
CT4101

Machine Learning

Name: AndrewHayes
E-mail: a.hayes18@universityofgalway.ie
Student ID: 21321503

2024–10–09

mailto://a.hayes18@universityofgalway.ie

CONTENTS

Contents

1 Introduction 1
1.1 Lecturer Contact Details . 1
1.2 Grading . 1
1.3 Module Overview . 1

1.3.1 Learning Objectives . 1

2 What is Machine Learning? 1
2.1 Data Mining . 3
2.2 Big Data . 3

3 Introduction to Python 3
3.1 Running Python Programs . 5
3.2 Hello World . 5
3.3 PEP 8 Style Guide . 5

3.3.1 Variable Naming Conventions . 5
3.3.2 Whitespace in Python . 5

3.4 Dynamic Typing . 6
3.5 Modules, Packages, & Virtual Environments . 6

3.5.1 Modules . 6
3.5.2 Packages . 6
3.5.3 Managing Packages with pip . 7
3.5.4 Virtual Environments . 7

4 Classification 7
4.1 Supervised Learning Principles . 7
4.2 Introduction to Classification . 8

4.2.1 Example Binary Classification Task . 9
4.2.2 Example Classification Algorithms . 10
4.2.3 Logistic Regression on the College Athletes Dataset . 10
4.2.4 Decision Tree on the College Athletes Dataset . 11
4.2.5 Gaussian Process on the College Athletes Dataset . 12
4.2.6 Use of Independent Test Data . 12

5 k-Nearest Neighbours Algorithm 12
5.1 The Nearest Neighbour Algorithm . 13
5.2 k-NNHyperparameters . 15
5.3 Measuring Similarity . 15

5.3.1 Measuring Similarity Using Distance . 15
5.3.2 Euclidean Distance . 15
5.3.3 Manhattan Distance . 15
5.3.4 Minkowski Distance . 16
5.3.5 Similarity for Discrete Attributes . 16
5.3.6 Comparison of Distance Metrics . 16

5.4 Choosing a Value for k . 17
5.4.1 Distance-Weighted k-NN . 18

6 Decision Trees 18
6.1 Computing Entropy . 19
6.2 Computing Information Gain . 20

i

2 WHAT ISMACHINE LEARNING?

1 Introduction

1.1 Lecturer Contact Details

• Dr. Frank Glavin.

• frank.glavin@universityofgalway.ie

1.2 Grading

• Continuous Assessment: 30% (2 assignments, worth 15% each).

• Written Exam: 70% (Last 2 year’s exam papers most relevant).

1.3 Module Overview

Machine Learning (ML) allows computer programs to improve their performance with experience (i.e., data). This
module is targeted at learners with no prior ML experience, but with university experience of mathematics & statistics
and strong programming skills. The focus of this module is on practical applications of commonly usedML algorithms,
including deep learning applied to computer vision. Students will learn to usemodernML frameworks (e.g., scikit-learn,
Tensorflow / Keras) to train & evaluate models for common categories of ML task including classification, clustering, &
regression.

1.3.1 Learning Objectives

On successful completion, a student should be able to:

1. Explain the details of commonly usedMachine Learning algorithms.

2. Apply modern frameworks to develop models for common categories of Machine Learning task, including
classification, clustering, & regression.

3. Understand howDeep Learning can be applied to computer vision tasks.

4. Pre-process datasets for Machine Learning tasks using techniques such as normalisation & feature selection.

5. Select appropriate algorithms & evaluation metrics for a given dataset & task.

6. Choose appropriate hyperparameters for a range of Machine Learning algorithms.

7. Evaluate & interpret the results produced byMachine Learning models.

8. Diagnose & address commonly encountered problems withMachine Learning models.

9. Discuss ethical issues & emerging trends in Machine Learning.

2 What is Machine Learning?

There are many possible definitions for “machine learning”:

• Samuel, 1959: “Field of study that gives computers the ability to learn without being explicitly programmed”.

• Witten & Frank, 1999: “Learning is changing behaviour in a way that makes performance better in the future”.

• Mitchelll, 1997: “Improvement with experience at some task”. A well-definedML problem will improve over
task T with regards to performancemeasure P , based on experienceE.

• Artificial Intelligence 6=Machine Learning 6=Deep Learning.

• Artificial Intelligence 6⊇Machine Learning 6⊇Deep Learning.

1

mailto://frank.glavin@universityofgalway.ie

2 WHAT ISMACHINE LEARNING?

Machine Learning techniques include:

• Supervised learning.

