the vertical gradient is , 2 d, so that 
the planar predictor yields the value that assumes that the gradient is the same for both 
columns and rows: , 1 1 u 2 d 2 5 u 1 1 , 2 d 2 . Either way, the prediction error for the 
planar predictor is

Figure 8.5 Due to the orderly nature of the world, neighboring pixels in photographs are highly correlated. On the left is an image and 
its graylevel histogram. On the right are the differences computed by convolving the image with a 31 2 1 4  kernel and its histogram. The 
latter histogram, which follows the shape of the Laplace distribution, has a much smaller standard deviation and entropy.

Histogram
s 5 60.4, H (X) 5 7.8

Histogram
s = 19.4, H (X) = 6.2
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EXAMPLE 8.14 Consider an 8-bit grayscale image with a row consisting of a 1D ramp of graylevel values 
from the minimum to maximum gray levels:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, c, 255

Compute the entropy of this row of the original image, as well as the entropy of the result 
of the simple predictive filter described in Equation (8.23).

Solution With an alphabet of 256 symbols and a flat probability mass function (since each value 
appears exactly once), the entropy is maximal at 8 bits per pixel. The simple predictive filter 
transforms the image into the sequence of prediction errors:

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, c, 1

which has an entropy of 0 bits per pixel. Obviously this is an extreme example, and there 
will be some overhead associated with transmitting the first value of the row. Nevertheless, 
it illustrates the power of using a predictive filter in reducing entropy.

Jes
sic

a B
irc

hfi
eld
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P 1 x, y 2 ;
 

I 1 x, y 2(')'*
p

2
 

Î planar 1 x, y 2('')''*
p̂

5 p 2 , 2 u 1 d 5 1 p 2 , 2 2 1 u 2 d 2  (8.27)

which is the difference between the prediction errors for copycat predictors for the two 
adjacent rows (or columns).

A popular variation of the planar predictor is the Paeth predictor, which outputs the 
value of the pixel (among the three neighbors) that is closest to the planar prediction. That 
is, if we let p̂ be the output of planar prediction, then

 ÎPaeth 1 x, y 2 ; c, if 0 p̂ 2 , 0 # 0 p̂ 2 u 0  and 0 p̂ 2 , 0 # 0 p̂ 2 d 0
u if 0 p̂ 2 u 0 # 0 p̂ 2 d 0
d otherwise

 (8.28)

where the order here matters, so that ties are broken in the same way by the encoder and 
decoder, with , preferred first, then u, and finally d. The Paeth predictor can be thought of 
as a combination of the copycat and planar predictors, because its output is always the value 
of one of the neighbors (like copycat), but the choice of neighbor is determined by fitting a 
plane (like planar). The rationale behind the Paeth predictor is that, in some cases at least, 
it requires a smaller vocabulary than the planar predictor, thus leading to less entropy. For 
example, with an 8-bit-per-pixel image the output of the Paeth predictor will always be a 
number between 0 and 255, whereas the planar predictor can produce any value between 
2255 and 510 (note: 0 1 0 2 255 5 2255 and 255 1 255 2 0 5 510), which is nearly 
three times as many possible outputs. On the other hand, the planar predictor should typi-
cally produce errors that are closer to zero, so whether the planar or Paeth predictor is better 
overall depends upon the input.

Another variation is the LOCO-I (Low complexity lossless compression for images) 
algorithm, defined as follows:

 ÎLoco 1 x,y 2 ; c   

min 1 ,, u 2 if d $ max 1 ,, u 2
max 1 ,, u 2 if d # min 1 ,, u 2
p̂ otherwise

 (8.29)

LOCO-I can be thought of as a primitive edge detector that tends to select u if there is a verti-
cal intensity edge to the left of the pixel or , if there is a horizontal intensity edge above the 
pixel. If there is no such edge, then it selects the value from the planar predictor. The LOCO-I 
predictor requires only simple operations, making it fast to execute; it has been shown to 
exhibit good compression performance despite the crude nature of the edge detection.

It should be mentioned that predictive coding can also be used for lossy compression. 
That is, if the difference between the predicted and actual values is too small to be dis-
tinguished by the human visual system, then we can take advantage of the psychovisual 
redundancy by quantizing the difference. One such technique is known as differential 
pulse-code modulation (DPCM), which has two flavors: one type of DPCM computes the 
difference between adjacent quantized samples, while the other type of DPCM computes 
the quantized difference with respect to the output of a local model of the decoder.

8.2.7 Example: PNG Compression
Let us now consider how these principles are put to work in an actual lossless compression 
scheme, namely the one behind the popular PNG image file format. This discussion focuses 
primarily upon the compression implementation, with only brief mention of the specifics 
of the file format itself. A PNG file contains a PNG signature followed by series of chunks. 
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Each chunk contains either image data or metainformation about the image such as the bit 
depth, the type of image (grayscale, truecolor RGB, or indexed-color), the image dimen-
sions, whether an alpha channel is present, or whether the rows are interlaced. Conceptually, 
the compressed data stream is the concatenation of all the image data chunks into a single 
byte stream, without regard to the chunk boundaries.

The encoder applies two operations to the image pixel data as the image is scanned 
left-to-right, top-to-bottom. First, the raw pixel values are filtered by transmitting the dif-
ference between the raw pixel value and one of five possible prediction filters: 1) the pixel 
value to the left, ,; 2) the pixel value above, u; 3) the average of these two, rounded down, : 1 , 1 u 2 /2;; 4) the Paeth predictor; or 5) the value 0, meaning that no prediction occurs, 
and the raw pixel value is transmitted unchanged. These filters are applied not to pixels 
themselves but rather to bytes, so that different color channels (as well as the alpha chan-
nel) are processed separately, and both bytes in a 16-bit-per-pixel grayscale image are also 
processed separately. If an image has fewer than 8 bits per pixel, then the filtering step 
operates on multiple pixels, which of course reduces its effectiveness. Bytes to the left of 
the first pixel for any given row, or bytes above the first row, are treated as if they were zero.

The filtering is applied adaptively. That is, although all the pixels in a row of the image 
use the same filter, each row is allowed to use a different filter, independent of the other 
rows; a byte indicating the filter type is prepended to each row. The encoder is free to select 
the filters in any way it chooses, but typically some sort of search is performed to identify 
the best filter for each row.

In the second operation, the filtered pixel values are compressed by the Deflate algo-
rithm, which treats the data as a 1D stream of bytes. Deflate breaks the stream into a series 
of blocks, where each block contains either uncompressed data (i.e., filtered pixel values) 
or compressed data. Uncompressed blocks are limited to a maximum size of 65,535 bytes, 
but compressed blocks have no limit in size. Compression involves a combination of the 
Lempel-Ziv algorithm and Huffman coding. Lempel-Ziv is used to scan the bytestream 
looking for duplicated byte sequences within a certain number of the most recent previ-
ously encountered bytes; the maximum length of a duplicated sequence is 258 bytes, and 
the maximum distance between the duplicated sequences is 32,768 bytes. (Duplications 
are allowed to span block boundaries, which, by the way, have no relationship to chunk 
boundaries.) These (length, distance) pairs, along with the “literal” values of the undupli-
cated sequences, are stored in two Huffman trees, one that holds the codes for both literals 
and lengths, and another that holds the codes for distances. Although it is possible to use 
fixed Huffman codes, most blocks use dynamic Huffman coding, in which the Huffman 
trees are determined for each block and sent along with the block. The result of the Deflate 
algorithm is called a “zlib datastream.”

Thus we see that a popular image compression scheme, namely, PNG, combines aspects 
of several algorithms that we have discussed, including filtering, the Paeth predictor, Huff-
man coding, and Lempel-Ziv. By taking advantage of the strengths of these techniques, 
higher compression ratios can be obtained than would be possible when using any single 
technique alone.

8.3 Lossy Compression
We now turn our attention to lossy compression techniques. Lossy compression takes 
advantage of psychovisual redundancy in the image data to reduce the amount of infor-
mation in the image beyond what is possible with lossless compression alone. As men-
tioned earlier, however, one should keep in mind that lossy compression is best suited for 
photographs of natural scenes containing smooth variations of color. For line drawings 
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or graphic images with sharp boundaries between regions, lossy compression produces 
noticeable artifacts while actually achieving worse (smaller) compression ratios than loss-
less compression.

8.3.1 Measuring the Quality of Lossy Compression
With lossy compression, an image I (x,y) is transformed into a smaller number of bits that, 
when decompressed, yields not the original image but an approximation Î 1 x, y 2  to the 
original image. Perhaps the simplest way of measuring the error in the approximation is 
given by the mean squared error (MSE):

 mean squared error 5
1

width #height
 a
width21

x50

 a
height21

y50

 AI 1 x, y 2 2 Î 1 x, y 2 B2 (8.30)

known as the distortion function (or distortion measure). Obviously the mean squared 
error does not accurately measure distortion as perceived by the human visual system, since 
it does not take perception into account.

The branch of information theory dealing with the quality of lossy compression is known 
as rate distortion theory. Rate distortion theory answers two questions: 1) For a given 
compression ratio, what is the best approximation that can be achieved, and conversely, 
2) For a given approximation, what is the best compression ratio that can be achieved? We 
will not cover rate distortion theory in any detail, but as a general rule, the greater the com-
pression, the worse the approximation. A typical lossy compression algorithm can achieve 
compression ratios on the order of 10 to 1 for a still image, or 100 to 1 for a video, without 
any noticeable loss in quality. That is, in such cases the original image and the approxima-
tion look identical to a human observer. Nevertheless, artifacts do exist, and these artifacts 
are visible when zooming in on the image. When the image is repeatedly compressed and 
decompressed (possibly with some editing in between), these artifacts lead to what is known 
as generation loss, which is why lossy compression should not be used for images or 
videos that will be edited.

8.3.2 Transform Coding
The human visual system is more sensitive to small variations in intensity over large areas 
than to large variations over small areas (e.g., at an intensity edge). In other words, distor-
tion caused by reducing accuracy in the high-frequency components of an image is much 
less noticeable to a human observer than distortion caused by reducing accuracy in the low-
frequency components. This observation motivates transform coding, in which the image 
is transformed to a different domain that better captures the information of the signal as it 
will be perceived. For this reason transform coding is also known as perceptual coding. 
Typically the other domain is some version of the frequency domain, so that more bits can 
be devoted to low-frequency components, while fewer bits are devoted to high-frequency 
components.

Transform coding can be applied to the entire image at once, but usually the image is 
first divided into non-overlapping blocks, and transform coding is applied to each block 
separately. This approach is sometimes known as block transform coding, and it is by far 
the most common way to perform lossy image compression. For computational reasons the 
blocks are usually all the same size, and their dimensions are powers of 2, with the most 
common sizes being 8 3 8 and 16 3 16. Larger block sizes provide more opportunities for 
compression but require more computation and allow for less adaptation.

As illustrated in Figure 8.6, transform coding of a block involves three steps. First, an 
orthogonal transform is applied to the image to transform the original pixel values into 
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coefficients in a different domain (e.g., the frequency domain). After transforming each 
block to the new domain, many of the coefficients will be small and hence can be quantized 
or set to zero without much loss in perceptual quality of the image when transformed back 
into the original domain. Therefore the second step, known as bit allocation, applies scalar 
quantization to these coefficients to reduce the number of bits needed to represent the signal. 
(This is the step in which information is actually lost.) Finally, the quantized coefficients are 
compressed even further using a lossless entropy coding scheme such as Huffman coding. 
We will focus primarily upon the orthogonal transform itself, since the second step is fairly 
straightforward, and entropy coding was discussed in detail earlier.

Suppose we have a 1D array g(x) of n values, and let F be an n 3 n matrix with ortho-
normal columns that transforms these values into a frequency-like domain, so that g r 5 Fg 
is the orthogonal linear transform of g according to F, where g contains the values of g 
stacked into a vector. We can recover the original signal exactly by applying the inverse 
procedure: g 5 F21g r, where, since F is unitary,† the inverse is just the transpose of its 
complex conjugate: F21 5 1F
 2T. It is easy to see that g is just a linear combination of the 
basis functions given by the columns of F21:

 g 5 F21 g r 5 3b0
c bn21 4 C g0r

(
gn21r

S 5 a
n21

i50

girbi (8.31)

where bi is the i 
th column of F21, and gir is the i 

th element of g r. In other words, the values 
gir can be interpreted as coefficients which, when multiplied by the basis vectors 
bi, i 5 0, c, n 2 1, allow us to reconstruct the original signal, as we saw earlier.‡ Since 
F is unitary, each basis vector has unit norm: 0 0  bi 

0 0 5 1, so that the amount of energy con-
tributed to the reconstruction by each coefficient is given by that coefficient. As a result, 
small changes to the coefficients result in small changes to the reconstruction. Therefore, 
the original signal can be approximated by setting the small coefficients to zero while trun-
cating the remaining coefficients to a limited number of digits:

 g < a
n21

i50

wt 1 gir 2bi (8.32)

† Recall from Section 6.2.8 (p. 288) that a matrix with orthonormal columns is called unitary if its elements are 
complex, or (as a special case) orthogonal if all its elements are real. The transform, on the other hand, is called 
orthogonal whether or not its values are complex.
‡ Section 6.2.7 (p. 287).

Figure 8.6 Transform coding typically involves three steps to compress an image: an orthogonal transform, bit allocation, and 
entropy coding. To decompress the image the steps are reversed, but since information is lost during bit allocation, the result is an 
approximation of the original image.
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where wt is a function that sets all values below a threshold t to zero, while truncating the 
representation of the remaining values:

 wt 1 v 2 5 bTRUNCATE 1 v 2
0

 (8.33)

As we saw earlier,† this approach extends naturally to 2D. Suppose we have an n 3 n 
image block G(x,y) of values, and let F be the same unitary n 3 n matrix seen above. Then 
G r 5 FGFT is the orthogonal linear transform, where G is the n 3 n matrix form of G, 
and G r is an n 3 n array of (possibly complex) coefficients. The approximate reconstruction 
is given by

 G < a
n21

x50

 a
n21

y50

wt 1Gx,yr 2Bx,y (8.34)

where Gx,yr  is the 1 x, y 2 th element of G r, and the basis functions Bx,y 5 bx by
T are given by 

the outer products of the basis functions of F.
The procedure is best illustrated by an example.

if 0v 0 $ t

otherwise

† Section 6.3.1 (p. 289).

EXAMPLE 8.15 Perform the first two steps of transform coding on the following 1D array of pixel values 
g 5 394 95 96 97 4T using the following simple orthogonal transform:

F 5 D1 0 0 0
0 1 0 0
0 0 1!2

1!2

0 0 2 1!2   
1!2

T
Solution It is easy to verify that F is orthogonal, that is, when multiplied by its transpose it yields the 

4 3 4 identity matrix. To transform the values to the new domain, simply multiply F by g:

g r 5 Fg 5 D1 0 0 0
0 1 0 0
0 0    0.7071 0.7071
0 0 20.7071 0.7071

T D94
95
96
97

T 5 D 94.0    
95.0    

136.4716
    0.7071

T
Perfect reconstruction is obtained by applying the inverse transform:

 g 5 F21 g r 5 D1 0 0 0
0 1 0 0
0 0 0.7071 20.7071
0 0 0.7071    0.7071

T  D 94.0    
95.0    

136.4716
    0.7071

T
 5 94.0 D1

0
0
0

T 1 95.0 D0
1
0
0

T 1 136.4716 D 0
0

0.7071
0.7071

T 1 0.7071 D 0
0

20.7071
   0.7071

T 5 D94.0
95.0
96.0
97.0

T
Of the four coefficients, 94.0, 95.0, 136.4716, and 0.7071, the last one is much smaller 
than the others, so it does not contribute much to the reconstruction. Similarly, by a 
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This example has illustrated how a 1D image with 4 pixel values can be represented in a 
different domain with only 3 values (the truncated coefficients), yielding a reconstruction with 
a small mean squared error. To simplify the math, we used a simple matrix F, but in the real 
world one of the most important decisions in designing a transform coding system is which 
orthogonal transform to use; various alternatives are presented in the next several sections.

8.3.3 Discrete Fourier Transform (DFT)
Perhaps the most familiar orthogonal transform is the discrete Fourier transform (DFT), 
which we studied extensively in Chapter 6. For an n 3 n image block, recall the forward 
and inverse DFTs are given by

  GFr 1 kx, k y 2 5
1
n

 a
n21

x50

 a
n21

y50

 G 1 x, y 2 e2j 2 p xT f  (8.35)

  G 1 x, y 2 5
1
n

 a
n21

kx50

 a
n21

ky50

 GFr 1 kx, ky 2 e j 2 p xT f (8.36)

where x 5 3x y 4T and f 5 1
n 3kx ky 4T, so that xTf 5 1

n 1 kx  
x 1 ky 

y 2 , and we have chosen 
here to distribute the normalization equally between the forward and inverse transforms. In 
matrix notation, from Equation (6.92) we have

 GFr 5 Fn GFn (8.37)

where Fn is the normalized n 3 n 1D DFT matrix, and the basis functions are the 2D 
complex exponentials given by the outer products of the columns of Fn.

straightforward argument regarding significant digits, the trailing digits of the third coef-
ficient are of decreasing importance. As a result, we can set the fourth coefficient to zero 
entirely, and we can truncate the third coefficient to the approximate value of 136, both 
without significantly affecting the reconstruction. With these changes, the approximate 
reconstruction is given by

g < F21wt 1 g r 2  5  94.0 D1
0
0
0

T 1 95.0 D0
1
0
0

T 1 136.0 D 0
0

0.7071
0.7071

T 5 D94.0      
95.0      
96.1665
96.1665

T
which when rounded to the nearest integer yields the approximate signal 394 95 96 96 4T.
The reconstruction has a mean squared error of only 14 1 1 2 2 5 0.25.

 What are the basis functions for the DFT of a 2 3 2 image block?

Solution From Equation (6.87), it is easy to see that the 1D DFT matrix for a signal with 2 elements 
is given by

 F2 5
1"2

 B1    1
1 21

R  (8.38)

EXAMPLE 8.16
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The DFT has the nice property that it actually captures discrete frequencies. However, the 
DFT is wasteful because every real value in the input signal is transformed into a complex value 
in the output. As we shall see below, the DCT overcomes this inherent drawback of the DFT.

8.3.4 Walsh-Hadamard Transform (WHT)
An alternative to the DFT is the Walsh-Hadamard transform (WHT), whose forward and 
inverse transforms of an n 3 n image block are given by

  GHr 1 kx, k y 2 5
1
n

 a
n21

x50

 a
n21

y50

 G 1 x, y 2 121 2 f
 
1x,f2  (8.39)

  G 1 x, y 2 5
1
n

 a
n21

u50

 a
n21

v50

 GHr 1 k x, k y 2 121 2 f
 
1x,f2 (8.40)

where x and f are defined as before, and

 f 1 x, f 2 ; a
m21

i50

bi 1 x 2 bi 1 kx 2 1 bi 1 y 2 bi 1 ky 2  (8.41)

where n 5 2m, and bi 1 z 2 [ 50, 16 is the i 
th bit in the binary representation of z for any 

integer z:

 z 5 a
m21

i50

2ibi 1 z 2 5 2m21bm21 1 z 2 1 c1 2b1 1 z 2 1 b0 1 z 2  (8.42)

In matrix form, the Walsh-Hadamard transform is represented as

 GHr 5 HmGHm (8.43)

where Hm is the n 3 n Hadamard matrix used in the 1D transform, defined recursively 
as follows:

 Hm ;
1"2

 BHm21 Hm21

Hm21 2Hm21
R  (8.44)

with H0 ; 1. Note that the Hadamard matrix has a particular simple form, being composed 
(apart from the scaling factor) of elements which are either 11 or 21. Moreover, the matrix 
is symmetric and is its own inverse, that is, Hm 5 Hm

T and HmHm 5 In, where I 5n3n6 is the 
n 3 n identity matrix, so that the forward and inverse transforms are identical. The Walsh-
Hadamard transform can be thought of as a simpler version of the Fourier transform since 
it involves (apart from the scaling factor) only sums and differences.

Since this matrix is its own inverse, that is, F2
21 5 F2, the 2D basis functions are given by 

the outer products of the columns of the matrix:

 B0,0 5 b0b0
T 5

1
2

 c1
1
d  31 1 4 5

1
2

 c1 1
1 1

d   B0,1 5 b0b1
T 5

1
2

 c1
1
d  31 21 4 5

1
2

 c1 21
1 21

d
 B1,0 5 b1b0

T 5
1
2

 c    1
21

d  31 1 4 5
1
2

 c    1    1
21 21

d   B1,1 5 b1b1
T 5

1
2

 c    1
21

d  31 21 4 5
1
2

 c    1 21
21    1

d
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Examining the matrices above, it is easy to verify that an alternate definition for the 
Hadamard matrix assigns the 1 x, y 2 th element (with zero-based indexing starting at the 
top-left element) as follows:

 Hm 1 x, y 2 5
1

2 
1

 
m/22  121 2 bx

T
  by (8.45)

where the exponent is the inner product of the binary representations of x and y:

 bz ; 3bm21 1 z 2 c b2 1 z 2 b1 1 z 2 b0 1 z 2 4T (8.46)

where z [ 5x, y6.
The basis functions for the 1D Walsh-Hadamard transform are the rows (or equivalently 

the columns, since the matrix is symmetric) of the Hadamard matrix. These basis func-
tions, known as the Walsh functions, have a peculiar property. Examining the matrices in 
Example 8.17, notice that for each row the number of sign transitions, that is, the transi-
tions from 1 to 2 or from 2 to 1, is unique to that row. In other words, the number of 
transitions in all rows comprise the set 50, 1, c, n 2 16. For example, the first row of H1 
has 0 transitions, while the second row has 1 transition; together these are the numbers in 50, 16. Similarly, for H2 the transitions are (from top to bottom) 0, 3, 1, and 2; these are the 
numbers in 50, 1, 2, 36. For H3 they are (from top to bottom) 0, 7, 3, 4, 1, 6, 2, 5; these are 
the numbers in the set 50, c, 76; and so forth.

EXAMPLE 8.17 Compute the 1D Hadamard matrices for m 5 0, 1, 2, and 3.

Solution For brevity let us represent the elements of the Hadamard matrix by the symbols 1 or 2 to 
indicate 11 or 21, respectively. The 1 3 1 matrix is then given by H0 5 1. Applying the 
recursive definition yields the 2 3 2 matrix as

H1 5
1"2

 B1 1

1 2
R

which is exactly the same as the normalized DFT matrix. The 4 3 4 matrix is

H2 5
1
2

 D1 1 1 1

1 2 1 2

1 1 2 2

1 2 2 1

T
while the 8 3 8 matrix is

H3 5
1

2!2
 H1 1 1 1 1 1 1 1

1 2 1 2 1 2 1 2

1 1 2 2 1 1 2 2

1 2 2 1 1 2 2 1

1 1 1 1 2 2 2 2

1 2 1 2 2 1 2 1

1 1 2 2 2 2 1 1

1 2 2 1 2 1 1 2

X
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The 2D basis functions are given by the outer products of the Walsh functions. As with 
the Fourier transform, for an n 3 n image block there are n 1D basis functions, and there-
fore n2 2D basis functions. For example, with a 4 3 4 image block the 1D transform matrix 
is of size 4 3 4, so that there are 4 1D basis functions and 16 2D basis functions.

The number of transitions is known as sequency. If the rows are reordered so that 
the number of sign changes increases with the row, then we have what is known as a 
sequency-ordered Hadamard matrix, as opposed to the recursively defined matrix of the 
previous example, which is known as the naturally ordered Hadamard matrix. Sequency-
ordering is sometimes known as Walsh ordering, and the sequency-ordered Hadamard 
matrix is sometimes known as the Walsh matrix. Notice that the sequency-ordered matrix 
is also symmetric.

EXAMPLE 8.18 Compute the sequency-ordered 1D Hadamard matrices for m 5 3.

Solution Rearranging the rows of H3 from the previous example yields:

1Sequency ordered 2  H3 5
1

2"2
 H1 1 1 1 1 1 1 1

1 1 1 1 2 2 2 2

1 1 2 2 2 2 1 1

1 1 2 2 1 1 2 2

1 2 2 1 1 2 2 1

1 2 2 1 2 1 1 2

1 2 1 2 2 1 2 1

1 2 1 2 1 2 1 2

X

EXAMPLE 8.19 Compute the 16 2D Walsh-Hadamard basis functions for a 4 3 4 image. Ignore the scaling 
factor for simplicity.

Solution The basis functions are given by the outer products of the columns of H2 and illustrated in 
Figure 8.7:

 B0,0 5 D1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

T  B0,1 5 D1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

T  B0,2 5 D1 1 2 2

1 1 2 2

1 1 2 2

1 1 2 2

T  B0,3 5 D1 2 2 1

1 2 2 1

1 2 2 1

1 2 2 1

T
 B1,0 5 D1 1 1 1

2 2 2 2

1 1 1 1

2 2 2 2

T  B1,1 5 D1 2 1 2

2 1 2 1

1 2 1 2

2 1 2 1

T  B1,2 5 D1 1 2 2

2 2 1 1

1 1 2 2

2 2 1 1

T  B1,3 5 D1 2 2 1

2 1 1 2

1 2 2 1

2 1 1 2

T
 B2,0 5 D1 1 1 1

1 1 1 1

2 2 2 2

2 2 2 2

T  B2,1 5 D1 2 1 2

1 2 1 2

2 1 2 1

2 1 2 1

T  B2,2 5 D1 1 2 2

1 1 2 2

2 2 1 1

2 2 1 1

T  B2,3 5 D1 2 2 1

1 2 2 1

2 1 1 2

2 1 1 2

T
 B3,0 5 D1 1 1 1

2 2 2 2

2 2 2 2

1 1 1 1

T  B3,1 5 D1 2 1 2

2 1 2 1

2 1 2 1

1 2 1 2

T  B3,2 5 D1 1 2 2

2 2 1 1

2 2 1 1

1 1 2 2

T  B3,3 5 D1 2 2 1

2 1 1 2

2 1 1 2

1 2 2 1

T
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Although the WHT typically achieves better compression than the DFT (at least for 
block sizes less than about 32 3 32), it is not nearly as effective as the DCT, which is 
described next. Moreover, it does not compute coefficients that correspond to actual discrete 
frequencies.

8.3.5 Discrete Cosine Transform (DCT)
By far the most popular orthogonal transform is the discrete cosine transform (DCT), 
whose forward and inverse transforms of an n 3 n image block are given by

 GD Cr 1 kx, k y 2 5 a
n21

x50

 a
n21

y50

 h 1 kx 2h 1 k y 2G 1 x, y 2  cos ¢ 1 2 x 1 1 2pkx

2 n
≤  cos ¢ 1 2y 1 1 2pk y

2 n
≤  (8.47)

 G 1 x, y 2 5 a
n21

kx 50

 a
n21

ky 50

 h 1 kx 2h 1 k y 2GDCr 1 kx, k y 2  cos ¢ 1 2 x 1 1 2pkx

2 n
≤  cos ¢ 1 2y 1 1 2pk y

2 n
≤  (8.48)

where

 h 1 k 2 ; c 1"n
if k 5 0"2

n otherwise
 (8.49)

In matrix form, the 2D DFT of an n 3 n image block G is given by GDCr 5 CnGCn
T, where 

Cn is the n 3 n 1D normalized DCT matrix. Notice that this is the first transform we have 
considered that is not necessarily symmetric (Cn 2 Cn

T for n . 2), so that the transpose is 
important. The fact that the forward and inverse transforms have identical form, as can be 
seen by examining Equations (8.47)–(8.48), means that the inverse of the matrix is equal 
to its transpose: Cn

21 5 Cn
T.

The popularity of the DCT lies in its ability to overcome the fundamental limitation of 
the DF T, namely that the DF T requires twice as much data to be stored because it converts 
real values into complex values. There are two ways to look at this limitation, either of which 
explains why the DCT is able to store the same information with fewer coefficients. First, recall 

Figure 8.7 The 16 2D Wash-Hadamard 
basis functions for a 4 3 4 image.
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that a signal with n real elements in the spatial domain yields a DFT with n complex elements 
in the frequency domain. That is, the DFT transforms n scalars into 2n scalars, thus doubling 
the amount of representation needed. Obviously the 2n scalars contain the same information 
as the original n scalars, so there is tremendous redundancy in the representation. The reason 
for this inefficiency is that the DFT is designed to handle complex signals in the spatial domain 
as well, so that it does not take advantage of the special case when the signal is real.

Another way to view the limitation is to notice the boundary effects of the DFT due to its 
inherent periodicity. Recall that the DFT treats the incoming signal as if it were periodic, in 

EXAMPLE 8.20 Compute the 1D normalized DCT matrix for n 5 2 and n 5 4.

Solution The 1D forward DCT is given by

 gDCr 1 k 2 5 h 1 k 2  an21

x50

 g 1 x 2  cos a 1 2x 1 1 2pk
2n

b  (8.50)

or in matrix form, gDCr 5 Cn 
g. Note that the columns of Cn are multiplied by the elements 

of the spatial-domain signal g to produce the rows of the frequency-domain signal gDCr , 
as in Equation (6.87). Therefore, for n 5 2 we substitute x 5 0, 1 along the columns and 
k 5 0, 1 along the rows into Equation (8.50) to yield the unnormalized 1D DCT matrix:B 1 1

cos p4 cos 3p
4
R < B 1 1

0.7071 20.7071
R

Note that the Euclidean norm of the first row 31 1 4 is "2 5 "n, and the norm of 
the second row 30.7071 20.7071 4  is 1 5 "n/2, which is what we expect since 
h 1 0 2 5 1/"n and h 1 1 2 5 "2/n. With the proper normalization, then, we have

C2 5
1"2

 B1    1
1 21

R
which is identical to the 2 3 2 normalized DFT and Hadamard matrices.
For n 5 4 we substitute x 5 0, 1, 2, 3 along the columns and k 5 0, 1, 2, 3 along the rows 
to yield the unnormalized 1D DCT matrix:D 1 1 1 1

cos 
p
8 cos 

3p
8 cos 

5p
8 cos 

7p
8

cos 
p
4 cos 

3p
4 cos 

5p
4 cos 

7p
4

cos 
3p
8 cos 

9p
8 cos 

15p
8 cos 

21p
8

T < D 1 1 1 1
0.9239    0.3827 20.3827 20.9239
0.7071 20.7071 20.7071    0.7071
0.3827 20.9239    0.9239 20.3827

T
Multiplying the first row by h 1 0 2 5 1/"n 5 1/2 and the other rows by h 1 k 2 5"2/n 5 1/"2, k 2 0 yields

C4 <
1
2

 D 1 1 1 1
1.3066    0.5412 20.5412 21.3066

1 21 21 1
0.5412 21.3066    1.3066 20.5412

T
which is a matrix whose rows are orthonormal. It is easy to verify that C2C2

T 5 I 52326 and 
C4C4

T 5 I 54346 as mentioned above, where I 5n3n6 is the n 3 n identity matrix.
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effect gluing the beginning of the signal to the end, and vice versa, forever. But the beginning 
of a signal is not typically related to its end, since they are spatially separated by such a wide 
amount. Therefore a discontinuity is usually formed when the signal is glued in this way, 
and such a discontinuity leads to the Gibbs phenomenon discussed earlier,† which causes the 
DFT to devote unusually large coefficients to the high frequencies necessary to precisely 
preserve this shape, even though the shape is unimportant because it arises simply as an 
artifact of our having fed the raw signal blindly to the DFT. Thus the discontinuity leads to 
great inefficiency in the DFT coefficients’ ability to capture the original signal.

Since the DFT of a real, even-symmetric signal is real and even-symmetric, if we could 
somehow transform the signal, which is already real, into an even-symmetric signal, then 
there would be no discontinuity, and we could discard the imaginary components altogether. 
But how can we make a signal even-symmetric? Suppose for example that we have a sig-
nal with four values, g 1 0 2 5 a, g 1 1 2 5 b, g 1 2 2 5 c, and g 1 3 2 5 d, that is, the signal is 3a b c d 4, where the underline indicates the origin at x 5 0. Two approaches come 
to mind:

1. The first choice is to replicate all but the first and last values by reflecting about the 
last value. In this example, this approach leads to the 6 values 3a b c d c b 4, 
where for clarity we have colored the new values red. To see the symmetry, it may be 
helpful to explicitly replicate the symmetric signal:

c a b c d c b a b c d c b c
c c c c

 where the arrows indicate the values about which the signal is even-symmetric. Starting 
at any arrow, you will encounter the same values whether you travel left or right.

2. The second choice is to replicate all the values by reflecting about the last value. Con-
tinuing our example, this approach leads to 8 values: 3a b c d d c b a 4, 
and the replicated signal is

c a b c d d c b a a b c d d c b a c

 Notice here that the symmetry is about the point halfway between two values.

The first choice, known as the first version of the discrete cosine transform, or DCT-I, has 
two drawbacks. First, it does not treat all the values equally, because some values appear 
twice in the replicated signal, while others appear only once. Secondly, the length of the 
symmetric signal is no longer a power of 2, even if the original signal has a length that is 
a power of 2. All modern algorithms for efficiently computing transforms, such as the fast 
Fourier transform (FFT), fast Walsh-Hadamard transform, and fast cosine transform (FCT), 
rely on the signal having a length that is a power of 2, so breaking that constraint causes 
significant difficulty in efficient implementation.

Even worse is the second choice, which will not work at all because the location of the sym-
metry is wrong. That is, for the DFT to yield a real-valued frequency-domain representation, 
the symmetry must be about the origin, in order to allow g(1) to be paired with g 1 n 2 1 2 , g 1 2 2  
to be paired with g 1 n 2 2 2 , and so forth, so that the complex exponentials can be paired to 
form cosines according to Euler’s formula. Although the symmetric signal above is of no 
use, with a slight modification it yields the second version of the discrete cosine transform, 
known as DCT-II, which is what is represented in Equation (8.50) as well as in Equation 

† Section 6.4.1 (p. 296).

c       c       c        c       c
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(8.47) . The modification is to insert 0s in between each value, which for the example above 
leads to 16 values: 30 a 0 b 0 c 0 d 0 d 0 c 0 b 0 a 4. We 
refer to this process as zero-zipping. For clarity the replicated zero-zipped symmetric 
signal is

c 0 b 0 a 0 a 0 b 0 c 0 d 0 d 0 c 0 b 0 a 0 a 0 b c
c c c

from which it is apparent that the symmetry is about the origin and the zero-zipped 
symmetric signal is four times as long as the original. The DFT of this zero-zipped sym-
metric signal yields the same result as the DCT given in Equation (8.50) up to a scale factor, 
along with some redundant values that we are free to discard. To see this, let us define 
en 1 z 2 ; e2j 2 p z /n for brevity, and note that en 1 n 2 z 2 5 en 12z 2. The original signal is 
of length n 5 4, while the replicated signal is of length n̆ 5 4n 5 16. If we let ğ be the 
replicated signal, then applying the DFT leads to

 gFr 1 k 2 5 a
n̆21

x50

ğ 1 x 2 en̆ 1 kx 2
 5 ğ 1 1 2 en̆ 1 k 2 1 ğ 1 3 2 en̆ 1 3k 2 1 ğ 1 5 2 en̆ 1 5k 2 1 c1 ğ 1 15 2 en̆ 1 15k 2
 5 aen̆ 1 k 2 1 ben̆ 1 3k 2 1 cen̆ 1 5k 2 1 den̆ 1 7k 2 1 den̆ 1 9k 2 1 cen̆ 1 11k 2 1 ben̆ 1 13k 2 1 aen̆ 1 15k 2
 5 2 a cos 2p

k
4 n

1 2 b cos 2p
3k
4 n

1 2 c cos 2p
5k
4 n

1 2 d cos 2p
7k
4 n

 5 2a
n21

x50

g 1 x 2  cos 
1 2x 1 1 2pk

2n

where we have used Euler’s formula to simplify en̆ 1 z 2 1 en̆ 1 n̆ 2 z 2 5 2 cos 2pz
n̆ 5 2 cos pz

2n. 
Except for the normalization factor, this last equation is identical to the DCT formula in 
Equation (8.50). Note that since the replicated signal has 16 values, its DFT also has 
16 values. However, it is easy to show that only the first 4 values need to be stored, since 
the remaining values can be derived from them.† To summarize, what we have shown is that 
computing the DCT-II of a signal of length n is equivalent to computing the DFT of the 
zero-zipped symmetric signal, then retaining only the first n values.

8.3.6 Karhunen-Loève Transform (KLT)
All of the previous transforms are image-independent, so no matter what image is being 
compressed, the basis functions are the same. Not surprisingly, even better results can be 
achieved if the basis functions are selected in a way that is dependent upon the image. The 
most straightforward way to do this is to use the Karhunen-Loève transform (KLT),‡ 
which requires that we have a statistical model of the image, namely, the mean value of each 
pixel and a covariance matrix capturing the linear relationships between the pixels. This 
mean image and covariance matrix are usually computed from an ensemble of images taken 
of either the same scene or of similar scenes, and the eigenvectors of the covariance matrix 
yield the basis functions.

† Problem 8.22.
‡ Also known as the Hotelling transform or principal components analysis (PCA), this technique has a variety 
of uses outside image compression. We will explore PCA in more detail in Section 12.3.5 (p. 589).
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Mathematically, for a 1D signal g of length n, the transform is defined as g r ; PT 1 g 2 m 2 , 
where m is the mean vector and P is an n 3 n orthogonal matrix whose columns are the 
eigenvectors of the covariance matrix C. Since this is an orthogonal transform, it is invert-
ible, so that the original vector g can be recovered from the transformed vector g r by 
g 5 Pg r 1 m. In other words, just as we saw with previous transforms, g r can be thought 
of as the coefficients that are multiplied by the basis vectors, where the basis vectors are the 
columns of P, that is, the eigenvectors of C.

Unlike other transforms, KLT comes with a principled way to truncate the coefficients. 
Since the eigenvalues capture the variance in the decorrelated data, the most important eigen-
vectors are the ones associated with the largest eigenvalues. Therefore, if we assume that the 
columns of P are sorted in decreasing order according to their associated eigenvalue, lossy com-
pression can be achieved by discarding all but the first k columns of P, resulting in an n 3 k 
matrix Pk, where k , n. Then the original point g can be approximated by a k-dimensional 
vector agr ; Pk

T 1 g 2 m 2  using the formula g < Pk 
agr 1 m. It can be shown that this approach 

yields the optimal transform, in the sense that it is the linear transform that achieves the lowest 
mean squared error for a given number of coefficients, or equivalently minimizes the number 
of coefficients for a certain desired mean squared error. Keep in mind, though, that KLT is 
not necessarily optimal with respect to any single image but rather the optimality is achieved 
on average when the images are drawn according to the distribution defined by m and C. 
Unfortunately, in practice, there are few situations where such a statistical model is known.

Nevertheless, there is an unexpected connection between KLT and DCT which helps 
to justify the widespread adoption of the latter. Suppose we have a 1D image whose 
pixel values are drawn from a zero-mean, unit-variance distribution, so that m 5 0 and 
E 3g 1 x 2 g 1 x 2 4 5 s2 5 1 for each pixel, where E 3 # 4 is the expected value. If we assume that 
the image was generated according to a first-order Markov process with constant correlation 
coefficient r, where 0 # r , 1, then E 3g 1 x 2 g 1 x 1 1 2 4 5 r, E 3g 1 x 2 g 1 x 1 2 2 4 5 r2, and 
so forth. In that case, the covariance matrix is the following Toeplitz matrix:

 CMarkov 5 E  

1 r r2 c rn21

r 1 r c rn22

r2 r 1 c rn23

( f (
rn21 rn22 rn23 c 1

U (8.51)

For a wide range of values for r, it can be shown that the eigenvectors of this matrix look 
very similar to the basis functions of the DCT. Since the KLT is the optimal linear transform, 
the DCT also performs (according to the assumptions presented here) in a near-optimal 
manner as well.

8.3.7 Example: JPEG Compression
By far the most widely used lossy image compression format is JPEG (named for the Joint 
Photographic Experts Group), which is based on entropy encoding of quantized DCT coef-
ficients. JPEG operates on a single image with 1 to 4 components. A grayscale image 
contains 1 component, whereas an RGB image contains 3 components. Although the stan-
dard itself says nothing about color spaces, typically an RGB image is first transformed to 
a different color space that separates the luminance from chrominance information, yielding 
one luminance component and two chrominance components.† The components in a JPEG 

† Technically, these are the nonlinear quantities luma and chroma, as we shall see in the next chapter; however, in 
this section we retain the terms used in the official JPEG standard.
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image are either all the same size, or they are subsampled by integer amounts. For example, 
it is common for the chrominance components to be downsampled by a factor of 2 both 
horizontally and vertically, since the human eye is less sensitive to spatial variations in 
chrominance than in luminance.

In this section we focus our attention primarily upon the baseline process, which is the 
most popular variation of the JPEG specification, illustrated in Figure 8.8. In the baseline 
process the image is non-overlapping 8 3 8 blocks of samples are processed independently. 
(A sample is a pixel value per component, and if the dimensions of any component are not 
divisible by 8, then the last row and/or column of samples is replicated as necessary.) The 
DCT is computed of each 8 3 8 block (also called a data unit), thus transforming the origi-
nal data into 64 frequency domain coefficients. But to reduce the dynamic range of the DCT 
computation, the samples are first level shifted to a signed representation by subtracting 
the value 

ngray
2  from each sample, where ngray is the number of possible values for each 

sample. For the baseline process, the value of a sample is limited to 8 bits per component, 
so ngray 5 256, and therefore 128 is subtracted from each sample to yield a level-shifted 
value in the range from 2128 to 1127 before the DCT computation. Substituting n 5 8 into 
Equation (8.47) and letting u and v be the frequency indices yields the following equation 
for the forward level-shifted DCT:

G rDC 1 u, v 2  5  
1
4

 h r 1 u, v 2 a7

x50
a

7

y50

1G 1 x, y 2 2 128 2  cos a 1 2 x 1 1 2pu
16

b  cos a 1 2 y 1 1 2pv

16
b  (8.52)

where

 h r 1 u, v 2 ; c1
2 if u 5 0 and v 5 0
1 otherwise

 (8.53)

Lossy compression is achieved by dividing the 64 DCT coefficients by the corresponding 
values in a quantization table, then rounding to the nearest integer:

 Gquantizedr 1 u, v 2 5 ROUND¢GDCr 1 u, v 2
Q 1 u, v 2 ≤  (8.54)

where Q(u,v) is the entry in the quantization table. (In the baseline process the quantized 
values are stored with 11 bits of precision.) The encoder is free to use any quantization table, 
but the reference quantization tables for luminance and chrominance shown in Figure 8.9 
are widely used. Typically the quality of the compressed image is controlled by a quality 
factor q, where 1 # q # 100, in which case

 Q 1 u, v 2 5 CLAMP 1 s 1 q 2  #  Qref 
1 u, v 2 , 1, 255 2  (8.55)

Figure 8.8 JPEG 
compression overview.

Quantizer

Table
specifications

Table
specifications

DCT-based encoder8 3 8 blocks

Entropy
encoder

Forward
DCT

Source
image data

Compressed
image data
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where Clamp 1 z, a, b 2 ; min 1max 1 z, a 2 , b 2 , Qref  is either the luminance Qref
,  or chromi-

nance Qref
c  as appropriate, and the most widely used scaling definition is given by

 s 1 q 2 ; b50/q if q # 50
2 2 q/50 if q  . 50

 (8.56)

Note that smaller values in the quantization table cause more information to be retained, 
while larger values cause more information to be lost. For example, if the DCT coefficient 
is 128, then a quantization divisor of 5 yields Round 1 128/5 2 5 26, while a divisor of 200 
yields Round 1 128/200 2 5 0. It is easy to see that q 5 50 uses the reference quantization 
table, q 5 100 effectively sets the quantization table to all 1s, and q 5 1 leads to very large 
values in the quantization table. The reference quantization tables are designed such that if 
their values are divided by two, that is, if s 5 1

2, then the compression incurs essentially no 
perceptual loss, that is, the compressed image and the original image look identical. This 
occurs when q 5 75, and there is rarely any legitimate reason to increase q beyond this 
value. If the implementation uses integer-only arithmetic operations, then the equations for 
s(q) are multiplied by 100, that is, s 1 q 2 5 5000/q and s 1 q 2 5 200 2 2q, then s 1 q 2 #Qref  
is divided by 1000 and rounded before clamping.

Each block is then scanned in a zigzag fashion, as shown in Figure 8.10, to order the 
64 quantized DCT coefficients approximately from the lowest frequency to the highest 
frequency. As we saw in the previous chapter, the top-left value, Gquantizedr 1 0,0 2 , is the DC 
(“direct current”) coefficient and captures the absolute lowest frequency. Since this low-
est of all frequency components changes slowly throughout an image, there is high spatial 
correlation between the DC components of neighboring blocks, so to reduce the amount of 
data further a DPCM predictive coding procedure is applied to subtract the DC coefficient of 
the previous block from that of the current block. The remaining 63 coefficients, which are 
sometimes known as AC (“alternating current”), contain many zeros, so they are run-length 
encoded (RLE) to yield (skip,value) pairs, where skip is the number of zeros, and value is 
the next non-zero value, with (0,0) indicating the end-of-block (EOB).

For entropy coding, the blocks are grouped into minimum coded units (MCUs). For 
a grayscale image, there is just a single scan through the image, so each block is an MCU. 
For a color image, however, there is a choice. If the encoder scans the image three times, 
once for each component, then each block is an MCU ( just as in grayscale), and we say that 
the resulting compressed data are noninterleaved. On the other hand, if the encoder scans 
the image just once, then an MCU is composed of the smallest number of blocks in all the 
components that go together, and we say that the resulting compressed data is interleaved. 
For example, if the chrominance components are downsampled by 2 in each direction, 
then 4 luminance blocks correspond to the same pixels as 1 block from each of the two 

Figure 8.9 Reference 
JPEG quantization tables 
for luminance and 
chrominance.

16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99

17 18 24 47 99 99 99 99
18 21 26 66 99 99 99 99
24 26 56 99 99 99 99 99
47 66 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99

Luminance table, Qref (u, v)ℓ Chrominance table, Qref (u, v)c
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chrominance components, so that each MCU contains information from a 16 3 16 array in 
the original image. These three possibilities are illustrated as follows:

Y00()*
MCU1

 
Y01()*

MCU2

 
Y02()*

MCU3

 
Y03()*

MCU4

 
Y04()*

MCU5

 
Y05()*

MCU6

 
c

('''''''')''''''''*
scan

  (grayscale)

Y00()*
MCU1

 
Y01()*

MCU2

 
Y02()*

MCU3

 
c

 

 
C 00 

112
()*
MCU1

 
C 01

112
()*
MCU2

 
C 02

112
()*
MCU3

 
c

 

 
C 00

122
()*
MCU1

 
C 01

122
()*
MCU2

 
C 02

122
()*
MCU3

 c
('''')''''*

 scan1

('''')''''*
 scan2

('''')''''*
scan3

  (color noninterleaved)

Y00Y01Y10Y11C 00
112C 00

122
('''')''''*

MCU1

Y02Y03Y12Y13C 01
112C 01

122
('''')''''*

MCU2

Y04Y05Y14Y15C 02
112C 02

122
('''')''''*

MCU3

c,   1 color interleaved 2
('''''''''''''''')'''''''''''''''*

scan

where Yij contains the DPCM value and RLE pairs for the ij 
th luminance block, and similarly 

C 
112 and C 

122 capture the DPCM value and RLE pairs for the chrominance blocks. The 
MCUs are entropy coded using Huffman encoding.

The JPEG bitstream is organized according to the interchange format, which contains 
marker segments and entropy-coded data segments separated by markers, which are two-
byte codes where the first byte is FF and the second byte is nonzero. These markers identify 
the structural parts of the bitstream and make it possible to discover information without 
having to decode the entire image. The frame begins with up to 4 quantization tables, fol-
lowed by the frame header and the scans. The frame header specifies the dimensions of 
the image, the subsampling factors of the scans, and which quantization table is used by 
each scan, among other information. Each scan begins with one or more Huffman tables, 
followed by the scan header and the entropy-coded data segment(s) for that scan. The scan 
header specifies the components contained in the scan, the Huffman table(s) used by the dif-
ferent components in the scan, and other information. Typically each scan uses two Huffman 
tables per component, that is, a DC Huffman table for the DPCM values and an AC Huff-
man table for the RLE pairs. Each entropy-coded data segment contains the Huffman-coded 
MCUs, with any byte FF immediately followed by 00 (a process known as byte stuffing) 
to avoid ambiguity with the markers.

Figure 8.10 Zigzag scanning of JPEG 
components proceeds from low- to 
high-frequency components.

DC
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Surprisingly, the JPEG interchange format, which specifies the format of the compressed 
bitstream, does not specify the file format itself. The most common file formats are JFIF 
(JPEG File Interchange Format) and the more recent Exif (Exchangeable image file format). 
Although technically speaking these are two separate formats, in practice most digital cam-
eras output a JFIF file with Exif metadata appended, so that a user typically need not dis-
tinguish between the two. The metadata contains additional information about the conditions 
in which the picture was taken, such as the camera manufacturer and model; the aperture, 
focal length, and exposure time of the camera; and the time and GPS (global positioning 
system) coordinates of the camera when the picture was taken. A JFIF/Exif file begins with 
a “start of image” (SOI) marker (bytes FFD8), followed by an application-specific APP0 
marker (bytes FFE0) to indicate the JFIF information, later followed by the APP1 marker 
(bytes FFE1) to indicate the Exif metadata. Note that although JPEG itself does not specify 
the color space, JFIF/Exif files typically store the ICC color profile of the original RGB 
color space, which is converted to YCbCr using CCIR Rec. 601 to separate the luminance 
from chrominance components.† Results of applying JPEG compression to an image, with 
various levels of quality, are shown in Figure 8.11.

In addition to the baseline process described in this section, the JPEG standard contains 
a number of extensions and variations, such as 12 bits per pixel per component, arithmetic 
instead of Huffman coding, progressive instead of sequential scanning, and even a loss-
less mode (which was for the most part replaced by JPEG-LS which is based on LOCO-I 
predictive coding). These extensions and variations, however, are not as commonly used as 
the baseline process.

8.3.8 Wavelet-Based Compression
Eight years after the JPEG compression format was finalized, the same committee proposed 
a replacement called JPEG 2000. Instead of using the DCT, JPEG 2000 is based upon the 
discrete wavelet transform (DWT).‡ The main advantage of JPEG 2000 over JPEG is that the 
DWT naturally provides a multiresolution representation of the image, which is much more 

† See Chapter 9 for more details regarding color.
‡ Section 6.6 (p. 309). Like the original JPEG format, JPEG 2000 also contains a lossless variation, but it is almost 
never used.

Original image

24 bpp

1:1

q 5 75

1.1 bpp

21:1

q 5 40

0.6 bpp

39:1

q 5 10

0.2 bpp

104:1

q 5 5

0.1 bpp

177:1

Figure 8.11 An image,§ along with the results of JPEG compression with different levels of quality. Underneath each 
image is shown the average number of bits per pixel, and the compression ratio. With q 5 75 there is no visible difference 
between the compressed image and the original; with q 5 40 only minor changes to background pixels can be noticed; 
with q 5 10 and q 5 5 compression artifacts are apparent.

§ This is the well-known but somewhat controversial Lena (pronounced "LENN-eh") image.  It is included here 
for its historical importance in being the standard image used to evaluate image compression algorithms for nearly 
half a century.
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flexible than the DCT. In particular, JPEG 2000 supports progressive decoding, whereby 
a decoder produces an approximate image before the entire bitstream has been received, then 
incrementally improves the fidelity of the image as more bits are received—a feature that is 
important in Internet applications. Unfortunately, JPEG 2000 was never widely adopted, 
primarily due to the increased complexity of the encoder/decoder, only modest increases in 
the compression ratio, and the fact that JPEG had already attained wide-spread popularity.

JPEG 2000 uses the CDF 9/7 wavelet,† which has 9 coefficients and 7 vanishing 
moments. Compared with the traditional Daubechies D10 wavelet, which has 10 coefficients 
and 10

2 5 5 vanishing moments, CDF 9/7 achieves more vanishing points with fewer coef-
ficients. The CDF 9/7 analysis lowpass and highpass kernels, respectively, are as follows:

 f < 30.037828 20.023849 20.110624     0.377403 0.852699     0.377403 20.110624 20.023849 0.037828 4
 c < 30                 0.064539 20.040689 20.418092 0.788486 20.418092 20.040689     0.064539 0             4

Not only is the CDF 9/7 wavelet part of the JPEG 2000 specification, it is also widely used 
by the Federal Bureau of Investigation (FBI) for storing fingerprint images.

Note that 0f 02 5 1.0404 in the kernel above, which is not 1. This means that CDF 9/7 is 
not energy-preserving, and hence not orthogonal; instead it is biorthogonal. Compared 
with an orthogonal wavelet, which satisfies Equation (6.158),‡ a biorthogonal wavelet 
satisfies

  a
x

f 1 x 2 2i 2c~ 1 x 2 2 j 2 5 a
x

f~ 1 x 2 2i 2c 1 x 2 2 j 2 5 0  (8.57)

where c~  and f~  are the synthesis lowpass highpass kernels, which in this case are given by 
changing the sign of every other element (and shifting in origin to ensure Equation (8.57) 
is satisfied)

 f ~ < 30             20.064539 20.040689    0.418092 0.788486 0.418092 20.040689 20.064539 0             4
 c~ < 30.037828   0.023849 20.110624 20.377403 0.852699 20.377403 20.110624     0.023849 0.037828 4

A comparison of orthogonality and biorthogonality is shown in Figure 8.12. Note that 
a biorthogonal wavelet approximates an orthogonal wavelet in the autocorrelation of its 
lowpass and highpass kernels, but the analysis and synthesis kernels are different. As a 
result, biorthogonality retains several of the advantages of orthogonality but relaxes the 
energy-preserving property.

Why is biorthogonality so important? Well, from an earlier discussion‡ we know that 
Daubechies D2–20 wavelets are particularly good at compression, because they are designed 
to maximize the number of vanishing moments. However, when a wavelet transform is 
applied to a signal, the number of resulting coefficients is larger than the original signal. 
For example, if a 1D signal of length n is convolved with a wavelet kernel of length w, the 
result is an array of n 1 w 2 1 values, which is larger than the original n. Although this 
drawback can be mitigated by using circular convolution, doing so introduces its own prob-
lem; namely, if the signal is not periodic (which it typically is not), then circular convolution 
causes undesirable artifacts at the border. To fix this problem, we must replicate the signal to 
make it symmetric, as we did with the DCT. Recall, however, that with an n-element input, 
the DCT produces only n unique coefficients, with the remaining 3n coefficients being 
redundant—all because the DCT itself is symmetric. In contrast, the Daubechies D2–20 
wavelets are not symmetric, so there is no redundancy in the output. As a result, the number 

† Also referred to as Daubechies 9/7, a variant of Cohen-Daubechies-Feauveau (CDF) 9/7.
‡ Section 6.6 (p. 309).
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of coefficients is even greater than would be with linear convolution, thus detracting from 
any compression benefits from using the filter in the first place.

To restate the problem, the ideal wavelet function for compression would be orthogonal 
and symmetric. An orthogonal transform preserves energy, while a symmetric filter properly 
handles border effects without introducing unnecessary coefficients (because a symmetric 
filter has linear phase). As it turns out, however, the only compactly supported orthogonal 
linear phase wavelet is the Haar wavelet, which as noted earlier has its own drawbacks due 
to its harsh edges. Therefore, one of these two requirements must be compromised, and 
since symmetry is absolutely essential to achieve compression, the orthogonality property 
must be compromised. Biorthogonality is, in some sense, the best we can do to achieve a 
symmetric filter with approximate energy conservation, while at the same time maintaining 
separation between the axes of the basis functions.

8.4 Compression of Videos
Up to now we have concentrated on the compression of images, for which three types of 
redundancy have been exploited in various ways. For video, a fourth type of redundancy is 
present. Temporal redundancy refers to the high correlation between corresponding pixels 
of adjacent image frames, which enables pixel values in one image to be predicted not only 
from neighboring pixels in the same image frame but also from pixels in nearby frames. 
Below we briefly consider two common approaches to video compression.

8.4.1 M-JPEG Compression
The simplest video compression approach is that of Motion JPEG (M-JPEG), which is 
literally nothing more than JPEG compression (using the exact same approach and format 
just discussed) of each image frame in the video sequence. Because M-JPEG performs 

Figure 8.12 The orthogonality property of Daubechies D4 (top) and the biorthogonality property of CDF 9/7 (bottom) wavelets. With D4, 
the analysis and synthesis filters are the same, whereas with CDF 9/7 they are different. In addition, CDF 9/7 is not energy preserving, as 
shown by the fact that the inner product of the lowpass with itself, and the highpass with itself, is only approximately the Kronecker delta.
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compression only within a frame (intraframe compression), it is not able to achieve 
compression ratios any higher than JPEG itself, typically on the order of 10:1. The main 
advantage of M-JPEG, besides its simplicity, is that it does not suffer from generation loss 
in the temporal dimension. As a result, M-JPEG is the de facto standard for video editing.

8.4.2 MPEG Compression
Another popular video standard is MPEG (named for the Moving Picture Experts Group), 
which not only performs intraframe compression like M-JPEG but also compression 
between frames (interframe compression). As a result, MPEG is able to exploit temporal 
redundancy to achieve compression ratios greater than 100:1. Like JPEG and M-JPEG, 
MPEG divides the image into 8 3 8 blocks and operates on subsampled chrominance 
components, leading to 16 3 16 macroblocks that contain 4 blocks of luminance data and 
2 blocks of subsampled chrominance data. The image frames of the video sequence are 
treated in one of three ways. Some image frames, called I-frames because only intraframe 
compression is applied, are compressed using JPEG. These frames can be decoded indepen-
dently of all other frames and therefore play the role of key frames. Typically I-frames occur 
approximately twice per second. Other frames, called P-frames, are allowed to store the 
difference between themselves and a preceding frame (either an I- or another P-frame), as 
well as intraframe compression. This difference relies on motion estimation, that is, the cal-
culation of motion vectors for each macroblock to determine the correspondence between 
consecutive frames to aid the prediction that exploits temporal redundancy. Since P-frames 
can be decoded based only on previous frames, causal processing of the video sequence 
is sufficient. The third type of frame, known as B-frames because they support backward 
prediction, are allowed to store the difference between themselves and the immediately pre-
ceding or following frame, as well as intraframe compression. Obviously a B-frame cannot 
be decoded until the next anchor frame (either an I- or P-frame) is decoded, thus making 
the decoding process non-causal and complicating the buffering procedure for the decoder.

Several MPEG formats have been developed over the years, each building on the previous 
one. MPEG-1 (also known as Rec. H.261) is typically applied to relatively low-resolution 
video of approximately 320 3 240 images, achieving bit rates less than 2 megabits per 
second. MPEG-2 (Rec. H.262) provides support for interlaced video, thus effectively dou-
bling the image resolution. Most DVD (originally “digital video disc,” now “digital versatile 
disc”) videos are stored in MPEG-2 format. MPEG-4 (Rec. H.264) improves the coding 
efficiency over MPEG-2 but is an evolving, complex standard with a variety of “parts” and 
“levels” with support for advanced concepts such as multiview (e.g., stereo) video. Blu-ray 
discs originally supported only MPEG-2 but now also support some versions of MPEG-4. 
Keep in mind that these standards specify not only the video encoding but also the audio 
encoding, which is beyond our present scope. For example, the widely popular MP3 audio 
format is not MPEG-3 but rather Audio Layer III of either MPEG-1 or MPEG-2.

8.5 Further Reading
The principles of information theory were laid down by 
Shannon in a series of extremely influential papers begin-
ning with his seminal publication, Shannon [1948]. A good 
introduction to the field can be found in any textbook such 
as that by Cover and Thomas [1991]. Huffman coding was 
introduced by Huffman [1952]. The Lempel-Ziv algo-
rithm, also known as L Z77, was introduced by Ziv and 
Lempel [1977]. The same authors extended their work the 

next year in Ziv and Lempel [1978], which describes an 
algorithm sometimes known as L Z78, which was further 
expanded by Welch [1984] to form the Lempel-Ziv-Welch 
(LZW) algorithm. The GIF (graphics interchange format) 
image file format, created in 1987, is based on LZW. The 
PNG (portable network graphics) image file format was 
created in 1996 and is based on L Z77 instead to avoid the 
patent restrictions of GIF, which have since expired.
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The Paeth algorithm is presented by Paeth [1991]. The 
LOCO-I algorithm is due to Weinberger et al. [2000]. 
A good overview of transform coding can be found in 
Goyal [2001]. The DCT was originally described by 
Ahmed et al. [1974], and its history was related years 
later by its lead author, Ahmed [1991]. For recent propos-
als to improve upon MSE for evaluating image quality, 
see the structural similarity (SSIM) index of Wang et al. 
[2004], as well as the work of Sheikh et al. [2005].

The JPEG standard was released as ITU-T Rec. T.81 
in 1992. The lossless JPEG-LS (ITU-T Rec. T.87), based 

on the LOCO-I algorithm, was released in 1998. JPEG 
2000 was published as ISO/IEC 15444 in 2000 (and 
republished as ITU-T Rec. T.800 in 2002). The Cohen-
Daubechies-Feauveau (CDF) wavelets are described in 
Cohen et al. [1992], while the Daubechies 9/7 wavelet 
used in JPEG 2000 is described in Usevitch [2001] and 
Unser and Blu [2003]. MPEG-1 (ITU-T Rec. H.261) 
was released in 1988 and modified in 1993, MPEG-2 
(ITU-T Rec. H.262) was released in 1995 and modified 
as recently as 2013, while MPEG-4 (ITU-T Rec. H.264) 
was released in 2003 and modified as recently as 2014.

PROBLEMS

8.1 Explain the difference between data and information.

8.2 List the three causes of redundancy.

8.3 What are some differences between lossless and lossy compression? On what type of 
image is lossless compression more appropriate? (In fact, lossy compression should never be 
used on this type of image.) On what type of image is lossy compression more appropriate?

8.4 Suppose a 500 3 500 8-bit-per-pixel grayscale image is compressed to 50,000 bits. 
Compute the compression ratio.

8.5 What is the entropy of the random variable associated with rolling an unfair 6-sided die with the 
following distribution: p 1 1 2 5 1

16, p 1 2 2 5 1
8, p 1 3 2 5 3

16, p 1 4 2 5 1
4, p 1 5 2 5 1

16, p 1 6 2 5 5
16?

8.6 Does Shannon’s source coding theorem apply to an i.i.d. sequence of random variables, 
or to a stationary sequence?

8.7 Consider the image below. D5 1 3 2
4 1 3 4
0 3 3 6
7 6 1 7

T
(a) What is the probability mass function, assuming 3 bits per pixel?

(b)  Write the sequence of bits representing the uncompressed image. How many bits are 
needed?

(c) Generate the Huffman codebook.

(d) Apply the Huffman codebook to compress the image.

(e)  Ignoring the size of the codebook itself, what compression ratio is achieved by this 
approach?

8.8 Compute the entropy of the image in the previous problem using block sizes of 1, 2, 3, 
and 4 bits.

8.9 Explain what is meant by a prefix code.
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8.10 Use the Lempel-Ziv algorithm to encode the following data sequence:

ABAABABABBABBABABAABBABBAAABBA

8.11 Encode the following 4 3 4 image using Lempel-Ziv-Welch assuming 1 bit per pixel 
and a 3-bit dictionary, processing the pixels in row-major order. To avoid confusion, use 
A 5 0 and B 5 1. D0 1 0 1

1 0 1 1
0 0 1 1
0 1 0 0

T
8.12 Encode the following sequences using RLE encoding. For each sequence, explain 
whether RLE should be used.

(a) AAAABBBBBBAAACCCCCCCCBBB

(b) ABCBDAABCDADCA

8.13 How does the Laplace distribution differ from the Gaussian distribution?

8.14 Use (a) the planar predictor, (b) the Paeth predictor, (c) the LOCO-I algorithm to 
compute lower-right pixel in the following image.B25 26

32 ?
R

8.15 The LOCO-I predictor is also known as the median edge detector (MED) because it 
computes the median of the three values ,, u, and p̂. Show that this is true.

8.16 Why was the PNG file format invented? Does it perform lossless or lossy compres-
sion? What compression techniques are used in PNG?

8.17 Golomb coding and the related Rice coding are compression methods not mentioned 
in this chapter. Search online to discover when these approaches are appropriate and where 
they are used. Explain your findings.

8.18 Assuming that the second image is an approximation of the first image, compute the 
mean squared error. D0 2 7 3

3 5 4 1
1 8 0 6
9 7 5 3

T    D4 0 5 1
2 8 3 7
8 9 2 6
3 0 8 4

T
8.19 Write the 8 3 8 1D orthogonal linear transform for the following:

(a) Discrete Fourier transform (DFT)

(b) Walsh-Hadamard transform (WHT)

(c) Discrete cosine transform (DCT)
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400 Problems

8.20 Apply each of the transforms from the previous problem to the following grayscale 
image.

H 6 5 9 6 1 0 3 2
2 1 3 5 1 3 7 8
8 1 2 9 5 2 7 5
3 3 3 3 8 8 7 10
5 8 6 8 9 3 5 1
7 3 5 8 1 5 1 4
9 8 4 4 6 2 2 1
10 2 8 6 5 6 9 10

X
8.21 The DCT of 30 8 6 9 1 4 3 8 4 is equivalent to the first 8 values of the 
DFT of what sequence?

8.22 Show that n̆ 2 n of the values in the DF T of the replicated signal in DC T-II can be 
determined from the first n values, where n̆ 5 4n and n is the length of the original signal.

8.23 Compute the eigenvectors of Equation (8.51) for r 5 0, 0.5, and 0.75, and compare 
with the DCT basis functions, using n 5 4. For which value of r are the eigenvectors most 
similar to the basis functions?

8.24 Can the Karhunen-Loève transform (KLT) be used to compress a single image? Why 
or why not?

8.25 How is JPEG compression different from JPEG 2000 compression?

8.26 Apply the reference JPEG quantization table for luminance in Figure 8.9, with a 
quality of q 5 50, to the DCT coefficients computed in Problem 8.20. Show the result in 
zigzag order.

8.27 Explain the difference between I-, P-, and B-frames in MPEG compression.

8.28 How are MPEG and M-JPEG different? List some pros and cons of each.

8.29 What is steganography? (Search online if necessary.) Explain a simple steganographic 
method for images. How feasible do you think it is to develop a method of steganography 
that works even in the case of lossy compression? Explain.

8.30 Implement transform coding for both the DCT and WHT. Then compress a photo-
graph to compare the performance of truncating x% of coefficients, where x is a value you 
select.

8.31 Compress a photograph of your choosing using JPEG for quality values of q 5 5, 
10, 20, 40, 60, 75, and 100. For what values can you not tell any difference between the 
compressed image and the original? Calculate the MSE for each and plot.

8.32 Repeat the previous exercise with a line drawing image. Zoom in on the results to 
examine the degradation in more detail.
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In previous chapters we devoted most of our attention to processing grayscale images, an approach justified by the 
fact that the grayscale (or luminance) portion of an image contains most of the information. In fact, more than 75% 
of a typical video stream is devoted solely to luminance, and we have no difficulty in viewing an old black-and-white 

movie or functioning in a dark environment. Nevertheless, it is plainly evident that color enhances our visual experi-
ence significantly, and it provides crucial information to facilitate tasks that would otherwise be much more difficult. 
Color cameras are now commonplace, typically providing three values per pixel from the sensor itself. Although for 
many applications these different color channels can be processed simply as three separate streams without further 
analysis, other applications require a more thorough understanding of the subject in order to properly utilize these 
values. Therefore, to understand color more deeply, in this chapter we turn to two disparate and sometimes conflicting 
disciplines, namely, color science and video engineering. The subtle interplay between the rigor of the former and 
the practical trade-offs made by the latter sometimes leads to nonobvious implications when they are combined, as 
we shall see.

C H A P T E R 9
Color
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402 Chapter 9 • Color

9.1 Physics and Psychology of Color
We begin our exploration by considering both the physics and psychology of color.

9.1.1 The Rainbow and the Color Wheel
As explained earlier,† the light traveling from the sun or some other light source is an elec-
tromagnetic wave whose oscillations usually contain a mixture of different wavelengths. 
When Isaac Newton published his work on optics at the dawn of the 18th century, he dem-
onstrated to the world for the first time that the light that we usually consider to be white is 
actually composed of a range of different wavelengths corresponding to the colors of the 
rainbow, from red at one end to violet at the other end. This range of colors is referred to as 
the visible spectrum, and the pure colors in the rainbow are therefore known as the 
spectral colors.

Newton was also the first person to arrange the colors into a circle, known as the color 
wheel (or color circle), by wrapping the colors of the rainbow so that red and violet, which 
are the farthest from each other in the rainbow, are adjacent in the color wheel. Here we 
see the difference between color as it exists in the physical world, and color as it exists in 
the psychological world of our mind, as shown in Figure 9.1.‡ Physically, the spectral 
colors are linear in the sense that they lie on a straight line parameterized by wavelength. 
Psychologically, however, the spectral colors are circular, in the sense that they are per-
ceived in ways that are best modeled by connecting the two ends of the spectrum. For 
example, just as green is a mixture of the two adjacent colors blue and yellow 1 j 5 j 1 j 2 , and orange is a mixture of the two adjacent colors red and yellow 1 j 5 j 1 j 2 , so too purple§ is a mixture of the two adjacent colors red and blue 1 j 5 j 1 j 2 , although red and blue should, from a physical point of view, have 
little in common with each other since they are at nearly opposite ends of the spectrum. 
The color wheel is widely used in art to identify complementary colors on opposite sides 

† Section 2.2.1 (p. 33)
‡ Newton is also the reason schoolchildren memorize the colors of the rainbow by the 7-letter acronym ROYGBIV (or 
VIBGYOR, depending on whether the colors are ordered by increasing frequency or increasing wavelength). Newton 
divided the rainbow into 7 colors because he considered 7 to be the perfect number and therefore somewhat arbi-
trarily included the color indigo. Most people would agree, however, that indigo is difficult to discern as a separate 
color, leaving us with the 6 colors shown in the figure; of course, other ways of discretizing the rainbow are possible.
§ Note that while violet is a pure wavelength, purple is a mixture.

Figure 9.1 The spectral colors of the rainbow are modeled physically as a straight line (left), or psychologically as a circle (right).
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9.1 Physics and Psychology of Color 403

of the wheel and so forth; our focus in this chapter, however, will be on the underlying 
science rather than aesthetics, in order to quantitatively understand the relationships 
between various colors.

9.1.2 Spectral Power Distributions (SPDs)
Returning to the physical world, the spectral power distribution (SPD) represents the 
amount of optical power in each wavelength of light, as shown in Figure 9.2. Although the 
SPD is a continuous function, it is generally measured at discrete intervals (using an instru-
ment called a spectroradiometer) to yield a vector of values. The length of this vector is 
determined by both the quantization spacing and the definition of the visible spectrum. For 
our purposes, we will assume that the SPD can be adequately represented by a 35-dimen-
sional vector capturing the values in 10 nm bands from 380 nm to 720 nm, which roughly 
corresponds to the visible spectrum.

SPDs obey the principle of superposition. That is, the SPD that results from shining 
two lights together is equal to the sum of the SPDs of the two individual lights. If we let 
t1 1l 2 , t2 1l 2 , and tcombined 1l 2  be the corresponding elements of the SPD at wavelength l 
for the first, second, and combined lights, respectively, then

 tcombined 1l 2 5 t1 1l 2 1 t2 1l 2  (9.1)

The principle of superposition allows us to predict the SPD that will occur when spectral 
components are mixed together by measuring the power at each wavelength separately for 
each component.

When the light hits an opaque surface, some amount of the light is absorbed by the sur-
face, while the rest is reflected. For example, a red object will tend to reflect longer wave-
lengths, while a blue object will reflect shorter wavelengths. The SPD of the light that is 
reflected from the surface is equal to the incident SPD minus the spectrum that is absorbed, 
or approximately the elementwise multiplication of the SPD of the incident light and the 
surface reflectance spectrum. That is, if we let tincident 1l 2 , treflected 1l 2 , and tabsorbed 1l 2  be 
corresponding elements of the incident, reflected, and absorbed SPD vectors, respectively, 
then

  treflected 1l 2  5  tincident 1l 2 2 tabsorbed 1l 2  (9.2)

  <  tincident 1l 2  
#
 rsurface 1l 2  (9.3)

where rsurface 1l 2 < 1 2 tabsorbed 1l 2 /tincident 1l 2 . The SPD measured by a sensor, then, 
captures the interplay of the SPD of the light source and the reflectance spectrum of the 
surface in the scene.

Figure 9.2 The SPD of a light source (left) interacts with the reflectance of a surface (right) to yield the SPD of the reflected light (not shown).
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404 Chapter 9 • Color

9.1.3 Additive and Subtractive Colors
From Equation (9.1), light sources add light to a scene, so that the more lights that are shone, 
the brighter the scene becomes, and all the colors mixed together yield white. For this reason, 
the color model that explains the color that results from mixing lights is known as the additive 
color model. In contrast, Equation (9.2) says that surfaces subtract light from the scene, so 
that the more ink or paint pigments are mixed on the surface, the darker the scene becomes, 
and all the colors mixed together yield black. A color model that explains the color resulting 
from the mixing of ink or paint is therefore known as a subtractive color model. As shown 
in Figure 9.3, the color wheels for both additive and subtractive color models contain the 
same colors in the same order. For additive colors, the wheel contains the primary colors of 
red 1j 2 , green 1j 2 , and blue 1j 2 , with the mixed colors of yellow, cyan, and magenta in 
between; for subtractive colors, the wheel contains the primary colors of cyan 1j 2 , magenta 1j 2 , and yellow 1j 2 , with the mixed colors of blue, red, and green in between.

An important difference between lights and pigments is that mixing lights is easy to 
model mathematically using the principle of superposition, as in Equation (9.1). That is, 
light in the physical world is linear, not only in the sense that the spectral colors lie on a 
line (as mentioned above) but also in the mathematical sense of a linear system obeying the 
principle of superposition.† Pigments and inks, on the other hand, interact with each other 
in ways that are much more difficult to model mathematically. Subtractive color models, 
therefore, are highly nonlinear, which is why we have used an approximation sign in Equa-
tion (9.3) to deter the thought that simply adding the reflectance of one paint to the reflec-
tance of another paint yields the reflectance of the mixture of the two. In this chapter we 
will focus our attention primarily upon the additive color model of linear light.

9.2 Trichromacy
The human visual system perceives colors in three dimensions, a phenomenon known as 
trichromacy (“three colors”). These dimensions do not refer to the 3D world in which we 
live, but rather to the three axes that are required of any color space modeling human color 
perception. In this section we explore both the physiological point of view, in which tri-
chromacy is due to the human retina containing three types of cone photoreceptors, as well 
as the psychovisual point of view, where trichromacy is discoverable by color matching 
experiments using three independent primary colors.

† Section 5.1.4 (p. 220)

Figure 9.3 In the additive color model (left), mixing all colors yields white, whereas in a subtractive color model (right), mixing all colors 
yields black. Both color models contain the same colors in the same order, although the additive model is linear, while subtractive 
models are highly nonlinear.
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9.2 Trichromacy 405

9.2.1 Spectral Sensitivity Functions (SSFs)
The process of vision begins when light hits photoreceptors in the retina that measure the 
amount of light incident upon their surfaces. Photoreceptors are not equally sensitive to 
all wavelengths but rather are more efficient at measuring some wavelengths of light than 
others. The spectral sensitivity function (SSF), which we shall denote by s 1l 2 , captures 
the relative efficiency of a photoreceptor in detecting light for each visible wavelength l. 
Assuming a linear system, the output of the photoreceptor can be viewed as the integration 
es 1l 2 t 1l 2  dl over all wavelengths of the incident SPD, denoted by t 1l 2 , weighted by the 
SSF, denoted s 1l 2 . Using a discrete approximation, this output becomes an inner product 
between the vector s capturing the SSF of the photoreceptor and the vector t capturing the 
SPD of the incident light: sTt. Assuming that these are represented by 35-dimensional vec-
tors, as mentioned earlier, then s, t [ R35.

Although the human retina contains two types of photoreceptors (rods and cones), color 
vision refers to the sensory experience that occurs at normal light levels (photopic vision),† 
where the response of the cones dominates, and the response of the rods can thus be safely 
ignored. The human retina has three types of cones known appropriately as the S-, M-, and 
L-cones because they respond, respectively, to short-, medium-, and long-wavelength light. 
The SSFs of these three types of cones have been carefully measured by scientists for the 
human retina, resulting in the plots shown in Figure 2.2. These SSFs, which are also known 
as the cone fundamentals, are represented as sS, sM, and sL. From the figure, it is clear 
why it is not entirely appropriate to call these the red-, green-, and blue-cones, since the 
L-cone SSF peak is very close to that of the M-cone and, in fact, is not near red at all.

Stacking these vectors into a matrix ST ; 3sL sM sS 4 so that S is 3 3 35,‡ the phot-
opic imaging process of the human visual system can be represented mathematically as

 v 5 St (9.4)

where sS, sM, sL, t [ R35, t is the SPD incident upon the sensor, and the output v [ R3 
contains a measure of the number of photons sensed by the three cone types. Thus, the color 
imaging process of a single location on the retina can be viewed as the projection from a 
point in an approximately 35-dimensional space to a point in a 3D space. Keep in mind that 
this equation assumes that the human imaging process is linear, which is true only when the 
nonlinearities in the photoreceptors and lenses are taken into account.

9.2.2 Color Matching Functions (CMFs)
While the SSFs of the cones explain the low-level physiological basis for trichromacy, 
additional insight can be gained by conducting psychovisual experiments. In a color 
matching experiment, a person (called the observer) is placed in a dark room facing a 
wall, as shown in Figure 9.4. A test light with an SPD is shone onto one side of the wall, 
while onto the other side of the wall is shone a mixture of several different primary lights. 
The observer views the wall through a small circular hole cut in an opaque barrier, so that the 
hole subtends a small portion (say 2°) of the observer’s field of view; a thin opaque divider 
extends toward the observer from the wall to separate the left and right sides. As a result, 
the observer sees a circle with two halves (one side showing the test light, and the other side 
showing the mixture of primary lights). The observer is asked to control the intensities of 
the primary lights until both sides of the circle appear identical.

† Section 2.1.2 (p. 21)
‡ Alternatively, S (as well as C in the next section) could be defined as 35 3 3 matrices, but the convention used 
here simplifies the notation considerably by reducing the number of transposes required.
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406 Chapter 9 • Color

It turns out that for a normal (non-color-blind) human observer, exactly three primary 
lights (usually red, green, and blue) are needed to match any test light. The intensities of 
the three lights, known as the tristimulus values, control the power emitted by them. (It 
may be helpful to imagine the observer controlling the intensities of the primary lights by 
turning three knobs, and the tristimulus values are the positions of the knobs.) Mathemati-
cally, the relationship is given by

 t > ur 
pr 1 ug 

pg 1 ub 
pb (9.5)

where pi [ R35 is the SPD of the i 
th primary light, i [ 5r, g, b6, ui is the i 

th intensity, and 
the symbol >  means that the two SPDs on either side look identical. In other words, due 
to the loss of dimensionality in the sensation of color, a given triplet of tristimulus values 
could have arisen from an infinite number of possible SPDs; two SPDs t and t r are called 
metamers if they themselves are not identical but nevertheless look identical (i.e., their 
tristimulus values are identical), meaning t 2 t r but t > t r.

Two caveats are necessary for Equation (9.5) to be true. First, the primary lights must be 
independent of each other, meaning that none of the lights can be matched by a mixture of 
the other primary lights. That is,

 pi R a
 
pj 1 b

 
pk (9.6)

for any combination of i,j,k and for all scalars a and b. Secondly, negative weights must be 
allowed, which is achieved in the experiment by moving the corresponding primary light(s) 
to the same side as the test light, for example,

 t 1 ur 
pr > ug 

pg 1 ub 
pb (9.7)

For any physically realizable set of primaries, negative values must be allowed in order to 
match all possible test lights. This is an important fact whose implications will be explored later.

If the color matching experiment is conducted using a series of monochromatic test 
lights, then the color matching functions (CMFs) of a given set of primary lights can be 
measured. A monochromatic light is a light that shines a single wavelength, that is, a pure 
spectral color. The tristimulus values from the series of experiments can be stacked into a 
3 3 35 matrix C, with each column of the matrix holding the tristimulus values for a dif-
ferent wavelength, and with the rows of the matrix containing the CMFs for the primary 
lights. Notice from the CMFs shown in Figure 9.5 using typical red, green, and blue primary 
lights that some values are negative: red is negative from 445 to 525 nm, green is negative 
from 390 to 440 nm, and blue is negative from 530 to 640 nm. Also shown in the figure are 
the cone SSFs after applying a 3 3 3 linear transform, to show the close agreement of the 
two concepts. Such linear transforms will be explored in more detail in the next section.

Figure 9.4 In a color 
matching experiment, a 
person is asked to specify 
the intensities of three 
primary colors such that 
their combination visually 
matches a test light, when 
viewed through a small 
aperture in a dark room. Subject
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9.2 Trichromacy 407

Even though SSFs and CMFs are both represented by 3 3 35 matrices, it is important to 
keep the distinction clearly in mind: an SSF is obtained by physiological measurements of 
the cones (or physical measurements of a camera), while a CMF is obtained by psychovisual 
measurements of a human observer. All the values in an SSF are nonnegative, whereas any 
set of physically realizable CMFs must contain some negative values. Nevertheless, despite 
their distinct origins and properties, SSFs and CMFs serve a similar purpose in that they 
both convert an SPD incident on the sensor to three values that numerically represent the 
color being viewed. The overlay in Figure 9.5 emphasizes this connection.

9.2.3 Grassmann’s Law
Just as physical light obeys the principle of superposition, so do the tristimulus values. More 
specifically, if u 5 3ur ug ub 4T are the weights of the three primaries needed to match 
a test light with SPD t and if the weights u r 5 3urr ugr ubr 4T match another test light t r, 
then the test light at 1 bt r formed by a weighted combination of the two individual test 
lights is matched by the same weighted combination of the tristimulus values: a u 1 b u r, 
where a and b are scalars. This result, known as Grassmann’s Law,† can be restated as

 at 1 bt r >  1aur 1 burr 2pr 1 1aug 1 bugr 2pg 1 1aub 1 bubr 2pb (9.8)

whenever

  t >  ur 
pr 1 ug 

pg 1 ub 
pb (9.9)

  t r >  urr 
pr 1 ugr 

pg 1 ubr 
pb  (9.10)

The implication of Grassmann’s Law is that color matching is linear:

 u 5 Ct (9.11)

where t [ R35 is the SPD of the test light, C is the same 3 3 35 matrix whose rows are the 
CMFs of the three primaries, and u [ R3 are the tristimulus values. This equation is easy 
to see by substituting a monochromatic light so that t contains zeros everywhere except for 
a single element, which causes u to select a column from C; by linearity any test light can 

† Hermann Grassmann (1809–1877) was a German linguist and mathematician.

Figure 9.5 Color matching functions 
(solid lines) using a particular set of 
RGB primaries. The overlaid circles 
are obtained by a linear 3 3 3 
transform from the cone SSFs shown 
in Figure 2.2. The transformed cone 
SSFs closely agree with the CMFs.
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408 Chapter 9 • Color

be written as a linear combination of scaled monochromatic lights. As with the SSFs, keep 
in mind that the linearity of the CMFs assumes that the viewing conditions are carefully 
controlled so that we can safely ignore the overall luminance level, chromatic adaptation, 
viewing angle, or surrounding background. Also note that Grassmann’s Law does not hold 
in very bright or very dim conditions, in which color matching is no longer linear.

For a given set of primaries with CMFs C, along with two test lights t and t r, the tri-
stimulus values of the test lights are given by u 5 Ct and u r 5 Ct r. Further, if t and t r are 
metamers, then their tristimulus values are identical, leading to

 u 5 Ct 5 Ct r 5 u r (9.12)

As we shall see, the linearity of color matching implied by Grassmann’s Law means that two 
SPDs that are metamers for any set of independent primaries are metamers for all sets of 
independent primaries, since any pair of CMFs is related by a 3 3 3 linear transform. That 
is, the concept of metamer transcends the choice of primaries, and if t and t r are metamers 
then Equation (9.12) holds for any set of CMFs C.

We now have the mathematical machinery necessary to compute the 3 3 3 linear approxi-
mation of the CMFs overlaid in Figure 9.5. Combining Equations (9.4) and (9.11) yields an 
expression for the tristimulus values as a linear transformation of the sensor values: u < CS1v, 
where S1 is the Moore-Penrose pseudoinverse† of S. Applying this result to all spectral colors 
then yields C < 1CS1 2S, which reveals the 3 3 3 transformation as CS1. Note that the 
close agreement between the measured CMFs and the estimated CMFs is by no means guar-
anteed but arises only because of the way in which photons absorbed by the cones are trans-
lated into perceptual signals in the brain. In addition, the close agreement is because the SSFs 
shown in Figure 2.2 were carefully constructed to ensure that important details were taken 
into account, such as the spectral absorption of the cornea and the inert pigments in the eye.

9.2.4 Luminous Efficiency Function (LEF)
A variation of the color matching experiment is to ask the observer whether one color is 
brighter or darker than another. Such an experiment is difficult to perform with arbitrary 
colors—imagine trying to determine whether red is darker than blue. Therefore, the experi-
ment is conducted by using a pair of spectral colors with nearby wavelengths and recording 
the relative power of the two lights. By repeating this experiment for the full range of visible 
wavelengths, a luminous efficiency function (LEF) is obtained. The photopic LEF cor-
responds to normal light levels where the cones dominate due to the saturation of the rods, 
whereas the scotopic LEF corresponds to low light levels where the rods dominate due to 
the lack of sensitivity of the cones.

The two functions are plotted in Figure 9.6. Not surprisingly, the scotopic LEF closely 
matches the rod SSF (not shown), and the photopic LEF can be well approximated as a 
weighted combination of the cone SSFs: s < STw, where s [ R35 is the photopic LEF, the 
columns of ST are the cone SSFs, and w [ R3 are three weights determined empirically. 
Also shown in the figure for comparison is the second tristimulus value of the CIE 1931 
XYZ space, which is described in more detail in the next section.

9.2.5 Psychological Primaries
Before continuing further, it might be helpful to first settle a potentially nagging doubt. That 
is, we have seen from the principles of trichromacy that there are three primary colors, but 
what are these colors, and why? In grade school, most of us learn from mixing paints that the 
three (subtractive) primary colors are red 1j 2 , blue 1j 2 , and yellow 1j 2 , and that green 

† The pseudoinverse is covered in Section 11.1.5 (p. 520).
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9.2 Trichromacy 409

is a mixture of blue and yellow 1j 5 j 1 j 2 . Then, as we grow older, we learn that 
the three (additive) primary colors, which are used in cameras, televisions, and computer 
monitors, are actually red 1j 2 , green 1j 2 , and blue 1j 2 , and that yellow is a mixture of 
green and red 1j 5 j 1 j 2 . This seems quite odd indeed, since red and blue show up 
in both cases, but yellow and green are different. Moreover, although green almost looks 
like a combination of blue and yellow, yellow in no way looks like a mixture of green and 
red. Some comfort is supposed to be gained, perhaps, by noticing that the three subtractive 
primary colors used in printer inks are cyan 1j 2 , magenta 1j 2 , and yellow 1j 2 , which 
appear something like our grade-school primaries. But cyan and magenta do not appear to 
be pure colors at all, but rather as diluted versions of the pure colors blue and red.

How do we make sense of these apparent discrepancies? Well, although there is no dis-
puting that the trichromatic theory of color vision (also known as the Young-Helmholtz 
theory†) is enormously powerful—most of the material in this chapter is based on it—
nevertheless, it does not explain all the known phenomena of color vision. For example, 
there are colors that appear to be both red and blue (the purples j ), both red and yellow 
(the oranges j ), both blue and green (the variations of teal j ), or both yellow and green 
(the variations of chartreuse j ). But psychologically it is impossible to perceive a yellow-
ish blue or a bluish yellow ( j j )—such a color inevitably adopts a greenish tint, since 
blue and yellow make green (subtractively). In the same way, we cannot perceive a combi-
nation of red and green ( j j ), which inevitably adopts a yellowish tint, since red and 
green make yellow (additively). In other words, it makes sense to talk about a “reddish blue” 
(purple j ) or a “greenish yellow” (chartreuse j ) or a “reddish yellow” (orange j ) or a 
“greenish blue” (teal j ) but not a “reddish green” nor a “bluish yellow”—the latter are 
known as impossible colors.

To explain these phenomena, a scientist named Hering‡ proposed the opponent process 
theory, which states that the human visual system senses the differences between colors 
along three axes illustrated in Figure 9.7. For more than half a century a heated debate raged 
among the advocates of the trichromatic theory and the proponents of the opponent process 

† Thomas Young (1773–1829) proposed the existence of three types of photoreceptors in 1802, while Hermann 
von Helmholtz (1821–1894) further developed the theory in 1850.
‡ Ewald Hering (1834–1918) proposed the opponent process theory in 1892.

Figure 9.6 Photopic (solid black) and 
scotopic (dashed black) luminous 
efficiency functions (LEFs), from Figure 
2.9. Close approximations to the 
photopic LEF are given by a linearly 
weighted combination of the cone SSFs 
(black circles), and the Y channel from 
the CIE 1931 XYZ space (green circles).
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theory. In the end the debate was resolved by experimentally verifying that, in fact, both 
theories are true: photoreceptors in the retina measure light according to three components, 
while cells later in the visual pipeline transform the component color signals into opponent 
color signals that capture the relative amounts of red/green, blue/yellow, and black/white.† 
This explains why both theories are successful at explaining various aspects of our 
psychological color experience.

In other words, while there are three primary colors at the lowest level (either red, green, 
and blue for additive colors or cyan, magenta, and yellow for subtractive colors), there are 
in fact six psychological primaries, as shown in Figure 9.8. These colors are red 1j 2 , 
green 1j 2 , blue 1j 2 , yellow 1j 2 , black 1j 2 , and white (  ) In this context we are not 
referring to primaries as SPDs that are mixed in a physical imaging system, but rather the 
colors that appear to human viewers to be pure. For example, even if we are intellectually 
convinced that white light is obtained by mixing all the colors of the rainbow, the color white 
still appears to be pure. Similarly, even though we know that (in theory at least) black can 

† Gunnar Svaetichin (1915–1981) confirmed the existence of the three photoreceptors in the retina in 1956, while 
the husband-and-wife-team of Leo Hurvich (1910–2009) and Dorothea Jameson (1920–1998) confirmed the 
existence of opponent cells later in the visual pipeline in 1957.

Figure 9.7 The opponent color 
process computes differences 
between L-, M-, and S-cone 
outputs, producing values 
along red-green, blue-yellow, 
and black/white axes.
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Figure 9.8 The six psychological 
primaries: red, green, blue, yellow, 
black, and white.
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9.3 Designating Colors 411

be obtained by mixing all the different colored paint pigments, the color black still appears 
to be pure. In fact, this is the reason that printers include four inks (adding black to the 
three subtractive primaries), because it is very difficult to mix the primaries in such a way 
that pure black is achieved. And even when we know from science that green 1j 2  can be 
obtained by mixing blue 1j 2  and yellow 1j 2  paints, green still appears to us to be pure 
in some sense; and no matter how much evidence is presented that yellow 1j 2  light results 
from combining red 1j 2  and green 1j 2  lights, it is impossible to see it as anything other 
than a pure color with no relationship to the two colors of which it is composed.

9.3 Designating Colors
Over the years, color scientists have proposed a number of different ways to precisely 
designate colors to facilitate unambiguous communication. The goal of these models is 
to provide, as much as is possible in the face of color blindness and chromatic adaptation, 
a precise mapping from the limited number of color names to the millions of perceptible 
colors. In this section we consider several of these models, culminating in the ubiquitous 
CIE XYZ color space.

9.3.1 Hue, Chroma, and Lightness
Although red, green, and blue values are the natural representation for cameras and displays, 
such values are awkward for describing colors. Not only is it nonintuitive to describe a color 
by the hex value FFFF00 rather than the name “yellow”, such values are also device-
dependent because they are affected by the primaries being used as well as the gamma 
correction involved. A more natural way to describe colors is by their hue, chroma, and 
lightness. The hue is the dominant perceived color, that is, the similarity of the color to one 
of the so-called unique hues, for example, the non-gray psychological primaries (red, 
green, blue, and yellow). The chroma is the purity of the color, that is, the degree of dif-
ference between the color and neutral gray; it is closely related to saturation.† The 
lightness (or value) is the nonlinearly transformed luminance which captures, in some 
sense, the brightness of the color. In Figure 9.3, for any given color in the circle, hue can be 
thought of as the angle around the circle, chroma is the distance from the circle center, and 
lightness is the height out of the page (with the black-white axis perpendicular to the circle). 
For example, a bright pure blue would have a blue hue (obviously), a high chroma, and a 
high lightness. A dark orange would have a hue somewhere between yellow and red, a high 
chroma, and a low lightness, and a bright pink would have the hue of red, a low chroma 
(because it is mixed with white), and a high lightness. In the following subsections we 
consider various ways to quantify these phenomena.

9.3.2 Munsell Color System
The earliest attempt to quantify colors was the Munsell color system,‡ first published in 
1905 and still in use today, although it has largely been superseded by the CIE system 
described later. The color of an object is established by comparing it to a large number of 
samples in the Munsell Book of Color, taking care to ensure that the proper illuminant is 

† Saturation is the chroma relative to the maximum possible chroma for the given lightness. Saturation always 
ranges from 0 to 1 (0% to 100%), whereas the range of chroma is dependent upon the particular lightness and hue. 
The subjective perception of color, analogous to brightness, is known as colorfulness.
‡ Alfred H. Munsell (1858–1918) was an American painter and art teacher whose motivation was to teach colors 
to children. He established the Munsell Color Company to continue the work after his death.
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used and the surrounding conditions are controlled. Colors are named according to their 
hue, value, and chroma. Hue is divided into ten steps, and each step is subdivided into ten 
sub-steps, for a total of 100 integer hues. The ten steps include the five principal hues (red, 
yellow, green, blue, and purple) and five intermediate hues between them. The hue is given 
as the letter(s) identifying the step, and the number identifying the sub-step, with 5 indicat-
ing the middle of the step. After the hue comes the value, which ranges from 0 (darkest) to 
10 (lightest), and the chroma, which ranges from 0 to about 20 although there is no theoreti-
cal upper limit. A color is then specified by listing the hue, value, and chroma in that order. 
For example, a bright orange used for safety vests is 5YR 6/15, where 5YR means the 
middle (5) of the yellow-red (YR) hue (that is, halfway between the yellow and red hues), 
6/ means medium lightness, and 15 means highly saturated. The enduring nature of the 
Munsell color system is due to the careful experimentation conducted in devising it.

9.3.3 Natural Color System (NCS)
An alternative approach, the Natural Color System (NCS), was developed in Sweden in the 
1930s and is still used in several European nations. Unlike the Munsell and CIE systems, the 
NCS emphasizes the logical description of color experience and is based on Hering’s color 
opponency model. The NCS system visualizes colors as lying within a double square-shaped 
pyramid whose vertices are the six psychological primaries: the top and bottom of the pyra-
mid represent white and black, while the four cardinal directions represent red, green, blue, 
and yellow. A color is specified by its blackness (how dark the color is), chromaticness 
(how chromatically strong the color is), and a percentage between two adjacent color hues. 
For example, a certain yellow is NCS 0580-Y10R, meaning 5% darkness, 80% chromatic-
ness, and a mixture that is 90% yellow and 10% red. A color’s whiteness is defined so 
that the whiteness, blackness, and chromaticness add to 100%, which in this case leads to 
a whiteness of 100 2 5 2 80 5 15%.

9.3.4 ISCC-NBS System
Also developed in the 1930s and also emphasizing the logical names of colors is the 
ISCC-NBS System of Color Designation. The ISCC-NBS system is based on 13 basic 
color categories, which include 10 hue names (such as pink, red, orange, and brown) 
and three neutral colors (black, white, and gray). Intermediate categories are obtained 
by combining these names, such as “reddish orange” and “purplish pink”. Categories are 
further subdivided through the use of modifiers, such as “vivid”, “brilliant”, or “dark”. 
The publication Color: Universal Language and Dictionary of Names contains both the 
language and the dictionary for describing hundreds of colors referenced to other systems 
such as Munsell’s.

9.3.5 CIE Chromaticity Diagram
Despite the benefits and uses of the previously described systems, by far the most influential 
and widely used model for quantifying color is the CIE 1931 XYZ color space, along with 
its companion the CIE 1964 XYZ color space. These models were adopted by the Interna-
tional Commission on Illumination, or Commission Internationale de l’Éclairage (CIE), 
in the years 1931 and 1964, respectively. The CIE 1931 XYZ space is based upon color 
matching experiments conducted in the 1920s by Wright and Guild in which the observer’s 
field of view was blocked so that only the inner 2° of the retina was used. The CIE 1964 
XYZ space, on the other hand, is based upon experiments conducted in the 1950s by Stiles 
and Burch, as well as Speranskaya, using a 10° field of view. Therefore the resulting CMFs 
are sometimes known as the CIE 1931 2° Standard Colorimetric Observer and CIE 1964 
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10° Supplementary Standard Colorimetric Observer, respectively. Although the 1964 
standard is recommended in situations involving a larger field of view, we will focus primar-
ily upon the 1931 standard since it is still the most widely used. In fact, if you ever come 
across the term CIE XYZ without any qualifier, it is probably referring to CIE 1931 XYZ.

As we shall see in the next section, because of Grassmann’s Law all CMFs are related 
to one another via 3 3 3 linear transforms. Each CIE XYZ system is therefore completely 
specified by a 3 3 3 transform matrix from RGB values to XYZ values, along with the 
primaries used to define RGB in each case.† These matrices, which we shall present later, 
allow us to transform the CMFs obtained in RGB space to the CMFs corresponding to XYZ 
space, the results of which are shown in Figure 9.9. Two characteristics of these CMFs are 
worth noting. First, each space was designed so that the middle coordinate Y approximates 
the photopic luminous efficiency function (LEF)—recall Figure 9.6. Secondly, all values 
are non-negative everywhere. Of course, this non-negativity means that the primaries cor-
responding to the XYZ space are not physically realizable, but it makes the XYZ space 
particularly convenient to work with mathematically.

To separate the luminance from the chrominance, the normalized coordinates are 
obtained by dividing by the sum of all three XYZ values:

  x ;  
X

X 1 Y 1 Z
 (9.13)

  y ;  
Y

X 1 Y 1 Z
 (9.14)

  z ;  
Z

X 1 Y 1 Z
 (9.15)

Since x 1 y 1 z 5 1, these three normalized values are not independent, and therefore only 
two are needed. Discarding z yields the CIE chromaticity coordinates (x,y).

Plotting the CIE chromaticity coordinates for all visible wavelengths yields the tongue-
shaped curve in Figure 9.10. This plot is known as the CIE chromaticity diagram, and it 
is probably the single most important visualization tool for understanding the quantification 
of human color sensation. Given any color in a scene, the tristimulus values can be mea-
sured using the CIE 1931 RGB primaries, then the appropriate 3 3 3 transformation can be 

† The primaries used in the experiments for the 1931 standard consist of the wavelengths 700 nm (red), 546.1 nm 
(green), and 435.8 nm (blue); for the 1964 standard they are 645.2 nm (red), 526.3 nm (green), and 444.4 nm (blue).

Figure 9.9 Color 
matching functions 
(CMFs) for CIE 1931 
XYZ (left) and CIE 1964 
XYZ (right). Shown are 
the CMFs for X (red), Y 
(green), and Z (blue). 
The black outline for 
the Y CMF emphasizes 
that it is designed 
to approximate the 
luminous efficiency 
function (LEF).
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applied to yield the XYZ coordinates, which are then normalized to obtain the (x,y) chroma-
ticity coordinates, which are then plotted on the diagram. In this way, every possible color 
can be mapped to a point on the diagram. Note that we do not have to run an actual color 
matching experiment to plot a color on the diagram, because all we need is the SPD of the 
color. That is, if we let C~  be the CMFs for CIE XYZ space, which are readily available, then 
the XYZ coordinates are obtained simply as 3X Y Z 4T 5 C~ t, where t is the SPD of the 
color; normalization yields the coordinates (x,y).

The chromaticity coordinates (x,y) are the basis for all modern approaches to 
colorimetry, the scientific measurement of color. Strictly speaking, the CIE chromaticity 
diagram consists only of the (x,y) coordinates of colors, not the colors themselves, and it is 
therefore misleading to draw the diagram with colors filled in. Nevertheless, for visualiza-
tion purposes it is often helpful to color the diagram with approximate colors, as is done in 
the figure. The diagram clearly reveals several facts about color perception and reproduc-
tion. First, the diagram closely resembles the color wheel, where the spectral locus traces 
the chromaticity coordinates of the pure wavelengths, and the line of purples connects red 
and violet: all visible colors lie within this tongue-shaped region. Note that colors along the 
line of purples are nonspectral colors—magenta, for example, is not in the rainbow.

Secondly, the diagram clearly reveals the colors that can be displayed by any given 
device. Most displays contain three primary lights (some flavor of red, green, and blue), and 
these lights can be plotted on the diagram—based on their SPDs—to form a triangle. Any 
color that can be displayed by the device is a weighted combination of these three lights; 
because the weights must be nonnegative, such colors must lie within the triangle whose 
vertices are the chromaticity coordinates of the three lights. The set of colors in this triangle 
is known as the gamut of the device, and typically the larger the gamut the better. It is easy 
to see from the diagram why red, green, and blue are usually chosen as the primary colors, 
because they yield the triangle with the largest area and therefore the largest gamut. Also 
notice that Rec. 2020 has a significantly larger gamut than that of Rec. 709.

Finally, it is obvious from this diagram why no physically realizable device can produce 
all colors, because some colors will always lie outside this triangle (or outside the polygon 
defined by a finite number of primary lights, whose gamut is given by the convex hull of 
their coordinates). Keep in mind that, although the diagram is applicable to subtractive as 
well as to additive color spaces, the gamut of any subtractive device (e.g., an ink-based 

Figure 9.10 CIE 1931 chromaticity diagram. LEFT: The strict diagram showing only the (x,y) chromaticity coordinates of the pure 
wavelengths. RIGHT: The diagram with approximate colors filled in, and with different parts of the diagram labeled, for better 
visualization.
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9.4 Linear Color Transformations 415

printer) will not be a triangle but rather an arbitrarily-shaped region due to the nonlinearities 
involved with paints and pigments.

The white point is the chromaticity of the color used as the reference white. The color of 
a light source, or illuminant, is characterized by its relative SPD—that is, by its SPD after 
normalizing by some arbitrary amount since the overall intensity of the light is irrelevant. 
The white point of an illuminant is given by the chromaticity coordinates of a white object 
viewed under the illuminant. Light sources are usually modeled as blackbody radiators, in 
which case their chromaticity coordinates are uniquely determined by their absolute tem-
perature.† The blackbody locus is the path traced in (x, y) coordinates as the temperature 
of the blackbody source is raised. In 1963 the CIE adopted the “D” series of standard illu-
minants, in which the subscript indicates the first two digits of the illuminant’s correlated 
color temperature (CCT). While the choice of white point is application specific, by far 
the most common is D65, which represents average daylight with a CCT of 6504 K and 
has chromaticity coordinates 1 x, y 2 5 1 0.3127, 0.3290 2 . For indoor lighting, sometimes a 
white point corresponding to tungsten incandescent bulbs or fluorescent lamps, or increas-
ingly LEDs, is used. The graphic arts industry uses D50, which has a CCT of 5003 K and 
chromaticity coordinates 1 x, y 2 5 1 0.3457, 0.3585 2 . Another definition of the white point 
uses the illuminant that contains equal energy among all wavelengths, called CIE Standard 
Illuminant E, or equal energy white. Since the CIE CMFs are designed to have equal area 
under each curve, the chromaticity coordinates of Illuminant E are 1 x, y 2 5 1 1/3, 1/3 2 . 
Alternatively, for a given set of primaries we could define the white point determined by set-
ting all three primaries to output equal power, which is found at the centroid of the triangle 
defining the gamut.

The chromaticity diagram also reveals why hue, chroma, and lightness are a natural 
way to verbally describe a color. Given any color’s (x, y) chromaticity coordinates, the hue 
of the color can be determined by drawing a line from the color through the white point, 
then finding the intersection of this line with the spectral locus. For this reason, the hue 
is sometimes called the “dominant wavelength”, although for some colors the line does 
not intersect the spectral locus but rather the line of purples, in which case there is not an 
actual wavelength. The chroma of a color is related to the distance to the white point, so that 
colors on the spectral locus (or line of purples) are fully saturated, while the white point is 
fully unsaturated. The lightness is a third coordinate coming out of the page. Keep in mind, 
however, that the mapping described here should be considered as informal, since the xy 
space is not perceptually uniform, a point we consider in more detail later.

9.4 Linear Color Transformations
In this section we show how Grassmann’s Law leads to a 3 3 3 linear transformation 
between any two CMFs or between any two linear color spaces defined by tristimulus values 
for some set of primaries, whether the primaries are real or or non-physically realizable. 
Using this result, we describe the procedure for calibrating between cameras and displays, 
including the important step of white balancing.

9.4.1 Transforming Between CMFs
We have seen that color matching functions (CMFs) depend upon the primaries chosen. That 
is, two different sets of primaries will lead to two different sets of CMFs. Because CMFs 
are linear functions (due to Grassmann’s Law), it should not be surprising that the CMFs 

† Section 2.5.3 (p. 60)
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for two sets of primaries are related by a 3 3 3 linear transformation. More specifically, 
the transformation between color matching functions C533356 and C533356r  corresponding 
to primaries P535336 5 3pr pg pb 4 and P535336r 5 3prr pgr pbr 4, respectively, is given 
by the 3 3 3 matrix M ; C rP, which is composed of one set of CMFs and the other set 
of primaries:

 
C r 5 C rP C  ()*

M  
 (9.16)

To see this result, let t [ R35 be the SPD of a test light. Suppose the tristimulus values 
for matching t using the primaries P are given by u [ R3. Similarly, if we let u r be the 
tristimulus values for P r to match the same test light, then from Equation (9.11) we have

  u 5  Ct  (9.17)
  u r 5  C rt  (9.18)

When the intensities of the first primaries are set to the tristimulus values specified by u, 
the resulting SPD is Pu; and when the intensities of the second primaries are set to the 
tristimulus values specified by u r, the resulting SPD is P ru r. In both cases, the resulting 
SPD looks identical to the test light. In other words, t, Pu, and P ru r are metamers, which 
from Equation (9.12) implies

  Ct 5  CPu 5 CP ru r  (9.19)
  C rt 5  C rPu 5 C rP ru r  (9.20)

where we note that metamers are metamers no matter which CMF is used. By substituting 
Equation (9.18) into Equation (9.20), we get

 
u r 5 C rt 5 C rP u  ()*

M  
 (9.21)

which reveals that M ; C rP is the 3 3 3 matrix relating the tristimulus values in the two 
color spaces. Similarly, substituting Equation (9.17) into Equation (9.20) yields

 
C rt 5 C rPu 5 C rP Ct  ()*

M  
 (9.22)

Since this equation is true for any test light t, we have the desired result: C r 5 1C rP 2C 5 MC. 
Note that although we did not use Equation (9.19) in the derivation, the result reveals that 
Equations (9.19) and (9.20) are related by a simple multiplication by M.

9.4.2 Transforming between Cameras and Displays
When a color camera senses the incoming light, each pixel yields values for the red, green, 
and blue channels. Each of these values can be thought of as tristimulus values in some color 
space. When a display device, such as a computer monitor, produces light to be seen, it does 
so by producing for each pixel a linear combination of the red, green, and blue primaries 
according to three input values. If the three values captured by the camera were the same 
three values needed to drive the display, then there would be no need for further discussion. 
However, cameras and displays typically operate in different color spaces, so to ensure 
faithful reproduction it is necessary to transform the tristimulus values in the camera color 
space to three values in the display color space.

More precisely, suppose we have a camera that captures RGB values according to

 vc 5 St (9.23)
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where S533356 contains the SSFs of the pixels, analogous to the sensing of the human cones 
considered earlier, and t [ R35 is a test light. Now suppose we have a display with primaries 
P535336 so that when the display is driven by the values vd the resulting SPD is Pvd. We 
seek, if possible, the 3 3 3 linear transform Mcd that maps incoming tristimulus values to 
output values: vd 5 Mcdvc.

For accurate color reproduction, we want the output Pvd of the display and the original 
SPD t to be metamers:

 Ct 5 CPvd 5 CPMcdvc 5 CPMcd 
St (9.24)

where C533356 contains the CMFs corresponding to the display primaries. Since this rela-
tionship must be true for all test lights t, it means that

 
C 5

 

CP()*
333

Mcd 
S 

 

 (9.25)

or, since CP is invertible,

 Mcd  
S 5 1CP 221C (9.26)

This is a standard linear equation in the unknown transform Mcd given the SSFs S of the 
camera, the primaries P of the display, and the CMFs C corresponding to the primaries.

One important point to note about Equation (9.26) is that there is no guarantee that for 
an arbitrary 3 3 35 matrix S and an arbitrary 3 3 35 matrix 1CP 221C on the right-hand 
side, there exists a 3 3 3 linear transform between them. That is, there is no inherent reason 
why the three values sensed by an arbitrary camera should bear any relationship whatsoever 
to the tristimulus values of any color space. Nevertheless, cameras are generally designed 
so that the SSFs of the three color filters in front of the pixels are similar enough to the SSFs 
of the human cones that the three sensed values can approximately be related to the tristimu-
lus values using a linear transform. This requirement that S 5 MC for some M53336 and 
some color space C is known as the Luther condition.† Note that C here could be any color 
space, since all CMFs are known to be related by a linear transform according to Grassmann’s 
Law; or equivalently we could require S 5 MS~ (yielding a different M, of course), where 
S~ are the cone SSFs, since if measured properly the cone SSFs are also related to the CMFs 
via a linear transform as we saw in Figure 9.5.

In practice, it is quite tedious and error-prone to measure S, P, and C, so that solving 
Equation (9.26) is not the usual way of obtaining Mcd. Instead, the camera and display are 
separately calibrated to find the linear transforms to CIE XYZ. To calibrate a color camera, 
pictures are taken of objects with known CIE XYZ coordinates under a standard illuminant. 
The RGB values are captured by the camera, and a linear fit is performed to the data to find 
the best 3 3 3 camera transform Mc:

 CX1 X2 Xn

Y1 Y2
c Yn

Z1 Z2 Zn

S 5 Mc CR1 R2 Rn

G1 G2
c Gn

B1 B2 Bn

S  (9.27)

where n is the number of measurements. In industry, a widely used calibration target is the 
Macbeth ColorChecker color-rendition chart, which consists of 24 square patches laid out 
in a 4 3 6 array, shown in Figure 9.11. Each patch has a surface reflectance function similar 

† Robert Luther (1868–1945) was a German chemist who died in Dresden just months after the controversial Allied 
bombing of that city at the end of World War II. The Luther condition is also known as the Maxwell-Ives criterion.
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to a naturally occurring surface, such as human skin, foliage, blue sky, chicory flower, and 
so forth, as well as the additive and subtractive primary colors and a range of grays. Once 
the camera has been calibrated, the sensed RGB values can be converted to XYZ using

 CX
Y
Z
S 5 Mc CRc

Gc

Bc

S  (9.28)

where Rc, Gc, and Bc are the three raw color values obtained by the camera at a given 
pixel. Recall from what we saw before that the matrix is composed as Mc 5 C~S1, where 
C~  contains the CMFs for the XYZ space (Figure 9.5), and S contains the SSFs of the three 
color filters of the camera.

Similarly, if we let Rd, Gd, and Bd be the three values sent to the color channels of the 
display (e.g., a computer monitor), then the XYZ coordinates being displayed are given by 
a different 3 3 3 display transform Md:

 CX
Y
Z
S 5 Md CRd

Gd

Bd

S  (9.29)

To calibrate the display (e.g., a computer monitor), typically a colorimeter is used to 
measure the output for a certain number of known color values. A colorimeter is similar 
to a spectroradiometer except that the former measures wideband spectral energy filtered 
by 3 filters whose transmittance spectra match the CIE CMFs; in this way the colorimeter 
outputs the XYZ tristimulus values for any light. For example, if each of the three primaries 
is turned on by itself, the colorimeter will reveal the columns of Md. Also recall from before 
that Md 5 C~P.

Once the camera and display have been calibrated, the 3 3 3 transformation relating them 
can be expressed as Mcd ; Md

21Mc, since we want the XYZ tristimulus values to match:

 CRd

Gd

Bd

S 5

 

Md
21Mc(')'*
Mcd

 CRc

Gc

Bc

S  (9.30)

Note that this result is identical to that of Equation (9.26), since 
Mcd 5

 

1C~P 2()*
Md

21

 

C~S1.()*
Mc

Figure 9.11 Macbeth ColorChecker 
color-rendition chart.
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9.4.3 White Balancing
The transformation of the previous subsection is based on matching a test light with the 
light emitted by the display. In practice, however, the camera is usually viewing opaque 
objects reflecting light emitted by a source (illuminant). Under a different illuminant, the 
values produced by the three sensors in the camera will be different, and yet we want the 
perceived color to be the same. The human visual system has a remarkable, and as yet not 
fully understood, ability to adjust to different viewing conditions, a phenomenon known as 
chromatic adaptation or color constancy. The same object when viewed under bright 
sunlight, overcast daylight, an incandescent bulb, or a fluorescent light is generally per-
ceived the same, even when the sensations produced in the three cones are not the same.†

The goal of white balancing is to adjust the values produced by the camera accord-
ing to the illuminant to ensure that neutral colors (grays) remain neutral, and that all other 
colors maintain their appearance even as the illuminant changes. While there is no simple 
mathematical relationship that guarantees this result, in practice a diagonal scaling in some 
color space works well. This approach requires a 3 3 3 transformation into the particular 
color space, followed by a diagonal scaling, and finally the inverse transformation. That 
is, if we redefine 3Rc Gc Bc 4T as the output of the camera after this transform, while 3Rcr Gcr Bcr 4T is the raw input before the transformation, then we have

 CRc

Gc

Bc

S 5 Mw
21 Car 0 0

0 ag 0
0 0 ab

S  MwCR cr
G cr
B cr

S  (9.31)

where the diagonal scaling is captured by ar, ag, and ab, and the choice of Mw determines 
the color space. One approach that works reasonably well in practice, known as the von 
Kries’s method, is to choose Mw to transform to the color space define by the cone SSFs. 
An approach that does not work as well is to select Mw to transform to CIE XYZ, which is 
sometimes known as a “wrong von Kries method”. In practice, the best transforms have 
been found to correspond to narrow cone spaces, that is, color spaces in which the sen-
sors have their sensitivity more narrowly concentrated than the cone SSFs. Such spectrally 
sharpened methods include the widely used Bradford transform and Sharp transform.

9.4.4 ICC Profiles
In practice the problem of transforming between the color spaces of various devices is made 
more complicated by the fact that printers operate in a highly nonlinear, subtractive space, 
and that the viewing conditions for all devices are not necessarily the same. For example, 
computer monitors tend to be viewed in relatively bright environments, but movies are usu-
ally watched in dark environments. Therefore, when displaying a white object on a monitor 
it might be necessary to maximize the output of all three primaries, but this leaves no addi-
tional intensity with which to display specular highlights. When displaying a movie, on the 
other hand, it may be possible to display white with less than full intensity of the primaries, 
since the human eye will have adapted to the dark environment, so that specular highlights 
can be displayed with greater intensity. Rendering intent refers to the specification that 
governs how an output device handles colors that are mapped to out-of-gamut values, that 
is, values that are not capable of being displayed by the device.

† A perfect example highlighting the imperfections of chromatic adaptation is the photograph of a certain black-
and-blue (or white-and-gold) dress, which caused explosive interest on the Internet in February 2015. (See https://
en.wikipedia.org/wiki/The_dress_(viral_phenomenon)).
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The current standard, since 2004, for specifying the color properties of a device is the 
ICC profile established by the International Color Consortium. Three different types of 
devices can have ICC profiles: input devices (e.g., cameras or scanners), display devices 
(e.g., computer monitors), and output devices (e.g., printers). Manufacturers carefully cali-
brate their devices so that they are shipped with ICC profiles; in this way, various input and 
output devices can be connected without knowing about each other, thus facilitating accurate 
color reproduction. An ICC profile specifies the transformation from the values in the color 
space of the device to one of two standard color spaces, either CIE 1931 XYZ or CIELAB 
(defined later), where the transformation takes the form of either a 3 3 3 matrix or a lookup 
table (LUT) with values for different wavelengths. The profile corresponds to a reference 
viewing condition and the standard illuminant D50. Each profile also includes one of four 
rendering intents: absolute colorimetric, relative colorimetric, perceptual, or saturation. The 
first two preserve, respectively, either the absolute colorimetry of in-gamut colors, or the 
colorimetry of in-gamut colors relative to the white point. The latter two compromise the 
colorimetry of in-gamut colors in order to better handle out-of-gamut colors, with perceptual 
intent preserving the full range of colors, and saturation intent preserving saturated colors 
for displaying computer graphics.

9.4.5 CAMs and CATs
The conclusion that color perception can be adequately described using three dimen-
sions is supported by color matching experiments conducted in a carefully controlled 
viewing environment with a limited field of view, no context, and a particular state of 
adaptation. In real-world viewing, with different illumination levels and wider fields of 
view, however, more complex models are necessary. Such models are known as color 
appearance models (CAMs), with the most recent standard being CIECAM02. In a CAM, 
the visual perception of color appearance is defined by 6 dimensions, including 3 that 
describe the object properties (lightness, chroma, and hue) and 3 that describe the illumi-
nation environment (brightness, colorfulness, and saturation). In practice, colorfulness, 
chroma, and saturation are all interrelated, so some have suggested that 5 dimensions may 
be sufficient for describing color appearance. A CAM includes a chromatic adaptation 
transform (CAT) whose goal is to achieve some measure of color constancy by adapting 
the white point, and it also includes equations for calculating the 6 values just mentioned.

9.5 Color Spaces
Now that we have considered the fundamentals of color sensation and representation, in 
this section we examine several of the more commonly used color spaces, along with the 
transformations between them.

9.5.1 RGB and R’G’B’
The color space most natural for cameras and displays is RGB. For cameras, the term RGB 
refers to the fact that the peaks in the SSFs of the filters placed over the pixels’ photo-
detectors correspond roughly to red, green, and blue; for displays the term refers to the 
fact that the three primaries used look like red, green, and blue. To carefully distinguish 
between the values in the linear light space in which Grassmann’s Law applies, and the 
nonlinear values resulting from gamma compression, we use RGB to refer to the former 
and R rG rB r to refer to the latter. If you load pixel values from a file containing a color 
image, you are most likely accessing nonlinear R rG rB r, not linear RGB, unless the pixel 
values were stored in raw format.
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It is important to note that RGB values do not uniquely define a color, because the values 
depend upon which color space is being used. An RGB space is uniquely defined by its 
primaries and its white point (along with the transfer function used for gamma compres-
sion in the case of nonlinear R rG rB r). Given the linear XYZ tristimulus values of the three 
primaries and the whitepoint, the transformation from linear RGB to XYZ is

 

CX
Y
Z
S 5

 

CXr Xg Xb

Yr Yg Yb

Zr Zg Zb

S
(''')'''*

primaries
 

CAr 0 0
0 Ag 0
0 0 Ab

S  CR
G
B
S

 

 (9.32)

where the scaling coefficients Ar, Ag, and Ab are given by solving

 

CXr Xg Xb

Yr Yg Yb

Zr Zg Zb

S
(''')'''*

primaries
 

CAr

Ag

Ab

S 5

 

CXw

Yw

Zw

S
(')'*
white point

 (9.33)

In practice the overall intensities of the primaries are not available. Instead we have 
access only to their chromaticity coordinates 1 xr, yr 2 , 1 xg, yg 2 , and 1 xb, yb 2 . Inserting 
F21F just after the matrix containing the primaries in Equations (9.32) and (9.33), where 
F ; diag 1Yr, Yg, Yb 2 , yieldsCX

Y
Z
S 5 CXr Xg Xb

Yr Yg Yb

Zr Zg Zb

S  CYr
21 0 0
0 Yg

21 0
0 0 Yb

21
S  CYr 0 0

0 Yg 0
0 0 Yb

S  CAr 0 0
0 Ag 0
0 0 Ab

S  CR
G
B
S  (9.34)

 CXr Xg Xb

Yr Yg Yb

Zr Zg Zb

S  CYr
21 0 0
0 Yg

21 0
0 0 Yb

21
S  CYr 0 0

0 Yg 0
0 0 Yb

S  CAr

Ag

Ab

S 5 CXw

Yw

Zw

S  (9.35)

which lead to equations that we can use:

 CX
Y
Z
S 5 Cxr/yr xg/yg xb/yb

1 1 1
zr/yr zg/yg zb/yb

S  Car 0 0
0 ag 0
0 0 ab

S  CR
G
B
S  (9.36)

 Cxr/yr xg/yg xb/yb

1 1 1
zr/yr zg/yg zb/yb

S  Car

ag

ab

S 5 CXw

Yw

Zw

S  (9.37)

since xr ; Xr /Sr 
, yr ; Yr  /Sr 

, and ar ; ArYr 
, where Sr ; Xr 1 Yr 1 Zr 

, so that 
Xr  /Yr 5 xr 

Sr  /yr  
Sr 5 xr /yr 

, and similarly for the other color channels. If we further assume 
that the values for R, G, and B range from 0 to 1, and similarly for Y, and if we assume that 
the maximum intensity of all three primaries 1R 5 G 5 B 5 1 2  leads to the maximum 
luminance 1Y 5 1 2 , then we have the additional constraint that ar 1 ag 1 ab 5 1.

