
Name: AndrewHayes
Student ID: 21321503
E-mail: a.hayes18@universityofgalway.ie

ct4100 2024–11–01

Assignment 1: Information Retrieval

1 Question 1

1.1 Indexing Structure for a Sparse Term-Document Matrix
One of the key factors that must be considered when choosing an appropriate indexing structure for a term-document matrix is
the sparsity of the matrix, as (according to Zipf’s law) most terms will occur quite rarely in the corpus and not occur at all in
most documents, resulting in the majority of indices in the term-document matrix containing a null value. Another key factor
that must be considered is lookup speed: typically, we will be trying to find the documents that are most relevant to a given
query or vector of terms, so we want to be able to quickly find a given term in the matrix and the documents in which that term
has the highest weight.

One data structure that addresses these factors is the inverted index. At a high level, this is a data structure which con-
sists of the list of all terms in the corpus, where each term in the list points to a list of tuples (called a posting list) containing the
identifier of each document in which the term occurs and the weight of said term in the document. This completely circumvents
the issue of storing a large volume of nullweight values, as we only store a weight for a document which contains the given term.

If the term list was implemented as a hash table with a suitable hash function yielding minimal collisions, where each term
in the corpus is a key pointing to a posting list value, the time complexity of retrieving the list of documents in which that
term occurs would beO(1) in the general case. Provided the posting list was implemented as a list of document-weight pairs,
sorted by decreasing order of weight, it would then also be anO(k) operation to retrieve the top k documents for which that
term is relevant, with k being a fixed integer that does not scale with the list size n. Therefore, searching for the most relevant
documents for a term or calculating which documents are most relevant to a query vector would be extremely fast & efficient.

1.2 Algorithm to Calculate the Similarity of a Document to a Query
Assuming that the both the query and the document are supplied in full as just a string of terms:

1 """

2 Input:

3 query_terms: an array of terms in the user query, suitably pre-processed (e.g., stemmed, lemmatised)

4 doc_id: an integer identifying the document in the inverted index

5 inverted_index: a hash table of terms and tuples consisting of the doc_id and the weight of the term

in that document↪→

6 """

7 def similarity(query_terms, doc_id, inverted_index):

8 query_vector = {} # dictionary to store weights of terms in the query

9 doc_vector = {} # dictionary to store weights of terms in the document

10

11 # calculate the term frequency for each term in the query

12 for term in query_terms:

13 # initialise to 1 if not already present in vector, otherwise increment

14 query_vector[term] = query_vector.get(term, 0) + 1

15

16 # normalise the query weights

17 for term in query_vector:

18 query_vector[term] = query_vector[term] / len(query_terms)

19

20 # Step 2: Retrieve document term weights from the inverted index

21 # for each query term, find the term in the inverted index, if present

22 for term in query_terms:

23 if term in inverted_index:

24

25 # find the weight of the term in the given document, if present and add to doc_vector

26 for (doc, weight) in inverted_index[term]:

1

mailto://a.hayes18@universityofgalway.ie


27 if doc == doc_id:

28 doc_vector[term] = weight

29

30 # calculate the dot product of the query vector and document vector

31 dot_product = 0

32 for term in query_vector:

33 if term in doc_vector:

34 dot_product += query_vector[term] * doc_vector[term]

35

36 # calculate the magnitudes of the query and document vectors

37 total_squared_query_weights = 0

38 for weight in query_vector.values():

39 total_query_weights += weight^2

40 query_magnitude = sqrt(total_squared_query_weights)

41

42 total_squared_doc_weights = 0

43 for weight in doc_vector.values():

44 total_doc_weights += weight^2

45 doc_magnitude = sqrt(total_squared_doc_weights)

46

47 # calculate cosine similarity

48 return (dot_product / (query_magnitude * doc_magnitude))

Listing 1: Algorithm to Calculate the Similarity of a Document to a Query

As can be seen from the above algorithm, calculating the similarity of a specific document in the corpus to a query is not a
particularly efficient operation using the inverted index: finding the tuple pertaining to the given document in the postings
list for a query term is anO(n) operation in the worst case, and n could be potentially billions of documents depending on
the corpus in question; it would most likely be computationally cheaper to just ignore the inverted index and recompute the
weights of each term in the document. However, I still maintain that the inverted index is a good choice for term-document
matrix, as I assume that general searching of the corpus for the most similar documents to a query is the ordinary use case of
such a data structure.