• Unsupervised learning.

• Semi-Supervised learning.

• Reinforcement learning.

Major types of ML task include:

1. Classification.

2. Regression.

3. Clustering.

4. Co-Training.

5. Relationship discovery.

6. Reinforcement learning.

Techniques for these tasks include:

1. Supervised learning:

• Classification: decision trees, SVMs.
• Regression: linear regression, neural nets, k-NN (good for classification too).

2. Unsupervised learning:

• Clustering: k-Means, EM-clustering.
• Relationship discovery: association rules, bayesian nets.

3. Semi-Supervised learning:

• Learning from part-labelled data: co-training, transductive learning (combines ideas from clustering &
classification).

4. Reward-Based:

• Reinforcement learning: Q-learning, SARSA.

In all cases, the machine searches for a hypothesis that best describes the data presented to it. Choices to be made
include:

• How is the hypothesis expressed? e.g., mathematical equation, logic rules, diagrammatic form, table, parameters
of a model (e.g. weights of an ANN), etc.

• How is search carried out? e.g., systematic (breadth-first or depth-first) or heuristic (most promising first).

• How do we measure the quality of a hypothesis?

• What is an appropriate format for the data?

• Howmuch data is required?

To apply ML, we need to know:

• How to formulate a problem.

2

3 INTRODUCTIONTO PYTHON

• How to prepare the data.

• How to select an appropriate algorithm.

• How to interpret the results.

To evaluate results & compare methods, we need to know:

• The separation between training, testing, & validation.

• Performance measures such as simple metrics, statistical tests, & graphical methods.

• How to improve performance.

• Ensemble methods.

• Theoretical bounds on performance.

2.1 Data Mining

Data Mining is the process of extracting interesting knowledge from large, unstructured datasets. This knowledge is
typically non-obvious, comprehensible, meaningful, & useful.

The storage “law” states that storage capacity doubles every year, faster than Moore’s “law”, which may results in
write-only “data tombs”. Therefore, developments in MLmay be essential to be able to process & exploit this lost data.

2.2 Big Data

Big Data consists of datasets of scale & complexity such that they can be difficult to process using current standard
methods. The data scale dimensions are affected by one or more of the “3 Vs”:

• Volume: terabytes & up.

• Velocity: from batch to streaming data.

• Variety: numeric, video, sensor, unstructured text, etc.

It is also fashionable to add more “Vs” that are not key:

• Veracity: quality & uncertainty associated with items.

• Variability: change / inconsistency over time.

• Value: for the organisation.

Key techniques for handling big data include: sampling, inductive learning, clustering, associations, & distributed
programming methods.

3 Introduction to Python

Python is a general-purpose high-level programming language, first created by Guido van Rossum in 1991. Python
programs are interpreted by an interpreter, e.g. CPython – the reference implementation supported by the Python
Software Foundation. CPython is both a compiler and an interpreter as it first compiles Python code into bytecode
before interpreting it.

Python interpreters are available for a wide variety of operating systems & platforms. Python supports multiple
programming paradigms, including procedural programming, object-oriented programming, & functional program-
ming. Python is dynamically typed, unlike languages such as C, C++, & Java which are statically typed, meaning that
many common error checks are deferred until runtime in Python, whereas in a statically typed language like Java these
checks are performed during compilation.

3

3 INTRODUCTIONTO PYTHON

Python uses garbage collection, meaning that memory management is handled automatically and there is no need for
the programmer to manually allocate & de-allocate chunks of memory.

Python is used for all kinds of computational tasks, including:

• Scientific computing.

• Data analytics.

• Artificial Intelligence &Machine Learning.

• Computer vision.

• Web development / web apps.

• Mobile applications.

• Desktop GUI applications.

While having relatively simple syntax and being easy to learn for beginners, Python also has very advanced functionality.
It is one of the most widely used programming languages, being both open source & freely available. Python programs
will run almost anywhere that there is an installation of the Python interpreter. In contrast, many languages such as C
or C++ have separate binaries that must be compiled for each specific platform & operating system.

Python has a wide array of libraries available, most of which are free & open source. Python programs are usually much
shorter than the equivalent Java or C++ code, meaning less code to write and faster development times for experienced
Python developers. Its brevity also means that the code is easier to maintain, debug, & refactor as much less source code
is required to be read for these tasks. Python code can also be run without the need for ahead-of-time compilation (as
in C or C++), allowing for faster iterations over code versions & faster testing. Python can also be easily extended &
integrated with software written in many other programming languages.