Putting this all together, if we are given the chromaticities of the primaries and the white-
point, Equation (9.37) can be solved for ar, ag, and ab. Once these values have been found, 
we then impose the constraint that ar 1 ag 1 ab 5 1 to remove the effects of any scaling 
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in 1Xw, Yw, Zw 2 . Then these normalized values are plugged back into Equation (9.36) to 
yield the transformation from 1R, G, B 2  to 1X, Y, Z 2 .

The chromaticities and white points of several well-known video and image standards 
are listed in Table 9.1. (Their nonlinear transfer functions were covered in a previous 
chapter.†) The analog color television signal broadcast in the United States and Japan, 
among other countries, from its adoption in 1953 to its replacement by digital video in 2009, 
is known as NTSC (for the National Television System Committee). The NTSC primaries 
correspond to the phosphor technology used at the time, and the illuminant is the now-
obsolete CIE Standard Illuminant C. Phosphor technology improved considerably over the 
next decade, so that when the European equivalent PAL (for Phase Alternating Line) was 
standardized in 1966, the primaries were changed to something very close to those in use 
today. The chromaticity coordinates and white points of these NTSC and PAL standards 
were essentially inherited by the two versions of Rec. 601,‡ which was adopted in 1982 for 
encoding interlaced analog video signals as digital video.

† Section 2.3.2 (p. 43).
‡ Officially ITU-R Recommendation BT.601, formerly known as CCIR 601.

EXAMPLE 9.1 Compute the 3 3 3 matrix conversion between RGB and CIE XYZ using the NTSC prima-
ries and white point shown in Table 9.1.

Solution: From the first row of the table we have xr/yr 5 0.67/0.33 5 2.03, and 
zr /yr 5 1 1 2 xr 2 yr 2 /yr 5 1 1 2 0.67 2 0.33 2 /0.33 5 0 for the red channel. Repeat-
ing for the other color channels, Equation (9.37) is used to solve for the coefficients:Car

ag

ab

S 5 C2.0303 0.2958 1.75
1 1 1
0 0.1127 9.75

S21

 C0.310
0.316
0.374

S 5 C0.0945
0.1853
0.0362

S  ) C0.2990
0.5864
0.1146

S  (9.38)

where the final values are obtained by normalizing so that ar 1 ag 1 ab 5 1. Plugging 
these values back into Equation (9.36) yields the desired result:

 CX 
C

Y 
C

Z 
C
S 5 C2.0303 0.2958 1.75

1 1 1
0 0.1127 9.75

S  C0.2990 0 0
0 0.5864 0
0 0 0.1146

S  CR NTSC
C

G NTSC
C

B NTSC
C

S  (9.39)

 
5

 

C 0.6070 0.1734 0.2006
0.2990 0.5864 0.1146

20.0000 0.0661 1.1175
S

('''''')''''''*
MNTSC

C

 

CR NTSC
C

G NTSC
C

B NTSC
C

S  

 

 (9.40)

where we have introduced the superscript to indicate the white point being used (in this 
case CIE Standard Illuminant C) and the subscript to indicate the choice of RGB primaries 
(in this case those specified by NTSC), and the notation Mb

a indicates a transform from the 
primaries in b using the white point a. What is particularly interesting about this result is 
the middle row, which says that the luminance is given by

Y 
C 5 0.299R 601

C 1 0.587G 601
C 1 0.114B 601

C  (9.41)

where we have changed the subscript to 601 because these are the numbers adopted by Rec. 
601. This equation is the basis behind the well-known 3-6-1 rule used to convert RGB to 
grayscale, which we shall examine in more detail later.
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The modern video and image standards used by nearly all devices today share the same 
chromaticities and white points as each other, differing only in their transfer function. 
Rec. 709† was adopted in 1990 as the standard for high-definition television (HDTV), as 
well as for studio video and broadcast television. The sRGB standard was developed in 1996 
by leading personal computer manufacturers as a standard for personal desktop computers, 
monitors, printers, and the Internet, and it is also used by LCD monitors, digital cameras, 
and scanners. Rec. 2020 was adopted in 2012 as the standard for ultra-high-definition 
television (UHDTV). As a general rule one should assume, in the absence of an embedded 
color profile or additional information, that any 8-bit-per-channel still image is in the sRGB 
color space, while any video is in that of Rec. 709.

Repeating the procedure above for the Rec. 709 standard (or equivalently, sRGB, since 
the linear color spaces are the same) yields

 

CX 
D65

Y 
D65

Z 
D65

S 5

 

C0.4124 0.3576 0.1805
0.2126 0.7152 0.0722
0.0193 0.1192 0.9505

S
('''''')''''''*

M 709
D65

 

CR 709
D65

G 709
D65

B 709
D65

S
 

 (9.42)

Thus the more modern color space leads to a 2-7-1 rule for computing luminance:

 Y 
D65 5 0.2126 R 709

D65 1 0.7152 G 709
D65 1 0.0722 B 709

D65 (9.43)

Note that in both Equations (9.40) and (9.42) the middle row sums to 1, and each 
column of the matrix contains the tristimulus values of the corresponding primary. 
Thus, 0.607/ 1 0.607 1 0.299 2 5 0.67, 0.1734/ 1 0.1734 1 0.5864 1 0.0661 2 5 0.21, 
0.2006/ 1 0.2006 1 0.1146 1 1.1175 2 5 0.14, and so on. And of course the conversion 
from XYZ back to RGB is simply the inverse of the matrix.

When converting from one RGB space to another, it is common to transform the RGB 
values to a standard reference coordinate system (e.g., CIE XYZ), then convert from the 
reference coordinate system to the other RGB space. That is, the overall transform involves 
multiplying one 3 3 3 matrix by the inverse of the other matrix, but care must be taken 
because an additional matrix needs to be introduced if the white points are different. For 
example, although the matrices above transform both NTSC and Rec. 709 to CIE XYZ, they 
use different white points, so the transform between them is actually 1M 709

D65 221 NC
D65 M NTSC

C , 
where Nb

a transforms between the two white points a and b. This is very important because, 
although Rec. 709 and sRGB use D65, the ICC profiles used for transforming between color 
spaces use D50 instead.

† Officially ITU-R Recommendation BT.709.

red green blue white point

NTSC (0.67, 0.33) (0.21, 0.71) (0.14, 0.08) (0.310, 0.316) CIE C

PAL (0.64, 0.33) (0.29, 0.60) (0.15, 0.06) (0.3127, 0.3290) CIE D65

Rec. 709, sRGB (0.640, 0.330) (0.300, 0.600) (0.150, 0.060) (0.3127, 0.3290) CIE D65

Rec. 2020 (0.708, 0.292) (0.170, 0.797) (0.131, 0.046) (0.3127, 0.3290) CIE D65

TABLE 9.1 The (x,y) chromaticity coordinates of the primaries and white point of several video and image standards. NTSC and PAL are 
the original North American and European analog video signals, respectively, no longer in widespread use; Rec. 709 is the modern  
standard used in HDTV, sRGB is the standard for desktop computing, and Rec. 2020 is the latest standard used in UHDTV.
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EXAMPLE 9.2 Compute the 3 3 3 matrix conversion between D65 and D50.

Solution:  Since we are free to use any primaries we like, let us use the NTSC primaries. Similar to 
Example 9.1, we have the following for D50:Car

ag

ab

S 5 C2.0303 0.2958 1.75
1 1 1
0 0.1127 9.75

S21

 C0.3457
0.3585
0.2958

S 5 C0.1148
0.2158
0.0278

S  ) C0.3203
0.6020
0.0777

S  (9.44)

so that

 CX 
D50

Y 
D50

Z 
D50

S 5  C2.0303 0.2958 1.75
1 1 1
0 0.1127 9.75

S  C0.3203 0 0
0 0.6020 0
0 0 0.0777

S  CR NTSC
D50

G NTSC
D50

B NTSC
D50

S  (9.45)

 

5

 

C    0.6503 0.1781 0.1359
    0.3203 0.6020 0.0777
20.0000 0.0678 0.7573

S
('''''')''''''*

M NTSC
D50

 

CR NTSC
D50

G NTSC
D50

B NTSC
D50

S
 

 (9.46)

Similarly, for D65 we haveCar

ag

ab

S 5 C2.0303 0.2958 1.75
1 1 1
0 0.1127 9.75

S21

 C0.3127
0.3290
0.3583

S 5 C0.0953
0.1993
0.0344

S  ) C0.2897
0.6056
0.1047

S  (9.47)

so that

 CX 
D65

Y 
D65

Z 
D65

S 5  C2.0303 0.2958 1.75
1 1 1
0 0.1127 9.75

S  C0.2897 0 0
0 0.6056 0
0 0 0.1047

S  CR NTSC
D65

G NTSC
D65

B NTSC
D65

S  (9.48)

 

5

 

C    0.5881 0.1791 0.1832
    0.2897 0.6056 0.1047
20.0000 0.0682 1.0208

S
('''''')''''''*

M NTSC
D65

 

CR NTSC
D65

G NTSC
D65

B NTSC
D65

S
 

 (9.49)

The conversion from D65 to D50 is then given byCX 
D50

Y 
D50

Z 
D50

S 5

 

M NTSC
D50 1M NTSC

D65 221
(''')'''*

ND65
D50

 

CX 
D65

Y 
D65

Z 
D65

S 5

 

C    1.1206 20.0301 20.0649
    0.0621    0.9797 20.0355
20.0164    0.0333    0.7414

S
(''''''')'''''''*

ND65
D50

 

CX 
D65

Y 
D65

Z 
D65

S
 

(9.50)
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9.5.2 Y’PBPR

It is often desirable to separate the luminance, which is related to the perception of 
brightness, from the chrominance, which captures the parameters that we normally asso-
ciate with the notion of color (e.g., hue and chroma). This separation is performed by trans-
forming the three RGB sensor values into a color space in which the luminance is described 
by one axis, while the chrominance is described by the remaining two axes. As we shall see, 
nearly all color spaces except for RGB / R rG rB r are based upon such a separation. (The XYZ 
space, while not explicitly maintaining this separation, can nevertheless be transformed by 
simply concatenating the luminance value Y with the chromaticity coordinates x and y to 
yield the xyY color space.)

The first such color space that we shall consider is Y rPBPR, which is sometimes used for 
transmitting analog video signals. The prime 1 r 2  indicates that the value Y r is not the lumi-
nance used in color science. In fact, it is not even gamma-corrected luminance but rather the 
nonlinear quantity known to video engineers as luma, which is computed as the weighted 
average of the three gamma-corrected R rG rB r values: Y r 5 arR r 1 agG r 1 abB r. For Rec. 
601 and Rec. 709, this leads to the following definitions:

  601Y r ;  0.299R r 1 0.587G r 1 0.114B r  (9.51)

  709Y r ;  0.2126R r 1 0.7152G r 1 0.0722B r  (9.52)

where the leading superscript indicates the coefficients used in computing luma, and the 
trailing super/subscripts have been dropped because the exact choice of primaries and white 
point is not important.

Compared with the middle row of the colorimetric expressions in Equations (9.41) and 
(9.43), the most important difference is that Equations (9.51)–(9.52) above operate in the 
gamma-corrected R rG rB r space and, as a result, they are no longer correct in any colori-
metric sense. To understand the reason behind defining luma in a non-colorimetric way, we 
must consider the historical context in which the decision was made. As shown in Figure 
9.12, the correct way of transmitting RGB values back in the days of analog video trans-
mission would have been, in the encoder, to convert to luminance Y (and chrominance) 
using a 3 3 3 transform, then apply gamma compression to reduce the perceptual effects 
of noise by transmitting the luma Y r instead of the luminance Y. The decoder would then 
have applied gamma expansion to recover the luminance, then applied the inverse 3 3 3 
transform to yield linear RGB values. So far so good. However, because cathode ray tube 
(CRT) displays, which were the prevailing technology in the 1950s, inherently apply a 
nonlinear transform function to the input voltages, a nonlinear function resembling gamma 
compression had to be inserted to cancel this effect. Therefore, to simplify the decoding 
process, video engineers reversed the order of the gamma and linear transform blocks, 
thus rendering two of the blocks in the diagram unnecessary since they cancel each other. 
This engineering tradeoff sacrificed colorimetric accuracy for implementation simplicity. 
Although this tradeoff would not be necessary with today’s technology, the effects of this 
decision are still with us due to their influence upon widely-used video standards.

The nonlinear chrominance components,† PB and PR, are the color differences computed 
with respect to the blue and red channels, since green is the most similar to luma:

  PB ;  
1
2

 #  B r 2 Y r
1 2 ab

5
2ar 

R r 2 agG r 1 1 1 2 ab 2B r
2 1 1 2 ab 2  (9.53)

† Just as nonlinear luminance is called luma, so nonlinear chrominance is called chroma, Section 2.3.4 (p. 52). 
However, to avoid confusion with the other meaning of the term “chroma”, we will avoid the use of  the term here.
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  PR ;  
1
2

 #  R r 2 Y r
1 2 ar

5
1 1 2 ar 2R r 2 agG r 2 ab 

B r
2 1 1 2 ar 2  (9.54)

The scaling factors ensure that PB and PR range from 20.5 to 10.5, whereas Y r ranges 
from 0 to 1. Plugging in the Rec. 601 coefficients leads to the transformation from R rG rB r 
to 601Y rPBPR:

 C601Y r
PB

PR

S 5  C1 0 0
0 1/ 1 2 #0.886 2 0
0 0 1/ 1 2 #0.701 2 S  C    0.299    0.587    0.114

20.299 20.587    0.886
   0.701 20.587 20.114

S  CR r
G r
B r

S  (9.55)

 5  C   0.299   0.587  0.114
20.1687 20.3313 0.5   

0.5   20.4187 20.0813
S  CR r

G r
B r

S  (9.56)

and similarly using the Rec. 709 coefficients:

 C709Y r
PB

PR

S 5 C 0.2126 0.7152 0.0722
20.1146 20.3854 0.5

0.5 20.4542 20.0458
S  CR r

G r
B r

S  (9.57)

Note that in both cases the first row sums to 1, while the second and third rows sum to zero. 
Conversion back to R rG rB r is obtained by simply inverting the matrix in each case.

Figure 9.12 The theoretically correct way of transmitting analog RGB (top), and the engineering approximation developed in the 
1950s (bottom). The approximation swaps the order of the linear 3 3 3 transform and the nonlinear gamma compression or expansion, 
to simplify decoding by canceling two of the blocks in the diagram.
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9.5.3 Y’CBCR

More common than Y rPBPR, which is used for analog signals, is Y rCBCR, which is used for 
digital signals. The latter is a scaled and offset version of the former:

 C219Y r
CB

CR

S ; C 16
128
128

S 1 C 219Y r
224PB

224PR

S  (9.58)

where the leading subscript 219 indicates the scaling of luma. Note that 219Y r, CB, and CR 
on the left side each fit within 8 bits: 16 # 219Y r # 235 and 16 # CB, CR # 240. At first it 
may seem strange that the full range of 256 values is not used, but this extra footroom (below 
16) and headroom (above 235 for luma or 240 for nonlinear chrominance) is necessary 
to allow for some undershoot or overshoot when filtering, without incurring clipping. 
Combining Equations (9.56) and (9.58) yields the transform from 8-bit R rG rB r to 8-bit 
219
601Y rCBCR using the Rec. 601 coefficients:

 C219
601Y r
CB

CR

S 5 C 16
128
128

S 1
1

255
 C    65.4810  128.5530    24.9660

237.7968 274.2032  112.0000
 112.0000 293.7860 218.2140

S  C 255 
R r

255 
G r

255 
B r

S  (9.59)

where we have added a scaling factor of 1/255 so that the equation applies when 255R r, 255G r, 
and 255B r are also stored as 8 bits each, i.e., 0 # 255R r, 255G r, 255B r # 255.

The JFIF format for JPEG uses Rec. 601 and no headroom or footroom, so that Y r, CB, 
and CR encompass the full range from 0 to 255. With R r, G r, and B r also ranging from 0 to 
255, the conversion is given by adding offsets to Equation (9.56):

 C255
601Y r
CB

CR

S ; C 0
128
128

S 1 C   0.299  0.587   0.114
20.1687 20.3313 0.5   

0.5   20.4187 20.0813
S  C 255 

R r
255 

G r
255 

B r
S  (9.60)

Conversion back to R rG rB r is obtained by simply inverting these equations. But when head-
room and footroom exist, care must be taken in the inversion because if any processing of 
the image has occurred, some values might be in the invalid range below 16 or above 235 
(in the case of Y r) or above 240 (in the case of CB or CR). Clamping such values can lead 
to undesirable visual distortions in the result.

As with Y rPBPR, Y rCBCR is not an absolute color space but rather a way of encoding 
RGB information. The actual color displayed depends on the RGB primaries used, the white 
point, and the nonlinear transfer function. A value expressed as Y rCBCR is only predictable 
if these quantities are known, or if an ICC profile is used.

9.5.4 Y’UV
Originally the term Y rUV  referred to the color space used by the transmission of PAL analog 
video signals. The original scaling factors set the maximum U and V values to 0.436 and 
0.615, respectively, instead of 0.5. From Equations (9.53) and (9.54) this yields

  601Y r ;  ar 
R r 1 agG r 1 ab 

B r 5 0.299R r 1 0.587G r 1 0.114 B r (9.61)

  U ;  0.436 #  B r 2 Y r
1 2 ab

5 0.4921 1B r 2 Y r 2  (9.62)

  V ;  0.615 #  R r 2 Y r
1 2 ar

5 0.8773 1R r 2 Y r 2  (9.63)
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Surprisingly, PAL uses the Rec. 601 coefficients to convert to luma, as in Equation (9.51), 
even though the PAL primaries are different from those of NTSC.

Since the advent of digital video, the term Y rUV  has adopted a more ambiguous meaning 
and should generally be avoided in favor of the more specific Y rCBCR. Often, Y rUV  simply 
means some scaled version of Y rCBCR, and it is essential to know the scaling factors in order 
to properly interpret the values. One commonly used definition is the headroom/footroom 
version of Equation (9.59), which can be approximated by integer-only computations as:

 C219
601Y r

U
V

S < C 16
128
128

S 1
1

256
 C 66 129 25

238 274 112
112 294 218

S  C 255 
R r

255 
G r

255 
B r

S  (9.64)

with the inverse transform given by

 C 255 
R r

255 
G r

255 
B r

S <
1

256
 C298 0    409

298 2100 2208
298    516 0

S  £ C219
601Y r

U
V

S 2 C 16
128
128

S≥ (9.65)

9.5.5 Y’IQ
As Y rUV  was the color space used by analog PAL, the color space used originally by ana-
log NTSC was Y rIQ, which is Y rUV  with the chrominance axes rotated by 33 degrees and 
exchanged:

 C601Y r
   I
   Q

S ; C1 0 0
0 2sin 1 338 2 cos 1 338 2
0    cos 1 338 2 sin 1 338 2 S  C601Y r

   U
   V

S  (9.66)

However, even NTSC switched from using Y rIQ to Y rUV  in the early 1970s, so that Y rIQ 
has been obsolete for a long time now.

9.5.6 Converting from R’G’B’ to Grayscale
We are now in a position to consider a problem that arises frequently in practice, namely 
how to properly convert an R rG rB r image to grayscale. Conventional wisdom suggests that 
one should always use the 3-6-1 rule of Equation (9.51):

 gray 5 0.299R r 1 0.587G r 1 0.114B r (9.67)

This is the transformation you will most often find in image processing and computer vision 
software. However, as we saw in our analysis above, this transformation has never been cor-
rect in a colorimetric sense because it applies coefficients derived from linear RGB space to 
a nonlinear R rG rB r space; moreover, it is based upon obsolete primary chromaticities and an 
obsolete white point. In contrast, the proper way to convert R rG rB r to grayscale is to apply 
the appropriate inverse nonlinear transfer function (gamma expansion) to yield linear RGB 
values, then apply the Rec. 709 coefficients of Equation (9.52), then apply the appropriate 
nonlinear transfer function (gamma compression). An easy way to convince yourself of the 
potential error that can occur by ignoring gamma is to apply Equation (9.67) to a purely blue 
image (R r 5 G r 5 0, B r 5 255 for all pixels); the result will be gray 5 29 everywhere, 
which will be noticeably darker than the original.

Having said that, it is comforting to know that, unless the particular application at hand 
requires colorimetric fidelity, there is no need to go to all this trouble. One of the reasons 
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the 3-6-1 rule is still widely used is that it works well in practice, but in fact just about any 
reasonably weighted average of the three components yields a visually acceptable result, as 
we saw earlier.† For many applications, therefore, simpler methods of conversion are fea-
sible, such as the one we introduced in Equation (3.37),

 gray 5
1
4

 1R r 1 2G r 1 B r 2  (9.68)

which has the advantage that it can be implemented with only bitshifts and without any 
floating-point multiplication or division. As an aside, note that (as we discussed previously) 
the inverse conversion from grayscale to R rG rB r is easy: simply replicate the value 
three times.

9.5.7 Opponent Colors
Because of their effective use by the human visual system, opponent color spaces are often 
useful for image processing applications. One natural approach is to define the two color 
dimensions c1 and c2 as blue minus yellow and red minus green, respectively, as in the 
human visual system:

  c1 ;  blue 2 yellow 5 B r 2
1
2

 1R r 1 G r 2  (9.69)

  c2 ;  red 2 green 5 R r 2 G r  (9.70)

leading to

 CY r
c1

c2

S ; C ar ag ab

21
2 21

2 1
1 21 0

S  CR r
G r
B r

S  (9.71)

where Y r is the luma, and we can set ar 5 ag 5 ab 5 1
3 for simplicity or use one of the 

standard sets of luma coefficients.
An alternative, which we shall call the Hanbury transformation, is to define c1 and 

c2 as follows:

 CY r
c1

c2

S ; Car ag ab

1 21
2 21

2

0 !3
2 2!3

2

S  CR r
G r
B r

S  (9.72)

which has the advantage that it maps the corners of the R rG rB r color cube to a hexagon in 
the c1-c2 chromaticity plane, a concept explored in more detail next.

9.5.8 HSV and HSL
Consider the R rG rB r color cube shown in Figure 9.13, whose eight vertices correspond to 
the three additive and subtractive primaries (red, green, blue, cyan, magenta, and yellow), 
along with black and white. By convention black is at (0, 0, 0), white is at (1, 1, 1), and red, 
green, and blue are at (1, 0, 0), (0, 1, 0), and (0, 0, 1), respectively. Note that the R r, G r, and 
B r axes form a righthand coordinate system. Also shown in the figure is the line of grays 
connecting the white and black vertices, along with an arbitrary point at p 5 1 0.8, 0.6, 0.4 2  
† Section 3.4.1 (p. 93).
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for illustrative purposes. While one could also define the RGB color cube using linear light 
intensities, it rarely (if ever) makes sense to do so, since it is usually desirable to preserve 
perceptual uniformity; hence the choice of R rG rB r here.

A curious property of the R rG rB r color cube is that, for each additive primary (red, green, 
or blue), there is exactly one face that connects it with three other vertices, each of which 
is not an additive primary. Thus, the red face connects red with magenta, yellow, and white; 
the green face connects green with cyan, yellow, and white; and the blue face connects blue 
with cyan, magenta, and white. If the cube is rotated by 45 degrees about the R r axis, then 
rotated again by û about the original G r axis, where û < 235.26 degrees,† then the cube 
will be balanced on the black vertex, with the white vertex directly above it. Viewed from 
above with orthographic projection, the cube adopts the shape of a regular hexagon whose 
six vertices are the three additive and three subtractive primaries, with the gray axis coming 
out of the page and piercing the center of the hexagon. Compared with Figure 9.3, we see 
that this hexagon is simply our old friend the color wheel, with a slightly different shape. 
Mathematically the transformation from R rG rB r to color difference axes c1 and c2 is 
obtained by concatenating the rotation matrices, along with appropriate scaling factors for 
the nonlinear chromaticity and luma axes:

 Cc1

c2

Y r
S 5  C"3

2 0 0
0 "3

2 0
0 0 1

3 "3
S  C   cos û 0 sin û

0 1 0
2sin û 0 cos û

S  C1 0 0
0 cos 458 2sin 458

0 sin 458    cos 458

S  CR r
G r
B r

S  (9.73)

 5  C1 21
2 21

2

0 !3
2 2!3

2
1
3   13    13

S  CR r
G r
B r

S  (9.74)

which is simply the Hanbury transformation with ar 5 ag 5 ab 5 1
3, and a reordering of the 

rows. Notice that this transformation maps red 1R r 5 1, G r 5 B r 5 0 2  to 1 c1, c2 2 5 1 1, 0 2 , 
green 1G r 5 1, R r 5 B r 5 0 2  to 121

2, 
!3
2 2 , and blue 1B r 5 1, R r 5 G r 5 0 2  to 121

2, 2
!3
2 2 .

The hexagon is naturally divided into six equally-sized sectors, and points fall into one 
or the other sector depending upon the relative values of R r, G r, and B r. By convention the 
hue is defined as the counterclockwise angle with respect to the red axis, so that sector 0 
contains all the points such that R r $ G r $ B r (hue from 0 to 60 degrees), sector 1 contains 
all the points such that G r $ R r $ B r (hue from 60 to 120 degrees), and so forth. R r is the 
maximum value in sectors 0 and 5, G r is the maximum value in sectors 1 and 2, and B r is the 
maximum value in sectors 3 and 4. These relationships can be seen from the colored faces 
of the 3D color cube, or from the lines that bisect the primary colors in the 2D hexagon.

For any given color 1R r, G r, B r 2  located at a certain point within the cube, the point lies 
within a subcube anchored at black whose length along each side is Vmax ; max 1R r, G r, B r 2 , 
shown in the left side of Figure 9.13. This subcube projects orthographically onto the page 
as a smaller hexagon within the complete hexagon already mentioned. For clarity, we shall 
refer to the smaller hexagon as a sub-hexagon. The size of the sub-hexagon depends on 
Vmax, with Vmax 5 1 yielding the complete hexagon, and Vmax 5 0 yielding a point. If we 
stack all these sub-hexagons on top of one another we get a hexagon-based pyramid called 
a hexcone, which is illustrated in Figure 9.14.

With these preliminaries in place, we are now in a position to begin to quantify the 
concepts of hue, chroma, saturation, and value that we mentioned earlier in the context of 

† The exact angle is given by cos û 5 "2/3, sin û 5 21/"3.
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the Munsell color system. The HSV and HSL color spaces were developed in the 1970s for 
computer graphics applications. Specifically, they are used widely in “color picker” user 
interfaces that allow a person to select a color in a more intuitive way than by specifying 
R rG rB r values directly. They are also commonly used in image processing and computer 
vision applications because they separate luma from nonlinear chrominance, placing the 
latter values along axes that facilitate, to some extent, meaningful color differences.

A confusing set of choices exists in defining a color space based on these principles, which 
over time has led to a mishmash of related techniques all going by different but similar-
sounding names. Thus, we have HSV (hue-saturation-value), HSL (hue-saturation-lightness), 
HSI (hue-saturation-intensity), HSB (hue-saturation-brightness), and so forth. In many of 
these cases the names are misleading because the terms are not used precisely, and the 

Figure 9.13 LEFT: The R rG rB r color cube, with the red, green, and blue faces colored. Also shown is the line of grays and an arbitrary 
point at p 5 10.8, 0.6, 0.4 2  along with its subcube. Middle: Top-down view of the cube after rotating so that white is above black. RIGHT: 
The 2D hexagon within which all 1R r, G r, B r 2  colors project orthographically parallel to the line of grays. The hexagon is divided into six 
sectors (numbered 0 through 5), and each point falls into a particular sector depending on the relative ordering of R r, G r, and B r.
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Figure 9.14 LEFT: The hexcone obtained by stacking the sub-hexagons associated with each value of Vmax. RIGHT: The point 
p 5 10.8, 0.6, 0.4 2  projects onto the nonlinear chromaticity plane at 1 c1, c2 2 < 10.3, 0.2 2 , which lies within sector 0. Its sub-hexagon 
with spokes of length 0.8 is shown within the complete hexagon, and the intersection of the ray toward p with the sub-hexagon is 
shown at < 10.6, 0.35 2 . For any point, the hue is the counterclockwise angle with respect to the red axis, the chroma is the distance 
from the center to the point, and the saturation is the chroma normalized by the distance from the center to the sub-hexagon along the 
ray passing through p.
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differences between the spaces are not necessarily captured by the names. For example, the 
term “value” in HSV is not used in the standard way, HSL does not use true “lightness”, HSI 
usually does not denote true linear “intensity”, and HSB does not capture actual “brightness”, 
which is a subjective concept. Similarly, the “hue” in HSV slightly differs from that of HSL.

To avoid such confusion, we shall describe the original formulations of HSV and HSL, 
treating these as the official definitions, being careful to maintain the proper distinction 
between the two. In truth, they are both quite similar, with the most significant difference 
being that HSV is based on orthographic projection, whereas HSL is based on perspective 
projection. This choice primarily affects the saturation, which, as we will show, is not really 
the best quantity to be measuring anyway.

HSV
The HSV color space is based on the hexcone model, which involves orthographic pro-
jection along a direction parallel to the line of grays. The value V is simply the height 
within the cone, namely, Vmax, while the saturation and hue are defined within the sub-
hexagon specified by Vmax. The saturation S is the distance from the center to the point, 
relative to the distance to the outer edge of the sub-hexagon along the same ray. That is, 
S 5 0 is a shade of gray, while S 5 1 means that the color is on the edge of the sub-
hexagon and therefore is purely saturated. If we define Vmin ; min 1R r, G r, B r 2 , then 
any color can be split into the sum of a term involving two colors and a term represent-
ing a shade of gray that dilutes the color. For example, if R r $ G r $ B r, then we have 1R r, G r, B r 2 5 1Vd, G r 2 Vmin, 0 2 1 1Vmin, Vmin, Vmin 2 , where Vd ; Vmax 2 Vmin. The 
saturation is then given by Vd/Vmax. The hue is approximated by H, the proportional length 
within the given sector along the direction parallel to the outer rim of the hexagon, added to 
the sector number. This definition yields an approximate hue between 0 and 6, which can 
then be converted to the range 0 to 1 or 0° and 360°, as desired, by a simple conversion factor.

Conversion from R rG rB r to HSV involves computing the corresponding coordinates 
within the hexcone given a point in the color cube, then normalizing to compute saturation. 
Assuming 0 # R r, G r, B r # 1, the conversion is given by

  V ;  Vmax  (9.75)

  S ;  Vd/Vmax  (9.76)

  H ;  608 #  c 1G r 2 B r 2 /Vd 1 0  if R r 5   Vmax         
1 red sectors 0 and 5 21B r 2 R r 2 /Vd 1 2  if G r 5   Vmax         

1 green sectors 1 and 2 21R r 2 G r 2 /Vd 1 4  if B r 5   Vmax,       
1 blue sectors 3 and 4 2  (9.77)

where 0 # S, V # 1. In the definition of H, the fractions range from 21 to 1, so that when 
added to the central values of 0, 2, and 4 they yield a result that ranges from 21 to 5. There-
fore, if the pixel is in sector 5, the resulting angle will be between 2608 and 0°, so to ensure 
that 08 # H , 3608, simply add 360° to the result above if H , 08. Note that if S 5 0, hue 
is not defined due to divide by zero.

If we define % ; H/608, then the inverse transformation back to R rG rB r is given by

 1R r, G r, B r 2 5 f 1V, V3, V1 2 if :%; 5   0   1 sector 0 21V2, V, V1 2 if :%; 5   1   1 sector 1 21V1, V, V3 2 if :%; 5   2   1 sector 2 21V1, V2, V 2 if :%; 5   3   1 sector 3 21V3, V1, V 2 if :%; 5   4   1 sector 4 21V, V1, V2 2 if :%; 5   5,  1 sector 5 2  (9.78)
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where

  V1 ;  V 1 1 2 S 2  (9.79)

  V2 ;  V 1 1 2 aS 2  (9.80)

  V3 ;  V 1 1 2 1 1 2 a 2 S 2  (9.81)

and a ; % 2 :%;.
The saturation S 5 Vd/Vmax can be interpreted geometrically as the chroma divided by 

the maximum chroma, where the chroma is defined as the distance from the hexagon center 
to the point, calculated as

 C ; "c1
2 1 c2

2 5 "R r2 1 G r2 1 B r2 2 R rG r 2 R rB r 2 G rB r  (9.82)

and the maximum chroma for the particular value Vmax and the approximate hue H is given 
by the distance from the hexagon center to the sub-hexagon along the ray passing through 
the point, which can be shown to be†

 Cmax 5 CVmax/Vd  (9.83)

leading to saturation as the normalized chroma: S 5 C/Cmax 5 Vd/Vmax, which is the same 
as Equation (9.76).

If the exact hue angle within the hexagon is desired, it is given by

 tan H 5
c2

c1
5

"3 1G r 2 B r 2
2R r 2 G r 2 B r

 (9.84)

where Atan2 should be used to ensure that the resulting angle is in the correct quadrant,‡ 
and the overbar indicates that this is not always identical to H, although they do happen to 
agree whenever the hue is a multiple of 30°. Over the entire R rG rB r cube, the maximum 
discrepancy between H in Equation (9.77) and H in Equation (9.84) is less than 1.2°.

HSL
The HSL color space is based on the triangle model, in which the point 1R r, G r, B r 2  is 
perspectively projected onto the R r 1 G r 1 B r 5 1 plane which passes through the red, 
green, and blue vertices of the color cube. This projection yields the intersection of the plane 
with the line passing through the black vertex and the point, as shown in Figure 9.15. Given 
any point in the cube, its projection onto this plane lands within the triangle defined by the 
red, green, and blue vertices. The line of grays intersects the triangle at its centroid. The hue 
is the counterclockwise angle with respect to the red axis, and the saturation is the distance 
from the centroid to the perspectively projected point normalized by the distance from the 
centroid to the edge of the triangle along the ray passing through the perspectively projected 
point. Assuming 0 # R r, G r, B r # 1, the conversion from R rG rB r to HSL is given by

  L ;  
1
3

 1R r 1 G r 1 B r 2  (9.85)

  S ;  1 2
Vmin

L
 (9.86)

  H ;  tan21 "3 1G r 2 B r 2
2 R r 2 G r 2 B r

 (9.87)

† The rather tedious derivation is omitted.
‡ Section 4.4.4 (p. 179).
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where the overbars are used for clarity.  H  is the exact angle, identical to Equation (9.84); 
S is the saturation in the triangle model, which is quite different from the saturation in the 
hexcone model; and the overbar in L reminds us that this is neither true lightness nor lumi-
nance but rather luma with coefficients ar 5 ag 5 ab 5 1

3. Conversion back to R rG rB r 
depends on the sector:

 1R r, G r, B r 2 5 c 1V2, V3, Vmin 2 if 08 # H , 1208      1 sectors 0 and 1 21Vmin, V2, V3 2 if 1208 # H , 2408  1 sectors 2 and 3 21V3, Vmin, V2 2 if 2408 # H , 3608  1 sectors 4 and 5 2  (9.88)

where

  Vmin 5  L 1 1 2 S 2  (9.89)

  V2 ;  L ¢1 1 S 

cos 1H 2 h 2
cos 1 608 1 h 2 H 2 ≤  (9.90)

  V3 ;  3L 2 1Vmin 1 V2 2  (9.91)

and h ; 1208 # :H/1208;.
To understand the definition of saturation, note that the point 1R r, G r, B r 2  perspec-

tively projects onto the plane at 1
D 1R r, G r, B r 2 , where D ; R r 1 G r 1 B r 5 3L, so that 1R r 1 G r 1 B r 2 /D 5 1. If we let 1 c1, c2 2  refer to the coordinates of the projection of 1R r, G r, B r 2  onto the c1-c2 plane by the Hanbury transformation in Equation (9.74), and 1 c1, c2 2  be the coordinates of the projection of 1

D 1R r, G r, B r 2 , then it is easy to see that

 Bc1

c2
R 5

1
D

 Bc1

c2
R  (9.92)

which reveals that the two points are related to each other by a simple scaling along the 
ray from the origin, so that both points share the same hue, that is, tan21 

c1
c2 5 tan21 

c1

c2
. The 

chroma resulting from this perspective projection is

 C ; "c 1
2 1 c 2

2 5
1
D

 "c 1
2 1 c 2

2 5
C
D

 (9.93)

where C is the chroma from orthographic projection defined in Equation (9.82).

Figure 9.15 LEFT: In the 
HSL color space, a point 
in the R rG rB r color cube 
is perspectively projected 
onto the plane defined by 
R r 1 G r 1 B r 5 1, with 
all projections passing 
through the origin. RIGHT: 
Top-down view (white is 
directly above black) of 
the triangle defined by the 
intersection of the plane 
and the cube. The complete 
hexagon is shown for 
reference.
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As before, saturation is the normalized chroma: S 5
C

Cmax
, where Cmax is the distance from 

the triangle centroid to the intersection of the ray with the triangle, calculated as†

 Cmax 5
C

3 1L 2 Vmin 2  (9.94)

which leads to S 5
3 1 L 2 Vmin 2

3L
5 1 2

Vmin

L , as in Equation (9.86).
Sometimes you will see the following definition for hue:

 H ; bu if B r # G r
3608 2 u otherwise

 (9.95)

where

 u ; cos21 ¢ 1
2 3 1R r 2 G r 2 1 1R r 2 B r 2 4" 1R r 2 G r 2 2 1 1R r 2 B r 2 1G r 2 B r 2 ≤  (9.96)

or its equivalent using the trigonometry identity cos21 u 5 908 2 tan21 1 u/"1 2 u2 2 . 
Simple algebraic manipulation reveals that both Equation (9.95) and its inverse tangent 
equivalent are identical to the much more compact Equation (9.87).

For completeness we should mention that the original formulation of HSL allows arbitrary 
coefficients ar, ag, and ab in Equation (9.85), as long as ar 1 ag 1 ab 5 1. However, relax-
ing the constraint that ar 5 ag 5 ab 5 1

3 means that the “line of grays” is no longer a line but 
a curve, which greatly complicates the math with no real practical benefit for most applications.

Using Chroma Instead of Saturation
In reality, saturation does not do a good job of capturing the purity of a color. Recall that 
both HSV and HSL were devised for the context of computer graphics and user interfaces, 
in which it makes sense for the quantity presented to the user (saturation) to always range 
from 0 to 1. For image processing and analysis, however, it is more important that the 
quantity capture some notion of the color purity. To see that saturation does not do this, 
consider the color 1R r, G r, B r 2 5 1 0.01, 0, 0 2 , assuming that the values range from 0 to 
1. On the screen such a color would be considered black and colorless, but its saturation is 
1 in both HSV and HSL, as if it were completely saturated. To overcome this problem, it is 
often preferable to use the chroma, which is obtained by removing the normalization, result-
ing in color spaces that could be called HCV or HCL. There are four choices for chroma, 
any of which may be used: the actual distances C and C in Equations (9.82) and (9.93), 
respectively, or their approximations C r ; Vd in the case of HSV or C r ; 1 2 Vmin in the 
case of HSL. Figure 9.16 shows an example of chroma versus saturation for a real image.

9.5.9 CIE XYZ, L* u* v*, and L* a* b*
In many applications we would like to be able to measure the difference between two colors. 
Clearly, such differences only make sense when they are small, because (for example) it 
makes no sense to ask whether red looks more like green than blue looks like yellow. 
Nevertheless, even with small differences, the choice of color space is important. In 
particular, one cannot expect to obtain a meaningful result by performing such a difference 
in an RGB or R rG rB r space. To see that CIE XYZ has the same limitation, note that in Figure 
9.10 green occupies a much larger area than yellow, so that the distance between two colors 

† As before, the derivation is omitted.
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436 Chapter 9 • Color

that are very far from each other (e.g., red and yellow) can be the same as the distance 
between two colors that look quite similar (e.g., two types of green). Quantitatively, such a 
result can be obtained by performing a variation of the color matching experiment in which 
two color patches are presented to the observer under the same lighting, and the observer is 
asked whether the two patches are the same color. The threshold for being able to distinguish 
between two colors is known as the just-noticeable difference (JND),† and if the contours 
of the JND regions are plotted on the CIE chromaticity diagram, they appear as ellipses 
which are known as MacAdam ellipses.

In a perceptually uniform color space the JND contours are circles, so that Euclidean dis-
tances in the color space capture the perceptual dissimilarity between colors. One way to achieve 
an approximation to such an ideal is to apply a projective transform to the XYZ coordinates:

  u r ;  
4X

X 1 15Y 1 3Z
5

4x
3 2 2x 1 12y

 (9.97)

  v r ;  
9Y

X 1 15Y 1 3Z
5

9 y

3 2 2 x 1 12y
 (9.98)

where 1 u r, v r 2  define the CIE 1976 Uniform color space (UCS). The quantities u r and 
v r denote the CIE 1976 successors to the obsolete 1960 CIE u and v quantities, related by 
u 5 u r, v 5 2

3 v r.
The CIE 1976 UCS is used by the CIE 1976 L*u*v* color space (CIELUV).‡ The 

transformation from XYZ to L*u*v* is given by applying a nonlinear transfer function to 
the relative luminance, then multiplying by shifted versions of u r and v r.

  L
 ;  116 f 1Y/Yn 2 2 16 (9.99)

  u
 ;  13L
 1 u r 2 unr 2  (9.100)

  v
 ;  13L
 1 v r 2 vnr 2  (9.101)

† Section 2.1.2 (p. 21).
‡ CIELUV is written without any space and is pronounced “SEA-love”. Similarly, CIELAB is pronounced 
“SEA-lab”.

Figure 9.16 Saturation versus chroma. Chroma more consistently captures the intuitive notion of the pureness of the color than 
does saturation.
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9.5 Color Spaces 437

where the relative luminance is obtained by dividing the CIE luminance Y by the luminance 
Yn of the reference white, and where the nonlinear transfer function f is defined as the cube 
root for most values, with a linear slope at low intensities chosen so that the function and 
its derivative are continuous at the junction:

 f 1 t 2 ; b t1/3 if 0.008856 # t # 1
7.787t 1 16/116 if 0 # t , 0.008856

 (9.102)

The values unr and vnr are the u r and v r of the reference white, whose tristimulus values are 
given by Xn, Yn, and Zn, respectively. We should note that the shifting of u r and v r in L*u*v* 
has no basis in psychovisual experiments, so there is no reason to expect them to perform 
well in scenarios far from the white point used to derive them. The quantity L*, known as 
CIE “lightness” and ranging from 0 to 100, is the standard approximation to the human 
perceptual response to luminance, designed by taking into account Stevens’ Power Law.† It 
closely models the Munsell value, except that the range is different.

An alternative to CIELUV is the CIE 1976 L*a*b* color space (CIELAB), which is 
also designed to be perceptually uniform. Rather than using a projective transform, as in 
CIELUV, CIELAB relies upon color differences similar to opponent colors:

  L
 ;  116f 1Y/Yn 2 2 16  (9.103)

  a
 ;  500 1  f 1X/Xn 2 2 f 1Y/Yn 2 2  (9.104)

  b
 ;  200 1  f 1Y/Yn 2 2 f 1Z/Zn 2 2  (9.105)

where f is defined in Equation (9.102). The a* axis roughly corresponds to the red-green 
opponent colors, while the b* axis corresponds to the blue-yellow opponent colors. 
Although the committee at the time (in 1976) could not agree between the two alternatives 
for chroma (hence resulting in two standards), over the years it has generally been agreed 
upon that L*a*b* is the more accurate model, so that L*a*b* is the standard approach 
today when a perceptually uniform color space is needed. Even so, note by comparing with 
Equation (9.31) that L*a*b* itself is flawed because it is based upon a “wrong von Kries” 
method, with scaling performed (incorrectly) in XYZ space rather than in the space of the 
L-, M-, and S-cones.

The total color difference "1L1
 2 L2
 2 2 1 1 u1
 2 u2
 2 2 1 1 v1
 2 v2
 2 2 in L*u*v* 
space is approximately perceptually uniform. That is, two colors whose difference 
is small are not perceptually distinct, whereas two colors whose difference is large 
are noticeably different. Similarly, in L*a*b* the total color difference is given by "1L1
 2 L2
 2 2 1 1 a1
 2 a2
 2 2 1 1 b1
 2 b2
 2 2. More recent formulations, such as 
CIE94 and CIEDE2000, include additional normalization and terms to improve perceptual 
normalization.

9.5.10 CMYK
The final color space we shall consider is CMYK (cyan-magenta-yellow-black). Unlike 
all the other color spaces we have mentioned, CMYK is a subtractive color space used for 
printing. In theory, it is simply the additive inverse of RGB:

 CC
M
Y
S 5 1 2 CR

G
B
S  (9.106)

† Section 2.3.2 (p. 43).
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438 Chapter 9 • Color

9.6 Further Reading
The material in this chapter lies at the intersection of 
color science (colorimetry), video engineering, and 
image processing. There are many good books on color 
science, such as the classic by Wyszecki and Stiles [1982] 
or the more recent book by Lee [2005]. An excellent short 
introduction to color appearance in general has been writ-
ten by Harold [2001] as well as Brainard and Stockman 
[2009], and another easily accessible presentation can be 
found in the book by Fairchild [2011]. Such works cover 
the CIE chromaticity diagram, CIE color spaces, CAMs 
and CATs, the difference between SSFs and CMFs, and 
the difference between saturation, chroma, and colorful-
ness. Helpful descriptions can also be found in Wandell 
[1995] and Palmer [1999], which are written from a psy-
chological point of view. For an introductory presentation 
aimed at the prepress and printing industries, see Green 
[1999]. And, of course, the book that started it all is the 
classic work of Newton [1704].

Early work on color matching is due to Grassmann 
[1854]. Grassmann influenced Maxwell [1860], who per-
formed detailed color matching experiments of his own, 
providing an early description of metamers. The CIE 1931 
CMFs are based on the 2° experiments conducted inde-
pendently by Wright [1929] and Guild [1931]. However, 
these experiments did not measure the CMFs directly, so 
the CIE 1931 CMFs had to be obtained by assuming that 
the CIE 1924 photopic LEF was a linear combination of 
the CMFs, which led to errors in the estimated CMFs due 
to the fact that the CIE 1924 LEF curve has a noticeable 
error in the small-wavelength (blue) region. As explained 
by Stockman and Sharpe [1999], corrections later made 
by Judd [1951] and Vos [1978] alleviate this problem. The 
CIE 1964 CMFs are based on the 10° experimental results 
presented by Stiles and Burch [1959] and, to a lesser 
extent, on those by Speranskaya [1959]. The cone SSFs 

were first measured by Svaetichin [1956]. The CMFs 
shown in Figure 9.5 are from the 2° experiments of Stiles 
and Burch [1955]; while the cone SSFs in Figure 2.2 are 
from Stockman and Sharpe [2000] and are based on the 
10° data of Stiles and Burch [1959], among other sources. 
The data for the CMFs, SSFs, and CIE chromaticity dia-
gram can be found online.†

Some of the material in this chapter relies upon the 
video engineering insights of Poynton [2003]. In that 
work the reader will find descriptions on transforming 
between cameras and displays, the mathematics of white 
balancing, the distinction between luminance and luma, 
and so forth. The diagram in Figure 9.12 explaining the 
origin of luma is adapted from that work, and the notation 
255
601Y r can also be found there. The distinction between the 
two terms luma and luminance were clarified in Engi-
neering Guideline EG 28, which was adopted by SMPTE 
in 1993. The official Rec. 601, Rec. 709, and Rec. 2020 
specifications can be found online.‡ The term “wrong von 
Kries” is due to Terstiege [1972].

The Munsell Color System was first described in the 
classic books of Munsell [1905, 1915]. The so-called 
Hanbury transformation is from Hanbury [2008]. The 
Bradford transform is due to Lam [1985], while the 
Sharp transform can be found in Finlayson and Süsstrunk 
[2000]. The Macbeth ColorChecker is the work of 
McCamy et al. [1976]. Alvy Ray Smith is the pioneer 
behind HSV and HSL, and the equations presented here 
are from his original publication of Smith [1978]. In par-
ticular, our HSL model is identical to Smith’s original 
HSL model (except for our restriction on the luma coef-
ficients); it is also identical to the model called HSI in 
Gonzalez and Woods [2008]. For measuring the differ-
ence between color distributions, see the earth mover’s 
distance as described by Rubner et al. [1998].

† Colour and Vision Research Laboratory, http://www.cvrl.org
‡ http://www.itu.int

so that pure red 1R 5 1, G 5 B 5 0 2  is a mixture of magenta and yellow, and so forth, 
a relationship that is obvious from the color wheel and chromaticity diagram. In practice, 
however, as we have mentioned, paint pigments and inks are highly nonlinear, and therefore 
subtractive color spaces are much more difficult to characterize mathematically. Although 
we often say that cyan, magenta, and yellow are the primary colors of printing, this is really 
just an approximation necessitated by economics. Inexpensive printers can faithfully repro-
duce a wide range of colors using just mixtures of these three colors, but the color gamut of 
such printers (which are not triangles but rather irregular shapes) tend to be much smaller 
than the gamut of displays. As a result, high-end printers use more than three primary colors 
(e.g., orange and green), and paint mixers in paint stores typically combine 12 or more colors.
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9.3 Explain the relationship between the rainbow and the color wheel.

9.4 Can an SSF be estimated for the rods? Can an LEF be estimated for the cones? Why 
or why not?

9.5 Compare and contrast the additive and the subtractive color models.

9.6 What is a metamer?

9.7 If a plot has some negative values, list all of the possibilities that it could be: SPD, SSF, 
LEF, or CMF. Repeat for a plot without any negative values.

9.8 By combining adjacent spectral bands, the 3 3 35 cone fundamental matrix can be 
represented in simplified form by the following 3 3 7 matrix:

S 5 CsL
T

sM
T

sS
T

S 5 C0.0134 0.0858 0.4985 0.9598 0.6523 0.1059 0.0037
0.0174 0.1472 0.6548 0.8497 0.2173 0.0100 0.0002
0.3751 0.7165 0.0758 0.0013 0.0000 0 0

S
where the first column captures the multiband 380–430 nm, the second column captures 
430–480 nm, and so forth, to the last column, which captures 670–720 nm.

(a) What are the outputs of the three cones for the test light t 5 38 9 1 9 6 2 34T?

(b) Find a metamer of this test light.

PROBLEMS

9.1 Define each of the following terms, and explain how they are related to each other:

(a) spectral power distribution (SPD)

(b) spectral sensitivity function (SSF)

(c) color matching function (CMF)

(d) luminous efficiency function (LEF)

9.2 The spectral power distributions (SPDs) of three monochromatic light sources A, B, 
and C are shown in the plot below.

(a) What color does light A look like? B? C?

(b) If lights B and C are shone together, what color will result?

(c)  The table below shows the reflected power measured when the lights were shone in 
different combinations on an unknown surface. What color is the surface? Explain 
your answer.

incident light A B C A 1 B A 1 C B 1 C
reflected power 40 80 10 100 30 70

400

50 A

B

C100Po
w

er

150

200

500
Wavelength (nm)

600 700
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9.9 Suppose that, for a given set of primaries, a particular test light t is matched with the tri-
stimulus values ur 5 1.0, ug 5 0.5, and ub 5 0.7. Assuming that Grassman’s Law applies, 
what are the tristimulus values when the intensity of the test light is doubled?

9.10 If a set of CMFs has no negative values, what does this tell you about the primaries 
used?

9.11 By combining adjacent spectral bands, the CMFs for CIE 1931 XYZ can be repre-
sented in simplified form by the following 3 3 7 matrix:

C~ 5 C0.0523 0.2843 0.0419 0.4864 0.9633 0.2932 0.0150
0.0016 0.0505 0.4120 0.9547 0.5982 0.1145 0.0055
0.2515 1.5581 0.3137 0.0131 0.0007 0.0000 0

S
Using the cone fundamentals from Prob. 9.8, calculate the 3 3 3 matrix that transforms 
cone outputs to tristimulus values.

9.12 Explain how the Y in the CIE XY Z space relates to the luminance.

9.13 Name the rival to trichromatic theory.

9.14 Explain the difference between chroma and saturation.

9.15 For each of the names below, provide an everyday name to indicate what color is 
represented; also specify which color system is being used.

(a) 10R 3/6

(b) 2Y 8/16

(c) NCS 4055-R95B

(d) NCS 0580-Y10R

9.16 Search online for the CIE 1931 CMFs from Wright and Guild.† Plot the data and 
verify that they match Figure 9.9. Repeat for the CIE 1964 CMFs from Stiles and Burch.

9.17 Can any color be matched as the linear combination of just two monochromatic pri-
maries, if (a) the primaries are fixed or (b) the primaries can be selected according to the 
color being matched? Explain why or why not using the CIE chromaticity diagram.

9.18 Answer the following:

(a)  What is the approximate correlated color temperature (CCT) of standard illuminant 
D75?

(b)  As the CCT increases, does the dominant wavelength increase or decrease? 
(Hint: Recall Planck’s Law from Figure 2.39.)

(c) Use Wien’s displacement law‡ to compute the dominant wavelength of D75. 

9.19 Three of the colors on the Macbeth ColorChecker color-rendition chart are 
“blue flower”, “moderate red”, and “foliage”, with CIE 1931 xyY coordinates of 
(0.2651,0.2400,24.27), (0.4533,0.3058,19.77), and (0.3372,0.4220,13.29), respectively. 
Suppose these colors produce RGB values of (0.35,0.40,0.92), (0.85,0.42,0.31), and 
(0.27,0.81,0.33), respectively. Compute the 3 3 3 transformation matrix Mc

21 to trans-
form an RGB triplet sensed by the camera into the XYZ color space. Are the RGB values 
gamma-compressed? Why or why not?

† For example, see http://www.cvrl.org
‡ Section 2.5.3 (p. 60).

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



Problems 441

9.20 Explain why ICC profiles are useful.

9.21 Are the CMFs that result from a color matching experiment dependent upon the 
primary lights used? Explain your answer.

9.22 Give some reasons why photographs taken of the same scene by cameras calibrated 
using the Macbeth ColorChecker color-rendition chart may still not look identical.

9.23 What is white balancing, and why is it important?

9.24 Using the parameters of Rec. 2020 provided in Table 9.1:

(a) Compute the 3 3 3 matrix conversion between RGB and CIE XYZ.

(b) What are the luma coefficients?

(c)  Compute the 3 3 3 matrix that transforms from R rG rB r to Y rPB 
PR using 10 bits per 

sample, for which the black level is defined as code 64, and the nominal peak level 
is code 940. (10-bit chroma values are similarly scaled by a factor of 4 from their 
8-bit values.)

(d)  What is the transform from R rG rB r to Y rCB 
CR?

9.25 Convert the gamma-corrected color 1R r, G r, B r 2 5 1 20, 40, 200 2  to (a) HSV color 
space and (b) HSL color space. Also, (c) compute the chroma and max chroma.

9.26 Convert the color with HSV values H 5 1208, S 5 0.7, V 5 0.7 to R rG rB r space.

9.27 Convert the color with luminance Y 5  0.4 and chromaticity coordinates 1 x, y 2 5 1 0.25, 0.4 2  into

(a) CIE 1976 L* u* v* color space, given Yn 5 0.54, unr 5 0.2009, and vnr 5 0.4610

(b) CIE 1976 L* a* b* color space, given Xn 5 0.3, Zn 5 0.66

9.28 In order to convert from R rG rB r to CIE XY Z, what must be known about the R rG rB r 
space?

9.29 Several prominent high-tech corporations (one rhymes with “loft” and the other 
rhymes with “frugal”) use red, green, blue, and yellow in their logos. Based on what you 
know about primary colors, explain why you think this combination has been found to be 
appealing.

9.30 Explain the difference between purple, violet, magenta, and pink.

9.31 Suppose your friend wants to build a computer monitor that uses cyan, magenta, and 
yellow primary lights. Is this possible? What will be the result?

9.32 Is color matching always linear? Why or why not?

9.33 Explain from the CIE chromaticity diagram why CMFs always have some negative 
values.

9.34 What is the difference between the photopic and scotopic LEFs?

9.35 Explain why chroma is better than saturation at capturing the purity of a color.

9.36 What standard illuminant is used in an ICC profile?

9.37 Convert 1R r, G r, B r 2 5 1 0, 0, 255 2  to (a) luma 601Y r, (b) luma 709Y r, (c) grayscale 
using Equation (9.68), and (d) gamma expansion, followed by conversion to luminance, 
followed by gamma compression, using Rec. 709. What do you conclude from these 
numbers?
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9.38 For computing distances between colors, what color space is recommended?

9.39 Show that Equation (9.77) is identical to the expression found in Smith [1978]:

 H ; 608 #  f5 1 b if G r # B r # R r x sector 0
1 2 g if B r # G r # R r x sector 1
1 1 r if B r # R r # G r x sector 2
3 2 b if R r # B r # G r x sector 3
3 1 g if R r # G r # B r x sector 4
5 2 r if G r # R r # B r x sector 5

 (9.107)

where

r ;
V 2 R r

V 2 Vmin
    g ;

V 2 G r
V 2 Vmin

    b ;
V 2 B r

V 2 Vmin

9.40 In the R rG rB r cube, points 1R r, G r, B r 2  and 1R r 1 x, G r 1 x, B r 1 x 2  lie along 
a line parallel to the line of grays, for any offset x. Due to the orthographic projection, in 
HSV both points project onto the same location in the hexagon and therefore have the same 
hue, chroma, and saturation. Verify this statement for chroma by substituting these values 
into (9.82).

9.41 Show that Equation (9.87) is equivalent to Equations (9.95) – (9.96).
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Now that we have covered the primary problems of image processing in the preceding chapters, the remainder of 
this book is focused upon the primary problems of image analysis. The first of these, segmentation, is a bottom-
up process that groups pixels in an image based on their low-level, local properties such as color or texture, so 

that each region contains pixels that look similar to one another. Segmentation involves two subproblems, namely, 
determining a model of the pixels in each region and assigning each pixel to the best fitting model. Since the models 
are not known beforehand and since there are no labeled training data, segmentation is a problem of unsupervised 
learning. Generally, the goal is to group pixels that are projections of the same object in the scene, although it must 
be kept in mind that there is no objective definition of “object.” For example, whether a person should be segmented 
from the background (keeping the head and body together as one object), or whether the head should be segmented 
separately from the body (two objects), can only be decided based on the particular task at hand.

There are two flavors of segmentation problems. In some cases it is desired to segment dense data, for example, 
pixels in an image, in which case the models tend to be fairly simple, capturing some notion of homogeneity in color or 
texture. In other situations the goal is to cluster sparse data, such as feature points detected in an image, in which case 
the models tend to be more complex, such as the equation for a line or plane. Although there is nothing fundamentally 
different between these two types of problems, in practice the various techniques tend to be more applicable for one 
type of problem than another. In this chapter we focus on segmenting images, whereas the next chapter addresses 
fitting more complex models to sparse data.

C H A P T E R 10
Segmentation
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10.1 Thresholding
The simplest variant of the segmentation problem is foreground/background 
segmentation. Earlier we saw that thresholding produces a binary image in which fore-
ground pixels have a value of 1, whereas background pixels have a value of 0.† Logically, 
these values can be considered as ON or OFF, respectively. The most difficult part of thresh-
olding is to determine an appropriate threshold value, whether manually or automatically. 
In this section we discuss several well-known methods for automatically determining the 
threshold value.

10.1.1 Global Thresholding
Let t be a single global threshold. Once t has been determined, it is applied to every pixel 
in a straightforward manner:

 Ir 1 x, y 2 5 bON if I 1 x, y 2 . t

OFF otherwise
 (10.1)

Most algorithms for automatically determining the threshold rely on examining the gray-
level histogram. Typically there is one peak corresponding to the foreground pixels and 
another peak corresponding to the background pixels, with a valley in between. The goal is 
to find the gray level near the minimum of the valley in order to best separate the foreground 
from the background.

Two simple, widely used global thresholding techniques are known as the Ridler-Calvard 
algorithm and Otsu’s method, both of which are described in this section. In a real imple-
mentation it may be advantageous to preprocess the image before applying such algorithms, 
such as first smoothing the image by convolving with a Gaussian, in order to make the 
histogram peaks more distinctive; or first computing the intensity edges and applying 
the algorithms only to the pixels near the edges, to reduce the asymmetry that occurs in the 
size of the histogram peaks when the foreground objects are small relative to the large 
background. Nevertheless, to simplify the presentation, we describe the basic algorithms 
without any such preprocessing.

Ridler-Calvard Algorithm
Figure 10.1 reproduces the image of fruit on a background that we saw before, along with 
its graylevel histogram. The histogram has one large well-defined mode on the left due 
primarily to pixels in the background, and another mode on the right, much broader and 
noisier, which is due primarily to foreground pixels. Therefore, a good threshold is one 
which separates these two modes of the histogram or, equivalently, lies in the valley between 
the two hills (at approximately gray level 130, in this case). A simple iterative algorithm to 
achieve this is the Ridler-Calvard algorithm. Let t be a threshold, and let mb be the mean 
gray level of all the pixels whose gray level is less than or equal to t, while mx is the 
mean gray level of all the pixels whose gray level is greater than t. If we assume that the 
background is darker than the foreground, then mb is the mean of the background pixels, 
whereas mx is the mean of the foreground pixels.

† Section 3.2.4 (p. 83)
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10.1 Thresholding 445

Let h 3, 4, , 5 0, c, z 2 1 be the value of the graylevel histogram for gray level ,, 
where z ; ngray 5 256 is the number of gray levels. Recalling our earlier discussion of 
moments,† it is easy to show that

 mb 5
m1 3t 4
m0 3t 4  and  m x 5

m1 3z 2 1 4 2 m1 3t 4
m0 3z 2 1 4 2 m0 3t 4  (10.2)

where

 m0 3t 4 5 at

,50

h 3, 4  and  m1 3t 4 5 at

,50

,h 3, 4 (10.3)

are the zeroth and first moments, respectively, of the histogram h from gray level 0 to t. 
Note that m0 is just the cumulative normalized histogram c, scaled so that m0 3z 2 1 4 is the 
number of pixels in the image.

The Ridler-Calvard algorithm iteratively computes the two means based on the current 
estimate of the threshold, then sets the threshold to the average of the two means. This clas-
sic algorithm, shown in Algorithm 10.1, requires one pass through the image to compute the 
histogram, then one pass through the histogram to compute the arrays m0 and m1, followed 
by a small number of iterations consisting only of constant-time operations. (Note that in 
Line 1 the normalized histogram could be used instead of the regular histogram since the 
divisions in Lines 9 and 10 cancel the scaling factor.)

As we shall see in the next chapter, Ridler-Calvard is simply the k-means algorithm 
applied to a graylevel histogram. Although iterative algorithms usually require a good start-
ing point—and k-means is no exception—Ridler-Calvard is powerful because in practice 
any initial value will converge to the same solution, because the computation is one-dimen-
sional. An example of the algorithm achieving a good solution despite a terrible initial value 
for t is illustrated in Figure 10.2.

The Ridler-Calvard algorithm is based on the assumption that the foreground and back-
ground gray levels are distributed as Gaussians with equivalent standard deviations. In such 
a case, the optimal decision boundary occurs where the two distributions intersect:

 
1"2ps2

 exp b2 

1 t 2 mb 2 2

2s2 r 5
1"2ps2

 exp b2 

1 t 2 m x 2 2

2s2 r  (10.4)

† Section 4.4.1 (p. 174).

Figure 10.1 LEFT: A 
grayscale image of several 
types of objects (fruit) on a 
dark background (conveyor 
belt). RIGHT: The graylevel 
histogram of the image.
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446 Chapter 10 • Segmentation

where mb and mx are the mean gray levels of the two groups of pixels. Solving this equation 
for t yields

 t 5
1mb 1 mx 2

2
 (10.5)

which appears in Line 11 of the algorithm. This derivation illustrates an important point 
in the design and analysis of algorithms that process noisy, real-world data: namely, such 
algorithms often make statistical assumptions about the data they are processing whether 
these assumptions are explicitly acknowledged or not, and specifying such assumptions 
explicitly enables the algorithm to be separated from the model. In other words, understand-
ing the underlying statistical assumptions allows us to separate the specific steps involved in 

ALGORITHM 10.1 Compute an image threshold using the Ridler-Calvard algorithm

Ridler-Calvard(I )

Input: grayscale image I
Output: threshold value t

 1 h d  ComputeHistogram(I )
 2 m0 30 4 d h 30 4
 3 m1 30 4 d 0
 4 for k d 1 to z 2 1 do
 5    m0 3k 4 d m0 3k 2 1 4 1 h 3k 4
 6    m1 3k 4 d m1 3k 2 1 4 1 k 
 h 3k 4
 7 t d z/2 ➤ reasonable initial value, but not important
 8 repeat
 9   mb d m1 3t 4  /m0 3t 4
10   mx d 1m1 3z 2 1 4 2 m1 3t 4 2 / 1m0 3z 2 1 4 2 m0 3t 4 2
11   t d  Round 1 1

2 1mb 1 mx 2 2
12 until t does not change
13 return t

Figure 10.2 Step-by-step example of the Ridler-Calvard algorithm applied to the image of Figure 10.1. Note that even with an initial 
threshold far from the true solution, the algorithm converges in only five iterations. The top row shows the histogram. The green arrow 
pointing down indicates the threshold at each iteration, while the gold arrows pointing up indicate the two means. The bottom row 
shows the result of thresholding the image using the threshold for that iteration.
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10.1 Thresholding 447

the computation from the goal that the computation achieves. Making this distinction clear 
often yields new insights into the problem, making it easier to evaluate the algorithm and 
suggest potential improvements. In the case of Ridler-Calvard, the analysis reveals that the 
algorithm assumes that the foreground and background variances are identical.

Otsu’s Method
If we relax this assumption and instead allow the two regions to have different variances, 
we arrive at Otsu’s method. The goal of Otsu’s method is to find the threshold t that mini-
mizes the within-class variance, which is defined as the weighted sum of the variances of 
the two groups of pixels:

 sw
2 1 t 2 ; pb 1 t 2sb

2 1 t 2 1 px 1 t 2sx
2 1 t 2  (10.6)

where t is the unknown threshold, pb 1 t 2  is the proportion of pixels whose gray level is 
less than or equal to t, and mb 1 t 2  and sb

2 1 t 2  are their mean and variance in gray level, 
respectively. These quantities, as well as the analogous values for the foreground region, 
are given by

 pb 1 t 2 5 a
t

,50

h 3, 4 5
m0 3t 4

m0 3z 2 1 4       px 1 t 2 5 a
z21

,5t11

h 3, 4 5
m0 3z 2 1 4 2 m0 3t 4

m0 3z 2 1 4  (10.7)

 m b 1 t 2 5
at

,50
,h 3, 4

at

,50
h 3, 4 5

m1 3t 4
m 0 3t 4       m x 1 t 2 5

az21

,5t11
,h 3, 4

az21

,5t11
h 3, 4 5

m1 3z 2 1 4 2 m1 3t 4
m 0 3z 2 1 4 2 m 0 3t 4  (10.8)

 sb
2 1 t 2 5

at

,50
h 3, 4 1 , 2 mb 1 t 2 2 2

at

,50
h 3, 4        sx

2 1 t 2 5
az21

,5t11
h 3, 4 1 , 2 mx 1 t 2 2 2

az21

,5t11
h 3, 4  (10.9)

where h is the normalized graylevel histogram. Note that pb 1 t 2 1 px 1 t 2 5 1 for all val-
ues of t, and the mean gray level of all the pixels is given by m 5 m1 3z 2 1 4/m0 3z 2 1 4.

If we define the between-class variance as

 sb
2 1 t 2 ; pb 1 t 2 1mb 1 t 2 2 m 2 2 1 p x 1 t 2 1m x 1 t 2 2 m 2 2 (10.10)

it can be shown that the sum of the within- and between-class variances is the total variance 
of all the pixel values, by simply expanding the definition of s2:

  s2 5  a
z21

,50

h 3, 4 1 , 2 m 2 2  (10.11)

   5  at

,50

 h 3, 4 1 , 2 m b 1 m b 2 m 2 2 1 a
z21

,5t11

 h 3, 4 1 , 2 m x 1 m x 2 m 2 2  (10.12)

   5  a
t

,50

h 3, 4 ¢ 1 , 2 mb 2 2 1 2 1 , 2 mb 2 1mb 2 m 2 1 1mb 2 m 2 2≤
    1 a

z21

,5t11

h 3, 4 ¢ 1 , 2 m x 2 2 1 2 1 , 2 m x 2 1m x 2 m 2 1 1m x 2 m 2 2≤  (10.13)

0

0
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448 Chapter 10 • Segmentation

   5  pb 1 t 2sb
2 1 t 2 1 pb 1 t 2 1mb 2 m 2 2 1 px 1 t 2sx

2 1 t 2 1 px 1 t 2 1mx 2 m 2 2 (10.14)

   5  sw
2 1 t 2 1 sb

2 1 t 2  (10.15)

where the dependence of mb and mx on t has been omitted to avoid clutter, and the proof 
that the middle terms go to zero is left as an exercise.†

Since the total variance s2 does not depend on the threshold t, minimizing sw
2  is the 

same as maximizing sb
2. The advantage of the latter is that it is dependent only upon first-

order properties (means) rather than second-order properties (variances), thus making it 
easier to compute. Substituting the expressions for pb 1 t 2 , mb 1 t 2 , px 1 t 2 , and mx 1 t 2  into 
Equation (10.10) and simplifying yields

 sb
2 1 t 2 5

1m1 3t 4 2 mm0 3t 4 2 2

m0 3t 4 1m0 3z 2 1 4 2 m0 3t 4 2  (10.16)

Since there is a small number of possible thresholds (usually just 256), Otsu’s method 
iterates through all these possible values for t to find the one that maximizes the quantity 
sb

2 1 t 2 . The quality of the result yielded by the threshold t is given by the following measure 
of separability:

 h 1 t 2 5
sb

2 1 t 2
s2  (10.17)

Otsu’s method, shown in Algorithm 10.2, begins with the same precomputation as 
Ridler-Calvard, and it also can be performed with either the standard histogram or the 
normalized histogram, since the division in Lines 7 and 10 cancel the normalization. 

† Problem 10.3.

ALGORITHM 10.2 Compute an image threshold using Otsu’s method

Otsu(I )

Input: grayscale image I
Output: threshold value t

 1 h d  ComputeHistogram(I )
 2 m0 30 4 d h 3, 4
 3 m1 30 4 d , 
 h 3, 4
 4 for , d 1 to z 2 1 do
 5    m0 3, 4 d m0 3, 2 1 4 1 h 3, 4
 6    m1 3, 4 d m1 3, 2 1 4 1 , 
 h 3, 4
 7 m d m1 3z 2 1 4/m0 3z 2 1 4
 8 ŝb

2 d 0
 9 for , d 0 to z 2 1 do
10    sb

2 d 1m1 3, 4 2 mm0 3, 4 2 2/ 1m0 3, 4 
 1m0 3z 2 1 4 2 m0 3, 4 2 2
11    if sb

2 . ŝb
2 then

12      ŝb
2 d sb

2

13      t d ,

14 return t
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10.1 Thresholding 449

Similar to Ridler-Calvard, Otsu’s method requires one pass through the image, then one 
pass through the histogram. The key difference between the two algorithms is that Otsu’s 
method performs an exhaustive search over all possible z 5 256 thresholds via another 
pass through the histogram, rather than iteratively converging on a solution from a starting 
point. Figure 10.3 shows a comparison of the outputs of Ridler-Calvard and Otsu’s method 
on the fruit image.

10.1.2 Adaptive Thresholding
Global thresholding techniques such as the Ridler-Calvard algorithm and Otsu’s method do 
not perform well when the image noise characteristics vary across the image. For example, 
strong lighting conditions can produce highlights in one part of the image and shadows in 
other parts. To overcome such difficulties, adaptive thresholding techniques are needed, 
in which the threshold used at any given pixel in the image is based upon local statistical 
properties in the neighborhood of the pixel:

 Ir 1 x, y 2 5 bON if I 1 x, y 2 . t 1 x, y 2
OFF otherwise

 (10.18)

where t 1 x, y 2  indicates that the threshold varies as a function of the pixel. Figure 10.4 
shows an image with strong lighting variations and the result of adaptive thresholding.

One way to perform adaptive thresholding is to divide the image into blocks and to run 
a global thresholding algorithm, such as Ridler-Calvard or Otsu’s method, on each block to 
determine the threshold for that block. Indeed, one of the classic techniques, known as 
Chow-Kaneko, does exactly that: the image is divided into overlapping blocks, and the 
histogram is examined for each block to determine a threshold value for the block. Interpola-
tion between these threshold values then yields a threshold function defined over the entire 
image. Alternatively, a preprocessing step can be applied, such as the white top-hat (WTH) 
transform,† followed by a global threshold.

An alternate family of approaches compares each pixel with the statistics of its surround-
ing neighborhood. The simplest way to do this is to convolve the image with a smoothing 
kernel (e.g., a Gaussian), then set the threshold as

 t 1 x, y 2 5 t #  m 1 x, y 2  (10.19)

where 0 # t # 1 is a scalar and m 1 x, y 2  is the mean of the neighborhood, so that each pixel 
is set to ON if it is greater than 100t percent of the mean. For example, if t is set to 0.8, then 

† Section 5.6.3 (p. 265)

Figure 10.3 From left to right: Input image, output of the Ridler-Calvard algorithm, and output of Otsu’s method. On this particular 
image, the outputs are almost indistinguishable.
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450 Chapter 10 • Segmentation

a pixel whose neighborhood mean is 128 will be set to OFF only if it is less than or equal to 
0.8 #  128 5 102. When processing a text document (such as the one in Figure 10.4), the 
algorithm should be conservative in declaring pixels OFF but generous in declaring pixels 
ON, which means that t should be small. Note that the mean can be computed using either a 
Gaussian, m 1 x, y 2 ; I 1 x, y 2  ~ G 1 x, y 2 , or a box filter, m 1 x, y 2 ; I 1 x, y 2  ~ B 1 x, y 2 , and 
that the latter can be efficiently computed using the integral image. Alternatively, the median 
or some other operation on the neighborhood can be used.

Niblack’s method takes this idea to the next level by considering both the mean 
and standard deviation of the pixel values in the neighborhood. The threshold is then 
given by

 t 1 x, y 2 5 m 1 x, y 2 2 k #  s 1 x, y 2  (10.20)

where s 1 x, y 2  is the standard deviation and k is a scalar with a recommended value of 
k 5 0.2. In a region containing significant variation (e.g., a region with text on a back-
ground page) the threshold is lowered to reduce the number of spurious off pixels, but in a 
homogeneous region (e.g., just the background page with no text), the threshold is close to 
m 1 x, y 2 , making it susceptible to noise. Sauvola’s method overcomes this drawback by 
weighting the standard deviation by its dynamic range:

 t 1 x, y 2 5 m 1 x, y 2  #  B1 2 k #  a1 2
s 1 x, y 2

r
b R  (10.21)

where k is between 0.2 and 0.5 and r ; z
2 5 128 is the maximum standard deviation for an 

8-bit image. Note that this equation is the same as Equation (10.19) with an adaptive t based 
on the local standard deviation. In a high-contrast area s 1 x, y 2  is close to r, in which case 
the threshold is just the mean. In a low-contrast area, the threshold is reduced by the amount 
based on the decrease in contrast (since s 1 x, y 2 # r, the factor multiplied by k is always 
nonnegative), down to a minimum of m 1 x, y 2  #  1 1 2 k 2 . For example, if k 5 0.2 then the 
threshold varies between m 1 x, y 2  and 0.8m 1 x, y 2 .

10.1.3 Hysteresis Thresholding
The concept of hysteresis thresholding uses a low threshold tlow and a high threshold 
thigh. Any pixel is labeled ON if it is either above the high threshold or above the low thresh-
old and connected to another pixel that is above the high threshold, as shown in Figure 10.5. 

Figure 10.4 Example 
of adaptive thresholding.
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10.1 Thresholding 451

In many situations hysteresis thresholding is able to achieve more robust results than are 
possible with a single threshold. The term hysteresis indicates that the output of a pixel is 
not known immediately, but rather that an earlier computation (namely, the high threshold) 
must be performed first. Hysteresis thresholding is also known as double 
thresholding.†

If we let Tlow 1 x, y 2  and Thigh 1 x, y 2  be binary images with ON pixels wherever the original 
pixel value is above the low or high threshold, respectively, then hysteresis thresholding can 
be represented compactly using our notation for morphological reconstruction by 
dilation‡ as

 Ir 5 Thigh % Tlow

  B (10.22)

where B is either B4 or B8, and Ir is the output hysteresis-thresholded image. The pseudocode 
is given in Algorithm 10.3, where floodfill is used instead of dilation for computational 
efficiency. As before, this algorithm assumes that the low and high thresholds have already 
been determined through some other means. An example of hysteresis thresholding is shown 
in Figure 10.6.

† Hysteresis thresholding is also a step in the Canny edge detector, Section 7.2.1 (p. 335).
‡ Section 4.2.2 (p. 154)

Figure 10.5 An illustration 
of hysteresis thresholding, 
also known as double 
thresholding.

Noise

Gray level

Threshold too high:
misses part of object

Threshold too low:
captures noise

Pixel

Object 1 Object 2

ALGORITHM 10.3 Perform hysteresis thresholding on an image

HysteresisThreshold 1 I, tlow, thigh 2
Input: grayscale image I, along with low and high thresholds
Output: binary image Ir from hysteresis thresholding

1 for 1 x, y 2 [ I do
2    Tlow 1 x, y 2 d 1 if I 1 x, y 2 . tlow else 0
3    Ir 1 x, y 2 d  OFF

4 for 1 x, y 2 [ I do
5    if I 1 x, y 2 . thigh then
6      FloodfillSeparateOutput(Tlow, Ir, 1 x, y 2 , ON)
7 return Ir
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452 Chapter 10 • Segmentation

10.1.4 Multilevel Thresholding
All the techniques considered so far output an image with just two labels. Sometimes, how-
ever, the graylevel histogram has multiple peaks, with distinct valleys between the peaks, 
and it is desired to assign a different output value to each peak. This is called multilevel 
thresholding. For example, one might wish to apply two thresholds to yield three different 
output values:

 Ir 1 x, y 2 5 cv1 if I 1 x, y 2 # t1

v3 if I 1 x, y 2 . t2

v2 otherwise
 (10.23)

where t1 , t2. It is straightforward to extend Otsu’s method to the case of multiple levels, 
leading to the multilevel Otsu method. Extending Equation (10.10) to the case of three 
levels, for example, yields

 sb
2 5 p1 1m1 2 m 2 2 1 p2 1m2 2 m 2 2 1 p3 1m3 2 m 2 2 (10.24)

where the dependence of the variables upon t1 and t2 is omitted for clarity. Including this 
dependence, these variables are defined as

 

p1 1 t1 2 5 at1

,50
h 3, 4 m1 1 t1 2 5

1
p1 1 t1 2  at1

,50
,h 3, 4

p2 1 t2 2 5 at2

,5t111
h 3, 4 m2 1 t2 2 5

1
p2 1 t2 2  at2

,5t111
,h 3, 4

p3 1 t1, t2 2 5 1 2 p1 1 t1 2 2 p2 1 t2 2 m3 1 t1, t2 2 5
1

p3 1 t1, t2 2  az21

,5t211
,h 3, 4 (10.25)

Figure 10.6 An example 
of hysteresis thresholding.

High threshold removes some
foreground

Combined using floodfill on low threshold
with seeds from high threshold

Image Low threshold retains some background
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10.2 Deformable Models 453

where we note that m 5 az21

,50
,h 3, 4 is not dependent on either threshold. The most 

straightforward approach to implementing the multilevel Otsu method is to exhaustively 
search over all possible threshold combinations. In practice, such an implementation is not 
unreasonable given modern processing power, since it is rare that multilevel thresholding 
would ever be used for more than three values (two thresholds). It is left as an exercise for the 
reader† to describe a more efficient implementation that eliminates redundant computations.

10.2 Deformable Models
Thresholding, as we have just seen, segments the foreground from the background on a 
per-pixel basis, and the outcome of each pixel is somewhat independent of the other pixels. 
A more powerful approach is to enforce similar outcomes among neighboring pixels to 
ensure that the output is smooth. Although this approach can be applied to multiple fore-
ground objects, to simplify the presentation we will consider the case of a single foreground 
object on the background, and a deformable model is fit to the foreground object using 
the image data. In this section we consider two types of approaches to using deformable 
models: namely, active contours and level sets.

10.2.1 Active Contours (Snakes)
An active contour, also known as a snake, is a 2D deformable model that represents 
some structure in the image as a parametric curve. If we let 0 # s # 1 be the scalar param-
eter that governs the location along the curve, then a continuous contour is represented as 
c 1 s 2 5 1 x 1 s 2 , y 1 s 2 2 . The curve may be open, c 1 0 2 2 c 1 1 2 , or closed, c 1 0 2 5 c 1 1 2 , as 
shown in Figure 10.7. The mechanics are largely the same in both cases, but we will concen-
trate primarily on the latter case, since a closed contour performs the work of segmentation 
by enclosing a region in the image that (hopefully) corresponds to some object in the world.

Given some initial conditions, the contour automatically deforms to minimize the energy 
of the system, where the energy consists of an internal energy term, Eint, and an external 
energy term, Eext. With these two terms, the energy of a continuous snake is given by

 Ec 5 2
1

0
 E 1 c 1 s 2 2  ds 5 2

1

0
 1Eext 1 c 1 s 2 2 1 Eint 1 c 1 s 2 2 2  ds (10.26)

The external energy attempts to align the contour with the image data, and it is evaluated 
along the contour as a function of the gray level at each location:

 Eext 1 x, y 2 5 g 1 I 1 x, y 2 2  (10.27)

† Problem 10.8.

Figure 10.7 Contours can be either open (left) or closed (right). An active contour, also known as a snake, evolves in such a way as to 
minimize an energy functional that takes into account the image data as well as the internal smoothness of the curve.

s 5 0 s 5 1

s 5 1 s 5 0
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454 Chapter 10 • Segmentation

where g 1 # 2  is a monotonically nonincreasing function of the image gradient magnitude, 
such as one of the following:

 g 1 I 1 x, y 2 2 ; c2 7rI 1 x, y 2 7 2 , or
1/ 1 7  rI 1 x, y 2 72 1 P 2 , or
exp         rI 1 x, y 2 72 2  (10.28)

where P is a small constant to avoid dividing by zero. Any such function will cause the 
snake to snap to the nearest step edge surrounding the object. An alternative is to use 
a line edge model such as g 1 x, y 2 ; I 1 x, y 2  that seeks dark locations in the image or 
g 1 x, y 2 ; 2I 1 x, y 2  that seeks bright locations in the image. This external energy term may 
also incorporate additional information supplied by the user, such as mouse clicks indicating 
either attraction or repulsion points.

The internal energy (or smoothness) seeks to preserve the internal consistency of the 
contour. Computer vision problems are often underconstrained due to ambiguity in the data, 
thus requiring one or more regularizing smoothness terms to overcome this ambiguity. Two 
terms usually govern the smoothness of a snake, namely the elasticity and stiffness terms:

 
Eint 1 c 1 s 2 2 5

1
2

 a g dc 1 s 2
ds

g2 1
1
2

 b g d 
2c 1 s 2
ds2 g2

('')''*
elasticity

('')''*
stiffness

 (10.29)

where a and b are shown here as constants but could depend upon s, and the derivative is 
given by

 
d c
d s

; lim
D

 

sS0
 
c 1 s 1 D s 2 2 c 1 s 2

D s
5 lim

D
 

sS0
 
Dc
D s

 (10.30)

where Dc is the tangential vector along the contour, as shown in Figure 10.8. The elasticity is 
a first-order term, and it causes the snake to act like a membrane (stretching balloon or elas-
tic band), with a controlling the tension along the contour. The stiffness is a second-order 
term, and it causes the snake to act like a thin metal plate (metal wire), with b controlling 
the rigidity of the contour. The elasticity term discourages stretching, while the stiffness 
term discourages bending.

To better understand the behavior caused by the elasticity and stiffness terms, some 
examples are shown in Figure 10.9. The first-order elasticity term pulls the points along 
the contour closer to each other, so that the elastic energy penalty is related to the length 
of the curve: stretching the curve increases the elastic energy, breaking the band yields infi-
nite elastic energy, and minimizing the elastic energy shrinks the curve to a point. Similarly, 
the second-order stiffness term resists bending, so that forming a crease yields infinite stiff-
ness energy. In the case of an open contour, minimizing the stiffness energy causes the curve 

12 7

Figure 10.8 Definition of Dc as the 
vector between nearby points on 
the contour of the snake. c

c 1 Dc

Dc
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10.2 Deformable Models 455

to assume the shape of a straight line, whereas in the case of a closed contour, minimizing 
the stiffness energy molds the curve into the shape of a circle.

Oftentimes when you see an energy functional like the one in Equation (10.29), 
it is perfectly valid to replace the square of the quantity with its absolute value, since 
the primary purpose of the square is simply to ensure that the result is nonnegative. 
However, in the case of snakes, the square in 7dc/ds 72 is intentional and important; it 
cannot be replaced by the absolute value. The reason for this is that the square causes 
the term to provide a force that pushes the points away from each other, thus yielding 
approximately equal spacing between them; with the absolute value there is no such 
force. To see this, note that d12

2 1 d23
2 $ d13

2  for any 0d12 0 1 0d23 0 5 0d13 0 , where 0dij 0  is 
the distance between the i 

th and j 
th points. For example, suppose in the 1D case we have 

three points located at x 5 0, 1, 2 so that they are equally spaced. Then d12 5 d23 5 1, 7dc/ds 72 yields 12 1 12 5 2, and 7dc/ds 7  yields 1 1 1 5 2. But now if we move the points 
to x 5 0, 1.5, 2 so that they are no longer equally spaced, then d12 5 1.5, d23 5 0.5, so 
that 7dc/ds 72 yields 1 1.5 2 2 1 1 0.5 2 2 5 2.5, but 7dc/ds 7  yields 1.5 1 0.5 5 2. Thus, we 
see that the square leads to a higher energy when the points are not equally spaced, but the 
absolute value makes no such distinction.

For computational reasons, the contour is usually represented discretely as a sequence of 
n points: v 5 8v0, v1, c, vn219, where vi 5 1 xi, yi 2 , i 5 0, c, n 2 1. Although these 
points could represent control points of a B-spline or some other parametric curve repre-
sentation, the simplest approach is to treat the contour as a polygon whose vertices are the 
points. This is known as the buoy-rope or marker-string representation, where the points 
are the buoys (or markers), and the connections between adjacent points are the ropes (or 
strings) connecting them. With this interpretation, the data term is simply evaluated at each 
point, and the derivatives are replaced by their discrete approximations:

  Eext 1 v 2  5  an21

i50

g 1 I 1 xi, yi 2 2  (10.31)

  Eint 1 v 2  5  
1
2 an21

i50

a 7vi11 2 vi 72 1 b 7vi11 2 2vi 1 vi21 72  (10.32)

where the indices include an implicit modulo n, so that vn 5 v0, and so forth. The total 
energy is given by Ev 5 Eext 1 v 2 1 Eint 1 v 2 .

Conceptually, the snake energy is minimized in an iterative manner, where each itera-
tion performs an exhaustive local search around the current contour estimate, as shown in 
Algorithm 10.4. That is, for each of the n points, we search among all 8-neighbors of the 
point to see if any of them yield less energy. Because the points are connected with each 
other, we cannot treat them independently but instead must consider all 9 

n possibilities, as 
shown in Figure 10.10. This conceptual algorithm, of course, is cost prohibitive because it 
requires computation time that is exponential in the number of points.

Figure 10.9 The effects on snake shape 
caused by the elasticity and stiffness 
terms.

5 ` 5 `

dc
ds small

dc
ds

dc
ds

5 0d2c
ds2

d2c
ds2

. 0d2c
ds2large
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To enable efficient computation, we note that the discrete energy functional formu-
lates the contour as a Markov chain, because the probability of a point being at one of 
the 9 locations is conditionally independent of all the other points given its immediate 
neighbors. If b 5 0, then the contour is a first-order Markov chain, so that if we know the 
locations of vi21 and vi11 then the change in energy caused by moving vi is independent 
of all the other points, because its data term depends only on itself and its smoothness terms 
depend only upon its immediately previous and following neighbors, which are fixed. If 
b 2 0, then the contour is a second-order Markov chain, and the effects of moving vi are 
independent of all other points given vi22, vi21, vi11, and vi12.

As a result of the Markov property, there is an efficient algorithm to exhaustively search 
all 9 

n possibilities, taking advantage of the redundancy in computation. The algorithm falls 
under the general paradigm known as dynamic programming, and the specific algorithm 
is known as the Viterbi algorithm. We describe the Viterbi algorithm in detail for the sim-
pler case where b 5 0, then briefly mention how to extend it to the case where b 2 0. While 
the brute-force exponential search requires an exorbitant O 1 9 

n 2  calculations, the Viterbi 

ALGORITHM 10.4 Active contour minimization (cost-prohibitive version)

Snake-Conceptual(I, v)

Input: grayscale image I
     initial sequence of vertices v0, c, vn21 outlining the foreground region
Output: refined sequence of vertices

1 v̂ d 8v0, c, vn219 ➤ Initialize foreground contour
2 repeat
3   diff d 0
4   for v [ N 1 v̂ 2  do  ➤ For each contour near the current one,
5      if E 1 v 2 , E 1 v̂ 2  then  if its energy is less,
6         diff d MAX 1 diff, E 1 v̂ 2 2 E 1 v 2 2  then store the difference,
7         v̂ d v and store the contour.
8 until diff 5 0 ➤ Terminate when the minimization converges.
9 return v̂

Figure 10.10 One iteration of snake minimization involves searching over 9 
n possible local variations of the current estimate. Shown is 

a simple example with n 5 4, the current estimate as a solid black line, and 2 of the 94 possibilities shown as dashed colored lines.

V0

V1

V2

V3
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algorithm yields the exact same solution in just O 1 92n 2  time, which is a considerable 
savings since it is linear in the number of points.

Minimizing a First-Order, Open Contour
For simplicity, let us assume that b 5 0 and that the contour is open, so that v0 is the first 
point. If we were to conduct an exhaustive search, we would consider all 9 possibilities for 
the location of v0, then all 9 possibilities for v1 for each of the 9 possibilities of v0, and 
so on. It is easy to see that this approach leads to redundant computations, with the same 
value being computed multiple times. The Viterbi algorithm avoids this waste by storing 
intermediate results in a 2D array that we shall call F.

The F array has 9 rows and n columns, shown in Figure 10.11. Each entry fi, j, where i 
is the column and j is the row, stores the total energy of the first i 1 1 points in the snake, 
under the assumption that the last 1 i 

th 2  point has been shifted by j from the current location. 
For example, f1, 4 stores the total energy of the snake consisting of v0 and v1, assuming 
that v1 is shifted by j 5 4. The value j, which ranges from 0 to 8, inclusive, is simply a 1D 
encoding of the 2D shift 1 dx, dy 2 :
  dx ;  

 
:

   
j/3; 2 1  (10.33)

  dy ;  1  j mod 3 2 2 1 (10.34)

For example j 5 0 indicates 1 dx, dy 2 5 121, 21 2 , j 5 4 indicates 1 dx, dy 2 5 1 0, 0 2 , and 
j 5 8 indicates 1 dx, dy 2 5 1 1, 1 2 . We will let vi

1
 
j2 ; vi 1 1 dx, dy 2  denote the j  

th shift of 
the i 

th point, where vi is the current location of the i 
th point.

The Viterbi algorithm proceeds in two steps. In the first step the array is filled up by col-
umns, from left to right, using the values in the previous column. The first column involves 
just the data term, so that

 f0, j 5 Eext 1 v0
1

  

j2 2  (10.35)

for all j. Starting with the second column, the energy stored in each row is the data term for 
that row plus the minimum of the energy for all 9 possibilities of the previous point:

 fi, j 5 Eext 1 v i
1
 
j2 2 1 min

jr50, c, 8
 efi21, j r 1

1
2

 a gv i21
1
 
j r2 2 v i

1
 
j2 g2 f  (10.36)

Figure 10.11 Array used 
by the Viterbi algorithm 
for efficient snake 
minimization. Each entry 
holds fi, j, the energy of 
the snake ending with vi at 
location j. j

(–1, –1)

V0 V1 V2 Vi21 Vn21Vi

(0, –1)

(1, –1)

(0, 0)

(1, 0)

(1, 1)

(0, 1)

(–1, 1)

(–1, 0)

i
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Once the array has been filled, the second step of the algorithm is to traverse the array from 
right to left, starting with the minimum entry in the last column. Given an entry fi, j in the 
i 

th column, the entry in the preceding column is given by

 jprev 5 arg min
jr50, c, 8

 efi21, j r 1
1
2

 a gv i21
1
 
j r2 2 v i

1
 
j2 g2 f  (10.37)

For computational reasons, it is helpful to store these values of jprev in a second array, which 
we call P, during the first step of the algorithm, so that the second step involves simply 
selecting jprev 5 pi, j.

The pseudocode is provided in Algorithm 10.5. Lines 2–13 implement the first step 
of the algorithm, namely to fill the F array (as well as the P array for efficiency). Lines 
15–23 implement the second step of the algorithm, namely to traverse the array from 
right to left.

ALGORITHM 10.5 Minimization of first-order, open active contour (one iteration)

Snake-OpenIter(I, v)
Input: grayscale image I
      initial (open) sequence of vertices defining the foreground v0, c, vn21

Output: refined sequence of vertices after one iteration

 1 ➤ Fill 2D array
 2  for j d 0 to 8 do ➤ Fill first column using only data terms.
 3    f0, j d Eext 1 v 0

1
 
j2 2

 4 for i d 1 to n 2 1 do ➤ For each remaining column,
 5    for j d 0 to 8 do look at all rows of the previous column,
 6       ŵ d ` and find the row jprev

 7       for j r d 0 to 8 do that yields the minimum energy, f̂.
 8        w d fi21, j r 1 1

2 a gv i21
1
 
j r2 2 v i

1
 
j2 g2

 9        if w , ŵ then
10            ŵ d w

11            jprev d j r
12       fi, j d Eext 1 v i

1
 
j2 2 1 ŵ  ➤ Store the results in the F and P arrays.

13       pi, j d jprev

14 ➤ Traverse 2D array
15 ŵ d `

16 for j r d 0 to 8 do ➤ In the last column, find the row j with the minimum value.
17     if fn21, j r , ŵ then
18      ŵ d fn21, jr

19      j d j r
20 v d 8v n21

1
 
j2    9 ➤ Store the new coordinates of the final vertex.

21 for i d n 2 1 to 1 step 21 do ➤ For each previous vertex,
22   j d pi, j find the row j from which it came, and
23   v d 8v i21

1
 
j2  v 9 store the new coordinates.

24 return v
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Minimizing a First-Order, Closed Contour
With an open contour, the preceding procedure is guaranteed to find the global minimum 
of all 9 

n local perturbations of the current snake. With a closed contour, however, it is not 
so obvious how to perform the minimization. For starters, the previous computation is 
missing a data term, namely the connection between the first and last point in the snake, 
1
2 a 7vn21 2 v0 7 . This term can easily be added by inserting a small amount of code in 
Algorithm 10.5 just after Line 13 to treat the last column differently, just as the first column 
is treated differently. However, the resulting procedure would not be guaranteed to find the 
global minimum, and in fact it would nearly always produce suboptimal results, particularly 
near the beginning and end of the curve.

The simplest solution to this problem is to run the open-curve algorithm twice, as shown 
in Algorithm 10.6. Although neither run is guaranteed to yield optimal results, in practice 
the points far from the beginning and end are not likely to be affected by the approximation 
caused by adding the extra computation to the last column. As a result, it is reasonable to 
assume that after the first run the middle point is in the optimal position. The second run, 
therefore, cements the middle point at the location determined by the first run, then runs the 
minimization again on the remaining points. Note the primes 1 r 2  after the procedure calls 
in Lines 2 and 4, which indicate that minor changes must be made to the procedure in these 
two calls. The specific changes are left as an exercise for the reader.†

Minimizing a Second-Order Contour
When b 2 0, the system is second-order, because each point is conditionally dependent 
upon all other points given not only its immediate neighbors, but also the immediate neigh-
bors of the immediate neighbors. The second-order system is minimized using the same 
Viterbi algorithm but using a 2D array with 9 

2 5 81 rows and n columns. Each column cor-
responds to the 81 possible locations for a pair of adjacent points. Since column i represents 
the locations for vi21 and vi, and column i 2 1 represents the locations for vi22 and vi21, 
there is redundancy in the array since vi21 is represented in both places. As a result, for any 
given entry fi, k, only 9 of the 81 possibilities of the previous column are consistent with 
that entry. That is, pi, k, is restricted to the set 5k r: k r e k6, where k r e k means that k and 
k r are consistent with each other. (The cardinality of the set is 9.) The computation involves

 fi, k 5 Eext 1 v i
1
 
j2 2 1 min

kr5 0, c, 80
s.t. krek

efi21, kr 1
1
2

 a gv i21
1
 
j r2 2 v i

1
 
j2 g2 1

1
2

 b gv i22
1
 
j s2 2 2v i21

1
 
j r2 1 v i

1
 
j2 g2 f  (10.38)

† Problem 10.17. Also see Problem 10.18 for a solution that is guaranteed to find the optimal solution, albeit at 
considerable computational expense.

ALGORITHM 10.6 Minimization of first-order, closed active contour

Snake-Closed(I, v)
Input: grayscale image I
      initial (closed) sequence of vertices defining the foreground v0, c, vn21

Output: refined sequence of vertices

1 while not converged do
2    8v0, c, vn219 d Snake-OpenIter' 1 I, 8v0 c, vn219 2
3 while not converged do
4    8vn

2, c, vn21, v0, c, vn
2 219 d Snake-OpenIter' 1 I, 8v

 

n
2, c, vn21, v0, c, v

 

n
2 219 2

5 return 8v0, c, vn219
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where the positions j, j r, and js can be obtained from the row numbers k and k r. The com-
putation is otherwise the same as in the first-order case and, for a closed contour, is run 
twice, with the second run cementing the location of the middle point.

Minimizing Using Calculus of Variations
An alternative approach to updating the snake is to employ the calculus of variations. 
Recall that in calculus, if x is a local minimum of a function y 5 f 1 x 2 , then 

d f
d x 5 0 at x. In 

other words, to find a local minimum of a function, compute the derivative of the function, 
set it to zero, and solve for x. Similarly, in the calculus of variations, we take derivatives, 
set them to zero, and solve for the unknown. The difference is that instead of the function 
f (x), the calculus of variations seeks to minimize a functional† eb

a  f 1 x, q 1 x 2 , q# 1 x 2 2  d x, 
where x is the independent variable (usually either time or space), q is the dependent vari-
able whose value depends upon x, q# ; d q

d x is the derivative of the function q(x) with respect 
to the independent variable, and a and b are constants. The expression of derivative that is 
set to zero is known as the Euler-Lagrange equation:

 
@  f

@ q
2

d
d x

 ¢ @  f

@  q#
≤ 5 0 (10.39)

In other words, when this equation is solved for x, it yields the values of x for which the 
functional eb

a  f 1 x, q 1 x 2 , q# 1 x 2 2 d x is minimum.‡

More generally, suppose we have m independent and n dependent variables. If we let 
x1, c, xm be the independent variables and q1, c, qn be the dependent variables, then 
the functional

 2
b1

a1

c2
bm

am

 f ax1, c, xm, q1, c, qn, 
@ q1

@ x1
, c, 

@ qn

@ x1
, c, 

@ q1

@ x m
, 
@ qn

@ x m
b  d x1 

c
  d xm (10.40)

is at a local minimum where the following Euler-Lagrange equations are satisfied:

 
@ f

@ qk
2 a

m

i51

 
@

@ xi
 ¢ @ f

@ 1 @ qk
@

 

xi
2 ≤ 5 0,    k 5 1, c, n (10.41)

Note that there are n equations, and each equation contains m 1 1 terms. If m 5 n 5 1, 
then this equation reduces to Equation (10.39). Similarly, if the functional contains higher 
derivatives, such as eb

a  f 1 x, q, q# , q$, c 2  d x, then a local minimum occurs where

 
@ f

@ q
2

d
d x

 ¢ @ f

@ q#
≤ 1

d 
2

d x 
2 a @ f

@ q
$  b 2 c5 0 (10.42)

Applying the calculus of variables to the problem at hand, we note that c is a function 
of s, that c depends upon the first and second derivatives of s, and our goal is to search over 
all possible functions c(s) to find the one that minimizes the energy functional Ec in Equation 
(10.26) . To solve this problem, then, we must solve the following Euler-Lagrange equation:

 
@ E
@ c

2
d
d s

 ¢@ E
@ c

# ≤ 1
d 

2

d s 
2 a@ E

@ c$
b 5 0 (10.43)

† Whereas a function takes a variable as input, a functional takes a function as input, which in this case is q, a 
function of the variable x.
‡ Technically, the point is either a local minimum, local maximum, or saddle point (collectively known as stationary 
points), but we shall use the technique exclusively to search for a local minimum.
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where s is the independent variable, c contains the dependent variables (because x and y 
depend upon s), E stands for E 1 c 1 s 2 2 5 Eext 1 c 2 1 Eint 1 c 2 , c# ; d c/d s, and c$ ; d 

2 c/d s2. 
Since Eint does not directly depend upon c, we have @ E/@ c 5 @ Eext/@ c 5 rEext. 
Similarly, Eext does not directly depend upon c#  or c$, so @ E/@  c# 5 @ Eint/@ c# 5 a c# , and 
@ E/@  c$ 5 @ Eint /@  c$ 5 b c$. Substituting into Equation (10.43) yields the final equation to 
be solved:

 rEext 1 c 2 2 a 

d 
2c

d s2 1 b 

d 
4c

d s4 5 0 (10.44)

Approximating the derivatives with finite differences yields

 rEext 1 vi 2 1 a 1 vi 2 vi21 2 2 a 1 vi11 2 vi 2 1 b 1 vi22 2 2vi21 1 vi 2
2 2b 1 vi21 2 2vi 1 vi11 2 1 b 1 vi 2 2vi11 1 vi12 2 5 0 (10.45)

Since this equation equals zero if the forces are perfectly balanced, the deviation of the 
left-hand side from zero indicates the amount of imbalance, and the sign of the left-hand 
side indicates the direction of imbalance. As a result, we set the right-hand side to 2lDvi, 
where l is the step size, and Dvi is the change in vi between iterations.

Stacking the n equations from Equation (10.45), one per vertex, leads to the full system 
to be solved, which can be rewritten in matrix form as

  Ax1k2 2 fx 1 x1k212, y1k212 2 5 2l 1 x1k2 2 x1k212 2
  Ay1k2 2 fy 1 x 

1k212, y 
1k212 2 5 2l 1 y 

1k2 2 y 
1k212 2  (10.46)

where x ; 3x0
c xn21 4T, y ; 3  y0

c yn21 4T, vi 5 3xi yi 4T, and the  superscript 
indicates the iteration number. Here A is the n 3 n pentadiagonal banded matrix consist-
ing of the a and b terms of Equation (10.45), while fx 1 x, y 2  and fy 1 x, y 2  are the x and y 
 components of the force 2rEext 1 v 2  evaluated at all the points, stacked into vectors. Note 
that fx and fy are evaluated using the estimated coordinates from the previous iteration, 
because that is the only choice available to us. (It is not possible to use the estimate from 
the current iteration until it has completed.) As a result, we say that the method is explicit 
with regard to the external forces. However, since A is a constant matrix, we are free to 
multiply it by either the estimates from the previous or current iterations; the latter is chosen 
because it yields better convergence properties. For this reason, the method is said to be 
implicit with regard to the internal forces. Because the entire system of Equation (10.46) 
combines implicit and explicit approaches, it is said to be semi-implicit. The system is 
solved iteratively until convergence.

10.2.2 Gradient Vector Flow
The active contours, or snakes, of the previous section have a number of drawbacks. One 
obvious shortcoming is that the elasticity term exerts a contraction force that tends to shrink 
the contour. As a result, care must be taken to ensure that (in the case of a closed contour) the 
snake is initialized to a curve that is larger than the image region on which it should settle. 
To counter this effect, one approach is to introduce an additional term that exerts an outward 
force that tends to expand the snake. The resulting formulation is called a balloon, and 
various attempts have been made to combine contraction and expansion forces to achieve a 
hybrid snake-balloon model. Although these approaches have achieved moderate success, 
snakes (with or without balloons) tend to be quite sensitive to the initial conditions.
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An even better solution is to replace the force rF ; 2 rEext with the gradient vector 
flow (GVF) field g 1 x, y 2 ; 1U 1 x, y 2 , V 1 x, y 2 2 , where (x, y) are coordinates in the image 
plane. Recall that two fundamental operators for vector fields are the divergence and curl.† 
According to the Helmholtz theorem, a static vector field can be decomposed into two 
components, namely, a solenoidal field for which the divergence is zero everywhere, and 
an irrotational field for which the curl is zero everywhere. It can be shown that the force 
field arising from 2rEext (used in a traditional snake) is a static irrotational field.‡ The GVF 
field generalizes this concept by introducing a solenoidal component, which not only 
enables GVF snakes to overcome the initialization problem of standard snakes by being 
much less sensitive to the initial position but also enables them to fill concavities, a capability 
that eludes traditional snakes.

To make these concepts more concrete, let us consider how GVF snakes work in practice. 
A GVF snake is solved in two steps. The first step, namely, estimating g, involves solving 
the following energy functional:

 E 5 5m 1Ux
2 1 Uy

2 1 Vx
2 1 Vy

22 1 7rF 72 7g 2 rF 72 d x d y (10.47)

where m is a scalar that governs the relative importance of the smoothness and data terms, 
and the coordinates (x,y) have been omitted for simplicity. The smoothness term contains 
Ux ; @U/@ x and so forth, while the data term seeks to match g to the force rF, weighted 
by the amount of image information near the pixel, 7  rF  72. In other words, where there is 
information in the image (e.g., near an intensity edge), then the data term is weighted more, 
whereas the smoothness term dominates in regions where there is less information (e.g., in 
an untextured area).

The Euler-Lagrange equations of Equation (10.47) lead to

  mr2U 2 1U 2 fx 2 1  f x
2 1 f y

2 2  5  0 (10.48)

  mr2V 2 1V 2 fy 2 1  f x
2 1 f y

2 2  5  0 (10.49)

where fx 5 @F/@ x and fy 5 @F/@ y, similar to the vector quantities in Equation (10.46), 
except here they are scalars because they are evaluated at a particular pixel. Setting the right-
hand side to 2lDU and 2lDV  and using the standard approximation for the Laplacian, 
yields

  m 1  U 
1k212 2 U 

1k212 2 2 1U 
1k212 2 fx 2 b 5  2l 1U 

1k2 2 U 
1k212 2  (10.50)

  m 1  V  
1k212 2 V  

1k212 2 2 1V  
1k212 2 fx 2 b 5  2l 1V  

1k2 2 V  
1k212 2  (10.51)

where

   U 1 x, y 2  ;  
1
4

 1U 1 x 2 1, y 2 1 U 1 x 1 1, y 2 1 U 1 x, y 2 1 2 1 U 1 x, y 1 1 2 2  (10.52)

   V 1 x, y 2  ;  
1
4

 1V 1 x 2 1, y 2 1 V 1 x 1 1, y 2 1 V 1 x, y 2 1 2 1 V 1 x, y 1 1 2 2  (10.53)

b ; f x
2 1 f y

2, and the superscripts indicate the iteration number. Rearranging terms yields

† Section 2.5.1 (p. 57).
‡ In fact, any vector field that can be expressed as the gradient of a scalar field is irrotational.
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  U 
1k2 5  2

1
l

 1m U  
1k212 1 12b 2 l 2 m 2U 

1k212 1 fx 
b 2 (10.54)

  V 
1k2 5  2

1
l

 1m V  
1k212 1 12b 2 l 2 m 2V 

1k212 1 fy 
b 2  (10.55)

Recognizing that these equations are applicable for each pixel (x,y), they can be solved 
iteratively to determine U and V, and hence g, for every pixel.

In the second step, g is used as the external force in solving for the snake. That is, once g 
has been determined, it can be substituted for 2rEext in Equation (10.44) to yield

 2g 1 v 2 2 a 

d 
2 v

d s2 1 b 

d  
4 v

d s 
4 5 0 (10.56)

By similar reasoning to that above, the snake can then be found by iteratively solving

  Ax1k2 2 gx 1 x1k212, y1k212 2  5  2l 1 x1k2 2 x1k212 2
  Ay1k2 2 gy 1 x1k212, y1k212 2  5  2l 1 y1k2 2 y 

1k212 2  (10.57)

where g x ; @
 
g/@ x, and g y ; @

 
g/@ y. An example of a GVF snake is shown in Figure 10.12.

10.2.3 Level Set Method
Despite their influence upon the field of computer vision, snakes have several fundamental 
limitations. First, because snakes are parameterized by a sequence of points, snake mini-
mization has the undesirable property that the outcome depends upon the parameterization 
chosen. Secondly, snakes do not handle topological changes, such as when one contour 
splits into two, or when two contours merge into one. Although various attempts have 
been made over the years to address this shortcoming, the resulting behavior is usually 
quite brittle due to the heuristic nature of the methods. Similarly, care must be taken when 
minimizing a snake to prevent the contour from crossing itself, which would result in a 
curve that no longer encloses a well-defined region. Finally, it is not easy to extend snakes 
to higher dimensions beyond 2D.

The level set representation (also known as a geometric active contour) overcomes 
these limitations by representing the curve implicitly rather than explicitly. Instead of modi-
fying the curve directly, the level set method evolves an implicit function according to a 
partial differential equation (PDE), which then modifies the curve as a side effect. The 
level set method naturally handles topological changes, allowing the curve to split or merge 
as needed; it is parameterless since it does not store the curve explicitly, and it naturally 

Figure 10.12 An example of a GVF snake. 
Unlike traditional snakes, GVF snakes can be 
initialized either inside or outside the object 
(or a combination of the two, as shown here), 
and they handle concavities.
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extends to higher dimensions. In addition to these advantages, the level set method is easy 
to implement.

Let c 1 s 2 5 1 x 1 s 2 , y 1 s 2 2 , 0 # s # 1, be a closed curve in the image plane, as before. 
Now let us embed the curve in a dimension that is one higher than itself. That is, we define 
an implicit function F 1 x, y 2  that is a function of two variables such that the zeroth level 
set of F is the curve c. (Recall that the level set of a function is the set of points such that 
the function evaluated at those points is constant.†) In other words, F 1 x, y 2 5 0 if and only 
if c 1 s 2 5 1 x, y 2  for some value of s. By convention, we let F 1 # 2 . 0 inside the curve and 
F 1 # 2 , 0 outside the curve.‡

Now suppose the curve evolves over time, starting from an initial curve. Let us define 
c (s,t) as a family of curves so that at any time t $ 0, c 1 s, t 2  is a curve c (s). Since the repre-
sentation is nonparametric, we are only concerned with motion perpendicular to the curve at 
any point; motion tangential to the curve simply affects the parameterization, such as the 
locations of the points along the contour in the case of a snake. As a result, the change in 
the curve over time (that is, as the algorithm progresses), is proportional to the normal vector:

 
@ c 1 s, t 2

@ t
5 g 1 I 1 s 2 2  #  n 1 s 2  (10.58)

where n(s) is the inward normal vector to the curve at s, and g (I (s)) is a function of the 
image that specifies the speed with which the contour moves. Usually g is a nonincreasing 
function of the image gradient magnitude, as in Equation (10.27) , so that when the contour 
is far from an intensity edge the contour moves at a higher speed and when the contour is 

† Section 4.4.5 (p. 182)
‡ Some authors follow the opposite convention.

Figure 10.13 The curve is the zeroth level set of the implicit function. As the implicit function evolves, so does the curve. Note that the 
level set method naturally handles topology changes, as shown here.
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aligned with an intensity edge, it moves at a slower speed. Note that if g 1 # 2 . 0 then the 
contour shrinks, whereas g 1 # 2 , 0 causes the contour to expand.†

Although it may not be obvious how to evolve the curve according to the explicit formu-
lation in Equation (10.58) , it is equivalent (as shown below) to evolve the implicit function 
according to

 2 

@ F 1 x, y, t 2
@ t

5 g 1 I 1 x, y 2 2  #  7rF 1 x, y, t 2 7  (10.59)

which resembles a Hamilton-Jacobi equation. In an implementation, F is defined over 
the same rectangular lattice as the image, so that for any iteration specified by t (which can 
be thought of as “pseudo-time”), F 1 x, y 2  is defined for all pixel coordinates. By moving 
the value of F 1 x, y 2  down or up, the curve is moved inward or outward, respectively, as 
illustrated in Figure 10.14.

It is straightforward to show that Equations (10.58) and (10.59) are mathematically 
equivalent. The first-order Taylor series approximation of d F

d t  yields

 
d F

d t
<

@ F

@ x
 
d x
d t

1
@ F

@  y
 
d y

d t
1

@ F

@ t
 (10.60)

Now, since F 1 x, y, t 2 5 0 along the curve, it is obviously the case that d F
d t 5 0 along the 

curve, thus yielding a relation between the change in F over time and the motion of the 
contour points:

 2 

@ F 1 x, y, t 2
@ t

5 1rF 1 x, y, t 2 2T ¢@ c 1 s, t 2
@ t

≤  (10.61)

since c 5 3x y 4T, and rF 5 C@  F
@

 

x
@  F
@

  

y DT. Substituting Equation (10.58) into Equation 
(10.61) yields

 2 
@ F 1 x, y, t 2

@ t
5 g 1 I 1 x, y 2 2  #  1rF 1 x, y, t 2 2Tn 1 s 2  (10.62)

† Note that if the first choice in (10.28) is selected, then a large constant should be added to ensure that g 1 # 2  is 
positive.

Figure 10.14 The curve is the zeroth level set of the implicit function. As the implicit function moves down or up, the curve moves 
inward or outward. Here the implicit function is moving down, causing the curve to move inward (shrink). The horizontal (green) arrows 
indicate the motion induced on the curve by the vertical changes (blue arrows) in the implicit function.
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which is closer to what we want, since only motion normal to the curve is important. Note 
that I(s) and I(x,y) are identical, as long as (x,y) are the coordinates corresponding to the 
point along the contour at s. To compute the inward normal, note that F 1 # 2 5 0 along the 
curve, so that Fs ; @  F

@
 

s 5 0 along the curve as well. By the chain rule of differentiation, 
this leads to

 
@ F

@ s
5

@ F

@ x
 
@ x
@ s

1
@ F

@ y
 
@  y

@ s
5 1rF 2Tcs 5 0 (10.63)

where cs ; @ c
@

 

s. This equation tells us that the gradient vector rF 1 x, y.t 2  is perpendicular 
to  the tangential vector along the curve. As a result, the unit-length inward normal 
vector to the curve is given by n 5 rF7rF 7 , where the convention that F 1 # 2 . 0 inside the 
curve leads to the absence of a negative sign. Substituting this definition of n back into 
Equation (10.62) yields

 2 
@ F 1 x, y, t 2

@ t
5 g 1 I 1 x, y 2 2  #  1rF 2T¢ rF

irF i
≤ 5 g 1 I 1 x, y 2 2  #  7rF 7 27rF 7 5 g 1 I 1 x, y 2 2  #  7rF 7  (10.64)

which is identical to Equation (10.59).
Implementing the level set method is straightforward, as shown in Algorithm 10.7. In 

the simplest approach, the implicit function is initialized to 21 along the outer border of 
the image and 11 everywhere else, so that the zero-level contour encloses almost the entire 
image. The gradient magnitude of the image is computed, and F is then repeatedly updated 
using Equation (10.59) until the motion of the curve slows down below a threshold. The 
only trick in the implementation is the need to reinitialize F every now and then to be a 
signed distance function to the contour. The reason for this reinitialization is that Equation 
(10.59) is mathematically valid only along the contour, as can be seen by its derivation. As 

ALGORITHM 10.7 Evolve a contour using the level set method

LevelSetMethod(I )

Input: grayscale image I
Output: 2D array F in which foreground object pixels are indicated by F 1 x, y 2 . 0

 1 GI d  GradientMagnitude(I) ➤ Compute gradient magnitude of image.
 2 for 1 x, y 2 [ I do ➤ Initialize F to 21 along image border, 11 everywhere else.
 3    val d 21 if (x 5  5 0 or x 5  5 width 21 or y 5  5 0 or y 5  5 height 21) else 11
 4    Fprev 1 x, y 2 d F 1 x, y 2 d val
 5 speed d `

 6 while speed . t do ➤ While contour is moving at sufficient speed,
 7   GF d  GradientMagnitude 1F 2  compute gradient magnitude of F,
 8   for 1 x, y 2 [ I do then for each pixel,
 9     F 1 x, y 2 d 1 GI 1 x, y 2  
 GF 1 x, y 2  update F using Equation (10.59),
10     C 1 x, y 2 d TRUE if F 1 x, y 2 . 0 or FALSE otherwise and threshold F.
11   F d  SignedChamferDistance(C) ➤ Reinitialize F using signed chamfer distance.
12   speed d max 1 0F 2 Fprev 0 2  ➤ Set the speed to the maximum distance moved by any pixel,
13   Fprev d F and store a copy of F for the next iteration.
14  return F
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a result, far from the contour the implicit function can develop kinks and other undesirable 
characteristics. In the pseudocode, F is reinitialized every iteration, but this is not usually 
necessary in an actual implementation. An alternate approach is to avoid reinitialization 
altogether by incorporating an additional term in the energy functional that penalizes the 
deviation of F from the signed distance function.

Reinitialization spends a great deal of computation updating the value of F for every 
pixel in the image. But pixels far from the contour are not important, since Equation (10.59) 
is not valid for them anyway, so their values are not likely to influence the computation of 
the contour. This observation leads to the narrow band method in which F is updated and 
maintained only for those pixels that are within a narrow band around the contour. A related 
observation is that, if the sign of the speed never changes, then the contour always shrinks 
(or always expands), in which case the contour crosses each pixel exactly once during the 
course of the algorithm execution. This leads to the fast marching method, which com-
putes for each pixel the time that the contour crosses that pixel.

For many natural phenomena, the speed at which the curve moves is proportional to 
the curvature at that point. The analogy is the propagation of the front of a fire. As the fire 
burns the grass, any long convex extension of the fire into the grass will be surrounded 
by ambient temperature and will therefore burn more slowly, whereas a concave exten-
sion of the grass into the fire will be surrounded by a tremendous amount of heat and will 
therefore burn more quickly. Similarly, a rubber sheet or balloon will exert more force where 
its curvature is greatest. By including curvature, Equations (10.58) and (10.59) become 
equations describing mean curvature motion:

  
@ c 1 s, t 2

@ t
 5  g 1 I 1 s 2 2  #  k 1 s 2  #  n 1 s 2  (10.65)

  2 
@ F 1 x, y, t 2

@ t
 5  g 1 I 1 x, y 2 2  #  k 1 x, y 2  #  7rF 1 x, y, t 2 7  (10.66)

where k 1 # 2 5 div 1rF/ 7rF 7 2 1 P is the curvature, defined as the divergence of the 
normalized gradient of the implicit function, plus a small constant to ensure that the 

Figure 10.15 Level set reinitialization using the 
signed distance function. The contour remains 
unchanged, but the implicit function is more 
well-behaved after reinitialization.
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speed always remains nonzero. In Cartesian coordinates the divergence† of a vector field 
A 1 x, y 2 ; 3a 1 x, y 2 b 1 x, y 2 4T is defined as

 div 1A 2 5 r #  A 5
@ a
@ x

1
@ b
@ y

 (10.67)

so that the divergence of the gradient, rA ; 3@ A
@ 

 

x
@ A
@ 

 

y 4T, is the Laplacian:

 r #  rA 5
@ 

2A

@ x2 1
@ 

2A

@ y 

2 5 Ax x 1 Ay y 5 r2A (10.68)

where Ax x ; @
   

2A/@x2 and Ay y ; @2A/@ y2. When we include the normalization of the 
vector, the math is a bit more complicated, but nevertheless we arrive at an expression that 
is more suitable to implementation:

 k 1 x, y 2  5  div a rF

irFi
b 5 r #  a rF

irFi
b 5 r #  

3Fx Fy 4T"Fx
2 1 Fy

2
5

@

@ x
 ¢ Fx"Fx

2 1 Fy
2
≤ 1

@

@ y
 ¢ Fy"Fx

2 1 Fy
2
≤

  5  
Fx x1Fx

2 1 Fy
2 2 1

2

2
Fx 1FxFx x 1 FyFx y 21Fx

2 1 Fy
2 2 3

2

1
Fy y1Fx

2 1 Fy
2 2 1

2

2
Fy 1FxFx y 1 FyFy y 21Fx

2 1 Fy
2 2 3

2

  5  
Fx xFy

2 2 2FxFyFx y 1 Fy yFx
21Fx

2 1 Fy
2 2 3

2

 (10.69)

where Fx ; @
 
F/@ 

x, Fy ; @
 
F/@ 

y, Fx x ; @
 

2 F/@ x2, Fy y ; @ 2 F/@ y2, Fx y ; @2 F/@ x @ y, 
and we have ignored P for simplicity.

10.2.4 Geodesic Active Contours
The level set method, as we have just seen, is based upon curve evolution rather than energy 
minimization. The speed of the curve evolution is related to the magnitude of the image 
gradient, so that ideally the speed becomes zero when the image gradient is zero. In practice, 
however, the gradient magnitude never actually reaches zero because of noise, and therefore 
the level set method does not actually converge. Instead, the curve slows as it reaches the 
intensity edge, then speeds back up again after it passes the intensity edge—that is, if the 
algorithm is allowed to continue. To prevent this from happening, heuristic stopping con-
ditions are often introduced. These heuristics detract from the mathematical purity of the 
approach and require careful fine tuning.