2 Similarity of a Given Query to Varying Documents
For a documentD1 = {Shipment of gold damage in a fire} and a queryQ = {gold silver truck}, and assuming that we are
only considering the similarity of the query & document as weighted vectors in the vector space model, then sim(Q,D1) should
be relatively low as the query and the document only share one term. Since no term is repeated in either the query or the
document, each term should have equal weight. For each of the following augmentations onD1:

a) D1 = {Shipment of gold damaged in a fire. Fire.}: the inclusion of an additional term “fire” increases the weight of the
term “fire” in determining the meaning of the document. SinceQ does not contain the term “fire”, the sim(Q,D1)will
be reduced.

b) D1 = {Shipment of gold damaged in a fire. Fire. Fire.}: the inclusion of two additional instances of the term “fire”
further increases the weight of the term “fire” in determining the meaning of the document, and thus further reduces
sim(Q,D1).

c) D1 = {Shipment of gold damaged in a fire. Gold.}: the repetition of the term “gold” inD1 increases the weight of the
term in determining the meaning of the document, and since the term “gold” also appears inQ, sim(Q,D1) will be
increased compared to the unaltered document.

d) D1 = {Shipment of gold damaged in a fire. Gold. Gold.}: the double repetition of the term “gold” in D1 further
increases the weight of the term in determining the meaning of the document, and since the term “gold” also appears in
Q, sim(Q,D1)will be further increased.

However, a human reviewer of the above similarity scores might argue that further repetition of terms in the augmented
documents does little to affect the meaning of the document, and so one could consider using the logarithm of the term
frequency to reduce the significance of each additional occurrence of a term.

3 Context-Based Weighting Scheme for Scientific Articles
The two additional features I have chosen to include in my context-based weighting scheme are:

2



• Citation count: a somewhat obvious choice, as citation count is a measure of the number of times the article in question
has been referenced by another publication, and thus is a good indicator of how influential the article is. Including the
citation count in the weighting scheme will prioritise returning more influential articles, and increases the likelihood that
returned articles will be of use to the searcher. However, since it is unlikely that the n+ 1th citation when n = 3000
holds the same importance as the n + 1th citation when n = 5, the logarithm of the citation count should be used
instead of the raw citation count. Since the citation count may be zero, we ought to add 1 to the citation count before
calculating the logarithm, as log(0) = −∞; while we do want to assign a negative bias to low citation counts, I think
−∞ is probably too negative.

• Years since publication: the inclusion of the citation count in the weighting scheme could cause an undesirable bias
that favours older articles, as newer articles may have a low citation count simply because enough time hasn’t elapsed since
their publication for them to have been cited by other publications. This is especially undesirable for scientific papers,
where one would imagine that more recent & up-to-date research articles would be of greater importance (generally
speaking) than older articles. This can be counteracted via the inclusion of a negative bias based on the number of
years since publication: the older the article, the greater the reduction. However, subtracting some value from the
similarity score could cause the similarity score to become negative, particularly in the case of very old papers that are very
dissimilar to the query. To maintain positive similarity scores for the sake of simplicity, I instead chose to incorporate
the years-since-publication as a negative exponent on a positive number so that the resulting value is never negative, but
shrinks as exponentially as the documents get older.

With these two features in mind, my proposed weighting scheme would be as follows:

Si = α · tf-idf+ β · log(Ci + 1) + e−γYi

where:

• i is the document in question.

• Si is the significance of the document i.

• α, β, & γ are tuning parameters that control the influence of the tf-idf, citation count, & years since publication on the
similarity score, respectively.

• Ci is the citation count for document i.

• Yi is the number of years since document iwas published.

References

[1] David A. Grossman and Ophir Frieder. Information Retrieval: Algorithms &Heuristics. 2nd Edition. Springer, 2004. doi:
10.1007/978-1-4020-3005-5.

3

https://doi.org/10.1007/978-1-4020-3005-5

	Question 1
	Indexing Structure for a Sparse Term-Document Matrix
	Algorithm to Calculate the Similarity of a Document to a Query

	Similarity of a Given Query to Varying Documents
	Context-Based Weighting Scheme for Scientific Articles