Drawbacks of using Python include:

• Efficiency: Program execution speed in Python is typically a lot slower than more low-level languages such as C
or C++. The relative execution speed of Python compared to C or C++ depends a lot on coding practices and
the specific application being considered.

• Memory Management in Python is less efficient than well-written C or C++ code although these efficiency
concerns are not usually a major issues, as compute power & memory are now relatively cheap on desktop,
laptop, & server systems. Python is used in the backend of large web services such as Spotify & Instagram,
and performs adequately. However, these performance concerns may mean that Python is unsuitable for some
performance-critical applications, e.g. resource-intensive scientific computing, embedded devices, automotive,
etc. Faster alternative Python implementations such as PyPy are also available, with PyPy providing an average
of a four-fold speedup by implementing advanced compilation techniques. It’s also possible to call code that is
implemented in C within Python to speed up performance-critical sections of your program.

• Dynamic typing canmake codemore difficult to write & debug compared to statically-typed languages, wherein
the compiler checks that all variable types match before the code is executed.

• Python2 vs Python3: There are two major version of Python in widespread use that are not compatible with
each other due to several changes that were made when Python3 was introduced. This means that some libraries
that were originally written in Python2 have not been ported over to Python3. Python2 is now mostly used only
in legacy business applications, while most new development is in Python3. Python2 is no longer supported or
receives updates as of 2020.

4

3 INTRODUCTIONTO PYTHON

3.1 Running Python Programs

Python programs can be executed in a variety of different ways:

• through the Python interactive shell on your local machine.

• through remote Python interactive shells that are accessible through web browsers.

• by using the console of your operating system to launch a standalone Python script (.py file).

• by using an IDE to launch a .py file.

• as GUI applications using libraries such as Tkinter PyQt.

• as web applications that provide services to other computers, e.g. by using the Flask framework to create a web
server with content that can be accessed using web browsers.

• through Jupyter / JupyterLab notebooks, either hosted locally on yourmachine or cloud-based Jupyter notebook
execution environments such as Google Colab, Microsoft Azure Notebooks, Binder, etc.

3.2 Hello World

The following programs writes “Hello World!” to the screen.

1 print("Hello World!")

Listing 1: helloworld.py

3.3 PEP 8 Style Guide

PEPs (Python Enhancement Proposals)describe&document theway inwhich thePython language evolves over time,
e.g. addition of new features. Backwards compatibility policy etc. PEPSs can be proposed, then accepted or rejected.
The full list is available at https://www.python.org/dev/peps/. PEP 8 gives coding conventions for the Python code
comprising the standard library in the main Python distribution. See: https://www.python.org/dev/peps/pep-0008/.
It contains conventions for the user-defined names (e.g., variables, functions, packages), as well as code layout, line
length, use of blank lines, style of comments, etc.

Many professional Python developers & companies adhere to (at least some of) the PEP8 conventions. It is important to
learn to follow these conventions from the start, especially if you want to work with other programmers, as experienced
Python developers will often flag violations of the PEP 8 conventions during code reviews. Of course, many companies
& open-source software projects have defined their own internal coding style guidelines which take precedence over
PEP 8 in the case of conflicts. Following PEP 8 conventions is relatively easy if you are using a good IDE, e.g. PyCharm
automatically finds & alerts you to violations of the PEP 8 conventions.

3.3.1 Variable Naming Conventions

According to PEP 8, variable names “should be lowercase, with words separated by underscores as necessary to improve
readability”, i.e. snake_case. “Never use the characters l, O, or I as single-character variable names. In some fonts, these
characters are indistinguishable from the numerals one & zero. When tempted to use l, use L instead”. According
to PEP 8, different naming conventions are used for different identifiers, e.g.: “Class names should normally use the
CapWords convention”. This helps programmers to quickly & easily distinguish which category an identifier name
represents.

3.3.2 Whitespace in Python

A key difference between Python and other languages such as C is that whitespace has meaning in Python. The PEP 8
style guidelines say to “Use 4 spaces per indentation level”, not 2 spaces, and not a tab character. This applies to all
indented code blocks.

5

https://www.python.org/dev/peps/
https://www.python.org/dev/peps/pep-0008/

3 INTRODUCTIONTO PYTHON

3.4 Dynamic Typing

In Python, variable names can point to objects of any type. Built-in data types in python include str, int, float, etc.
Each type can hold a different type of data. Because variables in Python are simply pointers to objects, the variable
names themselves do not have any attached type information. Types are linked not to the variable names but to the
objects themselves.