A popular solution to this drawback is the geodesic active contour, which connects 
energy minimization with curve evolution. Combining Equations (10.26), (10.27), and 
(10.29) , the classic snake energy is given by

 E 1 c 2 5
1
2

 a 2
1

0
 g dc 1 s 2

ds
g2 ds 1 2

1

0
 g 1 I 1 s 2 2 ds (10.70)

† Section 2.5.1 (p. 57).
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where we have assumed b 5 0 for simplicity, and where g 1 # 2  depends only upon the 
magnitude of the gradient of I. It can be shown† that the contour c that minimizes this energy 
functional also minimizes

 Egeod 1 c 2 5 2
1

0
 g 1 I 1 s 2 2  g dc 1 s 2

ds
g  ds (10.71)

under the assumption of conservation of energy: 12 a 7dc 1 s 2 /ds 72 1 g 1 I 1 s 2 2 5 0.
In a Euclidean space the shortest distance between two points is along a straight line 

connecting them. The Euclidean length of the contour is therefore given by e 7dc/ds 7ds, 
which simply integrates the derivative. Comparing this quantity with Equation (10.71), we 
see that the latter applies the weight g 1 # 2  in calculating the length of the curve. This weight 
causes the computation to yield the length of the geodesic, where a geodesic is defined as 
a minimal-length curve between two points in a Riemannian manifold.‡ To gain some intu-
ition behind the idea of a geodesic, consider two points on the surface of the Earth. The 
shortest distance between them is not a straight line but rather the arc along the great circle 
connecting them. In a similar way, the geodesic active contour framework equates boundary 
detection with finding a curve of minimal weighted length.

Minimizing Equation (10.71) involves solving either of the following equivalent PDEs:

  
@ c 1 s, t 2

@ t
 5  g 1 I 1 s 2 2  #  k 1 s 2  #  n 1 s 2 2 1rg 1 I 1 s 2 2 2T n 1 s 2  #  n 1 s 2  (10.72)

  
2@ F 1 x, y, t 2

@ t
 5  g 1 I 1 x, y 2 2  #  k 1 x, y 2  #  7rF 1 x, y, t 2 7 2 1rg 1 I 1 x, y 2 2 2T rF 1 x, y, t 2  (10.73)

Comparing Equation (10.72) with Equation (10.65), notice the extra term 2 1 1rg 2T n 2n. 
Similarly, comparing Equation (10.73) with Equation (10.66), there is an extra term 1rg 2T rF. In both cases the extra term attracts the curve to the intensity edge no mat-
ter the direction from which the curve approaches, as shown in Figure 10.16. As a result, 
it should be clear that the geodesic active contour approach indeed solves the problem of 
convergence mentioned above.

10.2.5 Chan-Vese Algorithm
We come now to the Chan-Vese level set algorithm. All the previous active contour and 
geometric contour methods presented in this chapter have relied upon intensity edges to 
guide the contour to the boundary of the object. Intensity edges, however, make up a small 
percentage of any given image, making their basin of attraction small. As a result, it is dif-
ficult for a technique that relies solely upon intensity edges to work properly if the initial 
contour is far from the edge. Regions, on the other hand, are much larger than intensity 
edges. Therefore, techniques based upon image regions have much larger basins of attrac-
tion. The Chan-Vese algorithm in particular, like geodesic active contours, works when the 
contour is initialized inside or outside the boundary (or partly inside and outside), and it 
has a wide basin of attraction.

† The derivation relies upon Maupertuis’ principle, a special case of the principle of least action, which states that 
the path followed by a physical system is the one with the shortest length; and Fermat’s principle, which states 
that the path taken by a ray of light is the one that is traversed in the least time.
‡ A Riemannian manifold is a generalization of Euclidean space in which the distance between two points is given 
by their inner product.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



470 Chapter 10 • Segmentation

Instead of using intensity edges, Chan-Vese balances the probabilities of foreground and 
background pixels, where foreground pixels lie inside the contour, while background pixels 
lie outside the contour. (Chan-Vese assumes a closed contour.) Any model for the appear-
ance of foreground and background can be used, but the most basic formulation assumes the 
foreground region consists of pixels with approximate gray level vi, while the background 
region consists of pixels with approximate gray level vo. In this case the Chan-Vese energy 
functional to be minimized is given by

 E 1 c 2 5 l,E, 1 c 2 1 laEa 1v 2 1 liEi 1 c 2 1 loEo 1 c 2  (10.74)

which is the weighted sum of four terms governing, respectively, the length of the contour, 
the area enclosed by the contour, the similarity of the inside region to the value vi, and the 
similarity of the outside region to the value vo:

  E, 1 c 2  5  2V
7rh 1F 1 x, y 2 2 7  d x  d y                                     1 length 2  (10.75)

  Ea 1 c 2  5  2V
 h 1F 1 x, y 2 2  d x  d y                                          1 area 2  (10.76)

  Ei 1 c 2  5  2V
 0I 1 x, y 2 2 vi 02h 1F 1 x, y 2 2  dx dy                   1 inside 2  (10.77)

  Eo 1 c 2  5  2V

 0I 1 x, y 2 2 vo 02 1 1 2 h 1F 1 x, y 2 2 2  dx dy      1 outside 2  (10.78)

where V is the domain of the image, and h 1 # 2  is the thresholding operator known as the 
Heaviside function defined as h 1 z 2 5 1 if z $ 0, and h 1 z 2 5 0 otherwise. As a result, 
h 1F 1 x, y 2 2  is 1 inside the contour and 0 outside the contour. If we define H as the 2D 
function such that H 1 x, y 2 5 h 1F 1 x, y 2 2 , then 7rH 1 x 2 7  is large along the contour and 
0 everywhere else.

As an aside, the Chan-Vese energy functional is closely related to the classic 
Mumford-Shah energy functional, which is designed to partition an image into multiple 

Figure 10.16 The extra term 1rg 2 T rF in Equation (10.73) causes the curve evolution to stop at the intensity edge. Shown here is 
a 1D slice. g(x) is the inverse of the magnitude of the gradient of the image, so that g 1 x 2 5 0 occurs where the intensity edges lie (at 
the boundary of the object). Left: F encloses the object and therefore needs to shrink. From the diagram it is clear that @  F

@
  

x  
#  @  g
@

  

x , 0 
at the contour, which indeed causes the contour to shrink. Right: F is enclosed by the object and therefore needs to expand. From 
the diagram it is clear that @  F

@
  

x  
#  @  g
@

  

x . 0 at the contour, which indeed causes the contour to expand. The argument for the extra term in 
Equation (10.72) is similar.
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regions according to a minimal length curve while reconstructing the noisy signal in each 
region:

 E 1 Î, c 2 5 5V
1 Î 1 x, y 2 2 I 1 x, y 2 2 2 d x d y 1 ls 5V\

 

c
 ir Î 1 x, y 2 i2 dx dy 1 l,2c

 g dc 1 s 2
ds

g2 ds (10.79)

where I is the original noisy signal,  Î  is the reconstructed signal, the second term enforces 
smoothness of the reconstruction, and the third term minimizes the length of the curve. 
A simplified version of this problem, known as the minimal partition problem, occurs 
when the reconstructed signal is piecewise-constant, that is, constant within each region. 
Chan-Vese can therefore be considered a solution to the special case of the minimal partition 
problem in which there is just a single contour separating the inside region from the outside 
region.

The Chan-Vese energy in Equation (10.74) is minimized using iterations of the form

 DF 1 x 2 5 2h F 1F 1 x 2 2 Bla 1 l
 i 
0
 
I 1 x 2 2 vi 02 2 lo 0  I 1 x 2 2 vo 02 2 l,

   #  div a rF 1 x 27rF 1 x 2 7 b R  (10.80)

where DF 1 x 2  is the change in the value of F for the pixel at x ; 1 x, y 2  between iterations, 
and vi and vo are computed as the average of the gray levels in the inner and outer regions, 
respectively:

  vi 5  
5V

I 1 x, y 2 h 1F 1 x, y 2 2  d x d y

5V
h 1F 1 x, y 2 2  d x d y

 (10.81)

  vo 5  
5V

I 1 x, y 2 1 1 2 h 1F 1 x, y 2 2 2  d x  d y

5V
1 1 2 h 1F 1 x, y 2 2 2  d x  d y

 (10.82)

The factor hF 1F 1 x 2 2 ; @ h 1F 1 x 2 2 /@ F 1 x 2  is, in theory, the delta function, because it 
is the derivative of a step function. In practice, however, we approximate h 1 # 2  with a 
regularized Heaviside function (or soft threshold operator), such as

 h 1 z 2 <
1
2

 ¢1 1
2
p

 arctan a z
a
b ≤  (10.83)

whose derivative is given by

 hz 1 z 2 5
1
p

  #   a

a2 1 z2 (10.84)

where a governs the width of the transition. For convenience, we usually set a 5 1, 
leading to

 h F 1F 1 x 2 2 5
1
p

 #  1
1 1 1F 1 x 2 2 2 (10.85)

The pseudocode, shown in Algorithm 10.8 , reveals that the technique follows the same 
basic pattern as the standard level set method except that the image pixels are compared 
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ALGORITHM 10.8 Evolve a contour using the Chan-Vese level set method.

ChanVeseLevelSetMethod(I )

Input: grayscale image I
Output: 2D array F in which foreground object pixels are indicated by F 1 x, y 2 . 0

 1 Fprev d F d InitializeImplicitFunction()

 2 speed d `

 3 while speed . t do ➤ While contour is moving at sufficient speed,

 4    vi d MeanGrayLevelInsideContour 1 I, F 2  compute the mean gray levels

 5    vo d MeanGrayLevelInsideContour 1 I, 2F 2  of the inner and outer regions.

 6    for 1 x, y 2 [ I do ➤ For each pixel,

 7        hz d 1/ 1p 
 1 1 1 F 1 x, y 2  
 F 1 x, y 2 2 2  compute

 8        fx d F 1 x, y 2 2 F 1 x 2 1, y 2  the first

 9        fy d F 1 x, y 2 2 F 1 x, y 2 1 2   and

10        fxx d F 1 x 1 1, y 2 2 2F 1 x, y 2 1 F 1 x 2 1, y 2  second

11        fyy d F 1 x, y 1 1 2 2 2F 1 x, y 2 1 F 1 x, y 2 1 2  derivatives

12        fxy d F 1 x, y 2 1 2 1 F 1 x 2 1, y 2 2 F 1 x 2 1, y 2 1 2 2 F 1 x, y 2  in order to

13        num d fx x 
 fy 
 fy 2 2 
 fx 
 fy 
 fx y 1 fyy 
 fx 
 fx compute the

14        den d Pow 1fx 
 fx 1 fy 
 f y, 1.5 2  curvature

15        k d num /den using Equation (10.69).

16        di d 1 I 1 x, y 2 2 vi 2  
 1 I 1 x, y 2 2 vi 2  ➤ Compute the differences between

17        do d 1 I 1 x, y 2 2 vo 2  
 1 I 1 x, y 2 2 vo 2  the actual and expected gray levels.

18        F 1 x, y 2 d 2 hz 
 1la 1 li 
 di 2 lo 
 do 2 l, 
 k 2  ➤ Update F using Equation (10.80),

19        C 1 x, y 2 d  TRUE if F 1 x, y 2 . 0 or FALSE otherwise  and threshold F.

20    F d SignedChamferDistance(C) ➤ Reinitialize F using signed chamfer distance.

21    speed d max 1 0F 2 Fprev 0 2  ➤ Set the speed to the maximum distance moved by any pixel.

22    Fprev d F ➤ Store a copy of F for the next iteration.

23  return F

MeanGrayLevelInsideContour 1 I, F 2
Input: grayscale image I, implicit function F
Output: mean gray level inside contour specified by F

1  sum d 0

2  n d 0

3  for 1 x, y 2 [ F do
4      if F 1 x, y 2 . 0 then
5       sum d1 I 1 x, y 2
6       n d1 1

7  return sum / n
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with the mean gray levels inside and outside the contour, rather than using the intensity 
gradient of the image. Note that Lines 8–15 are used to compute the curvature using 
Equation (10.69), applying the noncentered kernels that we considered earlier.† Since 
Chan-Vese is insensitive to the initial contour, the initialization is performed by 
 InitializeImplicitFunction (whose implementation will depend upon the problem at 
hand). Note that Chan-Vese can be extended easily to incorporate any appearance model 
of the inner and outer regions, such as using color histograms, with only slight modifica-
tions to the code.

To derive Equation (10.80), let us rewrite the energy in Equation (10.74) as

 E 1 c 2 5 E 1F 2 5 2V
F 1 x, F, Fx, Fy 2  d x (10.86)

where

F 1 x, F, Fx, Fy 2 ; l, 7rH 1 x 2 7 1 lah 1F 1 x 2 2 1 li 0I 1 x 2 2 vi 02h 1F 1 x 2 2
1 lo 0I 1 x 2 2 vo 02 31 2 h 1F 1 x 2 2 4 (10.87)

Noting that x and y are the independent variables and F is the dependent variable, the Euler-
Lagrange equations are given by

 
@ F
@ F

2
@

@ x
  a @F
@ Fx

b 1
@

@ y
  a @F
@ Fy

b 5 0 (10.88)

where the partial derivative with respect to F is

  
@F
@ F

 5  la 
h F 1F 1 x 2 2 1 li 

0
 
I 1 x 2 2 vi 

02 h F 1F 1 x 2 2 2 lo 0  I 1 x 2 2 vo 02h F 1F 1 x 2 2  (10.89)

   5  h F 1F 1 x 2 2 1la 1 li 
0
 
I 1 x 2 2 vi 

02 2 lo 0  I 1 x 2 2 vo 02 2  (10.90)

where h F ; @ h 1F 2 /@ F is the delta function. The other derivatives are as follows:

 
@F
@ Fx

 5  
@

@ Fx
 1l, irH 1 x 2 i 2 5 l, h F 1F 1 x 2 2  

@

@ Fx
 1 irF 1 x 2 i 2 5 l, h F 1F 1 x 2 2  

@

@ Fx
 1Fx

2 1 x 2 1 Fy
2 1 x 2 2 1

2

  5  l, h F 1F 1 x 2 2  

1
2

 1Fx
2 1 x 2 1 Fy

2 1 x 2 221
2 1 2Fx 1 x 2 2 5 l, h F 1F 1 x 2 2  

Fx 1 x 27rF 1 x 2 7  (10.91)

 
@F
@ Fy

 5  l, h F 1F 1 x 2 2  

Fy 1 x 27rF 1 x 2 7  (10.92)

where we have used the fact that the gradient of H(x) can be expressed as

rH 1 x 2 5 c@ h 1F 2
@ x

@ h 1F 2
@ y

dT

5 c@ h 1F 2
@ F

 
@ F

@ x
@ h 1F 2
@ F

 
@ F

@ y
dT

5 h F 1F 2 3Fx Fy 4T 5 h F 1F 2  #  rF (10.93)

so that 7rH 1 x 2 7 5 h F 1F 2  #  7rF 7 .
† Section 5.4 (p. 240)
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Plugging these derivatives into Equation (10.88) yields

 0 5  h F 1F 1 x 2 2 3la 1 li 
0
 
I 1 x 2 2 vi 

02 2 lo 
0
 
I 1 x 2 2 vo 

02 4 2
@

@ x
 al, h F 1F 1 x 2 2  Fx 1 x 2

irF 1 x 2 i
b

2
@

@ y
 ¢l, h F 1F 1 x 2 2  

Fy 1 x 27rF 1 x 2 7 b
  5  h F 1F 1 x 2 2 Bla 1 li 

0
 
I 1 x 2 2 vi 

02 2 lo 
0
 
I 1 x 2 2 vo 02 4 2 l 

,
 #  div a rF 1 x 27rF 1 x 2 7 b R (10.94)

If we could solve this equation directly for F, we would have an answer for the F that 
minimizes the energy functional above. However, because this is a nonlinear equation, we 
instead adopt a gradient descent approach to solve for F, treating the value on the right-hand 
side as the deviation from the true solution. Given our convention that F 1 # 2 . 0 inside the 
contour, note that a positive value in the term involving vi indicates that the zero level set of 
implicit function is outside the contour, in which case F needs to be reduced, thus leading 
to the negative sign in Equation (10.80) . A flowchart of the Chan-Vese algorithm is shown 
in Figure 10.17, and the result of the algorithm in Figure 10.18.

10.3 Image Segmentation
So far we have considered the simplified case of segmenting just two regions, namely 
the foreground and background. Now we turn our attention to the general case of image 
segmentation, in which the goal is to carve an image into an arbitrary number of disjoint 
regions such that the pixels within each region share some visual property such as similar-
ity in color, texture, or motion, as shown in Figure 10.19. Before we consider a number of 
popular algorithms for automatic segmentation, let us first consider an influential movement 
in psychology that attempts to explain how the human visual system performs segmentation.

Figure 10.17 Flowchart of the Chan-Vese algorithm. First derivatives are taken to compute the divergence of the normalized gradient  
of F.  The heart of the algorithm is to compute DF to update F. Then DF is added to F of the previous iteration to yield F of the 
current iteration, followed by reinitialization of F.
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10.3.1 Gestalt Psychology
Consider the well-known Müller-Lyer illusion in Figure 10.20. Even though the two hori-
zontal lines are exactly the same length, one appears longer than the other. The reason for 
this is that the human visual system groups the horizontal and diagonal lines so that they 
appear as a single unit, and the perception is performed at such a low level in the system 
that it is impossible to “undo” the merge. No matter how hard a viewer may try, it is not 
possible to separate the lines in order to see that the two horizontal lines are, in fact, identi-
cal. Similarly, in the famous Kanisza triangle, a white triangle is perceived, even though the 
figure does not contain a triangle at all but rather some thin lines and circles with missing 
pieces; because these pieces are aligned in a certain way, our visual system perceives a white 
triangle occluding three circles and a thin triangle. Similarly, the specific arrangement of 
the cones in the figure causes us to perceive an underlying sphere.

In the 1920s, a group of German psychologists led by Max Wertheimer studied phenom-
ena such as these. Their question was, “How does the visual system organize the lightness 

Figure 10.18 The result of the Chan-Vese 
algorithm on a grayscale image.

Figure 10.19 Image segmentation involves carving an image into an arbitrary number of regions, each containing pixels that share 
some property of appearance (in this case color). Shown below are four different ways of displaying the output of a segmentation 
algorithm: the boundaries between regions, the label of each region as an integer (only some labels are shown), a random color for each 
region, or the mean RGB color of each region.
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patterns on the retina into coherent objects in order to give us a visual experience of the 
world?” Their answer was that the perceptual system does not simply collect and combine 
incoming sensory information to give a picture of the world, but instead actively organizes 
it. The fundamental principle that they articulated is known as the Law of Prägnanz, † which 
says that every stimulus pattern is seen in such a way that the resulting structure is as simple 
as possible. In other words, this law can be thought of as Occam’s Razor ‡ applied to percep-
tion, because it favors the simplest and most stable interpretations. By reacting against the 
prevailing atomistic view of the time, these scientists founded the gestalt school 
of psychology,§ which emphasized grouping as the key to understanding visual perception. 
They used the term Gestalt Qualität to refer to the set of internal relationships that makes 
the individual light sensations perceived as a whole. Some of the more well-known gestalt 
factors are shown in Figure 10.21.

Despite the fact that gestalt psychology provides a compelling description of our experi-
ence, it is too imprecise to be easily translated into a specific algorithm. That is, saying that 
the visual system groups pixels together (through some mysterious process) rather than 
treating them independently is not of much help to a computer vision practitioner unless one 
is also informed how such grouping takes place. And if we know how to group the pixels, 
then there does not seem to be much difference in saying that the pixels are treated as a unit 

† The German word Prägnanz means “conciseness.”
‡ Section 12.1.5 (p. 565)
§ Gestalt (geh-SHTALT) is German for “form or shape.”

Figure 10.20 Müller-Lyer  
illusion, Kanizsa triangle, 
and Idesawa’s spiky sphere.

Figure 10.21 Various gestalt relationships.
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versus saying that they are treated as individual pixels, because the grouping process itself 
has no other option than to treat them that way. So, while the gestalt approach may provide 
inspiration for segmentation, we must look elsewhere for specific algorithms.

10.3.2 Splitting and Merging
Let us define the segmentation of an image I as a set of regions R1, c, Rn such that every 
pixel is in exactly one region:

  I 5  hn
i51
Ri                          

1 covers entire image 2  (10.95)

  Ri x Rj 5  0  for all  i 2 j    1 non-overlapping 2  (10.96)

where each region is also a set of pixels, and additionally we assume that the pixels in each 
region are connected.

In the classic view of the problem of segmentation, a predicate h 1Ri 2  measures the 
homogeneity of a region. That is, h 1Ri 2  returns true if all the pixels in region Ri satisfy 
the homogeneity criterion, and false otherwise. A proper segmentation of the image there-
fore satisfies two criteria:

  h 1R i 2  5  TRUE for all i                                                       1 each region is homogeneous 2  (10.97)

  h 1Ri h Rj 2  5  FALSE for all adjacent R i 
, R j 

, i 2 j    1 adjacent regions are different 2  (10.98)

Image segmentation algorithms typically fall into one of two categories. Some algorithms 
begin with each pixel as a separate region, then recursively merge adjacent regions whenever 
they are similar to each other. Such algorithms are known as merging algorithms. At each 
step of the computation, Equation (10.97) is satisfied, and the goal of the algorithm is to 
continue merging until Equation (10.98) is satisfied as well. Other algorithms are known as 
splitting algorithms because they begin with the entire image as a single region, then recur-
sively split regions whenever they are found to be nonhomogeneous. With such algorithms, 
at each step of the computation Equation (10.98) is satisfied, and the goal of the algorithm 
is to continue splitting until Equation (10.97) is satisfied as well. Merging is also known as 
agglomerative clustering, while splitting is known as divisive clustering.

The classic split-and-merge algorithm combines these two ideas. First the image is 
recursively split until each region passes the homogeneity test. To facilitate this splitting, a 
quad-tree data structure is used. A quad-tree is a tree where each nonleaf node has exactly 
four children. The splitting computation works as follows. First the entire image (which 
forms the root of the tree) is tested for homogeneity. If it fails the test (which it will certainly 
do for all but the most boring of images), then it is split down the middle vertically and 
horizontally into four equally-sized regions, and the process is repeated recursively for each 
of the four regions, until all the regions are homogeneous.

Once the splitting is complete, then the merging process begins. There are various ways 
to perform merging, but one approach involves a variation on the classic connected compo-
nents algorithm.† The image is scanned from left-to-right and top-to-bottom, and the 
homogeneity test is performed on the regions corresponding to adjacent regions to decide 
whether to merge them. Unlike the classic connected components algorithm, however, 
where the order of scanning is arbitrary (as long as the algorithm is modified accordingly), 
the order in which the image is scanned for merging will affect the results, since the proper-
ties of the regions change when they are merged. An example of the split-and-merge algo-
rithm applied to a grayscale image is shown in Figure 10.22.

† Section 4.2.3 (p. 157).
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10.3.3 Region Growing
Even though split-and-merge sounds like a good idea, in practice a more effective technique 
is simply to apply agglomerative clustering, which, in the context of image segmentation, 
is known as region growing. In region growing, each pixel is initialized as a separate 
region, and adjacent regions that look similar are successively merged. The pseudocode for 
growing a single region is displayed in Algorithm 10.9. The reader should immediately 
recognize the similarity of this procedure with the floodfill algorithm of Algorithm 4.6.† 
Floodfill merges pixels only when they have identical values, whereas region growing 
merges pixels when they have similar values. Just as with floodfill, region growing starts 
with an initial seed pixel p 5 1 x, y 2 . A stack called a frontier is used to keep track of the 
pixels on the boundary of the region as it is being grown. At each iteration, a pixel is popped 
off the frontier, and its neighbors are examined. For each neighbor, if the appearance is 
similar to the model of the region, then that neighbor is added to the region, and the model 
is updated; the process continues until the frontier is empty.

Three lines distinguish the procedure from the basic floodfill: Line 1 initializes the 
model, Line 7 compares whether the pixel is similar to the model (rather than identical to 
the seed pixel), and Line 10 updates the model. The implementation of these lines depends 
upon the model chosen. One simple, natural, and effective choice is the Gaussian model. 
By maintaining the mean and variance of the pixel values in the region, we can measure the 
similarity of a pixel to the model by evaluating the Gaussian at that value. More specifically, 
for a grayscale image the mean and variance are given by

  m 5  
1
n

 an

i51

I 1pi 2  (10.99)

† Section 4.2.2 (p. 154)

Figure 10.22 TOP: The quad-tree data structure used in splitting. BOTTOM: The split-and-merge algorithm applied to a grayscale image. 
The algorithm is able to find the fire hydrant and most of the ground, though it oversegments the textured background.
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10.3 Image Segmentation 479

  s2 5  
1
n

 an

i51

1 I 1pi 2 2 m 2 2 (10.100)

where p1, p2, c, pn are the pixels in the region. The dissimilarity of a pixel q is then 
measured by its distance from the mean, relative to the standard deviation: 
d 1q; I, m, s 2 5 0I 1q 2 2 m 0 /s. The reader may notice that this is simply the Mahalanobis 
distance† in one dimension. The pixel is considered to be similar to the model if 
d 1q; I, m, s 2 , t, where t is a constant threshold. One advantageous property of the 
Gaussian is that there is a natural and intuitive way to select the threshold. Usually 

† Section 4.3.1 (p. 164).

ALGORITHM 10.9 Region growing for a single region

GrowSingleRegion(I,O,p,new-label)

Input: Image I, output image O, seed pixel p, and new label new-label
Output: Pixels in O are set

 1  model.Initialize( I(p) )
 2  frontier.Push(p)
 3  O 1 p 2 d new-label
 4  while frontier.Size . 0 do
 5    p d frontier. POP 1 2
 6    for q [ N 1 p 2  do
 7    if model.IsSimilar( I(q) ) and O 1 q 2 2 new-label then
 8       frontier.Push(q)
 9       O 1 q 2 d new-label
10       model.Update( I(q) )

model.Initialize(VAL)

 1 model.s d val
 2 model.s~ d val 
 val
 3 model.n d 1
 4 model.t2 d 2.5 
 2.5  ➤ example threshold to capture 62.5s

model.IsSimilar(VAL)

 1 m d  model.s/model.n
 2 s2 d model.s~/model.n 2 model.m 
 model.m
 3 d2 d 1 val-model.m 2  
 1 val-model.m 2
 4 return d2 # model.t2 
 s2

model.Update(VAL)

 1 model.s d1 val
 2 model.s~ d1 val 
 val
 3 model.n d1 1
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480 Chapter 10 • Segmentation

2.0 # t # 3.0, where t 5 2.0 captures 62s of the Gaussian, or 95% of the area under the 
curve, while t 5 3.0 captures 63s of the Gaussian, or 99.7% of the area under the curve. 
Another advantage of using the Gaussian is that it is easy to update the mean and variance 
by simply maintaining the running sum of values sn ; an

i51
I 1pi 2  and running sum of 

squares s~n ; an

i51
I 

2 1pi 2 . It is easy to show that m 5 sn/n and s2 5 s~n/n 2 m2. To avoid 
having to compute the square root, the function IsSimilar takes advantage of the fact that 
d , t is equivalent to d 

2 , t 2, or 1 I 1q 2 2 m 2 2 , t2s2. Note that IsSimilar, as it is writ-
ten here, will always set s2 to 0 whenever n 5 1, because the variance is impossible to 
estimate from a single value. This will prevent merging from ever taking place. Moreover, 
the variance estimate is not accurate for small sets. As a result, in a real implementation this 
simple pseudocode should be slightly modified to encourage merging when n is small.

It is easy to extend this basic procedure to color images, or to any other image with a 
vector of values per pixel. For vector-valued images, the mean vector is computed by stack-
ing the means of the different channels, and the covariance matrix is computed similarly. 
The similarity function uses the Mahalanobis distance with the multivariate Gaussian.§ 
Oftentimes the full covariance matrix is not needed, and good results can be achieved by 
assuming the covariance matrix is diagonal, thus ignoring the covariances and using only 
the variances along the dimensions.

Just as the connected components of an image can be computed by repeatedly apply-
ing floodfill, so the entire image can be segmented, applying a label to every pixel, by 
repeatedly applying the region growing procedure. The resulting algorithm is shown in 
Algorithm 10.10, where the function GrowSingleRegion is repeatedly called until all 
pixels have been labeled. At each iteration, the next seed pixel can be selected either by 
sequentially scanning the image or by selecting an unlabeled pixel whose value is similar 
to its neighbors (to avoid starting the growing procedure on an intensity edge). Despite 
its simplicity, region growing is an effective segmentation technique. Figure 10.23 shows 
the results of region growing with a Gaussian RGB model for each region on an example 
image. As was done here, it is generally recommended to enforce a minimum region size 
to reduce the effects of noise.

§ Section 12.2.4 (p. 580).

ALGORITHM 10.10 Image segmentation by region growing

RegionGrow(I )

Input: image I
Output: label image L

1 label d 0
2 for 1 x, y 2 [ I do
3    L 1 x, y 2 d UNLABELED

4 for 1 x, y 2 [ I do
5    if L 1 x, y 2 5 UNLABELED then
6      GrowSingleRegion(I, L,  (x, y), label)
7      label d1 1
8 return L
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10.3 Image Segmentation 481

10.3.4 Hierarchical Clustering Scheme (HCS)
Image segmentation can be viewed as a specific application of data clustering, which is a 
general problem that arises in many empirical domains. One popular approach to data clus-
tering is the hierarchical clustering scheme (HCS). An HCS operates on a fully connected 
graph containing a vertex for each data point. The weights of the edges are, not surprisingly, 
the distances between the data points as computed in some feature space. The procedure 
follows the agglomerative clustering approach, beginning by assigning each data point to its 
own cluster, then iteratively applying the following two steps: first, the two closest clusters 
are merged, and secondly, the weights from the remaining clusters to the new cluster are 
updated. This simple procedure successively merges clusters until all clusters have been 
merged. Although the result is not exactly a segmentation per se, the procedure bears close 
resemblance to several popular segmentation algorithms, making HCS a helpful framework 
for considering various related issues.

Figure 10.24 shows a simple example of the HCS that results from applying this 
procedure to a set of five data points. Since the minimum distance is between vertices a 
and b, these two are merged first. Then, the distance between vertices c and d is minimum, 
so these are merged next. Of the remaining distances, the minimum is between e and the 
cluster 5c, d6. Finally, the clusters 5a, b6 and 5c, d, e6 are merged. The result is a hierar-
chical clustering scheme that can be viewed as a dendrogram, which looks like a binary 
tree with a leaf node for each vertex in the original graph. Dendrograms are usually drawn 

Figure 10.23 Left: 
An RGB image. Right: 
Regions found by 
region growing, 
pseudocolored.

Figure 10.24 Left: An example of five data points labeled a through e, viewed as a graph with the edge weights indicating the distances 
(in some feature space) between the points. Middle columns: Initially considering each data point as a separate cluster, sequential 
iterations of the HCS procedure merge the two closest clusters until all clusters have been merged. Because the weights satisfy the 
ultrametric inequality, no updating of the weights is needed. Right: The dendrogram is a way to visualize the resulting hierarchical 
clustering, with the original data points along the horizontal axis and the distances used for merging along the vertical axis.

4

a

4

4
4

3

3
2

4
41

b c

d e

4

4
4

4

3 3

3
2

ab c

d e e

4

ab

cd

4

4
ab

a b c d ecde

3
2
1

P. C
ho

ck
ali

ng
am

, N
. P

rad
ee

p, 
an

d S
. T.

 Bi
rch

 el
d. 

Ad
ap

tiv
e f

rag
me

nts
-

ba
se

d t
rac

kin
g o

f n
on

-ri
gid

 ob
jec

ts 
us

ing
 le

ve
l s

ets
. In

 Pr
oc

ee
din

gs
 of

 th
e 

Int
ern

ati
on

al 
Co

nfe
ren

ce
 on

 Co
mp

ute
r V

isi
on

, O
ct.

 20
09

.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



482 Chapter 10 • Segmentation

so that the distance encountered during the merge of each pair of clusters is shown along 
the vertical axis.

The reader may be wondering why only one step of the HCS procedure was used in 
this example when we said there were two steps involved. The reason we did not have to 
update the weights is that the weights in this particular graph satisfy what is known as the 
ultrametric inequality. Let A and B be the two clusters in the graph that will be merged 
in a particular iteration of the procedure, and let c 1A, B 2  denote the distance between 
them. Then, for any other cluster C in the graph, the distance between C and the new cluster 5A, B6 needs to be defined once A and B are merged so that the procedure can continue. 
It turns out that if c 1A, C 2 5 c 1B, C 2 , as in the simple example above, then the choice is 
obvious, namely, c 1 5A, B6, C 2 5 c 1A, C 2 5 c 1B, C 2 . This will happen when for each 
cluster triplet the distance function satisfies the ultrametric inequality, namely,

 c 1A, B 2 # max 1c 1A, C 2 , c 1B, C 2 2   for all A, B, and C.  1 ultrametric inequality 2  (10.101)

Recall that a distance function is a metric if it satisfies the properties of nonnegativity, sym-
metry, and the triangle inequality.† A distance function is an ultrametric if it satisfies not 
only these three properties but also the ultrametric inequality.

It is easy to see that the ultrametric inequality implies the triangle inequality, but not 
vice versa. It is also easy to see that if three distances satisfy the ultrametric inequal-
ity, then two of the distances are equal, and the third distance is no greater than those 
two. For example, the set of distances 53, 4, 46 satisfies the ultrametric property, but the 
set 53, 4, 56 does not. (That is, 3 # max 1 4, 4 2  and 4 # max 1 3, 4 2  but 5 # max 1 3, 4 2 .) 
Note that with 53, 4, 46, the two clusters separated by a distance of 3 will be merged, so 
that c 1A, C 2 5 c 1B, C 2 5 4. More generally, if we have a set of clusters with distances 
defined between all pairs using a distance function that satisfies the ultrametric inequality, 
then if we let A and B be the closest clusters, that is, c 1A, B 2 # c 1X, Y 2  for any clusters 
X  and Y, then we know that c 1A, Z 2 5 c 1B, Z 2  for any cluster Z. In the same way, all 
the weights in the example graph above satisfy the ultrametric inequality, because in each 
case the distance from all vertices in the new cluster to all other clusters is the same. For 
example, when merging 5c, d6 and e, the distance between 5c, d6 and 5a, b6 is the same 
as the distance between e and 5a, b6, making it easy to determine the distance between 5c, d, e6 and 5a, b6.

In real-world situations, however, the distance function will not be an ultrametric, and 
therefore we must decide how to define the distance between two clusters A and B. The 
three most common approaches are to compare the closest points from the two sets, the 
farthest points from the two sets, or the centroid of the two sets, as listed here:

  c 1A, B2  5  min5c 1 a, b 2 , a [ A, b [ B6       1 single-link clustering 2  (10.102)

  c 1A, B2  5  max5c 1 a, b 2 , a [ A, b [ B6     1 complete-link clustering 2  (10.103)

  c 1A, B 2  5  
10A 
0 0B 

0   a
a[A, b[B

c 1 a, b 2             1 group-average clustering 2  (10.104)

These clustering choices are illustrated in Figure 10.25. Note that the region-growing 
approach of the previous subsection uses group-average clustering, with a slight modifica-
tion to compute the average distance relative to the standard deviation. Figure 10.26 shows 
a more realistic example of an HCS, using both single-link and complete-link clustering. 
In the case of single-link clustering, the edges that are used for merging form a minimum 

† Section 4.3.1 (p. 164).
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spanning tree for the graph. The importance of this observation will be clear later in the 
chapter when we consider the Felzenszwalb-Huttenlocher algorithm.†

10.3.5 Watershed Method
When rain falls on the side of a hill or mountain, the water flows downhill to the valley 
below. Unless the water is absorbed by the ground or is evaporated, it flows into the nearest 
creek, which joins with a nearby river, when eventually (in the typical case) empties into the 

† Section 10.4.1 (p. 490).

Figure 10.25 Three common clustering 
choices between two sets of points are 
the minimum distance between points 
in the two sets (single-link clustering), 
the maximum distance (complete-link), 
and the distance between the centroids 
(group-average).

Group-
average
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link
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link

Figure 10.26 Top: A more 
realistic example of five 
data points, with weights 
that do not satisfy the 
ultrametric inequality. 
Shown are the iterations 
for single-link (middle) and 
complete-link (bottom) 
clustering approaches.

8

a

4

4

3

5
52

7
61

b c

d e

4

4
5

5

3 3

5
2

ab c

d e e

4

ab

cd

4

4
ab

a b c d ecde

3
2
1

6

8
7

7

3 5

5
2

ab c

d e e

8

ab

cd

8

8

ab

a b c d ecde

5
2
1

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



484 Chapter 10 • Segmentation

ocean. As illustrated in Figure 10.27, a catchment basin, or drainage basin, is an area 
of land where all the surface water in the area eventually flows to a single point at a lower 
elevation. The ridge that separates adjacent drainage basins is known as a ridgeline, or 
drainage divide. In hilly country, this ridgeline connects the peaks of the mountains in the 
range, while in relatively flat areas the ridgeline is more difficult to locate. A  continental 
divide is a ridgeline that separates two catchment basins, each of which flows into a differ-
ent ocean. For example, rain that falls in the Rocky Mountains of the United States might 
flow to either the Atlantic or Pacific Ocean, depending on which side of the continental 
divide it lands.

These topographic concepts lead naturally to an approach of image segmentation 
known as watershed† segmentation which combines ideas from region growing 
and edge detection. The watershed approach to segmentation determines the segmented 
regions of the original image by computing the catchment basins of the terrain indicated 
by the segmentation function, which is a function (defined over the same domain as 
the image) that yields small values in the interior of regions but large values along the 
boundaries between regions. This segmentation function is viewed as the surface of a 
terrain (or topographic surface) in which the mountains (large values) indicate bound-
aries between regions, and the valleys (small values) indicate the region interiors. Typical 
choices for the segmentation function include the gradient magnitude of the image, the 
output of a boundary detector, a distance function from approximate region centers, or 
any other representation that emphasizes the boundaries of regions.

There are two basic flavors of the watershed approach. One flavor, known as 
tobogganing, finds the downstream path from each pixel (imagined as a raindrop) to the 
local minimum. The drawback with this technique is that discretization effects in a digital 
image make it impossible to determine the downward direction using only local informa-
tion when there is a plateau. As a result, if the pixel (raindrop) follows the path of gradient 
descent, it will get stuck in the plateau.

The more common approach is known as immersion. In this approach, we imagine the 
segmentation function as a rigid 3D structure which is punctured at each local minimum 
and slowly submersed in water. As the segmentation function is pushed down, the water 
flows through the punctured holes to fill up the catchment basins, each of which is assigned 

† The term watershed itself is ambiguous; in some communities a watershed is a catchment basin, whereas in other 
communities a watershed is a ridgeline.

Figure 10.27 In watershed 
segmentation, the segmentation 
function is interpreted as a 
topographical surface. The 
most common choice for the 
segmentation function is the 
gradient magnitude image.
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a unique label according to which hole the water flowed through. When the water levels 
from adjacent catchment basins reach the ridgeline between them, we imagine building 
a dam of infinite height at the ridgeline to prevent the two bodies of water from mixing 
(which would confuse the unique labels). Once the entire segmentation function has been 
submerged, every point on the surface has received a unique label, which then indicates the 
identity of the region containing the point.

To gain some intuition behind the immersion approach to watershed segmentation, 
Figure 10.28 shows the contour lines of a segmentation function containing just 6 levels 
(that is, each pixel in the segmentation function takes a value 0 through 5), along with 
the output after each step of the algorithm. In the first step, Level 0 is considered (that is, 
all pixels whose segmentation function value is 0). There are two such regions, and the 
floodfill procedure is applied to both with separate labels (indicated by different colors). In 
the second step, Level 1 is considered. One of the regions is disconnected, so the floodfill 
procedure is applied with a third label (indicated by yet another color). At the same time, 
the two existing regions are grown to include the Level 1 pixels that are connected to them. 
In the third and fourth steps, the existing regions continue to grow by assimilating Levels 2 
and 3. In the fifth step the regions continue to grow using Level 4, but they bump into each 
other, causing early termination. In the sixth step, regions in the corners are grown without 
hindrance. From this example we see that the immersion approach involves considering each 
level in sequential order. At each level, three possibilities exist for any contiguous group 
of pixels: the group is either disconnected from all existing regions, connected to exactly 
one existing region, or connected to more than one region. The first case is handled by the 
floodfill procedure, while the latter two cases are handled by growing the existing regions 
in a breadth-first manner to ensure that regions meet halfway when necessary. Note that at 
each level, the geodesic influence zone of each existing catchment basin is determined, 
which is the set of unlabeled pixels that are contiguous with the basin and closer to that 
basin than to any other.

Figure 10.28 Step-by-step results of immersion-based watershed segmentation on a segmentation function with 6 levels (0 through 5). 
The different colors indicate the unique labels of the three different regions. The contour lines of the segmentation function are shown, 
with numbers indicating the levels of the pixels.
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One of the problems with the standard watershed approach is that it is highly susceptible 
to noise in the segmentation function. That is, any tiny wrinkle in the function will create 
a local minimum, which then will generate a unique label for the (possibly very small) 
catchment basin containing the local minimum. This leads to oversegmentation, and the 
errors from the standard algorithm are usually quite severe. The most common solution to 
this problem, known as marker-based watershed segmentation, is to first use an inde-
pendent procedure to generate a binary image where ON pixels indicate locations (called 
markers) where the local minimum is significant. The segmentation function is then only 
allowed to be punctured at the markers, so that the number of regions in the final segmenta-
tion (i.e., the number of unique labels) is equal to the number of markers.

ALGORITHM 10.11 Marker-based immersion watershed algorithm

WatershedByImmersion(I, M)

Input: grayscale image I, binary image M of the same size as I indicating markers
Output: label image L
 ➤ Initialize data structures
 1 G d ROUND(GradientMagnitude(I )) ➤ Compute gradient magnitude.
 2 for each value k d 0 to ngrad 2 1 do ➤ Clear the pixel list associated with each
 3    pixellist [k].Clear() possible gradient magnitude value.
 4 for each pixel p [ G do ➤ Precompute pixel lists by storing coordinates of all
 5    pixellist [G(p)].PushBack(p) pixels, arranged by gradient magnitude value.
 6    L 1 p 2 d UNLABELED ➤ All pixels are initially unlabeled.
 7 next-label d 0
 8 frontier.Clear()
   ➤ Flood topological surface one value at a time
 9 for each value k d 0 to ngrad 2 1 do
     ➤ Grow existing catchment basins by one pixel, creating initial frontier
10   for each pixel p in pixellist[k] do
11      if L 1 p 2 55 UNLABELED and there exists a neighbor q of p
       such that G 1 q 2 , k and L 1 q 2 2 UNLABELED then
12        L 1 p 2 d L 1 q 2  ➤ p is in an existing catchment basin, so copy label
13        frontier.PushBack(p) from neighbor q, and push p onto frontier.
    ➤ Continue to grow existing basins one pixel thick each iteration by expanding frontier
14   while frontier.SIZE . 0 do
15      p d frontier.POPFRONT 1 2
16      if there exists a neighbor q of p such that G 1 q 2 # k and L 1 q 2 55 UNLABELED then
17        L 1 q 2 d L 1 p 2  ➤ q is not labeled, so copy label
18        frontier.PushBack(q) from neighbor p, and push q onto frontier.
    ➤ Create new catchment basins
19   for each pixel p in pixellist[k] do
20      if L 1 p 2 55 UNLABELED and M 1 p 2 55 ON then ➤ p is still unlabeled, and a marker
21        Floodfill(L, p, next-label) exists at p, so floodfill starting at p,
22        next-label d1 1 and increment next-label.
23 return L
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The final marker-based immersion watershed algorithm is detailed in Algorithm 10.11. 
Line 1 computes the gradient magnitude of the image as the segmentation function, but any 
other suitable computation may be substituted here. Note that the segmentation function 
is quantized (in this case using Round) so that there is a discrete set of possible values. 
For efficiency, the approach uses a data structure called pixellist, which is a fixed-size 
array of dynamically-sized arrays. That is, pixellist[k] is a list of the coordinates of all the 
pixels for which the segmentation function has a value of k. Lines 2–8 initialize this data 
structure, along with the output and the frontier. After the initialization, each possible value 
of the segmentation function is considered in turn, and three steps are performed. First, 
the existing catchment basins are grown by one pixel, initializing the frontier. Secondly, 
the frontier is expanded to grow the existing catchment basins until all adjacent pixels 
of the current level have been assimilated. Finally, any pixels of the current level that 
have not yet been labeled are floodfilled with a new label if there is a marker. Note that 
the frontier is a FIFO (first-in first-out) queue, which causes a breadth-first search to take 
place, thus enabling the different regions to grow at the same rate and therefore meet in 
the middle when necessary.

The careful reader may have noticed that the creation of new catchment basins in 
Lines 19–22 can be pulled out of the loop and placed before Line 9, since the markers 
are known beforehand. This observation is indeed true, and a real marker-based imple-
mentation should do so. Nevertheless, the code has been structured in the manner shown 
in Algorithm 10.11 so that it also implements the non-marker-based watershed algo-
rithm if M 1 p 2 5 ON for all pixels p. One other subtle minor distinction between the 
two cases is that the test G 1 q 2 # k in Line 16 may be written as G 1 q 2 55 k in the 
non-marker-based case, since all pixels with G 1 q 2 , k will already have been labeled. 
In the marker-based case, however, the less-than sign is necessary to ensure that local 
minima without accompanying markers are filled in, and in the non-marker-based case, 
the less-than sign does not hurt.

The algorithm given above is a simplified version of what is usually presented. The 
most common algorithm, known as Vincent-Soille, involves the building of dams between 
the catchment basins. That is, when two catchment basins grow to the point that they 
touch each other, a dam is built between them to prevent water from flowing into the other 
catchment basin. By simply checking whether a pixel has been labeled, we have avoided 
the need for building dams and thereby simplified the algorithm considerably. As a result, 
Algorithm 10.11 may be considered as a dam-less Vincent-Soille algorithm. Note, 
however, that our algorithm does not find the boundaries between regions explicitly; it 
only labels the pixels. If boundaries are desired, they can be estimated by differentiating 
the resulting label image. In the worst case, which arises when the true boundary pixel is 
equidistant from two catchment basins, this approach introduces a one-pixel error in the 
location of the boundary; a simple modification removes this error.

An example of the immersion algorithm, without markers, on a 5 3 5 image with 10 
levels (0 through 9) is shown in Figure 10.29. First, the pixel list is created, and each pixel 
in the label image is set to UNLABELED. Considering Level 0, since there are no catchment 
basins there is nothing to do but to floodfill the pixel with value 0. In Level 1, two of the 
pixels are adjacent to a labeled pixel and are therefore placed on the frontier, while new 
catchment basins are created for the other two pixels. In Level 2, all four pixels are placed 
on the frontier, and the process continues until all pixels have been labeled.

When implementing the marker-based watershed algorithm, it is important to create not 
only a marker for every foreground object but also a marker for the background. The typical 
way to find the foreground objects is thresholding. To find the background object, simply 
run non-marker-based watershed on the distance image to the foreground objects, then 
compute the edges of the result. (To compute the edges, simply look for pixels whose value 

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



488 Chapter 10 • Segmentation

is different from their neighbors.) These edges, logically ored with the foreground blobs, 
constitute the markers that are fed to the marker-based algorithm. The pseudocode for this 
end-to-end procedure is provided in Algorithm 10.12, and the corresponding flowchart is 
illustrated in Figure 10.30. One detail that should be mentioned is that a real implementa-
tion should be sure to prevent the possibility of the logical or in Line 5 from causing the 
background marker to touch a foreground marker. A straightforward way to overcome this 
potential problem is to make the marker image a tertiary image, with each pixel having a 

Figure 10.29 An example of non-marker-based immersion watershed on a simple 5 3 5 image with 10 levels (0 through 9). Shown are 
the results after several steps of the algorithm, followed by the final result. (Note that ties are broken arbitrarily, so other solutions are 
possible.) At each step, pixel coordinates in the pixel list with a value less than or equal to the current value are colored, and pixels on 
the frontier are shaded.
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ALGORITHM 10.12 End-to-end watershed segmentation of an image

WatershedWithThresholding 1 I, t 2
Input: grayscale image I, threshold t
Output: label image L

1 T d not Threshold(I, t) ➤ Invert the thresholded image.
2 D d CHAMFER 1 T 2  ➤ Compute distance image to dark regions.
3 W d WATERSHEDBYIMMERSION 1D, ON 2  ➤ Run non-marker-based watershed.
4 E d  EdgeDetection(W) ➤ Detect region boundaries in watershed output.
5 M d T  or E ➤ Construct marker image by combining foreground and background.
6 return WatershedByImmersion(I, M ) ➤ Run marker-based watershed.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



10.3 Image Segmentation 489

value indicating either no marker, foreground marker, or background marker, so that when 
the floodfill occurs, there is no bleeding between the foreground and background. This 
extension is left as an exercise for the reader.

10.3.6 Mean-Shift Segmentation
Recall that the mean-shift filter† is an approach to edge-preserving smoothing that results 
in a cartoon-like image by smoothing within regions but not across boundaries. The 
resulting cartoon-like image looks almost the same as the results of a segmentation 
algorithm. This leads to the mean-shift segmentation algorithm, which involves first 
running the mean-shift filter, then applying some postprocessing steps to the result. The 
algorithm achieves excellent results but is computationally expensive. Usually 
the algorithm is applied to a color image, using a color space like L
u
v
 or L
a
b
 in 
which distances are approximately perceptually correct. Typically, two postprocessing 
steps are applied: any two pixels that are nearby in both spatial coordinates and range are 
merged, and finally small regions are merged with nearby larger regions. The mean-shift 
segmentation algorithm reveals a close connection between segmentation and edge-
preserving smoothing, and therefore any other edge-preserving smoothing algorithm can 
be used in the same manner. The result of mean-shift segmentation on an image is shown 
in Figure 10.31.

† Section 5.5.5 (p. 257).

Figure 10.30 Flowchart of the end-to-end watershed procedure.
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10.4 Graph-Based Methods
We now turn our attention to graph-based methods of image segmentation. These algorithms 
all share the property that they view the image as a graph, with the vertices representing the 
pixels, the edges representing the connections between neighboring pixels, and the weights 
of the edges representing the dissimilarity (or similarity, depending upon the algorithm) 
between neighboring pixels. We begin with the popular Felzenszwalb-Huttenlocher 
algorithm, followed by normalized cuts, then s-t cuts and semantic segmentation.

10.4.1 Felzenszwalb-Huttenlocher (FH) Algorithm
One of the most popular image segmentation algorithms today is the Felzenszwalb-
Huttenlocher (FH) algorithm, due to its computational efficiency, ease of implementation, 
and good results. The FH algorithm is often known as graph-based segmentation, but 
this name is not very descriptive, since many other graph-based segmentation algorithms 
exist, and they often have little in common with one another. The FH algorithm is closely 
related to computing the minimum spanning tree (MST) of a graph, which is the set of 
edges with minimum weight (meaning that the sum of the weights of its edges is mini-
mum) that connects all the vertices in the graph such that the set contains no cycles (hence 
it is a tree). One of the two most commonly used methods for finding the MST of a graph 
is Kruskal’s algorithm.† Therefore, we first describe Kruskal’s algorithm itself, then we 
explain the slight modification to Kruskal’s algorithm that turns it into the 
FH algorithm.

The mechanics of Kruskal’s algorithm are simple. First the edges are sorted in non-
decreasing order according to their weight. Then the edges are considered one at a time, in 
order, starting with the smallest-weight edge. For each edge, if the two vertices on either end 
of the edge are in different regions, then the two regions are merged. The procedure contin-
ues until all the vertices are in the same region. Why does this approach work? Because, in 
order to achieve a spanning tree, we know that two vertices will eventually have to merge, 
and since the edges are already sorted, we can do no better than to merge them using the 
current edge. Kruskal’s algorithm is therefore an example of a greedy algorithm (meaning 
it makes decisions locally) that is nevertheless optimal.

The pseudocode for Kruskal’s MST algorithm is provided in Algorithm 10.13. As with 
the classic connected components algorithm,‡ this method uses a disjoint-set data structure 

† The other is Prim’s algorithm, which, for various reasons, is less applicable to the problem of image segmenta-
tion than Kruskal’s.
‡ Section 4.2.3 (p. 157).

Figure 10.31 Result of the mean-shift segmentation 
algorithm on an image of a clown.
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(called equiv here, for “equivalence table”). After initializing the disjoint-set data structure, 
the procedure ConstructWeightedEdges generates a list of weighted edges for the graph 
by measuring the dissimilarity between neighboring pixels, typically using 4-neighbor con-
nectedness and comparing pixels using the Euclidean distance in some color space. These 
edges are then sorted in ascending order by their weight, so that the pixels that are the most 
similar in appearance occur near the front of the list. Each edge ei 5 1 u, v 2  is considered 
in turn, and the two vertices (pixels) of the edge are examined. If they are in separate regions, 
then they are merged; otherwise they are already in the same region, so there is nothing to 
do. The auxiliary procedures are as follows: Initialize places each node into a separate 
set, FindSet returns the “root node” of a set, and Merge merges two sets. These latter two 
are exactly the same as the GetEquivalentLabel and SetEquivalence procedures, 
respectively, of connected components.

An example of Kruskal’s algorithm applied to a simple 3 3 3 image is given in 
Figure 10.32, where the pixels are labeled a through i for convenience. The edge weights 
are sorted in nondecreasing order, then considered one at a time. The first edge is (h,i ), 

ALGORITHM 10.13 Kruskal’s minimum spanning tree (MST) algorithm

KruskalMST(I )

Input: image I
Output: minimum spanning tree T

1 Initialize(width * height)
2 E d  ConstructWeightedEdges(I )
3 8e1, c, en9 d SortAscendingByWeight(E )
4 T d f

5 for 1 u, v 2 d e1 to en do
6    if FindSet 1 u 2 2  FindSet(v) then
7     T d T h 5 1 u,v 2 6
8     Merge(u,v)
9 return T

Initialize(N)

1 for i d 0 to n 2 1 do
2   equiv 3i 4 d i

FindSet(U)

1 if u 5  5 equiv 3u 4 then
2   return u
3 else
4   equiv 3u 4 d  FindSet(equiv[u])
5   return equiv[u]

Merge(U,V)

1 a d  Min(FindSet(u),FindSet(v))
2 b d  Max(FindSet(u),FindSet(v))
3 equiv 3b 4 d a
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which has weight 0. Since h and i are in different regions, the edge is added to the tree, and 
the pixels are merged. There is a three-way tie for second place between (a, b), (e, f  ), and 
(e, h), all with weight 1. In this case the tie is not important, since all three are added to the 
tree. Similarly, for weight 2 the tie can be broken arbitrarily without affecting the result. 
Note, however, that the edge (  f, i ) cannot be added to the tree since it would create a cycle, 
which is known because FindSet( f ) 5 FindSet(i) 5 e. The final MST is found after edge 
(d, e) is added to the tree, since all pixels are spanned by the tree at that point. It is easy to 
see that Kruskal’s algorithm finds the exact same hierarchical clustering found by the HCS 
procedure† with single-link clustering, assuming that the distance between non-adjacent 
pixels is set to infinity.

In this example, it is interesting to consider what happens just before the final result. That 
is, after the penultimate edge of (d, g) is added, there is a forest with two trees, one tree span-
ning pixels in the lower-right corner of the image with small gray levels, and another tree 
spanning the remaining pixels with large gray levels. Thus we see that, although Kruskal’s 
algorithm eventually merges all the pixels into a single region, if it were terminated early 
it would segment the image.

Inspired by this observation, Felzenszwalb-Huttenlocher (FH) achieves the goal 
of segmentation by a simple modification to Kruskal’s algorithm: instead of merging 
automatically whenever two pixels are in different regions, two pixels are merged only if the 

† Section 10.3.4 (p. 481).

Figure 10.32 Kruskal’s algorithm applied to a 3 3 3 image, whose gray levels are shown in brown. Next to the image is shown the 
graph whose edge weights are the absolute difference in gray level between neighboring pixels, using 4-neighbor connectedness. The 
remaining graphs show the edges (in orange) added to compute the minimum spanning tree of the graph, as the algorithm proceeds 
step by step. Note that the penultimate step (step 8) results in a compelling segmentation of the image.
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pixels are in different regions and if they look similar. As a result, this modified algorithm 
does not find a single MST but rather a forest of MSTs, one tree per region. The pseudocode 
is provided in Algorithm 10.14, where it is clear that the basic algorithmic structure is identi-
cal to that of Kruskal’s MST algorithm, except that, since we do not care about the MSTs 

ALGORITHM 10.14 Felzenszwalb-Huttenlocher minimum spanning tree-based segmentation

FelzenszwalbHuttenlocherSegmentation(I, k)

Input: image I, scalar parameter k
Output: label image L

 1 Initialize(width * height)
 2 I r d  Smooth(I )
 3 E d  Construct Edges 1 I r 2
 4 8e1, c, en9 d SortAscendingByWeight(E)
 5 for 1 u, v 2 d e1 to en do
 6    u r d  FindSet(u)
 7    v r d  FindSet(v)
 8    if u r 2 v r and IsSimilar 1w 1 u, v 2 , u r, v r; k 2  then
 9       Merge 1 u r, v r, w 1 u, v 2 2
10 for 1 x, y 2 [ I do
11    L 1 x, y 2 d FindSet 1 y 
 width 1 x 2
12 return L

Initialize(N)

 1 for i d 0 to n 2 1 do
 2    equiv 3i 4 d i
 3    max-edge-weight 3i 4 d 0
 4    num-pixels 3i 4 d 1

FindSet(U)

 1 if u 5  5 equiv 3u 4 then
 2   return u
 3 else
 4   equiv 3u 4 d  FindSet(equiv[u])
 5   return equiv[u]

Merge(U,V,W)

 1 a d  Min(FindSet(u), FindSet(v))
 2 b d  Max(FindSet(u), FindSet(v))
 3 equiv 3b 4 d a
 4 max-edge-weight 3a 4 d  Max(w, max-edge-weight [a], max-edge-weight [b])
 5 num-pixels 3a 4 d num-pixels 3a 4 1 num-pixels 3b 4
IsSimilar (W,U,V;K)

 1 return w , MIN 1max-edge-weight 3u 4 1 k/ num-pixels 3u 4, max-edge-weight 3v 4 1 k/ num-pixels 3v 4 2
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themselves, we do not bother to keep track of the variable T anymore. The disjoint-set data 
structure contains not only the equivalence table but also the maximum edge weight in the 
region, as well as the number of pixels in the region. Note that when merging, the weight 
w will always be greater than any weight considered so far (because of the ascending sort), 
and therefore the Max of Merge in line 4 is unnecessary (but it does no harm either).

The procedure IsSimilar compares the weight w(u,v) of an edge (u,v) with the regions 
containing the pixels u r and v r, using a single parameter k. With this parameter, the threshold 
of a region R is given by

 t 1R 2 5
k0R 0  (10.105)

where 0R 0  is the size of the region, meaning the number of pixels in the region. The internal 
variation of the region is given by the maximum weight of the edges in the MST:

 v 1R 2 5 max
e[MST 1R,E2 w 1 e 2  (10.106)

Therefore, two regions R1 and R2 are merged if the weight w between them satisfies:

 w , min 1 v 1R1 2 1 t 1R1 2 , v 1R2 2 1 t 1R2 2 2  (10.107)

which is line 1 of IsSimilar. We call the clustering scheme used by IsSimilar smallest-
neighbor clustering, which is the same as single-link clustering when the distances between 
nonadjacent pixels are set to infinity. Like single-link clustering, this choice allows for large 
amounts of drift in appearance within a single region, and therefore it tends to underseg-
ment images. It is important to note that, for this procedure to work, the division must be 
floating-point division; otherwise, once the region is bigger than k, no more merging will 
occur because k/num-pixels , 1, which truncates to zero, and k effectively becomes the 
maximum region size. As a result, the image must first be smoothed in order to convert the 
pixel values to floating point and to introduce slight differences between identical neighbor-
ing pixels. Therefore, the smoothing of the image in Line 2, which produces a floating-point 
value for each pixel, is not an optional step of the algorithm.

The FH algorithm can be seen as an elegant version of region growing that overcomes 
some of the limitations of the standard approach. While region growing is an effective tech-
nique, it leaves several important questions unanswered, such as 1) What merge criterion 
should be used? 2) How should we select the starting pixels? and 3) Among the several 
pixels adjacent to the region, which one should be considered next? The merge criterion, 
which defines what we mean when we say pixels “look similar,” involves three aspects: the 
value used (e.g., grayscale, color, texture, stereo, motion, and so forth); the distance metric 
used (e.g., Euclidean or Manhattan); and the clustering type (single-link vs. complete-link 
vs. group-average). Such decisions are largely application-specific, and there is not much 
we can do to answer them at the algorithmic level. However, the other two questions are 
fundamentally important, because the outcome of the algorithm will depend heavily on the 
choice of starting pixels and on the selection of the adjacent pixel to consider next. More-
over, a serious drawback of the region-growing technique is that only one region is grown 
at a time, which introduces a bias toward earlier over later regions. Thus, the FH algorithm 
can be considered an improved version of region growing that, although it merges regions 
in a greedy manner, effectively grows the regions simultaneously in a fair and balanced way. 
The result of the FH algorithm on an image is shown in Figure 10.33.

The FH algorithm is limited to smallest-neighbor clustering, with other clustering 
schemes introducing prohibitive computational cost. In contrast, region growing can use 
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a variety of different options. Recall that our version of region growing in Algorithm 10.9 
uses group-average clustering, where one cluster is the region being grown, and the second 
cluster consists of the single pixel being added to the region. It would be easy to modify that 
algorithm to use single-link clustering, where the distance between two nonadjacent pixels 
is defined as infinity, but complete-link clustering is cost prohibitive for most applications 
because it requires the pixel to be compared with every pixel in the region. Thankfully, the 
best results are usually achieved using either single-link or group-average clustering, the 
former allowing an arbitrary drift in appearance within regions while the latter enforces 
data-driven bounds on the compactness of the similarity of any given region.

10.4.2 Normalized Cuts
Suppose a graph is constructed such that each vertex represents a pixel, as we just saw, but 
the weights assigned to the edges are based on the similarities between neighboring pixels 
rather than their dissimilarities. An easy way to turn dissimilarities into similarities is to 
use the exponential function: s 1p, q 2 5 exp52d 1p, q 2 26, where s(p,q) is the similarity 
between pixels p and q, and d(p,q) is their dissimilarity. The algorithms that we have been 
considering so far (including region growing, watershed, mean shift, and Felzenszwalb-
Huttenlocher) are all examples of agglomerative clustering because they repeatedly merge 
regions. We now describe an approach based on divisive clustering because it repeatedly 
splits the image.

Any weighted graph can be represented by its weighted adjacency matrix, which is 
an n 3 n matrix containing the weights of the edges, where n is the number of vertices in 
the graph (i.e., pixels in the image). That is, the ij 

th entry of the matrix is the weight of 
the edge between the i 

th and j 
th vertices. Let w(i, j ) be the weight between pixels i and j. 

Define W as the n 3 n weighted adjacency matrix so that wij 5 w 1 i, j 2  for all the elements 
of the matrix. The weights capture the similarity between the pixels, usually by combining 
spatial distance with distance in some feature space such as color or texture. For example,

 w 1 i, j 2 ; exp ¢2 

7xi 2 xj 7 2
2ss

2 ≤  exp ¢2 

7 I 1 xi 2 2 I 1 xj 2 72
2sv

2 ≤  (10.108)

where xi contains the (x,y) coordinates of the i 
th pixel, I 1 xi 2  is the image value of the 

pixel, and ss and sv govern the expected spatial and value differences, respectively. 
Because these weights are related to the similarities between pixels, W is also known as 
the affinity matrix. Note that, unlike the region growing-based methods, in this approach 
the pixel neighbors can be defined in any way desired, such as 4- or 8- neighbors, or by 
taking all (or a random subset) of the pixels within a specified radius.

Figure 10.33 Result 
of the Felzenszwalb-
Huttenlocher 
segmentation algorithm 
on an image of a knitted 
butterfly, shown as 
boundaries (red).
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In spectral graph theory, various properties of a graph are revealed by studying the 
eigenvectors and eigenvalues of its affinity matrix, or of matrices derived from it. One such 
derived matrix is the weighted degree matrix D, where the ij 

th element is defined as

 dij 5 bdi if i 5 j
0 otherwise

 (10.109)

where di ; a j
 w 1 i, j 2 . Obviously, D is diagonal, and each element on the diagonal is 

the sum of all the weights of that row (or column, since W is symmetric). Other derived 
matrices are as follows:

  L ;  D 2 W                                     1Laplacian matrix 2  (10.110)

  W~  ;  D21
2  WD21

2                                                          1 normalized affinity matrix 2  (10.111)

  L~ ;  D21
2  LD21

2 5 I5n3n6 2 W~        1 normalized Laplacian matrix 2  (10.112)

where I5n3n6 is the n 3 n identity matrix. The normalized Laplacian matrix is also known 
as the symmetric normalized Laplacian matrix.

It can be shown that the Laplacian matrix L is always positive semi-definite, which 
means that all its eigenvalues are nonnegative. It is also the case that the smallest eigenvalue 
of L is always zero, and its corresponding eigenvector is a vector of all ones (denoted by 1), 
which can easily be shown:

 L1 5 1D 2 W 2 1 5 D1 2 W1 5 0 5 01 (10.113)

since W1 simply sums the rows of W, thus D1 and W1 are identical. Let us denote this 
smallest eigenvalue as l0 5 0. The second-smallest eigenvalue (or, equivalently, the 
smallest nonzero eigenvalue), which we shall denote by l1, is known as the spectral gap 
or Fiedler value. It is also known as the algebraic connectivity, because the number of 
zero eigenvalues is equal to the number of components in the graph, so when a graph has 
noisy weights, l1 is an indication of how well connected the graph is. When the graph has 
multiple components, the Laplacian matrix (after possibly reordering the rows and columns) 
is block diagonal, with each block indicating the Laplacian of the individual component. As 
a result, when the graph is noisy, the eigenvector associated with l1 indicates which vertices 
are likely to belong to the most dominant component.

This analysis leads naturally to an image segmentation algorithm known as the 
normalized cuts algorithm. In this algorithm, the affinity matrix of the image is computed, 
and the eigenvector associated with the second-smallest eigenvalue of the normalized 
Laplacian matrix is computed and thresholded. Pixels whose value in the corresponding 
element of the eigenvector is above the threshold are considered part of the dominant com-
ponent and labeled as such. The affinity matrix of the remaining pixels in the image is 
then computed, and the eigenvector associated with the second-smallest eigenvalue of the 
new normalized Laplacian matrix is computed and thresholded to yield the next dominant 
component. This process is repeated until the desired number of regions has been found. 
At each iteration, the threshold is determined either by selecting the value 0, or by selecting 
the median of all the values in the eigenvector, or by checking a number of equally spaced 
values and selecting the one that minimizes the normalized cut between the two regions 
resulting from the split; the latter approach is recommended.

To better understand the normalized cuts algorithm, consider the diagram and example in 
Figure 10.34. Let V be the set of pixels in the image (equivalently the set of vertices in the 
graph). Our goal is to partition the graph into two disjoint subgraphs containing vertex sets 
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A and B, with A h B 5 V and A x B 5 0, by removing any edges connecting vertices 
in A with vertices in B. A cut of the graph is a set of edges separating it into two subgraphs, 
and the cost of the cut is the sum of the weights of the edges in the cut. For any two arbitrary 
subsets U  and V (not necessarily disjoint), let us define

 j 1U, V 2 5 a
u[U, v[V

 w 1 u, v 2  (10.114)

as the sum of the weights between vertices in the two sets. Obviously, j 1A, B 2  is the cost 
of the cut between A and B. Simply finding the cut with the minimum cost leads to trivial 
segmentations, as illustrated in Figure 10.34, because it favors isolating small subsets of 
vertices. As a result, the normalized cut between A and B is defined as

 Ncut 1A, B 2 5
j 1A, B 2
j 1A, V 2 1

j 1A, B 2
j 1B, V 2  (10.115)

where the matrix is assumed to be symmetric so that j 1A, B 2 5 j 1B, A 2 .
It is easy to see that, for any subgraphs U, V, and W, the following relation holds:

 j 1U, V h W 2 5 j 1U, V 2 1 j 1U, W 2  (10.116)

from which it follows that

 j 1A, V 2 5 j 1A, A h B 2 5 j 1A, A 2 1 j 1A, B 2  (10.117)

Thus, j 1A, V 2 1 j 1B, V 2 5 j 1V, V 2 , which means that the sum of the two denomina-
tors is constant. The situation in Equation (10.115) is therefore analogous to minimizing 

Figure 10.34 To divide an image into two regions, the normalized cuts algorithm formulates a graph with each pixel as a vertex, and 
each pair of adjacent pixels as an edge (4-neighbor connectedness is shown here for simplicity). The edge weights represent the affinity 
between adjacent pixels (computed here as a large constant number minus the absolute difference in intensity). The desired cut is in 
the middle of the image, but the cost of this cut will grow as the image gets larger, whereas the corner cut will remain a relatively small 
value. This illustrates the need for normalization.
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the sum 1
x 1 1

1 2 x, which is minimized when x 5 1
2. As a result, finding the cut that yields 

the minimum normalized cut results in a good segmentation because the denominators 
prevent 0A 0  and 0B 

0  from being too small, thus balancing the size of the two subgraphs. 
Using Equation (10.117) and the similar equation for j 1B, V 2 , the normalized cut can be 
rewritten as

  Ncut 1A, B 2  5  
j 1A, V 2 2 j 1A, A 2

j 1A, V 2 1
j 1B, V 2 2 j 1B, B 2

j 1B, V 2  (10.118)

   5  2 2 c j 1A, A 2
j 1A, V 2 1

j 1B, B 2
j 1B, V 2 d  (10.119)

Finding the cut that minimizes the normalized cut is a discrete optimization problem. It 
can be shown that this particular problem is NP-hard, which means that we cannot hope to 
solve it for an exact solution for any realistically sized input in any reasonable amount of 
time; instead, we must settle for an approximation. The algorithm outlined above, which 
computes the eigenvector associated with the second-smallest eigenvalue, is the solution 
to a continuous version of the discrete problem. Although there is no guarantee that the 
continuous solution obtained by ignoring the discrete constraints bears any relationship to 
the discrete solution, in practice they tend to be closely related.

To see the connection between the discrete and continuous problems, let us define 
a ; 3a0 a1

c a 0 V 021 4  T as an indicator vector with a binary value for each pixel in 
the image, so that ai 5 1 if and only if pixel i is in A, and equivalently ai 5 0 if and only 
if pixel i is in B. Then it follows that

  Ncut 1A, B 2  5  
j 1A, B 2
j 1A, V 2 1

j 1B, A 2
j 1B, V 2  (10.120)

  5  
a i[A, joA

 wij

a i[A
 a j

 wij

1
a ioA, j[A

 wij

a i
 a
joA

 wij

 (10.121)

  5  
aT 1D 2 W 2 a

aTDa
1

1 1 2 a 2T 1D 2 W 2 1 1 2 a 21 1 2 a 2TD 1 1 2 a 2  (10.122)

  5  
aT 1D 2 W 2 a

aTDa
1

aT 1D 2 W 2 a1 1 2 a 2TD 1 1 2 a 2  (10.123)

The connection from the second to third lines is easy to see by noting that 
aTWa 5 a i[A

 a j[A
 wij and aTDa 5 a i[A

 a j
 wij. In other words, aTWa is a com-

pact way of writing the sum of the weights between pixels in A, and aTDa is the sum of the 
weights from pixels in A to any other pixel. Putting these together reveals a simple formula 
for the sum of the weights from pixels in A to pixels not in A:

aT 1D 2 W 2 a 5 aT 1D 2 W 2 a 5 1 1 2 a 2T 1D 2 W 2 1 1 2 a 2 5 a
i[A

 a
joA

wij, (10.124)

where the middle expression follows from a ioA
 a j[A

 wij 5 a i[A
 a joA

 wij, since 
W is symmetric.
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Now let us define the vector y ; a 2 b 1 1 2 a 2 , where

 b ;
a i[A di

a ioA di

5
aTDa1 1 2 a 2TD 1 1 2 a 2  (10.125)

so that yi 5 1 if and only if pixel i is in A, and yi 5 2b if and only if pixel i is in B. The 
vector y is obviously constrained so that each element is either 1 or 2b. With some effort, it 
can be shown that if a is the indicator vector that minimizes the normalized cut in Equation 
(10.123), then the vector y obtained by y 5 a 2 b 1 1 2 a 2  is identical to the vector y that 
minimizes the generalized Rayleigh quotient:

  min
a

 Ncut 1A, B 2  5  min
y

 
yT 1D 2 W 2 y

yTDy
 (10.126)

  5  min
z

 
zTD21

2 1D 2 W 2D21
2 z

zTz,
 (10.127)

where we have defined z ; D 
1
2 y. Two constraints must be satisfied on the solution. First, 

yi [ 51, 2b6 for all i, because we seek a discrete solution that assigns each pixel to exactly 
one of the two regions. Secondly, yTD1 5 0, which arises from the definition of y:

 yTD1 5 1 a 2 b 1 1 2 a 2 2TD1 5 aTD1 2 b 1 1 2 a 2TD1 5 a
i[A

 di 2 ba
ioA

 di 5 a
i[A

 di 2 a
i[A

 di 5 0 (10.128)

Although this discrete problem is NP-hard, if we relax the first constraint and instead 
allow y to take on real values, then the minimized quotient is found by solving either 
the generalized eigenvalue problem involving y or, equivalently, the standard eigenvalue 
problem involving z:

  1D 2 W 2 y  5 lDy (10.129)

  D21
2 1D 2 W 2D21

2 z 5 lz  (10.130)

It is easy to see that z0 5 D 
1

2 1 is an eigenvector of Equation (10.130) with an eigenvalue 
of l0 5 0, because D21

2 1D 2 W 2D21
2  z 0 5 D21

2 1D 2 W 2 1 5 0 5 01, as we saw before. 
Now we know that this is the smallest eigenvalue because the matrix D21

2 1D 2 W 2D21
2 

is positive semidefinite, so it has no negative eigenvalues. Thus, the eigenvector associ-
ated with the smallest eigenvalue is not very interesting. However, because the matrix 
is real and symmetric, all of its eigenvectors are mutually orthogonal, and therefore 
z1

Tz 0 5 y1
TD1 5 0, where z1 is the eigenvector associated with the second smallest eigen-

value, l1. Thus, the second constraint above is automatically satisfied, yielding the solution 
that we have been seeking:

 y1 5 arg min
y:yTD1

 
yT 1D 2 W 2 y

yTDy
 (10.131)

In summary, one iteration of the normalized cuts algorithm involves constructing W and D 
from the data, then solving the eigenvalue problem in Equation (10.130) for the eigenvector 
z1 associated with the second-smallest eigenvalue l1. This result is then transformed into 
y1 5 D21

2 z1. If the resulting vector were to contain only the values 1 and 2b, we would 
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be done. In practice, however, y1 must be thresholded, with large values indicating pixels 
that belong to A, and small values indicating pixels that belong to B. This process is then 
repeated to find additional splits, until all the desired regions have been found.

The procedure for one iteration of the normalized cuts algorithm is provided in 
Algorithm 10.15. First the affinity matrix W is computed using some neighborhood N, 
along with spatial and value Gaussians with standard deviations ss and sv, respectively. 
As mentioned above, one interesting characteristic of the normalized cuts algorithm is that 
any neighborhood function can be used, including nonadjacent pixels. From W we compute  
D, D21

2, and the normalized Laplacian, where we note that Line 3 performs matrix multipli-
cation. The most difficult part of the algorithm is Line 4, which computes the eigenvector 
associated with the second-smallest eigenvalue. Since the normalized Laplacian is typi-
cally a large matrix, it is computationally expensive to compute all of the eigenvectors and 
eigenvalues. Since most of these are not needed, a faster way is to compute only a subset 
using, for example, the Lanczos method. The result is transformed to the vector y1, which 
is then thresholded to yield the final result. The threshold is determined in any of a number 
of ways. Here we search through all possible thresholds, for example, by trying all values 
between the minimum and maximum elements of y1 at some level of quantization (usu-
ally ten thresholds are sufficient). Once the procedure shown here has been performed, the 
two regions resulting from the segmentation are recursively processed to further divide the 
image, until the normalized cut exceeds a certain limit.

ALGORITHM 10.15 Normalized cuts segmentation (one iteration)

NormalizedCutsSegmentation-OneIteration(I )

Input: image I
Output: binary image L

 1 W d  ConstructAffinityMatrix(I )
 2 D, Disr d  ConstructDiagonalSumMatrixAndSquareroot(W)
 3 Lnorm d Disr 
 1D 2 W 2  
 Disr

 4 z1 d  ComputeSecondSmallestEigenvector 1Lnorm 2
 5 y1 d Disr 
 z1

 6 t d  FindBestThreshold 1 y1, W 2
 7 for 1 x, y 2 [ I do
 8    i d y 
 width 1 x
 9    L 1 x, y 2 d 1 y1 1 i 2 . t 2
10 return L

ConstructAffinityMatrix(I )

 1 W d  Zeros(n,n) ➤ Let n be the number of pixels, i.e., width * height.
 2 for 1 x, y 2 [ I do  ➤ Construct the affinity matrix by computing, for each pixel,
 3    for 1 x r, y r 2 [ N 1 x, y 2  do the affinity between it and every
 4      i d y 
 width 1 x other pixel in some neighborhood N.
 5      i r d y r 
 width 1 x r
 6      affinity d Exp 12 1 1 x 2 x r 2 2 1 1 y 2 y r 2 2 2 / 1 2 
 ss

2 2  
 Exp 12 7I 1 x, y 2 2 I 1 x r,y r 2 72 2 / 1 2 
 sv
2 2

 7      W 1 i, i r 2 d1  affinity ➤ Add the affinity to both sides of the diagonal
 8      W 1 i r, i 2 d1  affinity to ensure that the matrix remains symmetric.
 9 return W
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10.4.3 Minimum s-t Cut
The last several algorithms we have considered are applicable to general image segmen-
tation, in which the image is carved into multiple regions according to some criterion of 
homogeneity. In this section we revisit the problem of foreground/background segmenta-
tion, in which the goal is to divide the image into exactly two regions whose appearance 
models are known (at least approximately) beforehand. One powerful and popular approach 
to this problem follows the paradigm of interactive segmentation, in which the user 
manually specifies some information to the system. For example, the user clicks and drags 
the mouse over the image in a graphical user interface to specify some pixels that belong to 
the foreground, as well as some other pixels that belong to the background. Usually just a 
few strokes on the image for each of the two categories are necessary to build a representa-
tive appearance model for each category that is rich enough to facilitate a clean, effective 
segmentation of the foreground from the background. Although any model can be used, a 
color histogram has proved to be sufficient for a variety of scenes.

Perhaps the most popular and powerful technique for interactive foreground/background 
segmentation is known as graph cuts segmentation, although we shall refer to it as 
minimum s-t cut segmentation in order to properly distinguish it from other methods 
involving other types of graph cuts (e.g., the minimum spanning tree-based approach or 
the normalized cuts algorithm). Let G 5 1V, E, w 2  be a weighted graph, where V is the set 
of vertices, E is the set of edges, and w is a weight function that returns a nonnegative real 

ConstructDiagonalSumMatrixAndSquareRoot(W)

 1 Disr d D d  Zeros(n, n)
 2 for i d 0 to n 2 1 do
 3   D 1 i, i 2 d W 1 i, 0 2 1 W 1 i, 1 2 1 c1 W 1 i, n 2 1 2
 4   Disr 1 i, i 2 d 1 /  Sqrt(D(i,i ))
 5 return D, Disr

FindBestThreshold 1 y1, W 2
 1 min-cut-cost d ` ➤ Find the best threshold by iterating through
 2 for t [ T  do all the possible thresholds in some set T,
 3    a d  Threshold 1 y1, t 2  computing the cost of the cut defined by
 4    cut-cost d  ComputeCutCost(W, a) each thresholded vector,
 5    if cut-cost , min-cut-cost then and retaining the threshold
 6      tbest d t that yields the minimum cost.
 7      min-cut-cost d cut-cost
 8 return tbest

ComputeCutCost(W, a)

 1 cost d 0 ➤ Compute the cost of the cut of the graph by
 2 for 1 i, j 2 [ W do summing the weights of all the edges that
 3    if a 1 i 2 2 a 1 j 2  then connect two pixels in different regions.
 4       cost d1 W 1 i, j 2
 5 return cost
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value for every edge. Suppose two of the vertices are special, with one being the “source” 
(called s) and the other being the “sink” (called t). A cut that separates the graph into two 
subgraphs S and T, with s [ S and t [ T, is known as an s-t cut. As with any graph cut, 
the cost of an s-t cut is given by the sum of the edges between the two sets:

 c 1S, T  2 ; a
u[S, v[T, 1u, v2[Ew 1 u, v 2  (10.132)

The goal is to find the minimum s-t cut (which may not be unique, because multiple cuts can 
have the same cost). Unlike normalized cuts, which is a bottom-up procedure for clustering 
pixels without a previously known model, minimum s-t cut segmentation is applicable when 
two models for the two different regions (typically foreground and background) are provided.

We imagine the edges as hollow pipes, with their cross section proportional to the weight 
of the edge, so that the weight of an edge is also known as its capacity. A hose is connected 
to the source, and the water is turned on. The water flows from the source, through the pipes, 
and out through the sink. For every vertex except the source and sink, the amount of water 
flowing into the vertex is equal to the amount of water flowing out of it. This property is 
known as flow conservation. Let us assume that the rate of flow of the water throughout 
the graph is kept constant. Then as we increase the amount of water flowing into the source 
from the hose, the amount of water emerging from the sink will increase as well, until the 
capacity of the graph is reached. Once the graph has reached its capacity, no increase in the 
amount of water that can flow through it is possible.

Determining the maximum amount of water that can flow through a weighted graph is 
known as the maximum flow problem. According to the max-flow min-cut theorem, the 
maximum flow through the graph from the source to the sink is equal to the minimum cost 
among all possible cuts separating the source from the sink. That is, the maximum flow is the 
cost of the minimum s-t cut. Returning to our analogy of water flowing through pipes, it should 
be obvious that, once the graph has reached its capacity, the source can be separated from the 
sink entirely by removing all the saturated edges, that is, all edges that have reached their 
capacity. Removing all such edges divides the graph into two subgraphs, one containing s 
and the other containing t. This set of saturated edges is the minimum s-t cut (assuming it is 
unique), or rather it contains all the minimum s-t cuts (if there is more than one).

The application to image segmentation is as follows. Let I be the image, and let L be 
the binary labeling that results from the segmentation algorithm, with L 1 x 2 5 ON for fore-
ground pixels, and L 1 x 2 5 OFF for background pixels, where x ; 1 x, y 2  is a pixel. Then, 
similar to what we saw earlier with active contours (snakes), our goal is to find the labeling 
L that minimizes an energy functional consisting of a data term and a smoothness term:

 
E 1L 2 5 cconst 1 a

x[V
cx 1L 1 x 2 2 1 l a1x,xr2[Ecx,xr 1L 1 x 2 , L 1 xr 2 2

('')''*
data

(''''')'''''*
smoothness

 (10.133)

where l is a scaling factor capturing the relative importance of the two terms, and cconst is 
a constant that could be used to ensure that the energy remains nonnegative (although it is 
typically not needed).

The function cx 1L 1 x 2 2  returns a value indicating how well I(x) matches the model 
associated with L (x), and cx,xr 1L 1 x 2 , L 1 xr 2 2  is a penalty function for neighboring pixels x 
and xr having different labels. For example we might model the foreground and background 
as Gaussians around a certain value:

 cx 1 , 2 5 bexp 12 1 I 1 x 2 2 mF 2 2/2sF
2 2 if , 5    

exp 12 1 I 1 x 2  2 mB 2 2/2sB
2 2 if , 5

 (10.134)
on
off
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where mF and mB are the nominal values of the foreground and background distributions, 
respectively. The simplest penalty function, known as the Potts model, is to assign a 
constant penalty to any two neighboring pixels whose labels differ, regardless of the actual 
labels themselves:

 cx, xr 1 ,, ,r 2 5 b1 if , 2 ,r and xr [ N 1 x 2
0 otherwise

 (10.135)

We say that Equation (10.133) treats the image as a (first-order) Markov random 
field (MRF) because, viewed probabilistically, the value of any given pixel is con-
ditionally independent of all the other pixels, given its neighbors. In other words, 
if we let ,i ; L 1 xi 2 , then the joint probability density function (PDF) of all the pixel 
labels is given by p 1L 2 5 p 1 ,0, ,1, c, ,n21 2 . If we assume that the label of each 
pixel is conditionally independent of all the other pixels, given its neighbors, that is, 
p 1 ,i 0,n21, ,n22, c, ,0 2 5 p 1 ,i 0N 1 ,i 2 2 , then we can factorize the PDF as the product of 
factors depending on a single pixel or on pairs of pixels:

 p 1L 2 5 q
i

p 1 ,i 2 q
i,ir: ir[N  1i2p 1 ,i 0,ir 2  (10.136)

Since the logarithm of a product is the sum of the logarithms, and since the logarithm func-
tion is monotonically increasing, therefore maximizing the probability p (L) is the same as 
minimizing the following negative log probability:

 2log p 1L 2 5 2a
i

log p 1 ,i 2 2 a
i,ir: ir[N  1i2 log p 1 ,i 0,ir 2  (10.137)

If we assume that the probability functions take the form p 1 , 2 5 exp 12cx 1 , 2 2  and 
p 1 ,, ,r 2 5 exp 12cx,xr 1 ,, ,r 2 2 , then the connection between Equations (10.137) and 
(10.133) is obvious. A probability function that factorizes over positive functions defined 
on cliques of nodes and edges in a graph is called a Gibbs distribution. The connection 
between Gibbs distributions and MRFs, namely that a Gibbs distribution can be represented 
exactly by an MRF, is explained by the Hammersley-Clifford theorem.

To minimize Equation (10.133) , we construct a graph with n 1 2 vertices, where n is the 
number of pixels in the image. Each pixel is represented by a vertex, in addition to the two 
vertices that are created for the source and sink. Each pixel is connected to all its neighbors 
with edges whose weights are proportional to the difference in value between the two pixels. 
These edges are called n-links (for “neighbor”). Each pixel is also connected to both the 
source and the sink with edges that are related to the difference between the pixel and the 
opposite model (that is, the weight of the edge connecting the pixel with the source is related 
to the dissimilarity between the pixel and the model associated with the sink, and vice versa). 
These edges are called t-links (for “terminal”). Once the graph has been constructed, any 
standard algorithm to compute the maximum flow can be used. There are two basic flavors of 
such algorithms: the Ford-Fulkerson methods based on augmenting paths, and the Goldberg-
Tarjan style push-relabel methods. In computer vision there is also the Boykov-Kolmogorov 
algorithm, based on augmenting paths, which is highly efficient because it takes advantage 
of the rectangular lattice structure of the graph when the graph represents the pixels in an 
image. No matter which algorithm is used, once the maximum flow of the graph has been 
found, the saturated edges divide the graph into the sets S and T, and each pixel is then 
assigned the foreground or background depending upon whether its vertex belongs to S or T.

Because E 1 # 2  maps binary vectors into real numbers (that is, treating L as a vector by 
scanning in row-major order, for example), E 1 # 2  is called a pseudo-boolean function. We 
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should not take it for granted that the minimum s-t cut of the graph will yield the minimum 
of Equation (10.133) for any possible pseudo-boolean function. In fact, this approach only 
works in the case that the function is submodular, which means that every pairwise term 
cx,xr satisfies the following inequality:

 cx,xr 1 OFF, OFF 2 1 cx,xr 1 ON, ON 2 # cx,xr 1 OFF, ON 2 1 cx,xr 1 ON, OFF 2  (10.138)

It can be shown that the global minimum of any submodular function can be computed in 
polynomial time as the minimum s-t cut in an appropriately constructed graph. It is easy to 
see that the Potts model always leads to a submodular function, since

 0 1 0 # 1 1 1 (10.139)

In fact, for the problem of image segmentation, nearly any penalty function leads to a sub-
modular function, although non-submodular functions arise in other problems in computer 
vision, such as superresolution. It should be mentioned that, although we have explained 
the technique of graph cuts in the case of an energy functional that contains only unary and 
binary terms, the concept can be naturally extended to included higher-order terms, with 
the definition of submodular adjusted accordingly.

The pseudocode for performing binary segmentation by computing the minimum s-t 
cut is provided in Algorithm 10.16. A weighted graph is constructed with n 1 2 vertices, 
where n is the number of pixels in the image. Each edge is either a t-link or an n-link. The 
t-links connect pixels to the source and sink vertices, while the n-links connect pixels to 
their neighbors. The weights of t-links are determined by GetDistanceToModel, which 

ALGORITHM 10.16 Compute binary labeling using s-t graph cut

BinaryGraphcut(I, MODEL0, MODEL1)

Input: image I, and two appearance models, model0 and model1
Output: binary image L assigning each pixel in I to one of the two models

1 n d width 
 height
2 s d n
3 t d n 1 1
4 V d 50, c, n 2 1, s, t6
5 Et d  CreateTLinks(I, model0, model1, s, t)
6 En d  CreateNLinks(I )
7 E 5 En h Et

8 S, T d  ComputeMinSTCut 1V, E, s, t 2
9 return AssignBinaryLabeling 1S, T, s, t 2
CreateTLinks(I,MODEL0,MODEL1,s,t)

1 Et d 0
2 for 1 x, y 2 [ I do
3    d0 d  GetDistanceToModel(I(x,y), model0)
4    d1 d  GetDistanceToModel(I(x,y), model1)
5    i d y 
 width 1 x
6    Et d Et h 1 i, s, d0 2  h 1 i, t, d1 2
7 return Et
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we assume exists for whatever appearance model has been chosen. Here, instead of the 
Potts model, the weights of n-links are assigned to be large when the pixels have similar 
values (thus discouraging cuts between similar-looking pixels), and small otherwise. Note 
the slight abuse of notation here in that we have included the edge weights with the edges 
themselves. Once the graph has been constructed, we call ComputeMinSTCut, which can 
be any existing procedure for computing the minimum s-t cut of a graph, based on either 
augmenting paths or push-relabel. Once the cut has been found, the pixels connected to s are 
assigned the label ON, while the pixels connected to t are assigned the label OFF. This labeling 
may seem reversed, but note that if the distance to model0 is small, then the minimum cut is 
likely to separate the pixel from model0, and vice versa. If we changed the code so that the 
t-link weights contained the affinity with the model (rather than the distance to the model), 
then the pixels connected to s would be assigned the label ON, while the pixels connected to 
t would be assigned the label OFF.

A popular technique for foreground/background segmentation based on this procedure is 
known as GrabCut. In GrabCut, the user selects a region of the image by drawing a bound-
ing box. Two color histogram models are then created, one using the pixels inside the box 
and another using the pixels outside the box. With these two models, the minimum s-t cut 
of the graph constructed from the image pixels is found. New color histograms are then 
created using the assignment resulting from the minimum cut, and the process is repeated 
until convergence. Once the foreground has been separated from the background, it can be 
cut out of the original background and composited onto a new background. This technique, 
known as rotoscoping, can be seen as a more sophisticated version of green-screening.

CreateNLinks(I )

1 En d 0
2 for 1 x, y 2 [ I do
3    for 1 xr, yr 2 [ N 1 x, y 2  do
4      d d exp 12 7I 1 x, y 2 2 I 1 xr, yr 2 72/2s2 2
5      i d y 
 width 1 x
6      ir d yr 
 width 1 xr
7      En d E h 1 i, ir, ld 2
8 return En

AssignBinaryLabeling 1S, T, s, t 2
 1 for i [ S do
 2    if i 2 s then
 3      y d :i/width;
 4      x d i 2 y 
 width
 5      L 1 x, y 2 d ON

 6 for i [ T  do
 7    if i 2 t then
 8      y d :i/width;
 9      x d i 2 y 
 width
10      L 1 x, y 2 d OFF

11 return L
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10.4.4 Semantic Segmentation
A natural extension to binary segmentation using the minimum s-t cut is multilabel seg-
mentation using the multiway cut. In multiway cut there are m labels, m $ 2, and the goal 
is to assign each pixel to one of the labels. To solve this problem, a graph is constructed 
containing a vertex for each pixel in the image and a vertex for each possible label. Just 
as with the minimum s-t cut graph, in this expanded graph, t-links connect each pixel with 
each of the possible labels, and n-links connect pixels with their neighbors. The multiway 
cut is then found by an iterative procedure that is based on the minimum s-t cut algorithm.

Two algorithms for solving the multiway cut problem are common. In a2b swap, 
each pair of labels is considered in turn, and an appropriate graph is constructed using 
only those pixels that are currently assigned to either of the two labels. The minimum s-t 
cut algorithm is applied to determine which, if any, of these pixels should switch labels. 
This process is repeated until convergence. In a-expansion, each label is considered 
in turn, and an appropriate graph is constructed using all the pixels in the image. The 
minimum s-t cut algorithm is applied to determine which, if any, pixels should abandon 
their current label in favor of the label being considered. Comparing the two approaches, 
a-expansion is more computationally efficient, since it is linear in the number of labels 
rather than quadratic. It also comes with guarantees that the minimum that it finds will 
be within some constant factor of the global minimum, whereas no such guarantees 
are provided by the a-b swap algorithm. Nevertheless, both approaches yield excellent 
results in practice, often yielding results that are visually indistinguishable from the 
global minimum.

A popular application of multiway cut is the problem of semantic segmentation. In 
semantic segmentation, the goal is to assign a label to each pixel in the image indicating 
to what category of object it belongs, such as tree, car, road, building, or sky. Classifiers 
are trained for each of the categories beforehand, using techniques such as those discussed 
later,† and the multiway cut of the image graph is found using a technique such as 
a-expansion. Impressive results using such a technique have been achieved on fairly 
 complex imagery. Typically such approaches do not yield explicit models, so that the 
probability of a pixel belonging to a particular category cannot be computed; instead the 
(dis)similarity, or distance, between the pixel and the various categories is determined, 
leading to a conditional random field (CRF). Computationally MRFs and CRFs are for 

† Chapter 12 (p. 560).

Figure 10.35 In semantic segmentation, the pixels in an image are grouped and labeled according to a predetermined set of categories.
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10.5 Further Reading
There is no shortage of image thresholding algorithms. 
The iterative algorithm for determining the global thresh-
old is due to Ridler and Calvard [1978], while Otsu [1979] 
developed the approach allowing for different variances 
for the background and foreground. An efficient exten-
sion of Otsu’s method to multilevel thresholding can 
be found in Reddi et al. [1984] and Liao et al. [2001]. 
The Chow-Kaneko method for adaptive thresholding 
is described by Chow and Kaneko [1972]. The original 
Niblack approach can be found in Niblack [1986, pp. 
115–116], and Sauvola’s extension is in the paper by Sau-
vola and Pietikainen [2000]. An efficient implementation 
of Sauvola’s method using integral images is described 
by Shafait et al. [2008]. Bradley and Roth [2007] pres-
ent an alternate approach to adaptive thresholding using 
the integral image, and Blayvas et al. [2006] present a 
more sophisticated technique to determine the threshold 
surface. Another popular approach uses the local entropy 
surrounding the pixel, such as the algorithm by Pal and 
Pal [1989]. Several authors have conducted systematic 
studies to evaluate various thresholding algorithms—see 
Sahoo et al. [1988], Rosin and Ioannidis [2003], Sez-
gin and Sankur [2004], and Stathis et al. [2008]—but 
no clear winner has yet emerged. Hysteresis, or double 
thresholding, originated with the work of Canny [1986].

Snakes, or active contours, were first developed by 
Kass et al. [1988], where the snake energy is minimized 
using the calculus of variations. The alternative approach 
of using dynamic programming was proposed by Amini 
et al. [1990]. The gradient vector flow (GVF) snake is 
due to Xu and Prince [1997], Xu and Prince [1998], and 
Xu et al. [1999]. The level set method originated in the 
work of Osher and Sethian [1988] and is treated in detail 
by Sethian [1999]. The narrow band method was first 
described by Adalsteinsson and Sethian [1995]. Geode-
sic active contours were independently introduced by 
Caselles et al. [1993], Caselles et al. [1997], and Malladi 
et al. [1995]. A popular approach to avoid level set reini-
tialization is described in Li et al. [2005]. The Chan-Vese 
level set method is due to Chan and Vese [2001], and 
it is related to the Mumford-Shah functional described 
in Mumford and Shah [1985, 1989]. For the application 
of active contours to object tracking, see the work of 

Paragios and Deriche [2000] and Yilmaz et al. [2004]. 
Intelligent scissors, which we did not have space to dis-
cuss, were introduced by Mortensen and Barrett [1995].

The classic split-and-merge algorithm is due to Horow-
itz and Pavlidis [1976], for which we have presented a 
variation. Hierarchical clustering schemes (HCS) and 
ultrametrics can be traced to the classic work of Johnson 
[1967] and have recently seen a resurgence of interest in 
Arbeláez [2006]. The classic work on gestalt psychology 
is that of Wertheimer [1938], where perceptual grouping 
and vision are argued to be the key to visual perception. 
The mean shift algorithm was introduced by Fukunaga 
and Hostetler [1975]. Interest in mean shift was revived 
by the work of Cheng [1995], and again by Comaniciu 
and Meer [2002], the latter of which addresses both seg-
mentation and discontinuity-preserving smoothing.

The watershed approach was introduced by Beucher 
and Lantuàoul [1979]. Follow-up work can be found in 
the papers by Meyer and Beucher [1990] and Beucher and 
Meyer [1992]. The watershed algorithm presented here 
is a simplified dam-less version of the original algorithm 
by Vincent and Soille [1991], for which a description can 
also be found in Soille [2003]. The image foresting trans-
form and its connection to the watershed approach, due 
to Falcão et al. [2004], is worth reading. An influential 
approach to region growing is described by Adams and 
Bischof [1994], and region growing combined with vari-
able-order surface fitting can be found in Besl and Jain 
[1988]. Another influential approach that combines region 
growing with snakes is that of Zhu and Yuille [1996].

Image segmentation based on the minimum cut of 
a graph goes back to Wu and Leahy [1993], who also 
noticed the tendency of the minimum cut (without nor-
malization) to favor small sets of pixels. The normalized 
cuts algorithm was developed by Shi and Malik [2000], 
and further analysis of the use of eigenvectors for seg-
mentation is found in Weiss [1999], where the impor-
tance of normalization is shown. Ng et al. [2001] present 
a more advanced algorithm that, instead of iteratively 
bipartitioning the graph using the eigenvector associ-
ated with the second-smallest eigenvalue, partitions the 
graph into multiple regions simultaneously using mul-
tiple eigenvectors. The equivalency between a general 

the most part indistinguishable, the primary difference being whether an explicit model 
is provided or merely a decision boundary; the latter also allows the prior smoothness term 
to be based upon the data. The distinction between MRFs and CRFs is analogous to that 
between a generative model and a discriminative model, explored further in Chapter 12.
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weighted kernel k-means objective and various graph 
clustering objectives, such as normalized cut, ratio cut, 
and ratio association, are shown in Dhillon et al. [2007], 
where a fast algorithm that does not require eigenvectors 
is presented. The Fiedler value is due to Fiedler [1973].

Early work on solving image labeling problems is that 
of Geman and Geman [1984], where simulated annealing 
(a very slow algorithm) is used to minimize the cost of 
a Markov random field (MRF). The application of graph 
cuts, namely minimum s-t cuts, to solving binary image 
labeling problems goes back to the work of Greig et al. 
[1989]. Roy and Cox [1998] showed that the global energy 
of some multilabel MRFs could be minimized by find-
ing the minimum s-t cut of a certain graph. Unfortunately, 
the graphs that are amenable to such a technique are not 
very useful in practice, because they are not discontinuity-
preserving. Not long after, Boykov et al. [2001] proposed 
the a-b swap and a-expansion algorithms, which have 
proved enormously useful because they preserve disconti-
nuities between regions. Conditional random fields (CRFs) 
were introduced into computer vision by Kumar and 
Hebert [2006], based on the work by Lafferty et al. [2001].

An analysis of what energy functions can be minimized 
by a binary graph cut, with the conclusion that such func-
tions must be submodular, can be found in Kolmogorov 
and Zabih [2004]; further description of pseudo-boolean 
functions can be found in Boros and Hammer [2002]. 
Standard graph cut algorithms can be found in Cormen 
et al. [1990], while the efficient Boykov-Kolmogorov 

algorithm that takes advantage of the lattice structure of 
image graphs is described by Boykov and Kolmogorov 
[2004]. Interactive segmentation and segmentation 
in higher dimensions using graph cuts is presented in 
Boykov and Jolly [2001] and Boykov and Funka-Lea 
[2006]. The interactive GrabCut segmentation algorithm 
is described by Rother et al. [2004]. For applications 
such as superresolution where non-submodular functions 
arise, see, for example, Rother et al. [2007].

An interesting recent development is to use clusters 
of pixels that are output from one or more segmentation 
algorithms, termed superpixels, introduced by Ren and 
Malik [2003], for various downstream algorithms. For an 
influential approach to texture segmentation using Gabor 
filters, see Jain and Farrokhnia [1991]. We have not had 
the space to discuss ways of evaluating the performance 
of segmentation algorithms. One influential work in 
this regard is that of Davies and Bouldin [1979], which 
describes the Davies-Bouldin index (DBI) for measur-
ing the performance of a clustering scheme. The basic 
idea is to compute the mean over all clusters of the maxi-
mum ratio to other clusters, where the ratio is the sum 
of the standard deviations over the distance between the 
clusters. More recent work is the Berkeley segmentation 
database described by Martin et al. [2001], the Blobworld 
representation of Carson et al. [2002], and the hierarchi-
cal segmentation approach of Arbeláez et al. [2011]. For 
a representative approach to semantic segmentation, see 
the work of Kohli et al. [2009].

PROBLEMS

10.1 Segmentation corresponds to which branch of machine learning?

10.2 Derive Equation (10.5) from Equation (10.4).

10.3 Show that the middle terms in Equation (10.13) go to zero.

10.4 Derive the expression for between-class variance in Equation (10.16).

10.5 Sometimes Otsu’s method is presented using the following recursive relations:

mb 1 t 1 1 2 5
pb 1 t 2mb 1 t 2 1 1 t 1 1 2 h 3t 1 1 4

pb 1 t 1 1 2    mx 1 t 1 1 2 5
pb 1 t 2mb 1 t 2 1 1 t 1 1 2 h 3t 1 1 4

pb 1 t 1 1 2
so that the gray levels are scanned from t 5 0 to t 5 z 2 1, and for each gray level these 
equations are used to compute the means of the two populations based on the previously 
calculated means.

(a)  Derive these recursive relations from Equations (10.7) and (10.8).

(b)  Explain why these recursive relations are no faster to evaluate than the original algo-
rithm presented in this chapter.
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10.6 Compute the optimal threshold for the following grayscale image using (a) the Ridler-
Calvard algorithm and (b) Otsu’s method:C6 5 8 7

4 2 3 8
1 8 6 1

S
10.7 On the same image of the previous problem, compute the threshold using the follow-
ing adaptive thresholding algorithms with a 3 3 3 sliding window: (a) Equation (10.19), 
(b) Niblack’s method, and (c) Sauvola’s method. For simplicity, show results only for the 
middle two pixels, use a box filter, and set t=0.8, k=0.2, and r=4.

10.8 Eliminate redundant computations from the multilevel Otsu method.

10.9 Perform hysteresis thresholding on the following image with a low threshold of 3 
and a high threshold of 7 (that is, I(x,y)>3 and I(x,y)>7) to reveal an important concept in 
segmentation:

G4 6 0 3 2 6 2 2 0 4 4 1 0 3 6 1 2 1 4 4 0 0 6 5 2 5 7 5 1 2 2 6
4 2 6 9 7 2 8 7 9 3 2 8 8 7 0 7 5 5 1 1 8 7 1 3 8 1 5 1 7 6 7 2
2 8 2 1 1 1 7 1 2 0 9 2 0 2 2 2 6 1 0 6 0 3 6 2 6 2 7 5 1 6 1 6
3 8 1 8 5 2 8 8 1 6 0 9 7 1 6 1 6 3 1 7 7 7 9 0 5 3 4 5 0 7 1 4
3 6 2 2 8 2 5 3 0 6 0 3 0 8 1 3 8 1 1 7 0 1 9 2 8 3 2 6 3 9 2 6
6 0 6 9 7 0 7 6 7 1 5 8 6 2 7 2 8 1 1 6 1 1 8 2 8 6 7 0 3 6 2 5
7 7 3 2 2 6 1 2 3 6 0 3 3 6 6 6 0 5 5 1 5 5 3 6 3 1 1 6 6 2 6 4

W
10.10 Apply morphological reconstruction by dilation, Equation (10.22), to the image of 
the previous question and compare the results.

10.11 Both Algorithm 7.3 and Algorithm 10.3 are based on the floodfill algorithm, and 
they look quite similar. (a) Is there any difference in output between the two algorithms? 
(b) Can you think of any other reason the algorithms are written differently?

10.12 Both Ridler-Calvard and Otsu’s method ignore the spatial relationships between pix-
els. A more sophisticated algorithm that uses this information is local entropy thresholding 
(LET). Draw a simple example image where such information would be important for 
determining the proper threshold.

10.13 Usually when the sum of a data term and smoothness term are presented, there is a 
scalar to govern the relative weight between them. Explain why there is no such scalar in 
Equation (10.26) .

10.14 The gray levels of a bright blob in an image follow a Gaussian distribution with 
mean 204 and variance 92.6. Find the thresholds for ensuring that 95.45% of the pixels are 
segmented.

10.15 Suppose three consecutive points of a discrete snake have coordinates given by 
vi21 5 1 100,48 2 , vi 5 1 107,39 2 , vi11 5 1 111,44 2 . Compute the discrete approximation 
of (a) dc/ds and (b) d2c/ds2 at the i 

th point. 

10.16 Implement the minimization routine for a first-order closed snake. Run your code 
on an image of a single bright foreground object on a fairly dark background. How sensitive 
is the output of the algorithm to the initial conditions? Now modify your code to compute 
the norm for the smoothness term, instead of the squared norm; what difference do you 
notice in the output?
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10.17 As mentioned in the text, in order for Algorithm 10.6 to work, Algorithm 10.5 
must be modified to include a smoothness term between the first and last vertices, and the 
call from Line 4 of Algorithm 10.6 must cement the middle vertex. Make the appropriate 
modifications to the pseudocode so that Algorithm 10.6 actually works.

10.18 An alternative to Algorithm 10.6 is to instead fold the snake in half, pairing up points 
according to their order from the crease points. For example, a snake with 6 points could 
be folded so that v0 and v3 are the crease points, and the pairs are v1 and v5, as well as v2 
and v4. For a first-order snake, a table is then created with 81 rows and (approximately) n/2 
columns, where each column refers to each pair of points. The table is filled from left to 
right, then traversed from right to left, as before. Such an approach is guaranteed to find the 
global minimum, at the expense of additional computation. Write the pseudocode for this 
procedure, making the simplifying assumption that n is even.

10.19 Suppose the goal is to perform double thresholding on an image, followed by con-
nected components. Show that this can be done in a single step by modifying the double 
thresholding procedure of Algorithm 10.3 to send the global counter as the last parameter 
to FloodfillSeparateOutput. Demonstrate your pseudocode on a simple example.

10.20 Write the pseudocode for second-order snake minimization.

10.21 Explain the difference between a function and a functional.

10.22 Suppose we wish to use the Euler-Lagrange equations to solve for the equation of 
motion of a simple swinging pendulum. How many independent variables and how many 
dependent variables do you suppose there are? Based on your answer, state how many Euler-
Lagrange equations there are, and how many terms in each equation.

10.23 Write out the A matrix of Equation (10.46) .

10.24 List several advantages of GVF snakes over traditional snakes.

10.25 Derive Equations (10.48)–(10.49) by applying the Euler-Lagrange equations to 
Equation (10.47) .

10.26 Sketch the 1D function e2 x2

100 2 1
2, and indicate on your plot the zeroth level set.

10.27 Explain in your own words how Equation (10.59) can be used to evolve a contour.

10.28 Implement the Chan-Vese level set method, and run your code on an image contain-
ing a bright foreground on a dark background (or vice versa).

10.29 Explain the narrow band and fast marching methods.

10.30 Describe 4 ways to visualize the output of an image segmentation algorithm.

10.31 Briefly explain gestalt psychology, and list at least 5 gestalt factors.

10.32 What is the difference between agglomerative clustering and divisive clustering? 
For each of the following algorithms, specify whether it is an agglomerative or divisive 
approach: (a) region growing, (b) watershed, (c) mean shift segmentation, (d) Felzenszwalb-
Huttenlocher, (e) normalized cuts, and (f ) minimum s-t cut.

10.33 Implement the region-growing algorithm using a Gaussian model in RGB color 
space. Run your code on an image with brightly colored regions and notice where it suc-
ceeds and where it fails.

10.34 Show that the ultrametric inequality implies the triangle inequality.
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10.35 Suppose that we have four points, which (in keeping with the notation of 
Section 10.3.4) we label as clusters A, B, C, and D. Let the distance between the first 
two points be c 1A, B 2 5 0.4, and the distance between the remaining two points be 
c 1C, D 2 5 0.8. In order for the distance function to satisfy the ultrametric inequality, what 
do we know about the other distances, that is, c 1A, C 2 , c 1A, D 2 , c 1B, C 2 , and c 1B, D 2 ?
10.36 Compute the Mahalanobis distance between a 1D point at x 5 10 and a Gaussian 
distribution with mean m 5 7 and variance s2 5 2.5.

10.37 Draw the dendrogram corresponding to the graph in Figure 10.32, assuming single-
link clustering.

10.38 Explain the primary drawback of tobogganing.

10.39 Modify Algorithm 10.11 and Example 10.29 with a tertiary marker image to prevent 
the background marker from accidentally merging with any of the foreground markers.

10.40 Implement the simplified Vincent-Soille algorithm and run it on a grayscale image 
of your choice.

10.41 Explain why markers are needed to obtain good results with the watershed algorithm.

10.42 We have seen that, despite the fact that the watershed algorithm is usually presented 
with dams, they are not necessary for the algorithm to perform well. Nevertheless, describe 
the one potential benefit of using dams that could be of interest to an application that 
requires the highest fidelity possible.

10.43 Describe the relationship between mean-shift filtering and mean-shift segmentation.

10.44 Given the following graph, draw the minimum spanning tree.
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10.45 Implement the Felzenswalb-Huttenlocher segmentation algorithm and run it on a 
color image of your choice.

10.46 Explain the difference between an adjacency matrix and an affinity matrix.

10.47 Using the graph in Problem 10.44, construct the (a) weighted adjacency matrix, (b) 
weighted degree matrix, (c) Laplacian matrix, (d) normalized affinity matrix, and (e) nor-
malized Laplacian matrix. Also compute the (f ) Fiedler value. Order the nodes clockwise 
starting with the top node, ending with the node in the center.

10.48 Apply the first iteration of the normalized cuts method to segment the graph in the 
previous question, using zero as the threshold. What is the cost of this cut? Evaluate the 
quality of the result by seeing if you can find a better segmentation on your own.

10.49 What is the (a) max-flow min-cut theorem, and (b) Hammersley-Clifford theorem? 
What type of additional information must be available in order for these theorems to be 
applicable to image segmentation?

10.50 Construct a simple graph whose edge weights lead to a non-submodular function.

10.51 Name the two graph-based algorithms for solving the multiway cut problem.
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In the previous chapter we looked at various approaches to the problem of image segmentation. These algorithms 
were, for the most part, applied to data consisting of a dense 2D array of pixels arranged in a discrete lattice. More 
generally, however, the problem of segmentation, also known as clustering, can be applied to any set of data, whether 

dense or sparse. For example, we may wish to cluster a given set of 2D or 3D points. Such problems are proverbial 
chicken-and-egg problems because if we knew which points belonged together, we could fit a model to those points. 
Alternatively, if we knew the parameters of all the models, we could determine which model best explains each data 
point. Solving both of the subproblems simultaneously, however, is a real challenge. Moreover, we often do not know 
how many models there are, and some points may not belong to any model (i.e., they are outliers). In this chapter we 
focus primarily upon the subproblem of fitting various models to data, while the entire problem of simultaneously 
fitting models and clustering data points is considered toward the end of the chapter.

C H A P T E R 11
Model Fitting

11.1 Fitting Lines and Planes
We begin our discussion with a problem that arises frequently in practice—namely, fitting 
a line or plane to a set of data points.
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11.1.1 Ordinary Least Squares
Suppose we have a set of points in a 2D plane, and we wish to find the parameters of the 
line that best fits the points. Let 5 1xi, yi 2 6i51

n  be the set of coordinates of the n points. For 
now, let us assume the slope-intercept representation for a line: y 5 mx 1 k, where m is 
the slope of the line, and k is the y-intercept—that is, the value of y where the line intersects 
the y axis. Our goal is to find the parameters m and k that satisfy the following system of n 
linear equations in two unknowns:

  mx1 1 k 5  y1  (11.1)
  mx2 1 k 5  y2  (11.2)
  (  (11.3)
  mxn 1 k 5  yn  (11.4)

If n 5 2, then there are two equations and two unknowns, and we can solve for the unknowns 
exactly by finding the parameters of the line that passes through the two points. But usually 
n . 2, leading to an overdetermined system of linear equations, in which case we will not be 
able to find a line that passes through all the points exactly, due to noise in the measurements 
from which the point coordinates arise. Instead, we shall content ourselves with finding the 
line that “best” fits the points (in some sense).

To solve a system of equations like this, let us stack the unknowns into a vector 
x 5 3m k 4T, then rearrange the other values into a matrix A and vector b:

 

D x1 1
x 2 1
 (

xn 1

T
(')'*

A5 n326
Bm

k
R

()*
x5 2316

 

 

5

 

 

Dy1

y2

(
yn

T
()*
b5 n316  (11.5)

or Ax 5 b. It should be easy to see that this matrix equation is equivalent to the n scalar 
equations above.

Of course, since A is not a square matrix, we cannot simply take its inverse. Instead, 
we multiply both sides of the equation by its transpose, AT, to yield the so-called normal 
equations:

 ATAx 5 ATb (11.6)

In a real-world application, the 2 3 2 matrix ATA is almost certainly invertible. (The only 
situation in which it is singular is when all the points are identical.) Therefore, both sides of 
the equation can be multiplied by the inverse of ATA in order to solve for the desired solution:

 x 5 1ATA 221ATb (11.7)

This approach is known as linear least squares, or ordinary least squares. When it is 
applicable, ordinary least squares is an easy technique to use because it finds the solution in 
a finite number of algorithmic steps, with no initial guess needed. You may be wondering, in 
what sense is the solution found the “best” solution? Well, the i 

th residual is the difference 
between the left and right sides of the i 

th equation: ri ; mxi 1 k 2 yi. If all the points fit 
the line exactly, then all the residuals would be zero. It can be shown that the value x that 
results from solving Equation (11.7) is the one that minimizes the sum of squared residuals: 

an

i51
 ri

2 5 an

i51
 1mxi 1 k 2 yi 2 2 5 7Ax 2 b 72. In other words,

 1ATA 221ATb 5 arg min
x

7Ax 2 b 72 (11.8)
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If we define a ; 3x1
c xn 4T and 1 ; 31 c 1 4T, then A 5 3a 1 4, from 

which it is easy to see that the matrix ATA and vector ATb can be computed by

 ATA 5 BaTa aT1
aT1 n

R    ATb 5 BaTb
bT1

R  (11.9)

because aTa 5 an

i51
 x i

2, aT1 5an

i51
 xi, aTb 5an

i51
 xi  

yi, bT1 5an

i51
 yi, and 1T1 5 n.  

Since the inverse is given by

 1ATA 221 5
1

n 1 aTa 2 2 1 aT1 2 2 B n 2aT1
2aT1 aTa

R  (11.10)

we have from Equation (11.7) that

x 5
1

n 1 aTa 2 2 1 aT1 2 2 B n 2aT1
2aT1 aTa

R  BaTb
bT1

R
5

1
n 1 aTa 2 2 1 aT1 2 2 B n 1 aTb 2 2 1 aT1 2 1bT1 2

2 1 aT1 2 1 aTb 2 1 1 aTa 2 1bT1 2 R  (11.11)

The pseudocode for ordinary least squares for the simple case of fitting a line to a set of 
2D points is given in Algorithm 11.1. With a 2 3 2 matrix, there is very little computa-
tional overhead to computing its inverse, and the solution provided in the pseudocode is 
acceptable. For larger matrices, however, it is best to avoid the expense of computing the 
matrix inverse. A more computationally efficient approach is to perform Gauss-Jordan 
elimination on both sides of Equation (11.6). Or, if the equation is to be solved multiple 
times with different values of b, then it may be more appropriate to first factor the matrix 
ATA using Cholesky decomposition, QR factorization, or SVD factorization, the latter of 
which is explained in more detail later. Two examples of ordinary least squares applied to 
sets of points are shown in Figure 11.1.

ALGORITHM 11.1 Ordinary Least Squares for 2D line fitting

OrdinaryLeastSquares 1 5 1xi, yi 2 6i51
n 2

Input: set of n points 5 1xi, yi 2 6i51
n  in the plane

Output: slope m and y-intercept k of the line y 5 m x 1 k that minimizes the sum-of-squared vertical residuals 

an

i51
 1mxi 1 k 2 yi 22

 1 sa d sb d saa d sbb d sab d 0
 2 for i d 1 to n do
 3    sa d1 xi  ➤ Compute aT1.
 4    sb d1 yi  ➤ Compute bT1.
 5    saa d1 x i 
 x i  ➤ Compute aTa.
 6    sbb d1 yi 
 yi  ➤ Compute bTb.
 7    sab d1 x i 
 yi  ➤ Compute aTb.
 8 den d n 
 saa 2 sa 
 sa  ➤ Compute denominator den 5 n 1aTa 2 2 1aT1 2 2.
 9 m d 1 n 
 sab 2 sa 
 sb 2  / den  ➤ Compute 1 n 1aTb 2 2 1aT1 2 1bT1 2 2 /den.
10 k d 1 sb 
 saa 2 sa 
 sab 2  / den  ➤ Compute 12 1aT1 2 1aTb 2 1 1aTa 2 1bT1 2 2 /den.
11 return m, k
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11.1.2 Normalization
One problem associated with the solution outlined above arises when the values for xi are 
large. For example, suppose the values of xi are on the order of, say, a hundred, and that 
there are ten points. Then the matrix ATA would look something like this:

 ATA < B100,000 1000
1000 1

R  (11.12)

Such a matrix is said to be ill-conditioned because, informally at least, it contains both 
very large values and very small values. An ill-conditioned matrix is bad because it is 
numerically unstable, meaning that a small amount of error in the input can cause a large 
error in the output. An ill-conditioned matrix is also out of balance, treating the different 
unknowns unequally, which is easily understood by imagining the units being used. Sup-
pose, for example, that we were to calculate m in kilometers but k in micrometers; then an 
error on the order of 61 in k might be insignificant, while an error of 61 in m would have 
an enormous effect on the validity of the solution, because 1 km 5 109 mm.

The problem of ill-conditioning is overcome by normalizing the coordinates, which is 
typically achieved by first scaling the axes so that the errors of the different unknowns are 
balanced. In the particular problem at hand, however, a simpler solution to normalization 
is possible—namely, to shift all the input points so that their centroid is the origin. After 
the shift, the y-intercept k is guaranteed to be zero, thus eliminating one of the variables 
altogether. More specifically, first compute the mean of the points

 x ; B  

x
y
R 5

1
n

 a
n

i51

B  

xi

yi
R  (11.13)

Then subtract the mean to obtain centered coordinates for each point:

 3 x~  i y~i 4T ; 3x i 2 x yi 2 y 4T (11.14)

The best-fitting line through the centered coordinates passes through the origin, leading to

 Dx~1

x~2

(
x~n

T
()*

 m 5 Dy~1

y~2

(
y~n

T
()*

a~      b~

 (11.15)

Figure 11.1 Results of 
fitting a line to a set of 
points using ordinary least 
squares. This approach 
minimizes the sum of 
squared vertical distances. 
For nonvertical lines (left), 
the technique works 
reasonably well, but 
for vertical lines (right), 
it does not. 0.80.60.40.20
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whose solution is given by

 m 5
a~Tb~

a~Ta~
5

a~Tb~7a~ 7 2 (11.16)

Once m has been computed, k can be found using the point-slope form, since the centroid 
is guaranteed to be on the line:

  y 2 y 5  m 1 x 2 x 2  (11.17)

  y 5  mx 1 y 2 mx (11.18)

leading to k 5 y 2 mx. The pseudocode for this normalized version, shown in 
Algorithm 11.2, is straightforward.

11.1.3 Total Least Squares
One drawback with ordinary least squares is that the error that it minimizes is the vertical 
distance from each data point to the line, which becomes less robust to noise as the absolute 
value of the slope of the line increases. And, of course, when the line is vertical, the slope-
intercept representation does not work at all.