1 x = 4

2 print(type(x)) # prints "<class 'int'>" to the console

3 x = "Hello World!"

4 print(type(x)) # prints "<class 'str'>" to the console

5 x = 3.14159

6 print(type(x)) # prints "<class 'float'>" to the console

Listing 2: Dynamic Typing Example

Note that type() is a built-in function that returns the type of any object that is passed to it as an argument. It returns
a type object.

Because the type of object referred to by a variable is not known until runtime, we say that Python is a dynami-
cally typed language. In statically typed languages, we must declare the type of a variable before it is used: the type
of every variable is known before runtime.

Another important difference between Python and statically typed languages is that we do not need to declare variables
before we use them. Assigning a value to a previously undeclared variable name is fine in Python.

3.5 Modules, Packages, & Virtual Environments

3.5.1 Modules

Amodule is an object that serves as an organisational unit of Python code. Modules have a namespace containing
arbitrary Python objects and are loaded into Python by the process of importing. Amodule is essentially a file containing
Python definitions & statements.

Modules can be run either as standalone scripts or they can be imported into other modules so that their built-
in variables, functions, classes, etc. can be used. Typically, modules group together statements, functions, classes, etc.
with related functionality. When developing larger programs, it is convenient to split the source code up into separate
modules. As well as creating our own modules to break up our source code into smaller units, we can also import
built-in modules that come with Python, as well as modules developed by third parties.

Python provides a comprehensive set of built-inmodules for commonly used functionality, e.g. mathematical functions,
date & tie, error handling, random number generation, handling command-line arguments, parallel processing, net-
working, sending email messages, etc. Examples of modules that are built-in to Python include math, string, argparse,
calendar, etc. The mathmodule is one of the most commonly used modules in Python, although the functions in the
mathmodule do not support complex numbers; if you require complex number support, you can use the cmathmodule.
A full list of built-in modules is available at https://docs.python.org/3/py-modindex.html.

3.5.2 Packages

Packages are a way of structuring Python’s module namespace by using “dotted module names”: for example, the
module name A.B designates a submodule named B in a package A. Just like the use of modules saves the authors of
different modules from having to worry about each other’s global variable names, the use of dotted module names saves
the authors of multi-module packages like NumPy or Pillow from having to worry about each other’s module names.
Individual modules can be imported from a package: import sound.effects.echo.

PEP 8 states that “Modules should have short, all-lowercase names. Underscores can be used in the module name if it

6

https://docs.python.org/3/py-modindex.html

4 CLASSIFICATION

improves readability. Python packages should also have short, all-lowercase names, although the use of underscores is
discouraged.”

3.5.3 Managing Packages with pip

pip can be used to install, upgrade, & remove packages and is supplied by default with your Python installation. By
default, pipwill install packages from the Python Package Index (PyPI) https://pypi.org. You can browse the Python
Package Index by visiting it in your web browser. To install packages from PyPI:

1 python -m pip install projectname

To upgrade a package to the latest version:

1 python -m pip install --upgrade projectname

3.5.4 Virtual Environments

Python applications will often use packages &modules that don’t come as part of the standard library. Applications will
sometimes need a specific version of a library, because the application may require that a particular bug has been fixed or
the application may have been written using an obsolete version of the library’s interface. This means that it may not
be possible for one Python installation to meet the requirements of every application. If applicationA needs version
1.0 of a particular module but applicationB needs version 2.0, then the requirements are in conflict and installing
either version 1.0 or 2.0 will leave one application unable to run. The solution for this problem is to create a virtual
environment, a self-contained directory tree that contains a Python installation for a particular version of Python plus
a number of additional packages. Different applications can then use different virtual environments.

By default, most IDEs will create a new virtual environment for each new project created. It is also possible to set up a
project to run on a specific pre-configured virtual environment. The built-in module venv can also be used to create &
manage virtual environments through the console.

To use the venvmodule, first decide where you want the virtual environment to be created, then open a command line
at that location use the command python -m venv environmentname to create a virtual environment with the specified
name. You should then see the directory containing the virtual environment appear on the file system, which can then
be activated using the command source environmentname/bin/activate.

To install a package to a virtual environment, first activate the virtual environment that you plan to install it to and then
enter the command python -m pip install packagename.

If you have installed packages to a virtual environment, you will need to make that virtual environment available
to Jupyter Lab so that your .ipynb files can be executed on the correct environment. You can use the package ipykrenel
to do this.