A more robust approach, called total least squares, is to minimize the perpendicular 
distance from each point to the line. For this method, the line is represented using three 
parameters a, b, and c, so that ax 1 by 1 c 5 0. Since any solution to the equation can be 
multiplied by any nonzero scalar to yield another solution, this is called a homogeneous 
equation. That is, if a, b, c are the coefficients representing a line, then aa, ab, ac represent 
the same line for any a 2 0.

Because the representation uses 3 parameters, but the line has only 2 degrees of freedom, 
we impose the constraint that 7n 7 5 1, where n ; 3a b 4T is the normal vector to the line. 

ALGORITHM 11.2 Ordinary least squares for 2D line fitting, with normalization

OrdinaryLeastSquares-Normalized 1 5 1xi, yi 2 6i51
n 2

Input: set of n points 5 1xi, yi 2 6i51
n  in the plane

Output: slope m and y-intercept k of the line y 5 mx 1 k that minimizes the sum-of-squared vertical residuals 

an

i51
1mxi 1 k 2 yi 22

 1 x d y d 0
 2 for i d 1 to n do ➤ Compute means.
 3    x d1 x i

 4    y d 1 yi

 5 x d x / n
 6 y d y / n
 7 saa d sab d 0
 8 for i d 1 to n do
 9    sa a d 1 1 x i 2 x 2  
 1 x i 2 x 2  ➤ Compute a~Ta~.
10    sa b d 1 1 x i 2 x 2  
 1 yi 2 y 2  ➤ Compute a~Tb~.
11 m d sab / saa ➤ Compute m 5 1a~Tb~ 2 / 1a~Ta~ 2 .
12 k d y 2 m 
 x  ➤ Compute k 5 y 2 mx.
13 return m, k
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With this constraint, the distance from the origin to the line along this normal vector is given 
by 0c 0 , and the normal either points from the line to the origin (if c . 0) or from the origin 
to the line (if c , 0). The distance from a point (x, y) and the line is given by 0ax 1 by 1 c 0 , 
so our goal is to minimize the sum of squared distances, an

i51
 1 a x i 1 b yi 1 c 2 2. As before, 

let us define the centroid of the points as x ; 1
n an

i51
 3xi yi 4T. If we define the covariance 

matrix as C ; 1
n an

i51
 3xi 2 x yi 2 y 4T 3xi 2 x yi 2 y 4, then it is easy to show that n 

is the eigenvector of C associated with the smallest eigenvalue, and that c 5 2 xTn.† The 
pseudocode is shown in Algorithm 11.3.

To derive the solution for n, let us first write the n equations:

  a x1 1 b y1 1 c 5  0 (11.19)

  a x2 1 b y2 1 c 5  0 (11.20)

  (  (11.21)

  a xn 1 b yn 1 c 5 0  (11.22)

Stacking these equations into a matrix and pulling out the unknowns yields

 

D x1 y1 1
x 2 y2 1

(
x n yn 1

T
('')''*

A5 n336
Ca

b
c
S

()*
x53316

 

5

 

 

 

D 0
0

(
0

T
()*
b5n316  (11.23)

where the matrix A is different from before. Multiplying both sides of the equation by AT 
yields

 ATAx 5 0 (11.24)

† Note that n, the number of points, and n, the normal vector, are unrelated.

ALGORITHM 11.3 Total least squares for 2D line fitting

TotalLeastSquares 1 5 1 xi, yi 2 6i51
n 2

Input: set of n points 5 1 xi, yi 2 6i51
n  in the plane

Output: parameters a, b, and c of the line ax 1 by 1 c, where "a2 1 b2 5 1 and c , 0, that minimizes the 
sum-of-squared perpendicular residuals an

i51
 1 axi 1 byi 1 c 2 2

1  3x y 4 d 1
n an

i51
3xi yi 4 ➤ Compute the mean of the points.

2  C d 1
n an

i51
 3xi 2 x yi 2 y 4T 3xi 2 x yi 2 y 4 ➤ Construct covariance matrix.

3  v1, v2, l1, l2 d  Eigen(C) ➤ Compute eigenvectors and associated eigenvalues, where l1 $ l2.
4  3a b 4T d v2  ➤ The eigenvector associated with the smallest eigenvalue yields the normal.
5 Set c d 2 xTn, where xT 5 3x y 4 and n 5 3a b 4T  ➤ Compute the perpendicular
6 if c . 0 then distance to the line.
7    3a b c 4T d 2 3a b c 4T  ➤ Enforce convention (not necessary).
8 return a, b, c
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Here we run into a problem. Because this equation is homogeneous (all zeros on the right-
hand side), we cannot use the same approach we used before, which would simply yield 
x 5 1ATA 2210 5 0, the vector of all zeros, which is not very interesting. Instead, in the 
case of a homogeneous equation, we must impose an additional constraint, namely that the 
norm of the unknown vector is 1, or 7x 7 5 1.

As before, the variable c is eliminated by subtracting the mean to get

  a x~1 1 b y~1 5  0 (11.25)

  a x~2 1 b y~2 5  0 (11.26)

  (  (11.27)

  a x~n 1 by~n 5  0 (11.28)

Stacking these equations into a matrix and pulling out the unknowns yields

 

D x~1 y~1

x ~2 y~2

(
x~n y~n

T
('')''*

A~ 5n326
Ba

b
R

()*
n52316

 

 

5

 

 

D 0
0

(
0

T
()*
05n316  (11.29)

Multiplying both sides of the equation by A~T yields

 A~TA~n 5 0 (11.30)

In other words, our goal is to perform the following constrained minimization:

 min7n751
 7A~TA~n 7  (11.31)

It is easy to see that the covariance matrix is equivalent to C 5 1
nA~

TA~ . As we have 
already seen,† because C is real and symmetric, its eigenvalues are real, and its eigenvectors 
are mutually orthogonal. If the eigenvectors v1, v2 and eigenvalues l1, l2 of C are 
computed, then Cvi 5 livi for all i 5 1, 2. Stacking the eigenvectors into a matrix 
P 5 3v1 v2 4 and the eigenvalues into a diagonal matrix L 5 diag 1l1, l2 2  yields the 
equation CP 5 PL. Rearranging, the matrix is factored into the product of a diagonal 
matrix and two orthogonal matrices: C 5 PLPT, since P is an orthogonal matrix which 
implies that PTP 5 I5n3n6.

Substituting, Equation (11.31) is revealed to be the same as

 min7n751
 7PLPTn 7 5 min7n751

7LPTn 7  (11.32)

where we have ignored the scalar factor of 1n since the equation is homogeneous, and the 
second expression arises from left-multiplying the first expression by PT. Now, since 
P is orthogonal, it simply performs a rotation (with possible reflection) on the unit vector 
n, so that the result is also unit norm, 7PTn 7 5 1. It should be rather obvious that the 
smallest vector that will result from multiplying a diagonal matrix by a unit vector occurs 
when the input vector has all its energy concentrated in the row corresponding to the 
smallest value in the diagonal matrix. In other words, if we let n r ; 3nxr nyr 4T ; PTn, 

† Section 4.4.5 (p. 182)
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then minimizing Equation (11.32) is the same as minimizing 1l1 
n xr 2 2 1 1l2 

n yr 2 2 subject 
to the constraint that 1 nxr 2 2 1 1 nyr 2 2 5 1. If we adopt the convention that the eigenval-
ues are sorted in decreasing order, l1 $ l2, then this minimum occurs when nxr 5 0 and 
nyr 5 1, or PTn 5 30 1 4T. Therefore n 5 P 30 1 4T, which is simply the right column 
of P, or v2.

Another way to look at this problem is to notice that it is a constrained optimization 
problem. A common way of solving constrained optimization problems is through the use 

of Lagrange multipliers.† We want to minimize 7A~  n 72 5 nTA~TA~  n subject to the con-
straint nTn 5 1. To apply the technique of Lagrange multipliers, the constraint is rewritten 
so that it equals zero, which in our case yields nTn 2 1 5 0. Then the Lagrangian is 
defined as the quantity being minimized minus a scalar multiple of the left-hand side of 
the constraint nTA~TA~Tn 2 l 1nTn 2 1 2 , where the (unknown) scalar factor l is called 

the Lagrange multiplier.‡ We can solve for l by setting this expression to zero and taking 
the derivative with respect to n, yielding A~TA~n 2 ln 5 0, or A~TA~n 5 ln. This equation 
shows that l is an eigenvalue of A~TA~ , and that n is the corresponding eigenvector.

11.1.4 Fitting a Plane
The procedure for fitting a plane to a set of 3D points is identical to that of fitting a line 
to a set of 2D points. A plane is represented by the four parameters in the homogeneous 
equation a x 1 b y 1 c z 1 d 5 0. The normal to the plane is given by n ; 3a b c 4T, 
where we impose 7n 7 5 1, and 0d 0  is the distance from the origin to the plane. The distance 
from a point (x, y, z) to the plane is given by 0ax 1 by 1 cz 1 d 0 , so our goal is to mini-
mize the sum of squared distances an

i51
1 a xi 1 b yi 1 czi 1 d 2 2. As before, let us define 

the centroid of the points as x ; 1
n an

i51
3xi yi zi 4T. If all the points are shifted by their 

centroid, 3x~i y~i z~i 4 5 3xi 2 x yi 2 y zi 2 z 4, then all the coordinates 3x~i y~i z~i 4 
are stacked as rows of the matrix A~ , and the covariance matrix is given by C 5 1

n A~TA~ . The 
result is the same as before; n is the eigenvector of C associated with the smallest eigen-
value, normalized to unit norm, and d 5 2xTn.

† Section 12.4.5 (p. 602).
‡ Despite the use of the letter l, the Lagrange multipler is in general not necessarily related to any eigenvalue 
(although in this particular case it is).

Figure 11.2 Results of 
fitting a line to the same 
set of points as Figure 11.1 
using total least squares. 
This approach minimizes 
the sum of squared 
perpendicular distances. 
The technique works well 
for both nonvertical lines 
(left) and vertical lines 
(right). 0.80.60.40.20
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11.1.5 Singular Value Decomposition (SVD)
From the definition of eigenvalues and eigenvectors, it is easy to see that any square matrix 
A can be decomposed, or factorized, into the product of three matrices:

 A 5 PLP21 (11.33)

where L is a diagonal matrix consisting of the eigenvalues of A, and the columns of P are 
the eigenvectors. If A is real and symmetric (or complex and Hermitian),† then all of its 
eigenvalues are real, and all of its eigenvectors corresponding to unique eigenvalues are 
orthogonal. This means that P is either orthogonal or can be constructed to be orthogonal, 
yielding A 5 PLPT, as we saw earlier.‡ In this section this idea is generalized by introduc-
ing the singular value decomposition (SVD), which is a factorization technique appli-
cable to any matrix. Because of its widespread importance and applicability, the SVD 
deserves a detailed discussion.

The SVD is defined as follows. Any real§ m 3 n matrix A may be decomposed as the 
product of an orthogonal matrix U, a diagonal matrix S, and another orthogonal matrix V:

 A5m3n6 5 U5m3m6 S5m3n6 V5n3n6T  (11.34)

Since U and V are orthogonal matrices, UUT 5 UTU 5 I5m3m6 and VVT 5 VTV 5 I5n3n6. 
The matrix S 5 diag 1s1, s2, c, sp 2  is a diagonal matrix whose entries are sorted in 
non-increasing order: s1 $ s2 $ c$ sp $ 0, where p ; min 1m, n 2 . The columns of 
U are called the left singular vectors, the columns of V are the right singular vectors, 
and the values si are the singular values of A. It is not hard to see that Equation (11.34) is 
mathematically equivalent to the sum of the singular values multiplied by the outer product 
of the left and right singular vectors:

 A 5 a
p

i51

si 
ui 

vi
T (11.35)

which is called the SVD expansion, where ui is the i 
th column of U, and vi is the i 

th 
column of V.

If the singular values are unique, then the singular vectors are also unique if we simply 
follow the convention of setting the first nonzero entry of every left singular vector to be 
positive. Otherwise, there is a sign ambiguity because a sign flip of a left singular vector ui 
and its corresponding right singular vector vi will leave the product USVT unchanged. In the 
case of repeated singular values, the singular vectors are no longer unique; any orthogonal 
vectors that span the subspace corresponding to the repeated singular values will do.

The singular vectors can be thought of as generalized eigenvectors, while the singular 
values are generalized eigenvalues. To see that the singular values act like eigenvalues while 
the singular vectors act like eigenvectors, note the following:

  Avi 5  US 1VTvi 2 5 USei 5 si 
U ei 5 si 

ui  (11.36)

  ATu i 5  V ST 1UTu i 2 5 V STei 5 si 
V e i 5 si 

vi  (11.37)

where ei ; 30 c 0 1 0 c 0 4T is the standard basis vector with a 1 in the i 
th 

element. These equations show the ease with which properties can be proved using the 

† A symmetric matrix is equal to its transpose, while a Hermitian matrix is equal to its conjugate transpose. All 
real symmetric matrices are therefore Hermitian.
‡ Section 4.4.4 (p.179)
§ If the matrix is complex, then simply replace transpose with conjugate transpose everywhere.
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SVD, due to its simplicity; in this case, the trick is that ui is orthogonal to every column of 
U except for the ith column, and similarly for vi and V.

Applying similar principles to the m 3 m matrix AAT and the n 3 n Gramian ATA, 
we see that the left and right singular vectors are the eigenvectors of these two matrices, 
respectively:

  A ATui 5  1U SVT 2 1VSTUT 2ui 5 USSTei 5 si
2 U ei 5 si

2 ui  (11.38)

  ATA vi 5  1V STUT 2 1USVT 2 vi 5 VSTSei 5 si
2 V ei 5 si

2 vi  (11.39)

while the first p eigenvalues are the squares of the singular values. In the special case that 
the matrix A is symmetric—that is, A 5 AT—then it is easy to show that the left and right 
singular vectors are identical to each other and to the eigenvectors of A, and the singular 
values are the eigenvalues of A.

The SVD makes it easy to reveal the structure of a matrix. It is not difficult to show that 
the rank, null space, range, and Frobenius norm of A are related to the SVD in the fol-
lowing way, where the Frobenius norm is the Euclidean norm of the vector composed of 
the elements of the matrix:

  rank 1A 2  5  r  

  null 1A 2  5  span 5vr11, c, vn6  

  range 1A 2  5  span 5u1, c, ur6  

  iAiF ;  Åa
m

i51
a

n

j51

aij
2 5 Åa

r

i51

si
2 

where r is the number of nonzero singular values, so that S 5 diag 1s1, s2, c, sr, 0, c, 0 2 , 
and aij is the ijth element of A. If all of the singular values are nonzero then r 5 p; otherwise 
sr . 0, but sr11 5 0.

Clearly, for a matrix with rank r, the final m 2 r columns of U, as well as the final n 2 r 
columns of V, are not needed, since these values are multiplied by singular values which are 
set to zero, si 5 0. This observation leads naturally to the compact version of the SVD 
in which the unnecessary elements are removed:

 

A 5

 

3u1 u2
c ur 4('''')''''*

Ur

Ds1

s2

f
sr

T
('''')''''*

Sr

Dv1
T

v2
T

(
vr

T

T
()*

Vr
T

 (11.40)

In other words, in the compact version of the SVD, A 5 UrSrVr
T, where Ur contains the first 

r columns of U, Sr contains the first r singular values, and Vr contains the first r columns 
of V. If A is m 3 n, then Ur is m 3 r, Sr is r 3 r, and Vr is n 3 r (so that Vr

T is r 3 n).  
If A is a tall matrix 1m . n 2 , then Vr 5 V, whereas if A is a short matrix 1m , n 2 , then 
Ur 5 U, as illustrated in Figure 11.3. The compact version is more computationally efficient 
to compute and store, and it is often the version returned by software packages; for square, 
full-rank matrices, the two versions are identical.

We briefly mention several additional uses for the SVD. First, we all know that a square 
matrix A5n3n6 is nonsingular if and only if it is full rank, i.e., si . 0, i 5 1, c, n. In 
practice, however, a matrix can be full rank mathematically, while at the same time the 

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



522 Chapter 11 • Model Fitting

computation of its inverse leads to numerically unstable results. For example, although 
the ill-conditioned matrix in Equation (11.12) is, technically speaking, invertible, it is 
“close” to being singular, and therefore its inverse should not be computed. The SVD 
provides a simple and effective way to quantify this intuition. For any given matrix A, the 
ratio of the first singular value to the last nonzero singular value, c ; s1

sp
$ 1, is called the 

condition number.† If c < 1, then A is well-conditioned, but if c is large, then A is 
ill-conditioned. More specifically, if 1

c is comparable to the machine's floating-point 
precision, then the matrix should not be inverted because attempting to do so will lead to 
numerically unstable results.

Secondly, the Moore-Penrose pseudoinverse of a matrix A is defined as A1 5 VS1UT, 
where S1 5 diag 1 1

s1
, 1

s2
, c, 1

sr
, 0, c, 0 2 . In other words, each nonzero singular value 

in S is inverted to obtain S1, while zero singular values are left alone. It is easy to see 
that AA1 5 USVTVS1UT 5 USS1UT 5 UUT 5 I, since VTV 5 I, UUT 5 I, and 
SS1 5 I; and if the matrix A is square and full rank (and hence invertible), then A1 5 A21 
because S1 5 S21. It can be shown that the least squares solution 1ATA 221ATb to the 
problem Ax 5 b is equivalent to A1b, which is a generalization of A21b to the case of a 
nonsquare matrix. In the case of a tie, the computation A1b yields, among all vectors that 
minimize 7Ax 2 b 7 , the one with minimum norm.

Thirdly, the least squares solution to the homogeneous equation Ax 5 0 is given by the 
rightmost right singular vector of A, that is, vn; or equivalently, from Equation (11.39), the 
eigenvector of ATA associated with the smallest eigenvalue. This is easily shown:

 arg min7x751
 7Ax 72 5 arg min7x751

 7USVTx 72 5 V 1 arg min7y751
 7Sy 72 2 5 Ven 5 vn (11.41)

† If the matrix is real, symmetric, and positive definite, then the condition number is also the ratio of the larg-
est to the smallest eigenvalues, since the eigenvalues are equal to the singular values and the eigenvalues are 
positive. More generally, if the matrix is real and normal, that is, ATA 5 AAT, then the condition number is 
max 1L 2 /min 1L 2 , where L ; 5 0l 0 6  i51

p , and the absolute value is needed to handle the possibility of negative 
eigenvalues.

Figure 11.3 If A is not square, then there are columns or rows of zeros in S of the SVD (indicated in gray), depending upon whether 
A is tall or short. Because these zeros are multiplied by either columns of U or rows of V, respectively, those columns or rows are not 
important, leading to the compact version of the SVD.

m.n, p 5 n

5 u1

A

A

U

v1

vn
5

5

VrUr Sr

s1

sp

m×mm×n m×n

m×n

m×nn×n n×n n×n

up

Tall matrix

m,n, p 5 mShort matrix

s1

sp

s1

sp

S

A U Ur Sr
m×m m×n m×mn×n m×m m×n

S

u1 um

u1 up
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5
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V
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where en ; 30 0 c 0 1 4T. The first equality uses the definition of the SVD, the 
third equality uses the fact that the singular values are sorted in non-increasing order, and 
the final equality simply selects the final column of V. To see the second equality, note 
that U and V perform a rotation (and possible reflection) without changing the length 
of the input: 7Vx 72 5 1Vx 2T 1Vx 2 5 xTVTVx 5 xTx 5 7x 72, since VTV 5 I, and simi-
larly for 7Ux 72. Therefore, if we define y ; VTx, then the problem reduces to minimizing 7USy 72 5 1 yTSTUT 2 1USy 2 5 yTSTSy 5 7Sy 72 subject to the constraint 7y 7 5 1, where 
we note that x 5 Vy.

Finally, the SVD provides an easy way to find the closest matrix (in the Frobenius norm 
sense) to A 5 USVT with a particular rank. That is, if rank 1A 2 5 r, then the matrix Ar 
such that rank 1Ar 2 5 r r , r and 7A 2 Ar 7F is minimized, is given by Ar 5 USr VT, where 
Sr 5 diag 1s1, s2, c, srr, 0, c, 0 2  is the diagonal matrix retaining the first r r singular 
values of S. This provides a simple procedure for enforcing a rank constraint on a matrix 
by simply setting the smaller singular values to zero.

11.2 Fitting Curves
The closed-form least squares algorithm of the previous section is only applicable when the 
error to be minimized is quadratic in the unknowns. Such an error function is shaped like a 
parabola, which means that it is a convex function with a single global minimum and no local 
minima to confuse the algorithm. As a result, the problem can be solved in a single step. For 
example, the sum of squared perpendicular distances an

i51
1 axi 1 byi 1 c 2 2 to the line is qua-

dratic in the unknowns. Differentiating this error with respect to the unknowns yields equations 
that are linear in the unknowns, and such equations can be solved using closed-form methods.

Since curves are higher-order functions than lines, the sum of perpendicular distances to a 
curve is usually not quadratic. As a result, such geometric error functions cannot be minimized 
except by iterative non-linear methods. Nevertheless, good results can usually be obtained by 
approximating the geometric error with an algebraic error, which often is quadratic. In this 
section we cover several curves that arise in practice: namely, circles and ellipses.

11.2.1 Fitting a Circle
Consider the equation of a circle:

 1 x 2 h 2 2 1 1 y 2 k 2 2 5 r 
2 (11.42)

where (h, k) is the center of the circle, and r is the radius. The perpendicular (or radial) distance 
from a point 1 x i, yi 2  to the circle is given by the absolute difference between its distance to 
the center of the circle and the radius: di ; 0ri 2 r 0 , where ri ; "1 xi 2 h 2 2 1 1 yi 2 k 2 2. 
Let us define the geometric error of a solution as the sum of squared perpendicular 
distances:

egeom 1 h, k, r 2 ; a
n

i51

d i
2 5 a

n

i51

1 ri 2 r 2 2

5 a
n

i51

1" 1 xi 2 h 2 2 1 1 yi 2 k 2 2 2 r 2 2    1 geometric error 2  (11.43)

It is not possible to apply least squares to minimize this nonquadratic equation, because 
there is no closed-form solution. The only way to minimize this geometric error is by 
iterative nonlinear minimization.
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A closed-form solution does exist, however, if instead of minimizing the geometric error 
we minimize the algebraic error:

ealg 1 h, k, r 2 ; a
n

i51

di
2 5 a

n

i51

1 r i
2 2 r 

2 2 2

5 a
n

i51

1 1 xi 2 h 2 2 1 1 yi 2 k 2 2 2 r 
2 2 2   1 algebraic error 2  (11.44)

where di ; 1 xi 2 h 2 2 1 1 yi 2 k 2 2 2 r2 is the amount by which the two sides of 
Equation (11.42) differ. Usually the circle obtained by minimizing the algebraic error is a 
close approximation to the circle obtained by minimizing the geometric error, and even if 
the latter is desired, the former yields a starting point for the iterative minimization process 
of the latter.

To minimize the algebraic error, let us rewrite Equation (11.42) as

 x2 1 y2 1 a x 1 b y 1 c 5 0 (11.45)

where a ; 2 2h, b ; 2 2k, and c ; h2 1 k2 2 r2. Then, stacking the measurement 
equations yields

 

Dx1 y1 1
x2 y2 1

(
xn yn 1

T
('')''*  

Ca
b
c
S  5 2 Dx1

2
1 y1

2

x2
2

1 y2
2

(
xn

2
1 yn

2

T
(')'*

 (11.46)

or

 Ca
b
c
S 5 2 1 ĂTĂ 221ĂTr̆ (11.47)

Once a, b, and c have been computed, we simply set h 5 2a
2, k 5 2b

2, and 

r 5 "h2 1 k2 2 c. This procedure, known as the Kåsa method, is straightforward, as 
shown in Algorithm 11.4.

A quick glance at Equation (11.46) reveals that the matrix Ă will be ill-conditioned if 
the values for xi and yi are large, which is typically the case with images. To normalize 

Ă            r̆

ALGORITHM 11.4 Least squares fit of circle to set of points (algebraic error)—Kåsa method

FitCircle-KÅsa 1 5 1xi, yi 2 6i51
n 2

Input: set of n points 5 1xi, yi 2 6i51
n  in the plane

Output: center (h, k) and radius r of circle that minimizes the algebraic error an

i51
1 1xi 2 h 22 1 1yi 2 k 22 2 r2 22

1 Construct Ă and r̆ as shown in Equation (11.46)
2 Solve Equation (11.47) for a, b, and c
3 h d 2a/2
4 k d 2b/2
5 r d  Sqrt 1h 
 h 1 k 
 k 2 c 2
6 return h, k, r
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the coordinates, first shift all the points by subtracting the centroid 1 x, y 2  to define 1 x~, y~ 2 ; 1 x 2 x, y 2 y 2 . The equation of the circle in the shifted coordinate system is

 x~2 1 y~2 1 a~x~ 1 b~y~ 1 c~ 5 0 (11.48)

where a~ ; 22h~, b~ ; 22k~, and c~ ; h~2 1 k~2 2 r2, and where 1 h~, k~ 2  is the center of the 
circle in the shifted coordinate system. (Note that the radius does not change.) What is 
interesting about this solution is that when the measurement equations are stacked, then 
multiplied on the left by the transpose of the matrix, they yieldCx~1 x~2

c x~n

y~1 y~2
c y~n

1 1 c 1
S  Dx~1 y~1 1

x~2 y~2 1

(
x~n y~n 1

T  Ca~
b~

c~
S 5 2Cx~1 x~2

c x~n

y~1 y~2
c y~n

1 1 c 1
S  Dx~1

2 1 y~1
2

x~2
2 1 y~2

2

(
x~n

2 1 y~n
2

T  (11.49)

which simplifies to

 a
n

i51

C x~i
2 x~i y~i 0

x~iy~i y~i
2 0

0 0 1
S  Ca~

b~

c~
S 5 2a

n

i51

Cx~i
3 1 x~i y~i

2

x~i
2y~i 1 y~i

3

x~i
2 1 y~i

2
S  (11.50)

where the zero elements in the final row and column of the matrix arise because an

i51
 x~i 5 an

i51
y~i 5 0, which follows from the definition of centroid. Because of these 

zeros, the parameter c~ is decoupled from a~ and b~ and can therefore be solved separately. 
With a few minor substitutions, it can be seen that the shifted center is computed by solving 
the following linear system:

 

Dx~1 y~1

x~2 y~2

( (
x~n y~n

T
(')'*  

Bh~

k~
R 5

1
2

Dx~1
2

1 y~1
2

x~2
2

1 y~2
2

(
x~n

2
1 y~n

2

T
('')''*

 (11.51)

or

 Bh~

k~
R 5

1
2

 1A~TA~ 221A~Tr~ (11.52)

Once the shifted center has been computed, the center in the original coordinate system 
is found by setting h 5 h~ 1 x and k 5 k~ 1 y. From Equation (11.50), we see that 
c~ 5 21

n an

i51
 1 x~i

2 1 y~i
2 2 , and therefore the radius is given by

 r 5 "h~2 1 k~2 2 c~ 5 Å1
n

 a
n

i51

1 xi 2 h 2 2 1 1 yi 2 k 2 2 (11.53)

whose derivation is left as an exercise.†

The pseudocode for this technique, which we call the normalized Kåsa method, is 
provided in Algorithm 11.5. Note that this approach involves solving a 2 3 2, rather than 
a 3 3 3, linear system, which has advantages numerically. Examples of circle fitting are 
shown in Figure 11.4.

A~            r~

† Problem 11.18.
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11.2.2 Fitting a Conic Section
The equation for a general 2D conic section is given by the following homogeneous 
equation:

 a x 
2 1 b x y 1 c y 

2 1 d x 1 e y 1 f 5 0 (11.54)

where a, b, c, d, e, and f are the parameters describing the conic section; or, in matrix form,

 

3x y 1 4
 

 C2 a b d
b 2c e
d e 2 f

S
(''')'''*

C

 

Cx
y
1
S 5 0

 

 (11.55)

As before, note that these equations are homogeneous, so all the parameters can be 
multiplied by the same nonzero scalar without changing the equation. That is, C and aC 
represent the same conic section, where a 2 0 is an arbitrary scaling factor.†

You may recall from geometry that a conic section arises as the intersection of an infinite 
double cylindrical cone and a plane. If det 1C 2 5 0, then the conic section is degenerate 

† Do not confuse the 3 3 3 conic section matrix with the covariance matrix; we use C for both.

ALGORITHM 11.5 Least squares fit of circle to set of points (algebraic error) – Normalized Kåsa method

FitCircle-NormalizedKåsa 1 5 1xi, yi 2 6i51
n 2

Input: set of n points 5 1xi, yi 2 6i51
n  in the plane

Output: center (h, k) and radius r of circle that minimizes the algebraic error an

i51
 1 1 xi 2 h 2 2 1 1 yi 2 k 2 2 2 r2 2 2

1 Compute centroid 1 x, y 2 d 1
n an

i51
1 xi, yi 2

2 Compute shifted points 1 x~i, y~i 2 d 1 xi 2 x, yi 2 y 2  for all i
3 Construct A~  and r~ as shown in Equation (11.51)
4 Solve Equation (11.52) for h~ and k~

5 1 h, k 2 d 1 h~ 1 x, k~ 1 y 2
6 Compute r using Equation (11.53)
7 return h, k, r

Figure 11.4 Three examples of results of fitting a circle to a set of points, using Algorithm 11.5. (Algorithm 11.4 produces 
indistinguishable results on these data.)
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and takes the shape of either a point, line, or pair of lines. Otherwise, the conic section takes 
one of three possible shapes, determined by the discriminant b2 2 4ac:

 Conic section is can ellipse if b2 2 4ac , 0
a parabola if b2 2 4ac 5 0
a hyperbola if b2 2 4ac . 0

 (11.56)

Moreover, for the ellipse to be real, c and det (C) must have opposite signs, that is, 
sgn 1 c 2 2 sgn 1 det 1C 2 2 , otherwise the ellipse is imaginary. Note that the ellipse is a circle 
if a 5 c and b 5 0.

Minimizing the geometric error of a conic section is much harder than it is for a circle 
because we do not even know the shape of the curve until after we have solved for it. 
Nevertheless, minimizing the algebraic error, an

i51
1 a xi

2 1 bxi 
yi 1 cyi

2 1 d xi 1 e yi 1 f 2 2 
is straightforward. By stacking the equations together, the algebraic error is given by 7Da 72 5 aTDTDa, where D and a are defined as follows:

 

Dx 1
2 x1 

y1 y1
2 x1 y1 1

x 2
2 x2 

y2 y 2
2 x2 y2 1

(
x n

2 xn 
yn yn

2 xn yn 1

T
('''''')''''''*

D

 

F 

a
b
c
d
e
f

V
()*

a

5 05n366
 

 

 

 (11.57)

As we saw in the case of total least squares, the quantity 7Da 72 is minimized by select-
ing rightmost right singular vector of D. Equivalently, as explained above, we can define 
S ; DTD and minimize 7Sa 72 5 ATSTSa by selecting the eigenvector of S associated with 
its smallest eigenvalue. The pseudocode is shown in Algorithm 11.6, but remember to first 
normalize the coordinates for more robust results.

11.2.3 Fitting an Ellipse
While fitting a conic section is easy, such a procedure is not of much practical benefit, 
because the shape of a conic section is too general. By far the most useful conic section is 
the ellipse, which arises commonly in practice as the projection of a circle onto an image 
plane. To minimize the algebraic error of an ellipse, we start with the same D and S 5 DTD 
matrices that we just saw. The constraint that describes an ellipse is given by b2 2 4ac , 0 
which, since scale does not matter, can be changed from an inequality constraint into an 
equality constraint: b2 2 4ac 5 21, where the 21 is chosen somewhat arbitrarily (any 
negative number will do). In matrix form, this equality constraint can be expressed as the 
constraint aTEa 5 1, where

 E ; F0 0 2 0 0 0
0 21 0 0 0 0
2 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

V (11.58)
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Our problem is therefore to minimize 7Da 72 5 aTDTDa subject to the constraint 
aTEa 5 1. Using Lagrange multipliers, we take the derivative of the quantity to be mini-
mized and subtract the derivative of the constraint, multiplied by the unknown Lagrange 
multiplier l, and set the result to zero. This yields 2DTDa 2 2lEa 5 0, or Sa 5 lEa. The 
problem can thus be stated as follows:

  Solve  Sa 5  lEa (11.59)

  such that aTEa 5  1  (11.60)

Solving the generalized eigensystem in Equation (11.59) yields 6 generalized eigenvalue-
eigenvector pairs, 1li, ai 2 , where i 5 1, c, 6. The eigenvector associated with the posi-
tive eigenvalue yields the desired result a, as shown in the pseudocode of Algorithm 11.7. 
To understand the solution, let li and ai be one of the generalized eigenvalue-eigenvector 
pairs satisfying Equation (11.59). Plugging Ea 5 1

l Sa from Equation (11.59) into 
Equation (11.60), we have 1 5 ai

TEai 5 1
l ai

TSa. Since S is positive definite, ai
TSai . 0. 

Therefore, this expression can be true only if l . 0. It can be shown that exactly one of 
the generalized eigenvalues is guaranteed to be positive, thus leading to an unambiguous 
solution. This latter truth arises because the eigenvalues of E are 52, 21, 22, 0, 0, 06, so 
exactly one is positive; and the generalized eigenvalues of Equation (11.59) have the same 
signs as the eigenvalues of E, since S is positive definite and E is symmetric. Examples of 
fitting an ellipse to a set of points are provided in Figure 11.5.

ALGORITHM 11.6 Least squares fit of conic section to set of points (algebraic error)

FitConicSection 1 5 1xi, yi 2 6i51
n 2

Input: set of n points 5 1xi, yi 2 6i51
n  in the plane

Output: parameters a, b , c, d, e, and f describing conic section that minimizes the algebraic error an

i51
1 a x i

2 1 bxi 
yi 1 cyi

2 1 d xi 1 e yi 1 f 2 2

1 Construct the n 3 6 measurement matrix D as shown in Equation (11.57)
2 Compute the 6 3 6 scatter matrix S d DTD
3 Set 3a b c d e f 4T to the eigenvector associated with the smallest eigenvalue of S
4 return a, b, c, d, e, and f

ALGORITHM 11.7 Least squares fit of ellipse to set of points (algebraic error)

FitEllipse 1 5 1xi, yi 2 6i51
n 2

Input: set of n points 5 1xi, yi 2 6i51
n  in the plane

Output: parameters a, b, c, d, e, and f describing ellipse that minimizes the algebraic error an

i51
1 a xi

2 1 bxi 
yi 1 c yi

2 1 d xi 1 e yi 1 f 2 2 subject to the constraint that 4ac 2 b2 5 1

1 Construct the n 3 6 measurement matrix D as shown in Equation (11.57)
2 Compute the 6 3 6 scatter matrix S d DTD
3 Construct the ellipse constraint matrix E as shown in Equation (11.58)
4 Solve the generalized eigensystem Sa 5 lEa in Equation (11.59) for li and ai, i 5 1, c, 6
5 Find k [ 51, c, 66 such that lk . 0 ➤ Note: There is only one positive eigenvalue.
6 Set 3a b c d e f 4T d ak

7 return a, b, c, d, e, and f

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



11.2 Fitting Curves 529

11.2.4 Fitting a Filled Ellipse
Suppose that, instead of a set of points along the perimeter of an ellipse, we have a binary 
image region shaped like an ellipse. One approach would be to compute the boundary pixels, 
then apply the previous procedure and hope that the discretization effects are insignificant. 
Although such an approach will be satisfactory for many applications, more robust results 
can be achieved using all the pixels, including those in the interior. First calculate the regular 
and central moments of the region. Then, from our discussion of the best-fitting ellipse,† 
and in particular from Equation (4.144), the following relationships are established:

  a 5  
m02

hm00
 (11.61)

  b 5  
22m11

hm00
 (11.62)

  c 5  
m20

hm00
 (11.63)

where h 5 4 1m20m02 2 m11
2 2 /m00

2 ; and the centroid is 1 x,y 2 5 1 m10
m00

, m01
m00

2 , where m00 5 m00.
These parameters a, b, and c capture an ellipse that is centered at the origin whose shape 

is described by the equation ax2 1 bxy 1 cy2 5 1. Shifting the entire ellipse by some 
amount (h,k) yields the general expression for an ellipse:

 a 1 x 2 h 2 2 1 b 1 x 2 h 2 1 y 2 k 2 1 c 1 y 2 k 2 2 2 1 5 0 (11.64)

 
a x2 1 bxy 1 cy2 1

 

122ah 2 bk 2('')''*
d

x 1

 

122ck 2 bh 2('')''*
e

y 1

 

1 ah2 1 bhk 1 ck2 2 1 2('''')''''*
f

5 0
 

 (11.65)

Setting (h, k) to the centroid 1 m10
m00, 

m01
m00

2  yields expressions for the other parameters:

  d 5  22ah 2 bk 5  
2m02m10 1 m11m01

2 1m20m02 2 m11
2 2  (11.66)

  e 5  22ck 2 bh 5  
2m20m01 1 m11m10

2 1m20m02 2 m11
2 2  (11.67)

  f 5  ah2 1 bhk 1 ck2 2 1 5
m02m10

2 2 2m11m10 
m01 1 m20 

m01
2 2 4m00 1m20 

m02 2 m11
2 2

4m00 1m20 
m02 2 m11

2 2  (11.68)

† Section 4.4.5 (p.182).

Figure 11.5 Three examples of fitting an ellipse to a set of points, using Algorithm 11.7.
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This yields a direct approach for fitting an ellipse to a binary region using the regular and 
central moments, as shown in Algorithm 11.8. Examples demonstrating the results of this 
algorithm are provided in Figure 11.6.

11.2.5 Fitting a Filled Square
Consider a square of width w, and assume a binary image so that I 1 x, y 2 5 1 inside the 
square and 0 outside. If we further assume that the square is oriented with the axes, then 
in the continuous domain the second-order central moment along either axis is given by

 m20 5 m02 5 2
w
2

2w
2

  2
w
2

2
w
2

 x 
2 d x d y 5

x 
3y

3
 `

2
w
2

w
2

 `
2w

2

w
2

5
2
3

 aw
2
b3

w 5
w4

12
 (11.69)

Therefore, the width can be computed using either moment:

 w 5 1 12 m 20 2 1
4 5 1 12 m02 2 1

4 (11.70)

or, with noise, the average of the two. But this only works when the square is aligned with 
the axes. If it is at an angle, then we must first find the angle of orientation. The moments 
are of no use for this purpose because the best fitting ellipse for a square is a circle, which 
has no orientation.† Instead, a histogram of the orientations in the gradient image can be 

† That is, for a square of any orientation, m20 5 m02 and m11 5 0, so that Equation (4.131) involves 0
0, which is 

undefined.

ALGORITHM 11.8 Fit ellipse to binary image region

FitEllipseToFilledRegion(I)

Input: binary image I with I 1x, y 2 5 1 inside the region and 0 outside
Output: parameters a, b, c, d, e, and f describing the ellipse

1 Compute the 0th-, 1st-, and 2nd-order regular moments of I
2 Compute the 0th-, 1st-, and 2nd-order central moments of I
3 Compute a, b, and c using Equations (11.61)–(11.63)
4 Compute d, e, and f using Equations (11.66)–(11.68)
5 return a, b, c, d, e, and f

Figure 11.6 Three examples of fitting an ellipse to a binary region, using Algorithm 11.8.
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11.2 Fitting Curves 531

computed, from which the two peaks yield the orientation. Once the orientation u has been 
determined, the second-order central moment along the axis defined by u is computed by

 mu 5 2 1 1 x 2 x 2  cos u 2 1 y 2 y 2  sin u 2 2 d x d y (11.71)

Note that if u 5 0, then mu 5 m20, and if u 5 p
2 , then mu 5 m02. The width is computed as 

the average of the values from the two orthogonal directions:

 w 5
1
2

 a 1 12mu 2 1
4 1 1 12mu1

p

2
2 1

4b  (11.72)

Pseudocode of this procedure is provided in Algorithm 11.9.

11.2.6 Fitting a Filled Rectangle
Suppose we have a filled region shaped like a rectangle oriented with the x and y axes. Let 
us define the length , to be the length along the x axis and the width w to be the width along 
the y axis. Then, using a similar procedure to that of a square,

  m 20 5 2
w
2

2
w
2

  2
,

2

2
,

2

  x2 d x d y 5
x3y

3
`
2

,
2

,
2

 `
2

w
2

w
2

5
2
3

 a,

2
b3

w 5
w,3

12
 (11.73)

  m02 5 2
w
2

2
w
2

  2
,

2

2
,

2

  y2 d x d y 5
x y3

3
 `

2
,
2

,
2

 `
2

w
2

w
2

5
2
3

 aw
2
b3

, 5
w3,

12
 (11.74)

Combining these two equations by multiplying and dividing yields

 
m20

m02
5

,2

w2    m20m02 5
w4,4

144
 (11.75)

Although these are nonlinear equations, we can solve for the unknowns by straightforward 
substitution, yielding the desired result:

 w 5 a144 m02
3

m20
b 1

8

    , 5 a144m20
3

m02
b 1

8

 (11.76)

ALGORITHM 11.9 Fit square to binary image region

FitSquareToFilledRegion(I)

Input: binary image I with I 1x, y 2 5 1 inside the region and 0 outside
Output: width w and orientation u describing square

1 Compute gradient of I
2 Compute histogram of the orientation of the pixels in the gradient image
3 Find the two dominant peaks separated by 90° to get the orientation u
4 Compute the centroid of the region using the 0th- and 1st-order regular moments
5 Compute the 2nd-order central moment along the axis specified by u using Equation (11.71)
6 Compute the 2nd-order central moment along the axis specified by u 1 p

2  using Equation (11.71)
7 Compute the width w using Equation (11.72)
8 return w, u
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A rectangle is easier to fit than a square because, if it has a significant aspect ratio, then 
its moments can be used to find the principal axes of the best-fitting ellipse. Once the 
orientation u of the principal axis is known, its length and width are determined in a similar 
manner to that of a square, except that the values along the orthogonal axes are kept distinct. 
Assuming , . w, then the length , is along the principal axis, and therefore the length and 
width are given by

 , 5 a144mu
3

mu1
p
2

b 1
8

     w 5 a144mu1
p
2

3

mu
b 1

8

 (11.77)

The pseudocode is provided in Algorithm 11.10.

11.2.7 Fitting a 3D Geometric Model
Fitting a 3D model is a natural extension to the procedures we have just seen for 2D models. Given 

a set of points 5 1 xi, yi, zi 2 6i51
n , the centroid is given by x ; 1

n a
n

i51

3xi yi zi 4T. Then the 3 3 3 

covariance matrix is C ; 1
n an

i51
 3xi 2 x yi 2 y zi 2 z 4T 3xi 2 x yi 2 y zi 2 z 4. 

The principal axes of the data are given by the eigenvectors of C, and the square roots of the 
eigenvalues are related to the extent of the data along the axes. The procedure for fitting a 
sphere is a simple extension to that for fitting a circle, and similarly for the procedure for fit-
ting an ellipsoid. A cube is like a square, and a cuboid is like a rectangle. For a cylinder, the 
axis of rotation is found as the eigenvector associated with the eigenvalue that is most unlike 
the other two eigenvalues, after which the length is determined by fitting a rectangle to the 
data projected to a plane containing the axis of rotation, and the diameter is determined by 
fitting a circle to the data projected to the plane perpendicular to the axis of rotation.

11.3 Fitting Point Cloud Models
Sometimes instead of a parametric model such as an ellipse or rectangle, the shape of the 
object is modeled as a discrete set of points, often called a point cloud. In this case our job 
is to find the best alignment between the noisy input point set and the model point set. In 
this section we cover two well-known techniques for solving this problem. We will describe 
the methods in 3D, but they work equally well in 2D.

ALGORITHM 11.10 Fit rectangle to binary image region

FitRectangleToFilledRegion(I)

Input: binary image I with I 1x, y 2 5 1 inside the region and 0 outside
Output: length ,, width w, and orientation u describing rectangle

1 Compute the 0th-, 1st-, and 2nd-order regular moments of I
2 Compute the 0th-, 1st-, and 2nd-order central moments of I
3 Compute the orientation u using the approach of the best-fitting ellipse
4 Compute the 2nd-order central moment along the axis specified by u using Equation (11.71)
5 Compute the 2nd-order central moment along the axis specified by u 1 p

2  using Equation (11.71)
6 Compute the length , and width w using Equation (11.77)
7 return ,, w, u
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11.3.1 Procrustes Analysis
Suppose we have a set of 3D points 5 1 xi, yi, zi 2 6i51

n  and another set of 3D points 5 1 xir, yir, zir 2 6i51
n , and let us assume that the correspondence between the two sets is 

known, so that point  xi 5 1 xi, yi, zi 2  corresponds to the point xir 5 1 xir, yir, zir 2 , denoted by 1 xi, yi, zi 24 1 xir, yir, zir 2 . One of these sets will be considered to be the model that is known 
beforehand, whereas the other set arises from current sensor data. Let us assume that the 
point sets are related by an unknown translation, rotation, and scaling. Therefore, we want 
to find the transformation so that when we stretch, shift, and rotate one point set, the result 
matches as closely as possible to the other point set. That is, our goal is to find s, t, and R 
that minimizes the following sum of squared errors:

 min
s,t,R

 a
n

i51

7 1 sRxi 1 t 2 2 xir 72 (11.78)

Finding this transformation is known as Procrustes analysis.‡

It can be shown that the solution to the least-squares problem above can be 
calculated as follows. First define the centroids x and x r as we have done before. Then 
define the variance s2 ; 1

n an

i51
 7xi 2 x 72 of the first point set, and the covariance 

C ; 1
n an

i51
 1 xir 2 x r 2 1 xi 2 x 2T 5 1

n B~T A~  between the sets, where

 A~ ; Dx~1 y~1 z~1

x~2 y~2 z~2

(
x~n y~n z~n

T    B~ ; Dx~1r y~1r z~1r
x~2r y~2r z~2r

(
x~nr y~nr z~nr

T  (11.79)

where x~i ; xi 2 xi, x~ir ; xir 2 xir, and so forth. Let r and r r be the root-mean-squared 
distance of the points to the corresponding centroid:

 r 5 Å1
n

 a
n

i51

 ixi 2 xi2    r r 5 Å1
n

 a
n

i51

 7xir 2 x r 72 (11.80)

Then the transformation parameters are given by

  R 5  USVT  (11.81)

  s 5  
1

s2 tr 1SS 2 5
r r
r

 (11.82)

  t 5 x r 2 sR x  (11.83)

where USVT 5 C is the SVD of the covariance matrix, tr 1 # 2  is the trace of a matrix (i.e., 
the sum of its diagonal elements), and the matrix S is defined as

 S 5 C1 0 0
0 1 0
0 0 1

S if det 1C 2 $ 0,  or  S 5 C1 0 0
0 1 0
0 0 21

S otherwise (11.84)

† When a traveling stranger would spend the night at his house, Procrustes, a character in Greek mythology, would 
either stretch the stranger's limbs or simply cut them off, in order to ensure that the stranger fit the bed.
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so that R is a valid rotation matrix, i.e., det 1R 2 5 det 1USVT 2 5 det 1S 2 #det 1UVT 2 5 1. 
Note that since the singular values are all non-negative, det 1S 2 $ 0, so 
sgn 1 det 1C 2 2 5 sgn 1 det 1UVT 2 2 . (If instead it is desired to allow for reflection, then sim-
ply set R 5 UVT without considering the determinant of C, in which case it is possible for 
det 1R 2 5 21.) The procedure is provided in Algorithm 11.11 and can be easily adapted 
to 2D or any other dimensionality.

Through a change of variables, it is not difficult to see that Equation (11.78) is the same as

 min
R

 a
n

i51

 gR ¢ xi 2 x
r

≤ 2 ¢ xir 2 x r
r r

≤ g2 (11.85)

where the rotation matrix is computed by defining the shifted, scaled data:

 x̆i ; C x̆i

y̆i

z̆i

S ;
1 xi 2 m 2

r
    x̆ir ; C x̆ir

y̆ir
z̆ir
S ;

1 xir 2 m r 2
r r

 (11.86)

The matrices Ă and B̆ are defined as

 Ă ; D x̆1 y̆1 z̆1

x̆2 y̆2 z̆2

(
x̆n y̆n z̆n

T 5
1
r

 A~  B̆ ; D x̆1r y̆1r z̆1r
x̆2r y̆2r z̆2r

(
xnr ynr znr

T 5
1
r r

 B~  (11.87)

from which the 3 3 3 scaled covariance matrix is computed as C̆ ; 1
n B̆T Ă 5 1

rr r  C. The 
singular value decomposition of this matrix, C̆ 5 USVT, yields the desired rotation matrix 

ALGORITHM 11.11 Procrustes analysis to align two point sets with known correspondence

ProcrustesAnalysis 1 5 1xi, yi, zi 2 6i51
n , 5 1xir, yir, zir 2 6i51

n 2
Input: two point sets with correspondence 1xi, yi, zi 24 1xir, yir, zir 2
Output: transformation parameters s, R, and t that minimizes an

i51
 7 1sRxi 1 t 2 2 xir 72

 1 x ; 3x y z 4T d 1
n an

i51
 3xi yi zi 4T ➤ Compute mean of first point set.

 2 x r ; 3x r y r z r 4T d 1
n an

i51
 3xir yir zir 4T  ➤ Compute mean of second point set.

 3 s2 d 1
n an

i51
 7xi 2 x 72  ➤ Compute variance of first point set.

 4 C d 1
n an

i51
 1 xir 2 x r 2 1 xi 2 x 2T  ➤ Compute covariance matrix.

 5 U, S, VT 5 SVD(C)  ➤ Compute the singular value decomposition.
 6 if allow-reflection or det 1C 2 $ 0 then ➤ If reflection is allowed or R is already a rotation, then use the identity matrix;
 7   S d  diag (1, 1, 1)
 8 else otherwise restrict R to be a rotation matrix by ensuring that det 1R 2 5 1.
 9   S d diag 1 1, 1, 21 2
10 R d USVT  ➤ Compute rotation matrix.
11 s d 1

s2 tr 1SS 2   ➤ Compute scaling.
12 t d x r 2 sRx  ➤ Compute translation vector.
13 return s, R, and t
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R 5 USVT, where S is defined as before. This leads to an alternate procedure in which 
the points are shifted and scaled first, then the rotation matrix is computed, as shown in 
Algorithm 11.12.

11.3.2 Iterative Closest Point (ICP)
Oftentimes we are given two points sets but do not know the correspondence between them 
and, in fact, the two sets may contain different numbers of points. To estimate the transfor-
mation in such a case, the iterative closest point (ICP) algorithm is used. At each iteration 
of the algorithm, correspondence is established automatically by finding, for every point in 
one set, the closest point in the other set. With this temporary correspondence, Procrustes 
analysis is applied to find the optimal transformation parameters between the sets. The 
transformation is then applied to one point set to bring the two sets closer into alignment, 
and the process is repeated until the solution converges.

The procedure is presented in Algorithm 11.13. First, the initial transformation param-
eters are determined, either as the identity transformation (as shown in the code) or using 
some additional information. Then, within the loop that is repeated until convergence, each 
point in the first set is transformed according to the parameters, and the closest point in the 
other set is found. Procrustes is then applied to find the local transformation between the 
two point sets, and the parameters are then updated. If s1  j2, R1

  
j2, t1  j2 are the parameters from 

ALGORITHM 11.12 Procrustes analysis to align two point sets with correspondence. (Alternate version)

ProcrustesAnalysis 1 5 1xi, yi, zi 2 6i51
n , 5 1xir, yir, zir 2 6i51

n 2
Input: two point sets with correspondence 1xi, yi, zi 24 1xir, yir, zir 2
Output: transformation parameters s, R, and t that minimizes an

i51
 7 1sRxi 1 t 2 2 xir 72

 1 x ; 3x y z 4T d 1
n an

i51
3xi yi zi 4T  ➤ Compute mean of first point set.

 2 x r ; 3x r y r z r 4T d 1
n an

i51
 3xir yir zir 4T  ➤ Compute mean of second point set.

 3 r d Å1
n an

i51
 7xi 2 x 72  ➤ Compute scale of first point set.

 4 r r d Å1
n an

i51
 7xir 2 x r 72  ➤ Compute scale of second point set.

 5 C̆ d 1
n an

i51
 1 xir 2 x2r

r r 2  
 1 xi 2 x2

r 2T  ➤ Compute covariance matrix of shifted, scaled data.

 6 U, S̆, VT 5 SVD 1 C̆ 2   ➤ Compute the singular value decomposition.

 7 if allow-reflection or det 1 C̆ 2 $ 0 then ➤ If reflection is allowed or R is already a rotation, then use the identity matrix;
 8   S d  diag (1,1,1)
 9 else otherwise restrict R to be a rotation matrix by ensuring that det 1R 2 5 1.
10   S d diag 11, 1, 21 2
11 R d USVT  ➤ Compute rotation matrix.

12 s d 1
r r r

  ➤ Compute scaling.

13 t d x r 2 s R x  ➤ Compute translation vector.
14 return s, R, and t
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one iteration, and if s1  
j212, R1

 
j212, t1  

j212 are the parameters from the previous iteration, 
then the two sets of parameters are composed as

  x1  j112 5  s1  j2R1
  
j2x1  j2 1 t1  j2  (11.88)

  5  s1  j2R1
  
j2 1 s1  j212R1

  
j212x1  j212 1 t1  j212 2 1 t1  j2  (11.89)

  
5

 

 
s1  j2s1  j212
(')'*

s

R1
  
j2R1

  
j212

(')'*
R

x1  j212 1

 

s1  j2R1
  
j2t1  j212 1 t1  j2(''')'''*

t
 (11.90)

which is shown in Lines 7–9.
Although we have described the algorithm in the context of aligning point sets, ICP is a 

general-purpose algorithm that is applicable to aligning any 2D or 3D curves or surfaces as 
well. The algorithm is guaranteed to converge to the nearest local minimum of a mean-squared 
distance metric. The pseudocode just presented uses the point-to-point error metric 
because it computes the distance between points. A variation of the algorithm that is popu-
lar for aligning point sets arising from cameras is to use the point-to-plane error metric, 
which computes the distance between a point and the other plane. While point-to-point 
can be minimized in closed form using Procrustes, minimizing point-to-plane requires a 
nonlinear minimization approach, such as Levenberg-Marquardt. However, although each 
iteration of point-to-plane is therefore more expensive, it tends to converge faster in practice.

11.4 Robustness to Noise
The least squares approaches described so far work fine when the data are all corrupted by 
the same amount of noise, and that noise is well-behaved. More specifically, a least-squares 
algorithm produces the maximum likelihood estimate (MLE) when the data are corrupted by 
independent, identically distributed (i.i.d.) Gaussian noise. With i.i.d. noise, each data point 
deviates from its true value by an amount that is drawn from a Gaussian distribution with 

ALGORITHM 11.13 Iterative closest point (ICP) to align two point sets without correspondence

IterativeClosestPoint 1 5xi6i51
n , 5xir6i51

m 2
Input: two point sets without correspondence
Output: transformation parameters s, R, and t

 1 s d 1, t d 0, R d I  ➤ Initialize transformation.
 2 repeat until convergence
 3    for i d 1 to n do ➤ For each point (assuming n # m), apply transformation and find closest point in other set.
 4      xis d s R xi 1 t
 5      c 3i 4 d arg minj 7xis 2 xjr 7
 6    s r, R r, t r d  Procrustes 1 5xis6i51

n , 5xc3i4r 6i51
n 2   ➤ Compute local transformation 

 7    s d s rs and update parameters by composing them
 8    R d R rR with the local transformation parameters.
 9    t d s r R r t 1 t r
10 return s, R, and t
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constant variance. In practice, however, it is often the case that some points are corrupted 
more than others. First we will examine the case in which, although most of the data are 
good, a small percentage are outliers; then we will consider what happens when most of 
the data are outliers, and only a small percentage are good. Before we consider these cases, 
however, we need to establish some basic concepts regarding estimation.

11.4.1 Maximum Likelihood Estimators
Suppose we want to estimate a quantity given a number of samples of the quantity. For 
simplicity, we shall consider the case in 1D, but these findings will easily generalize to 
higher dimensions. Let x be the quantity to estimate, and let 5xi6i51

n  be n samples that have 
been obtained somehow. From Bayes’ rule,‡ the conditional probability is

 p 1 x 0x1, c, xn 2 5
p 1 x1, c, xn 0x 2 p 1 x 2

p 1 x1, c, xn 2  (11.91)

The goal is to maximize the left-hand side, which is called the posterior (or, a posteriori 
probability), which is the probability of the quantity being a certain value given all the data. 
That is, our goal is to find the maximum a posteriori (MAP) estimate:

 x̂ 5 arg max
x

 p 1 x 0x1, c, xn 2 5 arg max
x

 p 1 x1, c, xn 0x 2 p 1 x 2  (11.92)

where we are free to ignore the denominator, p 1 x1, c, xn 2  because it is a fixed scaling 
constant that does not affect the result. The right-most factor p(x) is called the prior (or, a 
priori probability). It is the probability that the quantity is a certain value, without consid-
ering the data at all. Oftentimes the prior is uniform, p 1 x 2 5 1, in which case the MAP 
estimate leads to the maximum likelihood estimate (MLE):

 x̂ 5 arg max
x

 p 1 x1, c, xn 0x 2  (11.93)

If the samples are independent, then this is equivalent to the product of the individual con-
ditional probabilities:

 x̂ 5 arg max
x

 qn

i51
 p 1 xi 0x 2  (11.94)

If we further assume that the noise is Gaussian, i.e., xi 5 x 1 j, where j , N 1 0,s2 2 , then 
we have

 x̂ 5 arg max
x

 qn

i51
 e2

1  x 2xi22
2s

2  (11.95)

Since the logarithm is monotonically increasing, this is the same as maximizing the log, or 
equivalently, minimizing the negative log likelihood:

 x̂ 5 arg min
x

 a
n

i51

 
1 x 2 xi 2 2

2s2  (11.96)

If all the variances are the same, then this is the same as

 x̂ 5 arg min
x

 a
n

i51

 1 x 2 xi 2 2 (11.97)

† Bayes’ rule is described in more detail in Section 12.2.1 (p. 572).
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We now have arrived at a very interesting result. Equation (11.97) says that minimizing 
the sum of squared differences (SSD) (or, equivalently, the mean squared error, MSE) is 
the MLE of a variable whose samples are corrupted by i.i.d. additive Gaussian noise with 
constant variance. In 1D, this estimate is just the mean

 x 5
1
n

 a
n

i51

 xi (11.98)

which can be seen by differentiating Equation (11.97), setting the result to zero:

 a
n

i51

1 x 2 xi 2 5 0 (11.99)

and solving for x. In other words, all of the least squares methods that we have considered 
in this chapter have assumed that the data were corrupted by i.i.d. additive Gaussian noise. 
In some applications this is a valid assumption, but oftentimes when working with image 
data the situation is more complicated than that.

By a similar derivation, we can easily show that if the noise follows the double exponen-
tial, then the MLE estimator is given by

  x 5  arg max
x

 qn

i51
 e2

0x 2xi 0
2s

2  (11.100)

  5  arg min
x

 a
n

i51

 0x 2 xi 0  (11.101)

Thus, minimizing the sum of absolute differences (SAD) is the MLE of a variable 
whose samples are corrupted by independent, additive double-exponential noise. In 1D, 
this estimate is just the median:

 x 5 med5x1, c, xn6 (11.102)

11.4.2 Generalized Least Squares
We have just seen that if we know that the noise is Gaussian, then the best estimator (that 
is, the one that maximizes the likelihood) is the one that minimizes the sum of squared 
residuals. Now let us turn the problem around. Suppose we do not know what type of noise 
is added to the system, but we want to restrict ourselves to linear estimators. From now 
on, to emphasize that these techniques are applicable to any dimensionality, we shall use xi 
to refer to the ith data point, and therefore to avoid confusion we shall use u to refer to the 
unknown parameters of the model. As it turns out, the best linear unbiased estimator 
(BLUE) for Au 5 b is the solution to

 C21Au 5 C21b (11.103)

or u 5 1ATC21A 221ATC21b, where C is the covariance matrix of the data. In other 
words, if we do not know the specific noise distribution, but we do have access to the cova-
riance matrix, then Equation (11.103) can be used to find the BLUE of the unknown vector 
u. This technique is known as generalized least squares.

11.4.3 Iteratively Reweighted Least Squares (IRLS)
A special case of generalized least squares arises when C is the identity matrix, in which 
case Equation (11.103) reduces to ordinary least squares: u 5 1ATA 221ATb. In fact, 
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generalized least squares provides us with a new way of looking at least squares. Not 
only is the least squares result the MLE under the assumption of i.i.d. Gaussian noise, but 
according to the Gauss-Markov theorem, it is also the BLUE under the assumption of 
uncorrelated (not necessarily independent) zero-mean (not necessarily Gaussian) noise with 
constant variance.

Another special case of generalized least squares arises when C is diagonal (and there-
fore the noise is uncorrelated) but not necessarily the identity matrix. When the noise for 
all the samples has equal variance, we say that the noise is homoskedastic. Obviously, ordi-
nary least squares assumes homoskedastic noise. On the other hand, if the variances of the 
samples are not equal, then the noise is heteroskedastic. When the noise is heteroskedastic, 
then some values along the diagonal will be larger than others. Large values indicate large 
variances and hence unreliable data samples, whereas small values indicate small variances 
and hence reliable data samples. To give reliable samples more weight, a standard approach 
is to use a weight matrix W ; C21, leading to

 WAu 5 Wb (11.104)

where

 W 5 C 1
s1

2 0 0
0 f 0
0 0

1
sn

2

S  (11.105)

where s1, c, sn are the variances. This problem is known as weighted least squares, 
whose solution is u 5 1ATWA 221ATWb. The pseudocode is provided in Algorithm 11.14.

In practice, we rarely know the variances of the different data points beforehand. In fact, 
it is often the case that much of the data come from legitimate sources with low variance, 
while other data are outliers with huge variance. A single outlier can easily corrupt the 
minimization of least squares. As a result, we must use weighted least squares, but we 
must estimate the weights on the fly. This leads to the method of iteratively reweighted 
least squares (IRLS). In IRLS, all the weights are initialized to 1, unless there is some 
prior information. Then weighted least squares is performed to determine the parameters 
of the model being fit. Once the model is fit, the distance from each data point to the model 
is computed. In the next iteration, points with small distances receive higher weight than 
points with larger distances. The process is repeated until convergence. If the noise is not 
so severe as to ruin the initial estimate, then this approach leads to quite robust results. The 
pseudocode is provided in Algorithm 11.15.

ALGORITHM 11.14 Weighted least squares

WeightedLeastSquares 1 5 1xi, wi 2 6i51
n 2

Input: set of n points 5xi6i51
n  in the plane, with associated weights wi, i 5 1, cn

Output: parameters u of the model that best fits the data

1 Construct diagonal matrix W 5 diag 1w1, c, wn 2
2 Construct matrix A from the points
3 Construct vector b from the points
4 Solve u 5 1ATWA 221ATWb
5 return u
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11.4.4 M-Estimators
We have just seen that IRLS is able to handle the presence of outliers in the data, which 
would otherwise corrupt standard least squares. Let ri be the residual of the ith data point. 
Least squares minimizes an

i51
 ri

2, whereas weighted least squares minimizes an

i51
 wiri

2, 
where wi 5 1

si
2 is the weight of the ith data point. One question remains: namely, how to 

select the weights in a principled way when the variances are unknown. One approach, 
known as truncation (or trimming), involves discarding outliers completely. That is, once 
a data sample has been determined to be too far from the fitting function, it is not considered 
at all in the minimization process. An alternate approach, known as Winsorizing 
(or clamping†), limits the influence of the outliers. As we shall see in a moment, the latter 
produces superior results in practice because, while we want to limit the effects of outliers, 
ignoring them altogether can cause the procedure to fall into a local minimum.

One of the more popular ways to Winsorize data for determining IRLS weights is to use 
an M-estimator.‡ An M-estimator reduces the effect of outliers by minimizing some 
function of the residuals, an

i51
 r 1 ri 2 , where r is a symmetric function with a single global 

minimum at zero and no local minima. To reduce the effect of outliers, the function is 

† The term “clamping” in computing is known as “clipping” in signal processing.
‡ The “M” is from “maximum,” as in “maximum likelihood.”

ALGORITHM 11.15 Iteratively reweighted least squares (IRLS)

IterativelyReweightedLeastSquares 1 5xi6i51
n 2

Input: set of n points 5xi6i51
n

Output: parameters u of the model that best fits the data

1 Initialize weights to uniform, wi d 1, i 5 1, c, n
2 while not convergence do
3   Construct diagonal matrix W 5 diag 1w1, c, wn 2
4   u d WEIGHTEDLEASTSQUARES 1 5 1xi, wi 2 6i51

n 2
5   Compute residuals ri, i 5 1, c, n
6   Recompute weights using residuals wi d e2ri

2
, i 5 1, c, n

7 return u

Figure 11.7 A single outlier 
can severely corrupt the 
result of least squares, in 
which case it is necessary to 
reweight the data samples 
to reduce the influence 
of outliers. Shown is the 
result from total least 
squares (left) and iteratively 
reweighted least squares 
(right).
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chosen to always be less than or equal to the function used by least squares: r 1 x 2 # x2 
for all x.

Let u ; 3u1
c um 4T be the vector of parameters to be estimated. Then the minimum 

of an

i51
 r 1 ri 2  will be achieved when

 
a

n

i51

 

@r 1 ri 2
@uj

5 a
n

i51

 

@r 1 ri 2
@ri(')'*
c1ri2  

@ri

@uj
5 0,    j 5 1, c, m

 

 (11.106)

where c 1 z 2 ; dr 1 z 2 /dz is called the influence function. If we define the weight 
function as

 w 1 z 2 ;
c 1 z 2

z
 (11.107)

then substituting into Equation (11.106) yields

 a
n

i51

w 1 ri 2 ri 

@ri

@uj
5 0.    j 5 1, c, m (11.108)

Note that this result is exactly what we obtain when we differentiate

 a
n

i51

 wiri
2 5 0 (11.109)

with respect to the parameter vector, assuming that wi 5 w 1 ri 2  is constant. In other words, 
the M-estimator of u that minimizes an

i51
 r 1 ri 2  is identical to the result of applying IRLS 

to Equation (11.109), where w 1 ri 2  is evaluated on the residual from the previous iteration. 
This leads to a new robust technique for model fitting, namely to apply IRLS using an 
M-estimator function at each iteration to reduce the effects of outliers.

For this approach to work, it is important to get the scale correct. If the scale is too big, 
then nothing will be considered an outlier. If the scale is too small, then good data will be 
rejected. A common way to estimate the scale is to use the median of the residuals. The 
interquartile range of the Gaussian distribution is the middle 50%, and it lies between 
60.6745s. Therefore, the number 0.6745s is one-half of the interquartile range, which is 
the same as the median absolute deviation (MAD). If we assume that half of the data are 
inliers, this leads to an estimate of the scale s as

 s 5
medi 

0ri 
0

0.6745
5 1.48258 medi 

0
 
ri 
0  (11.110)

The ith weight is then set to

 wi 5
c 1 ri

s 21 ri
s 2 5

s
ri

 c¢ ri

s
≤  (11.111)

A number of different M-estimators have been proposed over the years. One of the most 
popular is the Geman-McClure error function:

 r 1 z 2 ;
1
2

 #  z2

z2 1 t2
 (11.112)
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where t is a fixed parameter and the 1
2 scaling factor is optional but helps to simplify the 

derivative. When z V t, then r 1 z 2  is shaped like z2 and the data point is treated as it would 
be in a standard least squares estimator (i.e., as an inlier). When z W t, then r 1 z 2  flattens 
so that the penalty becomes essentially constant (i.e., the data value is treated as an outlier). 
One advantage of the Geman-McClure error function, besides its simplicity, is that it is 
twice differentiable.

Other well-known M-estimator functions are shown in Table 11.1. These include the 
Huber loss function and Tukey's biweight function, which are provided primarily for 
historic reasons, although sometimes they are encountered. Huber is also known as minimax 
because c 1 z 2 5 min 1max 1 z, 2t 2 , t 2 . Note that the Cauchy-Lorentz estimator is 
sometimes called Cauchy, or Lorentz, or Lorentzian; it receives its name from the fact that 
its weight function is a scaled version of the Cauchy-Lorentz distribution.

Plots of these M-estimators and their influence functions are shown in Figure 11.9. An 
estimator is known as redescending if the influence function approaches zero as the error 
increases—that is, c 1 z 2 S 0 as z S `. Note that Geman-McClure, Tukey, the truncated 
quadratic, and Cauchy-Lorentz are all redescending. Redescending estimators have a satu-
rating property because the influence of outliers is essentially constant no matter how bad 

Figure 11.8 Iterative least 
squares while discarding 
outliers (left) may not always 
converge to the true solution 
because it ignores outliers 
completely. An M-estimator 
(right), on the other hand, is 
able to settle onto the majority 
consensus, since outliers incur 
a (roughly) constant penalty. 0.80.60.40.20
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name r 1 z 2 c 1 z 2 w(z)

L2 1
2 z2 z 1

L1 0z 0 sgn (z) 10 z 0
Geman-McClure 1

2 
z2

z2 1 t2
zt21 z2 1 t2 2 2

t21 z2 1 t2 2 2

Huber b 1
2 z2

t 1 0z 0 2 t
2 2 bz

t sgn 1z 2 b1
t0 z 0 if 0z 0 # t

otherwise

Tukey b t2

6  1 1 2 1 1 2 z2

t2 2 3 2
t2

6
bz 1 1 2 z2

t2 2 2

0
b 1 1 2 z2

t2 2 2

0

if 0z 0 # t

otherwise

Truncated quadratic b 1
2 z2

1
2t

2 bz
0

b1
0

if 0z 0 # t

otherwise

Cauchy-Lorentz log 1 1 1 1
2 

z2

t2 2 z

t2 1 1
2 z2

1

t2 1 1
2 z2

TABLE 11.1 Some well-known M-estimators. The influence function c 1 z 2  is obtained by differentiating r 1 z 2 , while the weight  
function w(z) is the influence function divided by z.
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the outlier is. The influence function captures how much influence data points have on the 
solution. With the L2-norm,† the influence of outliers increases linearly and without bound, 
which is why L2 is so sensitive to outliers. With the L1-norm, c 1 ri 2 5 sgn 1 ri 2 , so that (in 
the 1D case) all data to the right of the origin have positive weight, while all data to the left 
of the origin have negative weight. In such a case the data essentially cast votes for the 
direction in which to move the estimate, and each data point gets to cast exactly one vote, 
no matter how far away it is. This explains why L1 leads (in 1D) to the median. Note that 
the term “influence” here is slightly misleading because a data point with zero influence 
still affects the solution; however, its effect is not dependent upon the particular value of the 
data point. For a data point to have no influence whatsoever, we would have to discard the 
data point entirely, as in truncation mentioned above.

Two ways to characterize an estimator are its breakdown point and its efficiency. 
The breakdown point is the fraction of data that can be arbitrarily bad without causing 
the solution to be arbitrarily bad. Least squares has a breakdown point of 0%, because 
even a single bad outlier can disrupt the solution in an unbounded way. The median has a 

† Section 4.3.1 (p. 164).

Figure 11.9 TOP: Popular 
M-estimators and influence 
functions, including L2, L1, 
and Geman-McClure with 
different parameter values 
t [ 50.25, 0.5, 1, 26. 
BOTTOM: Other M-estimators, 
with L2 shown as a dashed 
black line for comparison. 
The parameter values 
are t 5 1 (Huber and 
truncated quadratic), t 5 2 
(Tukey), and t 5 0.5 
(Cauchy-Lorentz). Note that 
Geman-McClure, Tukey, 
the truncated quadratic, 
and Cauchy-Lorentz are 
all redescending, because 
c 1 z 2 S 0 as z S `.
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breakdown point of 50%. The efficiency is the ratio of the theoretically lowest variance 
achievable to the actual variance achieved. It is not uncommon for robust estimators to 
achieve an efficiency . 90%.

The pseudocode for IRLS with an M-estimator is shown in Algorithm 11.16. It is 
important to keep in mind that, although we are presenting M-estimators in the context 
of IRLS, IRLS is just one of several ways to use M-estimators. Another popular way is to 
apply Equation (11.108) directly using nonlinear minimization such as gradient descent.

11.4.5 Random Sample Consensus (RANSAC)
Traditional techniques, including the robust estimators of the previous section, rely on the 
smoothing assumption, which says that the estimate should improve as more data are used, 
because the errors average out. This assumption is valid for dealing with measurement 
errors, which are usually Gaussian, or at least well-behaved. However, in many computer 
vision problems, there is another type of error, called classification errors, that give rise to 
outliers which, as we have already seen, have the potential to dramatically corrupt the result 
of an estimator. Although the robust estimators just considered can handle some outliers, 
they have a breakdown point of no more than 50%. As a result, if more than half of the data 
are corrupted, they are not expected to find a good solution.

Recall from the previous chapter that segmentation algorithms can be divided into two 
general categories depending upon whether they split or merge the data. In the same way, all 
the estimators presented so far can be considered splitters, because they begin with all the 
data, then reclassify data into inliers and outliers. An alternate approach is for the estimator 
to begin with the smallest amount of data, then grow the result by merging. We now discuss 
two estimators that follow this paradigm of merging to achieve breakdown points much 
greater than 50% because they are designed to work with data overwhelmed by outliers. 
The first of these is known as Random sample consensus (RANSAC). RANSAC is an 
iterative, nondeterministic algorithm that follows a hypothesize-and-test paradigm. First, a 
minimal sample set is randomly selected from the original set to form a hypothesized set of 
inliers. A minimal sample set contains the minimum number of points necessary to fit the 
particular model under consideration — two points for a line, three points for a plane, and 
so forth. Then, under the assumption that this minimal set contains only inliers, a model is 
fit. Finally, the model is tested for its quality. These three steps are repeated until a good 
model is found, or the maximum number of iterations has been reached. The pseudocode 

ALGORITHM 11.16 Iteratively reweighted least squares (IRLS) with an M-estimator

IRLS-WithMEstimator 1 5xi6i51
n 2

Input: set of n points 5xi6i51
n

Output: parameters u of the model that best fits the data

1 Initialize weights to uniform, wi d 1, i 5 1, c, n
2 while not convergence do
3   Construct diagonal matrix W 5 diag 1w1, c, wn 2
4   u d WEIGHTEDLEASTSQUARES 1 5 1xi, wi 2 6i51

n 2
5   Compute residuals ri, i 5 1, c, n
6   Estimate scale s d 1.5 medi 

0ri 0
7   Recompute weights wi d s

ri
 c 1 ri

s 2 , i 5 1, c, n
8 return u
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for this general procedure of finding a single model is shown in Algorithm 11.17. It is easy 
to see how to repeatedly call the procedure to fit multiple models to data, excluding data 
that have already been fit in previous iterations.

In the original version of RANSAC, three parameters are needed by the algorithm. First, 
a fixed threshold is used to determine which points are inliers, and the quality of a model 
is simply the number of these inliers. This threshold can often be determined by knowing 
something about the system generating the data, or by trial and error. The second parameter, 
the minimum number of inliers needed to declare a model to be good, is usually determined 
by knowing something about the specific problem being solved.

The third parameter is the maximum number of iterations to try. To derive a reason-
able value for this parameter, let 0 # P # 1 be the estimated fraction of points that are 
outliers, and let m be the size of a minimal sample. (For fitting a line, m 5 2.) To find 
a set with only inliers with probability p, we must process at least k sets. To compute k, 
consider the following: The probability of a point being an inlier is given by 1 2 P, so 1 1 2 P 2m is the probability of a random set of m points all being inliers, and 1 2 1 1 2 P 2m 
is the probability of a random set of m points containing at least one outlier. Therefore, 1 1 2 1 1 2 P 2m 2 k is the probability of k such random sets all containing at least one outlier, 
and 1 2 1 1 2 1 1 2 P 2m 2 k is the probability that at least one of the k random sets is outlier-
free. Setting this to p yields 1 2 1 1 2 1 1 2 P 2m 2 k 5 p. Rearranging yields

 k 5
log 1 1 2 p 2

log 1 1 2 1 1 2 P 2m 2 < 2 1 1 2 P 22m (11.113)

where the approximation (corresponding to p 5 95%) is left as an exercise for the reader. 
Table 11.2 shows some approximate numbers for different values of P and m (with p < 95%).

There are several variations of the original RANSAC algorithm. One approach, called 
Locally optimized RANSAC (Lo-RANSAC), fits the model parameters again using all the 
inliers, once the inliers have been found. Another variation is M-estimator SAC (MSAC), in 
which an M-estimator is used to evaluate model quality in order to reduce the dependency 
upon the threshold. In other words, the original RANSAC implementation measures quality 
as an

i51
 r 1 ri 2 , where

 r 1 z 2 5 b0 if z # t 1 inlier 2
1 otherwise 1 outlier 2  (11.114)

ALGORITHM 11.17 Random sample consensus (RANSAC)

Ransac 1 5xi6i51
n 2

Input: set of n points P ; 5xi6i51
n

Output: parameters u of the model that best fits the data

1 repeat
2   Randomly select minimal subset S ( P of points
3   Fit model u r to subset S
4   Find all points in P that fit u r with residue less than threshold (inliers)
5   Compute quality of model u r
6   If this is the best model seen so far, then store u d u r
7 until a good model has been found, or the maximum number of iterations has been reached
8 return u
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where t is the threshold for determining whether a data point is an inlier. MSAC replaces 
this error function with one of the M-estimators we considered above. Alternatively, the 
dependency upon the threshold can be reduced by using the maximum likelihood estimate, 
as in Maximum-likelihood estimation SAC (MLESAC). Finally, since the most expensive 
part of the computation is to test all the data points with the current model, some variations 
propose to test only a subset of the data. To simplify the confusing panoply of acronyms, 
we suggest using the term RANSAC to refer to any algorithm that fits the pattern of 
Algorithm 11.17, so that Lo-RANSAC would be known as RANSAC with local optimiza-
tion, MSAC would be RANSAC with an M-estimator, and so forth.

11.4.6 Hough Transform
An alternative to RANSAC is the Hough transform,† which involves not only a transform 
but also an algorithm for finding parameterized shapes. The core principle behind the Hough 
transform is to allow the data to vote for discrete possibilities within the space of parameters; 
the choice with the maximum number of votes then yields the parameters of the shape that 
best explain the data. Like RANSAC, this procedure can be repeated multiple times to detect 
multiple instances of the shape.

To see how this works, let us consider the simplest case of detecting lines in an image. 
For the moment, let us parameterize a line by its slope m and y-intercept k, as we did earlier. 
Then the equation for a line is given by

 
y 5

 

m()*
slope

x 1

 

k()*
y2intercept  

 (11.115)

The traditional way of interpreting this equation is that m and k are constants, so that the 
value of y can be computed for any given value of x. Alternatively, however, if we view x 
and y as constants arising from some data point, then the equation can be used to compute 
k for a given value of m (or vice versa). This is best seen by rearranging the equation:

 
k 5

 

2x()*
slope

m 1

 

y()*
y2intercept  

 (11.116)

where 2x now plays the role of slope, and y plays the role of y-intercept. Suppose we are 
given a set of points 5 1 xi, yi 2 6i51

n . Each point 1 xi, yi 2  defines a line in the parameter 
space defined by Equation (11.116) by substituting xi for x and yi for y. The line joining 
two points is therefore given by the intersection of their two respective lines in parameter 
space. If there is no noise in the system, then all the points lying on the line will also give 
rise to lines in parameter space that intersect at the same point. When noise is present, then 
the lines will not intersect exactly but rather will pass near one another.

† Pronounced HUFF.

TABLE 11.2 The approximate number k of RANSAC iterations needed for different values of m 
(the number of parameters needed to estimate the model) and P (the proportion of outliers).

m
P 2 3 5 8

0.2 3 4 8 16

0.5 10 20 100 800

0.8 70 400 9000 106
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To detect the parameters of the line given noisy data, the parameter space is discretized 
into a rectangular lattice of cells, and each data point votes for all the cells through which the 
corresponding line passes. The data structure that holds the votes is called the accumulator, 
which is just a 2D array of values. After all the data have voted, the entire accumulator is 
searched for the cell with the largest value, and the parameters corresponding to that cell 
yield the desired line.

As we have already seen, the slope-intercept form for a line has serious drawbacks. A 
better parameterization for a line is the Hessian normal form:

 x cos u 1 y sin u 1 r 5 0 (11.117)

where the normal to the line is 3cos u sin u 4T, the slope of the line is given by 2cot u, 
and 0r 0  is the perpendicular distance from the line to the origin. Each point (x,y) yields a 
sinusoidal curve in the parameter space described by u and r. Two points yield two curves, 
and the line determined by joining the two points is given by the intersection of the two 
curves, as shown in Figure 11.10 for the case of multiple points. The procedure is then modi-
fied as follows. For each point (x,y), consider each possible angle 0 # u , p, quantized 
into reasonably sized bins (e.g., 10 degrees each). For each angle, r is computed to yield 
a point 1 u, r 2  in parameter space, and the corresponding accumulator cell is incremented. 
The peak is found in the same manner as before. Note that r can be negative, and there is 
no need to consider u $ p, since 1 u, r 2  and 1 u 1 p, 2r 2  correspond to the same line.

One difficulty of the Hough transform is selecting the proper discretization size for the 
accumulator. If the discretization is too coarse, then the maximum cell in the accumulator 
will bear little resemblance to the true solution, and multiple shapes will be accidentally 
merged. On the other hand, if the discretization is too fine, then the accumulator cells will be 
too small, and any noise in the data will cause the information to spread to neighboring cells, 
making it less likely that there will be a single peak at the desired solution. One approach 
is to use a coarse discretization, but to let each data point vote 2d times, where d is the 
number of dimensions. Along each dimension, the data point votes for the two neighboring 
bins using linear interpolation to determine the relative weighting for the two votes. Once 
all the votes have been counted, a geometric verification procedure can be run on each bin 
with sufficient votes to further refine the estimate.

In a real implementation, there are a few details to keep in mind. First, better results 
will be obtained if all the (x,y) coordinates are first translated to a coordinate system whose 
origin is at the center of the image. Thus,ax 2
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Figure 11.10 The Hough 
transform represents a model 
using votes in parameter 
space. Shown are 5 points 
in the plane (left) and the 
resulting curves in parameter 
space (right). The intersection 
of these curves yields the 
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Secondly, the magnitude and orientation of the gradient vector—information that comes for 
free in the computation that finds the points—can be used to improve results. Instead of each 
pixel having an equal vote, the vote is made proportional to the gradient magnitude at that 
pixel, while ignoring pixels whose magnitude is below a threshold. Also, the angle can be used 
to determine u directly or, assuming that the angle is within some amount of the true angle 
(say within 6208), the accumulator cells within a small window around the gradient angle are 
incremented, rather than all the cells along the entire sinusoid. One final step that is sometimes 
desired is to detect the endpoints of the lines to yield line segments, which is left as an exercise 
for the reader. The pseudocode for detecting a single line, provided in Algorithm 11.18, uses A 
as the accumulator and a function g that maps gradient magnitude values to votes; the simplest 
such function would be a threshold that allows all pixels whose gradient magnitude exceeds a 
certain value to cast a single vote. Of course, the procedure can be repeated to detect multiple 
lines by applying nonmaximal suppression to the array once a peak is found.

The Hough transform is easily modified to detect other parameterized shapes, such as 
circles. If the radius is already known, then the accumulator is just a 2D array over quantized 1 xc, yc 2  positions for the center of the circle. Using 1 x 2 xc 2 2 1 1 y 2 yc 2 2 5 r2 as the 
equation of a circle centered at 1 xc, yc 2  with radius r, each (x,y) data point defines a circle 
in parameter space centered at (x,y) and having radius r. By incrementing the accumulator 
cells along this circle, the data are allowed to vote for the location of the circle. As before, 
the gradient orientation can be used to concentrate the votes near the detected orientation, 
rather than being spread out along the entire circle in parameter space. This procedure is 
easily extended to the case when the radius is unknown by using a 3D accumulator.

We could just as easily detect a circle by sliding a template of a circle across the image, 
summing gradient magnitude values along the perimeter of the circle in the template, and 
selecting the location with the highest score. In fact, such a computation would be identical to 
computing the Hough transform. Given this close connection between the Hough transform 
and template-based approaches to detection, it is not surprising that the Hough transform can 
be extended to handle arbitrary shapes. The resulting algorithm, known as the generalized 
Hough transform, represents the shape as a 2D binary template and utilizes a table whose 
entries are lists of offsets to the reference position given the orientation of an edge.

ALGORITHM 11.18 Hough transform for detecting a line

HoughLine(I)

Input: grayscale image I of size width by height
Output: angle u and distance r describing the most prominent line in the image

 1 Gmag, Gphase d COMPUTEIMAGEGRADIENT 1 I 2
 2 for 1x, y 2 [ I do
 3    x r d x 2 width/2
 4    y r d y 2 height/2
 5    û d Gphase 1x,y 2
 6    for u d û 2 ud to û 1 ud do
 7      r r d 2 x r cos u 2 y r sin u
 8      A 1Quantize 1r r 2 , Quantize 1 u 2 2 d1 g 1Gmag 1 x, y 2 2
 9 r r, u d  FindMax(A)
10 r d r 2 width

2  cos u 2
height

2  sin u
11 return r, u
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Finally, a standard implementation of the Hough transform uses a multidimensional array 
to represent the accumulator. The drawback with such an approach is that most of the cells 
remain empty, thus wasting space, which in turn leads to inefficient running times due to 
memory swapping. Moreover, it is often difficult to decide beforehand the range of the bins. 
One common way to overcome these limitations is to use a pseudo-random hash function to 
insert votes into a one-dimensional hash table, where collisions are easily detected.

11.5 Fitting Multiple Models
Although any of the methods considered so far in this chapter can be repeated to find mul-
tiple models, some algorithms by their very nature assume the existence of multiple models. 
We will now consider two such algorithms.

11.5.1 K-Means Clustering
In the previous chapter we looked at various clustering methods. By far the most popular 
clustering algorithm used today in scientific applications is Lloyd's algorithm, which pur-
sues a greedy hill-climbing strategy to find a partition of the data that minimizes a squared-
error criterion. Lloyd's algorithm is designed to solve the k-means clustering problem: 
Given an integer k and a set of n data points in Rd, find k points (called centers) in Rd that 
minimize the mean squared distance from each data point to the nearest center. Although 
k-means clustering is NP-hard, Lloyd's algorithm is very easy to implement and executes 
quickly, and in practice it often converges to a good local minimum if initialized properly. 
Lloyd's algorithm is so popular that it has become synonymous with k-means, and it is 
oftentimes referred to as the k-means algorithm.

For each center cj [ Rd, denote its cluster as the set of all data points for which cj is the 
closest center. This set lies in the Voronoi cell§ of cj. It is not hard to see that the optimal 
placement of a center is at the centroid of the associated cluster. As a result, Lloyd's algo-
rithm alternates between two steps until convergence: First, all the centers are moved to the 
centroids of their clusters, and secondly, all points are assigned to the cluster associated with 
the nearest center. The pseudocode is provided in Algorithm 11.19.

§ Voronoi tesselation is illustrated in Section 12.3.3 (p. 587).

ALGORITHM 11.19 K-means algorithm (i.e., Lloyd's algorithm) for finding clusters in a set of data

K-MeansClustering 1 5xi6i51
n 2

Input: set of n points 5xi6i51
n

Output: cluster centers cj, j 5 1, c, k fitting the data

1 Initialize cj, j 5 1, c, k
2 repeat
3    for i d 1 to n do
4      di d arg minj 7xi 2 cj 7  ➤ Assign point to closest cluster.
5    for j d 1 to k do
6      cj d  average of all xi whose di 5 j ➤ Move cluster center to centroid.
7 until convergence
8 return cj, j 5 1, c, k
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Lloyd's algorithm is simple and flexible and can be easily extended to fit more com-
plex models to the clusters. Algorithm 11.20 shows the algorithm extended to fit multiple 
models to a set of data. Only two small changes must be made to the pseudocode: In Line 
4, each point is assigned to the closest model using a distance function d, which gener-
alizes the Euclidean distance used in the previous algorithm; and in Line 6, the model 
parameters are updated by maximizing the probability of the parameters given the points 
currently assigned to that particular model. For example, this pseudocode could be used 
to fit a certain number of lines to a set of data: Line 4 assigns each point to the closest 
line, and Line 6 performs least-squares fitting for each line using the points currently 
assigned to it.

Assuming all points are in general position (that is, no point is equidistant from two 
centers), Lloyd’s algorithm is guaranteed to converge to a local minimum. Because it 
is a greedy algorithm, however, this local minimum may not be (and often is not) the 
global minimum. To avoid being trapped in a local minimum, careful attention must be 
paid to the initialization of the cluster centers. The standard approach is to initialize all 
the clusters randomly. A better approach, known as k-means11, is to select the first 
center at random, then to randomly select subsequent centers from the data points with 
probability proportional to the squared distance to the nearest center. In other words, 
first a point is selected at random to be c1. Then a PDF is created with the probability of 
selecting xi as 7xi 2 c1 72, and a point is selected at random according to this PDF to be 
c2. Then a PDF with value min 1 7xi 2 c1 72, 7xi 2 c2 72 2  is created for selecting a point 
to be c3, and so on.

If computational cost is not an issue, then a deterministic method called global k-means 
can be used to overcome the initialization problem. In this approach the centers are opti-
mized by incrementally adding one center at a time as follows. Let m 5 1, c, k, and 
for each value of m run Lloyd’s algorithm n times with the initial m 2 1 cluster centers 
at the same locations found in the previous iteration, and the mth cluster center at position 
xi, i 5 1, c, n. For example, with m 5 1, c1

112 is selected as the centroid of all the data. 
Then with m 5 2, Lloyd’s algorithm is run n times, starting with the initial conditions 
c1 5 c1

112 and c2 5 xi, i 5 1, c, n. The best of these n results yields the best pair of cen-
ters c1

122 and c2
122 to be used in the next iteration. Then with m 5 3, Lloyd’s algorithm is run 

n times, starting with the initial conditions c1 5 c1
122, c2 5 c2

122, and c3 5 xi, i 5 1, c, n. 
The best of these n results yields the best triplet of centers c1

132, c2
132, and c3

132 to be used in 
the next iteration, and so on.

ALGORITHM 11.20 K-means algorithm (i.e., Lloyd’s algorithm) for fitting models to a set of data

K-MeansFitting 1 5xi6i51
n 2

Input: set of n points 5xi6i51
n

Output: parameters uj, j 5 1, c, k of the models that best fit the data

1 Initialize uj, j 5 1, c, k
2 repeat
3    for i d 1 to n do
4      di d arg minj d 1 xi, uj 2  ➤ Assign point to cluster.
5    for j d 1 to k do
6      uj d arg maxu p 1u 0 5xi6 2  for all xi whose di 5 j ➤ Fit cluster model.
7 until convergence
8 return uj, j 5 1, c, k
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11.5.2 Expectation-Maximization (EM)
Lloyd’s k-means algorithm makes use of hidden variables that indicate, for each data 
point, to which cluster (or model) it belongs. These hidden variables, also known as latent 
variables, lead to a sort of chicken-and-egg problem: If we knew the values of the hidden 
variables, then it would be easy to determine the parameters of the models, and if we knew 
the parameters of the models, then it would be easy to determine the most likely assign-
ment of the data to those models (the hidden variables). This state of affairs leads naturally 
to the two-step algorithm of Algorithm 11.5.1, which alternates between computing the 
assignments, assuming that the parameters are known, and updating the parameters given 
the assignments. These two steps can be summarized as follows:

  di d  arg max
j51, c, k

 p 1 di 5 j 0  u1, c, uk 2 ,  i 5 1, c, n  (11.119)

  uj d  arg max
u

 pj 1u 0x1, c, xn, d1, c, dn 2 ,  j 5 1, c, k (11.120)

where in the first line p 1 # 2  is the probability that the ith data point belongs to the j 
th model, 

and in the second line pj 1 # 2  is the probability that the parameters for the j 
th model are u, 

given the assignments.
Notice that k-means uses hard assignments for the data points. That is, each data point 

belongs to exactly one model during any iteration of the algorithm. A natural generalization 
is to allow so-called soft assignments, where each data point belongs to each of the models 
with a certain probability. This soft-assignment generalization of k-means is known as the 
expectation-maximization (EM) algorithm. Similar to k-means, the two steps of EM 
are to compute the soft assignments given the model parameters (known as the “E-step”), 
and update the model parameters by maximizing their likelihood given the hidden variables 
(known as the “M-step”):

E-step:

 pij d  p 1 di 5 j 0u1, c, uk 2 ,  i 5 1, c, n,  j 5 1, c, k (11.121)

M-step:

 uj d  arg max
u

 pj 1u 
0x1, c, xn, p11, c, pnk 2 ,  i 5 1, c, n,  j 5 1, c, k (11.122)

where the similarity with Equations (11.119)–(11.120) is obvious.
The EM algorithm is most commonly associated with mixture models, where each 

model specifies a probability density function (PDF) describing how likely it is to draw a 
certain data point. The overall PDF is the sum (or mixture) of the individual PDFs, weighted 
by the a priori probability of selecting each one:

 p 1 xi 2 5 a
k

i51

p 1 xi 0uj 2pj (11.123)

where pj is the a priori probability of selecting the jth model, and p 1 xi 0uj 2  is the probability 
of generating the data point xi from the jth model. In other words, to generate a random data 
point we first randomly select a number from 1 to k using the PDF specified by p1, c, pk 
over the models. Then, given that the jth model was selected, a random data point is gener-
ated from that model.

The most common mixture model is the Gaussian mixture model (GMM) in which the 
individual models follow a Gaussian distribution. In that case, the model contains the mean 

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



552 Chapter 11 • Model Fitting

and covariance matrix uj 5 1mj, Sj 2 , and the conditional probability of xi given uj assumes 
the form of a multivariate Gaussian:§

 p 1 xi 0uj 2 5
11 2p 2 d

2 0Sj 0 12  expa2
1
2

 1 xi 2 mj 2TSj
21 1 xi 2 mj 2 b  (11.124)

For a GMM, the E- and M-steps are

E-step:

 pij d  
pj exp 121

2 1 xi 2 mj 2TSj
21 1 xi 2 mj 2 2

ak

jr51
pjr exp 121

2 1 xi 2 mjr 2TSjr
21 1 xi 2 mjr 2 2 ,  

i 5 1, c, n
j 5 1, c, k

 (11.125)

M-step:

 pj d  
1
n

 a
n

i51

 pij,  j 5 1, c, k  (11.126)

 mj d  
an

i51
 pijxi

an

i51
 pij

,  j 5 1, c, k  (11.127)

 Sj d  
an

i51
pij 1 xi 2 mj 2 1 xi 2 mj 2T

an

i51
pij

,  j 5 1, c, k (11.128)

Although deriving these equations from Equations (11.121) and (11.122) is not trivial, they 
are fairly intuitive. In Equation (11.125), the probability pij that xi was drawn from the jth 
model is given by the probability of generating the value xi using the mean and covari-
ance of the jth Gaussian. In Equation (11.126), the a priori probability of selecting the jth 
model is the sum of the individual probabilities of all the data points, normalized to ensure 
that a j

pj 5 1. In Equations (11.127)–(11.128), mean and covariance are computed in 
the standard way, with the contribution of each data point proportional to the probability 
that the data point matches the particular model. Let us now apply these equations to a 
simple example.

§ Section 12.2.4 (p. 580).

EXAMPLE 11.1 Consider the clustering problem of a simple 1D dataset with two clusters centered at c1 and 
c2, and three points: x1 5 3, x2 5 5, x3 5 8. Let the initial centers be c1 5 0 and c2 5 12. Apply 
the k-means and EM algorithms to these data.

Solution First, let us apply k-means, using Equations (11.119)–(11.120). In the first step we assign 
d1 d 1, d2 d 1, d3 d 2, since 3 and 5 are closer to 0, while 8 is closer to 12; that is, 03 2 0 0 , 03 2 12 0 , 05 2 0 0 , 05 2 12 0 , and 08 2 0 0 . 08 2 12 0 . In the second step, 
since x1 and x2 are assigned to c1, while x3 is assigned to c2, we update the centers as 
c1 5 1

2 13 1 5 2 5 4 and c2 5 8. Convergence has been reached in just one iteration.
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Now let us apply EM, using Equations (11.125)–(11.128). Let us initialize the means 
and covariances to m1 5 c1 5 0 and m2 5 c2 5 12, and s1

2 5 s2
2 5 16. In the first step 

(E-step), assign the probabilities based on the numerator of Equation (11.125):

 p11 d exp ¢2
1

2s1
2 03 2 0 02≤ < 0.755,  p12 d exp ¢2

1

2s2
2 03 2 12 02≤ < 0.080 (11.129)

 p21 d exp ¢2
1

2s1
2 05 2 0 02≤ < 0.458,  p22 d exp ¢2

1

2s2
2 05 2 12 02≤ < 0.216 (11.130)

 p31 d exp ¢2
1

2s1
2 08 2 0 02≤ < 0.135,  p32 d exp ¢2

1

2s2
2 08 2 12 02≤ < 0.607 (11.131)

then normalize by dividing by the denominator:

 p11 d 0.755
0.755 1 0.080

5 0.904,  p12 d 0.080
0.755 1 0.080

5 0.096 (11.132)

 p21 d 0.458
0.458 1 0.216

5 0.680,  p22 d 0.216
0.458 1 0.216

5 0.320 (11.133)

 p31 d 0.135
0.135 1 0.607

5 0.182,  p32 d 0.607
0.135 1 0.607

5 0.818 (11.134)

From these numbers we notice that x1 and x2 are much more likely to belong to the first 
model, whereas x3 is more likely to belong to the second model, as we would expect. In the 
second step (M-step), assign

 p1 d  
1
3
1 0.904 1 0.680 1 0.182 2 5 0.589 (11.135)

 p2 d  
1
3
1 0.096 1 0.320 1 0.818 2 5 0.411 (11.136)

and

 m1 d  
0.904 1 3 2 1 0.680 1 5 2 1 0.182 1 8 2

0.904 1 0.680 1 0.182
5 4.3 (11.137)

 m2 d  
0.096 1 3 2 1 0.320 1 5 2 1 0.818 1 8 2

0.096 1 0.320 1 0.818
5 6.8 (11.138)

and similarly for the variances:

 s1
2 d  

0.904 1 3 2 4.3 2 2 1 0.680 1 5 2 4.3 2 2 1 0.182 1 8 2 4.3 2 2

0.904 1 0.680 1 0.182
5 2.46 (11.139)

 s2
2 d  

0.096 1 3 2 4.3 2 2 1 0.320 1 5 2 4.3 2 2 1 0.818 1 8 2 4.3 2 2

0.096 1 0.320 1 0.818
5 2.91 (11.140)

This ends the first iteration. The result of this iteration, as well as the next two, are shown 
in Figure 11.11. Because the initial variance is so high, the middle data point becomes 
associated almost equally between the two models, rather than being associated only with 
the first model, as in k-means.
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Figure 11.11 The first three iterations of the EM algorithm on Example 11.5.2, showing the data points (red circles), the first Gaussian 
model (blue curve), the second Gaussian model (green curve), and the combined PDF (dashed black curve).
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The EM algorithm just presented is actually a simplified form of it. Nevertheless, the 
form just presented is, by far, the most widely used variation. A more detailed discussion 
of EM would require quite a bit of mathematical sophistication to show that the coordinate 
ascent approach described above is actually a form of lower-bound maximization, and 
that EM is always guaranteed to arrive at a local maximum of the likelihood function. 
This additional math would also reveal that the E-step actually constructs a tight lower-
bound approximation to the true likelihood function, and the M-step finds the local 
maximum of that tight lower-bound approximation. The lower-bound approximation is the 
expectation of the complete-data log likelihood with respect to the PDF of the assignment 
probabilities—which explains the name of the E-step. An alternative to the EM algorithm 
is the generalized EM algorithm, which does not maximize the function each iteration, but 
rather only increases the likelihood.

11.6 Further Reading
The straightforward algorithm for fitting a circle by 
minimizing the algebraic distance is due to Kåsa [1976]. 
A  number of methods for minimizing the geometric 
distance have been proposed over the years, such as 
Crawford [1983], Gander et al. [1994], and Chernov 
and Lesort [2005]. Note that some closed-form solu-
tions for minimizing the algebraic distance use 4 param-
eters (making these approaches more sensitive to noise), 
rather than the 3 used by Kåsa (which is quite robust). For 
example, Figure 11.4c on page 490 of this book shows 
the Kåsa method successfully working on the same data 
shown in Figure 2.1 of Gander et al. [1994], for which 
the 4-parameter version yields noisy results. The gener-
alized eigenvalue approach to fitting an ellipse is due to 
Fitzgibbon et al. [1999], which is related to the methods 
of Bookstein [1979] and Taubin [1991]. For a unifying 
view of the more sophisticated algebraic techniques 
known as the Pratt method, the Taubin method, and the 
hyperaccurate fit method, see the work of Al-Sharadqah 
and Chernov [2009].

The SVD approach to Procrustes analysis is origi-
nally due to Schönemann [1966] and Kabsch [1976], 

and its popularity in computer vision is due to Umeyama 
[1991], which is a refinement of the work of Arun et al. 
[1987]. An alternate approach to aligning point clouds 
based on quaternions, which can be found in Horn 
[1987], was quite popular for several years before being 
largely replaced by the SVD method. For a compari-
son of four different algorithms, which finds them all 
to achieve essentially the same results, see Eggert et al. 
[1997]. The classic paper describing ICP is that of Besl 
and McKay [1992], which uses a point-to-point error 
metric. Chen and Medioni [1992] simultaneously pro-
posed a nearly identical algorithm using a point-to-plane 
error metric. Another variant of ICP that was indepen-
dently discovered is described in Zhang [1994], which 
handles outlier rejection and uses a k-d tree for find-
ing the closest point. Rusinkiewicz and Levoy [2001] 
describe variants of ICP.

M-estimators were introduced by Huber [1964] and 
explained in great detail in his book, Huber [1981]. 
Another well-known book discussing M-estimators, 
with particular emphasis upon influence functions, is 
that of Hampel et al. [1986]. Tukey’s influence in the 
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field of robust estimation goes back to Tukey [1960]. The 
Geman-McClure estimator is due to Geman and McClure 
[1987]. We did not have space to discuss least median 
of squares (LMedS), which is another popular robust 
estimation technique that also achieves a breakdown of 
50% but has relatively low efficiency; for more details 
see Rousseeuw [1984] and Rousseeuw and Leroy [1987].

RANSAC was introduced in the classic paper 
by Fischler and Bolles [1981], MSAC and MLE-
SAC are described in Torr and Zisserman [2000], and  
Lo-RANSAC is from Chum et al. [2003]. The Hough 
transform was first described by Duda and Hart [1972], 
who called it the “generalized Hough transform,” based 
on the early work of Hough [1959]. The Hough trans-
form was later expanded to use the gradient direction 
in O’Gorman and Clowes [1976], and it was further 

generalized by Ballard [1981]. The history of the Hough 
transform is presented by Hart [2009].

Lloyd’s algorithm for k-means was first presented 
at the Institute of Mathematical Sciences Meeting in 
1957 but was not published until many years later by 
Lloyd [1982]. Other early work that presents essentially 
the same algorithm as Lloyd’s is that of Forgy [1965]. 
MacQueen [1967] popularized the problem and coined 
the name k-means. Global k-means was proposed  by 
Likas et al. [2003], and k-means11 is described 
by Arthur and Vassilvitskii [2007]. For an efficient vari-
ant of Lloyd’s algorithm, see the filtering algorithm by 
Kanungo et al. [2002]. A well-cited survey on clustering 
techniques is that of Xu and Wunsch [2005]. The EM 
algorithm is presented in the classic work of Dempster et 
al. [1977], which is a challenging read.

PROBLEMS

11-1 Suppose we have the following points in the x-y plane: (0.08,1.16), (1.46,2.38), 
(2.67,3.91), (3.19,4.80), and (4.49,5.25).

 (a) Write the matrix A and vector b, as defined in Equation (11.5).

 (b) Write the normal equations.

 (c) Compute the condition number of A.

 (d)  Compute the slope and y-intercept of the best-fitting line, in the ordinary least 
squares sense, using Algorithm 11.1.

 (e) Repeat (d) using Algorithm 11.2.

 (f ) Compute the residual for (d) and (e).

11-2 Repeat the previous problem after first multiplying the 3 coordinate by 1020. That is, 
the first point is 1 0.08 #1020, 1.16 2 , and so forth. How do your results compare with those 
of the previous problem?

11-3 Consider the least squares problem Ax 5 b, where

A 5 B0.7094 0.2760
0.7547 0.6797

R  and  b 5 B0.6551
0.1626

R
 (a) Write the two scalar equations represented by this matrix equation.

 (b)  Solve this problem using Gauss-Jordan elimination, i.e., multiply one of the equa-
tions by a scalar, subtract the equations to eliminate one of the variables, then 
back-substitute.

 (c) Solve the problem by inverting the matrix A, then multiplying the result by b.

 (d) Of (b) and (c), which one involves fewer computations?

 (e)  Generalize your result in (d) to larger systems of equations. That is, what is the 
computational complexity of the two approaches?
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11-4 Suppose we have the following points in the x-y plane: (2.64, 0.33), (2.94, 1.31), 
(3.27, 2.09), (3.47, 3.30), and (3.43, 4.36).

 (a)  Compute the slope and y-intercept of the best fitting line, in the ordinary least 
squares sense, using Algorithm 11.2.

 (b) Compute the parameters of the best fitting line using Algorithm 11.3.

 (c)  Compare your results in (a) and (b). Which algorithm yields better results, and 
why?

11-5 Suppose you have a problem in which, according to the theory, xi
TBxi 5 0 for 

every data point xi. Now suppose you collect the following noisy data points (0.53, 0.22), 
(0.64, 0.21), (0.64, 0.79), (0.94, 0.26), and (0.77, 0.42). Formulate this as a least-squares 
problem, and solve for the elements of the 2 3 2 matrix B.

11-6 Compute the condition number of each of the following matrices. Assuming your 
machine has floating-point precision of 0.01, indicate whether each matrix is ill-conditioned.

 (a) B11.9 29.7
29.7 90.8

R
 (b) B 50.6 20.4

20.4 50.5
R

 (c) B508.1 499.3
499.3 494.2

R
 (d) B7.4 3.8

3.8 4.5
R

11-7 For each of the following, state whether it is a homogeneous equation, assuming x 
and y are the variables:

 (a) 5x 1 4y 5 6 

 (b) 2x 1 13y 2 8 5 0 

 (c) 222y 5 44 

 (d) 6.3x 1 14.6y 5 28.1y 

11-8 A matrix has eigenvectors 30.6483 0.6424 0.4088 4T, 30.4177 0.3520 20.8377 4T, 
and 30.2166 20.7404 0.6363 4T and eigenvalues 1.6213, 0.0614, and 20.2756. What is 
the matrix?

11-9 Show that

 (a) 7x 72 5 xTx for any vector x, and

 (b) 7Ax 72 5 xTATAx for any matrix A and vector x.

11-10 Given a diagonal matrix L 5 diag 1l1, c, ln 2 , show that 7Lx 7  is minimized 
(with the constraint that 7x 7 5 1) when x 5 ei, where ei is a vector of all zeros except a 1 
in the ith element, and 0li 0 # 0lj 0  for all j.

11-11 Fit a plane to the following points:

   5 1 1.16, 2.07, 3.23 2 , 1 2.20, 2.80, 3.43 2 , 1 2.81, 3.89, 3.23 2 , 1 4.21, 5.02, 3.84 2 6
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11-12 Given a matrix with 8 rows and 6 columns,

 (a) Is the matrix tall or short?

 (b) Specify the dimensions of U, S, and V using the standard version of the SVD.

 (c) Specify the dimensions of Ur, Sr, and Vr using the compact version of the SVD.

 (d) How many singular values does the matrix have?

 (e)  How would your answers in (a)-(d) change if the matrix had, instead, 6 rows and 
8 columns?

11-13 Suppose the SVD of a matrix is given by the following:

U 5 C0.862 20.506 0.018
0.331 0.537 20.776
0.383 0.675 0.630

S  S 5 C1.034 0
0 0.457
0 0

S  V 5 B0.942 20.335
0.335 0.942

R
 (a) Write the compact version of the SVD.

 (b)  What is the matrix? (Hint: Do not forget to transpose the matrix V.) Verify that you 
get the same result with the standard version and the compact version.

11-14 Write the Moore-Penrose pseudoinverse of the matrix in the previous problem.

11-15 Compute the Frobenius norm of the matrix U in Problem 11.13.

11-16 Explain the difference between geometric and algebraic error. What are the 
advantages of each?

11-17 Fit a circle to the following set of points, using (a) Algorithm 11.4, and 
(b) Algorithm 11.5:5 1 351.4, 916.7 2 , 1 199.3, 750.1 2 , 1 144.0, 431.3 2 , 1 307.6, 124.3 2 , 1 667.1, 162.3 2 , 1 856.0, 384.5 2 6
Compare the results.

11-18 At first glance it may not be obvious that the left and right sides of Equation (11.53) 
are equivalent.

 (a)  Derive the right side of Equation (11.53) from the left side.

 (b)  Show that the right side can also be obtained by differentiating the algebraic error 
in Equation (11.44) with respect to the squared radius, and setting the result to zero.

11-19 An alternate way to formulate the problem of circle fitting is to find the parameters 
a, b, c, and d that minimize an

i51
1 axi

2 1 ayi
2 1 bxi 1 cyi 1 d 2 2, corresponding to the 

equation a 1 xi
2 1 yi

2 2 1 bxi 1 cyi 1 d 5 0. 

 (a)  What constraints that must be met to ensure that the result is a circle? (Hint: Ensure 
that the radius is greater than zero, and avoid degeneracy.)

 (b) Does the (non-normalized) Kåsa method guarantee that these constraints are met?

 (c) How about the normalized Kåsa method?

11-20 Take the derivative of the shifted algebraic error of a circle:

 a
n

i51

1 1 x~i 2 h~ 2 2 1 1 y~i 2 k~ 2 2 2 r2 2 2 (11.143)

with respect to h~ and k~, and set the result to zero, to provide an alternate derivation of 
Equation (11.51). (Hint: Recall that an

i51
x~i 5 an

i51
y~i 5 0.)
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11-21 For each of the following conic sections, specify whether it is an ellipse, parabola, 
or hyperbola, and if it is an ellipse, specify whether it is real or imaginary, and whether it 
is a circle.

 (a) 3x2 1 5y2 1 24x 2 10y 1 45 5 0 

 (b) 3x2 1 6xy 1 3y2 1 5x 1 8y 2 22 5 0 

 (c) 4x2 1 4y2 2 32x 2 82y 1 17 5 0 

 (d) 5x2 1 8xy 1 3y2 2 9x 2 21y 2 44 5 0 

 (e) 2x2 1 1xy 1 4y2 2 4x 2 24y 1 40 5 0 

11-22 Fit an ellipse to the following set of points, using Algorithm 11.7:5 1 611.8, 606.7 2 , 1 418.2, 764.6 2 , 1 252.3, 826.0 2 , 1 160.1, 761.7 2 , 1 349.1, 317.3 2 , 1 634.8, 206.1 2 6
11-23 Suppose a binary image region with a centroid at (246.8, 217.0) has the following 
second-order central moments: m00 5 60536.0, m20 5 886013794.4, m02 5 586810479.4, 
m11 5 2632045701.7. Fit an ellipse to this region using Algorithm 11.2.4, and sketch the 
ellipse using the principles of Section 4.4.5.

11-24 Compute the principal axes of the (a) aligned square and (b) oriented square below, 
using Equation (4.132):

1 a 2  E0 0 0 0 0
0 1 1 1 0
0 1 1 1 0
0 1 1 1 0
0 0 0 0 0

U 1 b 2  E0 0 1 0 0
0 1 1 1 0
1 1 1 1 1
0 1 1 1 0
0 0 1 0 0

U
What do you notice from your results?

11-25 Align the following point sets using Procrustes analysis, both (a) with and (b) 
without scaling:

first set:
second set:

    
5 1 56.5, 940.1 2 , 1 107.1, 867.0 2 , 1 171.7, 767.5 2 , 1 65.7, 793.9 2 , 1 157.8, 913.7 2 65 1 729.3, 530.7 2 , 1 743.1, 314.3 2 , 1 743.2, 118.4 2 , 1 591.0, 343.6 2 , 1 869.8, 346.5 2 6

Does it make any difference if you allow reflection?

11-26 Show that the rotation matrix found by Procrustes analysis in 2D is

 R ; Bcos u 2sin u
sin u cos u

R  (11.161)

where the angle u is the one that satisfies

 tan u 5
an

i51
xiyir 2 xiryi

an

i51
xirxi 1 yiryi

 (11.162)

(Hint: Formulate the error as the sum of squared distances between the second set of points 
and the transformed points from the first set, then take the derivative with respect to u, and 
set to zero.)
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11-27 Explain how ICP relates to Procrustes analysis.

11-28 When does a MAP estimator become an MLE estimator?

11-29 Suppose you have a set of scalars visualized as points on the real number line.

    (a)  What is the value that minimizes the sum of squared differences between itself 
and all the scalars? Explain how you arrive at the answer.

    (b)  What is the value that minimizes the sum of absolute differences between itself 
and all the scalars? Explain, paying particular attention to the situation in which 
the number of scalars is even.

11-30 Explain the difference between homoskedastic and heteroskedastic noise.

11-31 How does truncation relate to Winsorizing?

11-32 (a) Is the M-estimator r 1 z 2 5 1 1 2 e2z 2  sin z redescending? (b) What about 
r 1 z 2 5 1 1 2 e2z sin z 2 ? Explain your answer in each case.

11-33 Implement RANSAC for 2D line fitting and show that the technique successfully 
finds a line even when more than 50% of the data points are corrupted.

11-34 Modify the pseudocode in Algorithm 11.18 to detect a circle of known radius. 
Explain how you would extend the approach to handle an unknown radius.

11-35 Explain how the Ridler-Calvard algorithm is a 1D version of k-means clustering.

11-36 What is the relationship between k-means and the most commonly used form of EM?
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Classification is the process of assigning a label to either an image or a region of an image. The label could indicate, 
for example, whether an image region contains a face, or whether it contains a car. The label could indicate the 
identity of the person or the type of car. Classification involves learning decision boundaries from manually 

labeled training data in order to correctly assign labels to unlabeled data. In this chapter we cover various algorithms 
and principles related to classification, which is also known as supervised learning or pattern recognition. First 
we describe some fundamental principles, such as the difference between training error and test error, and the vari-
ous ways to evaluate classification systems. Then we look at statistical pattern recognition in general, and Bayesian 
decision theory in particular. Finally, we describe a number of widely used generative and discriminative methods for 
performing classification.

C H A P T E R 12
Classification

12.1 Fundamentals
We begin by discussing some fundamental concepts of the classification problem, such as 
the overall process of using training data to learn a decision boundary between categories, 
how to evaluate the performance of a classifier using test data, and some of the basic trade-
offs between the complexity of the model and number of features on the one hand and 
generalization capability on the other hand.
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12.1.1 Detection, Recognition, and Verification
Classification problems come in three basic forms. In a detection problem, the goal 
is to locate all instances of a particular class in an image. Face detection, for example, 
involves searching an image to find all the locations at which a human face is visible. In a 
recognition problem, it is known that an image region contains an item of a certain class, 
but the item’s identity is unknown; a popular example of this type of problem is face recog-
nition, where the goal is to label the identity of a detected human face. Finally, verification 
is a special case of recognition in which a hypothesized identity is provided, and the goal 
is to either verify or reject the identity. An example of a face verification system is one that 
determines whether an employee presenting an identification card at an entrance is indeed 
who he or she claims to be, using a picture taken by a camera mounted at the entrance.

All classification systems, whether designed for detection, recognition, or verification, 
involve the same basic steps and rely on the same underlying machinery. In all cases a 
finite number of discrete categories represent the possibilities. We shall represent these 
as v1, c, vN 

. With detection and verification, there are just two categories 1N 5 2 2 , 
because the item of interest is either present or not, and the identity is either correct or 
not. Recognition, on the other hand, requires a category for each of the different instances 
of the class, as well as an additional category to represent an “unknown” or unrecognized 
instance.

An overview of a classification system is shown in Figure 12.1. Data are collected and 
manually labeled by a human teacher, and the data are separated into a training set and a test 
set. The first step is to transform the image pixels into a feature vector x. The simplest such 
transformation is to stack the raw pixel values of the image region into a vector. However, 
to achieve better invariance to changes in lighting, pose, and structure, most real-world 
systems first preprocess the image to transform the raw pixel values into a separate feature 
space. In the case of face detection, for example, we could use features that estimate the 
symmetry, the bright spots on the cheeks, the dark spots near the eyes, and so forth. Such 
features are usually computed from the intensities in a rectangular window of pixels, but if 
segmentation has already been performed, then features related to the shape of the object 
can be used as well.

Once the transformation has been determined, the training data are used to learn a map-
ping f : x A v, where x is the feature vector, and v is the category. During the training 
process, the parameters of f are determined in order to satisfy two objectives. First, the clas-
sification error on the training set should be low, that is, f(x) should for the most part return 
the same category as the label manually assigned to x for any feature vector in the training 
set. Secondly, the classification error should be low on data that has never been seen by the 
algorithm, that is, the mapping f should generalize well to the test set. Finally, once the 
classifier has been trained and evaluated, it can then be applied to unlabeled images for any 
particular application where the classifier is needed.

Figure 12.1 An overview 
of a classification system.
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extraction Learning

Feature
extraction

Testing

Training

Training
image

Test
image Classification Decision

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



562 Chapter 12 • Classification

12.1.2 Classifiers, Discriminant Functions, and Decision Boundaries
Suppose a video camera is looking down on a conveyor belt, and we want to develop a sys-
tem that can distinguish between the objects traveling down the belt. For simplicity, suppose 
there are only two types of objects, say shoes and hats, and that they are well separated so 
that only one object is seen at a time, making segmentation trivial. When an object enters 
the field of view of the camera, the camera takes a picture, and the system analyzes the 
image to determine whether the object is a shoe or a hat. To do this, the system first extracts 
features from the image, then feeds these features to a previously trained classifier, which 
then makes the decision.

Let v1 represent the category “shoe,” and let v2 represent “hat.” One of the most natural 
ways of representing a classifier is through the use of discriminant functions. For each 
category vi, its discriminant function, represented as gi 1 x 2 , captures the likelihood that 
feature vector x belongs to it. A classifier then assigns feature x to category vi if the ith 
discriminant function yields a larger value than any other discriminant function:

 f 1 x 2 5 vi  if gi 1 x 2 . gj 1 x 2  for all j 2 i (12.1)

When there are just two categories, as in our example above, this reduces to

 f 1 x 2 5 bv1 if g1 1 x 2 . g2 1 x 2
v2 otherwise

 (12.2)

in which case the classifier is known as a dichotomizer. For a dichotomizer it is more 
common to define a single discriminant function g 1 x 2 ; g1 1 x 2 2 g2 1 x 2 , so that Equation 
(12.2) is simplified to

 f 1 x 2 5 bv1 if g 1 x 2 . 0
v2 otherwise

 (12.3)

The scenario is illustrated in Figure 12.2, where for simplicity we assume that the feature 
vectors contain just two dimensions so that x 5 3x1 x2 4T. The feature vector dimensions 
could be any property derived from the image, such as the length and width of the region, 
the intensity and eccentricity of the region, and so forth. The feature vectors are plotted 
onto a feature space, and the learning algorithm then learns a decision boundary (or 
decision surface) to separate the data points from the two categories. The two regions on 

Figure 12.2 Classification problem with two categories and a two-dimensional feature vector. LEFT: Training data points from one 
category plotted onto the feature space. MIDDLE: Training data points from the other category plotted onto the same feature space. RIGHT: 
Training data points plotted together, along with the learned decision boundary and the decision regions.
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either side of the decision boundary in the feature space are known as decision regions. 
In this case g1 1 x 2 5 2g2 1 x 2  for any x, and the discriminant function g(x) is simply the 
signed distance to the decision boundary, so that the classifier f maps any point below the 
decision boundary to one category, while any point above the decision boundary is mapped 
to the other category.

12.1.3 Error, Loss, and Risk
Any real-world classifier will make mistakes, or errors. In the example above, an error 
occurs when a hat is labeled “shoe,” or when a shoe is labeled “hat.” In Figure 12.2, for 
example, there is a red “x” above the line and a blue “o” below the line that are in the wrong 
decision regions. A loss function indicates the cost of the classifier making a particular 
decision on a particular input. More precisely, a loss function L maps the actual output and 
desired output to a real number. The most commonly used loss function is the zero-one 
(0–1) loss function, which assigns a cost of 1 to every error, and a cost of 0 to every 
successful classification:

 L 1v, v̂ 2 5 b0 if v 5 v̂

1 if v 2 v̂
 (12.4)

where v̂ is the correct label. With the zero-one loss function, the performance of a classifier 
can be determined by focusing solely on the errors.

The risk associated with the classifier and a particular decision is the product of the 
probability of making the decision and the cost associated with the decision. For example, 
the risk of assigning v1 to v2-type items, for a given classifier, is the probability of mistak-
enly assigning v1 to an v2-type item, times the loss associated with mistakenly assigning 
v1 to an v2-type item. The total risk of a classifier is the expectation of the loss function, 
which in our example would be the risk of assigning v1 to v2-type items, plus the risk of 
assigning v2 to v1-type items. However, the total risk is often unmeasurable because the 
joint distribution of the inputs and outputs is unknown. For example, we do not know the 
exact probability of obtaining a particular length measurement over the set of all possible 
hats and all possible shoes. As a result, we often settle for measuring the empirical risk, 
which is the average loss on the training set:

 
1
n

 a
n

i51

 L 1vi, v̂i 2  (12.5)

where n is the number of samples in the training set. The structural risk is the empirical 
risk plus an additional regularization term to penalize the complexity of the decision bound-
ary, considered in more detail below.

12.1.4 Training Error, Test Error, and True Error
The classifier is trained on a training set, then evaluated on a test set. The error on the train-
ing set is the training error, and the error on the test set is the test error. A good classifier 
is one that not only performs well on the training set but also generalizes well to the test 
set. That is, we want not only low training error, but also (and, in fact, more importantly) 
low test error.

Both the training and test sets can be thought of as containing samples from the same 
underlying probability distribution. Hats, for example, might be more likely than shoes, 
and large hats might be more likely than small hats. Although such characteristics will be 
manifested in both sets, they will not necessarily have the exact same proportions. That is, 
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the ratio of hats to shoes in the training set will typically be different from the ratio of hats 
to shoes in the test set, and both of these ratios will differ from the actual ratio in the seem-
ingly infinite world of hats and shoes.

If we had access to large amounts of data—hundreds of millions of hats and shoes—
then such discrepancies would be small indeed. In reality, however, it is often difficult to 
collect data sets that are large enough to accurately represent the underlying distribution. 
For example, to accurately capture the set of human faces for a face detector, one would 
need to capture not only images of billions of actual faces (based on the number of people 
in the world), but also images at a virtually infinite number of poses, lighting conditions, 
distances, ages, facial expressions, hair styles, backgrounds, camera exposures and gains, 
and so forth. As a result, for such problems, there will always remain a discrepancy between 
the sample errors (obtained using the finite training or test sets) and the true error, which is 
the probability of misclassifying a sample drawn at random from the underlying distribution. 

Therefore, given the error, Ptrain, of a classifier on a finite number of samples, two ques-
tions need to be answered in order to evaluate the accuracy of the classifier.† First, what is 
the probable error of the classifier on future samples that have not yet been seen? The answer 
to this question is easy: In the absence of additional information, the best estimate for the 
true error, Ptrue, is simply the training error:

 Ptrue < Ptrain (12.6)

Secondly, how accurate is this estimate of the probable error? The answer to this question 
is given by

 Ptrue 5 Ptrain 6 h ÅPtrain 1 1 2 Ptrain 2
n

 (12.7)

where n is the number of samples in the training set, and the scalar h depends upon 
the desired confidence interval for the uncertainty estimate. For example, h 5 1.64 
for 90% confidence, h 5 1.96 for 95% confidence, and h 5 2.58 for 99% confidence. 
Equation (12.7) is statistically valid only when a large enough number of samples have 
been gathered, that is, whenever n $ 5

Ptrain 1 1 2 Ptrain 2 . For example, when Ptrain 5 0.1, at least 
50 samples are needed in order to use this equation.

† The relationship between accuracy and error is straightforward. For example, a classifier that yields 10% error 
is 90% accurate.

EXAMPLE 12.1 Suppose we have a binary classification problem in 1D. Training data are collected for ten 
objects, 6 of which are hats and 4 of which are shoes. The lengths of the hats are 21, 24, 
26, 27, 29, and 31; the lengths of the shoes are 30, 33, 34, and 35. Suppose a classifier is 
trained that outputs hat if the length is less than 30 and shoe otherwise. What is the true 
error of this classifier?

Solution Since only one of the hats and none of the shoes are misclassified, the training error is 
Ptrain 5 0.1, or 10%. Without additional information, the best estimate for the true error is 
therefore 0.1. However, the true error is not guaranteed to be exactly this number. Rather, 
if the number of samples were at least 50, then with 95% confidence we could say from 
Equation (12.7) that the true error is between 0 and 0.286, since 1.96"1 0.1 2 1 0.9 2

10 5 0.186, 
and since the error cannot be negative. 
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12.1.5 Bias-Variance Tradeoff, Overfitting, and Occam’s Razor
There is an inherent tradeoff between improving performance on the training set and improv-
ing performance on the test set. If this statement is not intuitive at first glance, consider the 
example shown in Figure 12.3. A simple model (in this case a line) does a reasonable job of 
separating the two categories, but it leads to some errors. If the complexity of the model is 
increased, this error on the training data can be reduced arbitrarily, even to zero error. How-
ever, the danger of doing so is the possibility of overfitting to the specific training set, which 
will cause the algorithm to perform poorly on the test set, as well as on future input samples.

Two important concepts in this regard are bias (the expected discrepancy between the 
sample error and the true error), and variance (the expected variation in the error of the 
learned model as the training set is resampled from the underlying distribution). The training 
error exhibits nonzero bias, because it generally presents an overly optimistic measure of 
the accuracy of the classifier. The test error, on the other hand, usually exhibits zero bias, 
since the training and test sets are sampled independently. Even in the case of zero bias, 
however, there will be nonzero variance, because the measured error differs from the true 
error due to the finite number of samples.

Mathematically, the bias-variance decomposition of the squared error can be expressed 
as follows:

E 3 1  f 1 x 2 2 v 2 2 4 5 1E 3   f 1 x 2 2 f~1 x 2 4 2 2 1 E 3 1  f 1 x 2 2 E 3   f 1 x 2 4 2 2 4 1 E 3v2 4(''')'''*
bias

('''')''''*
variance

 (12.8)

where f~ is the true classifier (given infinite data), E 3v2 4 is the irreducible error (which 
arises because the data are not perfectly separable), and E 3 # 4 is the expected value. Deriving 
this equation is straightforward and left as an exercise for the reader.† In this equation, the 
bias can be thought of as the error caused by the simplifying assumptions of the model, 
whereas the variance is the flexibility of the model to adapt to different training sets. In 
general, more complex models yield less bias but higher variance, whereas simpler models 
yield more bias but less variance—an observation known as the bias-variance tradeoff. 
For example, although the complex model in Figure 12.3 yields less bias (which is good), 
the stability of the linear model over various training sets (because a linear model does not 
have much flexibility to adapt to the data) is probably preferred in this case. That is, although 
high variance is desirable for fitting the training data, it often leads to overfitting. Philo-
sophically, this observation is expressed in the principle known as Occam’s Razor,‡ which 
states that simpler models should be preferred over more complex models.

† Problem 12-9.
‡ William of Ockham (c. AD 1287–1347) was a medieval friar, philosopher, and theologian in England who died just 
before the Black Death reached that country. Occam’s Razor says that, all other things being equal, a more complicated 
explanation should not be chosen over a simpler explanation—in other words, the simplest explanation is the best.

Figure 12.3 A low-order 
model (left) leads to some 
misclassifications on the 
training set, while a high-order 
model (right) leads to a reduced 
number of misclassifications. 
However, high-order models 
tend to overfit the training 
set, thus leading to poor 
generalization performance.
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12.1.6 Holdout Method and Cross-Validation
The most straightforward way to evaluate the performance of a classifier is to collect some 
data, manually label the data, then partition the data into two nonoverlapping sets. One set 
(the training set) is used to train the classifier, while the other set (the test set) is used to 
evaluate it. This is known as the holdout method, and a good rule of thumb is to use two-
thirds of the data for training and one-third for testing.

While the holdout method is a reasonable approach, it suffers from several drawbacks. 
First, since manually labeling data is so painful and time-consuming, we would like to be 
able to take advantage of all the labeled data in the training process. Otherwise the learned 
model is not as good as it could be because it did not have access to all the data. Secondly, 
the results of the evaluation will be heavily dependent upon the particular partitioning of the 
data; if for some reason the split happens to be a bad one, then the results could be skewed 
accordingly.

One approach that fixes these drawbacks is known as random subsampling. In random 
subsampling, the holdout method is repeated, with the data sampled each time at random 
to form the training and test sets. In each iteration a new model is learned from the training 
set and evaluated on the test set. The errors over all iterations are then averaged to yield the 
final evaluation of the classifier. With random subsampling, the size of the test set and the 
number of iterations can be chosen independently.

A more systematic approach to accomplish the same objective is k-fold cross validation. 
In this approach, all the labeled data are divided into k nonoverlapping sets such that every 
data sample is in exactly one of the sets.† One of the sets is chosen as the test set, with the 
other k – 1 sets used as the training set, to compute the error of the classifier. This constitutes 
one iteration. The process is repeated k times, with a different set selected in turn for each 
iteration. The performance of the classifier is given by the average of the k results.

Larger values of k lead to less bias in the result at the expense of more computation, with 
k 5 5 and k 5 10 being common values (5-fold cross validation or 10-fold cross validation, 
respectively). A special case occurs when k 5 n (that is, when k is the number of data 
samples), known as leave-one-out cross validation (LOOCV).‡ In LOOCV, all the data 
except for one sample are used for training, with the isolated sample used for testing. 

† If the relative proportions of the different labels are approximately the same in all the sets, then the cross validation 
is said to be stratified.
‡ Another special case occurs when k 5 2; it is similar to the holdout method, but it requires both sets to have equal 
size, and it treats them symmetrically by averaging the two results.

EXAMPLE 12.2 Using the same training data as the previous example, suppose we train a classifier that 
outputs hat if the length is either less than 30 or between 31 and 32, inclusive, or shoe 
otherwise. Is this classifier better or worse than the previous one?

Solution  By allowing a more complex model, we have been able to reduce our training error to zero. 
However, the problem with this approach is that the training data is not a perfect sampling 
of the underlying distribution: If we were to collect another training set, it would likely be 
different. For example, suppose on another day that we measure 10 objects, and 5 happen 
to be hats while 5 happen to be shoes. The lengths of the hats are 22, 23, 25, 27, 28, and 29; 
while the lengths of the shoes are 30, 31, 32, 34, and 36. On this set of data the first classifier 
yields zero error, but the second classifier yields 0.2, or 20% error, because it has overfit to 
the first training data set. In other words, the model with the simple threshold is more likely 
to generalize to other samplings of the underlying distribution than is the complex model.
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This process is then repeated for all samples in the data set, and the n results are averaged. 
An advantage of LOOCV is that it treats all data samples exactly the same, and therefore 
the result is deterministic. (In contrast, the result of k-fold cross validation depends upon 
the particular partitions chosen.) A drawback of LOOCV is the increased training time, 
because it requires n models to be learned, although for some models (such as linear 
regression), this additional expense can be mitigated.

In addition to evaluating a classifier, it is oftentimes necessary to tune its parameters. For 
example, it might be necessary to choose the number of nearest neighbors or the number 
of nodes in a decision tree, or the stopping point for backpropagation. In such a case, the 
data are split three ways. One set of the data is used for training, a second set is used for 
parameter tuning, and a third set is used for testing. First the training set is used to train the 
classifier, then the validation set is used to tune the parameters, and finally the test set is 
used to evaluate the classifier. A typical rule of thumb for these three sets is 50%, 25%, and 
25%, respectively. It is straightforward to combine this idea with cross validation.

12.1.7 Model Selection and Regularization
As a result of the bias-variance tradeoff, an important decision is to determine the appropri-
ate complexity for the model. If the model has too few parameters, then the model will not 
be able to adjust to the training data, and the error will be high. On the other hand, if the 
model has too many parameters, then although the model will fit the training data well, it 
will not generalize well to the test data. This problem is known as model selection.

The most common solution to the model selection problem is known as regularization, 
which minimizes not just the training error, but rather the sum of the training error and a reg-
ularizing term that is proportional to the complexity of the model, where the complexity can 
be measured in any of a variety of ways. For example, the minimum description length 
(MDL) principle seeks a model to explain the data such that the data and model together can 
be represented with the minimum number of bits. Alternatively, the Akaike information 
criterion (AIC), is defined as

 AIC ; 22 ln a 1 2m (12.9)

where a is the maximum likelihood achieved by the model on the data, and m is the number 
of parameters in the model. Closely related is the Bayesian information criterion (BIC):†

 BIC ; 22 ln a 1 m ln n (12.10)

where n is the number of samples in the data set. Note that for any reasonably-sized data 
set, m ln n . 2m, and therefore BIC favors simpler models than AIC because it weights 
the model complexity more.

An alternate approach to regularization is to estimate the true error of the classifier using 
only the training error and the Vapnik-Chervonenkis (VC) dimension of the classifier 
space. As mentioned earlier, the true error can be thought of as the test error on an infinite 
test set containing all possible inputs. It can be shown that, with probability 1 2 h, the true 
error of a particular classifier is no more than the training error of the classifier plus the 
VC confidence:

 
true error # training error 1

 

Å 1 log 
2 n
h 1 1 2 h 2 log 

h
4

n('''')''''*
VC confidence

 (12.11)

† Also known as the Schwarz criterion.
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where n is the size of training data set, and h is the VC dimension of the classifier space,† 
which contains all possible classifiers of a particular type. For example, the classifier space 
could be the set of all nonvertical lines in the plane characterized by their slope and 
y-intercept, and a particular classifier within this space might be y 5 2x 1 3. The VC 
dimension is related to the complexity of the models within the space: a larger value of 
h indicates a space containing more complex models. As a result, Equation (12.11) can be 
used to select the right balance between model complexity and the bound on the generaliza-
tion error, in a process known as structural risk minimization.

To understand the concept of VC dimension, it is imperative to grasp the concept of 
shattering. A classifier space is said to shatter a set of data points if, for every possible 
labeling of the points, there exists a classifier that assigns correct labels to all the points; the 
VC dimension of the classifier space is then the largest number of points that can be arranged 
so that they are shattered by the space. For example, the VC dimension of a linear classifier 
in a d-dimensional space is d 1 1. This is easy to show for the case of d 5 2 because a 
line can shatter 3 points in the plane, but it cannot shatter 4 points. That is, there exists an 
arrangement of 3 data points such that, no matter which of the 23 5 8 possible binary label-
ings are assigned, there exists a line in the plane that will correctly separate these points from 
each other. But there is no arrangement of 4 points in the plane (assuming they are in general 
position, meaning no three are collinear) for which all labelings can be separated by a line.

12.1.8 Curse of Dimensionality and the Peaking Phenomenon
Let d be the dimensionality of the feature space, then x [ Rd. As the size of the feature 
vector increases, the space in which the learning algorithm must operate increases exponen-
tially. For example, assuming that the classifier is a simple lookup table, and assuming that 
the space is divided into c equally-sized intervals for each dimension, the table will require 
cd elements (i.e., c elements for d 5 1, c2 for d 5 2, c3 for d 5 3, and so on). Thus, as 
d grows to any reasonably-sized number, it will be nearly impossible to collect enough train-
ing samples to accurately represent the space, leading to many elements in the table with 
zero entries. This is known as the curse of dimensionality, and it is not restricted to lookup 
tables because any type of classifier has to learn in a space whose size is exponential in the 
number of dimensions, making learning particularly challenging for real-world problems.

One consequence of the curse of dimensionality is the fact that adding more features 
to a classifier oftentimes decreases accuracy. Known as the peaking phenomenon, this 
behavior is counterintuitive in that one would expect that more information would yield 
better accuracy. Indeed, more information does yield better accuracy, if sufficient train-
ing data can be collected. However, increasing the dimension of the feature vector makes 
it that much harder to gather sufficient training data, thus making the data available to 
the learning algorithm less representative of the actual underlying distribution, and thus 
reducing accuracy. One approach to mitigate the peaking phenomenon is to carefully select 
the features according to their effect on accuracy, a process known as feature selection.

12.1.9 Evaluating Classification Results
With many binary classification problems, there is an inherent imbalance between the two 
categories. For example, we may wish to determine whether patients visiting a doctor have 
a particular disease. Since the number of healthy people far exceeds the number of sick 
people, the two categories are not interchangeable. (And even during an epidemic, when 

† A classifier is sometimes known as a hypothesis, so that a classifier space is also known as a hypothesis space. 
Equivalent terms are hypothesis class or concept class.
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the number of sick people is greatly increased, there still remains an important semantic 
difference between the two categories, so there is still a need to treat them differently.)

In such cases, one category is considered positive, whereas the other category is consid-
ered negative. These names do not indicate whether a particular attribute is desirable, but 
rather whether a particular attribute is present. Thus, for example, a patient who has the dis-
ease is considered a positive example, while a patient who is healthy is considered a negative 
example. This distinction gives rise to four possibilities for the output of a binary classifier:

• A true positive (TP) occurs when the classifier assigns the positive label to a positive 
example (e.g., it correctly says that a sick person is sick).

• A true negative (TN) occurs when the classifier assigns the negative label to a negative 
example (e.g., it correctly says that a healthy person is healthy.)

• A false positive (FP) occurs when the classifier assigns the positive label to a nega-
tive example (e.g., it mistakenly says that a healthy person is sick). Also known as a 
false alarm, false detection, or Type I error.

• A false negative (FN) occurs when the classifier assigns the negative label to a posi-
tive example (e.g., it mistakenly says that a sick person is healthy). Also known as a 
false dismissal, or Type II error.

A natural way to capture the performance of a classifier on a data set is to use a confusion 
matrix, whose rows correspond to the actual categories and whose columns correspond to 
the outputs of the classifier.† For example, suppose we have a data set of 100 people, 90 of 
whom are healthy and 10 of whom are sick. Suppose the classifier labels 18 of the healthy 
people as having the disease, and also 9 of the sick people as having the disease. If we let 
TP refer to the number of true positives, and so forth, then we have TP 5 9, TN 5 72, FP 5 18, 
and FN 5 1. Note that TP 1 TN 1 FP 1 FN 5 100, which is the total number of people 
in the data set. The resulting confusion matrix is shown in Table 12.1 where, by convention, 
the entries are normalized by the size of the data set to yield probabilities.

Various performance measures based on the entries of the confusion matrix are listed 
in Table 12.2. The true positive rate (TPR) is the proportion of positive examples labeled 
positive, TP/ 1TP 1 FN 2 ; the true negative rate (TNR) is the proportion of negative 
examples labeled negative, TN/ 1FP 1 TN 2 ; and so on. These two measures are also 
known as the sensitivity and specificity, respectively, and an ideal classifier would achieve 
100% for each. Another way to measure performance, applied primarily to image retrieval 
systems, is through precision and recall, which are the fraction of detected items that are 
relevant, and the fraction of relevant items that are detected, respectively. These, too, should 
be 100%. Note that TPR, sensitivity, and recall are synonyms.

A related measure is the F-measure (also known as the F1 score), which is defined as 
the harmonic mean of precision and recall:

 F-measure ;
2

1
precision 1 1

recall

5
2 #  precision #  recall
precision 1 recall

5
TP

2 TP 1 FP 1 FN
 (12.12)

§ Some authors define the confusion matrix as the transpose of the one presented here.

test positive (disease detected) test negative (not detected)

actual positive (sick person) 0.09 (TP) 0.01 (FN )

actual negative (healthy person) 0.18 (FP ) 0.72 (TN )

TABLE 12.1 An example confusion matrix
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Closely related is the Jaccard coefficient, defined as the intersection over union of the set 
A of actual positives (the samples in the first row of the confusion matrix) and the set B of 
detected positives (the samples in the first column of the confusion matrix).

 Jaccard coefficient ;
A x B
A h B

5
TP

TP 1 FP 1 FN
 (12.13)

Many classifiers contain a parameter that governs the tradeoff between sensitivity and 
specificity. Imagine a threshold, for example, so that any number above the threshold is 
labeled positive, while any number below the threshold is labeled negative. As the thresh-
old is increased, the classifier generates more true positives but also more false positives; 
and as the threshold is decreased, the classifier generates fewer true positives but also 
fewer false positives. To evaluate the performance of the classifier, then, it is not enough 
to measure its sensitivity and specificity for a particular choice of threshold. Rather, it is 
necessary to generate the curve through sensitivity-specificity space, where each point along 
the curve is a pair of numbers indicating the sensitivity and specificity for a particular value 
of the threshold.

Two types of curves are common, as shown in Figure 12.4. A receiver operating 
characteristic (ROC) curve plots the TPR versus the FPR, and the ideal curve is one that 
passes through the upper-left corner where FPR 5 0 and TPR 5 1. A precision-recall 
(PR) curve plots the precision versus the recall (or TPR), and the ideal curve passes through 
the upper-right corner where precision and recall are both 1.† ROC curves and PR curves 
are closely related, but the latter are more appropriate for skewed, or imbalanced, datasets. 
A skewed dataset is one in which the number of items in one category far exceeds the 
number of items in the other category, just like the imbalance in binary classification prob-
lems mentioned above. In the case of a skewed dataset, a PR curve can reveal details about 
a classifier’s performance that are hidden by an ROC curve. To understand this phenomenon, 
imagine a dataset of people, only a tiny fraction of whom are sick. In this case the number 
of true negatives far exceeds the number of true positives, or TN W TP. Because the nor-
malization factor of FPR contains FP 1 TN, a large change in FP can be masked by the 
extremely large value of TN, thus hiding the effects of false positives in an ROC curve. In 

‡ Other choices include the detection error tradeoff (DET) curve, which plots the FNR versus the FPR with non-
linear scaling along the axes to straighten the curve and thereby accentuate small probabilities; and the Cumulative 
Match Characteristic (CMC) curve, which plots the probability that the correct matching identity is contained 
within the top k results, where k is the horizontal axis. The latter is used primarily for evaluating biometric systems.

Name Formula Alternate names

true positive rate (TPR) TP
TP 1 FN

recall, sensitivity, hit rate

false negative rate (FNR) FN
TP 1 FN

miss rate

true negative rate (TNR) TN
FP 1 TN

specificity

false positive rate (FPR) FP
FP 1 TN

false alarm rate, fallout

precision TP
TP 1 FP

positive predictive value

accuracy TP 1 TN
TP 1 TN 1 FP 1 FN

TABLE 12.2 Performance measures of a binary classifier. Note that TPR and FNR are complementary:  
TPR 1 FNR 5 1, and the same for TNR and FPR: TNR 1 FPR 5 1.
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contrast, because a PR curve utilizes precision, which normalizes by the total number of 
elements tested positive, such effects remain apparent.

Another problem with ROC curves is that, in computer vision problems, it is often 
extremely difficult to define the number of true negatives. For example, suppose there is a 
classifier to detect faces in an image. In most cases it is fairly straightforward to define TP, 
which is the number of actual faces in the image that are detected. But what is the value 
of TN? Most detection algorithms adopt a sliding window approach, in which a window 
is slid across the image and, at each location, the classifier is run. If TN is defined as the 
number of locations at which there is no face and the detector did not fire, then TN will be 
a very large number indeed, and the normalizing factor will then yield an extremely small 
value for FPR, even if the number of false positives rises to the level that appears unaccept-
able to a user. For this reason, oftentimes the FPR is reported in terms of the number of false 
positives per image, or something similar, even though such measures are not guaranteed 
to be between 0 and 1.

Classifiers are compared by comparing their curves. Typically this is done in one of two 
ways. The equal error rate (EER) is defined as the point on the ROC curve where 
FPR 5 FNR, or equivalently, TPR 5 TNR. This point is the intersection of the ROC 
curve with the diagonal line drawn from the upper-left to the lower-right corner. Two 
ROC curves can then be compared by comparing their EERs. The other, and more robust, 
way is to compute the area under the curve (AUC),† with the larger number indicating a 
better classifier.

12.2 Statistical Pattern Recognition
Now that we have considered the fundamental concepts of classification, let us turn our 
attention to various techniques for solving the problem. There are two basic approaches to 
pattern recognition. In syntactic (or structural) pattern recognition, objects are rep-
resented by strings of symbols related by a formal grammar, or by nodes in a graph; for 

† For those familiar with statistics, the AUC is equivalent to the Mann-Whitney U statistic.

Figure 12.4 The performance of a classifier is often visualized through either an ROC curve (left) or a PR curve (right). An error-free 
classifier would generate a curve along the dashed blue lines.
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example, two images could be matched by comparing the graphs of the objects detected 
in each. In statistical pattern recognition, on the other hand, objects are represented by 
feature vectors, and statistical analysis is applied to learn decision boundaries between cat-
egories. We focus our attention upon the latter, which is by far the more popular approach.

12.2.1 Bayes’ Rule
We begin by recalling a foundational result from probability and statistics. Suppose a per-
son throws darts at a board, and every dart is guaranteed to land somewhere on the board. 
Let V be the set of all locations on the board, and let r [ V be a particular dart location. 
Now suppose two overlapping regions labeled A and B have been drawn on the board, as 
shown in Figure 12.5. Let p 1 r [ A 2  be the probability that a dart lands in region A, and 
p 1 r [ B 2  the probability that it lands in region B. With a slight abuse of notation, we shall 
refer to these simply as p 1A 2  and p 1B 2 , respectively. If we know that a particular dart 
landed in region B, the probability that it also landed in region A is called the conditional 
probability p 1A 0B 2 . It is easy to see from the figure that p 1A 0B 2 5 p 1A x B 2 /p 1B 2 , and 
similarly, that p 1B 0A 2 5 p 1A x B 2 /p 1A 2 . Putting these two equations together yields 
the well-known Bayes’ rule:

 p 1A 0B 2 5
p 1B 0A 2 p 1A 2

p 1B 2  (12.14)

Bayes’ rule is important because it allows us to convert an impossible problem into one 
that is solvable. To see what is meant by this, let us change the problem slightly. Let us sup-
pose that V is divided into N disjoint regions V1, c, VN, so that there is no intersection 
between any two regions: Vi x Vj 5 0 for all i 2 j. We shall also assume that each point 
in V is in some region, so that their union covers the entire space: dN

i51
Vi 5 V. We will 

call the points instances, and the regions categories, so that Vi is a set containing all the 
instances in category vi. Since each instance belongs to exactly one of the categories, we 
have

 a
N

i51
 
p 1 r [ Vi 2 5 1  4r [ V (12.15)

Figure 12.5 Bayes’ rule, which relates one 
conditional probability p 1A 0B 2  to its reverse 
conditional probability p 1B 0A 2 , can be 
understood by considering darts thrown 
at a dartboard V containing two possibly 
overlapping regions A and B.

A B
V

A x B
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Now suppose that we have access to some particular instance, and we want to know to 
which category it belongs. Suppose we can measure some property, or feature, associated 
with the instance. Let X  be the set of all instances that yield the particular measurement x 
that we obtained, as illustrated in Figure 12.6. By letting Vi play the role of region A, and 
X  play the role of region B, Bayes’ rule yields

 p 1 r [ Vi 
0
 
r [ X 2 5

p 1 r [ X  0  r [ Vi 2 p 1 r [ Vi 2
p 1 r [ X 2  (12.16)

As before, we can rewrite the equation by simplifying the notation, letting vi refer to the 
category associated with region Vi, and letting x refer to the feature associated with the 
elements of X:

 p 1vi 
0
 
x 2 5

p 1 x 0  vi 2 p 1vi 2
p 1 x 2  (12.17)

or, in words,

 posterior 5
likelihood #  prior

evidence
 (12.18)

The power of Bayes’ rule lies in its ability to transform the difficult problem of computing 
the posterior, p 1vi 

0
 
x 2 , into the easier problem of computing the likelihood, p 1 x 0  vi 2 . 

It is important to understand the distinction between these two terms. The posterior cap-
tures the problem that we are trying to solve—namely, to find the most likely category of 
an instance given information about the instance. In contrast, the likelihood specifies the 
probability of obtaining a particular feature x from an instance in a known category. In this 
manner, Bayes’ rule allows us to perform diagnostic reasoning (computing the posterior) 
by instead performing causal reasoning (computing the likelihood).

The prior captures the probability of a particular result without access to any data. 
Sometimes instead of the term “posterior,” you will see the term “a posteriori;” similarly you 
may see “a priori” instead of “prior.” These mean the same thing: The posterior is indeed 
the a posteriori probability, because it is the probability after taking the data into account, 

Figure 12.6 Another view of Bayes rule, in 
which the dartboard has been divided into 
N disjoint regions V1, c, VN. (N 5 3 
in this illustration.) The region X, shown 
in yellow, overlaps one or more regions 
and contains all the instances for which 
a particular feature measurement was 
obtained. The goal is to determine to which 
region an instance x belongs, given that the 
instance is in X.

V1

V3

V2r X
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whereas the prior is the a priori probability, because it does not depend on the data. The last 
term to consider, the evidence, is the probability of obtaining a particular measurement. But 
since the measurement has been obtained already, the evidence is the same for all possible 
categories, and therefore it is usually treated as an unimportant scaling factor, leading to a 
simpler expression for Bayes’ rule:

 
p 1vi 

0
 
x 2(')'*

posterior

~

 

 

p 1 x 0  vi 2(')'*
likelihood

 
p 1vi 2(')'*

prior
 (12.19)

where the equal sign has been replaced by the proportional sign.
Since our goal is to infer the proper category given some data, the most obvious solu-

tion is to select the category that yields the maximum value for the posterior. Known as 
maximum a posteriori (MAP) estimation, this approach selects the category v̂i such that

 v̂i 5 arg max
vi

 p 1 x 0  vi 2 p 1vi 2  (12.20)

where arg max returns the argument that maximizes the expression. In the case of a uniform 
prior, p 1vi 2  is the same for all i, and MAP estimation therefore reduces to maximum 
likelihood (ML) estimation:

 v̂i 5 arg max
vi

 p 1 x 0  vi 2  (12.21)

12.2.2 Bayesian Decision Theory
Bayesian decision theory is a statistical approach to classification based upon Bayes’ 
rule. In this approach, we use the training set to estimate the class-conditional probability 
density p 1 x 0  vi 2  for all i. Later we will discuss the various ways to do this, but for now 
note that since all the training data are manually labeled, we can take all the samples in the 
training set with label vi, compute the feature for each sample, then aggregate those features 
in some way to estimate the density. In other words, the class-conditional density captures 
how often feature x occurs in category vi.

What we want, of course, is the posterior density, p 1vi 
0
 
x 2 . That is, given a measured 

feature x, the posterior density yields the probability that the feature was obtained from 
a sample in category vi. It should be obvious that the sum of the posterior densities is 1:

 a
N

j51

p 1vj 
0
 
x 2 5 1 (12.22)

where N is the number of categories. Of course, Bayes’ rule relates the two quantities:

 p 1vi 
0
 
x 2 5

p 1 x 0  vi 2 p 1vi 2
p 1 x 2  (12.23)

Substituting Equation (12.23) into Equation (12.22) leads to a relation on the class-conditional 
densities:

 a
N

j51
 
p 1 x 0  vj 2 p 1vj 2 5 p 1 x 2  (12.24)

so that the posterior in Equation (12.23) can be written as

 p 1vi 
0
 
x 2 5

p 1 x 0  vi 2 p 1vi 2
aN

j51
p 1 x 0  vj 2 p 1vj 2  (12.25)
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In the binary case, Equations (12.22) and (12.24) are simply

  p 1v1 0  x 2 1 p 1v2 
0
 
x 2  5  1  (12.26)

  p 1 x 0  v1 2 p 1v1 2 1 p 1 x 0  v2 2 p 1v2 2  5  p 1 x 2  (12.27)

These two types of densities are illustrated in Figure 12.7 for a simple example with a 
one-dimensional feature.

If we let L 1vi 
0
 
vj 2  be the loss associated with choosing label vi when the actual label is 

vj, then the conditional risk is defined as

 R 1vi 
0
 
x 2 5 a

N

j51

L 1vi 
0
 
vj 2 p 1vj 

0
 
x 2  (12.28)

If we let f : x A v be the decision rule (or classifier), then the overall risk, which is the 
expected loss associated with the decision rule, is given by

 R 5 2R 1   f 1 x 2 0  x 2 p 1 x 2  d x (12.29)

where the integral is computed over the entire feature space. Obviously, if f is chosen so that 
it yields the smallest possible value for R 1  f 1 x 2 0  x 2  for every possible x, then the overall 
risk is minimized. This leads to the following Bayes decision rule:

 f 1 x 2 5 arg min
vi

 R 1vi 
0
 
x 2  (12.30)

In other words, for each input x, f selects the category that minimizes the conditional risk. 
This minimum overall risk is known as the Bayes risk, and it is the best result that can be 
attained.

In the binary case, the Bayes decision rule in Equation (12.30) simplifies to

 f 1 x 2 5 bv1 if R 1v1 0  x 2 # R 1v2 
0
 
x 2

v2 otherwise
 (12.31)

which, from Equation (12.28), is equivalent to

 f 1 x 2 5 bv1 if  
p 1 v1 0  x 2
p 1 v2 0  x 2 $

L 1 v1 0  v2 2
L 1 v2 

0
 
v1 2

v2 otherwise
 (12.32)

Figure 12.7 Example 
of class-conditional 
densities (left) and 
posterior densities (right) 
for a binary classification 
problem. Note that the 
former always integrate to 
1 over all inputs, and the 
latter always sum to 1 for 
each input. 0
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where we have assumed that L 1v1 0  v1 2 5 L 1v2 
0
 
v2 2 5 0, since it is not desirable to 

penalize correct responses. By applying Bayes’ rule, this is equivalent to

 f 1 x 2 5 bv1 if  
p 1 x 0v1 2
p 1 x 0v2 2 $ t

v2 otherwise
 (12.33)

where 
p 1 x 0v1 2
p 1 x 0v2 2  is the likelihood ratio, and

 t ;
L 1v1 0  v2 2 p 1v2 2
L 1v2 

0
 
v1 2 p 1v1 2  (12.34)

is a threshold. If v1 is treated as the positive category, then as the threshold is increased, 
the classifier will yield fewer false positives but also fewer true positives; whereas as the 
threshold is decreased, the classifier will yield fewer false negatives but also fewer true 
negatives. This is exactly the tradeoff captured by the ROC and PR curves mentioned earlier.

In computer vision, the zero-one loss function is nearly always used, in which case 
Equation (12.28) reduces to

 R 1vi 
0
 
x 2 5 a

j2 i

p 1vj 
0
 
x 2 5 1 2 p 1vi 

0
 
x 2  (12.35)

so that the Bayes decision rule minimizes the probability of error, or, rather, maximizes the 
a posteriori probability:

 f 1 x 2 5 arg max
vi

 p 1vi 
0
 
x 2  (12.36)

which is known as minimum error rate classification or, equivalently, maximum 
a posteriori (MAP) classification. In this case the decision boundaries occur where the 
posteriors intersect, and the Bayes risk is the area under the curve generated by the minimum 
value among all posteriors for any value of the input feature, as shown in Figure 12.8. In the 
binary case, L 1v2 

0
 
v1 2 5 L 1v1 0  v2 2 5 1, and the Bayes decision rule reduces to selecting 

the category with the maximum posterior:

 f 1 x 2 5 bv1 if p 1v1 0  x 2 $ p 1v2 
0
 
x 2

v2 otherwise
 (12.37)

Figure 12.8 With the zero-one loss 
function, the decision boundaries 
(vertical dashed lines) occur where 
the posteriors intersect, and the Bayes 
risk is the shaded area, or area under 
the curve generated by the minimum 
value among all posteriors for any 
value of x.
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12.2 Statistical Pattern Recognition 577

In addition, when the priors are equal, p 1v1 2 5 p 1v2 2 , thus further simplifying the rule to

 f 1 x 2 5 bv1 if p 1 x 0  v1 2 $ p 1 x 0  v2 2
v2 otherwise

 (12.38)

so that v1 is chosen if the likelihood ratio is greater than 1, or v2 otherwise.
To summarize, the general approach to learning a Bayesian classifier is to collect a 

training set, label the training set, compute features on the samples in the training set, and 
use these features to estimate the class-conditional densities. Then, the priors are estimated 
using either the distribution of the labels within the training set (if these are believed to be 
representative of the general population) or through some other means; if no such informa-
tion is available, then the priors are set to 1. Since a zero-one loss function is nearly always 
used, once the Bayesian classifier has been learned, it can be applied to a new sample by 
extracting the feature vector from the sample and using Bayes’ rule to estimate the posterior 
for each category, then choosing the category that yields the maximum posterior.

12.2.3 Parametric vs. Nonparametric Representations
There are two basic ways to represent probability distributions. A parametric representation 
uses an analytic expression with a small number of parameters, such as the coefficients of 
a polynomial, or the mean vector and covariance matrix of a Gaussian. A nonparametric 
representation, on the other hand, uses a data-driven approach, such as a histogram over the 
data, or simply the raw data themselves. In this section we present an example of a simple 
classification problem, for the purpose of illustrating the difference between parametric 
and nonparametric representations, as well as for providing some working knowledge of 
the use of class-conditional densities, posterior distributions, and likelihood ratios. First, a 
nonparametric approach is shown using graylevel histograms, then the problem is revisited 
using parametric Gaussian densities.

Consider the image shown at the top-left of Figure 12.9, which we have used before. In 
general, the foreground objects are lighter than the background, and therefore we expect the 
pixels on the foreground objects to have higher gray levels than those on the background. 
Suppose we wish to develop a classifier that will determine, based solely on a pixel’s gray 
level, whether it is likely to be part of the foreground or background.

The first step is to manually label the pixels as belonging to one of the two categories, 
with the result shown in the top-right of the figure. Treating the image as a training image, 
we then construct the class-conditional densities, where v1 refers to the foreground and v2 
refers to the background. For each of the two categories, a normalized histogram is con-
structed of the gray levels of all the pixels with that particular label in the ground truth. The 
resulting two normalized histograms h1 and h2, which are the class-conditional densities, 
are shown in the middle of Figure 12.9.

To compute the priors, simply count the number of pixels in each category, followed by 
an appropriate normalization. If we let h1 and h2 be the two non-normalized histograms, 
then the priors are computed as

  p 1v1 2  5  
a i

 h1 3i 4
a i

 h1 3i 4 1 a i
 h2 3i 4 5 0.26  1 foreground prior 2  (12.39)

  p 1v2 2  5  
a i

 h2 3i 4
a i

 h1 3i 4 1 a i
 h2 3i 4 5 0.74  1 background prior 2  (12.40)
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578 Chapter 12 • Classification

where i 5 0, c, 255. Note that p 1v1 2 1 p 1v2 2 5 1. Keep in mind that this is just one 
way to compute priors. If the training data set cannot be trusted to be sufficiently representa-
tive of the underlying distribution, then both priors can simply be set to 0.5. For example, 
if we later want to run the algorithm on an image that contains just one piece of fruit, the 
prior from this particular procedure will skew the classifier into labeling more pixels as 
foreground than it would otherwise.

The posterior probability for any particular gray level i is computed, as in Equation 
(12.25), by multiplying the class-conditional density evaluated at i by the prior, and normal-
izing appropriately:

  post1 3i 4 5  
h1 3i 4 p 1v1 2

h1 3i 4 p 1v1 2 1 h2 3i 4 p 1v2 2     1 foreground posterior 2  (12.41)

  post2 3i 4 5  
h2 3i 4 p 1v2 2

h1 3i 4 p 1v1 2 1 h2 3i 4 p 1v2 2    1 background posterior 2  (12.42)

Figure 12.9 TOP: An image 
with ground truth binary 
labels. MIDDLE: Class-
conditional densities for the 
two categories represented 
nonparametrically as 
graylevel histograms. 
BOTTOM: Posteriors and 
log-likelihood ratio. The 
two categories have equal 
probability near gray 
level 110.
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12.2 Statistical Pattern Recognition 579

Again, note that post1 3i 4 1 post2 3i 4 5 1 for all i, which is evident from the bottom-left of 
the figure.

The likelihood ratio is computed by taking the ratio of the class-conditional densities. By 
applying the logarithm, the ratio is converted into a difference, yielding the log-likelihood 
ratio:

 log-like 3i 4 5  log 

h1 3i 4
h2 

3i 4 5 log h1 3i 4 2 log h2 
3i 4  1 log-likelihood ratio 2  (12.43)

resulting in a more natural dynamic range for display purposes. The log-likelihood is 
displayed in the bottom-right of the figure.

The posteriors cross at p 1v1 0  x 2 5 p 1v2 
0
 
x 2 5 0.5, or in terms of likelihood ratio:

 
p 1 x 0  v1 2
p 1 x 0  v2 2 5

p 1v2 2
p 1v1 2 5

0.74
0.26

5 2.8 ; teq (12.44)

The horizontal line in the plot is at log 1 2.8 2 5 1.0 (using the natural logarithm), while the 
vertical line is near gray level 110. Notice that if the distributions were different there could 
be more vertical lines, but there will be only one horizontal line.

As the threshold t is varied, as in Equation (12.33), the classifier yields different results, 
five of which are shown in Figure 12.10. If we let v1 be the positive category, and v2 be the 
negative category, then as t is decreased there are more true positives and also more false 
positives. The performance of the classifier is depicted in the ROC and PR curves shown 
in the figure. Keep in mind that in a real application, we would want to use a separate test 

Figure 12.10 TOP: Classification results using five different values for the likelihood ratio t. As t is decreased, the classifier yields more 
positives (both false and true). BOTTOM: Receiver operating characteristic (ROC) and precision-recall (PR) curves for the classifier, with the 
equal error rate (EER) shown for the former.
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580 Chapter 12 • Classification

image for generating curves that were used to depict the performance of the classifier, but 
for illustrative purposes, the training image is sufficient.

So far we have use the nonparametric approach of graylevel histograms for modeling 
class-conditional densities. An alternate approach is to approximate these densities with 
Gaussian distributions by computing the mean and variance of the histograms:

  m1 5 a
i

 h1 3i 4  i       s1
2 5 a

i

 h1 3i 4 1 i 2 m1 2 2  (12.45)

  m2 5 a
i

 h 2 
3i 4  i       s2

2 5 a
i

 h 2 
3i 4 1 i 2 m2 2 2 (12.46)

The class-conditional densities, posteriors, and log-likelihood ratio using Gaussian distribu-
tions are all shown in Figure 12.11. The class-conditional densities cross near gray level 107, 
whereas the posteriors and log-likelihood cross near gray level 116. Notice that the fact that 
p 1v1 2 , p 1v2 2  causes the threshold to move slightly toward the right (i.e., increases the 
threshold) to make it more likely that pixels are labeled background 1v2 2  by the classifier.

12.2.4 Gaussian Densities
Let us continue our discussion of parametric approaches by considering the most popular 
parametric density, namely, the Gaussian. When it is a function of a single variable, the 
Gaussian has the following form:

 p 1 x 0  vi 2 5
1"2ps

 e2
1  x 2mi 22

2si
2  (12.47)

where mi and si are the mean and variance, respectively, and where x is a scalar. When it is 
a function of multiple variables, it is the multivariate Gaussian:†

 p 1 x 0  vi 2 5
11 2p 2 d

2 0S 0 12  e21
2
1x2mi 2T Si

211x2mi 2 (12.48)

where mi and Si are the mean vector and covariance matrix, respectively, and where x [ Rd. 
For the rest of this section, we will concern ourselves with the multivariate Gaussian, since 
the scalar Gaussian is a special case.

† Section 11.5.2 (p. 551).

Figure 12.11 Corresponding plots for the classifier when the densities are approximated with parametric Gaussians. The posteriors are 
equally probable near gray level 116, while the class-conditional densities (since they do not take the priors into account) cross near 
gray level 107.
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12.2 Statistical Pattern Recognition 581

The discriminant function for a posterior distribution can be chosen as any monotonically 
increasing function of that distribution, since it is only the order of the values that matters. 
For convenience, apply the natural logarithm and invoke Bayes’ rule:

 gi 1 x 2 ; log p 1vi 
0x 2 5 log p 1 x 0vi 2 p 1vi 2 5 log p 1 x 0vi 2 1 log p 1vi 2  (12.49)

Substituting Equation (12.48) and ignoring the leading constant 1 2p 22d/2 yields

 gi 1 x 2 ; 2
1
2

 log 0Si 0 2
1
2

 1 x 2 mi 2T Si
21 1 x 2 mi 2 1 log p 1vi 2  (12.50)

Classification using Gaussians is therefore straightforward: Simply select the category 
that yields the largest value for the discriminant function in Equation (12.50). However, 
analytically describing the decision boundaries is not easy, because the equation describes, 
in general, a hyperquadric, which can assume any of a variety of forms.

A special case occurs when all the Gaussian densities share the same covariance matrix, 
that is, Si 5 S for all i. In that case the leading term in Equation (12.50) can be dropped, 
leading to

  gi 1 x 2  ;  2
1
2

 1 x 2 mi 2T S21 1 x 2 mi 2 1 log p 1vi 2  (12.51)

  5  2
1
2

 1 xTS21x 2 2mi
T S21x 1 mi

T S21mi 2 1 log p 1vi 2 (12.52)

Since xTS21x does not depend upon the category i, this term can be dropped, thus revealing 
that the discriminant function is linear:

 gi 1 x 2  ;  wi
Tx 1 bi  (12.53)

where

  wi ;  S21mi  (12.54)

  bi ;  2
1
2

 mi
TS21mi 1 log p 1vi 2  (12.55)

With a linear discriminant function, the decision boundary between two adjacent regions is 
a hyperplane† defined by

 wT 1 x 2 c 2 5 0 (12.56)

where

  w ;  S21 1mi 2 mj 2  (12.57)

  c ;  
1
2

 1mi 1 mj 2 1
mi 2 mj1mi 2 mj 2T S21 1mi 2 mj 2  log 

p 1vi 2
p 1vj 2  (12.58)

It is clear from Equation (12.58) that the hyperplane intersects the line joining the means 
at the point c, and furthermore that the point c is exactly halfway between the means 
when the priors are equal. (If the priors are not equal, then c is shifted away from the 
mean of the more likely distribution.) In addition, when the priors are equal, the decision 

† A hyperplane is a generalization of a plane to any number of dimensions, for example a plane when d 5 3 or 
line when d 5 2.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



582 Chapter 12 • Classification

can be made by simply selecting the category whose mean is the closest using the Maha-
lanobis distance.†

A further special case occurs when all the variances of all the Gaussian densities are 
equal, that is, Si 5 s2 I5d3d6 for all i. In that case, Equation (12.51) simplifies to

 gi 1 x 2   ;   2
1

2s2 7x 2 mi 72 1 log p 1vi 2  (12.59)

As before, the discriminant function is linear, gi 1 x 2 ; wi
Tx 1 bi, where

  wi ;  
1

s2 mi  (12.60)

  bi ;  2
1

2s2 7mi 72 1 log p 1vi 2  (12.61)

With a linear discriminant function, the decision boundary between two adjacent regions is 
a hyperplane defined by wT 1 x 2 c 2 5 0, where

  w ;  mi 2 mj  (12.62)

  c ;  
1
2

 1mi 1 mj 2 1
s2 1mi 2 mj 2
imi 2 mji2  log 

p 1vi 2
p 1vj 2  (12.63)

This hyperplane is perpendicular to the line joining the means at the point c. As before, if the 
priors are equal, then c is exactly halfway between the means, and the decision can be made 
by simply selecting the category whose mean is the closest using the Euclidean distance.

12.3 Generative Methods
Classification methods come in one of two flavors:

• Generative methods construct a generative model for each category by learning the 
class-conditional densities, then determine how well the measured data fit into these 
models. By providing an explicit model for the probability density of each category, this 
type of approach is more flexible and enables synthetic data to be generated by sampling 
the distributions.

• Discriminative methods construct a discriminative model that directly captures the 
decision boundaries explicitly, without attempting to model the underlying densities.

We continue to explore generative methods in this section, followed by discriminative 
 methods in the next section.

12.3.1 Histograms
One of the most common, and simplest, nonparametric generative models is the histogram. 
One of the primary advantages of histograms is that, as the histogram is being computed, 
the data can be discarded. Therefore, the amount of memory needed is related solely to 
the size of the histogram rather than to the amount of data. Nevertheless, a particularly 
acute drawback of histograms is that the amount of memory needed is exponential in the 

† Section 4.3.1 (p. 164).
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12.3 Generative Methods 583

number of dimensions, so that histograms are not practical when d is much bigger than 
3, and certainly infeasible when d . 5, which is an effect of the curse of dimensionality. 
(Recall that histograms can be computed on any type of data, not just gray levels.)

To see how this works in practice, let us consider a real-world application of histograms, 
namely the detection of skin-colored pixels in an RGB color image—that is, automatically 
determining which pixels in the image contain human skin. Let us simplify the problem 
so that the decision is made independently for each pixel based solely on the color of that 
pixel, so that the feature vector x is the RGB value† of the pixel. To train the classifier, a 
large number of images of a variety of scenes is collected, and the pixels in these images 
are then manually labeled according to whether they belong to the category of human skin 
color or not.

From these labeled pixels, both the prior p 1vi 2  and the likelihood p 1 x 0  vi 2  are esti-
mated for the two categories using two normalized histograms, each containing the class-
conditional density of one of the two classes. The likelihoods are obtained by looking up 
the values in the appropriate bins of the normalized histograms:

  p 1 1 r, g, b 2 0v1 2  <  hskin 1 r, g, b 2 5
nskin
1r, g, b2
nskin

 (12.64)

  p 1 1 r, g, b 2 0v2 2  <  hnonskin 1 r, g, b 2 5
nnonskin
1r, g, b2

nnonskin
 (12.65)

where (r, g, b) is the RGB triplet, hi 1 r, g, b 2  is the ith normalized histogram evaluated at 
the triplet, ni

1r, g, b2 is the number of pixels in the ith category with the particular RGB values, 
and ni 5 a1r, g, b2ni

1r, g, b2 is the total number of pixels in the ith category, where i 5 1 refers to 

“skin” and i 5 2 refers to “nonskin.” Assuming that the pixels selected for inclusion in the 
training set are representative of the pixels likely to be encountered in unlabeled data, the 
priors can be estimated using the fraction of the instances of the two categories:

 p 1v1 2 <
nskin

nskin 1 nnonskin
  and  p 1v2 2 <

nnonskin

nskin 1 nnonskin
 (12.66)

For 24-bit color images, there are 256 possible values for red, 256 possible values for 
green, and 256 possible values for blue. As a result, there are 2563 5 16,777,216 possible 
colors for any given pixel. In practice, however, a histogram with such a large number of 
entries has two drawbacks. First, the amount of memory required is large, which negatively 
impacts computational performance. Secondly, with a limited amount of training data many 
of the bins will not contain any pixels. Such empty bins lead to the mistaken belief that 
the corresponding color is unlikely even if there is a large number of pixels in the adjacent 
bin, whose color is almost indistinguishable from that of the bin with no pixels. Therefore, 
the values are typically quantized into a smaller number of bins. For example, a histogram 
with 83 5 512 bins can be created by dividing each of the red, green, and blue dimensions 
into eight equally-spaced intervals. Pixels with the same green and blue values will then 
be placed into different bins depending upon whether their red value falls within the range 
0–31, 32–63, 64–95, . . . or 224–255.

Figure 12.12 shows the output of a histogram-based skin color detector on several 
images. Also shown are visualizations of the skin and nonskin histograms, obtained by 
projecting the histograms along the green-magenta axis and displaying the isocontours 

† This is actually the nonlinear RrGrBr value, see Section 9.5.1 (p. 420); other color spaces could be used as well.
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(that is, the contours of equal probability). Notice that skin-colored pixels contain more red 
than blue, and non-skin-colored pixels are fairly evenly distributed along the line of grays. 
Also shown in the figure is the ROC curve for a histogram with 163 cells. Not only does the 
smaller histogram have the advantage of requiring less memory, but it actually outperforms 
the 2563 histogram (not shown) due to its better smoothing of the data.

12.3.2 Kernel Density Estimation (KDE)
In contrast to histograms, which discard all the data as the histogram is being constructed, 
memory-based learning methods (also known as lazy learning methods) do not process 
the training data at all but rather store them until a query comes in. The two most common 
forms of memory-based learning are kernel density estimation (KDE), which we consider 
in this section, and nearest neighbors, which is covered in the next section. Like histograms, 
both of these techniques are nonparametric.

Suppose we have a set of nj training data samples x1, c, xnj
[ Rd with a particular 

label vj. The approach of kernel density estimation places a kernel function at the center 
of each data sample, and the probability density of that label is then the normalized sum of 
all these kernel functions:

 p 1 x 0  vj 2 <
1
nj

 a
nj

i51

 

1
hd w ¢ x 2 xi

h
≤  (12.67)

where h is the bandwidth of the kernel w 1 # 2 , which is usually related to the number of 
data samples, e.g., h 5 h0/"nj, where h0 is a constant. The kernel function itself can 
be any symmetric, monotonically decreasing function from the origin, such as the box 

Figure 12.12 TOP-LEFT: Skin and non-skin color models, plotted as isocontours after projecting along the green-magenta axis. Note that 
skin color tends to feature more red than green or blue, while nonskin colors are fairly evenly distributed around the line of grays.  
TOP-RIGHT: ROC curve for the histogram-based skin color detector using 163 bins. Bottom: Results of the skin color detector on 
several images.
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window function or the isotropic Gaussian, with the latter being the most common: 
w 1 x 2 5 11 !2p 2 d exp 12 7x 72/2 2 , leading to

 p 1 x 0  vj 2 <
1
nj
a
nj

i51

11 h"2p 2 d
 exp¢2

7x 2 xi 7 2
2h2 ≤  (12.68)

Consider, for example, the 1D training set x1 5 2, x2 5 5, x3 5 8, x4 5 9, as shown in 
Figure 12.13. The probability density obtained by adding the individual kernel densities 
for the training samples, then normalizing to ensure that the density integrates to 1. When 
the variance of the kernel functions (or kernel densities) is small, then the resulting density 
closely follows each individual data sample, whereas when the variance is large, the result-
ing density smooths over individual data samples.

Kernel density estimation is also known as the Parzen window method. To derive the 
approach, let pv 1 x 0  vj 2  be the probability that a particular data sample x lands within a par-
ticular region R whose volume is v. If the true probability density p 1 x 0  vj 2  varies smoothly, 
and the region is small enough that the density can be considered approximately constant 
within the region, then we have

 pv 1 x 0  vj 2 5 2R   p 1 x r 0  vj 2 d x r < p 1 x 0  vj 2 v (12.69)

If nj is the number of data samples with label vj, then the expected number E 3kj 4 of samples 
within the volume is given by

 E 3kj 4 5 pv 1 x 0  vj 2 nj < p 1 x 0  vj 2 vnj (12.70)

Therefore, the probability peaks at pv 1 x 0  vj 2 5 kj /nj, so that if kj samples fall within the 
volume, then the probability density can be estimated by

 p 1 x 0  vj 2 <
kj

vnj
 (12.71)

If we let w be the box kernel function that returns 1 if x is inside the unit hypercube centered 
at the origin:

 w 1 x 2 ; e1 if 7x 7 ` # 1
2

0 otherwise
 (12.72)

Figure 12.13 Gaussian kernel 
density estimation of a 1D 
training set consisting of 4 
samples. The kernel densities 
(red curves) are centered at each 
data sample, while the overall 
density (blue curve) is obtained 
by summing the kernel densities, 
then normalizing. The width of 
the kernels has a significant effect 
on the result, with s2 5 0.5 (left) 
and s2 5 2 (right) shown.
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where 7x 7` is the maximum element in the vector, then the number of samples falling within 
a hypercube with length h is

 kj 5 a
nj

i51
 
w

 
¢ x 2 xi

h
≤  (12.73)

and the volume of the hypercube is v 5 hd. Substituting into Equation (12.71) yields

 p 1 x 0  vj 2 <
1
nj

 a
nj

i51

 

1
hd   w ¢ x 2 xi

h
≤  (12.74)

Equation (12.67) is then obtained from this equation by simply relaxing the constraint that 
w is the hypercube and instead allowing it to be any symmetric, monotonically decreasing 
function.

There is a close connection between Parzen windows and histograms. Let h refer to the 
width of a histogram bin along any particular dimension, and let bx refer to the center of the 
histogram bin into which x falls. Then the value of the bin associated with bx is the number 
of samples that fall within the bin: anj

i51
 w 1 1 x 2 bx 2 /h 2 , where w is the same hypercube 

as above. The normalized histogram approximates the density for x as follows:

 p 1 x 0  vj 2 <
1
nj

 a
nj

i51

 w ¢ x 2 bx

h
≤  (12.75)

The similarity between the two approaches should be apparent. In both cases, the samples 
that fall within scaled unit boxes are counted. The difference is that the centers of the boxes 
are fixed in a histogram, whereas the Parzen window boxes are centered at the data samples. 
Histograms perform some computation up front to quantize the data into fixed bins, after 
which evaluating the density requires a simple lookup. Parzen windows, on the other hand, 
simply store the raw data, but evaluating the density requires summing over all the stored 
data. The size of a histogram bin is related to the dimensionality of the space, whereas the 
size of the Parzen window representation is related to the number of data samples. Also, 
while the curse of dimensionality directly affects the size of the histogram, it only indirectly 
affects the Parzen window approach, because the number of samples needed grows expo-
nentially with the number of dimensions.

The normalization by hd in Equation (12.74) is necessary to ensure that the density inte-
grates to 1. Such normalization is not needed for the histogram because the total number 
of samples contained in all the histogram bins is n, no matter the value of h. But for Parzen 
windows, increasing h means increasing the number of samples counted.

Kernel density estimation, or Parzen windows, also bears a close relationship to locally 
weighted averaging (LWA). Let us redefine xi as a training data sample with label , 1 xi 2 , 
let n 5 n1 1 c1 nN be the total number of training data samples of all categories, and 
let d 1 a, b 2 5 1 if a 5 b or 0 if a 2 b. Then LWA is computed as

 p 1vj 
0
 
x 2 5

an

i51
expa2

7 x 2 xi 7 2
2 h2 b  d 1 , 1 xi 2 , vj 2

an

i51
 exp a2

ix 2 xi i2

2 h2 b  (12.76)

which is nearly identical to Equation (12.68), since the numerator is the same as the 
exp 1 # 2  expression in Equation (12.68), and the denominator simply ensures the proper 
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12.3 Generative Methods 587

normalization. Note, however, that Equation (12.68) is the class-conditional density, 
whereas Equation (12.76) is the posterior.

12.3.3 Nearest Neighbors
One of the simplest, and yet surprisingly powerful, classifiers is the nearest-neighbor 
(NN) classifier, which selects the category corresponding to the closest training sample:

 f 1 x 2 5 , 1 x î 2 ,  where  î 5 arg min
i

 7x 2 xi 7  (12.77)

where , 1 x î 2  is the label assigned to data sample x î , and x î  is the nearest neighbor of 
the query x. Equation (12.77) is known as the nearest-neighbor rule. Like kernel density 
estimation, the nearest-neighbor classifier is a memory-based learning method because it 
involves storing all the training data, without any processing beforehand. It is also called a 
1-nearest-neighbor classifier, since it relies upon a single training sample.

More generally, k-nearest neighbors (kNN) implements the k-nearest-neighbor rule, 
which selects the category associated with the majority of the k closest neighbors to the query, 
thus achieving more robust results. Usually k is set so that k 5 k0"n, where k0 is a constant. 
This rule can be seen by applying Equation (12.71) and Bayes’ rule to compute the posterior:

p 1vj 
0
 
x 2 5

p 1 x 0  vj 2 p 1vj 2
p 1 x 2 5

p 1 x 0  vj 2 p 1vj 2
aN

jr51
  p 1 x 0  vjr 2 p 1vjr 2 <

k j

vn j 
#  nj

n1 k1 1 c1 kN 2  
#  1

vn

5
kj 

#  1
vn

k #  1
vn

5
kj

k
 (12.78)

where k is the number of samples of any label within the volume v. From this equation we 
see that the a posteriori probability of vj is simply the fraction of samples with that label. 
Therefore the minimum error rate is achieved by selecting the category that appears most 
frequently. A natural extension is to assign weights to the samples, for example using the 
inverse distance to the query, to allow some samples to vote more than others.

There is a close connection between k-nearest neighbors and the Parzen window method, 
both of which are nonparametric approaches. With Parzen windows, the bandwidth of the 
kernel (and therefore the volume v) is fixed for a given n, so that the number of data samples 
used to estimate the density varies throughout the feature space depending on the local den-
sity of the data samples. In contrast, with kNN, the number of data samples is fixed for a given 
n, and the kernel bandwidth (and therefore the volume v) varies throughout the feature space 
depending on the local density of the data samples. In either case, as n goes to infinity, the 
volume becomes infinitesimally small and yet contains an infinite number of samples. There-
fore, kNN is able to approach the Bayes error rate. In fact, as n approaches infinity, it can be 
shown that the error rate of even 1-NN is no worse than twice that of the Bayesian classifier.

The training samples are known as prototypes. In effect, NN and kNN compare the 
query x with all the prototypes, using the nearest prototype(s) to determine the category of x. 
Prototypes have been a popular approach to classification since the early days of computer 
vision. This is done by performing template matching (such as cross-correlation) to a set 
of 2D templates of the objects of interest in order to determine the proper category. Studies 
have shown that the human visual system uses a similar approach—for example, to clas-
sify colors by comparing with a small set of prototype colors called focal colors, which 
are largely language- and culture-independent. Such prototypes are far more effective than 
colors along the decision boundaries. The prototypes cause a Voronoi tesselation of the 
feature space, where all the feature values that are closest to a particular prototype are within 
the cell carved by that prototype, as shown in Figure 12.14. As the query moves across 
boundaries in the Voronoi tesselation, the set of nearest neighbors changes, thus causing 
discontinuities in the slope of the density.
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Drawbacks to nearest neighbor approaches include the large amount of memory needed 
to store the training data, as well as the computational complexity of comparing a query to 
all the training data. The basic algorithm is to simply perform a linear search through all the 
samples in the training data, comparing the query with each one. Three general approaches 
have been invented to reduce the burden of nearest neighbors. In the first approach, called 
partial distance, the difference between the query and each training sample is computed 
using only some of the dimensions, and if the distance exceeds a certain value, it is dis-
carded. In the second approach, called space partitioning, a search tree such as a k-d tree 
is used to speed up the search. Finally, the training set can be pruned by removing samples 
whose nearest neighbors (i.e., adjacent cells in the Voronoi tesselation) are all of the same 
category, since such samples are far from the decision boundaries.

12.3.4 Naive Bayes
As mentioned earlier, the curse of dimensionality makes it impossible to use histograms 
for higher dimensional feature spaces. As a rule of thumb, anything beyond 3D is difficult 
to model with histograms, and anything beyond 5D is impossible. Such a large histogram 
would not only require too much memory, but also the table lookup would be extremely 
slow due to caching issues. Moreover, with high dimensionality, it is difficult to get enough 
training data, so that most of the bins in a large histogram will be zero, thus making a 
poor representation of the underlying distribution. In one study,† over a billion pixels were 
examined from images obtained via a web search crawl, and over 77% of the possible RGB 
colors were never encountered. That is a lot of zeros.

One trick for using histograms to model distributions in high dimensional feature spaces 
is to assume independence among the different elements of the feature vector. That is, if we 
let x1i2 be the ith element in the feature vector, so that x 5 3x112 x122 c x1d2 4T, then 
this assumption can be written as

 p 1 x 0  vj 2 5 p 1 x112, x122, c, x1d2  0  vj 2 5 qd

i51
p 1 x1i2  0  vj 2  (12.79)

This approach, known as Naive Bayes, in effect projects the d-dimensional distribution 
onto d separate axes, yielding d 1D distributions. As a result, the original d-dimensional 
histogram is replaced by d 1D histograms. Since multiplying small probabilities can lead 
to numerical instabilities, it is usually better to work with log likelihoods, which converts 
the multiplications into summations:

 log p 1 x 0  vj 2 5 log qd

i51
p 1 x1i2  0  vj 2 5 a

d

i51

 log p 1 x1i2  0  vj 2  (12.80)

Figure 12.15 shows the results of a well-known Naive Bayes classifier for detecting faces 
despite their orientation (that is, whether they are facing the camera or sideways).

† The results of the study are shown in Figure 12.12.

Figure 12.14 Nearest neighbors assigns each 
possible feature to its nearest prototype, which 
can be represented by a Voronoi tesselation 
of the feature space. In this 2D example, the 
prototypes are the small red dots, while the 
Voronoi tesselation is the set of blue lines.
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12.3 Generative Methods 589

12.3.5 Principal Components Analysis (PCA)
We come now to an important principle known as dimensionality reduction. According 
to the curse of dimensionality, it is undesirable to have too many dimensions in the feature 
space because of the additional memory required, the extra computation needed, the large 
number of training samples required, and the decrease in performance. It is therefore impor-
tant to be able to distinguish the important dimensions from the less important dimensions, 
and then to discard the latter if possible.

A popular approach to dimensionality reduction is principal components analysis (PCA). 
The basic idea behind PCA is to approximate the data with a multivariate Gaussian, then 
use the variances of the Gaussian along the different dimensions to determine the impor-
tance of those dimensions, discarding the dimensions with low variance. Recall from our 
earlier discussion of the best-fitting ellipse† that the covariance matrix rotates the feature 
space so as to best align the data with the new axes, and that the square root of the eigen-
values of the covariance matrix are proportional to the length of the axes of the Gaussian. 
Therefore, the eigenvalues indicate which dimensions should be kept and which can be 
discarded. PCA uses this same procedure of orthogonalization that we saw earlier, combined 
with a dimensionality reduction step based on this observation regarding the eigenvalues.

The details of PCA are as follows. Suppose we have a set of n points in a d-dimensional 
space: xi [ Rd, i 5 1, c, n. The mean vector and covariance matrix are computed, 
respectively, as the average of the points and the normalized outer product of the centered 
points:‡

  m 5  E 3x 4 5
1
n a

n

i51

xi  (12.81)

  C 5  E 3 1 x 2 m 2 1 x 2 m 2T 4 5
1
n

 a
n

i51

 1 xi 2 m 2 1 xi 2 m 2T 5
1
n

 AAT (12.82)

where E 3 # 4 is the expectation, and A is defined as

 A ; 3x1 x2
c xn 4 2 m1 5n316T  (12.83)

where 1 5n316 is a vector of n 1s.

† Section 4.4.4 (p. 179) and Section 4.4.5 (p. 182)
‡ Sometimes you will see the normalization of the covariance matrix to be 1

n 2 1 instead of 1n. Called Bessel’s correction, 
this approach is technically required to yield an unbiased estimate of the underlying distribution from which the 
sample points 1 xi, yi 2  are drawn. However, understanding this distinction is beyond the scope of this book, and 
thankfully, for any reasonably sized data set (e.g., n $ 100), the difference between the two definitions is negligible.

Figure 12.15 Results of a view-invariant face detector using a Naive Bayes classifier with wavelet features.
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590 Chapter 12 • Classification

Since C is real and symmetric, its eigenvalues are real, and its eigenvectors are mutu-
ally orthonormal. Let v1, c, vd be the eigenvectors, and l1, c, ld the corresponding 
eigenvalues, which for convenience are sorted in decreasing order: l1 $ l2 $ c$ ld. 
Recall from the definition of eigenvector that Cvi 5 livi for all i 5 1, c, d. Stacking the 
eigenvectors into a matrix P 5 3v1

c vd 4 and the eigenvalues into a diagonal matrix 
L 5 diag 1l1, c, ld 2  thus yields the equation CP 5 PL, as we saw in Equation (4.141). 
Since P is an orthogonal matrix, P21 5 PT, and therefore we can factor the covariance 
matrix into the product of a diagonal matrix and two orthogonal matrices: C 5 PLPT.

Now let us define the following orthogonal transformation of the data:

 x r ; PT 1 x 2 m 2  (12.84)

with the inverse transform:

 x 5 P x r 1 m (12.85)

where both x [ Rd and x r [ Rd. It is easy to show that the mean of x r is zero and the 
covariance matrix of x r is diagonal:

 m xr 5
1
n

 a
n

i51

 yi 5
1
n

 a
n

i51

 PT 1 xi 2 m 2 5 PT ¢ 1
n

 a
n

i51

 xi 2
1
n

 a
n

i51

 m≤ 5 PT 1m 2 m 2 5 05d316 (12.86)

 Cxr 5
1
n

 a
n

i51

 yiyi
T 5 PT B1

n
 a

n

i51

 1 xi 2 m 2 1 xi 2 m 2TR  P 5 PTCP 5 L (12.87)

where 05d316 is a vector of d zeros.
Since the covariance matrix of x r is diagonal, the transformed data are uncorrelated along 

the new axes. In other words, the orthogonalization step of PCA above approximates the 
data with a multivariate Gaussian so that the eigenvectors are aligned with the axes of the 
hyperellipsoid captured by the Gaussian. Meanwhile, the eigenvalues capture the variances 
of the Gaussian along the different axes. Therefore, if li is small, the data do not deviate 
significantly from the ith axis, in which case the ith element in x r is not very important for 
the purpose of faithfully recreating the original data. The total variance in the data is given 

by the sum of the variances of C, which is equivalent to the sum of the eigenvalues: ad

i51
li. 

The fraction of the total variance captured by the first k elements of x r, then, is given by

 captured variance 1 k 2 5
ak

i51
li

ad

i51
li

 (12.88)

To determine the number of dimensions to keep, a number of approaches can be used, such 
as looking for the “knee” in the plot of eigenvalues (the so-called scree test), or the Kaiser 
criterion (which retains only dimensions whose eigenvalue is greater than 1).

Let Pk be the first k columns of P, so that Pk contains the first k eigenvectors of C, where 
k , d. Then the following transformation can be defined:

 a ; Pk
T 1 x 2 m 2  (12.89)

and the inverse transform:

 x < Pk 
a 1 m (12.90)

where a [ Rk is a k-dimensional vector. These equations are similar to Equations (12.84) 
and (12.85), except that information has been lost due to the data reduction from Rd to Rk,  
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12.3 Generative Methods 591

so that the inverse transformation only approximates the original point. As long as k is 
chosen so that the fraction of the variance captured—given by Equation (12.88)—is 
sufficiently large, the information in the d-dimensional point x is well approximated by the 
k-dimensional point a. For typical data sets, 95% or so of the variance can be captured with 
just a few eigenvalues, thus saving orders of magnitude storage and computation, as well 
as facilitating less sensitivity to noise.

One classic use of PCA is the point distribution model (PDM), which captures the statisti-
cal variation in shape among the training set. Consider a 2D shape described by m points. Stack-
ing the (x,y) coordinates together into a vector, the shape can be described by a d-dimensional 
vector, where d 5 2m. Each instance of the shape is then a point in a d-dimensional space, and 
all the n training samples can be compactly stored in the d 3 n centered matrix A defined in 
Equation (12.83). Figure 12.17 shows the PDM of a database of 18 hand shapes, each of which 
contains m 5 72 points. As a preliminary step, all the shapes are first aligned so that their mean 

Figure 12.16 LEFT: The first step of principal 
components analysis (PCA) fits a multivariate 
Gaussian to data, which effectively aligns the 
coordinate axes with the principal axes of the 
data. RIGHT: The second step of PCA reduces the 
dimensionality of the space by discarding the 
dimensions with the least variance. In this toy 
example, all the points lie in a 2D subspace (flat 
disk) of the 3D space, and thus the third dimension 
is not needed once the axes are aligned.
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Figure 12.17 Point distribution model of a hand shape database. TOP: 10 of 18 training shapes. MIDDLE: From left to right: The mean 
shape, a scatter plot of the point coordinates from the training images overlaid on the mean shape (only every 3rd point is shown, 
pseudocolored), and a plot of the sorted eigenvalues (blue) and captured variance (red). Note that most of the variance is capture by the 
first few eigenvectors. BOTTOM: The effects of the first four eigenvectors. Shown is m 6 2sivi (in black, red, and green, respectively) for 
i 5 1, c, 4, where si 5 "li.
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is at the origin, that is, am

k51
 xi

1k2 5 052316 for all i 5 1, c, n, where xi
1k2 is the kth point in 

the ith shape. Then the mean shape is computed according to Equation (12.81), and the covari-
ance matrix is computed using Equation (12.82). On this dataset the first 5 eigenvalues capture 
96% of the variance of the data, computed using Equation (12.88). The different eigenvectors 
capture the correlated wiggling of the different fingers.

Another classic application of PCA is to operate on the gray levels of images of faces, 
where the reshaped eigenvectors are known as eigenfaces. Although this technique is not 
effective enough to be used in practice, it has been widely influential in the field and there-
fore warrants our attention. Recall from an earlier discussion† that an image can be viewed 
as a vector. That is, the columns of the image can be stacked on top of one another to form 
a vertical vector, so that a w 3 h image is viewed as a point in a wh-dimensional space. 
Figure 12.18 shows 10 training face images, each of size 160 3 200, which have been 
shifted and scaled so as to align the major facial features as well as possible. Each image is 
therefore a point in a 160 #  200 5 32000-dimensional space, which is quite large indeed. 
Applying the procedure above to this dataset, the reshaped eigenvectors show the principal 
directions of variations of human faces.

The columns of P, which is d 3 d, form an orthonormal basis that spans the original 
d-dimensional space. Similarly, the columns of Pk, which is d 3 k, form an orthonormal 
basis that spans the k-dimensional subspace. Combining Equations (12.89) and (12.90) 
yields an expression for the closest point in the subspace to any query point x:

 xclosest < Pk 1Pk
T 1 x 2 m 2 2 1 m (12.91)

where the extra parentheses ensure that the enormous multiplication Pk 
Pk

T (which in our 
case would be 32000 3 32000) never occurs. Figure 12.19 shows the closest image in the 
subspace to a masked face image that simulates occlusion (this face was not part of the 
training database).

Similarly, given current data x, Equation (12.89) can be used to compute the best model 
parameters to explain the data; then given an estimated change dx (determined by measur-
ing image properties) in the data, the best change da in parameters that explains the data is

 da 5 Pk
Tdx (12.92)

† Section 1.4.3 (p. 13)

Figure 12.18 TOP: 10 training images of faces. BOTTOM: Mean face, and top 4 eigenfaces, which together capture 75% of the total variance.
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12.3 Generative Methods 593

which can be shown from Equation (12.90):

  x 1 dx <  Pk 1 a 1 da 2 1 m (12.93)

  dx <  Pk 
da  (12.94)

where Equation (12.92) is the least-squares result of solving Equation (12.94). The param-
eters should always remain within a hyperellipsoid bounded by 62.5si (for 98.76% 
confidence) in each direction, where si"li. Therefore, after computing the change in 
parameters using Equation (12.92), any element of the parameter that is outside this hyper-
ellipsoid should be adjusted accordingly.

This latter procedure is used by active shape models (ASMs), which can be thought of 
as an extension to the active contour model we saw earlier.† During training, a PDM is used 
to construct a flexible model of the shape of an object. Then, given an initial estimate for 
the shape and pose parameters describing the object’s appearance in an image, those param-
eters are updated in a simple iterative procedure in which the pose (usually translation, 
rotation, and scale) is updated using Procrustes analysis‡ to best align the currently estimated 
shape with the model shape. Afterward, the shift in point coordinates 1dx 2  is computed by 
searching for strong intensity gradients along rays perpendicular to the contour, then this 
shift is converted into a change in shape parameters using Equation (12.92). An extension 
is to learn a combined shape and graylevel appearance model (which effectively combines 
the ideas of PDMs and eigenfaces) to jointly search for pose, shape variation, and graylevel 
variation to fit the model to an image. This technique, known as active appearance 
models (AAMs), has been used to model faces across variations in identity, expression, and 
pose, as shown in Figure 12.20.

† Section 10.2.1 (p. 453).
‡ Section 11.3.1 (p. 533).

Figure 12.19 LEFT: A face image not in the 
training database, with some pixels altered 
to simulate occlusion. RIGHT: Projection of the 
image onto the subspace spanned by the 4 
most significant eigenfaces.

Figure 12.20 An active appearance model (AAM) uses PCA to capture the variations in a joint shape-appearance space. On the left is the 
result of fitting an AAM to a face image. In the middle and right are the effects of the top four eigenvectors, with the mean displayed in 
the middle of each triplet.
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One detail remains. Sometimes the covariance matrix C is too large for the eigenvalues 
and eigenvectors to be computed in any reasonable amount of time, or even at all. (In the 
eigenface example above, it is 32000 3 32000.) From linear algebra we know that the rank 
of the sum of two matrices is no greater than the sum of their ranks. That is, if A and B are 
matrices, then rank 1A 1 B 2 # rank 1A 2 1 rank 1B 2 . As a result, since each outer prod-
uct in Equation (12.82) has rank 1, the rank of C is bounded by rank 1C 2 # max 1 n, d 2 . 
If n , d, as in our example here (where n 5 10 and d 5 32000), then the rank of C is 
no greater than n. Therefore, instead of computing the eigenvectors of the d 3 d matrix 
C 5 1

n AAT, we can compute the eigenvectors of the much smaller n 3 n normalized 
Gramian C~ ; 1

n ATA. Then, each of the n eigenvectors of the original matrix C is given 
by vi 5 Av~i, where v~i is the ith eigenvector of C~ , which is easily seen by starting with the 
eigenvector definition:

 

1
n

 ATA
(')'*

C~

v~i 5  l~iv~i 

 (12.95)

and premultiplying by A:

 

1
n

 AAT

(')'*
C

Av~i()*
vi

5 l~ i

 

Av~i()*
vi  (12.96)

Note that the resulting vectors need to be normalized to ensure that they are proper unit-norm 
eigenvectors.

12.4 Discriminative Methods
An alternative to explicitly modeling the probability distributions (as in the generative 
methods described in the previous section) is to learn the decision boundaries directly. After 
all, since the decision boundaries are what govern the accuracy of the classifier, it makes 
sense to focus our attention primarily upon these decision boundaries. As discussed earlier, 
algorithms that do this are known as discriminative methods. In this section we describe 
several of the more popular discriminative approaches to supervised learning.

12.4.1 Linear Discriminant Functions
Discriminant functions are used to indicate how well a data point matches a particular 
category. An important special case of the discriminative approach occurs when the dis-
criminant function is linear, in which case the function is given by the equation

 gi 1 x 2 5 wi
Tx 1 bi (12.97)

where x [ Rd is a point in the feature space. Although at first glance linear discriminant 
functions may appear too restrictive for real applications, in fact they are worth studying 
in detail because they are capable of modeling arbitrarily complex decision boundaries 
through one of two clever extensions. One of these extensions (known as the kernel trick) 
leads to support vector machines (SVMs), while the other (combining multiple discriminant 
functions), leads to artificial neural networks (ANNs)—both of which are some of the most 
powerful classifiers on the market today.
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To simplify the discussion, we shall focus on the case when the classifier is a dichoto-
mizer (i.e., there are just two categories), so that the discriminant function is given by

 g 1 x 2 ; g1 1 x 2 2 g2 1 x 2 5 wTx 1 b (12.98)

which yields the following decision boundary:

 wTx 1 b 5 0 (12.99)

which describes a hyperplane in Rd parameterized by the vector w ; w1 2 w2 [ Rd and 
scalar b ; b1 2 b2 [ R. The value b is called the bias.

It is easy to see that the vector w is orthogonal (perpendicular) to the hyperplane. If we 
let x1 and x2 be two points on the hyperplane, then wTx1 1 b 5 wTx2 1 b 5 0, which 
leads to wT 1 x1 2 x2 2 5 0. This means that w is orthogonal to the vector x1 2 x2, and since 
the latter is in the hyperplane, it proves that w is orthogonal to the hyperplane. Similarly, it 
is easy to see that if 7w 7 5 1, then 0b 0  is the distance from the origin to the hyperplane. If 
we let a be the unknown distance, and if 7w 7 5 1, then x 5 aw or x 5 2aw (depending 
upon the orientation of w) is the intersection of the ray along w with the hyperplane. This 
point must lie on the hyperplane, so from Equation (12.99) we have 6awTw 1 b 5 0, or 
6a 7w 72 1 b 5 0, or a 5 0b 0 .

To better understand these parameters graphically, consider Figure 12.21, which illus-
trates a 2D linear discriminant function 1 d 5 2 2 . Since Equation (12.99) is homogeneous, 
the hyperplane does not change when w and b are multiplied by the same nonzero scalar 
constant. Nevertheless, although the scale of w is not important for defining the decision 
boundary (hyperplane), it is important for defining the discriminant function. We adopt the 
convention that w and b are both multiplied by 21 if necessary so that w always points 
toward the positive training samples. When w is oriented in this manner (and 7w 7 5 1), it can 
be shown that the distance traveled along w from the origin to reach the hyperplane is 2b. 
As a result, if w points toward the hyperplane (as in the left side of the figure), then b , 0, 
whereas if w points away from the hyperplane (as in the right side of the figure), then b . 0.

Because scaling is arbitrary, it might seem natural to adopt the convention that 7w 7 5 1, 
which we could do without loss of generality. However, we will not impose this constraint, 
because in the discussion below w is manipulated in various calculations, so that oftentimes 
the vector will not necessarily have unit norm. Instead, we will explicitly write w/ 7w 7  when 
we want to indicate the unit norm vector. If we let d 1 x 2  be the signed distance from the 
point x to the hyperplane, it is easy to see that

 d 1 x 2 ;
wTx 1 b

iwi
5

g 1 x 27w 7           1 signed distance 2  (12.100)

Figure 12.21 With our 
convention for a linear 
discriminant function, the 
vector w points from the 
origin toward the positive 
side of the space. LEFT: The 
vector w points toward 
the decision boundary, so 
b , 0. RIGHT: The vector 
w points away from the 
decision boundary,  
so b . 0.
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To derive this equation, let x r be an arbitrary point in the hyperplane. Then the vector x 2 x r 
points from x to the hyperplane, and therefore the projection of this vector onto the unit 
vector w/ 7w 7  yields the signed distance: wT 1 x 2 x r 2 / 7w 7 . Now, for any point x r in the 
hyperplane, we have wTx r 5 2b from Equation (12.99). Therefore, the signed distance is 1wTx 2 wTx r 2 / 7w 7 5 1wTx 1 b 2 / 7w 7 .

12.4.2 Fisher’s Linear Discriminant (FLD)
Discriminant function analysis (DFA) is concerned with determining which continuous 
variables discriminate between discrete categories. One of the most widely used approaches 
to DFA is known as Fisher’s linear discriminant (FLD), which is a technique for learning 
the best linear discriminant function as in Equation (12.98). Suppose we have n data sam-
ples, x1, c, xn [ D ( Rd, and two categories v1 and v2. Let the subset D1 ( D contain 
n1 samples labeled v1, while the subset D2 ( D contains n2 samples labeled v2, where 
n1 1 n2 5 n, and D 5 D1 h D2 and D1 x D2 5 0. Our goal is to find the vector w so 
that the projection of x onto w separates the categories well. Let us define this projection as 
y 5 wTx, where y [ Y ( R, and Y 5 Y1 h Y2 and Y1 x Y2 5 0. After w is determined, 
a value for the bias b is selected so as to yield an effective classifier.

Let the sample mean of the jth category, j 5 1, 2, be defined as

 mj ;
1
nj

 a
x[Dj

x (12.101)

and let the projected sample mean be

 m~ j ;
1
nj

 a
y[Yj

y 5
1
nj

 a
y[Yj

wTx 5 wTmj (12.102)

which is simply a projection of the sample mean. Also define the scatter to be

 s~j
2 ; a

y[Yj

1 y 2 m~ j 2 2 (12.103)

which is just nj times the variance, and define the total within-class scatter as s~ ; s~1
2 1 s~2

2.
Now the distance between the projected sample means is given by

 0m~1 2 m~2 0 5 7wT 1m1 2 m2 2 7  (12.104)

We want this distance to be large relative to the standard deviation of each class. In other 
words, Fisher’s linear discriminant chooses w so as to maximize

 j 1w 2 ;
0m~1 2 m~2 0
s~1

2 1 s~2
2  (12.105)

To derive the computation needed to maximize this quantity, let us define the scatter 
matrix of the jth category as

 Sj ; a
x[Dj

1 x 2 mj 2 1 x 2 mj 2T (12.106)

and define the within-class scatter matrix as Sw ; S1 1 S2. Then, from Equation (12.103),

 s~j
2 5 a

x[Dj

1wTx 2 wTmj 2 2 5 a
x[Dj

wT 1 x 2 mj 2 1 x 2 mj 2Tw 5 wTSj w (12.107)
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and therefore, s~2 5 s~1
2 1 s~2

2 5 wTSww. Similarly,1m~1 2 m~2 2 2 5 1wTm1 2 wTm2 2 2 5 wT 1m1 2 m2 2 1m1 2 m2 2Tw 5 wTSBw (12.108)

where SB ; 1m1 2 m2 2 1m1 2 m2 2T is the between-class scatter matrix. Substituting 
Equations (12.107) and (12.108) into Equation (12.105) yields

 j 1w 2 5
wTSBw

wTSww
 (12.109)

As we saw earlier,† this is a generalized Rayleigh quotient, and the vector w that maximizes 
j 1w 2  satisfies the following generalized eigenvalue problem:

 SBw 5 lSww (12.110)

which has just one solution since the rank of SB is 1. Assuming there are more training 
samples than there are dimensions in the feature space, that is, n . d, and assuming the 
data are not degenerate, then Sw is nonsingular, in which case we have

 Sw
21SBw 5 lw (12.111)

Substituting the definition of SB yields

 
Sw

21 1m1 2 m2 2
 

1m1 2 m2 2Tw('')''*
scalar

5 lw
 

 (12.112)

Recognizing that the inner product is a scalar leads to the conclusion that w is parallel to 
Sw

21 1m1 2 m2 2 :
 w ~ Sw

21 1m1 2 m2 2  (12.113)

Therefore, to get a unit vector, set

 w 5
Sw

21 1m1 2 m2 27Sw
21 1m1 2 m2 2 7  (12.114)

Selecting an appropriate bias depends on the variances of the projected data, as well as on 
the loss function. If the variances are equal, then with the zero-one loss function simply set 
b to the point halfway between the projected sample means:

 b 5 2
1
2

 wT 1m1 1 m2 2  (12.115)

where the negative sign arises from the convention mentioned above. The pseudocode for 
Fisher’s linear discriminant is provided in Algorithm 12.1.

12.4.3 Perceptrons
Historically, a linear classifier is also called a perceptron. Combining the linear discriminant 
function g 1 x 2 5 wTx 1 b in Equation (12.98) with the classifier f(x) in Equation (12.3), 
we see that a perceptron applies a linear combiner followed by a hard limiter (or threshold):

 y 5 f 1 x 2 5 h 1wTx 1 b 2  (12.116)

† Section 10.4.2 (p. 495).

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



598 Chapter 12 • Classification

where y is the output of the perceptron, and the threshold (Heaviside) function is defined 
as h 1 z 2 5 1 if z $ 0, or 0 otherwise. Expanding the inner product, this equation can alter-
natively be written as

 y 5 h¢ ad

k51

 w1k2x1k2 1 b≤  (12.117)

where x ; 3x112 x122 c x1d2 4  T and w ; 3w112 w122 c w1d2 4  T. A single percep-
tron is illustrated in Figure 12.22.

The perceptron learning algorithm is straightforward. Let yi be the ground truth 
binary label of the ith data point in the training set. If the ith point is a positive training 
sample, then yi 5 11, and the signed distance from the point to the decision boundary 

ALGORITHM 12.1 Compute Fisher’s linear discriminant on a set of binary labeled data

FisherLinearDiscriminant 1 5 1 xi, yi 2 6 i51
n 2

Input: set of n labeled data points 5 1 xi, yi 2 6  i51
n , where

 xi [ Rd is the ith data point
 yi [ 521, 116 is the binary label of the ith data point, so that
 xi [ D1 if yi 5 11, or xi [ D2 if yi 5 21.
Output: parameters w and b of a linear discriminant function to separate the data

1 m1 d aax[D1
 xb / 0D1 0   ➤ Compute sample means using Equation (12.101),

2 m2 d aax[D2
 xb / 0D2 0   where 0Di 0  is the cardinality of the i 

th set.

3 S1 d ax[D1

1 x 2 m1 2 1 x 2 m1 2T ➤ Compute the scatter matrices using Equation (12.106).

4 S2 d ax[D2

1 x 2 m2 2 1 x 2 m2 2T 

5 Sw d S1 1 S2  ➤ Compute the within-class scatter matrix.
6 w d Sw

21 1m1 2 m2 2   ➤ Compute the vector w using Equation (12.109).
7 w d w/ 7w 7  
8 b d 21

2 wT 1m1 1 m2 2   ➤ Set b to be halfway between the projected means (or some other suitable value).
9 return w, b

Figure 12.22 A single perceptron multiplies 
the individual elements of the input vector 
with the individual weights, adds the 
bias, then applies the threshold function: 
y 5 h 1w112x112 1 w122x122 1 c1 w1d2x1d2 1 b 2 .

y

w(1)

x(1) x(2) x(d)

w(d)w(2) b

1...
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should be positive; whereas if the point is a negative training sample, then yi 5 21, and 
the signed distance from the point to the decision boundary should be negative. Therefore, 
if we let di be this signed distance, then the ith point is misclassified if yi and di have differ-
ent signs, which is captured mathematically by yi  

di , 0. Applying the formula for signed 
distance in Equation (12.100), the ith point is misclassified if

 
yi 1wTxi 1 b 27w 7 , 0 (12.118)

which, since the denominator is guaranteed to be positive, is equivalent to the test

 yi 1wTxi 1 b 2 , 0 (12.119)

The perceptron learning algorithm iterates through the training samples, and for each 
misclassified sample xi, the hyperplane parameters are updated as follows:

  w1k112 5  w1k2 1 yixi (12.120)

  b1k112 5  b1k2 1 yi  (12.121)

where k is the iteration number. In other words, in the case of a positive training sample 1 yi 5 11 2 , then x is added to w, and b is incremented by 1; in the case of a negative training 
sample 1 yi 5 21 2 , then x is subtracted from w, and b is decremented by 1. It can be shown 
that, if the data are linearly separable, this simple algorithm is guaranteed to converge in a 
finite number of steps to a decision boundary that separates the two categories. Each itera-
tion effectively updates the extended vector w~ ; 3wT b 4T by rotating it either toward or 
away from the extended input sample x~ ; 3xi

T 1 4T to increase the value of yiw~T
 x~i in Equa-

tion (12.119). Somewhat miraculously, the amount by which the vector w changes each time 
(the learning rate) decreases automatically with each iteration, thus causing convergence.

Although the perceptron learning algorithm is guaranteed to converge (if the data are 
linearly separable), there is no bound on the number of iterations required. One way to 
accelerate convergence is to weight each update by the amount of the error:

  w1k112 5  w1k2 1 ai 
yi 

xi (12.122)

  b1k112 5  b1k2 1 ai 
yi (12.123)

where ai ; 17 x~i 7 2 12yi 1 1w1k2 2Txi 1 b 2 1 P 2  is the learning rate, and P . 0 is a small 
positive number. Note that ai . 0. With this accelerated learning, it is easy to show that 
the ith sample is correctly classified after just one iteration, using the extended vector 
w~ 1k112 5 w~ 1k2 1 ai 

yi x~i. To simplify the notation let w~  stand for w~ 1k2: 
  yi 1w~ 1k112 2Tx~i 5  yi 1w~ 1 ai yi x~i 2T x~i  (12.124)

  5  yiw~Tx~i 1 yia 1
ix~ii2 12yiw~Tx~i 1 P 2 b  yix~i

Tx~i (12.125)

  5  yiw~Tx~i 2 yiw~Tx~i 1 P  (12.126)
  5  P  (12.127)

so that yi 1w~ 1k112 2Tx~i . 0, which means that the point is classified correctly after the update.
The pseudocode of the accelerated perceptron learning algorithm is shown in 

Algorithm 12.2. Although w and b can be initialized to anything, a reasonable choice is to 
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compute the mean of the two sample subsets D1 and D2, then set w to the difference between 
the means and b to the difference between the sizes of the subsets:

  winit 5  
10D1 0  ax[D1

 x 2
10D2 0  ax[D2

 x (12.128)

  binit 5  0D1 0 2 0D2 0  (12.129)

The algorithm converges when all input points have been classified correctly.
One drawback of the perceptron learning algorithm is that if the data are not linearly 

separable, then the algorithm is not guaranteed to converge to a meaningful solution. This 
problem is solved with the so-called pocket algorithm, which runs the perceptron learn-
ing algorithm but retains the best hyperplane parameters (as if kept in its pocket) so far. 
Eventually, when convergence has been determined (e.g., a specified number of iterations 
has not yet caused significant change in the parameters), the best parameters are returned. 
There are different ways to determine which parameters are best, but a simple approach is to 
count the number of consecutive iterations that have not encountered a misclassified sample. 
The pseudocode for the pocket algorithm is shown in Algorithm 12.3 where, for simplicity, 
we have not included the accelerated learning rate. Note that none of these algorithms is 
guaranteed to return the best classifier in any quantitative sense of the term because they 
only train on the misclassified samples. In the next section we will see a better way to find 
the best separating hyperplane.

12.4.4 Maximum-Margin Classifiers
Returning to the case of linearly separable data, the perceptron learning algorithm of the pre-
vious subsection is able to find a hyperplane to separate two categories of data, when such 
a separating hyperplane exists. However, it is not able to find the best hyperplane among all 

ALGORITHM 12.2 Perceptron learning algorithm (with accelerated learning rate)

PerceptronLearningAlgorithm 1 5 1 xi, yi 2 6  i51
n 2

Input: set of n labeled data points 5 1 xi, yi 2 6  i51
n

 xi [ Rd is the ith data point
 yi [ 521, 116 is the binary label of the ith data point
 xi [ D1 if yi 5 11, or xi [ D2 if yi 5 21.
Output: parameters w and b of a perceptron to separate the data (assuming the data are linearly separable)

 1  w d aax[D1
 xb / 0D1 0 2 aax[D2

 xb / 0D2 0   ➤ Initialize the parameters.

 2  b d 0D1 0 2 0D2 0
 3 while not converged do ➤ Until all points are correctly classified,
 4   Randomly shuffle data points 5 1 xi, yi 2 6i51

n  shuffle the points (optional).
 5   for i d 1 to n do ➤ For each data sample,
 6     if yi 1wTxi 1 b 2 , 0 then if the sample is misclassified, then
 7       ai d 12yi 1wTxi 1 b 2 1 P 2 / 1 7xi 72 1 1 2  determine the learning rate,
 8       w d w 1 ai yi xi and update the hyperplane
 9       b d b 1 ai yi parameters.
10 return w, b
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the possible separating hyperplanes. In this subsection we discuss the problem of finding 
the optimal separating hyperplane—that is, the one that maximizes the separation between 
the data samples in the two categories. This separation is known as the margin, and such an 
approach is therefore known as a maximum-margin classifier. The material in this subsec-
tion lays the groundwork for the support vector machines (SVMs) of the next subsection.

If a point xi is classified correctly, then similar to Equation (12.118) its distance (not 
signed distance) to the separating hyperplane is given by

 gi ; yi 
di 5

yi 1wTxi 1 b 27w 7 . 0 (12.130)

which is known as the geometric margin of the classifier with respect to the point xi 
labeled yi. The geometric margin of the classifier with respect to the set of labeled points 5 1 xi, yi 2 6  i51

n  is the minimum of the geometric margins of all the points:

 g ; min
i

 gi 5 min
i

 
yi 1wTxi 1 b 27w 7  (12.131)

However, we are not content to find just any separating hyperplane but instead want to find 
the optimal separating hyperplane. That is, we want to find the largest value g $ 0 such 
that, for each point xi, yidi . g. Obviously, the larger the value of g, the more separation 
between positive and negative data samples, and therefore the better the classifier because, 
assuming the training data is representative of the test data, there is reason to believe that 
the classifier will perform well on the test data. The value g is the geometric margin of the 
optimal classifier.

Finding the optimal separating hyperplane, then, involves finding w and b that maximize 
the geometric margin:

  max
w, b

    g  (12.132)

  subject to  
yi 1wTxi 1 b 27w 7 $ g   for all i 5 1, c, n (12.133)

Recall that w and b are unique only up to a positive scaling factor. That is, if we multiply 
both w and b by the same positive number, the separating hyperplane and geometric margin 

ALGORITHM 12.3 Pocket perceptron learning algorithm

PocketPerceptronLearningAlgorithm 1 5 1 xi, yi 2 6  i51
n 2

Input: set of n labeled data points
Output: parameters of perceptron that tries to separate data (even if not linearly separable)

1 Initialize w and b similar to before
2 h d 0 ➤ number of consecutive successfully tested vectors
3 while not converged do
4  Randomly shuffle data points 5 1 xi, yi 2 6  i51

n  ➤ (optional)
5  for i d 1 to n do
6   if yi 1wTxi 1 b 2 , 0 then w d w 1 yi xi, b d b 1 yi, h d 0
7   else h d11
8      if h . h
 then w
 d w, b
 d b
9 return w*, b*
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are not changed. As a result, we are free to set 7w 7  to whatever we want. For convenience let 
us set 7w 7 5 1/g, so that maximizing g is the same as minimizing 7w 7 , or equivalently min-
imizing 12 7w 72. The problem above is then changed into something more readily solvable:

  min
w, b

   
1
2

 7w 72  (12.134)

  subject to   yi 1wTxi 1 b 2 $ 1  for all i 5 1, c, n (12.135)

which is an optimization problem with a convex quadratic objective function and linear 
constraints, which can be solved using off-the-shelf quadratic programming software.

12.4.5 Support Vector Machine (SVM)
The support vector machine (SVM) is closely related to the maximum-margin classifier. 
Three extensions are necessary to derive the SVM from the approach in the previous sub-
section. First, the primal problem is transformed into a dual problem. Secondly, slackness 
variables are introduced to handle the case when the data are not linearly separable. Finally, 
the so-called kernel trick is used to transform the input data points to a new space where 
separability is more likely. Let us now consider these three extensions in turn.

Dual Approach to the Optimal Separating Hyperplane
According to the duality principle, optimization problems can be viewed from one of two 
perspectives. One of these is known as the primal problem, whereas the other is known 
as the dual problem. As shown below, solving the primal problem in Equations (12.134) 
and (12.136) is equivalent to solving the following dual problem:

  max
ai

   a
n

i51

 ai 2
1
2

 a
n

i51

 a
n

j51

 ai 
aj 

yi 
yj 

xi
Txj (12.136)

  subject to   ai $ 0   for all i 5 1, c, n (12.137)

  and   a
n

i51

 ai 
yi 5 0  (12.138)

Therefore, to find the maximum-margin separating hyperplane for training data that are 
linearly separable, simply solve Equations (12.136)–(12.138) for a1, c, an, then compute 
the normal vector as a weighted combination of the input vectors:

 w 5 a
n

i51

ai 
yi 

xi (12.139)

and the scalar bias as

 b 5
1
2

 ¢ min
x[D1

 wTx 1 max
x[D2

 wTx≤  (12.140)

Note from Equation (12.139) that input samples for which ai 5 0 have no influence over 
the hyperplane parameters; these are points that are so far from the hyperplane that they 
are easily classified correctly. The hyperplane normal is thus a linear combination only of 
the support vectors, which are the input samples for which ai . 0. If we let S be the set 
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of support vectors, then, after training the SVM, a query point x is classified as positive or 
negative according to the sign of its projection onto the hyperplane normal:

y 5 sgn 1wTx 1 b 2 5 sgn ¢ an

i51

 ai 
yi 

xTxi 1 b≤ 5 sgn ¢ a
xr[S

 ai 
yi 

xTx r 1 b≤  (12.141)

which is computationally efficient, since the number of support vectors is usually a small 
fraction of the training samples.

To derive the dual problem from the primal problem, we turn to the technique of 
Lagrange multipliers.† Suppose we want to minimize (or maximize) a function f (x) 
subject to the equality constraint g 1 x 2 5 0.‡ The key insight of the Lagrange multiplier 
approach is that, at the solution x*, the gradient vectors of the two functions are parallel: 
rf 1 x
 2 ~ rg 1 x
 2 , or rf 1 x
 2 1 lrg 1 x
 2 5 0 for some scalar l. While the proof of this 
statement can be found in any standard calculus text, we shall content ourselves here with 
an intuitive illustration. Suppose you are hiking on a hill, and your goal is to reach the high-
est elevation possible, but you are constrained to remain along a particular path carved out 
of the hillside. So you continue walking as long as your elevation is increasing, but once it 
stops increasing, you stop hiking as well. Let f(x) be the elevation function, and let g(x) be 
the implicit function whose zero level set defines the path. At the place where you stopped, 
the gradient rf  of the elevation function, which always points uphill, is orthogonal to the 
path; it does not have a component tangent to the path, otherwise you would have continued 
to hike along the path. Since the gradient rg of the path is always orthogonal to the path, 
the two vectors rf  and rg must be parallel to each other at the place you stopped hiking. 
Therefore, if the vectors are parallel, you are guaranteed to be at a local stationary point 
(either a maximum, minimum, or saddle point). As a result, the vectors being parallel is a 
necessary (but not sufficient) condition that the place where you are standing is the global 
extremum sought; whether it is actually the desired solution depends upon the shape of f.

Let us apply the technique of Lagrange multipliers to the following optimization problem:

  min   f 1 x 2  (12.142)

  subject to   gi 1 x 2 5 0  for all i 5 1, c, n (12.143)

where the min could be replaced by max, depending upon the shape of f. By similar reason-
ing to that above, in the case of multiple constraints, rf 1 x 2  is parallel to a linear combina-
tion of rg1 1 x 2 , c, rgn 1 x 2 . Therefore,

 rf 1 x 2 1 l1rg1 1 x 2 1 c1 lnrgn 1 x 2 5 rf 1 x 2 1 a
n

i51

lirgi 1 x 2 5 0 (12.144)

for some scalars l1, c, ln. To solve the optimization problem, then, we construct the 
Lagrangian (or Lagrange function):

 c 1 x 2 ; f 1 x 2 1 a
i

li 
gi 1 x 2  (12.145)

take derivatives, and set the result to zero:

 rc 1 x 2 5 rf 1 x 2 1 a
i

lirgi 1 x 2 5 0 (12.146)

† We encountered Lagrange multipliers in Section 11.1.3 (p. 516).
‡ The functions f and g in this subsection are not related to the classifier or discriminant functions.
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If x [ Rn, then this equation together with Equation (12.143) provide 2n equations for the 
2n unknowns of l1, c, ln and the n elements of x.

Lagrange multipliers can be generalized to also handle inequality constraints. Suppose 
we wish to optimize

  min   f 1 x 2  (12.147)

  subject to   gi 1 x 2 5 0   for all i 5 1, c, n (12.148)

  and   hj 1 x 2 # 0   for all j 5 1, c, n (12.149)

Similar to above, we define the Lagrangian as

 c 1 x 2 ; f 1 x 2 1 a
i

li 
gi 1 x 2 1 a

j

aj 
hj 1 x 2  (12.150)

where a1, c, an are scalars, and we set the derivatives to zero, as before, which yields 
3n equations in 3n unknowns. For this approach to work, the Karush-Kuhn-Tucker (KKT) 
conditions must be satisfied. While these conditions are too technical for our purposes, we 
will draw attention to two of the KKT conditions in particular:

  aj $  0  1 non-negativity, or dual feasibility 2  (12.151)

  aj 
hj 1 x
 2  5  0  1 complementary slackness 2  (12.152)

where the first condition is obvious, and the importance of the second condition will become 
apparent below.

Now let us apply this approach to the optimization problem in Equations (12.134)–
(12.135), which we rewrite as follows:

  min
w, b

   
1
2

 7w 72  (12.153)

  subject to   1 2 yi 1wTxi 1 b 2 # 0   for all i 5 1, c, n (12.154)

so that the objective function to be differentiated is given by

 c 1w, b 2 ;
1
2

 iwi2 1 a
n

i51

 ai 1 1 2 yi 1wTxi 1 b 2 2  (12.155)

Taking the derivatives yields

  
@ c 1w, b 2

@ w
 5  w 2 a

n

i51

 ai 
yi 

xi 5 0 (12.156)

  
@ c 1w, b 2

@ b
 5  2a

n

i51

 ai 
yi 5 0  (12.157)

Rearranging yields two important equations:

  w 5  a
n

i51

 ai 
yi 

xi (12.158)

  0 5  a
n

i51

 ai 
yi  (12.159)
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The first equation says that any solution to the optimization problem is a weighted sum of 
the input vectors, just as we saw regarding perceptrons in Equation (12.120), whereas the 
second equation says that the sum of the multipliers weighted by the ground truth labels is 
zero. Plugging Equation (12.158) into Equation (12.155) yields

  c 1w, b 2  5  
1
2

 wTw 1 a
n

i51

 ai 2 a
n

i51

 ai 
yi 

wTxi 2 a
n

i51

 ai 
yi 

b  (12.160)

  5  
1
2

 a
n

i51
a

n

j51

 ai 
aj 

yi 
yj  

xi
Txj 1 a

n

i51

 ai 2 a
n

i51
a

n

j51

 ai 
aj 

yi 
yj  

xi
Txj 2 a

n

i51

 ai 
yi 

b (12.161)

  5  2
1
2

 a
n

i51
a

n

j51

 ai 
aj 

yi 
yj  

xi
Txj 1 a

n

i51

 ai 2 ba
n

i51

 ai 
yi  (12.162)

  5  2
1
2

 a
n

i51
a

n

j51

 ai 
aj 

yi 
yj  

xi
Txj 1 a

n

i51

 ai  (12.163)

where Equation (12.159) is used in the final equation. Combining Equations (12.163), 
(12.151), and (12.159) yields the dual problem in Equations (12.136)–(12.138).

Ignoring the constraints in Equations (12.137)–(12.138), note that the dual problem in 
Equation (12.136) is convex in the unknown values for ai, i 5 1, c, n. As a result, the 
function c 1w, b 2  is a quadratic performance surface, which is easily seen by stacking these 
values into a vector a ; 3a1 a2

c an 4T:

 

 

c 1w, b 2 5 aT

 

 

C y1
2 x1

Tx1 y1 
y2 

x1
Tx2

c y1 
yn 

x1
Txn

( f (
y1 

yn 
x1

Txn y2 
yn 

x2
Txn

c yn
2 xn

Txn

S
('''''''')''''''''*

H
 

 

a 2 1 5n316T a

 

 

 

(12.164)

where 15n316 is a vector of n 1s. Taking the partial derivatives with respect to a, and setting 
the result to zero, yields Ha 5 15n316, or a 5 H2115n316, where H is the symmetric positive 
semidefinite matrix in the equation above. If there were no constraints, then we could simply 
solve the optimization problem in one step in this manner. With the constraints, however, it 
is more efficient to perform stochastic gradient descent, which is made easier by the fact that 
there are no local minima due to the convex shape of the function being minimized.

Introducing Slack Variables
For all interesting real-world situations, the data are not linearly separable, and therefore 
some data will be misclassified no matter where the hyperplane is located. As a result, 
Equation (12.154) will not hold for all data samples. To obtain a meaningful result in such a 
case, we introduce the slack variables ji, i 5 1, c, n, where ji 5 0 if the data sample xi 
is classified correctly, or ji . 0 if the sample is misclassified. Equations (12.153)–(12.154) 
are then modified to penalize the misclassifications, yielding the following primal problem:

  min
w, b, j

   
1
2

 iwi2 1 ca
n

i51

ji  (12.165)

  subject to   1 2 yi 1wTxi 1 b 2 # ji   for all i 5 1, c, n (12.166)

  and   ji $ 0   for all i 5 1, c, n  (12.167)
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where c is a constant that governs the misclassification penalty. Applying the Lagrange / 
KKT approach, this primal problem can be converted to the dual problem

  max
ai

   a
n

i51

 ai 2
1
2

 a
n

i51
a

n

j51

 ai 
aj 

yi 
yj  

xi
Txj  (12.168)

  subject to   0 # ai # c   for all i 5 1, c, n (12.169)

  and  a
n

i51

 ai 
yi 5 0  (12.170)

which is identical to Equations (12.136)–(12.138) except for the maximum constraint on 
the multipliers. As before, inputs for which ai 5 0 are classified correctly and have no 
influence over the outcome. But inputs for which ai 5 c are misclassified so badly that 
their influence on the outcome is bounded. From the complementary slackness condition 
of Equation (12.152), note that for each input either ai 5 0 (indicating that it is classified 
correctly) or the inequality in Equation (12.166) is an equality (so that the slackness variable 
indicates the amount of misclassification).

Kernel Trick
Given two vectors xi and xj, the Euclidean inner product between them is xi

Txj, which is a 
property of vectors in a Euclidean space, because the inner product measures angles between 
vectors. A curious fact of the SVM is that the data are never accessed by themselves but only 
by their inner products with each other. That is, if we were to compute all the inner products 
between the training samples and each other, as well as between the training samples and 
any future query, then the data themselves could be discarded completely, and the classifier 
would run unhindered. This fact can be seen for training in Equations (12.164) and (12.168), 
and it can be seen for runtime in Equation (12.141).

As a result, the Euclidean inner product can be replaced with any other suitable mapping 
without changing the SVM training or runtime algorithm at all. To define “suitable,” we 
turn to Mercer’s theorem, which requires the mapping K : Rd 3 Rd S R to be continuous, 
symmetric, and positive definite. Such a mapping is known as a Mercer kernel.† In practice, 
however, any mapping that captures the intuitive notion of similarity tends to work, and 
such a mapping is simply called a kernel. The kernel trick, therefore, refers to the fact that 
we can replace the Euclidean inner product xi

Txj between input vectors with a kernel 
K 1 xi, xj 2  applied to them. One of the more common kernels is the Gaussian kernel:

 K 1 xi, xj 2 5 expa2
1
2

  xi
TS21 xjb  (12.171)

where S is the covariance matrix of the multidimensional Gaussian, and the normalization 
factor is omitted because overall scaling is unimportant.

The power of the kernel trick is that a hyperplane in a high-dimensional space can 
represent arbitrary decision boundaries in a low-dimensional space if the dimension of 
the hyperplane is high enough. As a result, a kernel can be used to project the data into 
a high-dimensional space, then the SVM applies a linear decision boundary in this high-
dimensional space, with the result being identical to a complex decision boundary in the 
original input space. The Gaussian kernel, as it turns out, projects the input data to an 

† Mercer kernels generalize the notion of inner product and lead to a reproducing kernel Hilbert space. Similarly, 
any vector space with a suitable inner product defined is known as a Hilbert space, of which Euclidean is a special 
case.
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infinite-dimensional space, which makes it clear why SVMs are such powerful tools for 
classification.

One approach to training an SVM is to use stochastic gradient ascent, which updates 
one multiplier at a time. Another approach that has been widely adopted is the sequential 
minimal optimization (SMO) algorithm, which updates pairs of weights at a time. 
A simplified version of SMO is presented in Algorithm 12.4. Although this code is not 
sufficiently detailed for a real implementation, it should convey the basic flavor of the 
approach, thus making it easier to understand the full algorithm.

ALGORITHM 12.4 Simplified SMO algorithm for training an SVM

SimplifiedSMO 1 5 1 xi, yi 2 6  i51
n , c 2

Input: set of n labeled data points 5 1 xi, yi 2 6   i51
n

 xi [ Rd is the ith data point
 yi [ 521, 116 is the binary label of the i 

th data point
 weight c governing the misclassification penalty
Output: parameters w and b of the maximum-margin classifier

 1 ai d 0 for i 5 1, c, n
 2 b d 0
 3 while not converged do
 4   for i d 1 to n do

 5     di d aan

k51
 ak 

yk 
K 1 xi, xk 2 1 bb 2 yi

 6     if (di 
yi , 2P and ai , c) or (di 

yi . P and ai . 0) then
 7       Select j 2 i at random

 8       dj 5 aan

k51
 akykK 1 xj, xk 2 1 bb 2 yj

 9       if yi 5   5 yj then
10          vlow d max 1 0, ai 1 aj 2 c 2 ,  vhigh d min 1 c, ai 1 aj 2
11       else
12          vlow d max 1 0, aj 2 ai 2 ,  vhigh d min 1 c, c 1 aj 2 ai 2
13       h d 2K 1 xi, xj 2 2 K 1 xi, xi 2 2 K 1 xj, xj 2
14       ajr d max 1 vlow, min 1 vhigh, aj 2 yj 1 di 2 dj 2 /h 2 2
15       air d ai 1 yi 

yj 1aj 2 ajr 2
16       b1 d b 2 di 2 yi 1air 2 ai 2K 1 xi, xi 2 2 yj 1ajr 2 aj 2K 1 xi, xj 2
17       b2 d b 2 dj 2 yi 1air 2 ai 2K 1 xi, xj 2 2 yj 1ajr 2 aj 2K 1 xj, xj 2
18       if vlow 2 vhigh and h , 0 and 0aj 2 ajr 0 . P then
19          ai d air  aj d ajr

20          b d cb1 if 0 , ai , c
b2 if 0 , aj , c1 b1 1 b2 2 /2 otherwise

21 w d an

i51
aiyixi

22 return w, b
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SVMs, as with any learning technique, can take any type of feature vector as input. One 
approach that has achieved some popularity, known as bag of visual words, involves treat-
ing the image like a document, and treating image features like words. To classify a 
document, a common approach is to build a sparse histogram (bag of words) over a prede-
termined vocabulary of prototype words, or codewords, by letting the words in the document 
vote for the codewords. (The vocabulary is usually created by applying a technique like 
k-means† to a large training set to cluster the features into prototypes.) This histogram is 
then fed to a learning algorithm to determine the type of document. In a similar way, visual 
features can be extracted from the image, then mapped to a previously learned set of visual 
codewords, forming a sparse histogram over codewords. This histogram is then fed to an 
SVM or other learning algorithm.

12.4.6 Neural Networks
As we saw earlier, the decision boundary for a single perceptron is a hyperplane. Although 
this shape is sufficient when the data are linearly separable, in many real-world situations 
a more complex decision boundary is needed. For example, Figure 12.23 shows the classic 
example of the xor problem in which the data are not linearly separable, and therefore a 
perceptron will perform poorly. In the previous subsection we saw one way to overcome 
this limitation, namely to map the data to a higher-dimensional space in which the data are 
linearly separable, an approach known as the kernel trick. In this subsection we consider an 
alternate approach, namely to combine multiple perceptrons together into what is called an 
artificial neural network (ANN).

An artificial neural network, oftentimes just called a neural network, can be thought of 
as a biologically-inspired computational model, since it simulates the network of neurons in 
the brain. However, keep in mind that there are many details of how the brain works that are 
not included in such a model. For example, traditional neural networks ignore the temporal 
aspects of the biological signals.

Several different types of neural networks are possible, as shown in Figure 12.24, 
depending upon the types of connections between the perceptrons. The classic, traditional 
architecture (and the most common) is the feedforward neural network in which the 
information flows in a single direction from the input to the output. That is, if the per-
ceptrons are considered as nodes in a graph, with edges connecting the inputs of some 
perceptrons to the outputs of others, there are no cycles in such a network. The alternative 
to the feedforward network is the recurrent neural network, in which the output of some 

† Section 11.5.1 (p. 549).

Figure 12.23 In contrast to the AND and OR problems, which are linearly separable, the classic XOR problem is not linearly separable. Although 
hyperplanes (in this case lines) can be drawn to separate the data in the first two cases, no hyperplane performs well in the last case.
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perceptrons feeds back into the input of earlier perceptrons in the pipeline, thus creating 
cycles in the graph. Deep neural networks, which generally contain anywhere from 10 
to 30 layers or more, are undergoing a resurgence of interest in the research community, as 
they have been shown to be capable of achieving leading-edge results on many challenging 
problems. Finally, convolutional neural networks tie the weights of early perceptrons 
together, so that the early layers essentially learn to extract convolution-like features from 
the image. In practice, both deep and convolutional networks are typically feedforward 
networks, though this is not required.

The most common arrangement for a feedfoward network is the multilayer 
perceptron (MLP), in which the perceptrons are organized in a sequence of layers, as shown 
in the figure. The input layer, which is not shown, simply passes the inputs through, while 
the output layer yields the final result; the remaining layers are known as hidden layers. 
It can be proved that, just as a support vector machine with the kernel trick is capable in 
theory of separating any data set, a fully-connected two-layer feedforward neural network 
is capable of separating any data set. For example, Figure 12.25 shows such a network that 
solves the xor problem by computing the following output:

 y 5 h 1 h 1 x 112 2 1 2 2 2h 1 x 112 1 x 122 2 2 2 1 h 1 x 122 2 1 2 2 1 2  (12.172)

where h 1 # 2  is the threshold function. It is easy to verify that this output indeed yields the 
desired behavior.

The most common approach to training a feedforward neural network is the 
backpropagation algorithm. In this algorithm, errors in the output (the difference 
between the predicted value and the ground truth value) are propagated backward through 
the network, updating the weights of the output and hidden layers in a gradient descent 
fashion. In order for this algorithm to work, the threshold function must be differentiable. 
As a result, neural networks typically do not use a hard threshold but rather a soft threshold 
called a sigmoid function (because it is in the shape of an “S”). A common sigmoid 
function is the logistic function:

 h 1 z 2 5
1

1 1 e2z (12.173)

Figure 12.24 Different neural network architectures. From left to right: 2-layer feedforward network, 2-layer recurrent network, 4-layer 
convolutional network. In the latter, the edges in the first layer that share colors have the same weights.
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which approaches h 1 z 2 S 0 as z S 2` and h 1 z 2 S 1 as z S 1`. More recently, it has 
been found that improved results are obtained using a rectified linear unit (ReLU), which 
employs the biologically inspired rectifier:

 h 1 z 2 5 max 1 z, 0 2  (12.174)

Unlike the sigmoid function, ReLUs do not suffer from the vanishing gradient problem, 
because the gradient of this function remains constant even for large values of z, which is 
important for decreasing training time. Other advantages include the fact that, for posi-
tive numbers, the output is a scaled version of the input, thus introducing some amount of 
invariance to the gain of an image, and many units output the value zero, which introduces 
sparsity in the model.

A diagram of a historically important neural network is shown in Figure 12.26. In this 
system, which was the first widely-used face detector introduced two decades ago, the image 
is scanned at all locations and scales, and at each of these places a 20 3 20 window of image 
grayscale values is fed to the face detector. Preprocessing normalizes the grayscale values to 
correct for lighting variations and low contrast, then the window is fed to a multi-layer feed-
forward neural network, whose hidden layers have been handcrafted to take advantage of the 
peculiar structure of the human face. Training is performed using backpropagation, using a 
bootstrap algorithm to feed false positives back into the training process to reduce the 
occurrence of such errors. The algorithm detects faces at multiple scales by processing an 
image pyramid obtained by successive downsampling.† An arbitration function produces a 

† Section 7.1.1 (p. 329).

Figure 12.25 A simple two-layer 
feedforward neural network (multilayer 
perceptron) that solves the XOR problem.
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Figure 12.26 The Rowley-Baluja-Kanade neural network face detector applies a feedforward neural network to lighting-corrected 
20 3 20 graylevel windows to detect faces in an image.
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final result from the overlapping rectangles output by the neural network on nearby locations 
and scales. It is important to note that there is little difference in the accuracy of this historic 
face detector and modern face detectors, apart from progress that has been made on compu-
tational efficiency and handling out-of-plane rotation. The lesson learned is therefore that 
the most important aspects of a detector are the training data and the features extracted rather 
than the specific algorithm used for classification and/or training.

12.4.7 Random Forests
It is inevitable that, on real-world data, a classifier will make mistakes. One way to improve 
accuracy is to train multiple classifiers, then let the classifiers run in parallel and vote, with 
the majority vote determining the outcome. Since an “ensemble” is a collection or group, 
this approach of training a group of classifiers is known as ensemble learning.

There are two primary approaches to ensemble learning. Bagging (for “bootstrap 
aggregating”) refers to the process of training multiple classifiers by repeatedly resampling 
the training data (with replacement), and feeding each sampled set to a different classifier 
during training. Note that samples in the original training data may be sampled multiple 
times, or not at all, but all the sampled sets are approximations to the same underlying 
distribution. Such sampling with replacement is known as bootstrapping, hence the name 
bootstrap aggregating.†

The most popular use of bagging are random forests, which are collections of decision 
trees. A decision tree is a sequence of decisions, with each branch in the tree pivoting on 
a single element of the remaining input vector, and each leaf assigning either a single out-
come or a probability distribution over possible outcomes. During training, at each stage of 
the tree the input vector is searched to find the element that does the best job of separating 
the data according to the training labels. This recursive training process is known as CART 
(for “classification and regression trees”). Decision trees are an example of an unstable 
classifier, which means that a small change in the training data set can have a large effect 
on the performance of the classifier. Unstable classifiers are known to benefit significantly 
from aggregating the results of multiple instances trained on slightly different data sets, as 
long as the different classifiers are not highly correlated. To achieve this behavior, the trees 
are trained together to ensure that they do not learn to split the data according to the same 
features. Decision trees and random forests are alternatives to SVMs and neural networks, 
with the added advantage that they tend to be easier to interpret than the latter approaches, 
which are more opaque due to their black-box nature.

The other popular approach to ensemble learning is known as boosting. Boosting seeks 
to answer two questions during the training process: namely, how important are the differ-
ent elements of the feature vector, and which training samples are the hardest to classify. 
The most popular boosting algorithm is known as AdaBoost, which initially weights all 
the training samples equally by imposing a uniform distribution. After one round of train-
ing, the classifier has learned to classify the data with some level of accuracy, resulting in 
what is known as a weak classifier. In the second round of training, the classifier is again 
fed all the training data, but this time with the misclassified samples weighted more highly, 
resulting in another weak classifier. The process continues some number of iterations, each 
time reweighting the training samples and producing another weak classifier. Finally, all 
the weak classifiers are combined into a strong classifier using a weighted average of the 
results. The efficacy of boosting results from the fact that if each weak classifier produces a 
result that is at least a little bit better than random, then the linear combination of the weak 
classifiers will produce an even better result.

† The term bootstrapping is also used to refer to the somewhat unrelated idea of feeding errors back into the training 
process to improve the classifier, as seen earlier.
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12.4.8 Attentional Cascade
Applying a decision tree to a new input involves performing a sequence of tests, with the 
output of each test determining which branch of the tree to follow for subsequent tests. 
Using a decision tree, a test is performed. Depending upon the outcome of the test, either 
the left or the right branch of the tree is taken, and the process is repeated until a decision is 
made. In this approach the final outcome is not known until the entire depth of the tree has 
been traversed, and, moreover, each test typically requires approximately the same amount 
of computation.