4 Classification

4.1 Supervised Learning Principles

Recall from before that there are several main types of machine learning techniques, including supervised learning,
unsupervised learning, semi-supervised learning, & reinforcement learning. Supervised learning tasks include both
classification& regression.

The task definition of supervised learning is to, given examples, return a function h (hypothesis) that approximates
some “true” function f that (hypothetically) generated the labels for the examples. We need to have a set of examples
called the training data, each having a label& a set of attributes that have known values.

We consider the labels (classes) to be the outputs of some function f : the observed attributes are its inputs. We

7

https://pypi.org

4 CLASSIFICATION

denote the attribute value inputs x and labels are their corresponding outputs f(x). An example is a pair (x, f(x)).
The function f is unknown, and we want to discover an approximation of it h. We can then use h to predict labels of
new data (generalisation). This is also known as pure inductive learning.

Figure 1: Training Data Example for a Classification Task

Figure 2: Overview of the Supervised Learning Process

4.2 Introduction to Classification

The simplest type of classification task is where instances are assigned to one of two categories: this is referred to as
a binary classification task or two-class classification task. Many popular machine learning problems fall into this
category:

• Is cancer present in a scan? (Yes / No).

• Should this loan be approved? (Yes / No).

• Sentiment analysis in text reviews of products (Positive / Negative).

• Face detection in images (Present / Not Present).

The more general form of classification task is themutli-class classificationwhere the number of classes is≥ 3.

8

4 CLASSIFICATION

4.2.1 Example Binary Classification Task

Objective: build a binary classifier to predict whether a new previously unknown athlete who did not feature in the
dataset should be drafted.

There are 20 examples in the dataset, see
college_athletes.csv on Canvas.

The college athlete’s dataset contains two attributes:

• Speed (continuous variable).

• Agility (continuous variable).

The target data: whether or not each athlete was drafted to
a professional team (yes / no).

Figure 3: Example Dataset for a Binary Classification Task

Figure 4: Feature Space Plot for the College Athlete’s Dataset

We want to decide on a reasonable decision boundary to categorise new unseen examples, such as the one denoted
by the purple question mark below. We need algorithms that will generate a hypothesis / model consistent with the
training data. Is the decision boundary shown below in thin black lines a good one? It is consistent with all of the
training data, but it was drawn manually; in general, it won’t be possible to manually draw such decision boundaries
when dealing with higher dimensional data (e.g., more than 3 features).

9

4 CLASSIFICATION

Figure 5: Feature Space Plot for the College Athlete’s Dataset

4.2.2 Example Classification Algorithms

There are many machine learning algorithms available to learn a classification hypothesis / model. Some examples (with
corresponding scikit-learn classes) are:

• k-nearest neighbours: scikit-learn KNeighboursClassifier.

• Decision trees: scikit-learn DecisionTreeClassifier.

• Gaussian Processes: scikit-learn GaussianProcessClassifier.

• Neural networks: scikit-learn MLPClassifier.

• Logistic regression: scikit-learn LogisticRegression. Note that despite its name, logistic regression is a linear
model for classification rather than regression.

4.2.3 Logistic Regression on the College Athletes Dataset

Below is an example of a very simple hypothesis generated using an MLmodel – a linear classifier created using the
scikit-learn LogisticRegressionwith the default settings.

10

4 CLASSIFICATION

Figure 6: Logistic Regression on the College Athletes Dataset

Is this a good decision boundary? 19
21 training examples correct = 90.4% accuracy. Note how the decision boundary is

a straight line (in 2D). Note also that using logistic regression makes a strong underlying assumption that the data is
linearly separable.

4.2.4 Decision Tree on the College Athletes Dataset

Below is an example of a more complex hypothesis, generated using the scikit-learn DecisionTreeClassifierwith the
default settings.

Figure 7: Decision Tree on the College Athletes Dataset

Note the two linear decision boundaries: this is a very different form of hypothesis compared to logistic regression. Is
this a good decision boundary? 21

21 training examples correct = 100% accuracy.

11

5 k-NEARESTNEIGHBOURS ALGORITHM

4.2.5 Gaussian Process on the College Athletes Dataset

Below is an example of a much more complex hypothesis generated using the scikit-learn GaussianProcessClassifier

with the default settings.

Figure 8: Gaussian Process on the College Athletes Dataset

Note the smoothness of the decision boundary compared to the other methods. Is this a good decision boundary? 21
21

training examples correct = 100% accuracy.

Which of the three models explored should we choose? It’s complicated; we need to consider factors such as accuracy of
the training data & independent test data, complexity of the hypothesis, per-class accuracy etc.

4.2.6 Use of Independent Test Data

Use of separate training & test datasets is very important when developing anMLmodel. If you use all of your data
for training, your model could potentially have good performance on the training data but poor performance on new
independent test data.

5 k-Nearest Neighbours Algorithm

k-nearest neigbours (or k-NN) is one of the simplest machine learning algorithms. It generates a hypothesis using a
very simple principle: predictions for the label or value assigned to a query instance should be made based on the most
similar instances in the training dataset. Hence, this is also known as similarity-based learning.

k-NN can be used for both classificatoin & regression tasks, although for now we will focus only on its application to
classification tasks using the scikit-learn implementation KNeighborsClassifier.

12

5 k-NEARESTNEIGHBOURS ALGORITHM

Figure 9: K-Nearest Neighbour Example

The operation of the k-NN algorithm is relatively easy to appreciate. The key insight is that each example is a point in
the feature space. If samples are close to each other in the feature space, they should be close in their target values. This
is related to code-based reasoning. When you want to classify a new query case, you compare it to the stored set and
retrieve the kmost similar instances. The query case is the given a label based on the most similar instances.

The prediction for a query case is based on several (k) nearest neighbours. We compute the similarity of the query case
to all stored cases, and pick the nearest k neighbours; the simplest way to do this is to sort the instances by distance and
pick the lowest k instances. A more efficient way of doing this would be to identify the k nearest instances in a single
pass through the list of distances. The k nearest neighbours then vote on the classification of the test case: prediction is
themajority class voted for.

5.1 The Nearest Neighbour Algorithm

The 1-nearest neighbour algorithm is the simplest similarity-based / instance-based method. There is no real training
phase, we just store the training cases. Given a query case with a value to be predicted, we compute the distance of the
query case from all stored instances and select the nearest neighbour case. We then assign the test case the same label
(class or regression value) as its nearest neighbour. The main problem with this approach is susceptibility to noise; to
reduce susceptibility to noise, use more than one neighbour, i.e., the k-nearest neighbours algorithm.

1NN with Euclidean distance as the distance metric is equivalent to partitioning the feature space into a Voronoi
Tessellation: finding the predicted target class is equivalent to finding which Voronoi region it occupies.

13

5 k-NEARESTNEIGHBOURS ALGORITHM

Figure 10: Feature Space Plot (left) & Corresponding Voronoi Tesselation (right)

Figure 11: 1NNDecision Boundary from Voronoi Tessellation

Figure 12: Effect of AddingMore Training Data to Voronoi Tessellation

14

5 k-NEARESTNEIGHBOURS ALGORITHM

5.2 k-NN Hyperparameters

The k-NN algorithm also introduces a new concept to us that is very important for ML algorithms in general: hyperpa-
rameters. In ML algorithms, a hyperparameter is a parameter set by the user that is used to control the behaviour
of the learning process. Many ML algorithms also have other parameters that are set by the algorithm during its
learning process (e.g., the weights assigned to connections between neurons in an artificial neural network). Examples
of hyperparameters include:

• Learning rate (typically denoted using the Greek letter α).

• Topology of a neural network (the number & layout of neurons).

• The choice of optimiser when updating the weights of a neural network.

ManyML algorithms are very sensitive to the choice of hyperparameters: poor choice of values yields poor performance.
Therefore, hyperparameter tuning (i.e., determining the values that yield the best performance) is an important topic in
ML. However, some simple ML algorithms do not have any hyperparameters.

k-NN has several key hyperparameters that we must choose before applying it to a dataset:

• The number of neighbours k to take into account when making a prediction: n_neighbours in the scikit-learn
implementation of KNeighboursClassifier.

• The method used to measure how similar instances are to one another: metric in scikit-learn.

5.3 Measuring Similarity

5.3.1 Measuring Similarity Using Distance

Consider the college athletes dataset from earlier. How should we measure the similarity between instances in this case?
Distance is one option: plot the points in 2D space and draw a straight line between them. We can think of each feature
of interest as a dimension in hyperspace.

Ametric or distance function may be used to define the distance between any pair of elements in a set. metric(a, b) is a
function that returns the distance between two instances a& b in a set. a& b are vectors containing the values of the
attributes we are interested in for the data points we wish to measure between.

5.3.2 Euclidean Distance

Euclidean distance is one of the best-known distance metrics. It computes the length of a straight line between two
points.