A slight variation of this approach is a degenerate decision tree, in which at each level 
of the tree only one branch leads to further tests, whereas the other branch terminates in a 
decision. If the goal is rare event detection, which is often the case, then the degenerate 
decision tree takes the form of an attentional cascade, in which only positive responses 
lead to further consideration, while negative responses immediately terminate. In other 
words, in an attentional cascade each test asks the question, “Is this input the object?” 
If the response is negative, then the answer can be considered a definitive “no,” and the 
detector terminates with a negative response; if the response is positive, then the answer 
can be considered a tentative “maybe,” and further tests are performed until either a nega-
tive response is encountered or the entire sequence of tests pass, in which case a positive 
response is generated.

The most successful face detector to date is the Viola-Jones face detector, shown in 
Figure 12.27, and it is fairly safe to assume that any face detector you see in practice is 
probably based on this algorithm—not because it produces higher accuracy than other 
detectors, but solely because of its superior computational performance. Viola-Jones 
achieves real-time performance through the use of two tricks. First, it uses Haar-like image 
features that are computed quickly using the integral image.† After the initial preprocessing 
to create the integral image, any feature can be computed at any location and any scale with 
just a few lookups, and therefore no time is wasted downsampling the image to search at 
multiple scales. Secondly, it uses an attentional cascade architecture that quickly discards 
unpromising image locations. In the original implementation, 32 stages of the cascade are 
used, with only a small fraction of the tens of thousands of possible image features needed 
to perform the sequence of tests. During training, discriminative features are found and 
thresholds are set so that tests are allowed to yield a large number of false positives, as long 
as the number of false negatives is low. In this way, when a test generates a negative 
response, it can be trusted with a high degree of confidence. A similar approach has also 
been used to detect other types of objects, such as pedestrians.

† Section 5.2.7 (p. 233) and Section 6.6.1 (p. 311).

Figure 12.27 The Viola-Jones face detector combines Haar-like features computed using an integral image (left) with an attentional cascade 
architecture that quickly discards a large percentage of the input windows (middle) in order to find faces in an image in real time (right).
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12.4.9 Deformable Part-Based Model (DPM)
Rather than representing the object as a single rigid structure, an alternative is to represent 
it as a collection of rigid parts whose locations relative to one another are allowed to move 
somewhat. For example, a person’s face can be described as a pair of eyes, pair of ears, nose, 
and mouth, along with some expected spatial relationships between these parts that may 
vary slightly from one individual to another, as shown in Figure 12.28. Similarly, a person’s 
body can be described as a head, torso, a pair of arms, and a pair of legs.

The classic pictorial structure representation of an object consists of a collection of 
parts in a deformable configuration with spring-like connections between the parts. The 
representation utilizes an undirected graph in which the vertices are the parts, and the edges 
are the connections between the parts. For computational reasons, the graph is typically 
prohibited from containing cycles and therefore is in fact a tree. Efficient algorithms based 
on the Viterbi algorithm† can be used to search through the space of part locations to mini-
mize a global energy function that seeks to match part models to image data while at the 
same time minimizing the deformations between the part locations compared with their 
ideal locations.

Pictorial structures are a type of deformable part model (DPM). In a DPM, the graph 
captures a probabilistic model of the object, where the unary energy terms of the vertices 
measure the likelihoods of the part locations, and the binary energy terms of the springs 
provide a geometric prior on their relative locations. Finding an object in an image then 
becomes equivalent to finding the maximum likelihood configuration of the object accord-
ing to the probabilistic graphical model. With a certain constraint on the allowed deforma-
tion costs, such costs can be efficiently computed using a generalized distance transform, 
leading to an algorithm that can compute the global minimum of the energy function in a 
time that is linear in the number of parts, as well as linear in the number of possible loca-
tions of those parts.

DPMs have been successfully applied to a variety of challenging object recognition 
problems. As an example, results of a well-known DPM system are shown in Figure 12.29. 
In this system the object is represented by a star configuration of parts located with respect 
to a root node corresponding to a lower resolution representation of the entire object. A fixed 

† Section 10.2.1 (p. 453).

Figure 12.28 A pictorial structure, or 
deformable parts model, represents an 
object as a collection of parts with spring-
like connections between them. Shown 
here is a classic model of a face composed 
of two eyes, two ears, a nose, mouth, and 
some hair.
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614 Chapter 12 • Classification

number of parts are greedily placed at locations of high energy content around the root 
location, and the appearance of each part, along with the appearance of the root, are captured 
using dimensionally-reduced HOG features.† To handle large intracategory variations in 
appearance, such as images of a bicycle from a front view versus a side view, a collection 
of DPMs in a mixture model are used for each object category. It should be noted that, while 
systems based on DPMs have achieved impressive results, according to some studies their 
success lies primarily in their use of subcategories to model intracategory variations rather 
than in the deformable parts themselves, thus leaving open the question as to how important 
DPMs are for good performance in object recognition tasks.

12.4.10 Deep Learning
The traditional approach to classification, as we have seen, is to extract handcrafted features 
from images, then feed these features to a machine learning algorithm. For example, SIFT 
features,‡ HOG features, or a bag of visual words can be extracted from an image and sent 
to an SVM or a traditional two-layer neural network. Such an approach, for lack of a better 
term, can be referred to as shallow learning. For almost two decades, beginning in the 
mid-1990s, this approach of shallow learning was state-of-the-art, and it has enabled suc-
cessful commercial systems such as real-time face and pedestrian detection. However, very 
soon after the initial successes, the accuracy of such systems plateaued, so that for many 
years the research community struggled to obtain any significant improvement in accuracy 
on a variety of challenging problems using this paradigm. Handcrafted features capture 
low-level properties like intensity edges and blobs, but it is very difficult to construct mid-
level features like curves and parts by hand.

The situation changed when, at the 2012 ImageNet competition, significantly improved 
results were obtained using a deep learning approach. Since then, deep learning has taken 
over the computer vision community, showing superior results on a wide variety of problems 
when compared with traditional approaches. Some example results on multicategory classi-
fication are shown in Figure 12.30. There is no agreed-upon definition of deep learning, but 
it generally refers to a machine learning model consisting of a large number of information 
processing stages. Although deep learning is a more generic term that encompasses a variety 
of techniques, for computer vision nearly all successes have been achieved with deep neural 
networks (DNNs), and in particular deep convolutional neural networks (CNNs), which 
were mentioned earlier in the chapter.

As it is usually constructed, a deep neural network consists of a large number of alternat-
ing convolutional and pooling layers, followed by a number of fully connected layers. As in 
a convolutional neural network, the weights in each convolutional layer are tied together to 

† Section 7.5.4 (p. 350).
‡ Section 7.5.1 (p. 348).

Figure 12.29 Results of a well-known deformable part model-based system on the challenging problem of multicategory object 
classification.
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12.5 Further Reading 615

facilitate translational invariance. Each pooling layer then works like a local receptive field 
to aggregate information over a spatially nearby area. Since the number of outputs of the 
pooling layer is smaller than the number of inputs, the pooling layers perform downsam-
pling as well as aggregation, thus facilitating processing at multiple resolutions. The most 
common form of pooling is to compute the maximum of all the nearby inputs, known as 
max pooling. The results of the final pooling layer are then fed to a traditional fully con-
nected feedforward neural network with a number of layers.

One of the challenges of a deep neural network is how to train such a highly-dimensioned 
model. A deep network can easily contain tens or hundreds of millions of parameters, 
which leads to two problems. The first problem is overfitting. Without sufficient labeled 
training data (which is difficult to obtain), it is easy for the training process to yield a 
model that overfits to the data that it has seen. A common solution to this problem, known 
as dropout, is to randomly and temporarily remove a hidden unit from the network dur-
ing training. Dropout effectively allows the training process to search through a variety of 
thinned network architectures with extensive weight sharing between them, leading to a 
resulting network that favors sparsity since many of the weights will be close to zero. The 
second problem is the training time required for searching for all those parameters, which 
is reduced by using modern hardware like GPUs (graphical processing units) and by using 
activation functions whose responses do not saturate (such as ReLUs). Nevertheless, train-
ing is typically performed using either standard backpropagation and/or stochastic gradient 
descent, along with (in some circumstances at least) pretraining of the network weights 
using large amounts of unlabeled data to speed up the process and avoid local minima.

Figure 12.30 Deep learning is currently the leading approach for multicategory object detection, as well as several other important 
computer vision problems.

12.5 Further Reading
A more in-depth treatment of the foundational material 
in this chapter can be found in the classic book on pat-
tern recognition by Duda et al. [2001]. The excellent 
work by Bishop [2006] is also helpful, as is the survey 
paper by Jain et al. [2000]. The bias-variance tradeoff 
is well-explained by Mitchell [1997]; a good resource 
for cross validation is the paper by Kohavi [1995]. 
Precision-recall curves were first used in evaluating 
edge detectors by Abdou and Pratt [1979], whereas 
ROC curves gained popularity in computer vision 

through the work of Bowyer and Phillips [1998] and 
Rowley et al. [1998]. A comparison of PR and ROC 
curves can be found in Davis and Goadrich [2006]. The 
curse of dimensionality and peaking phenomenon are 
described in an early paper by Trunk [1979]. The Akaike 
Information Criterion is due to Akaike [1974], while 
the Bayesian Information Criterion is due to Schwarz 
[1978]. Of the few papers that cover syntactic pattern 
recognition, one of the more well-known is that of Luo 
and Hancock [2001].
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616 Chapter 12 • Classification

The VC dimension was proposed by Vapnik and Cher-
vonenkis [1971], whereas support vector machines were 
introduced by Cortes and Vapnik [1995]. Other good 
descriptions of SVMs can be found in the works of Vapnik 
[1995], Burges [1998], and Boyd and Vandenberghe 
[2004]. The SMO algorithm is due to Platt [1998]. 
Classification trees and the CART algorithm, bagging, 
and random forests are found in the work of Breiman 
et  al. [1984], Breiman [1996], and Breiman [2001], 
respectively. The Adaboost algorithm is explained by 
Freund and Schapire [1999]. Geometric hashing, which 
is an efficient way to index a database of models, can be 
found in the work of Lamdan and Wolfson [1988].

Color histograms built using billions of pixels were 
used for skin color detection by Jones and Rehg [2002)], 
and earlier work on using color for detecting objects can 
be found in Swain and Ballard [1991]. Locally weighted 
learning is due to Atkeson et al. [1997]. Parzen windows 
and kernel density estimation can be traced to the work of 
Parzen [1962]. A recent defense of nearest neighbors was 
provided by Boiman et al. [2008], and an improvement to 
nearest neighbors called neighborhood component analy-
sis can be found in Goldberger et al. [2004]. A psycho-
logical basis for nearest neighbors can be found in focal 
colors, which are described by Berlin and Kay [1969] 
and discussed in the book by Palmer [1999]. Naive Bayes 
is used for view-invariant face detection, as well as for 
car detection, by Schneiderman and Kanade [2000]. A 
well-cited work showing the benefit of summing (rather 
than multiplying) classifier outputs is that of Kittler et al. 
[1998]. The scree test is due to Cattell [1966], while the 
Kaiser criterion is due to Kaiser [1960].

Eigenfaces were introduced by Turk and Pentland 
[1991], which was motivated by the work of Kirby and 
Sirovich [1990] to represent faces using PCA. Later 
extensions include Fisherfaces by Belhumeur et al. [1997] 
and Laplacianfaces by He et al. [2005], the former being 
based upon Fisher’s linear discriminant, which is intro-
duced in the work of Fisher [1936]. Eigenvectors are used 
for representing 3D objects in the work of Murase and 
Nayar [1995]. Point distribution models and active shape 
models are due to Cootes et al. [1995], whereas active 
appearance models are due to Cootes et al. [2001]. The 
perceptron learning algorithm can be traced to the work 
of Rosenblatt [1958], while Gallant [1990] proposed 

the pocket algorithm. After a promising early start in 
the 1960s, neural network research came to a halt as the 
result of the publication of the book by Minsky and Papert 
[1969], which caused the so-called “AI winter.” The 
research was revived with the work of Rumelhart et al. 
[1986], which introduced the backpropagation algorithm.

The first successful face detectors were the Rowley-
Baluja-Kanade algorithm described in Rowley et al. 
[1998] and the simultaneous but less well-known 
approach of Sung and Poggio [1998]. The former is a 
pivotal paper in the history of computer vision, marking 
the introduction of machine learning to the field in a way 
that showed its power to solve challenging, real-world 
problems. The Viola-Jones face detector is presented 
in Viola and Jones [2004], with follow-up work on 
multiview face detection in Jones and Viola [2003] and 
pedestrian detection in Viola et al. [2005]. Other work 
on multiview face detection is that of Wu et al. [2004], 
and other work on pedestrian detection is that of Dalal 
and Triggs [2005] and Enzweiler and Gavrila [2009], the 
latter of which has found its way into commercial use in 
automobiles. Impressive work combining detection and 
tracking of pedestrians is that of Wu and Nevatia [2007]. 
A thorough, though somewhat outdated, survey of face 
detection can be found in Yang et al. [2002]. Space limita-
tions have not permitted us to discuss face recognition, 
but several historically important papers are those of 
Brunelli and Poggio [1993], Wiskott et al. [1997], and 
Phillips et al. [2000], as well as the more recent work of 
Taigman et al. [2014].

The paper that sparked the recent explosion of interest 
in deep learning, and deep convolutional neural networks 
in particular, is that of Krizhevsky et al. [2012]. A good 
overview of deep learning can be found in the work of 
Deng and Yu [2013], which is focused primarily upon 
speech applications. Rectified linear units (ReLUs) are 
due to the work of Nair and Hinton [2010], and the pur-
pose of dropout is explained by Srivastava et al. [2014]. 
Those interested in part-based classification should con-
sult the early work of Fischler and Elschlager [1973] as 
well as the more recent papers by Felzenszwalb and Hut-
tenlocher [2005] and Felzenszwalb et al. [2010]. Divvala 
et al. [2012] analyze the relative importance of deform-
able parts, latent discriminative learning, and subcatego-
ries in the accuracy of DPMs.
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PROBLEMS

12-1 Classification corresponds to which branch of machine learning?

12-2 List the three types of classification problems, and briefly describe each.

12-3 Explain the importance of generalization.

12-4 Define a dichotomizer.

12-5 Suppose an inspection system detects 99.99% of the good parts correctly, but only 
98% of the defective parts. Suppose the cost of incorrectly labeling a good part bad is 
5 minutes of extra time for a person to manually inspect the part, but the cost of incor-
rectly labeling a bad part good is an average of 3 hours of extra time to correct the problem 
downstream in the assembly line. What is the total risk of the system? Which type of error 
dominates the total risk?

12-6 You are part of a team whose job is to develop a classifier of some kind, so you collect 
some data and manually label them. What are your two options regarding how to separate 
the training data from the test data? What are the pros and cons of each? What are you 
absolutely not allowed to do with these two datasets in any circumstance?

12-7 What are the two most popular approaches to cross-validation?

12-8 Briefly explain the bias-variance tradeoff.

12-9 Derive Equation (12.8).

12-10  Suppose you have a reasonably-sized dataset, and you compute both the Akaike 
and Bayesian information criteria (AIC and BIC). Which one do you expect to be greater?

12-11  Briefly explain the concept of structural risk minimization.

12-12  What is the VC dimension of a classifier with a parabola-shaped decision boundary 
(at any orientation) in 2D?

12-13  Explain how the curse of dimensionality, the peaking phenomenon, and feature 
selection are all related.

12-14  Suppose we have a binary classification problem with the following training data, 
using 2D features:

category set of 2D features 1 x1, x2 2
v1 5 1212, 3 2 6
v2 5 1 10, 5 2 , 125, 5 2 , 1 9, 6 2 , 1 13, 0 2 6

Assume that the discrimination functions returned by the training procedure are the 
following:

 g1 1 x 2  5  0.4x1 1 0.5x2 2 10

 g2 1 x 2  5  0.5x1 1 0.3x2 2 9

Calculate the accuracy of classification.
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12-15 Suppose 145 test objects arrive in the detection zone of a conveyor belt, of which 95 
are bananas. When a classifier is applied to these objects, 16 of the bananas are mislabeled, 
and 3 of the other objects are mislabeled as bananas.

(a) Compute TPR, TNR, FPR, and FNR, and build the confusion matrix.

(b) Calculate the sensitivity, specificity, and accuracy.

(c) Calculate the F-measure and the Jaccard coefficient.

12-16 Given the Receiver Operating Characteristic (ROC) curves of two classifiers below, find 
the better classifier using (a) the equal error rate (EER), and (b) the area under the curve (AUC).
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12-17 When is a precision-recall (PR) curve preferred to a receiver operating characteristic 
(ROC) curve?

12-18 Suppose that the population within a certain region is 51% male and that 42% of the 
males wear eyeglasses, while 52% of the females wear eyeglasses. One person is randomly 
selected for a survey, and after the person is selected, it is later learned that the person wears 
eyeglasses. Use Bayes’ rule to calculate the probability that the selected person is male.

12-19 Given the means and covariance matrices of the Gaussian densities of three 
categories v1, v2, and v3 as

m1 5 B21
   1

R  m2 5 B3
4
R  m3 5 B6

9
R  S1 5 S2 5 S3 5 B10   0

  0 10
R

and the prior probabilities as p 1v1 2 5 0.5, p 1v2 2 5 p 1v3 2 5 0.25, find the discriminant 
functions for each category, then calculate the decision boundary between the first two categories.

12-20 Is Bayes’ rule limited to Gaussian distributions? Why or why not?

12-21 When is the maximum a posteriori (MAP) estimate the same as the maximum likeli-
hood (ML) estimate?

12-22 True or false: For any value in the domain, the sum of all the class-conditional densi-
ties evaluated at that value equals 1.

12-23 Name one parametric and one nonparametric approach to representing a probability 
distribution.

12-24 When are two Gaussian densities separated by a hyperplane?
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12-25 Explain the difference between a generative method and a discriminative method 
for classification.

12-26 Suppose you are given the following set of 1D training data along the x axis: 57, 12, 13, 15, 166. Find the Parzen probability density function (pdf) estimate at x 5 15, 
using the Gaussian function with variance 1 as the window function.

12-27 Explain how Parzen windows are related to locally weighted averaging (LWA).

12-28 Following Section 12.3.1 (p. 582), collect a dataset of images and label most of 
the pixels as either red or not red using a paint program. (It is best to leave pixels that are 
ambiguous as unlabeled, and to not use them for training.) Write a program to construct 
positive and negative histograms of the class-conditional densities, then to find all the red 
pixels in a query image using this model.

12-29 List some strengths and weaknesses of nearest-neighbor classification.

12-30 Construct a Naive Bayes classifier, using a Gaussian assumption, to classify whether 
a piece of fruit is an apple or plum based on the measured features, including weight and 
perimeter. The training data set is provided below.

category weight (g) perimeter (cm)

apple 450 10.5
apple 332 9.6
apple 289 8.2
apple 265 8.3
apple 306 8.5
plum 320 9.0
plum 235 8.1
plum 226 8.1
plum 308 8.7
plum 266 8.3

Apply the classifier to a test sample whose weight is 220 g and perimeter is 8.2 cm.

12-31 Given the following set of 10 samples in a 3D space, follow the steps of PCA to 
calculate the eigenvalues of the orthogonal transformed data. Suppose the threshold of the 
fraction of the captured variance is set as 95%, show whether it is possible to reduce the 
dimensionality of the data.5 1 7, 4, 5 2 , 1 6, 5, 4 2 , 1 8, 4, 1 2 , 1 2, 6, 9 2 , 1 3, 6, 6 2 , 1 5, 7, 3 2 , 1 3, 5, 9 2 , 1 2, 8, 6 2 , 1 1, 7, 5 2 , 1 8, 5, 2 2 6
12-32 What is the scree test?

12-33 Explain how active shape models (ASMs) and active appearance models (AAMs) 
are related.

12-34 Calculate the linear discriminant function using Fisher’s linear discriminant (FLD) 
for the following 2D data sets:

 D1 5 5 1 5, 3 2 , 1 2, 6 2 , 1 3, 5 2 , 1 3, 6 2 , 1 4, 7 2 6
 D2 5 5 1 7, 9 2 , 1 6, 7 2 , 1 9, 5 2 , 1 8, 8 2 , 1 10, 8 2 6

For simplicity, set the bias to the point halfway between the projected means.

12-35 Implement (a) the perceptron learning algorithm with accelerated learning rate in 
Algorithm 12.2 and (b) the pocket perceptron learning algorithm in Algorithm 12.3. Apply 
each algorithm to the datasets of the previous problem.
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12-36  Use Lagrange multipliers to find the maximum and minimum values of the function 
f 1 x, y 2 5 8x2 1 200y4 with the constraint x2 1 2y2 5 8.

12-37 (a) What are the key ideas that turn a maximum margin classifier into a support 
vector machine (SVM)? (b) Explain the kernel trick.

12-38 What logic operation does the following neural network perform? The weights of 
each branch are marked near the arrows, and the thresholds are as shown. The neurons 
output true if the input values pass the threshold, otherwise false.

21

y

x1 x2

1

11
11

b 5 21.5 b 5 20.5

b 5 20.5

12-39 Plot the response of a logistic function and of a rectified linear unit (ReLU). List 
some of the advantages of the latter.

12-40 Briefly explain the concepts of bagging and boosting, and their relationship to one 
another.

12-41 Draw a degenerate decision tree, labeling the leaf nodes with “yes,” “no,” or 
“maybe.”

12-42 What is a model containing parts with spring-like connections called?

12-43  Sketch the main components of a deep neural network. Explain, at a high level, how 
this approach works, including the principles of max pooling and dropout.

12-44 Implement your own face detector. Collect several hundred images of faces from the 
Internet and label them by hand by clicking on the images to define rectangles around the 
faces. (Be sure that all rectangles have the same aspect ratio.) Then collect several hundred 
images that contain no faces. Write code that performs preprocessing to generate a feature 
vector for a rectangle, and perform a sliding window search that computes a score for each 
hypothesis by passing the feature vector to a machine learning algorithm of your choice 
(using either your own implementation or code you find online). Report the accuracy of the 
detector on both the training set and on a separate test data, plotting results on an ROC or 
PR curve. Then write what you learned from this exercise.
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In previous chapters we have considered various ways to process a single image. In this chapter we consider what 
happens when multiple images of a scene are available from either an array of cameras that capture their images 
simultaneously, or from a single video camera that captures a sequence of images of a static or moving scene. In both 

cases the aim is to find corresponding pixels between images, which yields either stereo correspondence or optical 
flow, respectively. After discussing these two foundational problems, the rest of the chapter covers the geometrical 
principles for using such correspondences to yield 3D information, including projective geometry, camera calibration, 
and the geometry of multiple views. Together, these concepts are central to some of the most common techniques for 
understanding motion and estimating depth—and hence 3D geometry—from multiple images.

C H A P T E R 13
Stereo and Motion

13.1 Human Stereopsis
It has been known at least since the time of Euclid† that depth perception in the human visual 
system is aided by the simultaneous viewing of two dissimilar images of the same object. 
Depth is perceived by the retinal disparity in the two images, which is the horizontal dif-
ference in the retinal locations of two projections of the same scene point.‡ Stereo vision, 
or stereopsis, refers to the process of recovering 3D information about the world from 

† Euclid (c. 300 BC) was a Greek mathematician known as the “Father of Geometry.” His Elements remained the 
standard geometry textbook for more than 2000 years, even until the early 20th century AD.
‡ See Figure 2.5 (p. 24).
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622 Chapter 13 • Stereo and Motion

multiple images of a scene taken at the same time by different imaging devices. By using 
additional sensory inputs, stereo overcomes the loss of dimensionality that is fundamental 
to the imaging process. Stereo comes from a Greek word meaning “solid.” Like a stereo 
sound system, in which the brain fuses slightly different aural inputs to produce a fuller 
representation of the acoustic space, stereo vision involves fusing slightly different visual 
inputs to produce a solid representation of the nearby scene.

As an example, consider the pair of stereo images in Figure 13.1. To fuse these images, 
relax your eyes until the two images overlap, then concentrate on bringing the two copies 
of the statue head (or any other feature) into alignment, and wait patiently until a single 
3D percept emerges.† The resulting 3D percept is sometimes called a Cyclopean image 
(after the famous one-eyed monster), because the fused image almost seems to result from 
an additional sensor in the center of your head. With relaxed-eye viewing, the separation 
between the images must not be greater than the interpupillary distance (IPD), which 
is the distance between your two eyes (approximately 63 mm). This process of fusing 
stereo images has been a popular pastime of children and adults since stereoscopes were 
introduced in the 1830s and reappeared in various forms, most recently with the advent of 
autostereograms in the 1990s.

Many people find it easier to fuse a pair of stereo images whose positions have been 
reversed, as shown in Figure 13.2. In such a case, rather than relaxing the eyes so that they 
see beyond the page, the eyes must be crossed so that the fixation point is in front of the 
page. In this way the right eye sees the image on the left, while the left eye sees the image 
on the right. With cross-eyed display, the separation between the images is not limited by the 
interpupillary distance, so that the images may be placed much farther apart, and at much 
larger resolution, and still be fused.

† Note, however, that some people are unable to fuse such images due to some form of stereoblindness.

Figure 13.1 A pair of stereo images. To fuse, relax your eyes so that you are seeing through the paper, and try to bring the two images 
together so that they come into alignment. Be patient, as it may take some time initially. If you experience difficulty fusing the images, 
it may help to place a vertical divider (such as a piece of cardboard) between the images so that each eye can see only one image. (Note 
that fusion is impossible if the distance between the two left edges of the images exceeds the interpupillary distance, which may occur 
if this page was enlarged by photocopying or viewed on screen at a large zoom setting.)
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13.2 Matching Stereo Images 623

Stereo is not the only cue that contributes to depth perception. In fact, beyond a few 
meters the retinal disparity is too small to be detectable, and most of our depth perception 
arises from other cues, such as relative size, perspective, object overlap, contrast, lighting, 
shading, texture, and so forth. These factors explain why we are able to infer 3D informa-
tion even from a single image. Nevertheless, the random dot stereogram, an example 
of which is shown in Figure 13.3, demonstrates conclusively that binocular fusion occurs 
even in the absence of these other cues. A random dot stereogram is formed by shifting a 
random pattern of black-and-white dots in some predefined shape to form the two images, 
then surrounding the patterns with identical patterns of dots. While other visual cues are 
no doubt used when they are available, the ability of the human visual system to fuse such 
random dot stereograms in the absence of any other visual cues proves that binocular fusion 
is a separate process in the visual system.

13.2 Matching Stereo Images
The success of the human visual system at inferring depth from a random dot stereogram 
leads naturally to the question of how to automatically infer depth by matching the pixels 
in two images. This is known as the correspondence problem—that is, to determine for 
each point in one image, its corresponding point in the other image. Several approaches to 
solving correspondence are covered in this section.

Figure 13.3 A random dot stereogram. If you relax 
your eyes, a small square should appear behind 
the large square. If you cross fuse, it should appear 
in front. Some isolated dots may appear to be at 
the wrong disparity, due to the inability of the 
visual system to properly segment all the pixels.

Figure 13.2 The same pair 
of stereo images displayed 
for cross-eyed viewing.
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624 Chapter 13 • Stereo and Motion

13.2.1 Correspondence
Two pixels are said to correspond if both pixels are projections along lines of sight of the 
same physical scene element. Once the correspondence between two points has been estab-
lished, the coordinates of the two points can be compared to arrive at the disparity between 
them. The disparity between two points is defined as the difference in their coordinates. For 
simplicity, let us assume that the two cameras are rectified, which means that the image 
planes of the two cameras are coplanar, and the line joining their centers of projection is 
parallel to the scanlines (rows) of both images. In other words, the camera positions are 
related only by a translation parallel to the scanlines, with no rotation between them. When 
cameras are rectified, as shown in Figure 13.4, the disparity is defined as the x coordinate of 
a point in the left image minus the x coordinate of its corresponding point in the right image. 
From Equation (2.1), it is easy to show that the disparity is inversely proportional to depth:

 d 5 xL 2 xR 5 f 
x w 1 b

zw
2 f 

xw

zw
5

f b
zw

 (13.1)

where b is the distance between the two focal points, called the baseline; xw is the horizon-
tal offset from the right focal point to the world point; and zw is the depth, or distance, to the 
point from the focal point along the optical axis. As a result, a disparity of zero indicates 
a point that is an infinite distance away (e.g., a star in the sky), and increasing disparity 
means decreasing depth. Note that the disparity is always non-negative: d 5 xL 2 xR $ 0.

Given a point 1 xL, yL 2  in the left image, where can its corresponding point 1 xR, yR 2  in 
the right image be? At first glance, it might seem that the corresponding point can be any-
where in the image. In fact, however, it is constrained to lie along a line, called the epipolar 
line. This restriction is called the epipolar constraint. While the epipolar constraint is 

Figure 13.4 Rectified 
stereo geometry. TOP: A 
world point is imaged 
at point 1 xL, y 2  in the 
left image and 1 xR, y 2  
in the right image, with 
respect to coordinate 
systems aligned with 
each image and placed 
in the top-left corner, 
as usual. BOTTOM LEFT: 
The same scene viewed 
in 2D. (The y axis, 
going into the page, 
is not shown.) BOTTOM 
RIGHT: Overlapping 
the two imaging rays 
onto a single (virtual) 
sensor, the distance 
xL 2 xR between the 
two coordinates is the 
disparity d.
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13.2 Matching Stereo Images 625

applicable for any configuration of binocular cameras, as we shall explore later in the chap-
ter, for rectified images it leads to the simple constraint that the corresponding point must 
lie along the same scanline, yL 5 yR, because the scanlines are the epipolar lines. Looking 
back at the images in Figure 13.1 through Figure 13.3 (all of which are rectified), notice 
that corresponding points always lie on the same row as each other.

To better visualize the correspondence problem, let us define a cuboid with the reflected 
left image comprising one face and the right image comprising an adjacent face, such that the 
left borders of both images share an edge in the cuboid, shown in Figure 13.5. The cuboid, 
called the matching space, is usually divided into a discrete grid defined at pixel resolution, 
with each cell in the grid indicating whether the two pixels indexed by the cell’s row and 
column correspond to each other: a 1 in the cell means that the pixels correspond, while a 0 
means that they do not correspond. A slice through the matching space for a pair of scanlines 
is also shown in the figure, where the origin is placed at the top-left corner, each column 
indicates the x coordinate of the pixel in the left scanline, and each row indicates the x coor-
dinate of the pixel in the right scanline. From the correspondences between two images, a 
disparity map can be constructed by projecting the matches in the matching space onto the 
horizontal axis (for the left disparity map) or onto the vertical axis (for the right disparity 
map). Occluded pixels are assigned the value of the smaller of the two neighbors.

In a rectified system, an object is said to be frontoparallel if it is parallel to both image 
planes, in which case its depth, and hence disparity, is constant. Now, the disparity for any 
given cell is determined by its Manhattan distance† in the grid to the main diagonal. 
Therefore, the cells along any given diagonal represent the matches that would occur for a 
frontoparallel object at the related depth, because xL 2 xR is constant along such a diagonal. 
Notice that the gray cells in the lower triangle of the grid cannot possibly be matches, since 
xR . xL, that is, they yield negative depth. Similarly, for computational efficiency it is 
customary to put a limit on the maximum allowable disparity dmax, which explains the gray 
cells in the upper triangle of the grid, similar to Panum’s fusional area.‡

13.2.2 Stereo Constraints
Like most problems in computer vision, establishing stereo correspondence is an under-
constrained problem because the nearby pixel values are insufficient to make the decision 
locally. As a result, a number of constraints have been articulated over the years to make 
the problem more tractable. While some of these constraints arise from the geometry of the 
scene and the imaging process, others are more heuristic in nature.

† Section 4.3.1 (p. 164).
‡ Section 2.1.2 (p. 21).

Figure 13.5 Left: The matching space for a pair of 
rectified stereo images. Right: A horizontal slice 
through the matching space. (The y axis, going into 
the page, is not shown.) Each discrete cell in the 
matching space indicates whether the given pair of 
pixels 1 xL, y 2  and 1 xR, y 2  correspond to each other. 
Here the green cell represents a match between 
the pixel xL 5 7 and the pixel xR 5 4, so that the 
disparity is d 5 3. The maximum disparity, bounded 
by the shaded region in the upper-right corner, is 
dmax 5 7.
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626 Chapter 13 • Stereo and Motion

Figure 13.6 illustrates some of the more common constraints. The cheirality constraint† 
requires xL $ xR for matching pixels, as mentioned above, since only objects in front of the 
camera can be visible. The maximum disparity constraint forbids matches whose dispar-
ity exceeds a certain amount, which effectively enforces a minimum distance from the 
camera to the surface being viewed; this is related to Panum’s fusional area, as mentioned 
above. The uniqueness constraint says that if xL 4 xR is a match, then there is no other 
match xL 4 x where x 2 xR, and there is no other match x 4 xR where x 2 xL. That is, a 
pixel in either image can only match at most one other pixel, which is true as long as the 
surfaces in the world are opaque and the general position assumption with regard to view-
point is not violated (that is, no imaging ray is aligned with a surface in the world). Further-
more, although not directly illustrated in the figure, the very possibility of drawing the 
matching process on a 2D grid (as opposed to 3D) owes itself to the epipolar constraint 
mentioned above, which requires that corresponding pixels share the same y coordinate 
when the images are rectified.

Another constraint arises from the fact that, as illustrated in Figure 13.7, when a point 
on a continuous surface is viewed by both cameras, it is not physically possible for another 
point on the same surface to also be visible in both cameras if it lies within the region defined 
by two lines passing through the centers of projection and the point. This hourglass-shaped 
region is called the forbidden zone, and denying matches in the forbidden zone is known 
as the ordering constraint or the monotonicity constraint. Mathematically, the constraint 
can be stated thus: If xL 4 xR is a match, then there is no other match x 4 x r such that x $ xL 
and x r # xR, and there is no other match x 4 x r such that x # xL and x r $ xR. Equivalently, 
if x L

112 4 x R
112 and x L

122 4 x R
122 are both matches, then x L

112 , x L
122 implies x R

112 , x R
122. Note that 

the constraint ensures that if the pixels in one scanline are considered in a certain order, then 
the corresponding pixels in the other scanline are encountered in the same order.

To better understand the ordering constraint, note that it is violated when a thin, opaque 
object (such as a pole) is close to the camera, and there is a considerable distance between 
this object and the background behind it. This situation is illustrated in Figure 13.8, where 
a thin frontoparallel surface labeled f is in front of a frontoparallel background surface 

† The cheirality constraint derives its name from the Greek word meaning “hand,” the idea being that if you look 
on edge at the imaging plane of a camera pointed to the right, the camera would be able to see all the points on 
your right hand, and vice versa.

Figure 13.6 Stereo constraints. The gray cells indicate matches that are simply not allowed (left two grids) or that are illegal when 
the green cell indicates a match (right two grids). Cheirality precludes matches with xL , xR, which would refer to points behind the 
camera. Maximum disparity precludes matches whose disparity exceeds a threshold. Uniqueness prevents a pixel in either scanline from 
matching more than one pixel. Ordering ensures that the pixel coordinates of the matches are monotonically increasing as the pixels 
along either scanline are traversed. Note that the gray cells in the right grid are the forbidden zone. 
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13.2 Matching Stereo Images 627

whose individual regions (defined by the visibility rays of the two cameras) are labeled a 
through e. Notice that if we were to examine the pixels in the left image, from left to right, 
we would encounter projections of regions a, b, c, f, and e, in that order, since region d 
is occluded. Similarly, the right image contains, from left to right, projections of regions a, 
f, c, d, and e, because region b is occluded. The ordering constraint is therefore violated 
in this case because the order of the regions is different in the two images: whereas c is to 
the left of f in one image, it is to the right in the other image.

A related concept is the disparity gradient limit, which says that surfaces cannot 
recede too quickly from the viewer. This constraint is inspired by psychophysical experi-
ments showing that the human visual system is incapable of fusing points when the slope of 
the surface exceeds a maximum value; since disparity is the inverse of depth, this slope is 
related to the disparity of the gradient, and therefore the human visual system is incapable 
of fusing points when the disparity gradient exceeds a certain value. To better understand the 
disparity gradient, imagine holding a flat piece of paper oriented vertically in front of you, 
so that the disparity of all the points on the paper are the same, and therefore the disparity 
gradient is zero. However, as you rotate the paper around a vertical axis, the disparity gradi-
ent increases until it eventually reaches a point where the paper recedes into the background 
so much that the visual system is no longer able to fuse the images.

The disparity gradient is defined in terms of Cyclopean coordinates. That is, the 
disparity gradient is given by the derivative @d/@x of the Cyclopean disparity function 
with respect to the Cyclopean coordinate, where the Cyclopean disparity function d(x) is 

Figure 13.7 The forbidden zone is an 
hourglass-shaped region defined by the two 
centers of projection and a particular match 
(which implies a particular world point). No 
other matches within the zone are possible, 
as long as there is a single, opaque surface in 
the world in the nearby vicinity. The matches 
in the forbidden zone are exactly those not 
allowed by the ordering constraint.

Surface
in the world

Left
camera

Right
camera

World
point

Figure 13.8 A thin, opaque object close to the camera 
causes the ordering constraint to be violated. LEFT: Two 
rectified cameras viewing a thin pole in front of a fronto-
parallel background. The visibility rays from the cameras to 
the edges of the pole divide the background into 5 different 
regions labeled a through e. RIGHT: The matching space with 
matches shown in green. The letters on the cells indicate 
the surface to which the match belongs. Regions b and d 
produce no match due to the occlusion from f.
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628 Chapter 13 • Stereo and Motion

the disparity d 5 xL 2 xR between two matching pixels, and the Cyclopean coordinate 
x of a match is the average of the two coordinates: x ; 1

2 1 xL 1 xR 2 . The disparity 
gradient limit requires that the absolute value of the disparity gradient never exceeds a 
given value—that is, 0@ d/@ x 0 # k—where k is the limit. Two special numbers should 
be noted: The human visual system imposes a disparity gradient limit of k 5 1, while 
the value k 5 2 is equivalent to the ordering constraint. One way to visualize this is to 
define d
 1 x 2 ; maxa 1 d 1 x 1 a 2 2 k 0a 0 2 , so that graphically d* is determined by cast-
ing shadows from d at an angle of arctan 1k 2  and taking the maximum of the original 
value and all the shadows created by neighboring values. Then d
 1 x 2 5 d 1 x 2  for all x 
for which d satisfies the disparity gradient limit of k; and if k 5 2, then the set of points 
x such that d
 1 x 2 . d 1 x 2  are the occluded points.

As another visualization aid, Figure 13.9 shows the Cyclopean coordinates and absolute 
disparity gradient for a number of possible matches with respect to the green cell. Whereas 
the left coordinate axis xL is horizontal, and the right coordinate axis xR is vertical, the 
Cyclopean coordinate axis x is diagonal. Therefore, whereas diagonals parallel to the main 
diagonal (down and to the right) contain cells with constant disparity, as mentioned earlier, 
diagonals perpendicular to the main diagonal (that is, up and to the right) contain cells with 
constant Cyclopean coordinates. As a result, if we were to overlay a black-and-white check-
erboard pattern on the matching space, all cells of one color would have integer Cyclopean 
coordinates, while all the cells of the other color would have fractional (odd multiples 
of 0.5) Cyclopean coordinates. By comparing the figure with the previous figure, it is clear 
that a gradient limit of k $ 2 implies the ordering constraint, with k 5 2 being equivalent 
to the ordering constraint.

EXAMPLE 13.1 Compute the disparity gradient between the green match and the match just below it in 
Figure 13.9.

Solution The match shown is xL 5 7 and xR 5 3, so the disparity is 7 2 3 5 4. The Cyclopean 
coordinate of the match is x 5 1

2 1 xL 1 xR 2 5 5. The absolute value of the (discrete 
approximation to the) disparity gradient between two matches x L

112 4 x R
112 and x L

122 4 x R
122 is`@ d

@ x
` 5

d2 2 d1
1
2 1 xL

122 1 xR
122 2 2 1

2 1 xL
112 1 xR

112 2 5
2 1 xL

122 2 xR
122 2 xL

112 1 xR
112 2

xL
122 1 xR

122 2 xL
112 2 xR

112  (13.2)

where d1 5 xL
112 2 xR

112 and d2 5 xL
122 2 xR

122 are the two disparities. Since the match just 
below the green match is at xL 5 7 and xR 5 4, we have xL

112 5 xL
122 5 7, xR

112 5 3, and 
xR
122 5 4. Plugging into Equation (13.2), the absolute disparity gradient is computed as 0@d/@x 0 5 02 1 7 2 4 2 7 1 3 2 / 1 7 1 4 2 7 2 3 2 0 5 2.

13.2.3 Block Matching
The simplest algorithm to compute dense correspondence between a pair of stereo images 
is block matching. Block matching is an area-based approach that relies upon a statistical 
correlation between local intensity regions. For each pixel (x,y) in the left image, the right 
image is searched for the best match among all possible disparities 0 # d # dmax:

 dL 1 x, y 2 5 arg min
0#d#dmax

 dissim 1 IL 1 x, y 2 , IR 1 x 2 d, y 2 2  (13.3)

where dissim 1 IL 1 xL 2 , IR 1 xR 2 2  is the dissimilarity between the pixel xL 5 1 xL, yL 2  in the 
left image and pixel xR 5 1 xR, yR 2  in the right image, dL is the left disparity map (i.e., the 
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13.2 Matching Stereo Images 629

disparity map with respect to the left image), and dmax is the maximum allowed disparity, 
which improves computation time significantly. Choices for dissimilarity will be consid-
ered in a moment, but usually some sort of absolute difference in intensity (perhaps after 
applying a preprocessing filter) is used.

The most straightforward way to perform block matching is shown in Algorithm 13.1, 
BlockMatch1. For each pixel in the left image, a search is conducted for the best dis-
parity, where the best disparity is defined as the one that yields the lowest sum of the 
dissimilarities over a window around the pixel. The w 3 w sized window W is defined 
so that 1 x~, y~ 2 [ W means x~ 5 2w~ , c, w~  and y~ 5 2w~ , c, w~ , where w~ ; :w2 ; is the 
half-width. The algorithm uses two scalars: d̂ which keeps track of the best disparity seen 
so far, and ĝ which holds the score (i.e., the sum of the dissimilarities) of the best disparity. 

Figure 13.9 Disparity gradient constraint. LEFT: The number in each cell shows the magnitude of the disparity gradient (only integer 
values and infinity are shown; empty cells have a non-integral disparity gradient). MIDDLE: The gray cells violate the disparity gradient 
limit k 5 1. RIGHT: The gray cells violate the disparity gradient limit k 5 2. In all plots, the numbers 3, 4, …, 7 along the main diagonal 
indicate the Cyclopean coordinates.

xL
0

0

2

4

6

8

10

2 4 6
10 2

8

1 0 2 6
1 0 2

2 2 2 2 2 2

1

2
4 6 ` 2

` 6 2
4 2 1 0

2 0

0
0 1

6

10

xR

`

3
4

5
6

7

xL
0

0

2

4

6

8

10

2 4 6 8 10

xR
3

4
5

6
7

xL
0

0

2

4

6

8

10

2 4 6 8 10

xR
3

4
5

6
7

# 1 # 2

x x x

ALGORITHM 13.1 Stereo correspondence by block matching

BlockMatch1 1 IL, IR, dmin, dmax 2
Input: left IL and right IR images from a stereo pair, with minimum and maximum disparities
Output: left disparity map

 1 for 1 x, y 2 [ IL do
 2    ĝ d `

 3    for d d dmin to dmax do
 4       g d 0
 5       for 1 x~, y~ 2 [ W do
 6        g d g 1 dissim 1 IL 1 x 1 x~, y 1 y~ 2 , IR 1 x 1 x~ 2 d, y 1 y~ 2
 7       if g , ĝ then
 8        ĝ d g
 9        d̂ d d
10   dL 1 x, y 2 d d̂
11 return dL
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630 Chapter 13 • Stereo and Motion

Not shown in the code is the additional logic to ensure that out-of-bounds errors do not occur 
in Line 6 near the left border of the right image. The procedure is illustrated in Figure 13.10.

BlockMatch1 is a time-consuming algorithm because it contains five nested for loops 
(note that the loops in Lines 1 and 5 are each double loops). The computing time is therefore 
O 1 n2w2dmax 2 , where n is the width or height of the image. This computing time can be 
reduced substantially using the running-sum techniques that we encountered earlier,† which 
take advantage of redundant computations. This leads to BlockMatch2, which produces 
exactly the same results as BlockMatch1 but with a running time of only O 1 1 n2 1 w 2 dmax 2 . 
The algorithm uses a 3D array called D whose dimensions are the dimensions of the image 
by dmax 1 1, and it uses a procedure called ComputeSummedDissimilarities to populate 

† Section 3.3.2 (p. 87).

Figure 13.10 Block matching algorithm. For every pixel in the left image, a search is performed to find the disparity yielding the lowest 
cost. The red cells indicate the dissimilarities that are aggregated in Lines 5–6 of BLOCKMATCH1, while the yellow cells indicate the matches 
considered during the search. Shown is the pixel xL 5 8 with a window size of w 5 5.
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ALGORITHM 13.2 A more efficient version of stereo correspondence by block matching

BlockMatch2 1 IL, IR, dmin, dmax 2
Input: left IL and right IR images from a stereo pair, with minimum and maximum disparities
Output: left disparity map

1  D d  ComputeSummedDissimilarities 1 IL, IR, dmin, dmax 2
2  for 1 x, y 2 [ IL do
3     dL 1 x, y 2 d arg mind D 1 x, y, d 2
4  return dL

ComputeSummedDissimilarities 1 IL, IR, dmin, dmax 2
Input: left IL and right IR images from a stereo pair, with minimum and maximum disparities
Output: 3D array D containing summed dissimilarities

1  for d d dmin to dmax do
2     for 1 x, y 2 [ IL do
3      D 1 x, y, d 2 d dissim 1 IL 1 x, y 2 , IR 1 x 2 d, y 2 2
4    D 1 :, :, d 2 d  Convolve 1D 1 :, :, d 2 , 1w3w 2
5  return D
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13.2 Matching Stereo Images 631

the array. Here the dissimilarity between any two given pixels is computed only once, with 
the aggregation over the window performed afterward by recognizing that summing over a 
window is the same as convolving with a box kernel of the same size. The notation uses 
1w3w to represent a square window of all ones, but note that in a real implementation the 
convolution would be split into two 1D convolutions, since the box kernel is separable. Here 
we use slice notation, so that D 1 x, y, : 2  means the 1 dmax 1 1 2 -dimensional vector whose 
elements are D 1 x, y, d 2 , d 5 0, c, dmax, and D 1 :, :, d 2  is the dissimilarity slice (same 
size as the image) at disparity d.

Our choice of the left image as the reference was arbitrary. Alternatively, we could just as 
easily have performed the search with respect to the right image, as shown in Figure 13.11. In 
a perfect world, both answers would agree, and it would not matter which image we used as 
the reference. In practice, however, the pixels will not always agree, due to occlusion, specular 
reflections, and other phenomena. A convenient trick, called the left-right disparity check, is 
to perform block matching twice, once using the left image as the reference, and once using the 
right image as the reference. Wherever the pixels agree on their answer, the match is accepted 
as reliable, but when they disagree, the match is discarded as unreliable, thus yielding a num-
ber of pixels for which an answer is simply not determined, as illustrated in Figure 13.12.

Conceptually, the code for performing the left-right consistency check is as follows. First 
the search is conducted from left to right to compute the disparity map with respect to the 
left image, and then the search is conducted from right to left to compute the disparity map 

Figure 13.11 Block matching algorithm from the right image. For every pixel in the right image, a search is performed to find the 
disparity yielding the lowest cost. The red cells indicate the dissimilarities that are aggregated when computing the cost of the disparity. 
Shown is the pixel xR 5 5 with a window size of 5. The maximum disparity is not reached, because the window is near the image border.
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Figure 13.12 LEFT TWO COLUMNS: Block matching from the left image finds a disparity (green), while block matching from the right image 
(using the pixel found by the match) finds a different disparity (green). Since the two matches disagree, they are unreliable. RIGHT TWO 
COLUMNS: Both left and right images agree on the disparity, leading to a reliable match.

0
0

2

4

6

8

10

2 4 6 8 10

xR

xL

0
0

2

4

6

8

10

2 4 6 8 10

xR

xL

0

Left and right matches disagree Left and right matches agree

0

2

4

6

8

10

2 4 6 8 10

xR

xL

0
0

2

4

6

8

10

2 4 6 8 10

xR

xL

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



632 Chapter 13 • Stereo and Motion

with respect to the right image. Following these steps, only those answers that are consistent 
between the two disparity maps are retained. Note in Line 4 that the pixel (x,y) in the left 
disparity map is not simply compared with pixel (x,y) in the right disparity map. Rather, 
for a pixel (x,y) in the left disparity map, we must consider its corresponding pixel accord-
ing to the disparity computed for that pixel: namely, 1 x 2 d, y 2 , where d is the disparity 
computed at pixel (x,y).

The code in BlockMatchWithLeftRightCheck1 is inefficient. To optimize the 
algorithm, note that both block match searches use the same matching space. As a result, D 
only needs to be computed once, thereby eliminating redundant computations and yielding 
the more efficient algorithm of BlockMatchWithLeftRightCheck2, whose asymptotic 
running time is the same as that of BlockMatch2. First D is computed. Then, for every 
pixel (x,y) in the left image, its disparity using the left image as the reference is computed. 
Then the disparity computed for the corresponding pixel using the right image as the refer-
ence is checked to see whether it is the same. If both answers agree, then the solution is 
retained; otherwise, ignorance is declared. Results of applying block matching, both with 
and without the left-right disparity check, are shown in Figure 13.13.

13.2.4 Dissimilarity Measures
How should two pixels xL 5 1 xL, yL 2  and xR 5 1 xR, yR 2  be compared? The most straight-
forward approach is to compute either the absolute or squared difference in intensity 
between the two pixels. When the information is aggregated over a window, these two 
choices are known as the sum of absolute differences (SAD) and the sum of squared 
differences (SSD):

  dissim 1 IL 1 xL 2 , IR 1 xR 2 2  5  0IL 1 xL 2 2 IR 1 xR 2 0        
1SAD 2  (13.4)

  dissim 1 IL 1 xL 2 , IR 1 xR 2 2  5  1 IL 1 xL 2 2 IR 1 xR 2 2 2  1SSD 2  (13.5)

Treating the window of intensities as a vector in a high-dimensional space (e.g., 49 dimen-
sions for a 7 3 7 window), the SAD and SSD are equivalent to the L1 norm and the square 
of the L2 norm, respectively, between the two vectors.† Generally speaking, SAD is the 
preferred method due to several advantages: It is faster to compute, is less sensitive to outli-
ers, and its output has the same bit depth as the input. On the other hand, the advantage of 
SSD is that it is differentiable, which makes it more commonly used for computing optical 
flow, as we shall see later in the chapter.

† Recall from Section 4.3.1 (p. 164) that the L1 norm is just the Manhattan distance, and the L2 norm is the 
Euclidean distance.

Figure 13.13 Results of block matching on a stereo image pair. From left to right: the image, the left disparity map, and the disparity 
map after the left-right consistency check.
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13.2 Matching Stereo Images 633

Another option is to compute the similarity between two pixels as the product of their 
intensities:

 dissim 1 IL 1 xL 2 , IR 1 xR 2 2  5  2IL 1 xL 2 IR 1 xR 2               1 cross correlation 2  
where the negative sign is needed to convert to dissimilarity. When aggregated over a 
window, this option is just the negative cross correlation between the two signals. There is 
a fundamental connection between SSD and cross correlation, so that minimizing the SSD 
is approximately the same as maximizing the cross correlation.†

Comparing the raw intensities, as we have just done, is rather simplistic. Not only does 
this approach assume that the surfaces in the world are Lambertian,‡ but it also assumes 
that the cameras have similar photometric characteristics. In practice, however, two cameras 
rarely generate the same gray level, even when receiving the same irradiance. Perhaps 
the simplest photometric model to account for these differences is to assume that the two 

† Problem 13.13.
‡ Section 2.5.4 (p. 61).

ALGORITHM 13.4 More efficient version of stereo correspondence by block matching with left-right disparity check

BlockMatchWithLeftRightCheck2 1 IL, IR, dmax 2
Input: left IL and right IR images from a stereo pair, with maximum disparity
Output: left disparity map

1 D d ComputeSummedDissimilarities 1 IL, IR, 0, dmax 2
2 for 1 x, y 2 [ IL do
3    dL d arg min5D 1 x, y, 0 2 , D 1 x, y, 1 2 , c, D 1 x, y, dmax 2 6
4    dR d arg min5D 1 x 2 dL, y, 0 2 , D 1 x 2 dL 1 1, y, 1 2 , c, D 1 x 2 dL 1 dmax, y, dmax 2 6
5    if dL 5  5 dR then
6      dL 1 x, y 2 d dL

7    else
8      dL 1 x, y 2 d  not-matched
9 return dL

ALGORITHM 13.3 Stereo correspondence by block matching with left-right disparity check

BlockMatchWithLeftRightCheck1 1 IL, IR, dmax 2
Input: left IL and right IR images from a stereo pair, with maximum disparity
Output: left disparity map

1 dL d BlockMatch2 1 IL, IR, 0, dmax 2
2 dR d BlockMatch2 1 IR, IL, 2dmax, 0 2
3 for 1 x, y 2 [ IL do
4    if dL 1 x, y 2 2 2dR 1 x 2 dL 1 x, y 2 , y 2  then
5       dL 1 x, y 2 d  not-matched
6 return dL
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cameras have different gains (multiplicative factors) and biases (additive factors), so that 
the gray levels of corresponding pixels are related by

 IL 1 xL 2 5 aIR 1 xR 2 1 b (13.6)

where a is the relative gain and b is the relative bias between the two cameras. Ideally, 
a 5 1 and b 5 0, but with real cameras the values will often be significantly different from 
ideal. One approach is to estimate a and b, then adjust gray levels of the pixels in IR accord-
ingly, then compare the resulting values directly using SAD, SSD, or cross correlation. 
Removing the effect of the gain and bias is known as photometric (or radiometric) calibra-
tion. Taking this concept a step further, we can adjust for gain and bias adaptively across 
the image, so that different gains and biases are determined for different image locations, 
leading to normalized cross correlation. Alternatively, the Laplacian of Gaussian (LoG)† 
can be used as a prefilter to remove the relative bias between the cameras, although it does 
not remove the relative gain.

Another source of error is the corruption in the pixel values themselves that occurs 
near occluding boundaries. Traditional methods such as SAD, SSD, and correlation are 
based on standard statistical assumptions such as additive Gaussian noise, which model the 
underlying values as arising from a single statistical population. However, when a window 
straddles an occluding boundary, some pixels in the window capture intensities from the 
nearby surface, while other pixels capture intensities from the farther surface. In addition, 
some of the pixels that are visible in one view are occluded in the other view, which corrupts 
the pixel values in a way that is difficult to model directly. As a result, the intensities in the 
window are caused by two distinct subpopulations, a phenomenon known as factionalism.

To better tolerate factionalism, we must turn to nonparametric local transforms that look 
not at the pixel values themselves, but rather at the ordering of the values. One such trans-
form is the rank transform, which computes the number of pixels in the neighborhood 
whose gray level is less than that of the central pixel of the window:

 I~ 1 x 2 5 0 5x r [ N 1 x 2  : I 1 x r 2 , I 1 x 2 6 0  (13.7)

where 0 # 0  denotes the cardinality of the set, and N 1 x 2  is the neighborhood of x. This is a 
preprocessing step which, when applied to both images, results in new pixel values that 
can be used in one of the dissimilarity equations above, such as SAD. Another transform 
is the census transform, which defines a bit string for each pixel, where each bit is 0 or 
1 depending upon whether the pixel in the neighborhood has a smaller value than that of 
the central pixel:

 I~ 1 x 2 5 3h 1 I 1 x 2 2 I 1 x1r 2 2 , c, h 1 I 1 x 2 2 I 1 xnr 2 4T (13.8)

where h is the Heaviside operator mentioned earlier,‡ xir [ N 1 x 2 , and n 5 0N 1 x 2 0  is the 
number of pixels in the neighborhood. Similar to the rank transform, this operator results 
in a new value for each pixel that can then be used in the SAD computation.

13.2.5 Dynamic Programming
The fundamental limitation of block matching is that the disparity for each window is 
computed independently of all the other windows. To enforce a global consistency on the 
solution, the stereo matching problem can be formulated as the minimization of an 

† Section 5.4.1 (p. 242).
‡ Section 10.2.5 (p. 469).
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energy functional.† As a result of the epipolar constraint, the matching problem can be 
viewed as a 1D problem whose goal is to compute the disparity for all pixels along the 
epipolar line (scanline). Typically, the functional is composed of two terms, one correspond-
ing to the data and the other to the smoothness:

 E 1 dL 2 5 ED 1 dL 2 1 lES 1 dL 2  (13.9)

where dL 1 # , # 2  is the left disparity map, and l governs the relative importance of the two 
terms. This formulation can be tied directly to Bayes’ rule, as we have seen before. For the 
data term, the sum of the dissimilarities of the matches is computed. For the smoothness 
term, each pair of neighboring pixels is penalized with different disparities according to a 
potential function V:

  ED 1 dL 2  5  a
xL[IL

dissim 1 IL 1 xL, y 2 , IR 1 xR 1 dL 1 xL, y 2 , y 2 2  (13.10)

  ES 1 dL 2  5  a
xL[IL

V 1 dL 1 xL, y 2 , dL 1 xL 1 1, y 2 2  (13.11)

where V 1 d, d 2 5 0 and V 1 d1, d2 2 5 V 1 d2, d1 2 , so V is at least a semimetric.‡

This functional can be minimized using the Viterbi algorithm we saw earlier.§ To understand 
the approach, let us consider the problem of computing the edit distance between two strings 
of characters. The edit distance, also known as the Levenshtein distance, is defined as the 
minimum number of operations to change one string into another, where an operation is either 
an insertion, deletion, or substitution of a single character. The Levenshtein distance is a gener-
alization of the Hamming distance. Suppose we have two strings s1 and s2, where each string 
is a sequence of characters, and let d 1 s1, s2 2  be the edit distance between them. Dynamic 
programming relies on recursive relations, which for the edit-distance problem are as follows:

d 1 0, 0 2 5 0, where 0 is the empty string;
d 1 s, 0 2 5 d 1 0, s 2 5 ko 0s 0 , where 0s 0  is the length of the string;
d 1 s1 1 c1, s2 1 c2 2 5 min5d 1 s1, s2 2 1 g 1 c1, c2 2 , d 1 s1 1 c1, s2 2  
          1 ko, d 1 s1, s2 1 c2 2 1 ko6

In the second relation, ko is the cost of not matching a letter (which, as we shall see, is 
analogous to a pixel being occluded), while g 1 c1, c2 2  is the cost of associating letter c1 
with c2 (which is similar to the dissimilarity between two pixels). In string matching, we 
normally set ko 5 1 and

 g 1 c1, c2 2 5 b0 if c1 5 c2

1 otherwise
 (13.12)

A commonly used algorithm for computing the edit distance, shown in Algorithm 13.5, 
involves the use of an 1 0s1 0 1 1 2 3 1 0s2 0 1 1 2  array, which we shall call w. The 1 i, j 2 th 
element w 1 i, j 2  is the edit distance between the substrings containing the first i characters 
of s1 and the first j characters of s2. The important property of this algorithm for our pur-
poses is that it not only computes the edit distance, but it also solves the string matching 
problem. That is, once w has been constructed, it contains information that associates the 
characters in the two strings. Therefore, the correspondence between the characters can be 
determined by traversing the array in reverse, beginning with w 1 0s1 0 2 1, 0s2 0 2 1 2, keeping 
track of the previous cell that gave rise to the minimum.

† Functionals are defined in Section 10.2.1 (p. 453).

§ Section 10.2.1 (p. 453).

‡ Section 4.3.1 (p. 164).
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The stereo correspondence problem for two scanlines is strikingly similar to the string 
matching problem, in which each pixel is a letter, the cost to change a pixel is the dissimilarity 
between the two pixels, and the cost to insert or delete a pixel is the penalty for occlusion. 
Pseudocode for the approach is shown in Algorithm 13.6, where ExtractPathStereo is 
similar to ExtractPath. For a real implementation, it is helpful to keep track of which 
previous cell gave rise to the minimum in Line 3 to make the path extraction easier. Another 
improvement is to model occlusions explicitly by treating the two scanlines symmetrically, 
but this involves slightly more bookkeeping.

13.2.6 Energy Minimization in 2D
While dynamic programming is able to find the global minimum of a 1D energy functional 
along a given scanline, images are inherently 2D. Applying dynamic programming to each 
scanline independently therefore leads to horizontal streaks in the resulting disparity maps. 

ALGORITHM 13.5 Compute the edit distance between two strings of characters

StringMatching 1 s1, s2 2
Input: strings s1 and s2
Output: cost of matching the two strings, and the matching function between them

 1 for x1 d 0 to 0s1 0 2 1 do
 2    w 1 x1, 0 2 d x1 
 ko

 3 for x2 d 0 to 0s2 0 2 1 do
 4    w 1 0, x2 2 d x2 
 ko

 5 for x1 d 1 to 0s1 0 2 1 do
 6    for x2 d 1 to 0s2 0 2 1 do
 7      w 1 x1, x2 2 d min5w 1 x1 2 1, x2 2 1 ko, w 1 x1, x2 2 1 2 1 ko, w 1 x1 2 1, x2 2 1 2 1 g 1 s1 1 x1 2 , s2 1 x2 2 2 6
 8 match d  ExtractPath 1w 2
 9 return w 1 0s1 0 2 1, 0s2 0 2 1 2 , match

ExtractPath 1w 2
Input: 2D array of costs computed between two strings
Output: list of matches between the strings

 1 x1 d 0s1 0
 2 x2 d 0s2 0
 3 while x1 $ 0 and x2 $ 0 do
 4    if w 1 x1, x2 2  5   5 w 1 x1 2 1, x2 2 1 ko then
 5       x1 d x1 2 1
 6    elseif w 1 x1, x2 2  5   5 w 1 x1, x2 2 1 2 1 ko then
 7      x2 d2 1
 8    else
 9      x1 d2 1
10      x2 d2 1
11      match: Push 1 x1, x2 2
12 return match
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13.2 Matching Stereo Images 637

To overcome this limitation, one approach, known as semi-global matching, repeatedly 
performs dynamic programming along lines in the image that are not necessarily the scanlines. 
In contrast, another class of approaches explicitly minimize a 2D energy functional, such as

E 1 dL 2 5 a1x,y2  dissim 1 IL 1 x, y 2 , IR 1 x 1 dL 1 x, y 2 , y 2 2 1 la1x,y2 a1xr, yr2[N 1  x, y2V 1 d 1 x, y 2 , d 1 x r, y r 2 2  (13.13)

where the Potts model is a popular way to enforce piecewise smoothness: V 1 d, d r 2 5 0 
if d 5 d r, or 1 otherwise. Most algorithms for minimizing such a 2D energy functional are 
based on either multiway cuts, which we saw earlier,† or Bayesian belief propagation. 
Belief propagation is an inference technique for graphs that involves maintaining probability 
distributions at the nodes and passing messages between nodes to update these distributions. 
When the graph contains cycles (as is the case with images), the approach is known as loopy 
belief propagation.

13.2.7 Active Stereo
So far we have discussed algorithms for passive stereo vision, an approach that most closely 
mimics the way that the human visual system estimates depth. Another passive approach 
to depth estimation is photometric stereo, in which two images are taken by the same 
camera at the same location but under different lighting conditions—mild assumptions on 
the surface albedo then allow the recovery of depth. Alternatively, depth from defocus 
uses multiple images taken with different focal lengths to estimate depth from the amount of 
energy in the derivative of the graylevel signal (since blurring the image reduces the values 
in the derivative). Such passive systems have struggled for many years to produce dense 
depth measurements that have sufficient accuracy and resolution for real-world applications.

As a result, most commercially successful depth sensors rely on active sensing, in 
which light is projected onto the scene, and the light is sensed in some way. Active systems 
overcome the most vexing problem for passive stereo matching—namely, the lack of visual 
texture. In other words, when the scene contains areas without significant visual texture, 
then there is not enough local information to reliably estimate the disparity in those regions 
by simply matching patches of pixel values. This problem is particularly acute in indoor 
scenes, which often consist of large uniformly colored regions.

†† Section 10.4.4 (p. 506)

ALGORITHM 13.6 Stereo correspondence by dynamic programming

StereoDynamicProgramming 1 IL, IR, dmax 2
Input: left IL and right IR images from a stereo pair, with maximum disparity
Output: left disparity map

1 for y d 0 to height 2 1 do
2    for xL d 1 to width 2 1 do
3      wprev d min5w 1 xL 2 1, 0 2 , c, w 1 xL 2 1, dmax 2 6
4      for d d 0 to dmax do
5         w 1 xL, d 2 d min5wprev 1 k, w 1 xL 2 1, d 2 6 1 dissim 1 IL 1 xL, y 2 , IR 1 xL 1 d, y 2 2
6    dL 1 :, y 2 d ExtractPathStereo 1w 2
7 return dL
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One such active sensor is the laser range finder, which measures the depth of a single 
point. A laser beam is shone on the scene, and the beam’s reflection from a surface in the 
world is sensed by a photodetector (such as a photodiode) placed near the laser. The dis-
tance to the surface is then measured as half the travel time multiplied by the speed of light. 
Combining a laser range finder with one or more rotating mirrors to change the orientation 
of the emitted ray yields a scanning lidar (“light radar”), also known as a laser scanner. 
Laser scanners can include either a single rotating mirror, in which case depth is measured 
only within a plane in the scene, or a pair of coupled rotating mirrors, in which the depth is 
measured at all points visible from the sensor.

While laser scanners are widely used in applications that can justify their high cost, the 
consumer market has only recently begun to be penetrated by depth sensors that are based 
on more inexpensive technology. One such approach, known as a time-of-flight (TOF) 
camera, involves shining light via either an LED (light-emitting diode) or laser diode and 
measuring the time required for the light to reflect off surfaces in the scene. As a result, 
a time-of-flight camera can be thought of as a scannerless laser scanner, since the entire 
scene is captured simultaneously without any moving parts. An alternate approach, known 
as structured light, uses a video projector that emits specific patterns of noncoherent light. 
These patterns are then detected by a camera and matched with the known emitted patterns 
to recover depth via triangulation, in a manner similar to stereo. An example depth image 
captured by a structured light depth sensor is shown in Figure 13.14.

13.3 Computing Optical Flow
Having considered the problem of estimating the one-dimensional displacement (disparity) 
between corresponding pixels in a pair of stereo images, in this section we address a closely 
related problem, namely to estimate the two-dimensional displacement (velocity) between 
corresponding pixels in a pair of consecutive image frames in a video sequence.

13.3.1 Motion Field
Suppose a video camera is viewing a scene in which either the objects and/or camera are 
moving. Associated with each point in the scene is a 3D velocity vector that captures the 
velocity of the point relative to the camera. The motion field is defined as the projec-
tion onto the 2D image plane of the 3D velocity vectors of all the points in the scene. For 
example, if you are driving a car in a straight line while looking forward, the 2D vectors in 
the motion field emanate from a single point in the image, which is known as the focus of 
expansion, as illustrated in Figure 13.15. On the other hand, if you are looking backward 

Figure 13.14 An 
example of an 
RGB image (left) 
and a depth 
image (right) 
captured by the 
Kinect active 
stereo system. 
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13.3 Computing Optical Flow 639

(and hopefully someone else is driving!), then the 2D vectors all aim toward a single point, 
called the focus of contraction. Finally, if you look to the side of the vehicle, then all the 
vectors are parallel in the image, analogous to a rectified stereo pair of images.

To quantify the motion field, let p 5 3  px py pz 4T be a world point in the camera 
coordinate frame. Assuming a pinhole camera model with the z axis aligned with the opti-
cal axis, the projection of the point onto the image plane, from Equations (2.1)–(2.2), is 1 x, y 2 5 Q  

f px

pz
, f py

pz
R. If the relative motion between p and the camera is given by the transla-

tion t 5 3  tx ty tz 4T and rotation v 5 3vx vy vz 4T velocities, then the velocity of 
the point in 3D is given by the translation minus the vector cross product of the rotation 
and the point:

 
d p
dt

5 t 2 v 3 p 5 C2tx 2 vy 
pz 1 vz  

py

2ty 2 vz  
px 1 vx  

pz

2tz 2 vx  
py 1 vy 

px

S  (13.14)

Differentiating the projected coordinates (x, y) with respect to time t yields the image 
velocity u ; 3u v 4T, where

 u ;  
dx
dt
 5  

f

pz
2 ¢pz 

dpx

dt
2 px 

dpz

dt
≤ 5

x tz 2 f tx
pz

2 fvy 1 yvz 1
x yvx

f
2

x2vy

f
 (13.15)

 v ;  
dy

dt
 5  

f

pz
2 ¢pz 

dpy

dt
2 py 

dpz

dt
≤ 5

ytz 2 f ty
pz

1 fvx 2 xvz 2
x yvy

f
1

y2vx

f
 (13.16)

Note that in both equations the depth pz only appears in the first term, which involves 
translation, whereas the other terms involve rotation. That is, the depth and rotation are 
decoupled, because rotation of the camera about its focal point yields no parallax (the 
apparent displacement as seen from two different points of view) and hence no depth 
information.

Let us consider a few special cases. If the motion is pure translation, then v 5 0, 
leading to

  u 5  
xtz 2 f tx

pz
5

tz
pz

 ¢x 2
f tx
tz
≤  (13.17)

  v 5  
ytz 2 f ty

pz
5

tz
pz

 ¢y 2
f ty
tz
≤  (13.18)

Figure 13.15 Examples of motion field. From left to right: When looking in the direction of motion, all vectors emanate from the focus 
of expansion; when looking in the direction opposite that of the motion, all vectors terminate on the focus of contraction; when looking 
parallel to the direction of motion, all vectors are parallel, and their magnitude is inversely proportional to their distance from the camera.
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This motion field is radial, emanating from the point A  
f tx
tz , f ty

tz B, which is the intersection of the 
image plane with the translation vector. This point is either the focus of expansion (if tz , 0),  
or the focus of contraction (if tz . 0); it is also known as the instantaneous epipole.

If, in addition to v 5 0, there is no motion along the optical axis, tz 5 0, then

  u 5  2 

f tx
pz

 (13.19)

  v 5  2 

f t y

pz
 (13.20)

In this case, all motion vectors are parallel, and the epipoles (which we shall define more 
precisely later) are at infinity. If, in addition, ty 5 0, the equations reduce to those of recti-
fied stereo:

  u 5  2 

f tx
pz

 (13.21)

  v 5  0  (13.22)

where tx is the baseline, or translation between the two locations of the focal point, relative 
to the scene; and the displacement (or disparity, in this case) is inversely proportional to 
depth, as we saw earlier. Keep in mind that if the scene is static and the camera is moving, 
then all the equations of this section are applicable to the entire image, or if a single rigid 
object is moving, then they are applicable only to the pixels on that object.

13.3.2 Optical Flow
Unlike the motion field, which is the actual projected motion, optical flow† refers to the 
apparent motion of the brightness patterns in the image plane. In an ideal world, these two 
would be equivalent, but there are some obvious pathological cases in which the two are 
very different. For example, the famous barberpole illusion arises because the diagonal 
stripes appear to be moving vertically in the image, when in reality they are moving hori-
zontally. Similarly, a rotating ping pong ball with no texture will appear not to be moving 
even though it is; and a specular reflection on a shiny surface will appear to be moving as 
the viewpoint (or lighting source) location is changed, even though in reality the surface 
itself is not changing.

The motion field and optical flow are identical when the projected pixel values of 
points in the scene remain the same throughout the image sequence. This is known as the 
brightness constancy assumption. Consider a point in the world that projects onto the 
image plane at the 2D location (x(t), y(t)) at time t, so that the trajectory of the projection 
over time is described by the functions x 1 # 2  and y 1 # 2 . At some small time Dt later, therefore, 
the point projects to 1 x 1 t 1 Dt 2 , y 1 t 1 Dt 2 2 . If we assume that the brightness (or, more 
accurately, gray level) of the projected point remains constant, then we have

 I 1 x 1 t 1 Dt 2 , y 1 t 1 Dt 2 , t 1 Dt 2 5 I 1 x 1 t 2 , y 1 t 2 , t 2  (13.23)

where we have introduced a third parameter, t, to the function I 1 # , # 2  to specify which image 
in the sequence is meant. This equation says that every pixel in one image (the one captured 
at time t) has the same gray level as the corresponding pixel in the other image (the one 

† Referred to as optic flow in the vision science community.
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captured at time t 1 Dt), where the correspondence is determined by the projection of the 
actual motion of the point in space.

You may recall that a continuously differentiable 1D function f(x) can be approximated 
around a point x0, using the Taylor series expansion:

 f 1 x 2 < f 1 x0 2 1 1 x 2 x0 2  

df 1 x0 2
dx

1 c (13.24)

where only the linear term is shown. For a function of multiple variables, the differentiation 
must be performed with respect to each variable. Therefore, the Taylor series expansion of 
the left-hand side of Equation (13.23) around the point (x(t), y(t), t), ignoring all higher-
order terms, is

  I 1 x 1 t 1 Dt 2 , y 1 t 1 Dt 2 , t 1 Dt 2  <  I 1 x 1 t 2 , y 1 t 2 , t 2  

  1 1 x 1 t 1 Dt 2 2 x 1 t 2 2  

@I
@x

 

  1 1 y 1 t 1 Dt 2 2 y 1 t 2 2  

@I
@y

 

  1Dt 

@I
@t

 (13.25)

which, due to the constant-brightness assumption in Equation (13.23) leads to

 1 x 1 t 1 Dt 2 2 x 1 t 2 2  

@I
@x

1 1 y 1 t 1 Dt 2 2 y 1 t 2 2  

@I
@ y

1 Dt 

@I
@t

< 0 (13.26)

Dividing both sides by Dt and taking the limit as Dt S 0 yields

lim
DtS0

 
1 x 1 t 1 Dt 2 2 x 1 t 2 2

Dt
 
@I
@x

1 lim
DtS0

 
1 y 1 t 1 Dt 2 2 y 1 t 2 2

Dt
 
@I
@ y

1
@ I
@ t

< 0 (13.27)

or, according to the definition of derivatives,†

 
d x
d t

 
@ I
@  x

1
d y

d t
 
@I
@ y

< 2
@ I
@ t

 (13.28)

This is the standard optical flow constraint equation, which, as you can see, is somewhat 
of a misnomer, since it is not an equation at all but rather an approximation. Nevertheless, 
we shall retain the conventional terminology while leaving the approximation intact to 
remind us that it is based on the linearized Taylor series. The importance of this reminder 
will become apparent in a moment. In the meantime, we note that the equation can be writ-
ten more compactly as the dot product between two vectors:

 1rI 2Tu < 2It (13.29)

† The derivatives of x and y are total derivatives because the functions depend on only one variable, whereas the 
derivatives of I are partial derivatives because it depends on multiple variables; although the distinction is not 
important for our purposes. The derivation of this equation is sometimes attributed to the chain rule of differentia-
tion applied to the total derivative of the image: dI

dt 5 0, but the total derivative of a function of several variables is 
its gradient, which is not a scalar but a vector.
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where rI ; 3Ix Iy 4T ; 3@I/@x @I/@y 4T is the gradient of the image intensity function, 
u ; 3u v 4T 5 3dx/dt dy/dt 4T is the unknown image velocity, and It ; @I/@t is the 
partial derivative of the image with respect to time. In practice, we often use two consecutive 
images in a video sequence, so that Dt 5 1, and the continuous derivatives are approximated 
by finite differences:

u 5
d x
d t

< x 1 t 1 1 2 2 x 1 t 2   v 5
d y

d t
< y 1 t 1 1 2 2 y 1 t 2  @ I 1 x, y, t 2

@ t
< I 1 x, y, t 1 1 2 2 I 1 x, y, t 2  (13.30)

in which case the unknown velocities u and v are actually displacements along the x and y 
axes between consecutive images.

The single scalar equation in Equation (13.28) has two unknowns, meaning that the 
problem of estimating the motion of a single pixel is underconstrained. This is known as the 
aperture problem, which receives its name from the idea that viewing a small part of the 
image (as if through a small aperture) would not enable the resolution of both components 
of the velocity vector. Instead, only the component of motion in the direction of the gradient, 
or, equivalently, normal to the graylevel isocontour, can be computed:

 un 5
2It

irIi
5

1rI 2Tu
irIi

5 a rI7rI 7 bT

 u (13.31)

To better visualize the optical flow constraint equation, it may be helpful to consider an 
object moving horizontally in the image at approximately constant velocity, as shown in 
Figure 13.16. In 1D, the augmented displacement vector, given by u~ 5 1D x, D t 2 , is tangent 
to the graylevel isocontour, which itself is perpendicular to the gradient of I(x, t), so that 
u~TrI 5 3D x D t 4 3Ix It 4T 5 Ix 

D
 
x 1 It  

D
 

t 5 0. Assuming that Dt 5 1 (i.e., consecutive 
image frames), this yields Ix 

D
 
x 5 2It. Extending to 2D, similar reasoning leads to 

Ix 
D

 
x 1 Iy 

Dy 5 2It, which is the optical flow constraint equation above.

13.3.3 Lucas-Kanade Algorithm
One way to overcome the aperture problem is to assume that all pixels in a small region 
share the same image motion. This assumption leads to the well-known Lucas-Kanade† 
method. Recall that for a single pixel at location x 5 3x y 4T, the optical flow constraint 
equation is Ix 1 x 2 u 1 Iy 1 x 2 v < 2It 1 x 2 , where u 5 3u v 4T. Let us now reinterpret this 
approximation as the following equation:

 Ix 1 x 2 uD 1 Iy 1 x 2 vD 5 2It 1 x 2  (13.32)

† pronounced kah-NAH-deh.

Figure 13.16 Visualization of the optical flow 
constraint equation (OFCE) using a 1D image, 
showing that the augmented displacement 
vector u~ of a point is parallel to the graylevel 
isocontour at that point, and therefore 
perpendicular to the augmented gradient vector. 
Shown is an illustration (left) and an actual slice 
(right) through a spatiotemporal volume of an 
image sequence, in which a thin object moves to 
the right faster than the rest of the scene.
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13.3 Computing Optical Flow 643

where uD ; 3uD vD 4T is the incremental displacement of the pixel about the current esti-
mate, and the approximation has become an equation because uD describes the displace-
ment captured by the linearized equation, rather than the u that we are ultimately trying to 
estimate, that is,

 u 5 u  0 1 uD
112 1 uD

122 1 uD
132 1 c (13.33)

where u0 is the initial motion estimate, and uD
1i2 is the incremental displacement computed 

in the ith iteration.
If we now assume that all the pixels x1, c, xn in a region R 5 5xi6  i51

n  share the same 
image motion, then we can stack their equations to yield an overdetermined linear system:

 

DIx 1 x1 2 Iy 1 x1 2
Ix 1 x2 2 Iy 1 x2 2

( (
Ix 1 xn 2 Iy 1 xn 2 T(''')'''*

A

BuD

vD
R 5

 

 

2DIt 1 x1 2
It 1 x2 2

(
It 1 xn 2 T

   
(')'*

   b

 (13.34)

where n is the number of pixels in the region, A is the n 3 2 matrix containing the spatial 
derivatives of the image at the pixels, and b is the n 3 1 vector containing the temporal 
derivatives. The temporal derivative is usually approximated by simply subtracting the two 
images from each other: It 1 x 2 < J 1 x 2 2 I 1 x 2 , where I is the current image, and J is the 
next image in the video sequence; such a finite difference is a reasonable approximation to 
the derivative, and it is easy to compute.

The system of equations can be made more compact by multiplying both sides by AT:BIx 1 x1 2 c Ix 1 xn 2
Iy 1 x1 2 c Iy 1 xn 2 R

(''''')'''''*
AT

CIx 1 x1 2 Iy 1 x1 2
( (

Ix 1 xn 2 Iy 1 xn 2 S('''')'''*
A

BuD

vD
R 5 2BIx 1 x1 2 c Ix 1 xn 2

Iy 1 x1 2 c Iy 1 xn 2 R
(''''')''''*

AT

DIt 1 x1 2
It 1 x2 2

(
It 1 xn 2 T

 

 

(13.35)

or

a
x[R

B Ix
2 1 x 2 Ix 1 x 2 Iy 1 x 2

Ix 1 x 2 Iy 1 x 2 Iy
2 1 x 2 R

('''''')'''''''*
Z

BuD

vD
R 5

 

2 a
x[R

BIx 1 x 2 It 1 x 2
Iy 1 x 2 It 1 x 2 R

  
(''')'''*

e
 

(13.36)

where Z 5 ATA is the 2 3 2 gradient covariance matrix that we saw in Equation (7.29), 
and e 5 ATb is a 2 3 1 vector. Therefore, solving the linear system AuD 5 b is equivalent 
to solving ATAuD 5 ATb, or ZuD 5 e. If we let zx, zy, and zxy be the elements of Z, as in 
Equation (7.29), and ex and ey be the elements of e, then the equation is easily solved as

 uD 5 BuD

vD
R 5

1
det 1Z 2  Bzy 

ex 2 zx y 
ey

zx 
ey 2 zx y 

ex
R  (13.37)

where det 1Z 2 5 zxzy 2 zxy
2  is the determinant of Z.

Now let us consider the difference between u and uD. The preceding analysis assumes 
that the image intensity function is well represented by a linear approximation in the 
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644 Chapter 13 • Stereo and Motion

neighborhood of the current estimate. This is known as the small motion assumption, 
and it causes the Taylor series to be truncated to the linear term. To obtain the final result, 
therefore, we need to iteratively apply this technique, each time linearizing about the new 
estimate. This approach is known as the Gauss-Newton method, and it is can be thought 
of as a simplification of Newton’s method that is applicable in the case of a squared error 
function, as here. In both techniques the equation is repeatedly linearized about the new 
estimate to find the root of a function, but Gauss-Newton obviates the need for second 
derivatives due to the special structure of the problem being solved.

To visualize an iteration of the procedure, Figure 13.17 shows the one-dimensional inten-
sity profile of an image I, along with the profile of the next image J in the video sequence. It 
is obvious that the brightness constancy assumption holds because the shape of the two pro-
files is identical, the only difference being the relative shift between them. A right triangle 
is drawn from the value of the current estimate I 1 x0 2  to the value in the next image J 1 x0 2 ; 
from that point, a diagonal line is drawn using Ix 1 x0 2 , which is the slope of I computed at 
x0. A horizontal line from I 1 x0 2  completes the triangle. It should be clear from the drawing 
that the length of the horizontal base of the triangle is the unknown uD, whereas the vertical 
distance is simply the temporal derivative estimate J 1 x0 2 2 I 1 x0 2 < It, and the slope is the 
spatial derivative. Since Ix is the slope (“rise over run”), we have Ix 1 x0 2 5 2It 1 x0 2 /uD, or

 uD 5 2
It 1 x0 2
Ix 1 x0 2  (13.38)

which is simply the one-dimensional version of the optical flow constraint equation.
Once uD has been computed, the images are shifted by uD to bring them closer together. 

Then the process is repeated until convergence. Conceptually, it does not matter whether the 
shift is applied to the first or second image—that is, whether I is moved (to the right, in our 
example) or J is moved (to the left), since either way produces essentially the same result. 
However, for computational efficiency it is better not to shift the image for which the spatial 
derivatives were computed so that those derivatives can be reused in subsequent iterations. 
As a result, we adopt the convention of shifting J instead of I, a process sometimes known 
as the inverse warp.

We are now ready to provide the pseudocode for Lucas-Kanade in Algorithm 13.7, which 
shows the steps for computing the displacement of a single set of pixels R, which is usu-
ally a square window around the central pixel. First the spatial gradient of the image I is 
computed, then uD is solved for iteratively, effectively shifting J each time. The computation 
terminates when the minimization converges, as evidenced by the norm of uD falling below 
a threshold, or when a maximum number of iterations has been reached. Typically no more 
than 10 iterations are needed for good accuracy, and oftentimes as few as three to five are 

Figure 13.17 One-dimensional 
illustration of the small 
motion assumption made by 
the optical flow constraint 
equation.
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13.3 Computing Optical Flow 645

ALGORITHM 13.7 Lucas-Kanade optical flow for a single region

LucasKanade(I, J, R)

Input: images I and J, and region R
Output: the 2D displacement u of the pixel represented by R

 1 u d 0
 2 iter d 0
 3 Gx, Gy d  Gradient(I )
 4 repeat
 5    Z d  Compute2x2GradientMatrix 1Gx, Gy, R 2
 6    e d  Compute2x1ErrorVector 1 I, J, Gx, Gy, R, u 2
 7    uD d  Solve2x2LinearSystem(Z, e)
 8    u d u 1 uD

 9    iter d1 1
10 until 7uD 7 , threshold or iter $ max-iter
11 return u

Compute2x2GradientMatrix 1Gx, Gy, R 2
Input: gradient images Gx and Gy, and region R
Output: elements of 2 3 2 gradient covariance matrix Z 5 B zx zxy

zxy zy
R

1 zx d zxy d zy d 0
2 for 1 x, y 2 [ R do
3    zx   

d1 Gx 1 x, y 2  
 Gx 1 x, y 2
4    zxy d1 Gx 1 x, y 2  
 Gy 1 x, y 2
5    zy   

d1 Gy 1 x, y 2  
 Gy 1 x, y 2
6 return zx, zxy, zy

Compute2x1ErrorVector 1 I, J, Gx, Gy, R, u 2
Input: images I and J, gradient images Gx and Gy, region R, and initial displacement u 5 3u v 4T
Output: elements of 2 3 1 error vector e 5 3ex ey 4T
1 ex d ey d 0
2 for 1 x, y 2 [ R do
3    ex d1 Gx 1 x, y 2  
 1 I 1 x, y 2 2 J 1 x 1 u, y 1 v 2 2  ➤ @ I/@ t < J 2 I, so 2@ I/@ t < I 2 J.
4    ey d1 Gy 1 x, y 2  
 1 I 1 x, y 2 2 J 1 x 1 u, y 1 v 2 2
5 return ex, ey

Solve2x2LinearSystem(Z, e)

Input:  2 3 2 matrix Z and 2 3 1 error vector e 5 3ex ey 4T
Output: displacement 3uD vD 4T that solves the equation

1  det d zx 
 zy 2 zxy 
 zxy

2  uD d 1 1/det 2  
 1 zy 
 ex 2 zxy 
 ey 2
3  vD d 1 1/det 2  
 1 zx 
 ey 2 zxy 
 ex 2
4 return uD, vD

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



646 Chapter 13 • Stereo and Motion

needed. The astute reader will notice that the Compute2x2GradientMatrix call in Line 5 
depends only upon parameters that do not change each iteration and can therefore be pulled 
out of the loop to reduce computation.

Lucas-Kanade is usually used to track a sparse number of feature points throughout a 
video sequence, as shown in Algorithm 13.8. These features are selected in the first image 
frame by computing the Harris or Tomasi-Kanade cornerness measure† using Z over all 
pixels in the image, then performing nonmaximal suppression and selecting the most promi-
nent features. A rectangular window, usually 7 3 7 or larger, of pixels is associated with 
each feature, and Lucas-Kanade is used to find the displacement between each consecutive 
pair of image frames for each feature. One detail to keep in mind is that, after solving the 
2 3 2 system in the first iteration, the value for u is no longer an integer; as a result, the 
function Compute2x1ErrorVector needs to access non-integral pixel values, which is 
usually performed with bilinear interpolation.‡ Similarly, after the first pair of image frames, 
the feature coordinates will not be integers either, so that I, J, Gx, and Gy need to access 
non-integral pixel values in both Compute2x2GradientMatrix and 
Compute2x1ErrorVector. The result of Lucas-Kanade tracking on a pair of frames from 
a video sequence is shown in Figure 13.18.

† Section 7.4 (p. 342).
‡ Section 3.8.2 (p. 110).

ALGORITHM 13.8 Lucas-Kanade tracking of features throughout a video sequence

LucasKanadeSequence 1 I0:m, window-width 2
Input: sequence of 2D images I0, I1, c, Im and width of square feature window
Output: 2D positions of all features in all frames

1 features 1 :, 0 2 d  SelectGoodFeatures 1 I0 2
2 for i d 1 to m do
3    for j d 1 features.Size do
4       u d  LucasKanade(Ii21, Ii, SquareRegion(  features(  j, i 2 1), window-width))
5       features 1   j, i 2 d features 1  j, i 2 1 2 1 u
6 return features

Figure 13.18 Two frames 
of a video sequence, with 
Lucas-Kanade features 
overlaid as red dots.
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13.3 Computing Optical Flow 647

13.3.4 Generalized Lucas-Kanade
One of the advantages of the Lucas-Kanade approach is that it naturally generalizes to 
other motion models. To understand how this works, let us derive the equation ZuD 5 e 
in an alternate manner using the Taylor series expansion, beginning with the same transla-
tion model that we have been considering. Then we will show how this alternate approach 
generalizes to other models.

Consider a region of pixels R in an image I, and a translation u that offsets the region 
in another image J. The sum-of-squared differences (SSD) between the intensities of the 
two sets is given by

 error 5 a
x[R

1 I 1 x 2 u 2 2 J 1 x 2 2 2 (13.39)

where u is the unknown displacement that we are trying to find. Although J 2 I was con-
sidered earlier to be an approximation to It, this alternate formulation makes it clear that 
the two images do not have to be adjacent frames in a video sequence but rather can be any 
two image patches, such as the current image and a reference template.

Given our previous experience with the Taylor series expansion of a function of multiple 
variables, such as Equation (7.24), it should not be hard to see that the linearized expansion 
of I about the point 1 x 2 u 2  is given by

 I 1 x 2 u 2 < I 1 x 2 2 uD 

@ I
@ x

 1 x 2 2 vD 

@ I
@ y

 1 x 2  (13.40)

where the notation is slightly abused by replacing u with uD ; 3uD vD 4T. Substituting 
back into Equation (13.39) yields

 error 5 a
x[R

aI 1 x 2 2 J 1 x 2 2 uD 

@I
@ x

 1 x 2 2 vD 

@ I
@ y

 1 x 2 b2

 (13.41)

Note that the expression inside the parentheses is none other than the left side of the optical 
flow constraint equation, if we let J 2 I < It. In other words, just as the left side of the 
optical flow constraint equation should be equal to zero under the constant brightness 
assumption, the linear approximation of the SSD dissimilarity of two intensity patches also 
seeks to minimize this value.

To find the motion, simply differentiate with respect to the unknowns and set the result 
to zero:

 
@ error
@ uD

5 2 a
x[R

1 I 1 x 2 2 J 1 x 2 2 1rI 1 x 2 2TuD 2rI 1 x 2 5 0 (13.42)

which, after rearranging terms, yields the same formula that we derived before:

 
¢ a

x[R
rI 1 x 2 1rI 1 x 2 2T≤uD 5 a

x[R
rI 1 x 2 1 I 1 x 2 2 J 1 x 2 2

('''')''''*
Z

(''''')'''''*
e

 (13.43)

Although it may not yet look like we have accomplished much, the power of this technique 
becomes apparent when we want to generalize to other motion models. For example, 
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648 Chapter 13 • Stereo and Motion

consider the SSD error using an affine transformation which, as explained earlier,† is an 
approximation to perspective projection:

 error 5 a
x[R

1 I 1Dx 1 d 2 2 J 1 x 2 2 2 (13.44)

where

 D ; B1 1 d1 d2

d3 1 1 d4
R  (13.45)

so that d1 5 d2 5 d3 5 d4 5 0 causes D to reduce to the identity matrix, and d ; 3dx dy 4T. 
The linearized Taylor series approximation is similar to before:

I 1D x 1 d 2 < I 1 x 2 1 1 d1x 1 d2 
y 1 dx 2  

@ I
@ x

 1 x 2 1 1 d3 
x 1 d4 

y 1 dy 2  

@ I
@ y

 1 x 2  (13.46)

If we collect the unknowns into a single vector p ; 3d1 d2 dx d3 d4 dy 4T, and 
if we define g 1 x 2 ; 3xIx yIx Ix xIy yIy Iy 4T, then it is not difficult to show that

 
@ error
@ p

 5  2 a
x[R

1 I 1D x 1 d 2 2 J 1 x 2 2  g 1 x 2 5 056316 (13.47)

which leads to the following 6 3 6 linear set of equations:

 ¢ a
x[R

g 1 x 2 gT 1 x 2 ≤pD 5 a
x[R

1 I 1 x 2 2 J 1 x 2 2  g 1 x 2  (13.48)

The similarity between Equations (13.43) and (13.48) should be obvious, with the 6 3 1 
vector g(x) playing the role of the image gradient, and the 6 3 1 vector pD substituting  
for uD.

The result can be generalized even further. For the case of an arbitrary warp function 
x r 5 W 1 x; p 2  that maps pixels in one image to the corresponding pixels in the other image, 
where p are the parameters of the warp function, the sum-of-squared differences (SSD) is 
given as

 error 5 a
x[R

1 I 1W 1 x; p̂ 1 pD 2 2 2 J 1 x 2 2 2 (13.49)

where p̂ is the current estimate of the parameters, and pD represents the incremental warp 
that will be found by the algorithm in the current iteration. Our goal is to find the best 
warp to align the two images so as to minimize the SSD. Using the first-order Taylor series 
approximation, we have

  I 1W 1 x; p̂ 1 pD 2 2  <  I 1W 1 x; p̂ 2 2 1 1W 1 x; p̂ 1 pD 2 2 W 1 x; p̂ 2 2T
 

@ I
@ x

 (13.50)

  
<  I 1W 1 x; p̂ 2 2 1 pD

T  a@ W
@ p

bT

 
@ I
@ x('')''*

g 1x2  (13.51)

† Section 3.9.4 (p. 124).
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where the second equation comes from the Taylor series expansion of the warp:

 W 1 x; p̂ 1 pD 2 < W 1 x; p̂ 2 1
@ W
@ p

 pD (13.52)

where I 1 # 2  is a scalar, rI 5 @I/@ x and W 1 # 2  are 2 3 1, @W/@ p is the 2 3 m Jacobian, 
and pD and g(x) are m 3 1, where m is the number of parameters in the warp. Differentiating 
with respect to the unknown parameters and setting the result equal to zero yields

 
@ error
@ pD

5 a
x[R

2 1 I 1W 1 x; p̂ 2 2 2 J 1 x 2 1 pD
T g 1 x 2 2 g 1 x 2 5 0 (13.53)

which, after rearranging terms, yields a linear system of equations in the unknown 
parameters pD:

 
¢ a

x[R
g 1 x 2 gT 1 x 2 ≤pD 5 a

x[R

1 I 1 x 2 2 J 1W21 1 x; p̂ 2 2 2  g 1 x 2
(''')'''*

H

(''''''')'''''''*
e

 (13.54)

or HpD 5 e, where the inverse warp is applied to J rather than the forward warp to I to avoid 
having to recompute the image gradient at each iteration.

Pseudocode for the generalized version of Lucas-Kanade, provided in Algorithm 13.9, is 
not substantially different from the specific cases considered above. First, the gradient of the 
image is precomputed and used to construct m steepest descent images g(x), along with an 
outer product matrix H. At each iteration, the image J is warped (using the inverse warp) to 
construct the vector e. Solving the linear system yields the incremental warp pD, which is 
composed with the current warp estimate to yield a new warp estimate. Because the inverse 
warp is used† and the incremental warps are composed rather than added, this pseudocode 

† Note that the roles of the images have been reversed, so that the image I for which the gradients are computed is differ-
ent from the image J to which the inverse warp is applied; this inversion of roles is the key to computational efficiency.

ALGORITHM 13.9 Lucas-Kanade alignment of two image patches using an arbitrary warp function

LucasKanadeGeneral 1 I, J, R, p̂ 2
Input: images I and J, region R, and current estimate p̂ of the warp parameters
Output: updated estimate p̂ of the warp parameters

 1 pD d 0
 2 iter d 0
 3 rI d  Gradient(I ) Compute gradient of image that is not being warped.
 4 compute g 1 x 2 d 1 @ W

@
  

p 2T rI for all x [ R Compute steepest descent images.

 5 H d ax[R
 g 1 x 2 gT 1 x 2  Compute outer product matrix.

 6 repeat
 7    e d ax[R

1 I 1 x 2 2 J 1W21 1 x; p̂ 2 2 2  g 1 x 2  Compute error vector.

 8    pD d Solve 1H pD 5 e 2  Solve Equation (13.54) for pD 
 9    W 1 x; p̂ 2 d W 1W 1 x; p̂ 2 ; pD 2  Update the warp by composition.

10 until 7pD 7 , threshold  or  iter $ max-iter
11 return p̂
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implements what is known as the inverse compositional method.† Note that in this code 
a warp estimate p̂ is explicitly passed in, updated, and returned; for the previous version, an 
initial estimate could have been passed in as well but was implicitly assumed to be zero.

It is easy to show that this general case handles both the translation and affine models 
already considered. In the case of translation we have W 1 x; p̂ 1 pD 2 5 x 2 u, so that 
the parameters are the translation values, p 5 2u, where the sign arises from our conven-
tion of swapping the roles of I and J. The partial derivative of the warp with respect to the 
parameters is

 
@ W
@ p

5
@ 1 x 2 u 2
@ 12u 2 5 B1 0

0 1
R  (13.55)

so that

 a@ W
@ p

bT

 
@I
@ x

5
@I
@ x

5 rI (13.56)

leading to the same result we obtained before:

 a
x[R

1rI 1 x 2 2 1rI 1 x 2 2T pD 5 a
x[R

1 I 1 x 2 û 2 2 J 1 x 2 2 2  rI 1 x 2  (13.57)

where W 1 x; p̂ 2 5 û is the current estimate. For the affine transformation, we have

 W 1 x; p̂ 2 5 B1 1 d1 d2 dx

d3 1 1 d4 dy
R Cx

y
1
S 5 B 1 1 1 d1 2 x 1 d2 

y 1 dx

d3 
x 1 1 1 1 d4 2 y 1 dy

R  (13.58)

so that

 
@ W
@ p

5 Bx y 1 0 0 0
0 0 0 x y 1

R  (13.59)

leading to

 g 1 x 2 5 a@ W
@ p

bT

 

@I
@ x

5 cxgx ygx gx 0 0 0
0 0 0 xgy ygy gy

dT

 (13.60)

where rI 5 @I/@ x 5 3gx gy 4T, and therefore

 a
x[R

1 g 1 x 2 2 1 g 1 x 2 2T pD 5 a
x[R

1 I 1 x 2 2 J 1 x 2 2  g 1 x 2  (13.61)

13.3.5 Horn-Schunck Algorithm
Returning to the standard Lucas-Kanade algorithm, an alternate approach to computing 
pixel displacements is the Horn-Schunck algorithm, which is based upon the same opti-
cal flow constraint equation. Instead of computing the displacement of a sparse number of 
feature points, where all pixels in a window around the feature point are assumed to have 

† If Line 9 were replaced by p̂ . p̂ 1 pD, it would be the inverse additive method; in the case of translation only, 
the two are identical.
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the same displacement (as in Lucas-Kanade), Horn-Schunck computes a dense optical flow 
throughout the image by imposing regularization to leverage the assumption that neighbor-
ing pixels in the image have similar displacements.

Because Horn-Schunck computes a value for every pixel, the displacements u and v are 
replaced by functions u (x, y) and v (x, y) defined for every pixel. Let us define Ed 1 # 2  as the 
standard left-hand side of the optical flow constraint equation:

 Ed 1 x, y, u 1 x, y 2 , v 1 x, y 2 2 ; Ix 1 x, y 2 u 1 x, y 2 1 Iy 1 x, y 2 v 1 x, y 2 1 It 1 x, y 2  (13.62)

and let Es 1 # 2  be a smoothness term over the first derivatives of the displacement functions:

Es
2 1 x, y, u 1 x, y 2 , v 1 x, y 2 2 ; a@ u 1 x, y 2

@ x
b2

1 a@ u 1 x, y 2
@ y

b2

1 a@ v 1 x, y 2
@ x

b2

1 a@ v 1 x, y 2
@ y

b2

 (13.63)

The Horn-Schunck algorithm seeks to solve the following minimization problem:

 min
u, v 5 1Ed

2 1 x, y, u 1 x, y 2 , v 1 x, y 2 2 1 lEs
2 1 x, y, u 1 x, y 2 , v 1 x, y 2 2 2  d x d y (13.64)

where l is a weight governing the relative importance of the two terms.

It is straightforward to solve this minimization problem using the calculus of variations.† 
The two independent variables are x and y, the two dependent variables are u 5 @ x/@ t and 
v 5 @ y/@ t, and the functional to be minimized is eE d x d y, where E 5 Ed

2 1 l Es
2. The 

Euler-Lagrange equations to be solved are therefore

  
@ E
@ u

2
@

@ x
 B @ E

@ 1 @ u
@

 

x 2 R 2
@

@ y
 B @ E

@ 1 @ u
@

 

y 2 R 5  0 (13.65)

  
@E
@ v

2
@

@ x
 B @ E

@ 1 @ v
@

 

x 2 R 2
@

@ y
 B @ E

@ 1 @ v
@

 

y 2 R 5  0 (13.66)

Expanding E yields

 E 5  Ed
2 1 lEs

2 (13.67)

 5  1 Ix 
u 1 Iyv 1 It 2 2 1 l B a@ u

@ x
b2

1 a@ u
@ y

b2

1 a@ v
@ x

b2

1 a@ v
@ y

b2R  (13.68)

 5  I x
2u2 1 I y

2v2 1 I t
2 1 2 Ix 

Iy 
u v 1 2 Ix 

It 
u 1 2 Iy 

Itv (13.69)

1l B a@ u
@ x

b2

1 a@ u
@ y

b2

1 a@ v
@ x

b2

1 a@ v
@ y

b2R  (13.70)

leading to the following derivatives:

  
@E
@u

 5  2Ix
2u 1 2IxIyv 1 2IxIt  (13.71)

  
@

@ x
 B @E

@ 1 @ u
@

 

x 2 R 5  
@

@ x
 B2l a@ u

@ x
b R 5 2l ¢ @2u

@ x2 ≤  (13.72)

† Section 10.2.1 (p. 453).
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and similarly for @E/@v and the other derivatives. Plugging these expressions back into 
Equations (13.65)–(13.66) yields

  Ix
2 u 1 Ix 

Iyv 1 Ix 
It 2 lr2u 5  0 (13.73)

  Iy
2 v 1 Ix 

Iy 
u 1 Iy 

It 2 lr2 v 5  0 (13.74)

where r2u 5 @ 2u
@

 

x2 1 @ 
2u

@
 

y2 and r2v 5 @ 2 v
@

 

x2 1 @ 2 v
@

 

y2 are the Laplacian of u and v, respectively. 
Rearranging into matrix form yields

 B Ix
2 Ix 

Iy

Ix 
Iy Iy

2 R  Bu
v
R 5 Blr2u 2 Ix  

It

lr2v 2 Iy  
It
R  (13.75)

which, if l 5 0, is the original underconstrained optical flow constraint equation for a single 
pixel. Recalling that in the discrete formulation, r2u < h 1 u 2 u 2  for some normalization 
constant h,†

 B Ix
2 Ix 

Iy

Ix 
Iy Iy

2 R  Bu
v
R 5 Blh 1 u 2 u 2 2 Ix 

It

lh 1 v 2 v 2 2 Iy  
It
R  (13.76)

which, after rearranging and absorbing the normalization constant into l, becomes

 BIx
2 1 l Ix 

Iy

Ix 
Iy Iy

2 1 l
R  Bu

v
R 5 Bl u 2 Ix 

It

lv 2 Iy  
It
R  (13.77)

Solving this 2 3 2 system of equations is straightforward:

  Bu
v
R 5  

11 Ix
2 1 l 2 1 Iy

2 1 l 2 2 Ix
2 Iy

2 B 1 Iy
2 1 l 2 1lu 2 Ix  

It 2 2 Ix 
Iy 1lv 2 Iy 

It 21 Ix
2 1 l 2 1lv 2 Iy  

It 2 2 Ix 
Iy 1l u 2 Ix 

It 2 R  (13.78)

  5  
1

l 1l 1 I x
2 1 I y

2 2  Bl I y
2

 u 1 l2
 u 2 Ix I y

2 It 2 l
 
Ix It 2 l

 
Ix Iy v 1 Ix I y

2 It 2
l I x 

2v 1 l2
 v 2 I x

2 Iy It 2 l
 
Iy It 2 l

 
Ix Iy u 1 I x

2 Iy It
R  (13.79)

  5  
1

l 1 I x
2 1 I y

2 B 1l 1 I y
2 2 u 2 Ix Iy v 2 Ix It1l 1 I x
2 2 v 2 Ix Iy u 2 Iy It

R  (13.80)

  5  
1

l 1 I x
2 1 I y

2 B 1l 1 I x
2 1 I y

2 2 u 2 I x
2

 u 2 Ix Iyv 2 Ix It1l 1 I x
2 1 I y

2 2 v 2 I y
2

 v 2 Ix Iy u 2 Iy It
R  (13.81)

  5  Bu
v
R 1

1
l 1 I x

2 1 I y
2 B2I x

2
 u 2 Ix Iyv 2 Ix It

2I y
2

 v 2 Ix Iy u 2 Iy It
R  (13.82)

  5  Bu
v
R 2

Ix u 1 Iyv 1 It

l 1 I x
2 1 I y

2  BIx

Iy
R  (13.83)

From this final equation, we see that the iterative Horn-Schunck approach involves 
repeatedly solving the following equations

  u1k112 1 x 2  5  u 
1k2 1 x 2 2 g 1 x 2 Ix 1 x 2  (13.84)

  v1k112 1 x 2  5  v 
1k2 1 x 2 2 g 1 x 2 Iy 1 x 2  (13.85)

† Section 5.4.1 (p. 242).
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for all x 5 1 x, y 2 , where

 g 1 x 2 ;
Ixu 

1k2 1 x 2 1 Iyv 
1k2 1 x 2 1 It 1 x 2

l 1 I x
2 1 x 2 1 I y

2 1 x 2  (13.86)

The pseudocode for Horn-Schunck is provided in Algorithm 13.10. The algorithm essen-
tially solves a sparse 2n 3 2n linear system, where n is the number of pixels in the image, 
using one of several variations. If, at each iteration, the values for the next iteration are 
carefully stored in a different memory location, that is, if u1k2 and u1k112 are distinct 
arrays, and similarly v1k2 and v1k112, then the pseudocode implements what is known as 
the Jacobi method. On the other hand, if we are less careful and instead allow the new 
values to overwrite the old values as soon as they are computed, then the pseudocode imple-
ments the Gauss-Seidel method. Interestingly, although Gauss-Seidel can be thought of 
as “sloppy Jacobi,” it is actually preferred in practice because it leads to faster convergence. 
Even faster convergence is obtained by making a copy of the values, running Gauss-Seidel, 
and combining the values from the previous iteration, u1k2 and v1k2, with the values resulting 
from Gauss-Seidel in the current iteration, uGS

1k112 and vGS
1k112, using a linear weighting 

scheme:

  u1k112 5  vu GS
1k112 1 1 1 2 v 2 u1k2 (13.87)

  v1k112 5  vv GS
1k112 1 1 1 2 v 2 v1k2 (13.88)

where 0 , v , 2 to guarantee convergence; this approach is known as successive 
over-relaxation (SOR), and it is easy to implement. Some results from a modern 
approach to optical flow that extends the basic Horn-Schunck algorithm to yield increased 
robustness can be found in Figure 13.19.

ALGORITHM 13.10 Horn-Schunck dense optical flow

Horn-Schunck 1 I, l 2
Input: grayscale image I, weighting parameter l
Output: dense optical flow images u and v

 1 Ix, Iy d  Gradient(I )
 2 for 1 x, y 2 [ I do
 3    u 1 x, y 2 d 0
 4    v 1 x, y 2 d 0
 5 repeat
 6    for 1 x, y 2 [ I do

 7       u d 1
4 1 u 1 x 2 1, y 2 1 u 1 x 1 1, y 2 1 u 1 x, y 2 1 2 1 u 1 x, y 1 1 2 2

 8       v d 1
4 1 v 1 x 2 1, y 2 1 v 1 x 1 1, y 2 1 v 1 x, y 2 1 2 1 v 1 x, y 1 1 2 2

 9       g d Ix 1 x, y 2 u 1 Iy 1 x, y 2 v 1 It 1 x, y 2
l 1 Ix 1 x, y 2 2 1 Iy 1 x, y 2 2

10       u 1 x, y 2 d u 2 gIx 1 x, y 2
11       v 1 x, y 2 d v 2 gIy 1 x, y 2
12 until convergence
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13.4 Projective Geometry
In this section we briefly introduce projective geometry, which is a branch of mathematics 
that is particularly useful for 3D computer vision. This material provides more complete 
understanding of the concepts underlying the Euclidean, similarity, affine, and projective 
transformations introduced earlier;† and it provides a foundation for performing camera 
calibration and 3D reconstruction described later in the chapter.

13.4.1 Homogeneous Coordinates
At the heart of projective geometry is the concept of homogeneous coordinates. 
To understand homogeneous coordinates, two principles must be grasped:

• A point is represented in homogeneous coordinates by appending a 1 to the end.
• Once in homogeneous coordinates, scaling does not matter (as long as the scaling is 

nonzero).

To see these principles at work, suppose, for example, that (x, y) is a point in 2D. The 
homogeneous coordinates of this point are obtained by appending a 1 to the end, leading 
to (x, y, 1). Then, since scaling does not matter, (2x, 2y, 2) represents the exact same point 
as (x, y, 1). In fact, so do both (19.6x, 19.6y, 19.6) and 1px, py, p 2. More generally, 1 x, y, 1 2 5 1lx, ly, l 2  for any l 2 0. These relationships can be captured using the 
proportionality symbol:

 Cx
y
1
S ~ C2x

2y
2
S ~ C19.6x

19.6y
19.6

S ~ Cpx
py
p

S  (13.89)

† Section 3.9 (p. 120).

Figure 13.19 Optical flow computed on several image sequences, using a modern version of Horn-Schunck. The top row shows an 
image from each sequence, while the bottom row shows the optical flow displayed using pseudocolors.
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13.4 Projective Geometry 655

Once in homogeneous coordinates, a projective transformation can be applied, which 
is simply a matrix multiplied by the point to yield new homogeneous coordinates. If we 
let (u, v, w), where u 5 lx, v 5 ly, and w 5 l, represent the homogeneous coordinates 
of the original point (x, y), then the homogeneous coordinates of the transformed point are 1 u r, v r, w r 2 , where

 C u r
v r
w r

S 5 H53336 C u
v
w
S  (13.90)

and H is the 3 3 3 projective transformation matrix known as a homography. Whereas 
the point (x, y) is in the Euclidean plane, both (u, v, w) and 1 u r, v r, w r 2  are points in the 
projective plane. And just as the standard coordinates† in the Euclidean plane can be 
obtained from the homogeneous coordinates in the projective plane by dividing by the third 
coordinate, 1 u/w, v/w 2 5 1 x, y 2 , so the transformed point 1 x r, y r 2  is obtained by dividing 
by the third coordinate: 1 u r/w r, v r/w r 2 . These steps were considered earlier in Example 3.12, 
which we reproduce here for convenience.

† Also known as inhomogeneous coordinates.

EXAMPLE 13.2 Apply the following projective transformation to the point 1 x, y 2 5 1 1, 2 2 :
 H 5 C7 3 2

2 4 8
1 3 2

S  (13.91)

Solution The homogeneous coordinates of the point are obtained by appending a 1 to (1, 2), 
leading to 31 2 1 4T. Multiplying the matrix H by this vector yields:

 C u r
v r
w r

S 5  C7 3 2
2 4 8
1 3 2

S  C1
2
1
S 5 C15

18
9
S ~ C15

9
18
9

1
S 5 C 5

3

2
1
S  (13.92)

so the transformed point is 1 x r, y r 2 5 1 15
9 , 18

9 2 5 1 5
3, 2 2 . Note the proportionality symbol, 

which is used since scaling is unimportant.

These three steps are illustrated in Figure 13.20. The point 1 x, y 2 5 1 1, 2 2  is represented 
as 1 u, v, w 2 5 1 1, 2, 1 2 , which is then transformed to 1 u r, v r, w r 2 5 1 15, 18, 9 2 , which is 
then converted back to 1 x r, y r 2 5 1 15/9, 2 2 . As seen in the figure, the homogeneous coor-
dinates of a 2D point can be visualized as a 3D point lying on the plane w 5 1, where the 
coordinate axes are u, v, and w. Equivalently, since scaling does not matter, the coordinates 
can be normalized so that u2 1 v2 1 w2 5 1, in which case the homogeneous coordinates 
are visualized as a point lying on the surface of a unit hemisphere.

Why would we ever want to use three coordinates to represent a 2D point? Before 
delving into the complicated world of projective geometry, let us motivate the approach by 
first considering three situations in which homogeneous coordinates are useful. First, as we 
saw earlier,‡ homogeneous coordinates facilitate more compact mathematical notation for 

‡ Section 3.9.2 (p. 122).
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Euclidean transformations, which is especially handy when composing or inverting trans-
formations. For example, if p [ R2, R1 and R2 are 2 3 2 rotation matrices, and t1 and t2 
are 2 3 1 translation vectors, then instead of writing the complicated expression 
p r 5 R2 1R1p 1 t1 2 1 t2, we can simply write x r 5 T2T1x, where x and x r are the homo-
geneous coordinates of p and p r, respectively, and T1 and T2 are 3 3 3 linear transforms:

 T1 ; B R1 t1

052316T 1
R    T2 ; B R2 t2

052316T 1
R    x ; Bp

1
R    x r ; Bp r

1
R  (13.93)

where 052316T  is a horizontal vector of two zeros in the bottom row. Here the scaling does 
not change, because as long as the bottom row consists of 0s followed by a single 1, the 
final coordinate will always be 1. Such transforms are known as affine transforms, of which 
Euclidean is a special case.

Secondly, homogeneous coordinates simplify common everyday computations. Consider, 
for example, a line with slope m and y-intercept k, so that any point (x, y) on the line satis-
fies y 5 mx 1 k. The problem with this representation is that it is not valid for vertical 
lines, which is easily solved by representing the point using homogeneous coordinates, 
x 5 1 x, y, 1 2 , and parameterizing the line using the triple , 5 1 a, b, c 2 , so that any point 
on the line satisfies xT, 5 ,Tx 5 ax 1 by 1 c 5 0. It is easy to see that scaling the point 
or the line does not affect the result, and that m 5 2a/b and k 5 2c/b if the line is not 
vertical. This representation is sufficient to handle any line, with a 5 0 indicating a hori-
zontal line, and b 5 0 indicating one that is vertical.

Similarly, the parameters of a line passing through two points is computed easily as 
x1 3 x2, where 3  is the standard cross-product between two vectors in 3D. (Note that 
since scaling is unimportant, x2 3 x1 yields the same result, so order does not matter.) 
Similarly, computing the homogeneous coordinates of a point at the intersection of two lines 
is ,1 3 ,2 (or ,2 3 ,1). While these expressions may not be obvious at first glance, they are 
easy to verify. Moreover, the similarity between the expressions here reveals that there exists 
a duality† between points and lines in 2D projective geometry (and between points and 
planes in 3D), so that for any property that holds for a 3 3 1 vector representing the 

† Recall the concept of duality from Section 4.1.2 (p. 134).

Figure 13.20 Using 
projective geometry 
involves 3 steps: 
1) augmenting the 
coordinates of a point 
by appending a 1 to 
the end; 2) applying a 
projective transformation, 
by multiplying a matrix 
by the augmented point; 
and 3) dividing by the final 
coordinate to yield the 
transformed point.

(x, y)

(u, v, w) = (x, y, 1)

1

3

2

(u9, v9, w9)

w = 1
w v

u

x

y

(x9, y9)
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13.4 Projective Geometry 657

homogeneous coordinates of a point, there is a related property that holds for the same vec-
tor interpreted as the parameters of a line.

Finally, homogeneous coordinates simplify the mathematical representation of perspec-
tive projection. Recall from Equations (2.1)–(2.2)† that in the case of perspective projection, 
x 5

f x w
z w

 and y 5
f y w

z w
, where 1 xw, yw, zw 2  are the coordinates of a world point in 3D, and (x,y) 

are the 2D coordinates of the projection onto the image plane. These are nonlinear equations, 
making them inconvenient for complicated mathematical analysis. A more compact notation 
is achieved by representing the points in 3D and 2D projective geometry, respectively, 
leading to the following linear transformation:

 l Cx
y
1
S 5 C f 0 0 0

0 f 0 0
0 0 1 0

S  Dxw

yw

zw

1

T  (13.94)

so that l x 5 f xw, l y 5 f yw, and l 5 zw. The problem of perspective projection will be 
revisited later in the chapter when we consider the camera parameters.

13.4.2 Points at Infinity (Ideal Points)
Since the projective transformation can be any invertible 3 3 3 matrix, for some input 
points the output will have 0 for the 3rd coordinate: that is, w r 5 0. For example, plugging 1 1, 21 2  into Equation (13.92) yields

 C u r
v r
w r

S 5  C7 3 2
2 4 8
1 3 2

S  C 1
21
1
S 5 C6

6
0
S  (13.95)

When trying to convert such a point back to standard coordinates, a divide-by-zero 
error occurs: 1 u r/0, v r/0 2 . What this tells us is that some points that are represented by 
homogeneous coordinates cannot be represented by standard coordinates; in other words, 
the projective plane contains some points that are not in the Euclidean plane. Such points 
are known as points at infinity (or ideal points). Examining Figure 13.20 again, note that 
points at infinity satisfy w 5 0 and therefore lie on the equator of the unit hemisphere, 
which means that the ray through them and the origin never intersects the w 5 1 plane.

Since xT, indicates whether a point lies on a line, it is easy to show that every 
point at infinity, (x, y, 0), lies on a special line called the line at infinity, represented 
by ,` 5 1 0, 0, 1 2 . As a result, the projective plane can also be visualized as the stan-
dard Euclidean plane augmented with a 1D ring around it representing ,`. As shown in 
Figure 13.21, the points at infinity can, in some sense, be considered “beyond infinity” 
because the plane inside the ring itself is infinite. One advantage of this visualization is 
that it clearly reveals that points at infinity represent directions in the plane; that is, the 
point (x, y, 0) represents the direction from the origin through the point (x, y), so that 
the point (1, m, 0) represents slope m. This is easily seen because horizontal lines are 
given by (0, b, c), so that 30 b c 4 31 0 0 4T 5 0, and vertical lines are given by 
(a, 0, c), so 3a 0 c 4 30 1 0 4T 5 0. Similarly, the intersection of two parallel lines 
,1 5 1 a, b, c1 2  and ,2 5 1 a, b, c2 2  is given by 1 1, 2a

b, 0 2 , which is the point at infinity 
associated with their direction.

† Section 2.2.3 (p. 35).
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13.4.3 Conics
One of the first principles learned in a drawing class is that a circle in the world is drawn 
as an ellipse on the canvas because the perspective projection of a circle is an ellipse. In 
fact, it can be shown that all conic sections (circles, ellipses, parabolas, and hyperbolas) are 
projectively equivalent, meaning that each one can be obtained from the other by a projec-
tive transformation. In contrast, the Euclidean transformation of a circle is always a circle, 
since Euclidean transformations can only perform rotation and translation.

A conic section is parameterized by a 3 3 3 symmetric matrix C, as we saw in 
Equation (11.55):

 

 3x y 1 4
 

 

 

C2a b d
b 2c e
d e 2 f

S
(''')'''*

C
 

Cx
y
1
S 5 0

 

 

(13.96)

which represents the conic section ax2 1 bxy 1 cy2 1 dx 1 ey 1 f 5 0. In other words, 
xTCx 5 0, where x 5 1 x, y, 1 2  are the homogeneous coordinates of the point (x, y). In 
projective geometry, a curve represented by Equation (13.96) is simply called a conic.

Geometrically, a conic can be considered as a locus of points, as we have just 
done, or as the envelope of tangent lines (that is, the set of lines that are tangent to the 
conic). Given a point x on a conic C, the tangent line to C at x is given by , 5 Cx. 
Plugging x 5 C21, into xTCx 5 0 yields the expression for this dual conic C*: 1C21, 2TC 1C21, 2 5 ,TC2TCC21, 5 ,TC21, 5 0, since the matrix is symmetric. 
Therefore, the dual conic of a full-rank matrix is given by C
 5 C21. (On the other hand, 
if C is singular—and therefore the conic is degenerate—then C
 5 adj 1C 2 , the adjoint 
of the matrix. It is well-known that adj 1C 2 5 det 1C 2C2T when C is full rank, which is 
equivalent to C2T for our purposes, since the matrix is symmetric and scaling is unimportant. 
Regardless of rank, the adjoint always satisfies adj 1C 2C 5 C adj 1C 2 5 det 1C 2 I53336, 
where I53336 is the 3 3 3 identity matrix.)

Figure 13.21 The projective plane can 
be visualized as the Euclidean plane 
augmented with ,`, the line at infinity. 
Two parallel lines intersect at the point at 
infinity (which lies on the line at infinity) 
associated with the direction of the lines.