Euclidean(a, b) =

√√√√ m∑
i=1

(a[i]− b[i])2

Herem is the number of features / attributes to be used to calculate the distance (i.e., the dimensions of the vectors a&
b). Euclidean distance calculates the square root of the sum of squared differences for each feature.

5.3.3 Manhattan Distance

Manhattan distance (also known as “taxicab distance”) is the distance between two points measured along axes at
right angles.

Manhattan(a, b) =
m∑
i=1

abs(a[i]− b[i])

As before,m is the number of features / attributes to be used to calculate the distance (i.e., the dimension of the vectors
a& b) and abs() is a function which returns the absolute value of a number. Manhattan distance calculates the sum of
the absolute differences for each feature.

15

5 k-NEARESTNEIGHBOURS ALGORITHM

Example: Calculating Distance

Calculate the distance between d12 = [5.00, 2.50]& d5 = [2.75, 7.50].

Euclidean(d12, d5) =
√
(5.00− 2.75)2 + (2.50− 7.50)2 = 5.483

Manhattan(d12, d5) = abs(5.00− 2.75) + abs(2.50− 7.50) = 7.25

Figure 13: Euclidean vs Manhattan Distance

5.3.4 Minkowski Distance

TheMinkowski distancemetric generalises both the Manhattan distance and the Euclidean distance metrics.

Minkowski(a, b) =

(
m∑
i=1

abs(a[i]− b[i])p

) 1
p

As before,m is the number of features / attributes to be used to calculate the distance (i.e., the dimension of the vectors
a& b). Minkowski distance calculates the absolute value of the differences for each feature.

5.3.5 Similarity for Discrete Attributes

Thus far we have considered similaritymeasures that only apply to continuous attributes1. Many datasets have attributes
that have a finite number of discrete values (e.g., Yes/No or True/False, survey responses, ratings). One approach to
handling discrete attributes isHamming distance: the Hamming distance is calculated as 0 for each attribute where
both cases have the same value and 1 for each attribute where they are different. E.g., Hamming distance between the
strings “Stephen” and “Stefann” is 3.

5.3.6 Comparison of Distance Metrics

Euclidean&Manhattan distance are themost commonly used distancemetrics although it is possible to define infinitely
many distance metrics using the Minkowski distance. Manhattan distance is cheaper to compute than Euclidean
distance as it is not necessary to compute the squares of differences and a square root, so Manhattan distance may be a
better choice for very large datasets if computational resources are limited. It’s worthwhile to try out several different
distance metrics to see which is the most suitable for the dataset at hand. Many other methods to measure similarity
also exist, including cosine similarity, Russel-Rao, Sokal-Michener.

1Note that discrete/continuous attributes are not to be confused with classification/regression

16

5 k-NEARESTNEIGHBOURS ALGORITHM

5.4 Choosing a Value for k

The appropriate value for k is application dependent, and experimentation is needed to find the optimal value. Typically,
it is> 3 and often in the range 5 – 21. IncreasingK has a smoothing effect:

• If k is too low, it tends to overfit if the data is noisy.

• If k is too high, it tends to underfit.

In imbalanced datasets, the majority target class tends to dominate for large k values. It’s important to note that k
does not affect computational cost much: most of the computation is in calculating the distances from the query to all
stored instances.

Figure 14: Effect of Increasing k (1)

Figure 15: Effect of Increasing k (2)

17

6 DECISIONTREES

Figure 16: Smoothing Effect of k

5.4.1 Distance-Weighted k-NN

In distance-weighted k-NN, we give each neighbour a weight equal to the inverse of its distance from the target. We
then take the weighted vote or weighted average to classify the target case. It’s reasonable to use k = [all training cases].

Figure 17: Effect of Distance Weighting

6 Decision Trees

Decision trees are a fundamental structure used in information-based machine learning. The idea is to use a decision
tree as a predictive model to decide what category/label/class an item belongs to based on the values of its features.
Decision trees consist of nodes (where two branches intersect) which are decision points which partition the data.
Observations about an item (values of features) are represented using branches. The terminal nodes are called leaves
and specify the target label for an item. The inductive learning of a decision tree is as follows:

1. For all attributes that have not yet been used in the tree, calculate their impurity (entropy orGini index) and
information/Gini gain values for the training samples.