`
O`

`

`

`

Intersection
point of
parallel lines
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13.4.4 Transformations of Lines and Conics
If a matrix H transforms the point x into x r 5 Hx, then the same matrix also transforms 
lines and conics in a similar way:

  , r 5  H2T,  (13.97)

  C r 5  H2TCH21 (13.98)

These relationships are easy to derive. If x lies on a line ,, then xT, 5 0. Substituting 
x 5 H21x r  yields 1H21x r 2T, 5 xrT 1H2T, 2 5 0, which means that x r  lies on 
the line given by H2T,. Similarly, substituting x 5 H21x r into xTCx 5 0 yields 1H21x r 2TC 1H21x r 2 5 xrT 1H2TCH21 2 x r 5 0.

13.4.5 Hierarchy of Transformations
A hierarchy of transformations exists. As we have seen, a general invertible matrix H is 
a projective transformation. If the bottom row of H consists of all zeros followed by a 
single 1, then it is also an affine transformation, which is special case of projective. 
Furthermore, if the top-left corner consists of a rotation matrix with an overall scaling, then 
it is known as a similarity transformation, which is a special case of affine. Finally, if this 
scaling is 1, then it is a Euclidean transformation, which is a special case of similarity. 
These transformations, which we saw earlier,† are summarized as follows for the case of 2D:

 

Ch11 h12 h13

h21 h22 h23

h31 h32 h33

S
(''')'''*

projective
  

Ch11 h12 h13

h21 h22 h23

0 0 1
S

(''')'''*
affine

  

Ckcu 2ksu tx
ksu kcu ty
0 0 1

S
(''')'''*

similarity
  

Ccu 2su tx
su cu ty
0 0 1

S
(''')'''*

Euclidean

where hij is an arbitrary scalar, cu 5 cos u, su 5 sin u, tx and ty are translation parameters, 
and k is a nonzero scaling factor.

As the number of allowed transformations increases, the number of invariants decreases, 
as summarized in Table 13.1. For example, a Euclidean transformation preserves not only 
the overall shape of an object, but also its size, whereas a similarity transformation preserves 

† Section 3.9 (p. 120).
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affine • • • • • • • •

projective • • • • • • • • •

TABLE 13.1 Hierarchy of transformations, showing that as the number of transformations increases, the number of invariants  
decreases. (Incidence refers to whether a point lies on a line.)
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the shape but not necessarily the size, and an affine or projective transformation does not 
even preserve the shape. More specifically, Euclidean transformations preserve the length of 
each line segment, similarity transformations preserve the ratio between lengths of any pair 
of line segments, and affine and projective transformations preserve the cross ratio, which 
is a ratio of ratios of lengths. As a result, the Euclidean transformation of a square is another 
square of the same size, the similarity transformation is another square not necessarily of the 
same size, the affine transformation is a parallelogram, and the projective transformation 
is a quadrilateral.

13.4.6 Absolute Points
An interesting property of conics is that every circle intersects ,` at two fixed points, 
known as the absolute points. Recalling the equation for a circle in Equation (11.42), 1 x 2 h 2 2 1 1 y 2 k 2 2 5 r2, and that a point on ,` is parameterized by (x, y, 0), it is easy 
to see that the absolute points satisfy

 3x y 0 4 C 1 0 2h
0 1 2k

2h 2k h2 1 k2 2 r2
S  Cx

y
0
S 5 x2 1 y2 5 0 (13.99)

from which we note that the absolute points are 1 1, 6j, 0 2 ,† where j ; "21. The absolute 
points solve the curious phenomenon illustrated in Figure 13.22, namely, that although two 
overlapping ellipses intersect at 4 points, two overlapping circles intersect at only 2 points, 
even though a circle is an ellipse. In other words, where did the other two intersection points 
go? The answer is that every pair of circles also intersect at the absolute points, since the 
absolute points lie on every circle.

The absolute points can be visualized by plotting them in the complex plane, as in 
Figure 13.23, from which it is immediately obvious that they are orthogonal to and the 
same length as each other. As a result, they play the role of orthogonal unit axes (except 
their overall scaling is not fixed), which explains why they are important in converting from 
projective to Euclidean (that is, to similarity, since there remains an unknown scaling factor). 
It is easy to show that the absolute points are invariant to similarity transforms:

 Ck cu 2k su tx
k su k cu ty
0 0 1

S  C 1
6 j
0
S 5 Ck cu 7 jk su

k su 6 jk cu

0
S ~ C 1

6 j
0
S  (13.100)

† Note that the absolute points could equivalently be represented as 17j, 1, 0 2  by scaling the coordinates.

Figure 13.22 Two ellipses can intersect at four 
points (at most), but two circles can only intersect 
at two points (at most). Where are the other two 
intersection points?
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where the proportionality follows from the fact that scaling is not important, so we can 
divide the second coordinate by the first coordinate:

 
k su 6 jk cu

k cu 7 jk su
5

1 su 6 jcu 2 1 cu 6 jsu 21 cu 7 jsu 2 1 cu 6 jsu 2 5
sucu 6 jcu

2 6 jsu
2 2 sucu

cu
2 1 su

2 5 6 j (13.101)

13.4.7 Projective Geometry in Other Dimensions
Although we have concentrated on the 2D case (projective plane) for ease of presentation, 
projective geometry is applicable in any number of dimensions. That is, a point in Rd is 
represented in homogeneous coordinates using d 1 1 elements. Therefore, as we have just 
seen, a projective transformation in 2D is represented by a 3 3 3 transformation matrix, 
and points and lines are duals, whereas a projective transformation in 3D is represented by 
a 4 3 4 matrix, and points and planes are duals. Projecting from 3D to 2D, as described in 
the next section, involves a 3 3 4 matrix.

13.4.8 Perspective Imaging
Assuming a pinhole camera with no diffraction, light rays travel in straight lines, in which 
case a point 1 xw, yw, zw 2  in the 3D world projects onto a point (x, y) on the image plane by 
following the ray that connects the point with the center of projection, also known as the 
focal point. In Equation (13.94) we saw an equation for this projection that is oversimplified 
because it ignores two facts: (1) the coordinate system for measuring world points is usually 
not attached to the camera, and (2) the units on the image are different from those in the world.

As shown in Figure 13.24, three coordinate systems are involved in the process of 
imaging: one attached to the world, one attached to the camera, and one associated with the 
image. Points in the world are described in the world coordinate system, in which lengths 
are measured in meters. In the camera coordinate system, measurements are also in meters 
(or micrometers), since the camera and world coordinate systems are related by a Euclidean 
transformation. The camera coordinate system is, by convention, centered at the focal point, 
with the x and y axes aligned with the rightward horizontal and downward vertical direc-
tions, respectively, of the image plane, and the positive z axis pointing along the optical axis 
toward the world.† The image coordinate system is centered at the top left corner of the 
image, with the positive x and y axes pointing along the rows and columns, respectively, of 
the imaging sensor. In the image coordinate system, measurements are made in pixels.

† Recall from Section 2.2.3 (p. 35) that the optical axis is defined as the line passing through the focal point that 
is perpendicular to the image plane.

Figure 13.23 When plotted 
in the complex plane, 
the geometric properties 
of the absolute points 
are manifest; they are 
orthogonal to one another 
and share the same length. 
As a result, they capture 
the notions of angle and 
relative length.

(1, i, 0)

(1, –i, 0)

Real

Imaginary
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Using homogeneous coordinates, the imaging process is captured mathematically as

 

Cx
y
1
S ~

 

C  

p11 p12 p13 p14

p21 p22 p23 p24

p31 p32 p33 p34

S
(''''')'''''*

P53346  

Dxw

yw

zw

1

T
 

 

(13.102)

where P is a 3 3 4 projection matrix that itself is composed of two parts:

 

 

P53346 5

 

 

Ca g u0

0 b v0

0 0 1
S

('')''*
K53336  

 3R 53336 t 53316 4
 

 
(13.103)

where the rotation matrix R and translation vector t relate the world and camera coordinate 
systems, and the internal calibration matrix K of the camera not only performs perspective 
projection but also converts meters to pixels. The coordinates 1 u0, v0 2  specify the principal 
point (the intersection of the optical axis and the image plane); and a, b, and g are related 
to the focal length fx along the x axis, the focal length fy along the y axis, and the skew u 
(the angle between the two axes) as follows:

 a 5  fx

 b 5  fy/sin u

 g 5  2fx /tan u

For a real, physical camera, it is safe to assume u 5 p
2 , so that b 5 fy, and g 5 0, leading to

 K 5 Cfx 0 u0

0 fy v0

0 0 1
S  (13.104)

The focal lengths fx and fy can alternatively be replaced by a single focal length f and the 
aspect ratio fy /fx. For most cameras, fx < fy within a tolerance of about 5%. One might be 
tempted to think that the principal point is in the center of the image, but because of the cam-
era manufacturing process, it can often be as much as 10% away from the center, which can 
be as much as dozens (or even hundreds) of pixels, depending upon the image dimensions. 
Nevertheless, assuming that the principal point is in the center does not cause much damage 
because reprojection equations tend to be insensitive to the location of the principal point.

Figure 13.24 The projection of a world point 1 xw, yw, zw 2  onto an image plane at point 
(x, y), assuming a pinhole camera model with 
no diffraction. The three coordinate systems 
are the world coordinate system (W ), the 
camera coordinate system (C ), and the image 
coordinate system (I ).

World

Optical
axis

Image
plane

Focal
point

C

I
y

(x, y)

(xw, yw, zw)
x

x

yz

W

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



13.5 Camera Calibration 663

13.4.9 Lens Distortion
Because real cameras have lenses, light does not travel in straight lines but rather bends 
due to the curvature in the lens. By far, the dominant distortion of a typical lens is 
radial distortion, so named because it is a function only of the radial distance from the 
center of the image. Let 1 xu, yu 2  be the undistorted coordinates of a pixel in the image (that 
is, the coordinates at which the ray of light would have pierced the image plane had there 
been no lens distortion) and let 1 xd, yd 2  be the distorted coordinates (that is, the actual 

coordinates). Define rd ; "x d
2 1 y d

2 as the radial distance to the pixel, where xd ; xd 2 u0 
and yd ; yd 2 v0. Then the transformation from the distorted coordinates to the undistorted 
coordinates can be modeled by the following approximation:

  xu 5  xd 1 xd  
f 1 rd 2  (13.105)

  yu 5  yd 1 yd  f 1 rd 2  (13.106)

where

 f 1 rd 2 5 k1r d
2 1 k2r  d

4 1 k3r d
6 1 c (13.107)

and only even terms are retained due to symmetry in the distortion. Once the coefficients 
k1, k2, k3, c, have been determined, the image can be unwarped by computing, for each 
pixel in the undistorted image, the corresponding pixel in the distorted image from which 
to grab the pixel data.†

If a more accurate model is desired, tangential distortion (or decentering distortion) 
can be included:

  xu 5  xd 1 xd f 1 rd 2 1 1 p1 1 r d
2 1 2 x d

2 2 1 2p2 xd yd 2 1 1 1 p3r d
2 1 c2  (13.108)

  yu 5  yd 1 yd f 1 rd 2 1 1 2p1xd yd 1 p2 1 r d
2 1 2y d

2 2 2 1 1 1 p3r d
2 1 c2  (13.109)

in which case the parameters include not only ki but also pi, i 5 1, 2, 3, c. However, keep 
in mind that the larger the number of parameters, the more difficult it is to accurately esti-
mate those parameters, so oftentimes better results will be achieved with a simpler model. 
In fact, many lenses can be well modeled just using k1 and k2.

13.5 Camera Calibration
Calibrating a pinhole camera involves estimating 11 parameters because the matrix P 
contains 12 elements, but it is unique only up to an unknown nonzero scaling factor. 
These numbers can be further broken down as follows: 6 values for the Euclidean rotation 
and translation (3 values each), and 5 values for the internal calibration matrix K. These 
are called the extrinsic and intrinsic parameters, respectively. For a physical camera, 
g 5 0 and fx < fy, so that the intrinsic parameters can be reduced to just 3, of which the 
focal length is by far the most important. Nevertheless, the additional parameters are 
useful for the sake of completeness, and they are important when studying projections of 
projections. Whereas the extrinsic parameters depend upon the pose of the camera with 
respect to the world, the intrinsic parameters do not change as the camera moves, unless 
the lens has a variable focal length.

† This is an inverse mapping, as in Section 3.1.1 (p. 69).
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13.5.1 Normalized Direct Linear Transform (DLT) Algorithm
Before we delve into calibration per se, let us first address an important and related 
problem: namely, estimating the homography, given corresponding points on two planes. 
Usually one of these planes is the image plane and the other is some plane in the world. 
The most straightforward and widely used method for homography estimation is known 
as the direct linear transformation (DLT), which solves a least squares solution given 
the point coordinates. Let 1 xi, yi 24 1 xir, yir 2  be the ith corresponding pair of points 
between the two planes, and let H be the 3 3 3 homography matrix. Then xir ~ Hxi, 
where xi 5 3xi yi 1 4T and xir 5 3xir yir 1 4T. Let us define hj

T as the jth row of H, 
j 5 1, 2, 3:

 H 5 Ch1
T

h2
T

h3
T

S 5 Ch11 h12 h13

h21 h22 h23

h31 h32 h33

S  (13.110)

With this definition, we can rewrite xir ~ Hxi as

 xir 5 Cxir
yir
1
S ~ Ch1

Txi

h2
Txi

h3
Txi

S  (13.111)

Of these three equations, only two are independent, because of the scaling ambiguity 
of homogeneous coordinates. Assuming that xir is a real point, i.e., h3

Txi 2 0, these two 
equations are

  xir 5  
h1

Txi

h3
Txi

5
xi

Th1

xi
Th3

 (13.112)

  yir 5  
h2

Txi

h3
Txi

5
xi

Th2

xi
Th3

 (13.113)

where we have taken advantage of the fact that the transpose of a scalar does not change the 
scalar. Rearranging terms, these two equations can be rewritten as

  xirxi
Th3 2 xi

Th1 5  0 (13.114)

  yirxi
Th3 2 xi

Th2 5  0 (13.115)

or, in matrix form,

 B 2xi
T 053316T xirxi

T

053316T 2xi
T yirxi

TR  Ch1

h2

h3

S 5 059316 (13.116)

where 053316T  is the transpose of a vector of 3 zeros, and so forth. There are eight unknowns 
in these two equations, since H is only unique up to a scale factor. To solve for H, then, 
we need at least four corresponding points, with additional points increasing robustness to 
measurement noise. Stacking these expressions into the rows of a matrix, we have
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E 2x1
T 053316T x1rx1

T

053316T 2x1
T y1rx1

T

(
2xn

T 053316T xnrxn
T

053316T 2xn
T ynrxn

T

U
(''''')'''''*

A52n396  

Ch1

h2

h3

S 5 052n316
 

 

 

(13.117)

where n is the number of correspondences. As we have seen already,† this equation can be 
solved for the elements of H by selecting the eigenvector of ATA associated with the small-
est eigenvalue, then rearranging into matrix form.

The procedure just described is not adequate for real-world use, because the matrix ATA 
is nearly always ill-conditioned. Therefore, just as we saw earlier,‡ normalization is required 
to achieve accurate results. Normalization involves applying a similarity transform to both 
point sets by shifting their respective centroids to the origin and normalizing so that the 
average distance of a point from the origin is "2. The reason for this number is that we 
want the typical point xi or xir to have equal weight in its elements, which is achieved with 
the homogeneous vector 31 1 1 4T that is "2 from the origin at 30 0 1 4T.

The similarity transforms are therefore given by

 T 5 C s 0 2sx0

0 s 2sy0

0 0 1
S  and  T r 5 Csr 0 2sx0r

0 s r 2sy0r
0 0 1

S  (13.118)

where

 1 x0, y0 2 5
1
n

 a
n

i51

 1 xi, yi 2      1 x0r, y0r 2 5
1
n

 a
n

i51

 1 xir, yir 2  (13.119)

 s 5 "2/davg,       s r 5 "2/davgr  (13.120)

 davg 5
1
n

 a
n

i51

 "1 xi 2 x0 2 2 1 1 yi 2 y0 2 2   davgr 5
1
n a

n

i51

"1 xir 2 x0r 2 2 1 1 yir 2 y0r 2 2 (13.121)

Applying these transforms leads to the normalized coordinates x̆ 5 T x and x̆ r 5 T rx r. 
Substituting into x r 5 Hx reveals

  x r 5  Hx  (13.122)

  Tr21x̆ r 5  HT21x̆  (13.123)

  
x̆ r 5  T rHT21x̆(')'*

H̆
 (13.124)

which means that the homography using the normalized coordinates is related to the desired 
homography by H̆ 5 T rHT21. In other words, after the transforms are applied to the points 
to yield the normalized points, and after the homography of the normalized points has been 

† Section 11.1.3 (p. 516).
‡ Section 11.1.2 (p. 515).
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found via a least-squares solution, the desired homography is then computed as 
H 5 Tr21H̆T. The pseudocode is provided in Algorithm 13.11. Note that since the 
 least-squares approach minimizes the algebraic error, it is often a good idea to follow this 
entire procedure with a nonlinear minimization to minimize the geometric error.†

13.5.2 Mosaicking
One application of the normalized DLT is to stitch together multiple photographs of a scene 
into a single larger image. The resulting image is known as a mosaic, and the process itself 
is known as mosaicking,‡ a term borrowed from the traditional art form in which individual 
pieces of stone, tile, or glass are arranged to create a larger image. For the normalized DLT 
algorithm to be applicable, the pictures must have been taken from approximately the same 
vantage point (relative to the distance to the object of interest), so that there is little parallax 
between the images.

Consider, for example, the pictures in Figure 13.25 taken of a building by a person stand-
ing far away from the building. The procedure for creating a mosaic is the following. 
First, corresponding points are found between pairs of images, by either manually clicking 

† The distinction between algebraic error and geometric error is explained in Section 11.2 (p. 523).
‡ Or mosaicing.

ALGORITHM 13.11 Normalized DLT algorithm for estimating a homography

NormalizedDirectLinearTransform 1 5xi 4 xir6i51
n 2

Input: n corresponding pairs of points 1 xi, yi 2  4 1 xir, yir 2  between two planes
Output: The 3 3 3 homography matrix that best satisfies xir ~ Hxi for all i

1 Compute T and T r using Equation (13.118)
2 Normalize the points: x̆i d Txi, x̆ir d T rxir, i 5 1, c, n
3 Construct the 2n 3 9 matrix Ă in Equation (13.117) using the normalized points

4 Solve the linear system Ăh̆ 5 0 for h̆

5 Rearrange the values in h̆ to create H̆
6 Unnormalize the result to yield the desired homography: H d Tr21H̆T.
7 return H

Figure 13.25 Collection of 12 images of a building from nearly the same viewpoint.
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on the images, or using an automated process such as SIFT feature point detection and 
matching.† These correspondences are then fed to the normalized DLT algorithm to deter-
mine the homographies between the images, which are then warped according to the 
homographies to yield images that are all in the same coordinate system. Finally, the images 
are blended together in the locations where they overlap by weighting the colors according 
to their distance from the image border, a process known as feathering, which reduces the 
effects of the seams between images. The result of a semi-automated process that is easily 
implemented using these steps is shown in Figure 13.26, but note that fully automatic 
mosaicking in a robustness manner requires attention to many details, and homographies 
alone may not be sufficient when the field of view is large.

13.5.3 Zhang’s Calibration Algorithm
Returning to the topic of calibration, the most popular technique, by far, for calibrating the 
intrinsic camera parameters is Zhang’s algorithm. Compared with alternate approaches, 
this technique has the advantage that it only requires a planar calibration target with known 
coordinates on the plane (e.g., a chessboard, or checkerboard), as shown in Figure 13.27. 
Multiple images (6 to 10 are usually sufficient) are captured of the target at different posi-
tions and orientations. The positions of the points in the images, along with their known 
locations on the target, are then used to estimate the intrinsic calibration matrix K using 
the technique explained in this section. (The extrinsic parameters—namely, rotation and 
translation of the camera relative to the target for each capture—are also estimated, but these 
are usually not of interest.)

The world coordinate system is affixed to the planar target so that the plane is at zw 5 0, 
and the image coordinate system is attached to the image plane as usual. As illustrated in 
Figure 13.28, the projection of a target point 1 xw, yw, 0 2  onto the image plane is given by 
(x, y), where

 Cx
y
1
S ~ Ca g u0

0 b v0

0 0 1
S

('')''*
K 53336

3r1 r2 r3 t 4(''')'''*3R 53336 t 53316 4 Dxw

yw

0
1

T 5
K 3r1 r2 t 4(''')'''*

H53336 Cxw

yw

1
S  (13.125)

† Section 7.4.6 (p. 347) and Section 7.5.1 (p. 348).

Figure 13.26 Mosaic created by warping 
and stitching the images from the previous 
figure together.
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where K contains the intrinsic calibration parameters, R and t contain the extrinsic rota-
tion and translation, respectively, and ri is the ith column of R. Therefore, the mapping 
from the target at any particular position and orientation to the image is the homography 
H ~ K 3r1 r2 t 4, which is a 3 3 3 matrix relating the coordinates on one plane to the 
coordinates on the other plane.

Now suppose that an image of the target at a particular position and orientation has been 
captured, and the homography has been estimated (using the normalized DLT, for example). 
A homography has 8 degrees of freedom (because there are 9 elements, but scaling is unim-
portant), but 6 of these are due to Euclidean geometry (3 rotation, 3 translation). As a result, 
such a homography provides only 2 constraints on the intrinsic parameters:

  r1
Tr2 5  0      1 orthogonal vectors 2  (13.126)

  r1
Tr1 5  r2

Tr2   1 unit norm vectors 2  (13.127)

which arise because the columns of R must be orthonormal, that is, they must be orthogonal 
to each other and have unit norm. Note that, in Equation (13.127), the vectors are only 
ensured to have the same norm rather than unit norm, due to the overall scaling ambiguity.

If we let hi be the ith column of H,† so that H 5 3h1 h2 h3 4, then h1 ~ Kr1 and 
h2 ~ Kr2. Plugging into Equations (13.126)–(13.127) yields the 2 constraints in terms of 
the intrinsic matrix:

  h1
TK2TK21h2 5  0  (13.128)

  h1
TK2TK21h1 5  h2

TK2TK21h2 (13.129)

† Do not be confused by this notation: hi is here used as the i 
th column, even though it was used as the transpose 

of the i 
th row in an earlier subsection.

Figure 13.28 The mapping 
from a point 1 xw, yw, 0 2  on 
a world plane to the point 
(x, y) on the image plane.
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Figure 13.27 A chessboard 
calibration target captured 
straight ahead (left) and at 
an angle (right).
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These equations can be written more compactly as

  h1
Tv`h2 5  0  (13.130)

  h1
Tv`h1 5  h2

Tv`h2 (13.131)

by defining the following 3 3 3 matrix v` known as the image of the absolute conic 
(IAC), which is a fundamental quantity tied to the intrinsic calibration parameters of a 
pinhole camera:

v` ; 1KKT 221 5 K2TK21 5
1

a2b2 C b2 2bg bj

2bg a2 1 g2 2a2v0 2 gj

bj 2a2v0
2 2 gj a2v0

2 1 j2 1 a2b2
S  (13.132)

where j ; gv0 2 bu0, and

 K21 5
1

ab
 Cb 2g j

0 a 2av0

0 0 ab

S  (13.133)

Noting by inspection that v` is symmetric, let the entries of the matrices be given by

 v` 5 Cw11 w12 w13

w12 w22 w23

w13 w23 w33

S    H 5 3h1 h2 h3 4 5 Ch11 h12 h13

h21 h22 h23

h31 h32 h33

S  (13.134)

Multiplying the terms, it is easy to show that

 hi
Tv` 

hj 5 aij
Tw,  i, j [ 51, 2, 36 (13.135)

where aij is a vector of knowns, and w is the vector of unknowns:

 aij ;  3hi1hj1 hi1hj2 1 hi2hj1 hi1hj3 1 hi3hj1 hi2hj2 hi2hj3 1 hi3hj2 hi3hj3 4T (13.136)

 w ;  3w11 w12 w13 w22 w23 w33 4T  (13.137)

With this rearrangement, the two Euclidean constraints in Equations (13.130)–(13.131) 
become

  a12
T w 5  0 (13.138)

  1 a11 2 a22 2Tw 5  0 (13.139)

which, recall, are the constraints arising from a single image of the target. When mul-
tiple images are taken from different viewpoints, there are multiple homographies, which 
taken together lead to a linear system of equations for determining v`. The expressions in 
Equations (13.138)–(13.139) are stacked into the rows of a 2n 3 6 matrix A, where n is 
the number of images, yielding a linear system A52n366w56316 5 052n316 that is solved for 
w. (Note that n . 3 for the system to be overdetermined.) Then v` is obtained by simply 
rearranging the entries of w into matrix form.

The only remaining problem is to estimate the five intrinsic parameters (a, b, g, u0, and 
v0) from v`. There are two ways to do this. One way is to use the Cholesky decomposition 
to factorize the symmetric, positive definite matrix v` 5 LLT into the product of a lower 
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triangular matrix L 5 K2T and an upper triangular matrix LT 5 K21. Once L has been 
computed, the intrinsic matrix is given by K 5 L2T, and the parameters a, b, g, u0, and v0 
can be found by inspection from K.

Alternatively, recall that v` 5 lK2TK21, where l 2 0 is an unknown scale factor. 
Therefore, from Equation (13.132) the elements of v` are related to the parameters as 
follows:

 w11 5
l

a2     w12 5 2
lg

a2b
     w13 5

lj

a2b
 (13.140)

 w22 5 l ¢ 1
b2 1

g2

a2b2 ≤   w23 5 l ¢2v0

b2 2
gj

a2b2 ≤   w33 5 l ¢ v0
2

b2 1
j2

a2b2 1 1≤  (13.141)

These equations are used to compute the scale factor:

 l 5  w33 2 l ¢ v0
2

b2 1
j2

a2b2 ≤
 5  w33 2

1
w11

 ¢ l2v0
2

a2b2 1
l2j2

a4b2 ≤
 5  w33 2

1
w11

 ¢ l2v0
2

a2b2 1 w13
2 ≤

 5  w33 2
1

w11
 1 1w12w13 2 w11w23 2  v0 1 w13

2 2  (13.142)

where v0 is determined by a ratio of elements:

 
w12w13 2 w11w23

w11w22 2 w12
2 5

l2 12b2gj 1 a2b2v0 1 b2gj 2
l2 1a2b2 1 b2g2 2 b2g2 2 5

a2b2v0

a2b2 5 v0 (13.143)

With the scale factor, the remaining quantities are given by solving the equations above:

  a 5  Å l
w11

 (13.144)

  b 5  Å lw11

w11w22 2 w12
2  (13.145)

  g 5  
2a2bw12

l
 (13.146)

  u0 5  
gv0

a
2

a2w13

l
 (13.147)

Either way, once K has been determined, the extrinsic parameters (rotation and 
translation) for any given image with homography H 5 3h1 h2 h3 4 are easily found as

  r1 5  lK21h1 (13.148)

  r2 5  lK21h2 (13.149)

  r3 5  r1 3 r2  (13.150)

  t 5  lK21h3 (13.151)
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One final step remains to be described before we summarize the approach in 
Algorithm 13.12. The procedure so far has estimated the intrinsic (and extrinsic, if desired) 
parameters by minimizing the algebraic error. However, as we saw earlier,† although alge-
braic error is mathematically convenient, it is not closely tied to the actual problem at hand. 
More accurate values can be estimated by minimizing the reprojection error:

 a
n

i51
a
m

j51

7xij 2 g 1K, Ri, ti, xw
1

  

j2, f 2 72 (13.152)

where xw
1

  

j2 5 1 xw
1
 
j2, yw

1
 
j2, 0 2  is the j 

th world point, xij 5 1 xij, xij 2  is the corresponding point 
in the i 

th image, and g is the image projection function, taking lens distortion parameters f 
into account. Using the parameters resulting from the above procedure, Equation (13.152) is 
minimized in an iterative manner, using a nonlinear minimization routine such as Levenberg-
Marquardt, which is a variation of Newton’s method. This iterative minimization, which 
adjusts all the parameters, is known as bundle adjustment.

13.5.4 Image of the Absolute Conic (IAC)
Just as the line at infinity ,` surrounds the 2D plane, the plane at infinity p` surrounds 3D 
space. This plane is visualized as an invisible sphere surrounding the 3D world in which we 
live, similar to the way ,` is visualized as an invisible ring enveloping the plane. Each point 
on p` is associated with a direction in 3D space, in the same way that each point on ,` is 
associated with a direction in the plane. Just as there are two special points on ,` that remain 
invariant under similarity transformations (known as the absolute points), there is also a 
locus of points on p` that remains invariant under similarity transformations. This locus 
is called the absolute conic. Recall that the absolute points are those points (x, y, 0) such 
that x2 1 y2 5 0. Similarly, the absolute conic is the locus of points (x, y, z, 0) satisfying 
x2 1 y2 1 z2 5 0.

† Section 11.2 (p. 523).

ALGORITHM 13.12 Zhang’s camera calibration routine

CalibrateCameraZhang

Input: n $ 3 images of a known planar target at different orientations and directions
Output: intrinsic parameters K, lens distortion parameters f, and extrinsic parameters

1 for each image do
2    Detect image features corresponding to known points on target.
3    Compute the homography using the normalized DLT algorithm.
4 Stack the entries from the homographies into matrix A.
5 Solve Aw 5 0 for w, then reshape into v`.
6 Compute the five intrinsic parameters of K from v` using either
     Cholesky decomposition, or
     Equation (13.143) for v0, then Equation (13.142) for l, then Equations (13.144) – (13.147).
7 Compute extrinsic parameters Ri and ti for each image i 5 1, c, n using Equations (13.148) – (13.151).
8 Using these results as a starting point, minimize Equation (13.152) to perform bundle adjustment.
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From Equation (13.103), a point at infinity (x, y, z, 0) projects onto the image plane at

 Cx
y
1
S ~ K 3R t 4 Dxw

yw

zw

0

T 5

 

KR()*
H

 Cxw

yw

zw

S  (13.153)

where H 5 KR is the homography that maps p` to the image plane. Any point 1 xw, yw, zw, 0 2  
on p` that is also on the absolute conic satisfies xw

2 1 yw
2 1 zw

2 5 0, or

 3xw yw zw 4 C1 0 0
0 1 0
0 0 1

S  Cxw

yw

zw

S 5 0 (13.154)

In other words, I  53336 is the mathematical expression of the absolute conic in p`. Since 
from Equation (13.98), conics transform according to C r 5 H2TCH21, the projection of 
the absolute conic onto the image plane is therefore

  H2TI 53336H21 5  1KR 22TI 53336 1KR 221 (13.155)

  5  K2TR2TR21K21  (13.156)

  5  K2TK21  (13.157)
  5  v`  (13.158)

which is the image of the absolute conic (IAC) of Equation (13.132), as we expected.
The absolute points in any given plane are given by 1 1, 6j, 0 2  in the plane’s coordinate 

system. Therefore, when an image is captured of a planar calibration target, these points 
project onto the image at locations H 31 6j 0 4T 5 h1 6 jh2, where H 5 3h1 h2 h3 4 is the 
homography between the calibration plane and the image plane at that pose. The absolute 
points, of course, must lie on the absolute conic, and their projections must therefore lie 
on the image of the absolute conic. As a result, we have

 1h1 6 j h2 2T v` 1h1 6 j h2 2 5 0 (13.159)

Splitting into real and imaginary parts yields two equations:

  h1
Tv` 

h1 5  h2
Tv` 

h2 (13.160)

  h1
Tv` 

h2 5  0  (13.161)

which are the same two constraints derived in Equations (13.128) and (13.129).
To summarize, whenever you take a picture with a pinhole camera, you not only cap-

ture a visible representation of the scene in terms of colored pixels that you can see, but 
you also capture an invisible picture of this imaginary locus of points called the absolute 
conic. Because the absolute conic is unaffected by similarity (and therefore Euclidean) 
transformations, the image of the absolute conic (IAC) is also unaffected by them, mean-
ing that v` is the same no matter the pose of the camera. Therefore, since the IAC is 
only dependent upon the camera’s intrinsic (rather than extrinsic) parameters, calibrating 
the camera is equivalent to discovering the IAC. This is the geometric intuition behind 
Zhang’s algorithm.
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13.6 Geometry of Multiple Views
In this section we apply projective geometry to several problems involving multiple images 
taken of a static scene. In order to make the math easier, we shall assume pinhole cameras 
throughout, assuming that lens distortion either is insignificant or has been calibrated away 
using the principles discussed earlier in the chapter.† To help motivate this section, 
Figure 13.29 shows some 3D reconstructions of scenes using a state-of-the-art system. 
While the details of the system are not discussed here, the basic procedure of matching 
points from multiple images, estimating camera intrinsic parameters, estimating relative 
camera pose, and recovering the 3D coordinates of the scene points is based on the funda-
mental principles covered in this section.

13.6.1 Epipolar Geometry
Suppose two cameras are viewing the same scene, as shown in Figure 13.30, and the two 
cameras take a picture simultaneously. (The situation is mathematically equivalent if a 
single camera takes two pictures in sequence, as long as the scene is static.) Let c [ R3 be 
the center of projection (or focal point) of one camera, and c r [ R3 be the center of projec-
tion of the other camera. The line joining the distance 0c r 2 c 0  between these two centers 
of projection, c r 2 c, is the baseline.‡

Now suppose the cameras can both see a point p [ R3 in the world, which projects 
onto the first image plane at q [ R3 and onto the second image plane at q r [ R3. Assum-
ing light travels in straight lines, it is easy to see that c, c r, p, q, and q r all lie in the same 
plane, as illustrated in Figure 13.30. This plane is known as the epipolar plane, because 
it is attached to the two poles (centers of projection). The epipolar plane intersects the two 
image planes along two epipolar lines.

Moreover, the baseline intersects the two image planes at the two epipoles. In other 
words, the left epipole is the projection of the right focal point onto the left image plane, 
and vice versa for the right epipole. These epipoles are at infinity if the image planes are 
parallel to the baseline. Furthermore, if the image planes are coplanar and rotated so that 

† Section 13.4.9 (p. 663).
‡ The term baseline can also be used to refer to the distance 7c r 2 c 7  between the centers, as we saw in 
Section 13.2.1 (p. 624).

Figure 13.29 Results of a 3D reconstruction system that matches points in multiple images, determines the camera positions and 
orientations, and estimates the 3D coordinates of the scene points.
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their scanlines are parallel to the baseline, then the epipoles are not only at infinity but they 
are along the x-axis, so that the epipolar lines are the scanlines; this is the case of rectified 
images that we considered earlier.

13.6.2 Fundamental Matrix
Suppose the image coordinates (in pixels) of the projections of the world point onto the 
stereo pair of cameras just described are (x, y) and 1 x r, y r 2 , respectively. Let us represent 
these points in homogeneous coordinates as x 5 3x y 1 4T and x r 5 3x r y r 1 4T. 
Because these two points are projections of the same world point, we say that they are 
corresponding points, which we denote by x 4 x r. Let , denote the epipolar line in the 
first image, and , r the epipolar line in the second image, associated with the point. Since 
x must lie on the first epipolar line, and x r must lie on the second epipolar line, we know 
xT, 5 xrT, r 5 0.

Given the point x, how do we determine its epipolar line , r in the other image? Well, 
since the imaging process is a linear mapping (when homogeneous coordinates are used), the 
answer to this question is also a linear function: , r 5 Fx, where F is the 3 3 3 fundamental 
matrix that captures the relative geometry between the cameras. Since xrT, r 5 0, this leads 
to the following equation:

 xrTFx 5 0 (13.162)

and since this is a scalar equation, the transpose yields the relationship in the opposite 
direction:

 xTFTx r 5 0 (13.163)

which reveals that , 5 FTx r is the epipolar line in the first image. The result below sum-
marizes what we have learned so far.

Result 1. Given a fundamental matrix F, the epipolar line , r in the second image associated 
with the point x in the first image is given by , r 5 Fx. Similarly, the epipolar line , in the 
first image associated with the point x r in the second image is given by , 5 FTx r.

Recall that with rectified cameras, the vertical coordinates of any two corresponding 
points are the same: that is, y 5 y r. Therefore, when the cameras are rectified, the funda-
mental matrix takes the special form

 F~ 5 C0 0 0
0 0 21
0 1 0

S  (13.164)

Figure 13.30 Epipolar geometry of two 
cameras viewing the same scene. The 
epipolar lines are shown on each of the 
image planes, while the epipoles, in this 
example, are outside the finite extent of the 
image plane.
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which is easily seen by substituting:

xrTF~x 5 3x r y r 1 4 C0 0 0
0 0 21
0 1 0

S  Cx
y
1
S 5 30 1 2y r 4 Cx

y
1
S 5 y 2 y r 5 0 (13.165)

or y 5 y r. Note that, since the fundamental matrix, as with all homogeneous quantities, 
is only defined up to a nonzero scale factor, the choice of location of the negative sign in 
Equation (13.164) is arbitrary.

EXAMPLE 13.3 Suppose we have two nonrectified cameras, and their fundamental matrix is

 F 5 C    1    2    1
22 24 22
   3    3    1

S  (13.166)

Is it possible for 1 x, y 2 5 1 100, 50 2  and 1 x r, y r 2 5 1 78, 40 2  to be corresponding points?

Solution We answer the question by noting that

 , r 5 Fx 5 C    1    2    1
22 24 22
   3    3    1

S  C100
  50
    1

S 5 C    201
2402
   451

S  (13.167)

which means that the epipolar line in the second image associated with x is 
201x 2 402y 1 451 5 0. Substituting x r yields 201 1 78 2 2 402 1 40 2 1 451 5 49 2 0, 
which tells us that the point x r does not lie on the epipolar line , associated with x, and 
therefore these are not corresponding points.

But wait a minute. In the real world there will always be some noise, so we should 
never expect the result to be exactly zero, and although the residue of 49 may seem large 
at first glance, overall values are misleading when dealing with homogeneous coordinates 
because scaling is unimportant. To find the Euclidean distance from the point to the line, 
we first have to normalize the line parameters of , r 5 1 a r, b r, c r 2  so that its normal vector 3a r b r 4T has unit norm:

, r 5
3201 2402 451 4T"2012 1 12402 2 2

5
3201 2402 451 4T

449.45
5 30.447 20.894 1.003 4T (13.168)

Substituting x r into this expression yields 0.447 1 78 2 2 0.894 1 40 2 1 1.003 5 0.109, 
so the point is about a tenth of a pixel away from the line, which is well within the range 
of typical real-world noise. So while the point (78, 40) does not lie exactly on the epipolar 
line in a mathematical sense, from a practical point of view these points might very well 
correspond to each other.

Because the fundamental matrix captures the relative geometry between two cameras, it 
also encodes the epipoles. For any point x r in the second image, its epipolar line , in the 
first image passes through the first epipole e, so that ,Te 5 0. Since , 5 FTx r, this means 
that xrTFe 5 0. Since this must be true for any x r, we have Fe 5 053316. As a result, the 
epipole e in the first image is the right null vector of F. By similar reasoning, FTe r 5 053316, 
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so the epipole e r in the second image is the left null vector of F. These are easily computed 
using the SVD.†

Result 2. Given a fundamental matrix F, the epipole e in the first image is the rightmost 
right singular vector of F, and the epipole e r in the second image is the rightmost left 
singular vector of F. That is, e 5 v3 and e r 5 u3, where F 5 USVT, U 5 3u1 u2 u3 4, 
and V 5 3v1 v2 v3 4.

Since Fe 5 0 and FTe r 5 0, the fundamental matrix has a null space. As a result, it 
is a singular matrix, which means that its determinant is zero 1 det F 5 0 2 , and therefore 
it is  rank deficient. In fact, it can be shown that no matter the geometry between the 
cameras, its rank is always 2. This leads to the following important result, allowing us to 
test whether a given matrix is in fact a fundamental matrix.

Result 3. A real 3 3 3 matrix F is a fundamental matrix for some camera geometry if and 
only if rank 1F 2 5 2. That is, its singular values are such that s1 2 0, s2 2 0, and s3 5 0.

13.6.3 Essential Matrix
Now suppose the cameras have been calibrated, and let K and K r be the 3 3 3 intrinsic 
calibration matrices of the two cameras. These matrices transform the metric coordinates x 
and x r (which are given in meters, or micrometers, in the camera coordinate system) into 
image coordinates x and x r (which are given in pixels in the image coordinate system):‡

  x 5  Kx  (13.169)
  x r 5  K rx r (13.170)

Recall from Equation (13.103) that the 3 3 1 vectors x and x r are just Euclidean transfor-
mations of the world point, so they are actual points in 3D Euclidean space: x 5 1 x, y, z 2  
and x r 5 1 x r, y r, z r 2 . On the other hand, the 3 3 1 vectors x and x r are homogeneous 
coordinates of points on the 2D image plane: x 5 1 u, v, w 2  and x r 5 1 u r, v r, w r 2 .

With calibrated cameras, it is possible to show how the fundamental matrix relates to the 
geometry of the cameras. The epipolar constraint says that in the Euclidean world, the vec-
tor x from the first camera’s optical center to the first imaged point, the vector x r from the 
second optical center to the second imaged point, and the vector t from one optical center 
to the other are all coplanar. Recall that if three vectors are coplanar, then the cross product 
of any two of them is perpendicular to the third, which is represented mathematically as the 
inner product of the cross product being equal to zero. As a result, if R and t are the rotation 
and translation between the two cameras’ coordinate frames (so that t is along the baseline), 
then the epipolar constraint can be expressed simply as

 xrT 1 t 3 Rx 2 5 0 (13.171)

where the multiplication by R is necessary to transform x into the second camera’s 
coordinate frame. By defining 3t 43 as the corresponding 3 3 3 skew-symmetric matrix§ 
for t that captures the cross product:

 3t 43 ; C 0 2tz ty
tz 0 2tx

2ty tx 0
S ,   where  t 5 Ctx

ty
tz

S  (13.172)

† Section 11.1.5 (p. 520).
‡ Although the term normalized coordinates is sometimes used instead of metric coordinates, we prefer the latter 
to avoid confusion with the normalized algorithms presented elsewhere in this and previous chapters.
§ A skew-symmetric matrix S satisfies S 5 2ST.
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so that 3t 43y 5 t 3 y for any 3 3 1 vector y, we can rewrite Equation (13.171) as a linear 
equation:

 xrTEx 5 0 (13.173)

where E ; 3t 43R is called the essential matrix between the two cameras.
The essential and fundamental matrices are cousins. Like the fundamental matrix, the 

essential matrix captures the geometric relationship (i.e., the epipolar constraint) between 
the cameras in a compact matrix form. The fundamental matrix relates uncalibrated cameras 
(and therefore transforms points in the image coordinate systems), while the essential 
matrix relates calibrated cameras (and therefore transforms points in the camera coordinate 
systems). The relationship between the two matrices is easily determined by substituting 
Equations (13.169) – (13.170) into Equation (13.173):

  xrTEx 5  0 (13.174)

  1Kr21x r 2TE 1K21x 2  5  0 (13.175)

  
xrT 1Kr2TEK21 2 x 5  0('')''*

F
 (13.176)

which reveals F 5 Kr2TEK21, or E 5 KrTFK.
As defined, the essential matrix appears to have six parameters: 3 for the rotation angles 

between the two cameras, and 3 for the translation vector. However, the essential matrix is 
used exclusively in the context of Equation (13.173), which is a homogeneous equation. As 
a result, multiplying E by any nonzero scalar results in another 3 3 3 matrix with the exact 
same behavior. Another way to look at this is to recognize that only the direction of t in 
Equation (13.171) is important, and therefore scaling the translation vector by any nonzero 
amount does not affect the result. This ambiguity matches experience, for in practice we often 
do not know the overall magnitude of t but rather only the direction. Therefore, in practice 
the essential matrix contains just five parameters: 3 for rotation, and 2 for the direction of 
translation.

As seen in the analysis above, every essential matrix has a special structure: It is the 
product of a skew-symmetric matrix and an orthogonal matrix. Since an arbitrary 3 3 3 
matrix has 9 parameters, but an essential matrix has only 5 parameters, it is natural to ask 
under what conditions a given matrix is also an essential matrix. The answer is that a 3 3 3 
matrix is an essential matrix if and only if two of its singular values are equal, and the third 
is zero. This is given in the following result.

Result 4. A real 3 3 3 matrix E is an essential matrix if and only if its three singular values 
are such that s1 5 s2 2 0 and s3 5 0. Therefore, rank 1E 2 5 2.

If there is no rotation between the cameras, and the only translation is in the x direction, 
then the essential matrix is

 E 5 3t 43R 5 C0 0 0
0 0 2tx
0 tx 0

S  C1 0 0
0 1 0
0 0 1

S ~ C0 0    0
0 0 21
0 1    0

S  (13.177)

which is the same as the fundamental matrix of rectified cameras if the principal points and 
focal lengths are identical.

From Equation (13.103), the two epipoles are given by

  e 5  KRTt (13.178)
  e r 5  K rt  (13.179)
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which are just the projections of the point at infinity associated with t, that is, 3tT 0 4T, 
onto the two image planes. That is, since t is already represented in the coordinate system 
of the second camera, its rotation and translation are zero, so that the projection onto the 
second image plane is simply K r 3I 0 4 3tT 0 4T 5 K rt. For the first image coordinate 
system, however, t must first be rotated by RT, leading to K 3RT 2t 4 3tT 0 4T 5 KRTt. 
These epipoles are easily verified using Fe 5 0 and FTe r 5 0. That is, 
Fe 5 1Kr2TEK21 2 e 5 Kr2T 3t 43RK21 1KRTt 2 5 Kr2T 3t 43t 5 Kr2T 1 t 3 t 2 5 0, 
where we have used the property that the cross product of a vector with itself is zero; and 
similarly, FTe r 5 1Kr2TEK21 2Te r 5 K2TETKr21 1K rt 2 5 K2TETt 5 K2T 1 3t 43R 2Tt
5 K2TRT 3t 43T t 5 0.

One property of any essential matrix is that ETt 5 053316. This is easy to see by substitu-
tion, similar to above: ETt 5 1 3t 43R 2Tt 5 RT 3t 43T t 5 0. In other words, since t points 
along the baseline, the point at infinity associated with t is the epipole in the second image, 
and therefore t does not have an associated epipolar line. Another property is that EET 
depends only on the translation: EET 5 3t 43R 1 3t 43R 2T 5 3t 43RRT 3t 43T 5 3t 43 3t 43T . 
Additional properties can be found in the exercises.†

13.6.4 Relationship with Camera Projection Matrices
Now let us consider the relationship between the fundamental matrix and the camera pro-
jection matrices. Given a world point at 1 xw, yw, zw 2 , the homogeneous coordinates of 
its projection onto the first image are given by x 5 Pw, where P is the 3 3 4 projection 
matrix of the first camera, as in Equation (13.103), and w ; 3xw yw zw 1 4T are the 
homogeneous coordinates of the world point. Without additional information about the 
depth, we cannot compute the world coordinates of the point from x, but nevertheless we 
know that P1x is one possible world point, where P1 is the pseudoinverse of P. That is, 
P1x lies on the ray passing through the first camera center and the point x. The projec-
tion of this point onto the second image is x r 5 P rP1x, where P r is the 3 3 4 projection 
matrix of the second camera. Now we know that the epipolar line , r in the second image 
associated with x in the first image joins x r and the second epipole e r. Since, as we have 
already seen, the line joining two points is the cross product of the two points, this leads to 
, r 5 e r 3 P rP1x 5 3e r 43P rP1x. Since x r lies on , r, this yields

 
xrT, r 5 xrT 3e r 43P rP1x 5 0(')'*

F
 (13.180)

or F 5 3e r 43P rP1. By similar reasoning, FT 5 3e 43PPr1.
Now suppose that R and t are the rotation and translation, respectively, between the 

two cameras, so that P 5 K 3I53336 053316 4 and P r 5 K r 3R t 4. Then, straightforward 
substitution reveals:

F 5 3e r 43P rP1 5 3e r 43K r 3R t 4 1K 3I 0 4 21 5 3e r 43K r 3R t 4 B I
0TR  K21 5 3e r 43K rRK21 (13.181)

Although the projection matrices uniquely determine F, for any given F there is a family of 
projection matrices compatible with it. If we set P 5 3I53336 053316 4, then this family is 
given by P r 5 3 3e r 43F 1 e rvT le r 4, where v is any 3 3 1 vector, and l is any nonzero 
scalar.

† Problem 13.39.
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For reference, we now summarize the equations for the essential and fundamental matri-
ces. Four of these equations have already been shown, while one is left as an exercise:†

  E 5  3t 43R 5 R 3RTt 43  (13.182)

  F 5  Kr2TEK21 5 3e r 43K rRK21 5 3e r 43P rP1  (13.183)

13.6.5 Estimating the Essential and Fundamental Matrices
Now that we have laid the groundwork for understanding how the fundamental and essential 
matrices capture the relative geometry between a pair of cameras, we are ready to show how 
to reconstruct the metric geometry of a scene from point correspondences taken by a pair of 
calibrated cameras. The general procedure is as follows: (1) estimate the fundamental matrix 
from the correspondences; (2) construct the essential matrix using the intrinsic camera 
calibration parameters; (3) decompose the essential matrix into rotation and translation (up 
to scale); and (4) estimate the 3D coordinates of the world points. These steps are covered 
in this subsection and the next several subsections.

Since the matrix E has only five degrees of freedom, in theory only five corresponding 
points are needed to solve for it. (Note that each corresponding pair yields a single 
equation, because xrTEx 5 0 is a scalar equation, unlike the homography mapping 
x r ~ Hx, which yields two linearly independent equations per corresponding pair.) The 
so-called five-point algorithm takes advantage of this property, but we shall not spend 
time discussing it because it is quite complicated mathematically, and we usually want 
to use as many correspondences as possible anyway in order to overcome the effects 
of noise.

Instead, the most popular approach is the eight-point algorithm. Since the essential 
and fundamental matrices consist of nine elements but are unique only up to an unknown 
scaling factor, each has eight unique elements. Since each corresponding pair yields one 
equation, eight pairs of correspondences yield eight equations for the eight unknowns, 
thereby leading to a linear solution. The beauty of the eight-point algorithm is its simplicity, 
because it computes a least squares solution if additional correspondences are available, 
with no modification to the algorithm. The eight-point algorithm is applicable to estimat-
ing either E or F from corresponding pairs, depending upon whether the measurements 
are in pixels or meters. We will describe the procedure for computing F, but keep in mind 
that the same procedure can be used to compute E, with just a very slight modification at 
the end that we shall mention. Alternatively, once F has been computed, E can be found 
by simply multiplying F by the intrinsic calibration matrices if they are available, as in 
Equation (13.176).

If we let x and x r be points in the two images, then we can rewrite the fundamental matrix 
equation by explicitly listing the individual elements of the matrix and vectors as follows:

 

 

xrTFx 5 3x r y r 1 4
 

 

 

C   

f11 f12 f13

f21 f22 f23

f31 f32 f33

S
(''')'''*

F
 

Cx
y
1
S 5 0

 

 

(13.184)

Multiplying the elements reveals a single scalar equation:

 f11x x r 1 f12x ry 1 f13 
x r 1 f21x y r 1 f22 

y y r 1 f23 
y r 1 f31x 1 f32 

y 1 f33 5 0 (13.185)

† Problem 13.40.
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which, when rearranged, can be written as the dot product of two vectors, one containing 
known quantities and the other containing unknown quantities:

 3xx r x ry x r xy r yy r y r x y 1 4 F 

f11

f12

f13

f21

(
f33

V 5 0 (13.186)

where the vector of unknowns contains the elements of F is row-major order. This is one 
equation with eight unknowns, due to the unknown scaling factor. With additional corre-
spondences, the values are stacked to yield additional rows on the left:

 

Ex1x1r x1ry1 x1r x1y1r y1y1r y1r x1 y1 1
x2x2r x2ry2 x2r x2y2r y2y2r y2r x2 y2 1
x3x3r x3ry3 x3r x3y3r y3y3r y3r x3 y3 1

(
xnxnr xnryn xnr xnynr ynynr ynr xn yn 1

U
('''''''''')''''''''''*

A5n396  

F 

f11

f12

f13

f21

(
f33

V
()*
f 59316

 

 

5 059316
 

 

 

 

(13.187)

where 1 xi, yi 24 1 xir, yir 2  is the ith corresponding pair, and n $ 8 is the number of correspon-
dences. This equation can be solved by selecting the eigenvector of ATA associated with the 
smallest eigenvalue, or equivalently, the right singular vector associated with the smallest 
singular value of A, as we have already seen. Then, the elements of f can be rearranged to 
construct the 3 3 3 matrix F.

Note, however, that this result will not be a valid fundamental matrix, because image 
noise will cause it to be full rank. To ensure that the resulting matrix is rank 2, we must 
compute the SVD, F 5 USVT, then set the smallest singular value to zero, then put the 
matrix back together: U diag 1s1, s2, 0 2  VT, which yields the closest matrix in the 
Frobenius norm sense that has rank 2 and is therefore a valid fundamental matrix.† If, instead, 
the essential matrix is desired, the same procedure is followed except that in this last step 
we set s1 5 s2 5 1, leading to U diag 1 1, 1, 0 2VT.

Just as we did for the DLT, the coordinates must first be normalized to achieve robust 
results using the matrices T and T r which are computed in the same manner as before. If 
we let x̆ 5 Tx and x̆ r 5 T rx r, then substituting into xrTFx 5 0 reveals

  1Tr21x̆ r 2TF 1T21x̆ 2  5  0 (13.188)

  
x̆rTTr2TFT21x̆ 5 0(')'*

F̆
 (13.189)

which means F̆ 5 Tr2TFT21, or F 5 TrTF̆T. The pseudocode is provided in 
Algorithm 13.13. As before, the result can be considered a starting point for a nonlinear 
minimization routine, if more accurate results are desired. An example of the epipolar lines 
obtained by estimating F in this manner is shown in Figure 13.31.

† Section 11.1.5 (p. 520).
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13.6.6 Decomposing the Essential Matrix
Given an essential matrix E, we would like to be able to extract the translation vector t and 
rotation matrix R. Since E 5 3t 43R, this can be done by decomposing the matrix into the 
product of a skew-symmetric matrix 3t 43 and an orthogonal matrix R. To do this, let us 
define two special matrices:

 Ŝ ; C1 0 0
0 1 0
0 0 0

S  W ; C0 21 0
1 0 0
0 0 1

S  (13.190)

Since E, by definition, has two nonzero identical singular values and one zero singular 
value, the former matrix is simply the singular value matrix that results from computing 
the SVD of E, that is, E 5 UŜVT for some U and V. The latter matrix is special because it 
satisfies two important properties, both of which are easy to verify by inspection: (1) WŜ 
is skew-symmetric, that is, WŜ 5 2 1WŜ 2T; and (2) WŜW ~ Ŝ.

ALGORITHM 13.13 Eight-point algorithm for estimating the fundamental matrix

EightPointFundamental 1 5xi 4 xir6i51
n 2

Input: n corresponding pairs of points 1 xi, yi 24 1 xir, yir 2  between two images
Output: the 3 3 3 fundamental matrix that best satisfies 1 xir 2TFxi 5 0 for all i

1 Compute T and T r using Equation (13.118)
2 Normalize the points: x̆i d Txi, x̆ir d T rxir, i 5 1, c, n
3 Construct the n 3 9 matrix Ă in Equation (13.187) using the normalized points
4 Solve the linear system Ă f̆ 5 0 for f̆
5 Rearrange the values in f̆ to create F̆
6 Compute Ŭ, S̆, V̆T d SVD 1 F̆ 2
7 Set the smallest singular value to zero: F̆ d Ŭ diag 1 s̆1, s̆2, 0 2 V̆T

8 Unnormalize the result to yield the desired fundamental matrix: F d TrTF̆ T.
9 return F

Figure 13.31 Two images 
of a static scene, with 
some of the epipolar lines 
overlaid, whose intersection 
reveals the epipoles. 
Note that corresponding 
points on the two images 
lie on corresponding 
epipolar lines.
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Decomposing E is then straightforward by computing its SVD and applying these 
properties:

E 5 UŜVT ~ U 1WŜW 2VT 5 UWŜ 1UTU 2WVT 5 1UWŜUT 2 1UWVT 2(')'*
S

(')'*
R

 (13.191)

where S 5 3t 43 is a skew-symmetric matrix, and R is an orthogonal matrix. Therefore, the 
rotation matrix is computed as R 5 UWVT. To obtain the translation vector t, recall that 
ETt 5 VŜUTt 5 053316, from which it follows that t 5 U 30 0 1 4T 5 u3, which is the 
rightmost column of U 5 3u1 u2 u3 4. However, our choice of W rather than WT was 
arbitrary (a case of the scale ambiguity), and we also know t only up to an unknown scale 
factor. So actually there are four possible solutions, namely, R 5 UWVT or R 5 UWTVT, 
and t 5 6u3. Thankfully, exactly one of these four solutions is physically plausible because 
the other three solutions place world points behind one or both of the cameras, leading to 
the pseudocode in Algorithm 13.14.

It is now possible to describe a procedure for estimating the projection matrices of two 
cameras with overlapping fields of view, presented in Algorithm 13.15. Before calling this 
procedure, the cameras must first be calibrated internally using Algorithm 13.12. Then, a 
number of corresponding points are determined between the images, either manually or 
automatically. These points are used to estimate the fundamental matrix, from which the 
essential matrix is computed. The essential matrix is decomposed into rotation and transla-
tion, and the camera projection matrices are constructed. Note that this procedure assumes 
a particular world coordinate system; therefore, other solutions are possible, as long as the 
relative rotation and translation between the cameras remains the same.

13.6.7 Computing 3D Point Coordinates
Given the camera projection matrices P53346 and P53346r , the 3D coordinates of a world 
point can be estimated from its projections onto the two images. Let w54316 be the homoge-
neous coordinates of the world point, and let x 5 Pw and x r 5 P rw be its projection onto 
the two image planes. Note that x 4 x r are the two corresponding points. Let pi

T be the ith 
row of P, and similarly for pirT:

 P 5 Cp1
T

p2
T

p3
T

S  and  P r 5 Cp1rT

p2rT

p3rT
S  (13.192)

ALGORITHM 13.14 Decompose the essential matrix to reveal rotation and translation

DecomposeEssentialMatrix(E)

Input: essential matrix E
Output: the 3 3 3 rotation matrix R and 3 3 1 translation vector t such that E 5 3t 43R

1 U, Ŝ, VT d SVD(E)   ➤ Compute the SVD of E, noting that s1 5 s2 5 1 and s3 5 0.
2 R1 d UWVT   ➤ Construct 2 possible rotation matrices,
3 R2 d UWTVT  and 2 possible translation vectors, where U 5 3u1 u2 u3 4 .
4 t1 d u3   ➤ Then test the four solutions on an arbitrary world point;
5 t2 d u3  the solution which places the point
6 return either R1, t1 or R1, t2 or R2, t1 or R2, t2   in front of both cameras is the correct one.
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The coordinates of the image point (in pixels) are then given by

 1 x, y 2 5 ¢p1
Tw

p3
Tw

, 
p2

Tw

p3
Tw

≤  and  1 x r, y r 2 5 ¢p1rTw

p3rTw
, 

p2rTw

p3rTw
≤  (13.193)

Cross-multiplying yields four equations for the four unknowns:

  x p3
Tw 2 p1

Tw 5  0  and  y p3
Tw 2 p2

Tw 5 0  (13.194)

  x rp3rTw 2 p1rTw 5  0  and  y rp3rTw 2 p2rTw 5 0 (13.195)

Since these equations are linear in the unknown w, we can stack them into matrix form:

 

D xp3
T 2 p1

T

yp3
T 2 p2

T

x rp3rT 2 p1rT

y rp3rT 2 p2rT
T

('')''*
A 54346

 

 

w 5 054316
 

 

 

 

(13.196)

and solve for w by selecting the eigenvector of ATA associated with the smallest eigenvalue. 
This triangulation method is easy to implement, will usually give acceptable results, and 
generalizes well to more than two images. Keep in mind, however, that it minimizes the 
algebraic error, not the geometric error.

13.6.8 Homography Resulting From Two Stereo Images of a Plane
We have covered a lot of ground in this chapter, and the mathematics has been fairly 
dense. Even if all the details have not been easy to follow, hopefully at least some of the 
basic procedures and fundamental principles have been grasped. We close this chapter by 
considering the special case that arises when a stereo pair of cameras views a plane in the 
world. As we saw earlier, , 5 3a b c 4T represents the line ax 1 by 1 c 5 0 in the 
plane, so that a point x 5 3x y 1 4T lies on the line if and only if xT, 5 0. Similarly, 
p 5 3a b c d 4T represents the plane ax 1 by 1 cz 1 d 5 0 in 3D space, so that 
a point x 5 3x y z 1 4T lies on the plane if and only if xTp 5 0. Now, since the 
projective transform between two planes is a 3 3 3 homography, if we view a plane p 

ALGORITHM 13.15 Estimate the projection matrices of a pair of internally calibrated cameras

EstimateCameraProjectionMatrices 1 5xi 4 xir6i51
n , K, K r 2

Input: n corresponding pairs of points 1 xi, yi 24 1 xir, yir 2  between two images intrinsic camera parameters 
K and K r

Output: the 3 3 4 camera projection matrices P and P r

1 F d EIGHTPOINTFUNDAMENTAL 1 5xi 4 xir6i51
n 2

2 E d KrTFK
3 R, t d DECOMPOSEESSENTIALMATRIX 1E 2
4 P d K 3I 53336 0 53316 4
5 P r d K r 3R t 4
6 return P, P r
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in the world with two different cameras, then the transform between this world plane and 
each image plane is a homography, and therefore the transform between the two image 
planes is also a homography (that is, for all image points that are projections of points on 
the world plane).

To relate this homography to the epipolar geometry between two calibrated cameras, 
let R and t be the rotation and translation, respectively, between the two cameras, and 
let K and K r be the intrinsic calibration matrices of the cameras. The homogeneous 
coordinates of the projection of the world point 1 xw, yw, zw 2  onto the first image plane 
are given by

 x ~ Pw 5 K 3I53336 053316 4 w 5 K Cxw

yw

zw

S  (13.197)

where w ; 3xw yw zw 1 4T. Inverting reveals

 Cxw

yw

zw

S ~ K21x,  or  w 5 Dxw

yw

zw

1

T ~ BK21x
l

R  (13.198)

where l 2 0 is an unknown scale factor.
Let us represent the world plane in the first camera’s coordinate system as 

p54316 5 3n53316T d 4T, where n is the normal to the plane, and d is the distance from the 
plane to the origin (first center of projection). Since the world point lies on the world plane, 
we have wTp 5 pTw 5 0. Substituting reveals

 3nT d 4 w ~ 3nT d 4 BK21x
l

R 5 0 (13.199)

which implies l 5 21
d nTK21x. Applying these results, we see that the projection of the 

world point onto the other image is given by

 x r ~ P rw ~ K r 3R t 4 B K21x
21

d nTK21x
R 5 K r aRK21x 2

1
d

 tnTK21xb  (13.200)

or, in other words,

 
x r ~ K r aR 2

1
d

 tnTb  K21x
(''')'''*

Hp

 (13.201)

where Hp 5 K r 1R 2 1
d tnT 2  K21 is the homography between the images induced by the 

plane p.
Since the coordinates of the points also satisfy the epipolar constraint, we have 

xrTFx 5 0. Substituting the homography above yields 1Hpx 2TFx 5 xTHp
TFx 5 0. It can 

be shown that a matrix A is skew-symmetric, that is, A 5 2AT, if and only if xTAx 5 0 for 
all x. Therefore, since this result must hold for all x, it must be the case that Hp

TF is skew-
symmetric. It follows, then, that a given homography H and a given fundamental matrix F 
are compatible if and only if HTF 5 2FTH.
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13.7 Further Reading
Stereo perception is covered in the classic book by Julesz 
[1971], the random dot stereogram is due to Julesz 
[1960], the autostereogram is due to Tyler and Clarke 
[1990], and early algorithms for stereo matching include 
those of Marr and Poggio [1976], Marr et al. [1978], and 
Marr and Poggio [1979]. The disparity gradient limit 
was first put into practice by Pollard et al. [1985], cit-
ing the earlier discussions of Burt and Julesz [1980], and 
it was rediscovered independently by Little and Gillett 
[1990], who also introduced the forbidden zone. The term 
matching space comes from Geiger et al. [1995], and it is 
similar to the disparity space image of Intille and Bobick 
[1994]. The concept of casting shadows on the Cyclopean 
disparity function is due to Belhumeur [1996], which 
also describes a straightforward dynamic programming 
algorithm for matching based on the classic dynamic 
programming approach of Ohta and Kanade [1985]. The 
more recent dynamic programming approach known as 
semiglobal matching is due to Hirschmuller [2008].

Regarding block matching, the left-right disparity check 
is due to Fua [1991], adaptive window sizes are addressed in 
the classic work of Kanade and Okutomi [1994], the advan-
tage of using more than two cameras is shown by Okutomi 
and Kanade [1993], and an effective block-matching algo-
rithm with reduced border errors is described by Hirschmuller 
et al. [2002]. The rank and census transforms for dealing 
with factionalism are due to Zabih and Woodfill [1994], 
while a similarity measure that addresses the problem of 
image sampling can be found in the work of Birchfield and 
Tomasi [1998]. Another approach to aligning images is to 
use mutual information, as explained in Viola and Wells 
[1997]. The well-known study comparing dense two-frame 
stereo algorithms, along with the accompanying Middlebury 
stereo website,† is that of Scharstein and Szeliski [2002].

Space did not permit us to cover alternative approaches 
to depth perception in any detail. Nevertheless, those 
interested in photometric stereo should consult the clas-
sic work of Woodham [1980]. An interesting discussion 
of depth from defocus and how it relates to triangulation-
based stereo can be found in Schechner [2000]. A popular 
survey of structured light techniques is the one by Salvi et 
al. [2004], and a well-known approach to wide-baseline 
stereo matching is that of Matas et al. [2004]. We have 
also not had the space to cover mosaicking, for which 
a good overview has been provided by Szeliski [2006], 
or the Perspective-n-Point (PnP) problem, solutions for 
which can be found in the works of Haralick et al. [1994], 

Dementhon and Davis [1995], Lu et al. [2000], and  Lepetit 
et al. [2009]. Another omission due to lack of space is the 
factorization method of Tomasi and Kanade [1992].

The Lucas-Kanade algorithm was originally presented 
in the context of stereo by Lucas and Kanade [1981]. 
It was later extended to feature tracking by Tomasi and 
Kanade [1991] and augmented with an affine warp for 
determining lost features by Shi and Tomasi [1994]. It 
was also modified to track large regions using precom-
puted templates viewed under variable lighting conditions 
by Hager and Belhumeur [1998]. A thorough overview of 
the algorithm, along with variations such as the inverse 
compositional warp, can be found in Baker and Matthews 
[2004]. The classic Horn-Schunck algorithm for dense 
optical flow estimation is described in the classic paper 
by Horn and Schunck [1981]. Another important prob-
lem in optical flow is the estimation of multiple motions 
as described in Black and Anandan [1996]. More recent 
approaches to optical flow estimation can be found in the 
papers by Brox et al. [2004] and Brox and Malik [2011].

Zhang’s calibration algorithm, including a description 
of the image of the absolute conic, can be found in the 
classic paper by Zhang [2000]; a nearly identical algo-
rithm was discovered simultaneously by Sturm and May-
bank [1999]. The lens distortion model presented here 
is the same as that of Brown [1971]. Several subsequent 
authors have reversed the roles of the distorted and undis-
torted coordinates, and some have argued that the same 
equation works in both directions. In support of this view, 
de Villiers et al. [2008] show that with enough coefficients 
it is possible to model the equation in either direction.

The authoritative source on projective geometry for com-
puter vision, and multiple-view geometry in particular, is the 
book by Hartley and Zisserman [2003], which contains a 
useful description of the normalized DLT algorithm, along 
with details about the properties of the fundamental and 
essential matrices. The DLT algorithm is originally due to 
Aziz and Karara [1971]. The eight-point algorithm is due 
to Longuet-Higgins [1981], but for years researchers com-
plained that results were not reliable; these problems largely 
disappeared once the importance of normalization was real-
ized, as championed by Hartley [1997]. The essential matrix 
is described thoroughly in the classic text of Faugeras 
[1993], which was followed by a detailed analysis of the 
fundamental matrix in Luong and Faugeras [1996]. The 
relationship between the fundamental matrix and homog-
raphy of a world plane is due to Luong and Faugeras [1993].

† http://vision.middlebury.edu/stereo
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PROBLEMS

13-1 Define retinal disparity. Suppose your two eyes are fixated on a small object at some 
distance away. What is the retinal disparity of the object?

13-2 Suppose two cameras are positioned such that both image planes are parallel, but one 
plane is slightly in front of the other. Are the cameras rectified? Why or why not?

13-3 Suppose an object 2 m away is viewed by a rectified pair of stereo cameras with a 
baseline of 50 mm, and the lens of each camera has a focal length of 35 mm. What is the 
disparity?

13-4 Which of the following pixels in the right image could possibly match the pixel (52,3) 
in the left image, assuming the images are rectified, and the maximum disparity is 20? (a) 
(26,3), (b) (48,13), (c) (64,3), (d) (48,3), and (e) (59,6).

13-5 Explain the relationship between the epipolar constraint and rectified cameras.

13-6 Consider the ordering constraint. (a) What other constraint is implied by it? (b) What 
zone describes the set of matches that it forbids? (c) What is another name for the constraint? 
(d) Give an example when it is violated.

13-7 Consider a thin, opaque pole just thicker than the interpupillary distance. How close 
does the pole have to be to the cameras in order to violate the ordering constraint?

13-8 The function d
 1 x 2 ; maxa 1 d 1 x 1 a 2 2 k 0a 0 2  is equivalent to grayscale dilation 
of the function d with what 1D structuring element?

13-9 Given a constant k, a function f is said to be Lipschitz continuous if and only if

 0   f 1 x 1 h 2 2 f 1 x 2 0 # k 0h 0  (13.202) 

for all x and h. The smallest such k is called the Lipschitz constant of the function, and the 
function is called a Lipschitz function. Lipschitz continuity is a smoothness condition on func-
tions which is stronger than regular continuity. Show that, if the disparity gradient limit is satis-
fied, then the Cyclopean disparity function is Lipschitz continuous with the same constant k.

13-10 Suppose the left disparity map of a scanline from a pair of rectified images is given 
by 0, 0, 0, 2, 2, 2, 0, 0, 0 for the pixels xL 5 0 through xL 5 8.
(a)  Compute the right disparity map for xR 5 0 through xR 5 8, assuming that occluded 

pixels are part of the background.
(b)  Compute the Cyclopean disparity function over the coordinates associated with the 

discrete matches.

13-11 Compute the disparity gradient (a) between the matches labeled a and b in the figure 
below, and (b) between the matches labeled c and d.

xL

0
0

2

4

6

8

10

2 4 6
a

8

b

c

d

10

xR

3
4

5
6

7
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13-12 Implement a basic algorithm for matching two rectified stereo images.

(a)  Implement BlockMatch1 of Algorithm 13.1.

(b)  Implement BlockMatch2 of Algorithm 13.2, and compare running times for differ-
ent values of w.

(c)  Add the left-right check using Algorithm 13.4, and compare results with those of (a) 
and (b). What do you notice?

13-13 Show that minimizing the SSD is nearly the same as maximizing the cross-
correlation. Under what circumstances are they identical?

13-14 Compute the rank and census transforms of the following window of grayscale 
pixel values: C8 5 3

7 6 9
1 1 2

S
13-15 Apply Algorithm 13.5 to compute the edit distance, as well as the matching function, 
between the strings “cart” and “earth.”

13-16 Explain the key idea behind semi-global matching.

13-17 Explain the difference between motion field and optical flow. Given an example 
where a nonzero motion field results in zero optical flow, and vice versa.

13-18 List some situations that would cause the brightness constancy assumption to fail.

13-19 Explain (a) why the optical flow constraint equation in Equation (13.28) is actually 
an approximation, not an equation. Also explain (b) why it contains a mixture of partial and 
total derivatives, and (c) how @I/@t is usually computed.

13-20 Implement the Lucas-Kanade method.

13-21 What problem is generalized Lucas-Kanade attempting to solve?

13-22 Explain how the Horn-Schunck algorithm relates to the Lucas-Kanade method. 
What are some similarities and differences?

13-23 Suppose we set l 5 0 in the Horn-Schunck algorithm. (a) What is the rank of the 
matrix on the left-hand side of Equation (13.77), and what are the implications for solving 
for 3u v 4T? (b) State what direction 3u v 4T will be shifted relative to 3u v 4T, and relate 
this answer with the finding of Equation (13.31).

13-24 Given the point (5,2) in the 2D Euclidean plane, (a) write the homogeneous coordi-
nates of the point, (b) write the coordinates of the equivalent point on the w 5 1 plane, and 
(c) write the coordinates of the equivalent point on the positive unit hemisphere.

13-25 Convert the homogeneous coordinates (27,18,3) to inhomogeneous coordinates.

13-26 Apply the following homogeneous transformation to the point (3,7), converting the 
result back to the Euclidean plane:C8 2 4

3 9 1
6 7 2

S
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13-27 Use homogeneous coordinates to simplify the computation of

(a) The point at the intersection of the lines 7x 1 3y 2 6 5 0 and y 5 22x 1 16

(b) The line joining the points (6,2) and (1,9)

13-28 Use homogeneous coordinates to compute the intersection of the lines 
8x 1 2y 2 3 5 0 and y 5 24x 1 12. What do you notice about the result?

13-29 Given the ellipse 4x2 1 3y2 5 100,

(a) Draw the ellipse.

(b) Construct the 3 3 3 matrix C representing the conic in homogeneous coordinates.

(c) Compute the dual conic C*.

(d)  Use C to compute three different points on the conic, and add these points to your 
drawing.

(e)  Use C* to compute three different tangent lines to the conic, and add these lines to 
your drawing.

13-30 Which of the following statements is true?

(a) A similarity transformation is always an affine transformation.

(b) A projective transformation is always a similarity transformation.

(c) A similarity transformation is a Euclidean transformation if the scaling is 1.

13-31 Apply the following similarity transformation to the absolute points:C5.196 23.000    6.789
3.000    5.196 28.312

0   0    1
S

13-32 How many parameters specify the imaging process of a single pinhole camera? List 
these parameters, and specify for each whether it is extrinsic or intrinsic.

13-33 List the two most common types of lens distortion.

13-34 Apply the normalized DLT algorithm to the following set of corresponding point 
pairs:

x (45,45) (340,45) (45,125) (340,125) (45,205) (340,205)

x r (99,43) (287,111) (98,128) (311,184) (96,203) (333,241)

13-35 Suppose you are given the following matrix representing the inverse of the image 
of the absolute conic (IAC). Compute the camera intrinsic parameters.

v21 5 KKT 5 C231664.36   76045.34 335.00
  76045.34 168561.41 227.00
     335.00       227.00 1

S
13-36 Calibrate an actual camera using Zhang’s algorithm. That is, obtain access to a cam-
era, download an implementation of a camera calibration routine (nearly all implementa-
tions are some variation of Zhang’s algorithm), print out a chessboard pattern and tape it to 
a hard flat surface, capture several images, obtain coordinates of the corners either manually 
or automatically, and feed the coordinates into the code to compute the intrinsic parameters. 
(Ignore the extrinsic parameters.)
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13-37 Define the following terms: epipole, epipolar line, epipolar plane, and epipolar 
constraint.

13-38 Explain the relationship between the fundamental matrix and the essential matrix.

13-39 Prove the following additional properties of essential matrices. For simplicity, just 
prove the “only if” part — that is, show that these properties hold for any essential matrix:

(a)  A real 3 3 3 matrix E is an essential matrix if and only if det 1E 2 5 0 and 
1
2 tr2 1EET 2 5 tr 1 1EET 2 2 2 .

(b) A real 3 3 3 matrix E is an essential matrix if and only if EETE 5 1
2 tr 1EET 2E.

13-40 Prove that the essential matrix is given by E 5 R 3RTt 43, as stated in Equation 
(13.182).

13-41 (a) Estimate the fundamental matrix from the following set of correspondences, (b) 
compute the epipolar line for each point, and (c) display the epipolar lines on a pair of plots:

x (190,155) (420,114) (252,29) (150,111) (35,228) (443,230) (149,240) (276,324)

x r (231,138) (442,98) (272,9) (169,91) (58,209) (460,217) (184,225) (312,310)

13-42 Decompose the following essential matrix into rotation and translation.C20.8497 20.9437    9.0579
   0.9437 20.8497 28.1472
21.2798  12.1155   0

S
13-43 Implement block-based matching of a pair of rectified stereo images, using the 
SAD dissimilarity measure. For efficiency, your code should precompute the 3D array of 
dissimilarities, followed by a series of separable convolutions (one pair of convolutions 
per disparity). Implement the left-to-right consistency check, retaining a value in the left 
disparity map only if the corresponding point in the right disparity map agrees in its dispar-
ity. The resulting disparity map should be valid only at the pixels that pass the consistency 
check; set other pixels to zero. (Note: For simplicity, do not worry about setting the values 
of pixels along the left border of the left image.)

13-44 Implement the detection and tracking of sparse features points throughout a video 
sequence. To detect good features in the first frame, use either the Harris corner detector 
or the Tomasi-Kanade method, as explained in Chapter 7. Then, for each pair of consecu-
tive frames, perform Lucas-Kanade tracking of all the features to update their 2D image 
positions. Remember to keep the feature coordinates as floating point values throughout 
the tracking process, only rounding for display purposes; to handle noninteger values, use 
bilinear interpolation. Do not worry about declaring features lost, but simply allow them 
to continue tracking throughout the sequence, even if they drift to a neighboring surface 
in the world due to occlusion. Nevertheless, be sure to perform bounds checking so that 
features that reach the image border do not cause the program to crash due to out-of-bounds 
memory access.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



690 

I. E. Abdou and W. Pratt. Quantitative design and evaluation of enhancement/thresholding edge detectors. Proceedings of the IEEE, 67(5): 753–763, 
May 1979.

D. Adalsteinsson and J. A. Sethian. A fast level set method for propagating interfaces. Journal of Computational Physics, 118(2): 269–277, May 1995.
A. Adams, J. Baek, and A. Davis. Fast high-dimensional filtering using the permutohedral lattice. In Eurographics, 2010.
R. Adams and L. Bischof. Seeded region growing. IEEE Trans. on Pattern Analysis and Machine Intelligence, 16(6): 641–647, June 1994.
E. H. Adelson and J. R. Bergen. The plenoptic function and the elements of early vision. In M. S. Landy and A. J. Movshon, editors, Computational 

Models of Visual Processing, pages 3–20. MIT Press, Cambridge, MA, 1991.
S. Agarwal, N. Snavely, I. Simon, S. M. Seitz, and R. Szeliski. Building Rome in a day. In Proceedings of the International Conference on Computer 

Vision (ICCV), Sept. 2009.
N. Ahmed. How I came up with the discrete cosine transform. Digital Signal Processing, 1(4-5): 4–9, Jan. 1991.
N. Ahmed, T. Natarajan, and K. R. Rao. Discrete cosine transform. IEEE Trans. on Computers, 23(1): 90–93, Jan. 1974.
H. Akaike. A new look at the statistical model identification. IEEE Trans. on Automatic Control, 19(6): 716–723, Dec. 1974.
A. Al-Sharadqah and N. Chernov. Error analysis for circle fitting algorithms. Electronic Journal of Statistics, 3: 886–911, 2009.
A. A. Amini, T. E. Weymouth, and R. C. Jain. Using dynamic programming for solving variational problems in vision. IEEE Tran. on Pattern Analysis 

and Machine Intelligence, 12(9): 855–867, Sept. 1990.
P. Arbeláez. Boundary extraction in natural images using ultrametric contour maps. In Proceedings 5th IEEE Workshop on Perceptual Organization 

in Computer Vision, June 2006.
P. Arbeláez, M. Maire, C. Fowlkes, and J. Malik. Contour detection and hierarchical image segmentation. IEEE Transactions on Pattern Analysis 

and Machine Intelligence, 33(5): 898–916, May 2011.
D. Arthur and S. Vassilvitskii. K–means++: The advantages of careful seeding. In Proceedings of the  ACM-SIAM Symposium on Discrete Algorithms 

(SODA), pages 1027–1035, 2007.
K. S. Arun, T. S. Huang, and S. D. Blostein. Least-squares fitting of two 3-D point sets. IEEE Transactions on Pattern Analysis and Machine 

 Intelligence, 9(5): 698–700, Sept. 1987.
C. G. Atkeson, A. W. Moore, and S. Schaal. Locally weighted learning. Artificial Intelligence Review, 11(1–5): 11–73, Feb. 1997.
F. Attneave. Some informational aspects of visual perception. Psychological Review, 61(3): 183–193, 1954.
V. Aurich and J. Weule. Non-linear Gaussian filters performing edge preserving diffusion. In Proceedings of the DAGM Symposium, pages 538–545, 

1995.
S. Avidan. Ensemble tracking. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2005.
A. Y. I. Aziz and H. M. Karara. Direct linear transformation into object space coordinates in close-range photogrammetry. In Proc. of the Symposium 

on Close-Range Photogrammetry, pages 1–18, Jan. 1971.
J. Babaud, A. P. Witkin, M. Baudin, and R. O. Duda. Uniqueness of the Gaussian kernel for scale-space filtering. IEEE Transactions on Pattern 

Analysis and Machine Intelligence, 8(1): 26–33, 1986.
S. Baker and I. Matthews. Lucas-Kanade 20 years on: A unifying framework. International Journal of Computer Vision, 56(3): 221–255, 2004.
D. Ballard. Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognition, 13(2), Apr. 1981.
D. H. Ballard and C. M. Brown. Computer Vision. Englewood Cliffs, New Jersey: Prentice-Hall, 1982.
D. Barash. A fundamental relationship between bilateral filtering, adaptive smoothing, and the nonlinear diffusion equation. IEEE Transactions on 

Pattern Analysis and Machine Intelligence, 24(6): 844–847, June 2002.
D. Barash and D. Comaniciu. A common framework for nonlinear diffusion, adaptive smoothing, bilateral filtering and mean shift. Journal of Image 

and Vision Computing, 22(1): 73–81, 2004.
J. Barraquand and J. C. Latombe. Robot motion planning: A distributed representation approach. International Journal of Robotics Research, 10(6): 

628–649, 1991.
H. G. Barrow and J. M. Tenenbaum. Recovering intrinsic scene characteristics from images. In A. Hanson and E. Riseman, editors, Computer Vision 

Systems, pages 3–26. New York: Academic Press, 1978.
R. H. Bartels, J. C. Beatty, and B. A. Barsky. An Introduction to Splines for Use in Computer Graphics and Geometric Modeling. Los Altos, CA: 

Morgan Kauffman, 1987.

BIBLIOGRAPHY

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



Bibliography 691

H. Bay, A. Ess, T. Tuytelaars, and L. V. Gool. SURF: Speeded up robust features. Computer Vision and Image Understanding, 110(3): 346–359, 
June 2008.

P. R. Beaudet. Rotationally invariant image operators. In Proceedings of the International Joint Conference on Pattern Recognition, pages 579–583, 
1978.

M. J. Behe. Darwin’s Black Box: The Biochemical Challenge to Evolution. Free Press, 1996.
P. N. Belhumeur. A Bayesian approach to binocular steropsis. International Journal of Computer Vision, 19(3): 237–260, 1996.
P. N. Belhumeur, J. P. Hespanha, and D. J. Kriegman. Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection. IEEE  Transactions 

on Pattern Analysis and Machine Intelligence, 19(7): 711–720, July 1997.
S. Belongie, J. Malik, and J. Puzicha. Shape matching and object recognition using shape contexts. IEEE Transactions on Pattern Analysis and 

Machine Intelligence, 24(4): 509–522, Apr. 2002.
B. Berlin and P. Kay. Basic Color Terms: Their Universality and Evolution. Berkeley: University of California Press, 1969.
P. J. Besl and R. C. Jain. Segmentation through variable-order surface fitting. IEEE Transactions on Pattern Analysis and Machine Intelligence, 

10(2): 167–192, Mar. 1988.
P. J. Besl and N. D. McKay. A method for registration of 3-D shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(2): 

239–256, Feb. 1992.
S. Beucher and C. Lantuéjoul. Use of watersheds in contour detection. In International Workshop on Image Processing: Real-time Edge and Motion 

Detection/Estimation, Sept. 1979.
S. Beucher and F. Meyer. The morphological approach to segmentation: The watershed transformation. In E. R. Dougherty, editor, Mathematical 

Morphology in Image Processing, pages 433–481. CRC Press, 1992.
S. Birchfield and C. Tomasi. Depth discontinuities by pixel-to-pixel stereo. In Proceedings of the Sixth International Conference on Computer Vision 

(ICCV), pages 1073–1080, Jan. 1998a.
S. Birchfield and C. Tomasi. A pixel dissimilarity measure that is insensitive to image sampling. IEEE Transactions on Pattern Analysis and Machine 

Intelligence, 20(4): 401–406, Apr. 1998b.
S. T. Birchfield and S. Rangarajan. Spatiograms versus histograms for region-based tracking. In Proceedings of the IEEE Conference on Computer 

Vision and Pattern Recognition (CVPR), pages 1158–1163, June 2005.
C. M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.
M. J. Black and P. Anandan. The robust estimation of multiple motions: Parametric and piecewise-smooth flow fields. Computer Vision and Image 

Understanding, 63(1): 75–104, Jan. 1996.
I. Blayvas, A. Bruckstein, and R. Kimmel. Efficient computation of adaptive threshold surfaces for image binarization. Pattern Recognition,  

39: 89–101, 2006.
H. Blum. A transformation for extracting new descriptors of shape. In W. Wathen-Dunn, editor, Models for the Perception of Speech and Visual 

Forms, pages 362–380. Cambridge, Mass.: MIT Press, 1967.
O. Boiman, E. Shechtman, and M. Irani. In defense of nearest-neighbor based image classification. In Proceedings of the IEEE Conference on 

Computer Vision and Pattern Recognition (CVPR), June 2008.
M. V. Boland, M. K. Markey, and R. F. Murphy. Automated recognition of patterns characteristic of subcellular structures in fluorescence microscopy 

images. Cytometry, 33: 366–375, 1998.
H. Bond. Making unsharp masks for black and white negatives. Photo Techniques, pages 63–66, Jan/Feb 1996.
H. Bond. Unsharp masking update. Photo Techniques, pages 36–39, Sep/Oct 1997.
F. L. Bookstein. Fitting conic sections to scattered data. Computer Graphics and Image Processing, 9(1): 56–71, Jan. 1979.
G. Borgefors. Distance transformations in digital images. Computer Vision, Graphics, and Image Processing, 34(3): 344–371, 1986.
D. Borland and R. M. Taylor, II. Rainbow color map (still) considered harmful. IEEE Computer Graphics and Applications, 27(2): 14–17, 

 March-April 2007.
E. Boros and P. L. Hammer. Pseudo-boolean optimization. Discrete applied mathematics, 123(1): 155–225, 2002.
K. W. Bowyer and P. J. Phillips. Empirical Evaluation Techniques in Computer Vision. Wiley-IEEE Computer Society Press, 1998.
S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.
Y. Boykov and G. Funka-Lea. Graph cuts and efficient N-D image segmentation. International Journal of Computer Vision, 70(2): 109–131, 2006.
Y. Boykov and M.-P. Jolly. Interactive graph cuts for optimal boundary and region segmentation of objects in N-D images. In Proceedings of the 

International Conference on Computer Vision, pages 105–112, July 2001.
Y. Boykov and V. Kolmogorov. An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Transactions 

on Pattern Analysis and Machine Intelligence, 26(9): 1124–1137, 2004.
Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via graph cuts. IEEE Transactions on Pattern Analysis and Machine 

Intelligence, 23(11): 1222–1239, 2001.
D. Bradley and G. Roth. Adaptive thresholding using the integral image. ACM Journal of Graphics Tools, 12(2): 13–21, 2007.
J. N. Bradley and C. M. Brislawn. The wavelet/scalar quantization compression standard for digital fingerprint images. In IEEE International 

 Symposium on Circuits and Systems, pages 205–208, May 1994.
J. N. Bradley, C. M. Brislawn, and T. Hopper. FBI wavelet/scalar quantization standard for gray-scale fingerprint image compression. In Proceedings 

of the SPIE 1961, Visual Information Processing II, Aug. 1993.
D. H. Brainard and A. Stockman. Colorimetry. In M. Bass, editor, OSA Handbook of Optics. New York: McGraw-Hill, third edition, 2009.
L. Breiman. Bagging predictors. Machine Learning, 24(2): 123–140, Aug. 1996.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



692 Bibliography

L. Breiman. Random forests. Machine Learning, 45(1): 5–32, Oct. 2001.
L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen. Classification and Regression Trees. Belmont, California: Wadsworth International Group, 1984.
H. Breu, J. Gil, D. Kirkpatrick, and M. Werman. Linear-time Euclidean distance transform algorithms. IEEE Transactions on Pattern Analysis and 

Machine Intelligence, 17(5): 529–533, May 1995.
R. Brinkmann. The Art and Science of Digital Compositing. Morgan Kaufmann, second edition, 2008.
D. C. Brown. Close-range camera calibration. Photogrammetric Engineering, 37(8): 855–866, 1971.
T. Brox and J. Malik. Large displacement optical flow: Descriptor matching in variational motion estimation. IEEE Transactions on Pattern Analysis 

and Machine Intelligence, 33(3): 500–513, Mar. 2011.
T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High accuracy optical flow estimation based on a theory for warping. In Proceedings of the 

European Conference on Computer Vision (ECCV), volume 4, pages 25–36, May 2004.
R. Brunelli and T. Poggio. Face recognition: Features versus templates. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(10): 

1042–1052, Oct. 1993.
A. Buades, B. Coll, and J.-M. Morel. A non-local algorithm for image denoising. In Proceedings of the IEEE Conference on Computer Vision and 

Pattern Recognition (CVPR), volume 2, pages 60–65, June 2005.
W. Burger and M. J. Burge. Digital Image Processing: An Algorithmic Introduction Using Java. Springer, first edition, 2008.
C. J. C. Burges. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2: 121–167, 1998.
P. Burt and B. Julesz. A disparity gradient limit for binocular fusion. Science, 208(4444): 615–617, May 1980.
P. J. Burt. Fast filter transforms for image processing. Computer Graphics and Image Processing, 16(1): 20–51, May 1981.
P. J. Burt and E. H. Adelson. The Laplacian pyramid as a compact image code. IEEE Transactions on Communications, 31(4): 532–540, 1983.
J. B. Campbell and R. H. Wynne. Introduction to Remote Sensing. New York: The Guilford Press, fifth edition, 2011.
J. F. Canny. A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8(6): 679–698, Nov. 1986.
C. Carson, S. Belongie, H. Greenspan, and J. Malik. Blobworld: Image segmentation using expectation-maximization and its application to image 

querying. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(8): 1026–1038, Aug. 2002.
V. Caselles, F. Catté, T. Coll, and F. Dibos. A geometric model for active contours in image processing. Numerische Mathematik, 66(1): 1–31, 1993.
V. Caselles, R. Kimmel, and G. Sapiro. Geodesic active contours. International Journal of Computer Vision, 22(1): 61–79, Feb. 1997.
K. R. Castleman. Digital Image Processing. Prentice Hall, second edition, 1995.
R. Cattell. The scree test for the number of factors. Multivariate Behavioral Research, 1(2): 245–276, Apr. 1966.
T. F. Chan and L. A. Vese. Active contours without edges. IEEE Transactions on Image Processing, 10(2): 266–277, Feb. 2001.
F. Chang, C.-J. Chen, and C.-J. Lu. A linear-time component-labeling algorithm using contour tracing technique. Computer Vision and Image 

Understanding, 93(2): 206–220, Feb. 2004.
K. N. Chaudhury. Constant-time filtering using shiftable kernels. IEEE Signal Processing Letters, 18(11): 651–654, Nov. 2011.
K. N. Chaudhury, D. Sage, and M. Unser. Fast O(1) bilateral filtering using trigonometric range kernels. IEEE Transactions on Image Processing, 

20(12): 3376–3382, Dec. 2011.
Chen et al. [2007] {chen2007siggraph}.
Y. Chen and G. Medioni. Object modelling by registration of multiple range images. Image and Vision Computing, 10(3): 145–155, Apr. 1992.
D. K. Cheng. Field and Wave Electromagnetics. Addison Wesley, second edition, 1989.
Y. Z. Cheng. Mean shift, mode seeking, and clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17(8): 790–799, Aug. 1995.
N. Chernov and C. Lesort. Least squares fitting of circles. Journal of Mathematical Imaging and Vision, 23(3): 239–252, Nov. 2005.
P. Chockalingam, N. Pradeep, and S. T. Birchfield. Adaptive fragments-based tracking of non-rigid objects using level sets. In Proceedings of the 

International Conference on Computer Vision (ICCV), Oct. 2009.
C. K. Chow and T. Kaneko. Automatic boundary detection of the left-ventricle from cineangiograms. Computers and Biomedical Research, 5(4): 

388–410, Aug. 1972.
O. Chum, J. Matas, and J. Kittler. Locally optimized RANSAC. In DAGM-Symposium, pages 236–243, 2003.
M. B. Clowes. On seeing things. Artificial Intelligence, 2(1): 79–116, 1971.
A. Cohen, I. Daubechies, and J.-C. Feauveau. Biorthogonal bases of compactly supported wavelets. Communications on Pure and Applied 

 Mathematics, 45(5): 485–560, June 1992.
D. Comaniciu and P. Meer. Mean shift: A robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine 

 Intelligence, 24(5): 603–619, May 2002.
D. Comaniciu, V. Ramesh, and P. Meer. Kernel-based object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(5): 

564–577, May 2003.
J. W. Cooley and J. W. Tukey. An algorithm for the machine calculation of complex Fourier series. Mathematics of Computation, 19(90): 297–301, 

Apr. 1965.
T. F. Cootes, C. J. Taylor, D. H. Cooper, and J. Graham. Active shape models – their training and application. Computer Vision and Image 

 Understanding, 61(1): 38–59, Jan. 1995.
T. F. Cootes, G. J. Edwards, and C. J. Taylor. Active appearance models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(6): 

681–685, June 2001.
T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. Cambridge, Massachusetts: The MIT Press, 1990.
C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 20(3): 273–297, Sept. 1995.
T. M. Cover and J. A. Thomas. Elements of Information Theory. Wiley, second edition, 1991.
I. J. Cox, J. Kilian, F. T. Leighton, and T. Shamoon. Secure spread spectrum watermarking for multimedia. IEEE Transactions on Image Processing, 

6(12): 1673 – 1687, Dec. 1997.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



Bibliography 693

J. F. Crawford. A non-iterative method for fitting circular arcs to measured points. Nuclear Instruments and Methods In Physics Research, 211(1): 
223–225, June 1983.

F. C. Crow. Summed-area tables for texture mapping. Computer Graphics (SIGGRAPH), 18(3): 207–212, July 1984.
J. L. Crowley. A representation for visual information. Technical Report CMU-RI-TR-82-07, Robotics Institute, Nov. 1981.
J. L. Crowley, O. Riff, and J. H. Piater. Fast computation of characteristic scale using a half-octave pyramid. In Proceedings of the International 

Workshop on Cognitive Computing (CogVis), Oct. 2002.
N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In Proceedings of the IEEE Conference on Computer Vision and 

Pattern Recognition (CVPR), June 2005.
I. Daubechies. Orthonormal bases of compactly supported wavelets. Communications on Pure and Applied Mathematics, 41(7): 909–996, Oct. 1988.
D. L. Davies and D. W. Bouldin. A cluster separation measure. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1(2): 224–227, 

Apr. 1979.
E. R. Davies. Machine Vision: Theory, Algorithms, Practicalities. Morgan Kaufmann, third edition, 2005.
J. Davis and M. Goadrich. The relationship between precision-recall and ROC curves. In Proceedings of the 23rd International Conference on 

Machine Learning (ICML), 2006.
J. de Villiers, F. Leuschner, and R. Geldenhuys. Centi-pixel accurate real-time inverse distortion correction. In Proceedings of the International 

Symposium on Optomechatronic Technologies (ISOT), Nov. 2008.
P. E. Debevec and J. Malik. Recovering high dynamic range radiance maps from photographs. In Proceedings of SIGGRAPH, pages 369–378, 1997.
D. Dementhon and L. S. Davis. Model-based object pose in 25 lines of code. International Journal of Computer Vision, 15(1–2): 123–141, June 1995.
A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical 

Society, Series B (Methodological), 39(1): 1–22, 1977.
L. Deng and D. Yu. Deep learning: Methods and applications. Foundations and Trends in Signal Processing, 7(3–4): 197–387, 2013.
R. Deriche. Separable recursive filtering for efficient multi-scale edge detection. In Proceedings of the International Conference on Computer Vision 

(ICCV), pages 18–23, Feb. 1987.
R. Deriche. Fast algorithms for low-level vision. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(1): 78–87, Jan. 1990.
R. Deriche. Recursively implementing the Gaussian and its derivatives. Technical Report 1893, INRIA Sophia-Antipolis, Apr. 1993.
I. S. Dhillon, Y. Guan, and B. Kulis. Weighted graph cuts without eigenvectors: A multilevel approach. IEEE Transactions on Pattern Analysis and 

Machine Intelligence, 29(11): 1944–1957, Nov. 2007.
M. B. Dillencourt, H. Samet, and M. Tamminen. A general approach to connected-component labeling for arbitrary image representations. Journal 

of the ACM, 39(2): 253–280, Apr. 1992.
D. Douglas and T. Peucker. Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. The Canadian 

Cartographer, 10(2): 112–122, 1973.
C. E. Duchon. Lanczos filtering in one and two dimensions. Journal of Applied Meteorology, 18(8): 1016–1022, Aug. 1979.
R. O. Duda and P. E. Hart. Use of the Hough transformation to detect lines and curves in pictures. Communications of the ACM, 15: 11–15, Jan. 1972.
R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. Wiley Interscience, second edition, 2001.
F. Durand and J. Dorsey. Fast bilateral filtering for the display of high-dynamic-range images. ACM Transactions on Graphics (SIGGRAPH), 21(3): 

257–266, July 2002.
A. A. Efros and T. Leung. Texture synthesis by non-parametric sampling. In Proceedings of the International Conference on Computer Vision 

(ICCV), pages 1033–1038, Sept. 1999.
D. Eggert, A. Lorusso, and R. B. Fisher. Estimating 3-D rigid body transformations: A comparison of four major algorithms. Machine Vision and 

Applications, 9(5-6): 272–290, Mar. 1997.
M. Enzweiler and D. M. Gavrila. Monocular pedestrian detection: Survey and experiments. IEEE Transactions on Pattern Analysis and Machine 

Intelligence, 31(12): 2179–2195, Dec. 2009.
M. D. Fairchild. The Color Curiosity Shop. Honeoye Falls, New York: MDF Publications, 2011.
A. X. Falcão, J. Stolfi, and R. de Alencar Lotufo. The image foresting transform: Theory, algorithms, and applications. IEEE Transactions on Pattern 

Analysis and Machine Intelligence, 26(1): 19–29, Jan. 2004.
O. Faugeras. Three-Dimensional Computer Vision. Cambridge, MA: MIT Press, 1993.
P. Felzenszwalb and D. Huttenlocher. Distance transforms of sampled functions. Technical Report TR2004-1963, Cornell Computing and  Information 

Science, Sept. 2004.
P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan. Object detection with discriminatively trained part based models. IEEE Transactions 

on Pattern Analysis and Machine Intelligence, 32(9): 1627–1645, Sept. 2010.
P. F. Felzenszwalb and D. P. Huttenlocher. Pictorial structures for object recognition. International Journal of Computer Vision, 61(1): 55–79, Jan. 2005.
M. Fiedler. Algebraic connectivity of graphs. Czechoslovak Mathematical Journal, 23(2): 298–305, 1973.
D. J. Field. Relations between the statistics of natural images and the response properties of cortical cells. Journal of the Optical Society of America 

A: Optics, Image Science, and Vision, 4(12): 2379–2394, Dec. 1987.
G. D. Finlayson and S. Süsstrunk. Spectral sharpening and the Bradford Transform. In Proceedings of Color Imaging Symposium (CIS), pages 

236–243, 2000.
M. A. Fischler and R. C. Bolles. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated 

 cartography. Communications of the ACM, 24(6): 381–395, 1981.
M. A. Fischler and R. A. Elschlager. The representation and matching of pictorial structures. IEEE Transactions on Computers, 22(1): 67–92,  

Jan. 1973.
R. A. Fisher. The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7(2): 179–188, Sept. 1936.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



694 Bibliography

A. Fitzgibbon, M. Pilu, and R. B. Fisher. Direct least square fitting of ellipses. IEEE Transactions on Pattern Analysis and Machine Intelligence, 
21(5): 476–480, May 1999.

E. W. Forgy. Cluster analysis of multivariate data: Efficiency versus interpretability of classifications. Biometrics, 21: 768–769, 1965.
D. Forsyth and J. Ponce. Computer Vision: A Modern Approach. Prentice-Hall, second edition, 2012.
H. Freeman. Techniques for the digital computer analysis of chain-encoded arbitrary plane curves. In Proceedings of the National Electronics 

 Conference, volume 17, pages 421–432, Oct. 1961.
W. Freeman and E. H. Adelson. The design and use of steerable filters. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(9): 

891–906, Sept. 1991.
Y. Freund and R. E. Schapire. A short introduction to boosting. Journal of Japanese Society for Artificial Intelligence, 14(5): 771–780, Sept. 1999.
P. Fua. Combining stereo and monocular information to compute dense depth maps that preserve depth discontinuities. In Proceedings of the 12th 

International Joint Conference on Artificial Intelligence, pages 1292–1298, Aug. 1991.
K. Fukunaga and L. Hostetler. The estimation of the gradient of a density function, with applications in pattern recognition. IEEE Transactions on 

Information Theory, 21(1): 32–40, Jan. 1975.
P. Gabbur, H. Hua, and K. Barnard. A fast connected components labeling algorithm and its application to real-time pupil detection. Machine Vision 

and Applications, 21(5): 779–787, Aug. 2010.
D. Gabor. Theory of communication. Part 1: The analysis of information. Journal of the Institution of Electrical Engineers - Part III: Radio and 

Communication Engineering, 93(26): 429–441, Nov. 1946.
S. I. Gallant. Perceptron-based learning algorithms. IEEE Transactions on Neural Networks, 1(2): 179–191, June 1990.
W. Gander, G. H. Golub, and R. Strebel. Least-squares fitting of circles and ellipses. BIT Numerical Mathematics, 34(4): 558–578, 1994.
D. Geiger, B. Ladendorf, and A. Yuille. Occlusions and binocular stereo. International Journal of Computer Vision, 14(3): 211–226, Apr. 1995.
S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis 

and Machine Intelligence, 6(6): 721–741, 1984.
S. Geman and D. McClure. Statistical methods for tomographic image reconstruction. Bulletin of the International Statistical Institute, LII(4–5), 1987.
A. S. Georghiades, P. N. Belhumeur, and D. J. Kriegman. From few to many: Illumination cone models for face recognition under variable lighting 

and pose. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(6): 643–660, June 2001.
A. Gershun. The light field. Journal of Mathematics and Physics, 18: 51–151, 1939. (Translated from the 1936 original by P. Moon and G. 

Timoshenko).
W. E. Gettys, F. J. Keller, and M. J. Skove. Physics: Classical and Modern. McGraw-Hill, 1989.
P. J. Giblin and B. B. Kimia. On the local form and transitions of symmetry sets, medial axes, and shocks. International Journal of Computer Vision, 

54(1-3): 143–157, 2003.
J. J. Gibson. The senses considered as perceptual systems. Boston: Houghton-Mifflin Co., 1966. 
A. S. Glassner. Frame buffers and color maps. In A. S. Glassner, editor, Graphics Gems, pages 215–218. San Diego: Academic Press, 1990.
J. Goldberger, S. Roweis, G. Hinton, and R. Salakhutdinov. Neighbourhood components analysis. In Advances in Neural Information Processing 

Systems, pages 513–520, Dec. 2004.
D. B. Goldman. Vignette and exposure calibration and compensation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(12): 

2276–2288, Dec. 2010.
R. C. Gonzalez and R. E. Woods. Digital Image Processing. New Jersey: Prentice Hall, third edition, 2008.
S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. Cohen. The lumigraph. In Proceedings of SIGGRAPH, pages 43–54, 1996.
V. K. Goyal. Theoretical foundations of transform coding. IEEE Signal Processing Magazine, 18(5): 9–21, Sept. 2001.
H. Grassman. On the theory of compound colours. Philosophical Magazine and Journal, 4(7): 254–264, 1854. (Translated from the original, Zur 

theorie der farbenmischung, Poggendorff’s Annalen der Physik und Chemie, 89: 69–84, 1853.).
S. B. Gray. Local properties of binary images in two dimensions. IEEE Transactions on Computers, 20(5): 551–561, May 1971.
P. Green. Understanding Digital Color. Graphic Arts Technical Foundation, second edition, 1999.
D. M. Greig, B. T. Porteous, and A. H. Seheult. Exact maximum a posteriori estimation for binary images. Journal of the Royal Statistical Society, 

Series B (Methodological), 51(2): 271–279, 1989.
R. Grosse, M. K. Johnson, E. H. Adelson, and W. T. Freeman. Ground truth dataset and baseline evaluations for intrinsic image algorithms. In 

Proceedings of the International Conference on Computer Vision, pages 2335–2342, Oct. 2009.
J. Guild. The colorimetric properties of the spectrum. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a 

Mathematical or Physical Character, 230: 149–187, June 1931.
P. Gurney. Is our ‘inverted’ retina really ‘bad design’? Journal of Creation, 13(1): 37–44, Apr. 1999.
A. Haar. Zur theorie der orthogonalen funktionensysteme: Erste mitteilung. Mathematische Annalen, 69(3): 331–371, July 1910.
A. Haar. Zur theorie der orthogonalen funktionensysteme: Zweite mitteilung. Mathematische Annalen, 71(1): 38–53, July 1911.
Y. HaCohen, R. Fattal, and D. Lischinski. Image upsampling via texture hallucination. In IEEE International Conference on Computational 

 Photography (ICCP), Mar. 2010.
H. Hadwiger. Minkowskische addition und subtraktion beliebiger punktmengen und die theoreme von erhard schmidt. Mathematische Zeitschrift, 

53(3): 210–218, 1950.
G. D. Hager and P. N. Belhumeur. Efficient region tracking with parametric models of geometry and illumination. IEEE Transactions on Pattern 

Analysis and Machine Intelligence, 20(10): 1025–1039, Oct. 1998.
F. R. Hampel, E. M. Ronchetti, P. J. Rousseeuw, and W. A. Stahel. Robust Statistics: The Approach Based on Influence Functions. New York: 

John Wiley and Sons, 1986.
A. Hanbury. Constructing cylindrical coordinate colour spaces. Pattern Recognition Letters, 29(4): 494–500, Mar. 2008.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



Bibliography 695

B. M. Haralick, C.-N. Lee, K. Ottenberg, and M. Nolle. Review and analysis of solutions of the three point perspective pose estimation problem. 
International Journal of Computer Vision, 13(3): 331–356, Dec. 1994.

R. M. Haralick, S. R. Sternberg, and X. Zhuang. Image analysis using mathematical morphology. IEEE Transactions on Pattern Analysis and 
Machine Intelligence, 9(4): 532–550, July 1987.

R. W. Harold. An introduction to appearance analysis. A reprint from GATFWorld, the magazine of the Graphic Arts Technical Foundation, SS(84), 
2001.

C. G. Harris and M. Stephens. A combined corner and edge detector. In Proceedings of the 4th Alvey Vision Conference, pages 147–151, Sept. 1988.
P. E. Hart. How the Hough transform was invented. IEEE Signal Processing Magazine, 26(6): 18–22, Nov. 2009.
R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cambridge University Press, second edition, 2003.
R. I. Hartley. In defense of the eight-point algorithm. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(6): 580–593, June 1997.
K. He, J. Sun, and X. Tang. Single image haze removal using dark channel prior. IEEE Transactions on Pattern Analysis and Machine Intelligence, 

33(12): 2341–2353, Dec. 2011.
X. He, S. Yan, Y. Hu, P. Niyogi, and H.-J. Zhang. Face recognition using Laplacianfaces. IEEE Transactions on Pattern Analysis and Machine 

 Intelligence, 27(3): 328–340, Mar. 2005.
P. S. Heckbert. Filtering by repeated integration. Computer Graphics (SIGGRAPH), 20(4): 315–321, Aug. 1986.
M. Heikkilä and M. Pietikäinen. A texture-based method for modeling the background and detecting moving objects. IEEE Transactions on Pattern 

Analysis and Machine Intelligence, 28(4): 657–662, Apr. 2006.
J. Hershberger and J. Snoeyink. Speeding up the Douglas-Peucker line-simplification algorithm. In Proceedings of the 5th International Symposium 

on Spatial Data Handling, pages 134–143, 1992.
H. Hirschmüller. Stereo processing by semi-global matching and mutual information. IEEE Transactions on Pattern Analysis and Machine 

 Intelligence, 30(2): 328–341, Feb. 2008.
H. Hirschmüller, P. R. Innocent, and J. M. Garibaldi. Real-time correlation-based stereo vision with reduced border errors. International Journal of 

Computer Vision, 47(1): 229–246, 2002.
H. Hofer, J. Carroll, J. Neitz, M. Neitz, and D. R. Williams. Organization of the human trichromatic cone mosaic. The Journal of Neuroscience, 

25(42): 9669–9679, Oct. 2005.
B. K. P. Horn. Robot Vision. Cambridge, Mass.: MIT Press, 1986.
B. K. P. Horn. Closed-form solution of absolute orientation using unit quaternions. Journal of the Optical Society of America, 4: 629–642, Apr. 1987.
B. K. P. Horn and B. G. Schunck. Determining optical flow. Artificial Intelligence, 17(185): 185–203, 1981.
S. L. Horowitz and T. Pavlidis. Picture segmentation by a tree traversal algorithm. Journal of the ACM, 23(2): 368–388, 1976.
P. V. C. Hough. Machine analysis of bubble chamber pictures. In International Conference On High-Energy Accelerators (HEACC), pages 554–558, 

Sept. 1959.
M. K. Hu. Visual pattern recognition by moment invariants. IRE Transactions on Information Theory, 8(2): 179–187, Feb. 1962.
T. S. Huang, G. J. Yang, and G. Y. Tang. A fast two-dimensional median filtering algorithm. IEEE Transactions on Acoustics, Speech, and Signal 

Processing, 27(1): 13–18, Feb. 1979.
D. H. Hubel. Eye, Brain, and Vision. W. H. Freeman and Company, 1988.
D. H. Hubel and T. N. Wiesel. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. The Journal of  Physiology, 

160(1): 106–154, 1962.
P. J. Huber. Robust estimation of a location parameter. The Annals of Mathematical Statistics, 35(1): 73–101, 1964.
P. J. Huber. Robust Statistics. New York: John Wiley and Sons, 1981.
D. A. Huffman. A method for the construction of minimum-redundancy codes. Proceedings of the I. R. E., 40(9): 1098–1101, Sept. 1952.
D. A. Huffman. Impossible objects as nonsense sentences. Machine Intelligence, 6: 295–323, 1971.
J. Imber, J.-Y. Guillemaut, and A. Hilton. Intrinsic textures for relightable free-viewpoint video. In Proceedings of the European Conference on 

Computer Vision (ECCV), 2014.
S. S. Intille and A. F. Bobick. Disparity-space images and large occlusion stereo. In Proceedings of the 3rd European Conference on Computer 

Vision (ECCV), pages 179–186, May 1994.
A. K. Jain. Fundamentals of Digital Image Processing. Englewood Cliffs, New Jersey: Prentice-Hall, 1989.
A. K. Jain and F. Farrokhnia. Unsupervised texture segmentation using Gabor filters. Pattern Recognition, 24(12): 1167–1186, 1991.
A. K. Jain, R. P. W. Duin, and J. C. Mao. Statistical pattern recognition: A review. IEEE Transactions on Pattern Analysis and Machine Intelligence, 

22(1): 4–37, Jan. 2000.
R. Jain and H.-H. Nagel. On the analysis of accumulative difference pictures from image sequences of real world scenes. IEEE Transactions on 

Pattern Analysis and Machine Intelligence, 1(2): 206–214, Apr. 1979.
R. Jain, R. Kasturi, and B. G. Schunck. Machine Vision. Boston: McGraw-Hill, 1995.
O. Javed, K. Shafique, and M. Shah. A hierarchical approach to robust background subtraction using color and gradient information. In Proceedings 

of the Workshop on Motion and Video Computing, pages 22–27, Dec. 2002.
S. C. Johnson. Hierarchical clustering schemes. Psychometrika, 32(3): 241–254, Sept. 1967.
M. J. Jones and J. M. Rehg. Statistical color models with application to skin detection. International Journal of Computer Vision, 46(1): 81–96, 

Jan. 2002.
M. J. Jones and P. Viola. Fast multi-view face detection. Technical Report TR-20003-96, Mitsubishi Electric Research Lab, July 2003.
D. B. Judd. Report of U.S. Secretariat Committee on Colorimetry and Artificial Daylight. In Proceedings of the Twelfth Session of the CIE,  

volume 1, 1951.
B. Julesz. Binocular depth perception of computer-generated patterns. Bell System Technical Journal, 39(5): 1125–1162, 1960.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



696 Bibliography

B. Julesz. Foundations of Cyclopean Perception. Chicago: The University of Chicago Press, 1971.
B. Julesz. Textons, the elements of texture perception, and their interactions. Nature, 290: 91–97, Mar. 1981.
B. Julesz and J. R. Bergen. Textons, the fundamental elements in preattentive vision and perception of textures. The Bell System Technical Journal, 

62(6): 1619–1645, July-August 1983.
W. Kabsch. A solution for the best rotation to relate two sets of vectors. Acta Crystallographica Section A, 32(5): 922–923, Sept. 1976.
H. F. Kaiser. The application of electronic computers to factor analysis. Educational and Psychological Measurement, 20: 141–151, 1960.
Y. Kameda and M. Minoh. A human motion estimation method using 3-successive video frames. In International Conference on Virtual Systems 

and Multimedia (VSMM), pages 135–140, Sept. 1996.
T. Kanade and M. Okutomi. A stereo matching algorithm with an adaptive window: Theory and experiment. IEEE Transactions on Pattern Analysis 

and Machine Intelligence, 16(9): 920–932, Sept. 1994.
T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman, and A. Y. Wu. An efficient k-means clustering algorithm: Analysis and 

implementation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(7): 881–892, July 2002.
I. Kåsa. A circle fitting procedure and its error analysis. IEEE Transactions on Instrumentation and Measurement, 25(1): 8–14, Mar. 1976.
M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active contour models. International Journal of Computer Vision, 1(4): 321–331, 1988.
R. J. Kauth and G. S. Thomas. The tasseled cap – A graphic description of the spectral-temporal development of agricultural crops as seen by 

LANDSAT. In Proceedings of the Symposium on Machine Processing of Remotely Sensed Data, pages 4B–41–4B–51, June 1976.
C. S. Kenney, M. Zuliani, and B. S. Manjunath. An axiomatic approach to corner detection. In Proceedings of the IEEE Conference on Computer 

Vision and Pattern Recognition (CVPR), pages 191–197, 2005.
R. G. Keys. Cubic convolution interpolation for digital image processing. IEEE Transactions on Acoustics, Speech, and Signal Processing, 29(6): 

1153–1160, Dec. 1981.
K. Kimura, S. Kikuchi, and S. Yamasaki. Accurate root length measurement by image analysis. Plant and Soil, 216(1): 117–127, 1999.
M. Kirby and L. Sirovich. Application of the Karhunen-Loève procedure for the characterization of human faces. IEEE Transactions on Pattern 

Analysis and Machine Intelligence, 12(1): 103–108, 1990.
L. Kitchen and A. Rosenfeld. Gray-level corner detection. Pattern Recognition Letters, 1(2): 95–102, Dec. 1982.
J. Kittler, M. Hatef, R. Duin, and J. Matas. On combining classifiers. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(3): 

226–239, 1998.
J. J. Koenderink. The structure of images. Biological Cybernetics, 50(5): 363–370, Aug. 1984.
J. J. Koenderink and A. J. van Doorn. Representation of local geometry in the visual system. Biological Cybernetics, 55(6): 367–375, Mar. 1987.
R. Kohavi. A study of cross-validation and bootstrap for accuracy estimation and model selection. In Proceedings of the International Joint Confer-

ence on Artificial Intelligence, pages 1137–1143, Aug. 1995.
P. Kohli, L. Ladický, and P. H. S. Torr. Robust higher order potentials for enforcing label consistency. International Journal of Computer Vision, 

82(3): 302–324, May 2009.
V. Kolmogorov and R. Zabih. What energy functions can be minimized via graph cuts? IEEE Transactions on Pattern Analysis and Machine 

 Intelligence, 26(2): 147–159, 2004.
J. Kopf, M. Uyttendaele, O. Deussen, and M. Cohen. Capturing and viewing gigapixel images. ACM Transactions on Graphics (SIGGRAPH), 

26(3), July 2007.
A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet classification with deep convolutional neural networks. In Advances in Neural Information 

Processing Systems (NIPS), pages 1097–1105, 2012.
N. Krüger, P. Jannsen, S. Kalkan, M. Lappe, A. Leonardis, J. Piater, A. Rodriguez-Sanchez, and L. Wiskott. Deep hierarchies in the primate visual 

cortex: What can we learn for computer vision? IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8): 1847–1871, 2013.
S. Kumar and M. Hebert. Discriminative random fields. International Journal of Computer Vision, 68(2): 179–201, June 2006.
J. D. Lafferty, A. McCallum, and F. C. N. Pereira. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In 

Proceedings of the International Conference on Machine Learning (ICML), pages 282–289, June 2001.
K. M. Lam. Metamerism and Colour Constancy. PhD thesis, University of Bradford, 1985.
Y. Lamdan and H. J. Wolfson. Geometric hashing: A general and efficient model-based recognition scheme. In Proceedings of the International 

Conference on Computer Vision (ICCV), Dec. 1988.
K. I. Laws. Rapid texture identification. In Proceedings of the SPIE 0238: Image Processing for Missile Guidance, pages 376–381, July 1980.
H.-C. Lee. Introduction to Color Imaging Science. Cambridge University Press, 2005.
T. S. Lee. Image representation using 2D Gabor wavelets. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(10): 1–13, Oct. 1996.
V. Lepetit, F. Moreno-Noguer, and P. Fua. EPnP: An accurate O(n) solution to the PnP problem. International Journal of Computer Vision, 81(2): 

155–166, Feb. 2009.
M. Levoy and P. Hanrahan. Light field rendering. In Proceedings of SIGGRAPH, pages 31–42, 1996.
C. Li, C. Xu, C. Gui, and M. D. Fox. Level set evolution without re-initialization: A new variational formulation. In Proceedings of the IEEE 

 Conference on Computer Vision and Pattern Recognition (CVPR), pages 430–436, June 2005.
P.-S. Liao, T.-S. Chen, and P.-C. Chung. A fast algorithm for multilevel thresholding. Journal of Information Science and Engineering, 17: 713–727, 2001.
A. Likas, N. Vlassis, and J. J. Verbeek. The global k-means clustering algorithm. Pattern Recognition, 36(2): 451–461, 2003.
T. Lillesand, R. W. Kiefer, and J. Chipman. Remote Sensing and Image Interpretation. Wiley, sixth edition, 2007.
T. Lindeberg. Scale-space for discrete signals. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(3): 234–254, Mar. 1990.
T. Lindeberg. Scale-Space Theory in Computer Vision. Springer, 1993.
T. Lindeberg. Scale-space theory: A basic tool for analysing structures at different scales. Journal of Applied Statistics, 21(2): 224–270, 1994.
T. Lindeberg. Feature detection with automatic scale selection. International Journal of Computer Vision, 30(2): 79–116, Nov. 1998a.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



Bibliography 697

T. Lindeberg. Edge detection and ridge detection with automatic scale selection. International Journal of Computer Vision, 30(2): 117–156, 
Nov. 1998b.

J. J. Little and W. E. Gillett. Direct evidence for occlusion in stereo and motion. Image and Vision Computing, 8(4): 328–340, Nov. 1990.
S. P. Lloyd. Least squares quantization in PCM. IEEE Transactions on Information Theory, 28(2): 129–137, Mar. 1982.
H. C. Longuet-Higgins. A computer algorithm for reconstructing a scene from two projections. Nature, 293(5828): 133–135, Sept. 1981.
D. G. Lowe. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2): 91–110, Nov. 2004.
C.-P. Lu, G. D. Hager, and E. Mjolsness. Fast and globally convergent pose estimation from video images. IEEE Transactions on Pattern Analysis 

and Machine Intelligence, 22(6): 610–622, June 2000.
B. D. Lucas and T. Kanade. An iterative image registration technique with an application to stereo vision. In Proceedings of the 7th International 

Joint Conference on Artificial Intelligence, pages 674–679, Aug. 1981.
M. A. Luengo-Oroz, D. Pastor-Escuredo, C. Castro-Gonzalez, E. Faure, T. Savy, B. Lombardot, J. L. Rubio-Guivernau, L. Duloquin, M. J. Ledesma-

Carbayo, P. Bourgine, N. Peyrieras, and A. Santos. 3Dt+ morphological processing: Applications to embryogenesis image analysis. IEEE 
Transactions on Image Processing, 21(8): 3518–3530, Aug. 2012.

B. Luo and E. R. Hancock. Structural graph matching using the EM algorithm and singular value decomposition. IEEE Transactions on Pattern 
Analysis and Machine Intelligence, 23(10): 1120–1136, Oct. 2001.

Q.-T. Luong and O. D. Faugeras. Determining the fundamental matrix with planes: Instability and new algorithms. In Proceedings of the IEEE 
Conference on Computer Vision and Pattern Recognition (CVPR), pages 489–494, June 1993.