18

6 DECISIONTREES

2. Select the attribute that has the highest information gain.

3. Make a tree node containing that attribute.

4. This node partitions the data: apply the algorithm recursively to each partition.

Themain class used in scikit-learn to implement decision tree learning for classification tasks is DecisionTreeClassifier.
The default measure of impurity is the Gini index, but entropy is also an option.

6.1 Computing Entropy

We already saw how some descriptive features can more effectively discriminate between (or predict) classes which
are present in the dataset. Decision trees partition the data at each node, so it makes sense to use features which have
higher discriminatory power “higher up” in a decision tree. Therefore, we need to develop a formal measure of the
discriminatory power of a given attribute.

Claude Shannon (often referred to as “the father of information theory”) proposed a measure of the impurity of
the elements in the set called entropy. Entropy may be used to measure the uncertainty of a random variable. The
term “entropy” generally refers to disorder or uncertainty, so the use of this term in the context of information theory is
analogous to other well-known uses of the term such as in statistical themodynamics. The acquisition of information
(information gain) corresponds to a reduction in entropy.

The entropy of a dataset S with n different classes may be calculated as:

Ent(S) =
n∑

i=1

−pi log2 pi

where pi is the proportion of the class i in the dataset. This is an example of a probability mass function. Entropy is
typically measured in bits (note the log2 in the equation above): the lowest possible entropy output from this function
is 0 (log2 1 = 0), while the highest possible entropy is log2 n (which is equal to 1 when there are only two classes).

We use the binary logarithm because a useful measure of uncertainty should assign high uncertainty to outcomes
with a low probability and assign low uncertainty values to outcomes with a high probability. log2 returns large negative
values when P is close to 0 and small negative values when P is close to 1. We use− log2 for convenience, as it returns
positive entropy values with 0 as the lowest entropy.

19

6 DECISIONTREES

Worked Entropy Example

Figure 18: Example Data

Workings;

Ent(S) =Ent([9+, 5−])

=
−9

14
log2

(
9

14

)
− 5

14
log2

(
5

14

)
=0.9403

Note that if you are calculating entropy using a spreadsheet application such as Excel, make sure that you are
using log2, e.g. LOG(9/14,2).

6.2 Computing Information Gain

The information gain of an attribute is the reduction of entropy from partitioning the data according to that attribute:

Gain(S,A) = Ent(S)−
∑

v∈Values(A)

|Sv|
|S|

Ent(Sv)

Here S is the entire set of data being considered and Sv refers to each partition of the data according to each possible
value v for the attribute. |S|& |Sv| refer to the cardinality or size of the overall dataset, and the cardinality or size of a
partition respectively. When selecting an attribute for a node in a decision tree, we use whichever attributeA that gives
the greatest information gain.

20

6 DECISIONTREES

Worked Information Gain Example

Given |S| = 14,
∣∣Swindy=true∣∣ = 14, &

∣∣Swindy=false∣∣ = 14, calculate the information gain of the attribute
“windy”.

Gain(S,windy) =Ent(S)−
∣∣Swindy=true∣∣

|S|
Ent(Swindy = true)−

∣∣Swindy=false∣∣
|S|

Ent(Swindy = false)

=Ent(S)−
(

6

14

)
Ent([3+, 3−])−

(
8

14

)
Ent([6+, 2−])

=0.940−
(

6

14

)
1.00−

(
8

14

)
0.811

=0.048

21

	Introduction
	Lecturer Contact Details
	Grading
	Module Overview
	Learning Objectives

	What is Machine Learning?
	Data Mining
	Big Data

	Introduction to Python
	Running Python Programs
	Hello World
	PEP 8 Style Guide
	Variable Naming Conventions
	Whitespace in Python

	Dynamic Typing
	Modules, Packages, & Virtual Environments
	Modules
	Packages
	Managing Packages with pip
	Virtual Environments

	Classification
	Supervised Learning Principles
	Introduction to Classification
	Example Binary Classification Task
	Example Classification Algorithms
	Logistic Regression on the College Athletes Dataset
	Decision Tree on the College Athletes Dataset
	Gaussian Process on the College Athletes Dataset
	Use of Independent Test Data

	k-Nearest Neighbours Algorithm
	The Nearest Neighbour Algorithm
	k-NN Hyperparameters
	Measuring Similarity
	Measuring Similarity Using Distance
	Euclidean Distance
	Manhattan Distance
	Minkowski Distance
	Similarity for Discrete Attributes
	Comparison of Distance Metrics

	Choosing a Value for k
	Distance-Weighted k-NN

	Decision Trees
	Computing Entropy
	Computing Information Gain