Q.-T. Luong and O. D. Faugeras. Fundamental matrix: Theory, algorithms, and stability analysis. International Journal of Computer Vision, 17(1): 
43–75, Jan. 1996.

J. MacQueen. Some methods for classification and analysis of multivariate observations. In Proceedings of the 5th Berkeley Symposium on 
 Mathematical Statistics and Probability, pages 281–297, 1967.

R. Malladi, J. A. Sethian, and B. C. Vemuri. Shape modeling with front propagation: A level set approach. IEEE Transactions on Pattern Analysis 
and Machine Intelligence, 17(2): 158–175, Feb. 1995.

S. Mallat and S. Zhong. Characterization of signals from multiscale edges. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(7): 
710–732, July 1992.

S. G. Mallat. A theory for multiresolution signal decomposition: The wavelet representation. IEEE Transactions on Pattern Analysis and Machine 
Intelligence, 11(7): 674–693, July 1989.

D. Marr. Vision. San Francisco: W. H. Freeman and Company, 1982.
D. Marr and E. Hildreth. Theory of edge detection. Proceedings of the Royal Society of London, Series B, 207: 187–217, 1980.
D. Marr and T. Poggio. Cooperative computation of stereo disparity. Science, 194: 283–287, Oct. 1976.
D. Marr and T. Poggio. A computational theory of human stereo vision. Proceedings of the Royal Society of London, Series B, 204: 301–328, 1979.
D. Marr, G. Palm, and T. Poggio. Analysis of a cooperative stereo algorithm. Biological Cybernetics, 28: 223–239, 1978.
D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database of human segmented natural images and its application to evaluating segmentation algorithms 

and measuring ecological statistics. In Proceedings of the International Conference on Computer Vision (ICCV), volume 2, pages 416–423, 
July 2001.

D. R. Martin, C. C. Fowlkes, and J. Malik. Learning to detect natural image boundaries using local brightness, color, and texture cues. IEEE 
 Transactions on Pattern Analysis and Machine Intelligence, 26(5): 530–549, May 2004.

J. Matas, O. Chum, M. Urban, and T. Pajdla. Robust wide-baseline stereo from maximally stable extremal regions. Image and Vision Computing, 
22(10): 761–767, Sept. 2004.

C. R. Maurer, Jr., R. Qi, and V. Raghavan. A linear time algorithm for computing exact Euclidean distance transforms of binary images in arbitrary 
dimensions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(2): 265–270, Feb. 2003.

J. C. Maxwell. On the theory of compound colours, and the relations of the colours of the spectrum. Philosophical Transactions of the Royal Society 
of London, 150: 57–84, 1860.

C. S. McCamy, H. Marcus, and J. G. Davidson. A color-rendition chart. Journal of Applied Photographic Engineering, 2(3): 95–99, Summer 1976.
F. Meyer. Cytologie Quantitative et Morphologie Mathématique. PhD thesis, Paris School of Mines, May 1979.
F. Meyer and S. Beucher. Morphological segmentation. Journal of Visual Communication and Image Representation, 1(1): 21–46, Sept. 1990.
K. Mikolajczyk and C. Schmid. A performance evaluation of local descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence, 

27(10): 1615–1630, 2005.
H. Minkowski. Über die begriffe länge, oberfläche und volumen. Jahresbericht der Deutschen Mathematiker Vereiningung, 9: 115–121, 1901.
M. Minsky and S. Papert. Perceptrons: An Introduction to Computational Geometry. The MIT Press, 1969.
D. P. Mitchell and A. N. Netravali. Reconstruction filters in computer graphics. Computer Graphics (SIGGRAPH), 22(4): 221–228, June 1988.
T. Mitchell. Machine Learning. McGraw Hill, 1997.
U. Montanari. A method for obtaining skeletons using a quasi-Euclidean distance. Journal of the ACM, 15(4): 600–624, Oct. 1968.
G. A. Moore. Automatic scanning and computer processes for the quantitative analysis of micrographs and equivalent subjects. In G. C. Cheng,  

R. S. Ledley, D. K. Pollock, and A. Rosenfeld, editors, Pictorial Pattern Recognition, pages 275–326. Thomson, 1968.
H. P. Moravec. Towards automatic visual obstacle avoidance. In Proceedings of the International Joint Conference on Artificial Intelligence, page 

584, 1977.
E. N. Mortensen and W. A. Barrett. Intelligent scissors for image composition. Proceedings of SIGGRAPH, pages 191–198, 1995.
M. E. Mortenson. Geometric Modeling. New York: John Wiley and Sons, second edition, 1997.
D. Mumford and J. Shah. Boundary detection by minimizing functionals. In Proceedings of the IEEE Conference on Computer Vision and Pattern 

Recognition (CVPR), pages 22–26, 1985.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



698 Bibliography

D. Mumford and J. Shah. Optimal approximation by piecewise smooth functions and associated variational problems. Communications on Pure 
and Applied Mathematics, 42: 577–685, 1989.

A. H. Munsell. A Color Notation: A Measured Color System, Based on the Three Qualities Hue, Value, and Chroma. Boston: G. H. Ellis Co., 1905.
A. H. Munsell. Atlas of the Munsell Color System. Malden, Mass.: Wadsworth-Howland and Company, 1915.
H. Murase and S. K. Nayar. Visual learning and recognition of 3-D objects from appearance. International Journal of Computer Vision, 14(1): 5–24, 

Jan. 1995.
V. Nair and G. Hinton. Rectified linear units improve restricted Boltzmann machines. In International Conference on Machine Learning 

(ICML), 2010.
V. S. Nalwa. A Guided Tour of Computer Vision. Reading, MA: Addison-Wesley, 1993.
I. Newton. Opticks, or a Treatise of the Reflexions, Refractions, Inflexions, and Colours of Light. London, 1704.
A. Y. Ng, M. I. Jordan, and Y. Weiss. On spectral clustering: Analysis and an algorithm. In Advances in Neural Information Processing Systems 

(NIPS), pages 849–856, 2001.
R. Ng. Digital Light Field Photography. PhD thesis, Stanford University, July 2006.
W. Niblack. An Introduction to Digital Image Processing. Englewood Cliffs, NJ: Prentice Hall, 1986.
H. K. Nishihara. Practical real-time imaging stereo matcher. Optical Engineering, 23(5): 536–545, 1984.
F. O’Gorman and M. B. Clowes. Finding picture edges through collinearity of feature points. IEEE Transactions on Computers, 25(4): 449–456, 1976.
Y. Ohta and T. Kanade. Stereo by intra- and inter-scanline search using dynamic programming. IEEE Transactions on Pattern Analysis and Machine 

Intelligence, 7(2): 139–154, Mar. 1985.
M. Okutomi and T. Kanade. A multiple-baseline stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(4): 353–363,  

Apr. 1993.
B. A. Olshausen and D. J. Field. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 381(6583): 

607–609, June 1996.
A. V. Oppenheim and R. W. Schafer. Discrete-Time Signal Processing. New Jersey: Prentice Hall, second edition, 1999.
S. J. Osher and J. A. Sethian. Fronts propagating with curvature dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of 

Computational Physics, 79(1): 12–49, Nov. 1988.
N. Otsu. A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9(1): 62–66, Jan. 1979.
M. Ozuysal, P. Fua, and V. Lepetit. Fast keypoint recognition in ten lines of code. In Proceedings of the IEEE Conference on Computer Vision and 

Pattern Recognition (CVPR), June 2007.
A. W. Paeth. Image file compression made easy. In J. Arvo, editor, Graphics Gems II, pages 93–100. San Diego: Academic Press, 1991.
N. R. Pal and S. K. Pal. Entropic thresholding. Signal Processing, 16(2): 97–108, Feb. 1989.
S. E. Palmer. Vision Science: Photons to Phenomenology. Cambridge, Mass.: The MIT Press, 1999.
N. Paragios and R. Deriche. Geodesic active contours and level sets for the detection and tracking of moving objects. IEEE Transactions on Pattern 

Analysis and Machine Intelligence, 22(3): 266–280, Mar. 2000.
S. Paris, P. Kornprobst, J. Tumblin, and F. Durand. Bilateral filtering: Theory and applications. Foundations and Trends in Computer Graphics and 

Vision, 4(1): 1–73, 2009.
E. Parzen. On estimation of a probability density function and mode. Annals of Mathematical Statistics, 33(3): 1065–1076, Sept. 1962.
J. B. Pawley. Points, pixels, and gray levels: Digitizing image data. In J. B. Pawley, editor, Handbook of Biological Confocal Microscopy. New York: 

Springer Science, third edition, 2006.
B. Peasley and S. Birchfield. Real-time obstacle detection and avoidance in the presence of specular surfaces using an active 3D sensor. In IEEE 

Workshop on Robot Vision (WoRV), Jan. 2013.
P. Perona and J. Malik. Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 

12(7): 629–639, July 1990.
S. Perreault and P. Hébert. Median filtering in constant time. IEEE Transactions on Image Processing, 16(9): 2389–2394, Sept. 2007.
G. Petschnigg, R. Szeliski, M. Agrawala, M. Cohen, H. Hoppe, and K. Toyama. Digital photography with flash and no-flash image pairs. ACM 

Transactions on Graphics (SIGGRAPH), 23(3): 664–672, Aug. 2004.
P. J. Phillips, H. Moon, S. A. Rizvi, and P. J. Rauss. The FERET evaluation methodology for face-recognition algorithms. IEEE Transactions on 

Pattern Analysis and Machine Intelligence, 22(10): 1090–1104, Oct. 2000.
K. K. Pingle. Visual perception by a computer. In A. Grasselli, editor, Automatic Interpretation and Classification of Images, pages 277–284. 

New York: Academic Press, 1969.
J. C. Platt. Fast training of support vector machines using sequential minimal optimization. In Advances in Kernel Methods - Support Vector  Learning. 

MIT Press, Jan. 1998.
B. W. Pogue, M. A. Mycek, and D. Harper. Image analysis for discrimination of cervical neoplasia. Journal of Biomedical Optics, 5(1): 72–82, 

Jan. 2000.
S. B. Pollard, J. E. W. Mayhew, and J. P. Frisby. PMF: A stereo correspondence algorithm using a disparity gradient limit. Perception, 14: 449–470, 1985.
F. Porikli. Constant time O(1) bilateral filtering. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 

June 2008.
T. Porter and T. Duff. Compositing digital images. Computer Graphics (SIGGRAPH), 18(3): 253–259, July 1984.
C. Poynton. The rehabilitation of gamma. In B. E. Rogowitz and T. N. Pappas, editors, Human Vision and Electronic Imaging III, Proceedings of 

SPIE/IS&T Conference 3299, pages 26–30, Jan. 1998.
C. Poynton. Digital Video and HDTV: Algorithms and Interfaces. Morgan Kaufmann, 2003.
W. K. Pratt. Digital Image Processing. Wiley Interscience, second edition, 1991.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



Bibliography 699

J. M. S. Prewitt. Object enhancement and extraction. In B. S. Lipkin and A. Rosenfeld, editors, Picture Processing and Psychopictorics, pages 
75–149. New York: Academic Press, 1970.

U. Ramer. An iterative procedure for the polygonal approximation of plane curves. Computer Graphics and Image Processing, 1(3): 244–256, 
Nov. 1972.

S. Rao, A. de Medeiros Martins, and J. C. Príncipe. Mean shift: An information theoretic perspective. Pattern Recognition Letters, 30(3): 222–230, 
Feb. 2009.

R. Rau and J. H. McClellan. Efficient approximation of Gaussian filters. IEEE Transactions on Signal Processing, 45(2): 468–471, Feb. 1997.
S. S. Reddi, S. F. Rudin, and H. R. Keshavan. An optimal multiple threshold scheme for image segmentation. IEEE Transactions on Systems, Man, 

and Cybernetics, 14(4): 661–665, Jul-Aug 1984.
X. Ren and J. Malik. Learning a classification model for segmentation. In Proceedings of the International Conference on Computer Vision (ICCV), 

pages 10–17, Oct. 2003.
T. W. Ridler and S. Calvard. Picture thresholding using an iterative selection method. IEEE Transactions on Systems, Man, and Cybernetics, 8(8): 

630–632, Aug. 1978.
R. Rithe, P. Raina, N. Ickes, S. V. Tenneti, and A. P. Chandrakasan. Reconfigurable processor for energy-scalable computational photography. In 

Proceedings of the IEEE International Solid-State Circuits Conference (ISSCC), pages 164–166, Feb. 2013.
J.-F. Rivest, P. Soille, and S. Beucher. Morphological gradients. Journal of Electronic Imaging, 2(4): 326–336, Oct. 1993.
L. G. Roberts. Machine Perception of Three-Dimensional Solids. PhD thesis, Dept. of Electrical Engineering, M.I.T., June 1963.
F. Rodriguez, E. Maire, P. Courjault-Radé, and J. Darrozes. The black top hat function applied to a DEM: A tool to estimate recent incision in a 

mountainous watershed. Geophysical Research Letters, 29(6): 1–4, Mar. 2002.
F. Rosenblatt. The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review, 65(6): 386–408, 

Nov. 1958.
A. Rosenfeld and A. C. Kak. Digital Picture Processing. San Diego: Academic Press, second edition, 1982.
A. Rosenfeld and J. L. Pfaltz. Sequential operations in digital picture processing. Journal of the ACM, 13(4): 471–494, Oct. 1966.
A. Rosenfeld and J. L. Pfaltz. Distance functions on digital pictures. Pattern Recognition, 1(1): 33–61, July 1968.
P. Rosin. Thresholding for change detection. In Proceedings of the International Conference on Computer Vision (ICCV), pages 274–279, Jan. 1998.
P. L. Rosin and E. Ioannidis. Evaluation of global image thresholding for change detection. Pattern Recognition Letters, 24(14): 2345–2356, 2003.
E. Rosten and T. Drummond. Machine learning for high-speed corner detection. In Proceedings of the European Conference on Computer Vision 

(ECCV), pages 430–443, May 2006.
C. Rother, V. Kolmogorov, and A. Blake. GrabCut: Interactive foreground extraction using iterated graph cuts. ACM Transactions on Graphics 

(SIGGRAPH), 23(3): 309–314, Aug. 2004.
C. Rother, V. Kolmogorov, V. Lempitsky, and M. Szummer. Optimizing binary MRFs via extended roof duality. In Proceedings of the IEEE 

 Conference on Computer Vision and Pattern Recognition (CVPR), June 2007.
P. J. Rousseeuw. Least median of squares regression. Journal of the American Statistical Association, 79: 871–880, 1984.
P. J. Rousseeuw and A. M. Leroy. Robust Regression and Outlier Detection. New York: John Wiley and Sons, 1987.
H. A. Rowley, S. Baluja, and T. Kanade. Neural network-based face detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 

20(1): 23–38, Jan. 1998.
S. Roy and I. J. Cox. A maximum-flow formulation of the N-camera stereo correspondence problem. In Proceedings of the 6th International 

 Conference on Computer Vision (ICCV), pages 492–499, Jan. 1998.
Y. Rubner, C. Tomasi, and L. J. Guibas. A metric for distributions with applications to image databases. In Proceedings of the International 

 Conference on Computer Vision (ICCV), Jan. 1998.
D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by back-propagating errors. Nature, 323: 533–536, Oct. 1986.
S. Rusinkiewicz and M. Levoy. Efficient variants of the ICP algorithm. In Third International Conference on 3D Digital Imaging and Modeling 

(3DIM), June 2001.
P. K. Sahoo, S. Soltani, A. K. C. Wong, and Y. C. Chen. A survey of thresholding techniques. Computer Vision, Graphics, and Image Processing, 

41(2): 233–260, Feb. 1988.
P. Saint-Marc, J.-S. Chen, and G. Medioni. Adaptive smoothing: A general tool for early vision. IEEE Transactions on Pattern Analysis and Machine 

Intelligence, 13(6): 514–529, June 1991.
J. Salvi, J. Pagès, and J. Batlle. Pattern codification strategies in structured light systems. Pattern Recognition, 37(4): 827–849, Apr. 2004.
J. Sauvola and M. Pietikäinen. Adaptive document image binarization. Pattern Recognition, 33(2): 225–236, Feb. 2000.
H. Scharr. Optimal Operators in Digital Image Processing. PhD thesis, Rupertus Carola University, May 2000.
D. Scharstein and R. Szeliski. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. International Journal of Computer 

Vision, 47(1): 7–42, Apr. 2002.
Y. Y. Schechner. Depth from defocus vs. stereo: How different really are they? International Journal of Computer Vision, 39(2): 141–162, Sept. 2000.
C. Schmid, R. Mohr, and C. Bauckhage. Evaluation of interest point detectors. International Journal of Computer Vision, 37(2): 151–172, June 2000.
H. Schneiderman and T. Kanade. A statistical method for 3D object detection applied to faces and cars. In Proceedings of the IEEE Conference on 

Computer Vision and Pattern Recognition (CVPR), June 2000.
I. J. Schoenberg. On equidistant cubic spline interpolation. Bulletin of the American Mathematical Society, 77(6): 1039–1044, Nov. 1971.
P. H. Schönemann. A generalized solution of the orthogonal Procrustes problem. Psychometrika, 31(1): 110, Mar. 1966.
E. F. Schumacher. Small is Beautiful: A Study of Economics as if People Mattered. Blond and Briggs, 1973.
G. E. Schwarz. Estimating the dimension of a model. Annals of Statistics, 6(2): 461–464, 1978.
S. M. Seitz and S. Baker. Filter flow. In Proceedings of the International Conference on Computer Vision (ICCV), pages 143–150, Oct. 2009.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



700 Bibliography

J. Serra. Image Analysis and Mathematical Morphology, volume 1. London: Academic Press, 1982.
J. Sethian. Level Set Methods and Fast Marching Methods. Cambridge University Press, 1999.
M. Sezgin and B. Sankur. Survey over image thresholding techniques and quantitative performance evaluation. Journal of Electronic Imaging, 

13(1): 146–165, Jan. 2004.
F. Shafait, D. Keysers, and T. M. Breuel. Efficient implementation of local adaptive thresholding techniques using integral images. In IS&T/SPIE 

Electronic Imaging: Document Recognition and Retrieval XV, volume 6815, 2008.
Q. Shan, Z. Li, J. Jia, and C.-K. Tang. Fast image/video upsampling. ACM Transactions on Graphics (SIGGRAPH ASIA), 27(5): 153:1–15:7, 

Dec. 2008.
C. E. Shannon. A mathematical theory of communication. Bell System Technical Journal, 27(3): 379–423, July / October 1948.
L. G. Shapiro and G. C. Stockman. Computer Vision. New Jersey: Prentice-Hall, 2001.
H. R. Sheikh, A. C. Bovik, and G. de Veciana. An information fidelity criterion for image quality assessment using natural scene statistics. IEEE 

Transactions on Image Processing, 14(12): 2117–2128, Dec. 2005.
J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(8): 888–905, 

Aug. 2000.
J. Shi and C. Tomasi. Good features to track. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 

pages 593–600, June 1994.
P. Simard, L. Bottou, P. Haffner, and Y. LeCun. Boxlets: A fast convolution algorithm for signal processing and neural networks. In Advances in 

Neural Information Processing Systems (NIPS), pages 571–577, Dec. 1998.
J. Sklansky, R. L. Chazin, and B. J. Hansen. Minimum-perimeter polygons of digitized silhouettes. IEEE Transactions on Computers, 21(3): 

260–268, Mar. 1972.
A. R. Smith. Color gamut transform pairs. Computer Graphics, 12(3): 12–19, Aug. 1978.
S. M. Smith and J. M. Brady. SUSAN - A new approach to low level image processing. International Journal of Computer Vision, 23(1): 45–78, 

May 1997.
L. Snidaro and G. L. Foresti. Real-time thresholding with Euler numbers. Pattern Recognition Letters, 24: 1533–1544, 2003.
P. Soille. Morphological Image Analysis: Principles and Applications. Berlin: Springer, second edition, 2003.
M. Sonka, V. Hlavac, and R. Boyle. Image Processing, Analysis, and Machine Vision. Thomson, third edition, 2008.
N. I. Speranskaya. Determination of spectrum color coordinates for twenty-seven normal observers. Optics and Spectroscopy, 7: 424–428, Nov. 1959.
S. N. Srihari. Document image understanding. In Proceedings of the ACM Fall Joint Computer Conference, pages 87–96, 1986.
N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting. 

Journal of Machine Learning Research, 15(1): 1929–1958, Jan. 2014.
P. Stathis, E. Kavallieratou, and N. Papamarkos. An evaluation technique for binarization algorithms. Journal of Universal Computer Science, 

14(18): 3011–3030, 2008.
C. Stauffer and E. Grimson. Learning patterns of activity using real-time tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 

22(8): 747–757, Aug. 2000.
W. S. Stiles and J. M. Burch. Interim report to the Commission Internationale de l’Éclairage, Zurich, 1955, on the National Physical Laboratory's 

investigation of colour-matching. Optica acta: International Journal of Optics, 2(4): 168–181, 1955.
W. S. Stiles and J. M. Burch. N.P.L. colour-matching investigation: Final report. Optica acta: International Journal of Optics, 6(1): 1–26, 1959.
A. Stockman and L. T. Sharpe. Cone spectral sensitivities and color matching. In K. Gegenfurtner and L. T. Sharpe, editors, Color Vision: From 

Genes to Perception, pages 51–85. Cambridge: Cambridge University Press, 1999.
A. Stockman and L. T. Sharpe. Spectral sensitivities of the middle- and long-wavelength sensitive cones derived from measurements in observers 

of known genotype. Vision Research, 40: 1711–1737, 2000.
M. Stokes, M. Anderson, S. Chandrasekar, and R. Motta. A standard default color space for the internet -sRGB. Technical report, Hewlett-Packard 

and Microsoft, Nov. 1996.
P. F. Sturm and S. J. Maybank. On plane-based camera calibration: A general algorithm, singularities, applications. In Proceedings of the IEEE 

Conference on Computer Vision and Pattern Recognition (CVPR), pages 432–437, June 1999.
K.-K. Sung and T. Poggio. Example-based learning for view-based human face detection. IEEE Transactions on Pattern Analysis and Machine 

Intelligence, 20(1): 39–51, 1998.
G. Svaetichin. Spectral response curves from single cones. Acta Physiologica Scandinavica, 39, Supplement 134, 1956.
M. Swain and D. Ballard. Color indexing. International Journal of Computer Vision, 7(1): 11–32, 1991.
R. Szeliski. Image alignment and stitching: A tutorial. Foundations and Trends in Computer Graphics and Vision, 2(1): 1–104, 2006.
R. Szeliski. Computer Vision: Algorithms and Applications. Springer, 2010.
Y. Taigman, M. Yang, M. Ranzato, and L. Wolf. DeepFace: Closing the gap to human-level performance in face verification. In Proceedings of the 

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2014.
M. F. Tappen, W. T. Freeman, and E. H. Adelson. Recovering intrinsic images from a single image. IEEE Transactions on Pattern Analysis and 

Machine Intelligence, 27(9): 1459–1472, Sept. 2005.
R. E. Tarjan. Efficiency of a good but not linear set union algorithm. Journal of the ACM, 22(2): 215–225, Apr. 1975.
G. Taubin. Estimation of planar curves, surfaces, and nonplanar space curves defined by implicit equations with applications to edge and range image 

segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(11): 1115–1138, Nov. 1991.
M. R. Teague. Image analysis via the general theory of moments. Journal of the Optical Society of America, 70(8): 920–930, Aug. 1980.
C.-H. Teh and R. T. Chin. On image analysis by the methods of moments. IEEE Transactions on Pattern Analysis and Machine Intelligence, 10(4): 

496–513, July 1988.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



Bibliography 701

K. Thompson. Alpha blending. In A. S. Glassner, editor, Graphics Gems, pages 210–211. San Diego: Academic Press, 1990.
E. Tola, V. Lepetit, and P. Fua. DAISY: An efficient dense descriptor applied to wide baseline stereo. IEEE Transactions on Pattern Analysis and 

Machine Intelligence, 32(5): 815–830, May 2010.
C. Tomasi and T. Kanade. Detection and tracking of point features. Technical Report CMU-CS-91-132, Carnegie Mellon University, Apr. 1991.
C. Tomasi and R. Manduchi. Bilateral filtering for gray and color images. In Proceedings of the International Conference on Computer Vision 

(ICCV), pages 839–846, Jan. 1998.
C. Tomasi and T. Kanade. Shape and motion from image streams under orthography: A factorization method. International Journal of Computer 

Vision, 9(2):137–154, Nov. 1992.
P. H. S. Torr and A. Zisserman. MLESAC: A new robust estimator with application to estimating image geometry. Computer Vision and Image 

Understanding, 78(1): 138–156, Apr. 2000.
K. Toyama, J. Krumm, B. Brumitt, and B. Meyers. Wallflower: Principles and practice of background maintenance. In Proceedings of the 7th 

 International Conference on Computer Vision (ICCV), pages 255–261, Sept. 1999.
E. Trucco and A. Verri. Introductory Techniques for 3D Computer Vision. Upper Saddle River, NJ: Prentice Hall, 1998.
G. V. Trunk. A problem of dimensionality: A simple example. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1(3): 306–307, 

July 1979.
M. Tuceryan and A. K. Jain. Texture analysis. In C. H. Chen, L. F. Pau, and P. S. P. Wang, editors, Handbook of Pattern Recognition and Computer 

Vision, pages 235–276. World Scientific Publishing, New Jersey, 1993.
J. W. Tukey. A survey of sampling from contaminated distributions. In Olkin, editor, Contributions to Probability and Statistics. Stanford University 

Press, 1960.
M. Turk and A. Pentland. Eigenfaces for recognition. Journal of Cognitive Neuroscience, 3(1): 71–86, Jan. 1991.
K. Turkowski and S. Gabriel. Filters for common resampling tasks. In A. S. Glassner, editor, Graphics Gems, pages 147–165. San Diego: Academic 

Press, 1990.
C. W. Tyler and M. B. Clarke. The autostereogram. In Stereoscopic Displays and ApplicationsProceedings of the SPIE, volume 1256, pages 182–197, 

Jan. 1990.
S. E. Umbaugh. Digital Image Processing and Analysis: Human and Computer Vision Applications with CVIPtools. CRC Press, second edition, 2010.
S. Umeyama. Least-squares estimation of transformation parameters between two point patterns. IEEE Transactions on Pattern Analysis and Machine 

Intelligence, 13(4): 376–380, Apr. 1991.
M. Unser and T. Blu. Mathematical properties of the JPEG2000 wavelet filters. IEEE Transactions on Image Processing, 12(9): 1080–1090, 

Sept. 2003.
B. E. Usevitch. A tutorial on modern lossy wavelet image compression: Foundations of JPEG 2000. IEEE Signal Processing Magazine, 18(5): 

22–35, Sept. 2001.
V. Vapnik. The Nature of Statistical Learning Theory. New York: Springer-Verlag, 1995.
V. Vapnik and A. Chervonenkis. On the uniform convergence of relative frequencies of events to their probabilities. Theory of Probability and its 

Applications, 16(2): 264–280, 1971.
L. Vincent and P. Soille. Watersheds in digital spaces: An efficient algorithm based on immersion simulations. IEEE Transactions on Pattern Analysis 

and Machine Intelligence, 13(6): 583–598, June 1991.
P. Viola and M. J. Jones. Robust real-time face detection. International Journal of Computer Vision, 57(2): 137–154, 2004.
P. Viola and W. M. Wells, III. Alignment by maximization of mutual information. International Journal of Computer Vision, 24(2): 137–154, 

Sept. 1997.
P. A. Viola, M. J. Jones, and D. Snow. Detecting pedestrians using patterns of motion and appearance. International Journal of Computer Vision, 

63(2): 153–161, 2005.
M. Visvalingam and J. D. Whyatt. Line generalisation by repeated elimination of the smallest area. Cartographic Information Systems Research 

Group (CISRG) Discussion Paper 10, University of Hull, July 1992.
J. J. Vos. Colorimetric and photometric properties of a 2° fundamental observer. Color Research and Application, 3(3): 125–128, Autumn 1978.
P. F. Wainwright. Unsharp masks offer benefits beyond sharpness. Photo Techniques, 1, Sep/Oct 2004.
D. B. Walther, B. Chai, E. Caddigan, D. M. Beck, and L. Fei-Fei. Simple line drawings suffice for functional MRI decoding of natural scene 

 categories. Proceedings of the National Academy of Sciences (PNAS), 108(23): 9661–9666, 2011.
B. A. Wandell. Foundations of Vision. Sunderland, Mass.: Sinauer Associates, Inc., 1995.
Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image quality assessment: From error visibility to structural similarity. IEEE Transactions 

on Image Processing, 13(4): 600–612, Apr. 2004.
J. Weickert. Anisotropic Diffusion in Image Processing. Stuttgart: B. G. Teubner, 1998.
M. J. Weinberger, G. Seroussi, and G. Sapiro. The LOCO-I lossless image compression algorithm: Principles and standardization into JPEG-LS. 

IEEE Transactions on Image Processing, 9(8): 1309–1324, Aug. 2000.
B. Weiss. Fast median and bilateral filtering. ACM Transactions on Graphics (SIGGRAPH), 25(3): 519–526, July 2006.
Y. Weiss. Segmentation using eigenvectors: A unifying view. In Proceedings of the International Conference on Computer Vision (ICCV),  

Sept. 1999.
Y. Weiss. Deriving intrinsic images from image sequences. In Proceedings of the International Conference on Computer Vision (ICCV), pages 

68–75, July 2001.
T. Welch. A technique for high-performance data compression. Computer, 17(6): 8–19, June 1984.
W. M. Wells, III. Efficient synthesis of Gaussian filters by cascaded uniform filters. IEEE Transactions on Pattern Analysis and Machine Intelligence, 

8(2): 234–239, Mar. 1986.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



702 Bibliography

M. Wertheimer. Laws of organization in perceptual forms. In W. D. Ellis, editor, A Source Book of Gestalt Psychology, pages 71–88. New York: 
Harcourt, Brace and Co., 1938.

L. Wiskott, J.-M. Fellous, N. Krüger, and C. von der Malsburg. Face recognition by elastic bunch graph matching. IEEE Transactions on Pattern 
Analysis and Machine Intelligence, 19(7): 775–779, July 1997.

A. Witkin. Scale space filtering. In Proceedings of the International Joint Conference on Artificial Intelligence, Aug. 1983.
R. J. Woodham. Photometric method for determining surface orientation from multiple images. Optical Engineering, 19(1): 139–144, Jan/Feb 1980.
W. D. Wright. A re-determination of the trichromatic coefficients of the spectral colours. Transactions of the Optical Society, 30(4): 141–164, 

Mar. 1929.
B. Wu and R. Nevatia. Detection and tracking of multiple, partially occluded humans by Bayesian combination of edgelet based part detectors. 

International Journal of Computer Vision, 75(2): 247–266, Nov. 2007.
B. Wu, H. Ai, C. Huang, and S. Lao. Fast rotation invariant multi-view face detection based on real Adaboost. In IEEE International Conference on 

Automatic Face and Gesture Recognition (FGR), pages 79–84, May 2004.
Z. Wu and R. Leahy. An optimal graph theoretic approach to data clustering: Theory and its application to image segmentation. IEEE Transactions 

on Pattern Analysis and Machine Intelligence, 15(11): 1101–1113, Nov. 1993.
G. Wyszecki and W. S. Stiles. Color Science: Concepts and Methods, Quantitative Data and Formulae. New York: Wiley, second edition, 1982.
C. Xu and J. L. Prince. Gradient vector flow: A new external force for snakes. In Proceedings of the IEEE Conference on Computer Vision and 

 Pattern Recognition (CVPR), pages 66–71, June 1997.
C. Xu and J. L. Prince. Snakes, shapes, and gradient vector flow. IEEE Transactions on Image Processing, 7(3): 359–369, Mar. 1998.
C. Xu, D. L. Pham, M. E. Rettmann, D. N. Yu, and J. L. Prince. Reconstruction of the human cerebral cortex from magnetic resonance images. IEEE 

Transactions on Medical Imaging, 18(6): 467–480, June 1999.
R. Xu and D. Wunsch, II. Survey of clustering algorithms. IEEE Transactions on Neural Networks, 16(3): 645–678, May 2005.
M. H. Yang, D. J. Kriegman, and N. Ahuja. Detecting faces in images: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 

24(1): 34–58, Jan. 2002.
A. Yilmaz, X. Li, and M. Shah. Contour-based object tracking with occlusion handling in video acquired using mobile cameras. IEEE Transactions 

on Pattern Analysis and Machine Intelligence, 26(11): 1531–1536, Nov. 2004.
I. T. Young and L. J. van Vliet. Recursive implementation of the Gaussian filter. Signal Processing, 44(2): 139–151, June 1995.
R. Zabih and J. Woodfill. Non-parametric local transforms for computing visual correspondence. In Proceedings of the 3rd European Conference 

on Computer Vision (ECCV), pages 151–158, May 1994.
T. Y. Zhang and C. Y. Suen. A fast parallel algorithm for thinning digital patterns. Communications of the ACM, 27(3): 236–239, Mar. 1984.
Z. Zhang. Iterative point matching for registration of free-form curves and surfaces. International Journal of Computer Vision, 13(2): 119–152, 

Oct. 1994.
Z. Zhang. A flexible new technique for camera calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(11): 1330–1334, 

Nov. 2000.
S. C. Zhu and A. L. Yuille. Region competition: Unifying snakes, region growing, and Bayes/MDL for multiband image segmentation. IEEE 

 Transactions on Pattern Analysis and Machine Intelligence, 18(9): 884–900, Sept. 1996.
J. Ziv and A. Lempel. A universal algorithm for sequential data compression. IEEE Transactions on Information Theory, 23(3): 337–343, May 1977.
J. Ziv and A. Lempel. Compression of individual sequences via variable-rate coding. IEEE Transactions on Information Theory, 24(5): 530–536, 

Sept. 1978.
Z. Zivkovic and F. van der Heijden. Efficient adaptive density estimation per image pixel for the task of background subtraction. Pattern Recognition 

Letters, 27(7): 773–780, May 2006.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



A
Aberrations, 41
Absolute conic, 671
Absolute difference, 99
Absolute points, 660–661
Accessing image data, 9–10

aspect ratio, 9
column major order, 9
pixel, 9
raster scan order, 9
row major order, 9
scanline, 9

Accumulator, 547
Achromatic double, 41
Acquisition of images, 43–53

CCD and CMOS sensors, 48–52
gamma compression, 43–48
sampling and quantization, 43
transmission and storage, 52–53

Active appearance models (AAMs), 593
Active contours (snakes), 453–461

buoy-rope, 455
dependent variable, 460
dynamic programming, 456
elasticity, 454
Euler-Lagrange equation, 460
functional, 460
independent variable, 460
marker-string, 455
minimizing first-order, closed contour, 459
minimizing first-order, open contour, 

457–458
minimizing second-order contour, 459–460
minimizing using calculus of variations, 

460–461
smoothness, 454
stationary points, 460
Viterbi algorithm, 456

Active sensing, 637
Active shape models (ASMs), 593
Active stereo, 637–638

active sensing, 637
depth from defocus, 637
laser range finder, 638
laser scanner, 638
photometric stereo, 637
scanning lidar, 638
structured light, 638
time-of-flight (TOF) camera, 638

Adaboost, 611
Adaptive smoothing, 262
Adaptive thresholding, 449–450

Chow-Kaneko technique, 449
Niblack’s method, 450
Suuuuauvola’s method, 450

Additive and subtractive colors, 404
additive color model, 404
subtractive color model, 404

Additive color model, 404
Additive properties, 220
Additive white Gaussian noise (AWGN), 247
Adjacent pixels, 153
Affine projection, 38
Affine transformations, 124, 659
Affine transforms, 656
Affinity matrix, 495
Agglomerative clustering, 477
Akaike information criterion (AIC), 567
Albedo, 62
Algebraic closings, 147
Algebraic connectivity, 496
Algebraic error, 523
Algebraic openings, 147
Aliasing, 276
α-β swap, 506
Alpha channels, 107–109
α-expansion, 506
Alpha value, 11
Alternative definitions and notation, 144
Amacrine cells, 26
Ambient component of vision, 26
Analytic functions, 82
Analytic transformations, 82–83
Anchor-floater line, 341
Animal vision, 28–32

biometrics, 29
biomimicry, 29
microvilli, 31
ocelli, 32
ommatidia, 29
parietal eye, 32

Anisotropic diffusion, 260–262
diffusion, 260
diffusion equation, 262
heat equation, 261
isotropic diffusion, 26

Anisotropic Gaussian, 184
Anti-extensive properties, 135
Antisymmetric kernels, 217
Aperture, 40
Aperture problem, 642
Approximating intensity edges with polylines, 

341–342
anchor-floater line, 341
critical point, 341
Douglas-Peucker algorithm, 341
effective area, 341
repeated elimination of the smallest area, 

341–342
Aqueous humor, 21
Arbitrary warps, 125–126

Area, 178
Area closing, 147
Area opening, 147
Area under the curve (AUC), 571
Arithmetic coding, 374
Arithmetic operations, 77–80, 99–100

absolute difference, 99
bias, 79
blacklevel, 79
clamped results, 78
contrast, 79
gain, 79
linear interpolation, 99
monotonically nondecreasing 

 transformation, 7
overflow, 78
saturation arithmetic, 78

Artificial neural network (ANN), 608
Aspect ratio, 9
Attentional cascade, 612

degenerate decision tree, 612
rare event detection, 612
Viola-Jones face detector, 612

Autocorrelation matrix, 344
Automatic gain control, (AGC), 50
Autostereograms, 622
Average image, 103
AVIRIS (Airborne Visible Infrared Imaging 

Spectrometer), 56
Axon, 25

B
Background image, 102
Background subtraction, 102–104

average image, 103
background image, 102
digital subtraction angiography (DSA), 103
mean image, 103

Backpropagation algorithm, 609
Backward difference kernels, 234
Bagging, 611
Bag of visual words, 608
Balloon, 461
Band-limited filter, 297
Band-limited signal, 276
Bandpass filtering, 303–307

highboost filtering, 305
high-frequency-emphasis filter, 307
Laplacian filter, 303
Laplacian of Gaussian (LoG) filter, 303
Mach bands illusions, 304
sharpening, 304
unsharp masking, 305
unsharp masking and highboost filtering, 

304–307
Bands, 92

INDEX

 703

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



704 Index

C
Camera calibration, 663–672

extrinsic parameters, 663
feathering, 667
image of absolute conic (IAC), 669, 671–672
intrinsic parameters, 663
mosaic, 666
mosaicking, 666–667
normalized direct linear (DLT) algorithm, 

664–666
Zhang’s calibration algorithm, 667–671

Camera coordinate system, 661
Camera obscura, 36
Camera projection matrices relationship, 

678–679
Camera with lens, 38–42

aberrations, 41
achromatic double, 41
aperture, 40
bokeh, 40
cardinal points, 40
Cartesian sign conversion, 39
chromatic aberration, 41
circle of confusion, 40
compound lens, 40
concave lens, 39
convex lens, 39
cosine fourth law, 42
depth of field (DOF), 40
diopters, 40
distortion, 41
double Gauss lens, 40
field of view (FOV), 40
fisheye lens, 41
f-number, 40
focal points, 40
f-stop, 40
Gaussian lens formula, 39
Gaussian optics, 39
lens flare, 41
lens maker’s formula, 39
material dispersion, 41
mechanical vignetting, 41
modular transfer function (MTF), 40 
natural vibnetting, 41
nodal points, 40
optical power, 40
optical transfer function, (OTF), 40
optical vignetting, 41
paraxial, 39
pixel vignetting, 41
point spread function (PSF), 40
principal plane, 40
principal points, 40
thick lens formula, 40
thin lens formula, 39
vignetting, 41

Canny edge detector, 335–339
localization-detection tradeoff, 338
non-maximum suppression, 335
single response constraint, 339

Capacity, 502
Cardinal points, 40
Cardinal splines, 112, 116
CART classifier, 611
Cartesian sign conversion, 39
Catchment basin, 484
Catmull-Rom spline, 112
Catoptric imaging system, 54
Cauchy-Lorentz estimator, 542

labeling regions, 152–164
morphological operations, 131–152
region properties, 174–194
skeletonization, 194–201

Binary masks, 105–107
Biometrics, 29
Biomimicry, 29
Biorthagonal, 395
Bipolar cells, 26
Birefringence, 64
Bit, 368
Bit allocation, 380
Bit depth, 10
Bit-plane slicing, 84
Blackbody locus, 415
Blackbody radiators, 60–61

mired reciprocal degree, 61
Planck’s law, 60
Stefan’s law, 60
Wien’s displacement law, 60

Blacklevel, 44, 79
Blackness, 412
Black top-hat (BTH), 265
Block matching, 628–632

left-right disparity check, 631
Block transform coding, 379
Blooming, 51
Bluescreening, 98
Blum’s medial axis transform, 194
Bokeh, 40
Boosting, 611
Bottom-up process, 3
Bootstrap algorithm, 610
Bootstrapping, 611
Boundary, 161
Boundary representation, 201–207

B-spline, 205–207
chain code, 201–202
Fourier descriptor, 204–205
Freeman chain code, 202
minimum-perimeter polygon (MPP, 202–203
signature, 203–204

Boundary tracing, 161–164
boundary, 161
complete boundary, 161
Freeman chain code, 162–163
hole boundary, 161
inner boundary, 161
Moore’s boundary tracing algorithm, 162
outer boundary, 161
region boundary, 161
wall-following algorithm, 162

Box filter, 222
Boykov-Kolmogorov algorithm, 503
Bradford transform, 419
Breakdown points, 543
Brightness constancy assumption, 640
B-splines, 116, 205–207

Bézier curves, 205
computing a point along spline, 205–206
computing slope of a spine, 206
constructing the spline, 206–207
control points, 205
Hermite splines, 205
NURBS (non-uniform rational  

B-splines), 205
spline, 205

Building large structuring elements, 144–145
Bundle adjustment, 671
Buoy-rope, 455
Butterworth lowpass filter, 300–301

Bandwidth, 257
Baseline, 624
Baseline process, 391
Basis functions, 287–288
Bayer filter, 50
Bayes decision rule, 575
Bayesian belief propagation, 637
Bayesian decision theory, 574–577

Bayes decision rule, 575
Bayes risk, 575
class-conditional probability density, 574
conditional risk, 575
likelihood ratio, 576
minimum error classification rate, 576
overall risk, 575
posterior density, 574

Bayesian information criterion (BIC), 567
Bayes risk, 575
Bayes’ rule, 572–574

evidence, 574
likelihood, 573
maximum a posteriori (MAP), 574
maximum likelihood, 574
posterior, 573
prior, 573

Beaudet detector, 345–346
Hessian of a function, 345

Best-fitting ellipse, 182–184
anisotropic Gaussian, 184
isotropic 2D Gaussian curve, 184
level set of 2D function, 184
major axis, noncircular ellipse, 183
minor axis, noncircular ellipse, 183

Best linear unbiased estimator (BLUE), 538
Between-class scatter matrix, 597
Between-class variance, 447
Beucher gradient, 266
Bézier curves, 205
B-frames, 397
Bias, 79, 565
Bias-variance, 565
Bias-variance, tradeoff, overfitting, and 

Occam’s Razor, 565–566
bias, 565
irreducible error, 565
variance, 565

Bicubic interpolation, 110–115
cardinal splines, 112
Catmull-Rom spline, 112
cubic Hermite splines, 111
cubic interpolation, 111
interpolation kernel, 113

Bidirectional reflectance distribution  function 
(BRDF), 62

Bilateral filtering, 249–251
edge-preserving smoothing, 250
range kernel, 249
spatial kernel, 249

Bilateral filtering for large windows, 251–257
Bilinear interpolation, 109
Binarization, 83
Binary image, 11
Binary image as set, 132–133

complement, 133
De Morgan’s laws, 133
difference, 133
intersection, 133
union, 133

Binary image processing, 131–214
boundary representation, 201–207
computing distance in digital image, 164–174
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hue, chroma, and lightness, 411
ISCC-NBS system, 412
Munsell color system, 411
natural color system (NCS), 412
saturation, 411

Color filter array (CFA), 50
Colorfulness, 411
Colorimetry, 414, 418
Color matching functions (CMFs), 405–407

metamers, 406
tristimulus values, 406

Color spaces, 420–438
CIE XYZ, L*u*v*, and L*a*b*, 435–437
CMYK, 437–438
converting from R'G'B' to grayscale, 

428–429
Hanbury transformation, 429
HSV and HSL, 429–435
MacAdam ellipses, 436
opponent colors, 429
RGB and R'G'B', 420–424
Y'CBCR, 427
Y'IQ, 428
Y'PB PR, 425–426
Y'UV, 427–428

Column major order, 9
Compactness, 185
Compact version of SVD, 52
Complement, 133
Complete boundary, 161
Complete wavelet transform, 310
Complex-valued image, 12
Complex Zernike moments, 177
Component video, 52
Composite video, 52
Compositing, 105–109

alpha channels, 107–109
binary masks, 105–107
dissolving, 105
premultiplied alphas, 109

Compound lens, 40
Compression, 2–3, 355–400

basics, 355–363
lossless compression, 364–378
lossy compression, 378–396
video compression, 396–397

Compression basics, 355–363
codec, 356
coder, 356
compression ratio, 357
compressor, 356
conditional entropy, 363
data, 356
decoder, 356
decompressor, 356
entropy rate, 363
graphic drawings versus photographs, 

358–359
information, 356
information theory, 359–363
lossless compression, 356
lossy compression, 356
maximum entropy, 361
redundancy, 357
redundancy in an image, 357–358
relative redundancy, 357
sequence of independent and identically 

distributed (i.i.d.) variables, 362
single random variable, 360–362
stationary sequence of random variables, 

362–363

Chromatic adaptation transform (CAT), 420
Chromaticness, 412
Chrominance, 425
CIE chromaticity diagram, 412–415

blackbody locus, 415
colorimetry, 414
correlated color temperature, 415
equal energy white, 415
gamut, 414
illuminant, 415
normalized coordinates, 413
spectral locus, 414
white point, 415

CIE XYZ, L*u*v*, and L*a*b*, 435–437
Ciliary muscle, 21
Circle fitting, 523–526

algebraic error, 523
geometric error, 523
Kåsa method, 524
normalized Kåsa method, 525

Circle of confusion, 40
Circular birefringence, 64–65
Circular convolution theorem, 283
Circular polarization, 58
Clamped results, 78
Class-conditional probability density, 574
Classic connected components algorithm, 158
Classification, 3, 560–620

discriminative methods, 594–615
fundamentals, 560–571
generative methods, 582–594
statistical pattern recognition, 571–582

Classification errors, 544
Classification fundamentals, 560–571

bias-variance, tradeoff, overfitting, and 
Occam’s Razor

classifiers, discriminant functions, and 
decision boundaries, 562–563

curse of dimensionality and peaking 
 phenomenon, 568

detection, recognition, and verification, 561
error, loss, and risk, 563
evaluating classification results, 568–569
holdout method and cross-validation, 

566–567
model selection and regularization, 567–568
training error, test error, and true error, 

563–564
Classifiers, discriminant functions, and 

 decision boundaries, 562–563
decision regions, 563
dichotomizer, 562
feature space, 562

Classifier space, 568
Closing by reconstruction, 157
CMYK, 437–438
Codec, 356
Coder, 356
Code words, 364
Coding redundancy, 357
Color, 401–442

color spaces, 420–438
designating colors, 411–415
linear color transformations, 415–420
physics and psychology of color, 402–404
trichromacy, 404–411

Color appearance models (CAMs), 420
Color constancy, 419
Color designation, 411–415

CIE chromaticity diagram, 412–415
colorfulness, 411

Causality criterion, 333
CCD and CMOS sensors, 48–52

automatic gain control, (AGC), 50
Bayer filter, 50
blooming, 51
color filter array (CFA), 50
dark current, 51
demosaicking algorithm, 50
electronic shutter, 49
field, 50
fill factor, 49
fixed pattern noise, 51
frame, 50
full-frame CCD, 49
glare, 51
horizontal shift register, 49
interlaced camera, 50
interline transfer CCD, 49
line jitter, 51
motion blur, 51
progressive scan camera, 50
quantization noise, 51
readout (amplifier) noise, 51
rolling shutter effect, 51
sensor noise, 51
shot noise, 51
three-CCD (3CCD) camera, 50
transfer noise, 51
trichroic prism, 50
white balance, 50

CDF 9/7 wavelet, 395
Census transform, 624
Center-in versus center-out, 137–138
Center of projection, 36
Center-surround filter, 243
Central difference kernel, 234
Central limit theorem, 231
Central moments, 175–176
Central panoramic camera, 54
Centroid, 175
Centroid profile, 203
Chain code, 201–202
Chamfer distance, 166
Chamfering, 166–169

chamfer distance, 166
distance transform, 166
Montanari condition, 166–167
quasi-Euclidean distance function, 167

Change detection, 101–104
background subtraction, 102–104
frame differencing, 101–102

Channels, 12, 92
Chan-Vese level set algorithm, 469–474

Fermat’s principle, 469
Heaviside function, 470
Maupertuis’ principle, 469
minimal partition problem, 471
Mumford-Shah energy functional, 470–471
regularized Heviside function, 471
Riemannian manifold, 469

Chebyschev filter, 300
Cheirality constraint, 626
Chessboard distance, 165
Choroid, 21
Chow-Kaneko technique, 449
Chroma, 52
Chromakeying, 97–98

bluescreening, 98
greenscreening, 98

Chroma subsampling, 52
Chromatic aberration, 41
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Demosaicking algorithm, 50
Dendrogram, 481
Dendrites, 25
Density slicing, 83
Dependent variable, 460
Depth from defocus, 637
Depth of field (DOF), 40
Detection, 561
Detection error tradeoff (DET) curve, 570
Diagonal moves, 166
Dichotomizer, 562
Dictionary codebook, 368
Difference, 133
Difference image, 101
Difference of Gaussians (DoG), 245–246
Differential pulse-code modulation 

(DPCM), 377
Differentiating kernels, 218
Diffraction, 64
Diffuse surface, 62
Diffusion, 260
Diffusion equation, 262
Digital image definition, 9
Digital numbers (DNS), 56
Digital subtraction, angiography (DSA), 

55, 103
Dilation and erosion, 138–144, 263–264

alternative definitions and notation, 144
elementary structuring elements, 141
noise removal, 140–142
properties, 142–143
structuring elements, 138–140

Dimensionality reduction, 589
Diopters, 40
Dioptric imaging system, 54
Diplopia, 25
Dirac delta function, 274
Dirichlet conditions, 277
Discrete cosine transform (DCT), 386–389
Discrete Fourier transformation (DFT), 

277–289, 382–383
basis functions, 287–288
DFT as multiplication, 288–289
discrete frequency interpretation,  

285–287
forward transform, 277–278
inverse transform, 278–279
magnitude and phase, 285
properties, 279–283
zero padding, 283–284

Discrete frequency interpretation,  
285–287

Discrete wavelet transformation (DWT), 
309–324

complete wavelet transform, 310
critical sampling, 310
Daubechies wavelets, 319–320
fast wavelet transform (FWT), 314–317
father wavelet, 311
Gabor wavelets, 321–324
Haar wavelet, 311–314
inverse wavelet transform, 317–319
matrix multiplication, DWT as, 314
mother wavelet, 310
orthogonal wavelet transform, 311
overcomplete wavelet transform, 310
2D wavelet transform, 320–321

Discriminant b2 – 4ac
Discriminant function analysis, 596
Discriminant functions, 52
Discriminative methods, 582, 594–615

Convolutional neural networks, 609
Copycat predictor, 375
Cornea, 21
Cornerness, 343
Correlated color temperature, 415
Correspondence, 624–625

baseline, 624
disparity, 624
disparity map, 625
epipolar constraint, 624–625
epipolar line, 624
frontoparallel, 625
matching space, 625
rectified, 624

Corresponding points, 674
Cosine fourth law, 42
Covariance matrix, 179
Critically sampled, 276
Critical point, 341
Critical sampling, 310
Cropping, 74
Cross correlation, 633
Crossing number, 196
Cross ratio, 660
Cross-validation, 566–567
Cubic convolution filter, 115
Cubic Hermite splines, 111
Cubic interpolation, 111
Cumulative distribution function (CDF), 88
Cumulative Match Characteristic (CMC) 

curve, 570
Curl, 57
Curse of dimensionality, 568 
Curve fitting, 523–532

circle, 523–526
conic section, 526–527
ellipse, 527–529
filled ellipse, 529–530
filled rectangle, 531–532
filled square, 530–531
3D geometric model, 532

Cyclopean coordinates, 627
Cyclopean image, 25, 622

D
Dam-less Vincent-Soille algorithm, 487
Dark current, 51
Data, 356
DC component, 283
Daubechies wavelets, 319–320
Decision regions, 563
Decision tree, 611
Decoder, 356
Decomposing essential matrix, 681–682
Decompressor, 356
Deep learning, 614–615

dropout, 614
max pooling, 615
shallow learning, 614

Deep neural networks, 609
Deformable models, 453–474

active contours (snakes), 453–461
Chan-Vese level set algorithm, 469–474
geodesic active contours, 468–469
gradient vector flow, 461–463
level set method, 463–468

Deformable part-based model (DPM), 
613–614

pictorial structure, 613
Degenerate decision tree, 612
De Morgan’s laws, 133

Compression ratio, 357
Compressor, 356
Computational photography, 8
Computed axial tomography (CAT), 55
Computed tomography (CT), 55
Computer graphics, 5
Computer vision, 3
Computing distance in digital image, 

164–174
chamfering, 166–169
distance functions, 164–166
exact Euclidean distance, 169–174
path length, 166

Computing variance of smoothing kernel, 
223–224

Concave, 187
Concave lens, 39
Conceptualizing images, 13–15
Conditional dilation, 155
Conditional entropy, 363
Conditional random field (CRF), 507
Conditional risk, 575
Condition number, 522
Conduction, 56
Cone fundamentals, 405
Cones, 21
Confusion matrix, 569
Conics, 658

conic sections, 658
dual conic, 658

Conic section fitting, 526–527
discriminant b2 – 4ac
2D conic section, 526

Conic sections, 658
Connected component labeling, 157
Connected components, 157–160

classic connected components 
algorithm, 158

connected component labeling, 157
else clause, 159
elseif clause, 159
equivalence classes, 157
equivalence relation, 157
if clause, 159
union-find algorithm, 159

Connected pixels, 153
Connection number, 196
Constructing Gaussian kernels, 226–229
Consumer imaging, 54

catoptric imaging system, 54
central panoramic camera, 54
dioptric imaging system, 54
light-field camera, 54
omnidirectional sensor, 54
RGBD camera, 54

Continental divide, 484
Contrast, 44, 79
Contrast threshold, 45
Control points, 205
Convection, 56
Convergent problem, 16
Converting from R'G'B' to grayscale, 428–429
Convex, 187
Convex hull, 187–189

concave, 187
convex, 187
convex deficiency, 187

Convex lens, 39
Convolution, 215–222

1D convolution, 215–218
2D convolution, 221–222
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Error, loss, and risk, 563
empirical risk, 563
structural risk, 563
total risk, 563
zero-one (0–1) loss function, 563

Essential matrix, 676–678
image coordinates, 676
metric coordinates, 676

Estimation, essential and fundamental 
 matrices, 679–681

eight-point algorithm, 679
five-point algorithm, 679

Euclidean distance, 165
Euclidean plane, 655
Euclidean transformations, 122–123, 659
Euler-Lagrange equation, 460
Euler number, 189–194

homotopy, 189
inclusion-exclusion principle, 191
Poncaré formula, 190
topology, 189

Euler’s formula, 273
Evaluating classification results, 568–569

area under the curve (AUC), 571
confusion matrix, 569
Cumulative Match Characteristic (CMC) 

curve, 570
detection error tradeoff (DET) curve, 570
equal error rate (EER), 571
false negative (FN), 569
false positive (FP), 569
F-measure, 569
Jaccard coefficient, 570
precision, 569
precision-recall (PR) curve, 570
recall, 569
receiver operating characteristic (ROC) 

curve, 570
sensitivity, 569
skewed dataset, 570
sliding window detection algorithm, 571
specificity, 569
true negative (TN), 569
true negative rate (TNR), 569
true positive (TP), 569
true positive rate (TPR), 569

Evaluating Gaussian kernels, 229–230
Even and odd symmetry, 283
Evidence, 574
Exact Euclidean distance, 169–174
Expectation-maximization (EM), 551–554

Gaussian mixture model, 551–552
hard assignments, 551
hidden variables, 551
latent variables, 551
mixture models, 551
soft assignments, 551

Extensive properties, 135
Extrinsic parameters, 663
Eye structure, 21–25

aqueous humor, 21
choroid, 21
ciliary muscle, 21
cones, 21
cornea, 21
Cyclopean image, 25
diplopia, 25
disparity of point, 24
fixation, 24
fovea, 22
foviola, 23

Edge-preserving smoothing, 250
Edges and features, 328–354

approximating intensity edges with 
polylines, 341–342

edge detection, 334–341
feature descriptors, 348–351
feature detectors, 342–348
multiresource processing, 328–334

Edit distance, 635
Effective area, 341
Efficiency, 544
Eigendecompositon, 181
Eigenfaces, 592
Eight-point algorithm, 679
Elasticity, 454
Electromagnetic radiation, 56–65

blackbody radiators, 60–61
conduction, 56
convection, 56
electromagnetic waves, 57
interaction with surface, 61–65
radiometry and photometry, 58–60
transverse electromagnetic waves, 57–58

Electromagnetic spectrum, 34
Electromagnetic waves, 57
Electromagnetism, 57
Electronic shutter, 49
Elementary structuring elements, 141
Ellipse fitting, 527–529
Elliptical polarization, 58
Elliptic filter, 300
Empirical risk, 563
Energy minimization in 2D, 636–637

Bayesian belief propagation, 637
loopy belief propagation, 637
Potts model, 637
semi-global matching, 637

Enhancement, 2, 297
Ensemble learning, 611
Entertainment, 8
Entropy, 360

conditional entropy, 363
maximum entropy, 361
rate, 363
sequence of independent and identically 

distributed (i.i.d.), 362
single random variable, 360–362
stationary sequence of random variables, 

362–363
Entropy of single random variable,  

360–362
maximum entropy, 361
outcomes, 360
probability mass function, 361
random variable, 360
surprise, 360
unpredictability, 360

Epanechnikov kernel, 258
Epipolar constraint, 624–625
Epipolar geometry, 673–674

baseline, 673
epipolar lines, 673
epipolar plane, 673
two epipoles, 673

Epipolar line, 624, 673
Epipolar plane, 673
Equal contribution property, 329
Equal energy white, 415
Equal error rate (EER), 571
Equivalence classes, 157
Equivalence relation, 157

attentional cascade, 612
deep learning, 614–615
deformable part-based model (DPM), 

613–614
Fisher’s linear discriminant (FLD), 596–597
linear discriminant functions, 594–596
maximum-margin classifiers, 600–602
neural networks, 608–611
perceptrons, 597–600
random forests, 611
support vector machine (SVM), 602–608

Discriminative model, 582
Disparity, 624
Disparity gradient limit, 627
Disparity map, 625
Disparity of point, 24
Dissimilarity measures, 632–634

census transform, 624
cross correlation, 633
factionalism, 634
normalized cross correlation, 634
rank transform, 634
sum of absolute differences (SAD), 632
sum of squared differences (SDD), 632

Dissolving, 105
Distance functions, 164–166

chessboard distance, 165
Euclidean distance, 165
Mahalanobis distance, 165
Manhattan distance, 165
vector norm, 165

Distance transform, 166
Distortion, 41
Divergence, 57
Divergent problem, 16
Divisive clustering, 477
Document image analysis, 6
Dorsal stream, 27
Double-difference image, 102
Double Gauss lens, 40
Double-image problem, double-difference 

image, 102
Double thresholding, 451
Douglas-Peucker algorithm, 341
Downsampling and unsampling, 74–75, 

121–122
Drainage basin, 484
Drainage divide, 484
Dropout, 614
Dual conic, 658
Duality, 656
Duality properties, 136
Dual problem, 602
Dynamic programming, 456, 634–636

edit distance, 635
Levenshtein distance, 635
string matching problem, 635

E
Eccentricity, 185–187
Edge detection, 334–341

Canny edge detector, 335–339
edgels, 334
Frei-Chen edge detection, 340–341
intensity edges, 334
line edge, 334
Marr-Hildreth operator, 339–340
ramp edge, 334
roof edge, 334
step edge, 334

Edgels, 334
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Euler’s formula, 273
fast Fourier transform (FFT), 278
Fourier transform, 273
frequency-domain representation, 273
Kronecker delta function, 277–278
spatial-domain signal, 273
time-domain signal, 273

Fourier descriptor, 204–205
Fourier multiplication, 219–220
Fourier slice theorem, 291
Fourier transform, 273
Fourier transformation, 272–277

forward transform, 273–274
Fourier transform versions, 276–277
inverse transform, 275
sampling and aliasing, 275–276

Fovea, 22
Foveated vision, 26
Foviola, 23
Frame, 50
Frame differencing, 101–102

difference image, 101
double-difference image, 102
double-image problem, double-difference 

image, 102
triple-difference image, 102

Fraunhofer diffraction, 64
Freeman chain code, 162–163, 202
Freeman formula, 166
Frei-Chen edge detection, 340–341
Frequency, 33
Frequency-domain filtering, 296–307

bandpass filtering, 303–307
enhancement, 297
highpass filtering, 302–303
lowpass filtering, 296–302
restoration, 296

Frequency domain processing, 272–327
discrete Fourier transformation (DFT), 

277–289
discrete wavelet transformation (DWT), 

309–324
Fourier transformation, 272–277
frequency-domain filtering, 296–307
homomorphic filtering, 307
localizing frequencies in time, 308–309
two-dimensional DFT, 289–295

Frequency-domain representation, 273
Frequency response, 297
Fresnel diffraction, 64
Frobenius norm, 521
Frontier, 154
Frontoparallel, 625
F-stop, 40
Full-frame CCD, 49
Functional, 460
Functional MRI (fMRI), 55
Fundamental matrix, 674–676

corresponding points, 674

G
Gabor limit, 308
Gabor wavelets, 321–324
Gain, 79
Gamma compression, 43–48

blacklevel, 44
contrast, 44
contrast threshold, 45
effective gamma, 48
gamma expansion, 44
grayscale value, 48

Finite differences, 234
Finite impulse response (FIR), 220–221
First derivative computation, 234–240

Gaussian derivative kernels, 234–237
image gradient, 237–240

Fisher’s linear discriminant (FLD), 596–597
between-class scatter matrix, 597
discriminant function analysis, 596
projected sample mean, 596
sample mean, 596
scatter, 596
scatter matrix, 596
total within-class scatter, 596
within-class scatter matrix, 596

Fisheye lens, 41
Fitting a plane, 519
Five-point algorithm, 679
Fixation, 24
Fixed pattern noise, 51
Flat SE, 264
Flip-flops, 70
Flipping and flopping, 69–72

flip-flops, 70
flips, 69
flops, 70
forward mappings, 70
inverse mappings, 70
pseudocode, 71

Flips, 69
Floating-point image, 11
Floodfill, 154–157

closing by reconstruction, 157
conditional dilation, 155
frontier, 154
geodesic dilation, 156
marker image, 156
mask image, 156
morphological reconstruction by 

dilation, 156
opening by reconstruction, 157
seed fill, 154
seed pixel, 154

Flops, 70
Flow conservation, 502
Fluorescence, 65
Fluorescence in situ hybridization (FISH), 55
Fluoroscopy, 55
F-measure, 569
F-number, 40
Focal colors, 587
Focal component of vision, 26
Focal length, 36
Focal point, 36, 40
Focus of contraction, 639
Focus of expansion, 638
Footroom, 53
Forbidden zone, 626
Foreground/background segmentation, 44
Foreshortening, 59
Formation of images, 32–42

camera with lens, 38–42
light and the electromagnetic spectrum, 

33–34
pinhole camera, 35–38
plenoptic function, 34–35
simplified imaging model, 42

Forward difference kernels, 234
Forward mappings, 70
Forward transform, 273–274, 277–278

Dirac delta function, 274
Dirichlet conditions, 277

Eye structure (continued)
horopter, 24
hyperpolarization, 21
interpupillary distance, 24
inverted retina, 23
iris, 21
lens, 21
macula lutea, 22
optic disc, 22
Panum’s fusional area, 25
photopsins, 22
pupil, 21
retina, 21
retinal pigment epithelium (RPE), 24
rhodopsin, 22
rods, 21
saccades, 25
scan path, 25
sclera, 21
univariance, 22
vergence angle, 24
Vieth-Müller circle, 24

F
Factionalism, 634
False contouring, 43
False negative (FN), 569
False positive (FP), 569
Faraday effect, 65
Far infrared light, 34
Fast Fourier transform (FFT), 278
Fast marching method, 467
Fast wavelet transform (FWT), 314–317
Feature descriptors, 348–351

gradient location and orientation  histogram 
(GLOH), 349–350

histogram of oriented gradients (HOG), 
350–351

shape context, 350
SIFT feature descriptor, 348–349

Feature detectors, 342–348
Beaudet detector, 345–346
feature point detector, 342
feature points, 342
Harris corner detector, 343–344
interest operator, 342
interest points, 342
Kitchen-Rosenfeld interest point 

detector, 347
Moravec interest operator, 342–343
SIFT feature detector, 347–348
Tomasi-Kanade operator, 345

Feature point detector, 342
Feature points, 342
Feature space, 562
Feedforward neural network, 608
Felzenszwalb-Huttenlocher (FH) 

algorithm, 490
Kruskal’s algorithm, 490
minimum spanning tree, (MST), 490
smallest-neighbor clustering, 494

Fermat’s principle, 469
Fiedler value, 496
Field, 50
Field of view (FOV), 40
Figure axis, 180
File formats, 53
Filled ellipse fitting, 529–530
Filled rectangle fitting, 531–532
Filled square fitting, 530–531
Fill factor, 49
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gradient covariance matrix, 344
Plessey operator, 344

Headroom, 53
Heat equation, 261
Heaviside function, 470
Helmholtz reciprocity principle, 63
Hermite splines, 205
Hermitian symmetry, 282
Hessian of a function, 345
Heteroskedastic noise, 539
Hexcone, 430
Hexcone model, 432
Hidden layers, 609
Hidden variables, 551
Hierarchical clustering scheme (HCS), 

481–483
dendrogram, 481
ultrametric distance function, 482
ultrametric inequality, 482

Hierarchy of transformations, 659–660
affine transformation, 659
cross ratio, 660
Euclidean transformation, 659
projective transformation, 659
similarity transformation, 659

Highboost filtering, 305
High-definition television (HDTV), 52
High-frequency-emphasis filter, 307
Highpass filtering, 302–303
Histograms, 86, 582–584

equalization, 87–91
interpretation, 87
matching, 91–92
normalized, 86
of oriented gradients (HOG), 350–351

Histograms, equalization of, 87–91
cumulative distribution function (CDF), 88
running sum, 88

History and related fields, 4–6
computer graphics, 5
gestalt psychology, 3–4
machine learning, 6
photogrammetry, 5
psychophysics, 3
signal processing, 5
vision science, 3, 5

Hit-miss operator, 147–148
Holdout method and cross-validation, 

566–567
k-fold cross validation, 566
leave-one-out cross validation (LOOCV), 

566–567
random subsampling, 566

Hole boundary, 161
Hole filling, 164
Homogeneity, 477
Homogeneous coordinates, 123, 654–657

affine transforms, 656
duality, 656
Euclidean plane, 655
homography, 655
projective plane, 655
projective transformation, 655

Homogeneous electromagnetic wave 
 equations, 57

Homogeneous equation, 516
Homography, 124, 655
Homomorphic filtering, 307
Homoskedastic noise, 539
Homotopy, 189
Horizontal cells, 26

images of a plane, 683–685
3D point coordinates computation, 682–683

Gestalt psychology, 475–477
gestalt school of psychology, 476
Law of Prägnanz (conciseness), 476

Gestalt school of psychology, 476
Gibbs distribution, 503
Gibbs phenomenon, 298
Global k-means, 550
Global threshold, 444
GrabCut, 505
Gradient covariance matrix, 344
Gradient location and orientation histogram 

(GLOH), 349–350
Gradient vector flow, 461–463

balloon, 461
irrotational field, 462
solenoidal field, 462

Gramian, 521
Graph-based methods of segmentation, 

490–507
Felzenszwalb-Huttenlocher (FH) 

 algorithm, 490
minimum s-t cut, 501–505
normalized cuts, 495–501
semantic segmentation, 506–507

Graph cuts segmentation, 501
Graphic drawings versus photographs, 

358–359
Grassmann’s law, 407–408
Graylevel histograms, 86–92

equalization of histograms, 87–91
histogram, 86
histogram matching, 91–92
interpretation of histograms, 87
normalized histogram, 86
probability density function, 86

Gray levels, 10
Graylevel transformations, 76–86

analytic transformations, 82–83
arithmetic operations, 77–80
bit-plane slicing, 84
density slicing, 83
intensity transformations, 77
linear contrast stretch, 80–82
lookup tables (LUT), 85–86
point transformation, 76
quantization, 84
thresholding, 83

Grayscale image, 10
Grayscale morphological operators, 262–266

Beucher gradient, 266
dilation and erosion, 263–264
flat SE, 264
grayscale opening and closing, 264
non-flat SE, 264
top-hat transformation, 265–266

Grayscale opening and closing, 264
Grayscale value, 48
Greenscreening, 98

H
Haar wavelet, 311–314
Hadamard matrix, 383
Half-width kernel, 216
Hamilton-Jacobi equation, 465
Hammersley-Clifford theorem, 503
Hanbury transformation, 429
Hard assignments, 551
Harris corner detector, 343–344

autocorrelation matrix, 344

lightness, 47, 48
luminance, 47
perceived intensity, 45
physical intensity, 45
Rec. 709, 47
simultaneous contrast 
sRGB, 47
Stevens’ power law, 47
viewing gamma, 44
Weber’s law, 46

Gamma expansion, 44
Gamut, 414
Ganglion cells, 26
Gaussian densities, 580–582
Gaussian derivative kernels, 234–237

backward difference kernels, 234
central difference kernel, 234
finite differences, 234
forward difference kernels, 234

Gaussian (normal) kernel, 258
Gaussian kernels, 222–223
Gaussian lens formula, 39
Gaussian lowpass filter, 299
Gaussian mixture model, 551–552
Gaussian optics, 39
Gestalt psychology, 3–4
Gaussian pyramid, 329–330

equal contribution property, 329
image pyramid, 329
octave, 330

Gaussian scale space, 333
Gauss-Jordan elimination, 514
Gauss-Markov theorem, 539
Gauss-Newton method, 644
Gauss-Seidel method, 653
Geman-McClure error function, 541
Generalized Hough transform algorithm, 548
Generalized least squares, 538

best linear unbiased estimator (BLUE), 538
linear estimators, 538

Generalized Lucas-Kanade, 647–650
inverse compositional method, 650
Jacobian, 649

Generalized Rayleigh quotient, 499
Generative methods, 582–594

discriminative methods, 582
discriminative model, 582
generative model, 582
histograms, 582–584
kernel density estimation (KDE), 584–587
Naive Bayes, 588–589
nearest neighbors classifiers (NN), 587–588
principal components analysis (PCA), 

589–594
Generative model, 582
Geodesic active contours, 468–469
Geodesic dilation, 156
Geodesic influence zone, 485
Geometric active contour, 463
Geometric error, 523
Geometric margin, 601
Geometry of multiple views, 673–684

camera projection matrices relationship, 
678–679

decomposing essential matrix, 681–682
epipolar geometry, 673–674
essential matrix, 676–678
estimation, essential and fundamental 

matrices, 679–681
fundamental matrix, 674–676
homography resulting from two stereo 
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Inner boundary, 161
Input layer, 609 
Instantaneous epipole, 640
Integer-valued image, 11–12
Integral image, 233–234
Interleaved, 11
Intensity edges, 334
Intensity transformations, 77
Interaction with surface, 61–65

other phenomena, 64–65
reflection, 61–63
transmission, 63–64

Interactive segmentation, 501
Interest operator, 342
Interest points, 342
Interference, 64
Interlaced camera, 50
Interline transfer CCD, 49
Interpixel redundancy, 357
Interpolation, 109–120

bicubic interpolation, 110–115
bilinear interpolation, 109
Keys filters, 115–118
Lanczos interpolation, 118–120
nearest neighbor interpolation, 110

Interpolation kernel, 113
Interpupillary distance (IPD), 24, 622
Interquartile range, 541
Interreflections, 62
Intersection, 133
Intrinsic images, 42
Intrinsic parameters, 663
Inverse compositional method, 650
Inverse DFT, 278
Inverse Fourier transform, 275
Inverse mappings, 70
Inverse transform, 275, 278–279

inverse DFT, 278
inverse Fourier transform, 275
sifting property of Dirac delta function, 275

Inverse warp, 644
Inverse wavelet transform, 317–319
Inverted retina, 23
Iridescence, 64
Iris, 21
Irradiance, 59
Irreducible error, 565
Irrotational field, 462
ISCC-NBS system, 412
Isothetic moves, 166
Isotropic diffusion, 26
Isotropic 2D Gaussian curve, 184
Iterative closest point, 535–536

point-to-plane error metric, 536
point-to-point error metric, 536

Iteratively reweighted least squares (IRLS), 
538–540

Gauss-Markov theorem, 539
heteroskedastic noise, 539
homoskedastic noise, 539
weighted least squares, 539

J
Jacobian, 649
Jacobi method, 653
Jaccard coefficient, 570
Jordon curve theorem, 154
JPEG compression, 390–394

baseline process, 391
level shifted samples, 391
minimum coded units (MCUs), 392

Image pyramid, 329
Image registration and morphing, 126
Image segmentation, 474–490

gestalt psychology, 475–477
hierarchical clustering scheme (HCS), 

481–483
mean-shift segmentation, 489–490
region growing, 478–481
splitting and merging, 477–478
watershed method, 483–489

Image types, 10–12
alpha value, 11
binary image, 11
bit depth, 10
channels, 12
complex-valued image, 12
floating-point image, 11
gray levels, 10
grayscale image, 10
image processing, 11
integer-valued image, 11–12
interleaved, 11
opacity, 11
planar, 11
real-valued image, 11
RGB color image, 11
signal processing, 11

Imaging fundamentals, 20–68
acquisition, 43–53
electromagnetic radiation, 56–65
formation, 32–42
other modalities, 53–56
vision in nature, 20–32

Imaging introduction, 1–19
accessing image data, 9–10
conceptualizing images, 13–15
convergent problem, 16
divergent problem, 16
history and related fields, 4–6
mathematical prerequisites and notation, 

15–16
processing and analysis, 2–4
programming, 16
sample applications, 6–8
types of images, 10–12

Immersion, 484
Implicit function, 464
Impossible colors, 409
Impulse response, 221
Inclusion-exclusion principle, 191
Increasing properties, 135
Independent variable, 460
Index, 368
Industrial inspection, 6
Inertia moment tensor, 179
Infinite impulse response (IIR), 221
Influence function, 541
Information, 356
Information theory, 359–363

conditional entropy, 363
entropy, 360
entropy of a sequence of independent and 

identically distributed (i.i.d.) variables, 
362

entropy of single random variable, 360–362
entropy of stationary sequence of random 

variables, 362–363
entropy rate, 363
Markov chain, 363
Shannon’s source coding theorem, 362

Infrared light, 34

Horizontal shift register, 49
Horn-Schunck algorithm, 650–654

Jacobi method, 653
Gauss-Seidel method, 653
successive over-relaxation (SOR), 653

Horopter, 24
Hough transform, 546–549

accumulator, 547
generalized Hough transform 

algorithm, 548
parameter space, 546

HSV and HSL, 429–435
hexcone, 430
hexcone model, 432
subcube, 430
subhexagon, 430
triangle model, 433
using chroma instead of saturation, 435

Huber loss function, 542
Hue, chroma, and lightness, 411
Huffman coding, 364–366

code words, 364
prefix code, 366
source code, 364
variable-length code, 365

Human stereopsis, 621–623
autostereograms, 622
Cyclopean image, 622
interpupillary distance (IPD), 622
random dot stereograms, 623
retinal disparity, 621
stereoscopes, 622

Human visual perception, 27–28
just-noticeable difference (JND), 28
lateral inhibition, 28
luminous efficiency function (LEF), 28 
mesopic vision, 27
photopic vision, 27
phototropic LEF, 28
Purkinje effect, 28
receptive field, 28
scotopic LEF, 28
scotopic vision, 27

Human visual system, 21–28
eye structure, 21–25
human visual perception, 27–28
visual pathway, 25–27

Hu moments, 177
Hyperpolarization, 21
Hyperspectral sensor, 55
Hysteresis thresholding, 450–451

I
ICC profiles, 419–420
Ideal lowpass filter, 296–298
Idempotent operators, 146
I-frames, 397
Ill-conditioned matrix, 515 
Illuminant, 415
Image coordinates, 676
Image coordinate system, 661
Image definition, 8
Image gradient, 237–240

Prewitt operator, 239
Roberts cross operator, 239
Scharr operator, 239
Sobel operator, 239

Image of absolute conic (IAC), 669, 671–672
absolute conic, 671
plate at infinity, 671

Image plane, 36
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Kronecker delta function, 220
linear-shift variant system, 220
nonlinear system, 220
scaling properties, 220
shift-variant, system, 220

Line at infinity, 657
Line edge, 334
Line jitter, 51
Lines and planes fitting, 512–523

normalization, 515–516
ordinary least squares, 513–515
plane, 519
singular value decomposition (SVD), 

520–523
total least squares, 516–519

Lloyd’s algorithm, 549
Localization-detection tradeoff, 338
Localizing frequencies in time, 308–309

Gabor limit, 308
short-time Fourier transform (STFT), 309
windowed Fourier transform, 309

Locally optimized RANSAC  
(Lo-RANSAC), 545

Locally weighted averaging (LWA), 586
Logical operations, 100–101
Log-likelihood ratio, 579
Lookup tables (LUT), 85–86
Loopy belief propagation, 637
Loss, 563
Lossless compression, 356, 364–378

arithmetic coding, 374
Huffman coding, 364–366
Lempel-Ziv encoding, 366–368
Lempel-Ziv-Welch (LZW) algorithm, 

38–374
PNG compression, 377–378
predictive coding, 375–377
run-length encoding (RLE), 374–375

Lossy compression, 356, 378–396
discrete cosine transform (DCT), 386–389
discrete Fourier transform (DFT), 382–383
distortion function, 379
generation loss, 379
JPEG compression, 390–394
Karhunen-Loève transform (KLT), 389–390
measurement, quality of, 379
rate distortion theory, 379
transform coding, 379–382
Walsh-Hadamard transform (WHT), 

383–386
wavelet-based compression, 394–396

Lowpass filtering, 296–302
bandlimited filter, 297
Butterworth lowpass filter, 300–301
Chebyschev filter, 300
elliptic filter, 300
frequency response, 297
Gaussian lowpass filter, 299
Gibbs phenomenon, 298
ideal lowpass filter, 296–298
Lanczos filter, 301–302
passband, 297
rect function, 297
ringing, 298
ripples, 299
roll-off, 299–300
stopband, 297
timelimited filter, 297
window function, 299

Lucas-Kanade algorithm, 642–646
Gauss-Newton method, 644

Leave-one-out cross validation (LOOCV), 
566–567

Left-right disparity check, 631
Left singular vectors, 520
Lempel-Ziv encoding, 366–368

bit, 368
dictionary codebook, 368
index, 368
universal source coding, 368

Lempel-Ziv-Welch (LZW) algorithm, 368–374
Lens, 21
Lens distortion, 663

radial distortion, 663
tangential distortion, 663

Lens flare, 41
Lens maker’s formula, 39
Level set method, 463–468

fast marching method, 467
geometric active contour, 463
Hamilton-Jacobi equation, 465
implicit function, 464
mean curvature motion, 467–468
narrow band method, 467

Level set of 2D function, 184
Level shifted samples, 391
Levenshtein distance, 635
Light and the electromagnetic spectrum, 

33–34
electromagnetic spectrum, 34
far infrared light, 34
frequency, 33
infrared light, 34
mid infrared light, 34
near-infrared light, 34
night vision, 34
photons, 34
thermal infrared light, 34
utraviolet light, 34
wavelength, 33
wave-particle duality, 34

Light field, 35
Light-field camera, 54
Lightness, 47, 48
Light slab representation, 35
Likelihood, 573
Likelihood ratio, 576
Linear color transformations, 415–420

chromatic adaptation transform (CAT), 420
color appearance models (CAMs), 420
ICC profiles, 419–420
rendering intent, 419
transforming between cameras and 

 displays, 416–418
transforming between CMFs, 415–416
white balancing, 419

Linear contrast stretch, 80–82
Linear DFT, 279
Linear discriminant functions, 594–596
Linear estimators, 538
Linear image transforms, 294–295
Linear least squares, 513
Linear phase, 285
Linear interpolation, 99
Linear polarization, 58
Linear-shift variant system, 220
Linear versus circular, 402
Linear versus nonlinear systems, 220–221

additive properties, 220
finite impulse response (FIR), 220–221
impulse response, 221
infinite impulse response (IIR), 221

quantization table, 391
zigzag scan, 392

Just-noticeable difference (JND), 28

K
Kaiser criterion, 590
Karhunen-Loève transform (KLT), 389–390
Karush-Kuhn-Tucker (KKT) conditions, 604
Kåsa method, 524
Kernel, 216
Kernel density estimation (KDE), 584–587

kernel densities, 585
locally weighted averaging (LWA), 586
memory-based learning methods, 584–587
Parzen window, 585

Kernel function, 257
Kernel trick, 606
Keys filters, 115–118

B-splines, 116
cardinal splines, 116
cubic convolution filter, 115
Mitchell filter, 118
Mitchell-Netravali filter, 118
uniform cubic B-spline, 116

Keystone correction, 126
K-fold cross validation, 566
Kimura method, 166
Kitchen-Rosenfeld interest point detector, 347
K-means clustering, 549–550

global k-means, 550
k-means algorithm, 549
k-means clustering problem, 549
k-means++, 550
Lloyd’s algorithm, 549

K-nearest neighbor rule, 587
K-nearest neighbors, (KNN), 587
Kronecker delta function, 220, 277–278
Kruskal’s algorithm, 490

L
Labeling regions, 152–164

boundary tracing, 161–164
connected components, 157–160
floodfill, 154–157
hole filling, 164
neighbors and connectivity, 152–154

Lagrange multiplier, 519, 603
Lagrangian, 519, 603
Lambert’s cosine law, 62
Lambertian surface, 62
Lanczos filter, 301–302
Lanczos interpolation, 118–120
Lanczos method, 500
Landsat program, 56
Laplace distribution, 375
Laplacian filter, 303
Laplacian of Gaussian (LoG), 242–245

“Mexican Hat” operator, 243
center-surround filter, 243

Laplacian of Gaussian (LoG) filter, 303
Laplacian matrix, 496
Laplacian operator, 57
Laplacian pyramid, 331–332
Laser range finder, 638
Laser scanner, 638
Latent variables, 551
Lateral geniculate nucleus (LGN), 27
Lateral inhibition, 28
Law of Prägnanz (conciseness), 476
Learning rate, 599
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Minimax, 542
Minimizing first-order, closed contour, 459
Minimizing first-order, open contour, 

457–458
Minimizing second-order contour, 459–460
Minimizing using calculus of variations, 

460–461
Minimum coded units (MCUS), 392
Minimum description length (MDL) 

 principle, 567
Minimum error classification rate, 576
Minimum-perimeter polygon (MPP), 

202–203
Minimum spanning tree, (MST), 490
Minimum s-t cut, 501–505

Boykov-Kolmogorov algorithm, 503
capacity, 502
flow conservation, 502
Gibbs distribution, 503
GrabCut, 505
graph cuts segmentation, 501
Hammersley-Clifford theorem, 503
interactive segmentation, 501
Markov random field (MRF), 503
max-flow min-cut theorem, 502
maximum flow problem, 502
Potts model, 503
pseudo-boolean function, 503–504
rotoscoping, 505
saturated edges, 502
submodular function, 504

Minkowski addition and subtraction, 134–138
anti-extensive properties, 135
center-in versus center-out, 137–138
duality properties, 136
extensive properties, 135
increasing properties, 135
swapping order of operands, 136–137

Minor axis, noncircular ellipse, 183
Mired reciprocal degree, 61
Mitchell filter, 118
Mitchell-Netravali filter, 118
Mixture models, 551
Modalities, other, of images, 53–56

consumer imaging, 54
medical imaging, 54–55
remote sensing, 55–56
scientific imaging, 56

Model fitting, 512–559
curves, 523–532
lines and planes, 512–523
multiple models, 549–554
point cloud models, 532–536
robustness to noise, 536–549

Model selection and regularization, 567–568
Akaike information criterion (AIC), 567
Bayesian information criterion (BIC), 567
classifier space, 568
minimum description length (MDL) 

 principle, 567
shattering, 568
structural risk minimization, 568
Vapnik-Chervonekis (VC) dimension, 567
VC confidence, 567

Modular transfer function (MTF), 40 
Modulation, 281
Moments, 174–178

central moments, 175–176
centroid, 175
complex Zernike moments, 177
Hu moments, 177

sum of absolute differences (SAD), 538
sum of squared differences (SSD), 538

Maximum-likelihood estimation SAC 
 (MLESAC), 546

Maximum-margin classifiers, 600–602
geometric margin, 601
margin, 601

Max pooling, 615
Maxwell’s equations, 57
Mean curvature motion, 467–468
Mean image, 103
Mean-shift, 258
Mean-shift filter, 257–260

bandwidth, 257
Epanechnikov kernel, 258
Gaussian (normal) kernel, 258
kernel function, 257
mean-shift, 258
mean-shift filtering algorithm, 259
profile, 257
shadow of kernel, 258

Mean-shift filtering algorithm, 259
Mean-shift segmentation, 489–490
Measurement errors, 544
Mechanical vignetting, 41
Medial axis, 194
Median, 538
Median filter, 247–248

additive white Gaussian noise 
(AWGN), 247

linear shift-invariant filters, 247
noise, 247
salt-and-pepper noise, 247

Medical imaging, 8, 54–55
computed axial tomography (CAT), 55
computed tomography (CT), 55
digital subtraction, angiography, 55
fluorescence in situ hybridization 

(FISH), 55
fluoroscopy, 55
functional MRI (fMRI), 55
magnetic resonance imaging (MRI), 55
positron emission tomography (PET), 55
ultrasound, 55
x-ray radiography, 54

Memory-based learning methods, 584–587
Mercer kernel, 606
Mercer’s theorem, 606
Merging algorithms, 477
Mesopic vision, 27
M-estimators, 540–544

breakdown point, 543
Cauchy-Lorentz estimator, 542
efficiency, 544
Geman-McClure error function, 541
Huber loss function, 542
influence function, 541
interquartile range, 541
minimax, 542
redescending estimator, 542
truncation, 540
Tukey’s biweight function, 542
weight function, 541
Winsorizing, 540

M-estimator SAC (MSAC), 545–546
Metamers, 406
Metric coordinates, 676
“Mexican Hat” operator, 243
Microvilli, 31
Mid infrared light, 34
Minimal partition problem, 471

Lucas-Kanade algorithm (continued)
inverse warp, 644
small model assumption, 644

Luma, 52, 425
Luminance, 47, 425
Luminescence, 65
Luminosity, 60
Luminous efficiency function (LEF), 28, 408

photopic LEF, 408
scotopic LEF, 408

Luther condition, 417

M
Macadam ellipses, 436
Macbeth ColorChecker, 417–418
Mach bands illusions, 304
Machine learning

reinforcement learning, 6
supervised learning, 6
unsupervised learning, 6

Machine vision, 3
Macula lutea, 22
Magnetic resonance imaging (MRI), 55
Magnitude and phase, 285

linear phase, 285
nonlinear phase, 285
polar coordinates, 285
zero-phase digital filter, 285

Mahalanobis distance, 165
Major axis, noncircular ellipse, 183
Manhattan distance, 165
Mapping function, 120
Margin, 601
Marker-based watershed segmentation, 486
Marker image, 156
Markers, 486
Marker-string, 455
Markov chain, 363
Markov random field (MRF), 503
Marr-Hildreth operator, 339–340

zero crossings, 339
Mask image, 156
Mass density function, 174
Matching space, 625
Matching stereo images, 623–638

active stereo, 637–638
block matching, 628–632
correspondence, 624–625
correspondence problem, 623
dissimilarity measures, 632–634
dynamic programming, 634–636
energy minimization in 2D, 636–637
stereo constraints, 625–628

Material dispersion, 41
Mathematical morphology, 132
Mathematical prerequisites and notation, 

15–16
Matrix multiplication, 219, 314
Maupertuis’ principle, 469
Max-flow min-cut theorem, 502
Maximal disk, 194
Maximum a posteriori (MAP), 574
Maximum disparity constraint, 626
Maximum entropy, 361
Maximum flow problem, 502
Maximum likelihood, 574
Maximum likelihood estimators, 537–538

median, 538
negative log likelihood, 537
posterior, 537
prior probability, 537
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Lanczos method, 500
normalized cuts algorithm, 496
spectral gap, 496
spectral graph theory, 496
symmetric normalied Laplacian 

matrix, 496
weighted adjacency matrix, 495
weighted degree matrix D, 496

Normalized cuts algorithm, 496
Normalized Difference Vegetation Index 

(NDVI), 97
Normalized direct linear (DLT) algorithm, 

664–666
Normalized Gramian, 594
Normalized Kåsa method, 525
Normalizing coordinates, 515
NTSC standard, 52
NURBS (non-uniform rational 

B-splines), 205
Nyquist rate, 275–276
Nyquist-Shannon sampling theorem, 275

O
Occam’s Razor, 565
Ocelli, 32
Octave, 330
Ommatidia, 29
Omnidirectional sensor, 54
1D convolution, 215–218

antisymmetric kernels, 217
differentiating kernels, 218
Fournier multiplication, 219–220
half-width kernel, 216
kernel, 216
linear versus nonlinear systems, 220–221
matrix multiplication, 219
origin of kernel, 216
shift-multiply-add operation, 217
smoothing kernels, 218
symmetric kernels, 217

1-nearest-neighbor classifier, 587
Opacity map, 107
Opening and closing, 145–147

algebraic closings, 147
algebraic openings, 147
area opening, 147
area closing, 147
idempotent operators, 146
morphological openings, 147
parametric opening, 147

Opening by reconstruction, 157
Opponent colors, 429
Opponent process theory, 409–410
Optical axis, 36
Optical flow, 621, 639–642

aperture problem, 642
brightness constancy assumption, 640
optical flow constraint equation, 641

Optical flow computation, 638–654
generalized Lucas-Kanade, 647–650
Horn-Schunck algorithm, 650–654
Lucas-Kanade algorithm, 642–646
motion field, 638–640
optical flow, 640–642

Optical flow constraint equation, 641
Optical power, 40
Optical transfer function, (OTF), 40
Optical vignetting, 41
Optic chiasm, 27
Optic disc, 22
Optic nerve, 26

whiteness, 412
Natural vignetting, 41
Nearest neighbor interpolation, 110
Nearest neighbors classifiers (NN), 587–588

focal colors, 587
k-nearest neighbor rule, 587
k-nearest neighbors, (KNN), 587
1-nearest-neighbor classifier, 587
partial distance, 588
prototypes, 587
pruned, 588
space partitioning, 588
template matching, 587
Voronoi tesselation, 587

Near-infrared light, 34
Negative log likelihood, 537
Neighborhood, 152
Neighbors and connectivity, 152–154

adjacent pixels, 153
connected pixels, 153
Jordon curve theorem, 154
neighborhood, 152
path between pixels, 153
region, 153

Neural networks, 25, 608–611
artificial neural network (ANN), 608
backpropagation algorithm, 609
bootstrap algorithm, 610
convolutional neural networks, 609
deep neural networks, 609
feedforward neural network, 608
hidden layers, 609
input layer, 609 
multilayer perceptron (MLP), 609
output layer, 609
rectified linear unit (ReLU), 610
recurrent neural network, 608
sigmoid function, 609

Neurons, 25
NF2 algorithm, 199–201
Night vision, 34
Nodal points, 40
Noise, 247
Noise removal, 140–142
Non-flat SE, 264
Nonlinear filters, 247–262

adaptive smoothing, 262
anisotropic diffusion, 260–262
bilateral filtering, 249–251
bilateral filtering for large windows, 

251–257
mean-shift filter, 257–260
median filter, 247–248
non-local means, 248–249

Nonlinear phase, 285
Nonlinear system, 220
Non-local means, 248–249
Non-maximum suppression, 335
Nonparametric representation, 577
Normal equations, 513
Normalization, 515–516

ill-conditioned matrix, 515
normalizing coordinates, 515

Normalized central moments, 176–177
Normalized coordinates, 413
Normalized cross correlation, 634
Normalized cuts, 495–501

affinity matrix, 495
algebraic connectivity, 496
Fiedler value, 496
generalized Rayleigh quotient, 499

mass density function, 174
normalized central moments, 176–177
regular moments, 174–175
Zernike moments, 177–178

Moments of inertia, 179
Monotonically nondecreasing   

transformation, 77
Monotonicity constraint, 626
Montanari condition, 166–167
Moore-Penrose pseudoinverse, 522
Moore’s boundary tracing algorithm, 162
Moravec interest operator, 342–343

cornerness, 343
sum-of-squared differences (SSD), 343

Morphological openings, 147
Morphological operations, 131–152

binary image as set, 132–133
building large structuring elements, 

144–145
dilation and erosion, 138–144
hit-miss operator, 147–148
mathematical morphology, 132
Minkowski addition and subtraction, 

134–138
opening and closing, 145–147
thickening, 150–152
thinning, 148–150

Morphological reconstruction by dilation, 156
Mother wavelet, 310
Motion blur, 51
Motion field, 638–640

focus of contraction, 639
focus of expansion, 638
instantaneous epipole, 640
parallax, 639

Motion JPEG (M-JPEG), 396
MPEG compression, 397

B-frames, 397
I-frames, 397
P-frames, 397

Multi-image transformations, 98–101
arithmetic operations, 99–100
logical operations, 100–101

Multilayer perceptron (MLP), 609
Multilevel Otsu method, 452
Multilevel thresholding, 452–453
Multiple models fitting, 549–554

expectation-maximization (EM), 551–554
k-means clustering, 549–550

Multiresource processing, 328–334
Gaussian pyramid, 329–330
Laplacian pyramid, 331–332
scale space, 332–334

Multispectral images, 92
Multispectral sensor, 55
Multispectral transformations, 92–98

bands, 92
channel, 92
chromakeying, 97–98
multispectral images, 92
pseudocolor, 95–97
RGB transformations, 93–95

Mumford-Shah energy functional, 470–471
Munsell color system, 411

N
Naive Bayes, 588–589
Narrow band method, 467
Natural color system (NCS), 412

blackness, 412
chromaticness, 412
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PNG compression, 377–378
Pocket algorithm, 600
Point and geometric transformations, 69–130

change detection, 101–104
compositing, 105–109
graylevel histograms, 86–92
graylevel transformations, 76–86
interpolation, 109–120
multi-image transformations, 98–101
multispectral transformations, 92–98
simple geometric transformations, 69–75
warping, 120–126

Point cloud models fitting, 532–536
iterative closest point, 535–536
Procrustes analysis, 533–535

Point distribution model (PDM), 591
Points at infinity (ideal points), 125, 657–658

line at infinity, 657
Point spread function (PSF), 40
Point-to-plane error metric, 536
Point-to-point error metric, 536
Point transformation, 76
Polar coordinates, 285
Polarization, 58
Poncaré formula, 190
Porter-Duff operators, 105
Positron emission tomography (PET), 55
Posterior, 537, 573
Posterior density, 574
Potts model, 503, 637
Precision, 569
Precision-recall (PR) curve, 570
Predictive coding, 375–377

copycat predictor, 375
differential pulse-code modulation 

(DPCM), 377
Laplace distribution, 375
Paeth predictor, 377
planar predictor, 376

Prefix code, 366
Premultiplied alphas, 109
Prewitt operator, 239
Primal problem, 602
Primary visual cortex, 27
Principal components analysis (PCA), 589–594

active appearance models (AAMs), 593
active shape models (ASMs), 593
dimensionality reduction, 589
eigenfaces, 592
Kaiser criterion, 590
normalized Gramian, 594
point distribution model (PDM), 591
scree test, 590

Principal plane, 40
Principal points, 40, 662
Principal axes of inertia, 180–181
Principal moments of inertia, 181
Prior, 573
Prior probability, 537
Probability density function, 86
Probability mass function, 361
Processing and analysis, 2–4, 11

bottom-up process, 3
classification, 3
compression, 2–3
computer vision, 3
enhancement, 2
machine vision, 3
restoration, 2

isothetic moves, 166
Kimura method, 166
Pythagorean formula, 166

Peaking phenomenon, 568
Perceived intensity, 45
Perceptron learning algorithm, 598
Perceptrons, 597–600

learning rate, 599
perceptron learning algorithm, 598
pocket algorithm, 600

Perceptual coding, 379
Perimeter, 179
Periodic DFT, 280
Periodicity, 280
Permeability, 57
Permittivity, 57
Perspective imaging, 661–662

camera coordinate system, 661
image coordinate system, 661
principal point, 662
skew, 662
world coordinate system, 661

Perspective projection, 36
P-frames, 397
Phong reflection model, 62
Phosphorescence, 5
Photogrammetry, 5
Photometric stereo, 637
Photometry, 59–60
Photons, 34
Photopic vision, 27
Photopsins, 22
Photoreceptor, 21

retinal, 21
rhodopsin, 21
transducin, 21

Phototropic LEF, 28, 408
Physical intensity, 45
Physics and psychology of color, 402–404

additive and subtractive colors, 404
rainbow and color wheel, 402–403
spectral power distributions (SCDs), 

403–404
Physiological point of view, 404
Pictorial structure, 613
Piecewise linear contrast stretch, 81
Pinhole camera, 35–38

affine projection, 38
camera obscura, 36
center of projection, 36
focal length, 36
focal point, 36
image plane, 36
optical axis, 36
orthographic projection, 37
paraperspective projection, 38
perspective projection, 36
scaled orthographic projection, 37
weak perspective projection, 37

Pixel, 9
Pixel vignetting, 41
Planar, 11
Planck’s law, 60
Planar predictor, 376
Plate at infinity, 671
Plenoptic function, 34–35

light field, 35
light slab representation, 35

Plessey operator, 344

Ordering constraint, 626
Ordinary least squares, 513–515

Gauss-Jordan elimination, 514
linear least squares, 513
normal equations, 513
residual, 513

Orientation, 179–182
covariance matrix, 179
eigendecompositon, 181
figure axis, 180
inertia moment tensor, 179
moments of inertia, 179
principal axes of inertia, 180–181
principal moments of inertia, 181
product of inertia, 179–180

Origin of kernel, 216
Orthogonal exponentials, 282
Orthogonal linear transform, 380
Orthogonal wavelet transform, 311
Orthographic projection, 37
Other phenomena and interaction with 

 surface, 64–65
birefringence, 64
circular birefringence, 64–65
diffraction, 64
Faraday effect, 65
fluorescence, 65
Fraunhofer diffraction, 64
Fresnel diffraction, 64
interference, 64
iridescence, 64
luminescence, 65
phosphorescence, 5
scintillation, 65

Otsu’s method, 447–449
Outcomes, 360
Outer boundary, 161
Output layer, 609
Overall risk, 575
Overcomplete wavelet transform, 310
Overfitting, 565
Overflow, 78
Oversampled signal, 276
Oversegmentation, 486

P
Paeth predictor, 377
PAL standards, 52
Panum’s fusional area, 25
Parallax, 639
Parameter space, 546
Parametric opening, 147
Parametric representation, 577
Parametric versus nonparametric 

 representations, 577–580
log-likelihood ratio, 579
nonparametric representation, 577
parametric representation, 577

Paraperspective projection, 38
Paraxial, 39
Parietal eye, 32
Parseval’s theorem, 283
Partial distance, 588
Parzen window, 585
Passband, 297
Path between pixels, 153
Path length, 166

diagonal moves, 166
Freeman formula, 166
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Redescending estimator, 542
Redundancy, 357
Redundancy in an image, 357–358

coding redundancy, 357
interpixel redundancy, 357
psychovisual redundancy, 358
spatial redundancy, 357
temporal redundancy, 358

Reflection, 61–63
albedo, 62
bidirectional reflectance distribution 

 function (BRDF), 62
diffuse surface, 62
Helmholtz reciprocity principle, 63
interreflections, 62
Lambertian surface, 62
Lambert’s cosine law, 62
Phong reflection model, 62
reflection coefficient, 62
specular surface, 61

Reflection coefficient, 62
Region, 153
Region boundary, 161
Region growing, 478–481
Region properties, 174–194

area, 178
best-fitting ellipse, 182–184
compactness, 185
convex hull, 187–189
eccentricity, 185–187
Euler number, 189–194
moments, 174–178
orientation, 179–182
perimeter, 179

Regularization, 567
Regularized Heaviside function, 471
Regular moments, 174–175
Reinforcement learning, 6
Relative redundancy, 357
Remote sensing, 7, 55–56

AVIRIS (Airborne Visible InfraRed 
 Imaging Spectrometer), 56

digital numbers (DNs), 56
hyperspectral sensor, 55
Landsat program, 56
multispectral sensor, 55
pushbroom sensor, 55
SPOT (Système Pour l’Observation de la 

Terre), 56
synthetic aperture radar (SAR), 56
ultra-wideband radar, 56

Rendering intent, 419
Repeated elimination of the smallest area, 

341–342
Reprojection error, 671
Residual, 513
Restoration, 2, 296
Retina, 21
Retinal disparity, 621
Retinal pigment epithelium (RPE), 24
RGB and R'G'B', 420–424
RGB color image, 11
RGBD camera, 54
RGB transformations, 93–95
Rhodopsin, 21, 22
Ridgeline, 484
Ridler-Calvard algorithm, 444–447
Riemannian manifold, 469
Right singular vectors, 520

Q
Quad-tree data structure, 477
Quantization, 84
Quantization noise, 51
Quantization table, 391
Quasi-Euclidean distance function, 167
Quench function, 194

R
Radial distortion, 663
Radial representation, 204
Radiance, 59
Radiant energy, 58
Radiant flux, 58
Radiant intensity, 58
Radiometry and photometry, 58–60

foreshortening, 59
irradiance, 59
luminosity, 60
photometry, 59–60
radiance, 59
radiant energy, 58
radiant flux, 58
radiant intensity, 58
radiometry, 59
spectral versions, 59

Radon transform, 292
Rainbow and color wheel, 402–403

linear versus circular, 402
spectral colors, 402
spectrum, 402

Ramp edge, 334
Random dot stereograms, 623
Random forests, 611

adaboost, 611
bagging, 611
boosting, 611
bootstrapping, 611
CART classifier, 611
decision tree, 611
ensemble learning, 611
weak classifier, 611

Random sample consensus (RANSAC), 
544–546

classification errors, 544
locally optimized RANSAC 

(Lo-RANSAC), 545
maximum-likelihood estimation SAC 

(MLESAC), 546
Random subsampling, 566
Random variable, 360
Range kernel, 249
Rank constraint, 523
Rank transform, 634
Rare event detection, 612
Raster scan order, 9
Ratio Vegetation Index (RVI), 96
Readout (amplifier) noise, 51
Real-valued image, 11
Recall, 569
Receiver operating characteristic (ROC) 

curve, 570
Receptive field, 28
Recognition, 561
Rect function, 297
Rectified, 624
Rectified linear unit (ReLU), 610
Recurrent neural network, 608

segmentation, 3
shape from X, 3
top-down process, 3

Procrustes analysis, 533–535
Product of inertia, 179–180
Profile, 257
Programming, 16
Progressive decoding, 395
Progressive scan camera, 50
Projected sample mean, 596
Projection, 291
Projection-slice theorem, 291–292

Fourier slice theorem, 291
projection, 291
Radon transform, 292
slice, 291
tomographic reconstruction, 292
tomography, 292

Projective geometry, 654–663
absolute points, 660–661
conics, 658
hierarchy of transformations, 659–660
homogeneous coordinates, 654–657
lens distortion, 663
perspective imaging, 661–662
points at infinity (ideal points), 657–658
projective geometry in other 

dimensions, 661
transformations of lines and conics, 659

Projective transformations, 124–125, 655
homography, 124
point at infinity, 125
vanishing point, 125

Properties, DFT, 279–283
circular convolution theorem, 283
DC component, 283
even and odd symmetry, 283
Hermitian symmetry, 282
linear DFT, 279
modulation, 281
orthogonal exponentials, 282
Parseval’s theorem, 283
periodic DFT, 280
periodicity, 280
scaling property, 282
shift theorem, 281
unitarity property of DFT

Properties, Minkowski operations, 142–143
Prototypes, 587
Pruned, 588
Pseudo-boolean function, 503–504
Pseudocode, 71
Pseudocolor, 95–97

Normalized Difference Vegetation Index 
(NDVI), 97

Ratio Vegetation Index (RVI), 96
Psychological primaries, 408–411

impossible colors, 409
opponent process theory, 409–410
psychological primaries, 410
trichromatic theory, 409
Young-Hemholtz theory, 409

Psychophysics, 3
Psychovisual point of view, 404
Psychovisual redundancy, 358
Pupil, 21
Purkinje effect, 28
Pushbroom sensor, 55
Pythagorean formula, 166
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Singular value decomposition (SVD), 520–523
compact version of SVD, 52
condition number, 522
Frobenius norm, 521
Gramian, 521
left singular vectors, 520
Moore-Penrose pseudoinverse, 522
rank constraint, 523
right singular vectors, 520
singular values, 520
SVD expansion, 523

Skeleton, 194
Skeletonization, 194–201

Blum’s medial axis transform, 194
maximal disk, 194
medial axis, 194
NF2 algorithm, 199–201
quench function, 194
sigma-psi algorithm, 197–198
skeleton, 194
skeletonization algorithms, 195
thinning, 195–197
Zhang-Suen algorithm, 198–199

Skeletonization algorithms, 195
Skew, 662
Skewed dataset, 570
Slack variables, 605–606
Slice, 291
Sliding window detection algorithm, 571
Smallest-neighbor clustering, 494
Small model assumption, 644
Smoothing by convolving with a Gaussian, 

222–234
box filter, 222
central limit theorem, 231
computing variance of smoothing kernel, 

223–224
constructing Gaussian kernels, 226–229
evaluating Gaussian kernels, 229–230
Gaussian kernels, 222–223
integral image, 233–234
separability, 224–226
smoothing with large Gaussians, 230–233

Smoothing kernels, 218
Smoothing with large Gaussians, 230–233
Smoothness, 454
Snell’s law of refraction, 63
Sobel operator, 239
Soft assignments, 551
Solenoidal field, 462
Source code, 364
Space partitioning, 588
Spatial-domain filtering, 215–271

computing first derivative, 234–240
computing second derivative, 240–246
convolution, 215–222
grayscale morphological operators, 262–266
nonlinear filters, 247–262
smoothing by convolving with a  Gaussian, 

222–234
Spatial-domain signal, 273
Spatial kernel, 249
Spatial redundancy, 357
Specificity, 569
Spectral colors, 402
Spectral gap, 496
Spectral graph theory, 496
Spectral locus, 414
Spectral power distributions (SCDs), 403–404

spectroradiometer, 403
superposition, 403

Scientific imaging: microscopy, 56
Scintillation, 65
Sclera, 21
Scotopic LEF, 28, 408
Scotopic vision, 27
Scree test, 590
SECAM standards, 52
Second derivative computation, 240–246

difference of Gaussians (DoG), 245–246
Laplacian of Gaussian (LoG), 242–245

Security and surveillance, 7
Seed fill, 154
Seed pixel, 154
Segmentation, 3, 443–511

deformable models, 453–474
graph-based methods, 490–507
image segmentation, 474–490
thresholding, 444–453

Segmentation function, 484
Self-complementary top-hat, 265
Semantic segmentation, 506–507

α-β swap, 506
α-expansion, 506
conditional random field (CRF), 507

Semi-global matching, 637
Sensitivity, 569
Sensor noise, 51
Separability, 224–226, 289–291
Sequence of independent and identically 

 distributed (i.i.d.) variables, 362
Sequency, 385
Sequential minimal optimization (SMO) 

 algorithm, 607
Shadow of kernel, 258
Shallow learning, 614
Shannon’s source coding theorem, 362
Shape context, 350
Shape from X, 3
Sharpening, 304
Sharp transform, 419
Shattering, 568
Shift-multiply-add operation, 217
Shift theorem, 281
Shift-variant, system, 220
Short-time Fourier transform (STFT), 309
Shot noise, 51
Sifting property of Dirac delta function, 275
Sigma-psi algorithm, 197–198
Sigmoid function, 609
Signal processing, 5, 11
Similarity transformations, 123, 659
Simple geometric transformations, 69–75

cropping, 74
downsampling and upsampling, 74–75
flipping and flopping, 69–72
rotating by multiple of 90 degrees, 72–74

Simplified imaging model, 42
Simultaneous contrast 
Sinc function, 118
SIFT feature descriptor, 348–349
SIFT feature detector, 347–348
Signature, 203–204

centroid profile, 203
radial representation, 204
tangental representation, 204

Single photoreceptor, 21
retinal, 21
rhodopsin, 21
transducin, 21

Single random variable, 360–362
Single response constraint, 339

Ringing, 298
Ripples, 299
Risk, 563
Roberts cross operator, 239
Robotics, 8
Robustness to noise, 536–549

generalized least squares, 538
Hough transform, 546–549
iteratively reweighted least squares (IRLS), 

538–540
maximum likelihood estimators, 537–538
measurement errors, 544
M-estimators, 540–544
M-estimator SAC (MSAC), 545–546
random sample consensus (RANSAC), 

544–546
Rods, 21
Rolling shutter effect, 51
Roll-off, 299–300
Roof edge, 334
Rotating by multiple of 90 degrees, 72–74
Rotoscoping, 505
Row major order, 9
Run-length encoding (RLE), 374–375
Running sum, 88

S
Saccades, 25
Salt-and-pepper noise, 247
Sample applications, 6–8

computational photography, 8
document image analysis, 6
entertainment, 8
industrial inspection, 6
medical imaging, 8
remote sensing, 7
robotics, 8
scientific imaging, 8
security and surveillance, 7
transportation, 6–7

Sample mean, 596
Sampling and aliasing, 275–276

aliasing, 276
band-limited signal, 276
critically sampled, 276
Nyquist rate, 275–276
Nyquist-Shannon sampling theorem, 275
oversampled signal, 276
undersampled signal, 276

Sampling and quantization, 43
false contouring, 43

Saturated edges, 502
Saturation, 411
Saturation arithmetic, 78
Sauvola’s method, 450
Scaled orthographic projection, 37
Scale space, 332–334

causality criterion, 333
Gaussian scale space, 333
scale-space axioms, 333
scale-space parameter, 333

Scale-space axioms, 333
Scale-space parameter, 333
Scaling properties, 220, 282
Scan path, 25
Scanline, 9
Scanning lidar, 638
Scatter, 596
Scatter matrix, 596
Scharr operator, 239
Scientific imaging, 8
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Tradeoff, 565
Training error, 563
Transducin, 21
Transfer noise, 51
Transformations of lines and conics, 659
Transform coding, 379–382

bit allocation, 380
block transform coding, 379
orthogonal linear transform, 380
perceptual coding, 379

Transforming between cameras and  displays, 
416–418

colorimeter, 418
Luther condition, 417
Macbeth ColorChecker, 417–418

Transforming between CMFs, 415–416
Translucent, 63
Transmission, 63–64

Snell’s law of refraction, 63
total internal reflection, 64
translucent, 63
transparent, 63

Transmission and storage, 52–53
chroma, 52
chroma subsampling, 52
component video, 52
composite video, 52
file formats, 53
footroom, 53
headroom, 53
high-definition television (HDTV), 52
luma, 52
NTSC standards, 52
PAL standards, 52
SECAM standards, 52
ultra-high definition television (UHDTV), 52

Transparent, 63
Transportation, 6–7
Transverse electromagnetic waves, 57–58

circular polarization, 58
curl, 57
divergence, 57
electromagnetism, 57
elliptical polarization, 58
gradient divergence, 57
homogeneous electromagnetic wave 

 equations, 57
Laplacian operator, 57
linear polarization, 58
Maxwell’s equations, 57
permeability, 57
permittivity, 57
polarization, 58
transverse electromagnetic (TEM) wave, 58

Triangle model, 433
Triangulation method, 683
Trichroic prism, 50
Trichromatic theory, 409
Trichromacy, 404–411

color matching functions (CMFs), 405–407
cone fundamentals, 405
Grassmann’s law, 407–408
impossible colors, 409
luminous efficiency function (LEF), 408
opponent process theory, 409–410
physiological point of view, 404
psychological primaries, 408–411
psychovisual point of view, 404
spectral sensitivity functions (SSF), 405
trichromatic theory, 409
Young-Hemholtz theory, 409

bag of visual words, 608
dual problem, 602
Karush-Kuhn-Tucker (KKT) conditions, 604
kernel trick, 606
Lagrange multipliers, 603
Lagrangian, 603
Mercer kernel, 606
Mercer’s theorem, 606
primal problem, 602
sequential minimal optimization (SMO) 

algorithm, 607
slack variables, 605–606
support vectors, 602–603

Support vectors, 602–603
Surprise, 360
SVD expansion, 523
Swapping order of operands, 136–137
Symmetric kernels, 217
Symmetric normalized Laplacian matrix, 496
Synapses, 25
Syntactical pattern recognition, 572
Synthetic aperture radar (SAR), 56

T
Tangential distortion, 663
Tangential representation, 204
Template matching, 587
Temporal redundancy, 358, 396
Test error, 563
Thermal infrared light, 34
Thickening, 150–152
Thick lens formula, 40
Thin lens formula, 39
Thinning, 148–150
Thinning, skeletonization by, 195–197

connection number, 196
crossing number, 196

Three-CCD (3CCD) camera, 50
3D geometric model fitting, 532
3D point coordinates computation, 682–683

triangulation method, 683
Thresholding, 83, 444–453

adaptive thresholding, 449–450
foreground/background segmentation, 44
global threshold, 444
hysteresis thresholding, 450–451
multilevel Otsu method, 452
multilevel thresholding, 452–453
Otsu’s method, 447–449
Ridler-Calvard algorithm, 444–447

Time-domain signal, 273
Timelimited filter, 297
Time-of-flight (TOF) camera, 638
Tobogganing, 484
Tomasi-Kanade operator, 345
Tomographic reconstruction, 292
Tomography, 292
Top-down process, 3
Top-hat transformation, 265–266

black top-hat (BTH), 265
self-complementary top-hat, 265
white top-hat (WTH), 265

Topographic surface, 484
Topology, 189
Total internal reflection, 64
Total least squares, 516–519

homogeneous equation, 516
Lagrange multiplier, 519
Lagrangian, 519

Total risk, 563
Total within-class scatter, 596

Spectral sensitivity functions (SSF), 405
Spectral versions, 59
Spectroradiometer, 403
Spectrum, 402
Specular surface, 61
Splines computations

computing a point, 205–206
computing slope of a spine, 206
constructing the spline, 206–207
Hermite splines, 205

Splitting algorithms, 477
Splitting and merging, 477–478

agglomerative clustering, 477
divisive clustering, 477
homogeneity, 477
merging algorithms, 477
quad-tree data structure, 477
splitting algorithms, 477

SPOT (Système Pour l’Observation de la 
Terre), 56

sRGB, 47
Stationary points, 460
Stationary sequence of random variables, 

362–363
Statistical pattern recognition, 571–582

Bayesian decision theory, 574–577
Bayes’ rule, 572–574
Gaussian densities, 580–582
parametric versus nonparametric 

 representations, 577–580
Stefan’s law, 60
Step edge, 334
Stereo and motion, 621–689

camera calibration, 663–672
geometry of multiple views, 673–684
human stereopsis, 621–623
matching stereo images, 623–638
optical flow, 621
optical flow computation, 638–654
projective geometry, 654–663
stereo correspondence, 621

Stereo constraints, 625–628
cheirality constraint, 626
Cyclopean coordinates, 627
disparity gradient limit, 627
forbidden zone, 626
maximum disparity constraint, 626
monotonicity constraint, 626
ordering constraint, 626
uniqueness contrast, 626

Stereo correspondence, 621
Stereoscopes, 622
Stevens’ power law, 47
Stopband, 297
Striate cortex, 27
String matching problem, 635
Structural risk, 563
Structural risk minimization, 568
Structured light, 638
Structuring elements of dilation and erosion, 

138–140
Subcube, 430
Sub-hexagon, 430
Submodular function, 504
Subtractive color model, 404
Successive over-relaxation (SOR), 653
Sum of absolute differences (SAD), 538, 632
Sum of squared differences (SSD), 343, 538, 632
Superposition, 403
Supervised learning, 6
Support vector machine (SVM), 602–608
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topographic surface, 484
Vincent-Soille algorithm, 487
watershed segmentation, 484

Watershed segmentation, 484
Wavelength, 33
Wavelet-based compression, 394–395

progressive decoding, 395
biorthagonal, 395
CDF 9/7 wavelet, 395

Wave-particle duality, 34
Weak classifier, 611
Weak perspective projection, 37
Weber’s law, 46
Weighted adjacency matrix, 495
Weighted degree matrix, 496
Weighted least squares, 539
Weight function, 541
Whiskbroom sensor, 55
White balance, 50
White balancing, 419

Bradford transform, 419
chromatic adaptation, 419
color constancy, 419
Sharp transform, 419
von Kries’s method, 419

Whiteness, 412
White point, 415
White top-hat (WTH), 265
Wien’s displacement law, 60
Windowed Fourier transform, 309
Window function, 299
Winsorizing, 540
Within-class scatter matrix, 596
Within-class variance, 447
World coordinate system, 661

X
X-ray radiography, 54

Y
Y'CBCR, 427
Y'IQ, 428
Young-Hemholtz theory, 409
Y'PB PR, 425–426
Y'UV, 427–428
Young-Hemholtz theory, 409

Z
Zernike moments, 177–178
Zero crossings, 339
Zero dipping, 389
Zero-one (0–1) loss function, 563
Zero padding, 283–284
Zero-phase digital filter, 285
Zhang’s calibration algorithm, 667–671

bundle adjustment, 671
image of absolute conic (IAC), 669
reprojection error, 671

Zhang-Suen algorithm, 198–199
Zigzag scan, 392

human visual system, 21–28
single photoreceptor, 21

Vision science, 3, 5
Visual cortex, 27
Visual pathway, 25–27

amacrine cells, 26
ambient component of vision, 26
axon, 25
bipolar cells, 26
dendrites, 25
dorsal stream, 27
focal component of vision, 26
foveated vision, 26
ganglion cells, 26
horizontal cells, 26
lateral geniculate nucleus (LGN), 27
neural network, 25
neurons, 25
optic chiasm, 27
optic nerve, 26
primary visual cortex, 27
striate cortex, 27
synapses, 25
ventral stream, 27
visual cortex, 27

Viterbi algorithm, 456
von Kries’s method, 419
Voronoi tesselation, 587

W
Wall-following algorithm, 162
Walsh functions, 384
Walsh-Hadamard transform (WHT), 383–386

Hadamard matrix, 383
sequency, 385
Walsh functions, 384

Warping, 120–126
affine transformations, 124
arbitrary warps, 125–126
downsampling and unsampling, 121–122
Euclidean tranformations, 122–123
homography, 124
image registration and morphing, 126
keystone correction, 126
mapping function, 120
projective transformations, 124–125
similarity transformations, 123

Watershed method, 483–489
catchment basin, 484
continental divide, 484
dam-less Vincent-Soille algorithm, 487
drainage basin, 484
drainage divide, 484
geodesic influence zone, 485
immersion, 484
marker-based watershed segmentation, 486
markers, 486
oversegmentation, 486
ridgeline, 484
segmentation function, 484
tobogganing, 484

Triple-difference image, 102
Tristimulus values, 406
True error, 564
True negative (TN), 569
True negative rate (TNR), 569
True positive (TP), 569
True positive rate (TPR), 569
Truncation, 540
2D conic section, 526
2D convolution, 221–222
2D DFT display, 293–294
Two-dimensional DFT, 289–295

linear image transforms, 294–295
projection-slice theorem, 291–292
separability, 289–291
2D DFT display, 293–294

2D wavelet transform, 320–321

U
Ultra-high definition television (UHDTV), 52
Ultrametric distance function, 482
Ultrametric inequality, 482
Ultrasound, 55
Ultraviolet light, 34
Ultra-wideband radar, 56
Undersampled signal, 276
Uniform cubic B-spline, 116
Union, 133
Union-find algorithm, 159
Uniqueness contrast, 626
Unitarity property of DFT
Univariance, 22
Universal source coding, 368
Unpredictability, 360
Unsharp masking, 305
Unsharp masking and highboost filtering, 

304–307
Unsupervised learning, 6, 443
Using chroma instead of saturation, 435

V
Vanishing point, 125
Vapnik-Chervonekis (VC) dimension, 567
Variable-length code, 365
Variance, 565
VC confidence, 567
Vector norm, 165
Ventral stream, 27
Vergence angle, 24
Verification, 561
Video compression, 396–397

Motion JPEG (M-JPEG), 396
MPEG compression, 397
temporal redundancy, 396

Vieth-Müller circle, 24
Viewing gamma, 44
Vignetting, 41
Vincent-Soille algorithm, 487
Viola-Jones face detector, 612
Vision in nature, 20–32

animal vision, 28–32
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