N

CT437
COMPUTER SECURITY AND FORENSIC COMPUTING

TRANSPORT LAYER SECURITY

Dr. Michael Schukat

Background
N

0 The exponential growth of the internet in the 1990s resulted
in a need for better security, thereby considering support of
0 ad-hoc and short-lived client /server connections

o casual and untrained users

® No awareness of risks and key concepts (confidentiality, integrity,
authentication)

0 web browsers as the main vehicle for client / server communication

0 The first attempt was Secure Socket Layer (SSL)
O Introduced by Netscape in the 1990s

0 Embedded in web browsers / servers

HTTP FTP SMTP
O Later became Internet standard known [1 ™ | SSL or TLS
TCP TCP
as TLS (Transport Layer Security) — —

(a) Network Level (b} Transport Level

TLS (Transport Layer Security)

0 This application layer protocol is widely used for
applications such as email, instant messaging and VolP

0 Mainly known for securing HTTP (i.e. HTTPS)

0 TLS provides
O privacy (confidentiality) of exchanged data
O integrity of exchanged data

O authentication of server (and optionally client) through the
use of digital certificates

0 Composed of two layers:
o TLS handshake protocol (main focus)
O TLS record protocol

0 It operates on top of TCP, which in turn is gradually
replaced by the QUIC (also called TCP/2) protocol

Sequence of a TLS Session
=

0 Handshake Protocol
O Agree a cipher suite

O Agree a master secret
0 Authentication using certificate(s)

0 Record Protocol Handshake =<
0 Secure data communication ¢ i
B Symmetric key encryption —* Application Data .
® Data authentication 1
m Often in combination with HTTP ¢ }
O Alerts Alert .
®m Graceful closure, or l

m Problem detected
Close Socket

Website Protocol Support (Wikipedia)
I

Protocol | Websita

Securityl’ <73
version | support’’ Y

SSL20 04% Insecure
o SSL 2.0 / 3.0 contain a number of SSL3.0 | 3.0% insecure!”
security flaws TLS1.0 438% Deprecated!®I 10111}
0 Support for TLS versions 1.0 and TLS14 | 47.8% Deprecateq! 1011
1.1 was widely deprecated by TLS1.2 | 996% | Depends on cipheri” ! and client mitigations™ 2!
web sites around 2020 TLs13 | 297% cecure

o TLS 1.3 was released as RFC 8446
in August 2018. It is a streamlined version of the earlier TLS 1.2 specification with
someone notable changes:

O Streamlined handshake

0 Focus on elliptic curve cryptography using a reduced list of curves, RSA is not supported any more
O Removing support for the MD5 and SHA-224 cryptographic hash functions

O No more backwards compatibility beyond TLS 1.2

0 As we'll see later, TLS 1.3 presents itself as 1.2 (well almost), this is apparently
for compatibility reasons

0 Today, only TLS 1.2 and TLS 1.3 are in use, that’s the focus of this lecture!

Issues with Legacy TLS Versions: The Heartbleed
Vulnerability in TLS 1.0 (2014)
s 4

The Heartbleed Bug

The Heartbleed Bug is a serious vulnerability in the popular Open3SL cryptographic software library. This weakness

allows stealing the information protected, under normal conditions, by the SSL/TLS encryption used to secure the
Internet. SSL/TLS provides communication security and privacy over the Internet for applications such as web, email,

instant messaging (IM) and some virtual private networks (VPNs).

The Heartbleed bug allows anyone on the Intemnet to read the memory of the systems protected by the vulnerable
versions of the OpenSSL software. This compromises the secret keys used to identify the service providers and to
encrypt the traffic, the names and passwords of the users and the actual content. This allows attackers to eavesdrop on
communications, steal data directly from the services and users and to impersonate services and users.

What leaks in practice?

We have tested some of our own services from attacker's perspective. We attacked
ourselves from outside, without leaving a trace. Without using any privileged information
or credentials we were able steal from ourselves the secret keys used for our X.509
certificates, user names and passwords, instant messages, emails and business critical
documents and communication.

How to stop the leak?

As long as the vulnerable version of OpenSSL is in use it can be abused. Fixed OpenSSL
has been released and now it has to be deployed. Operating system vendors and
distribution, appliance vendors, independent software vendors have to adopt the fix and
notify their users. Service providers and users have to install the fix as it becomes
available for the operating systems, networked appliances and software they use.

Issues with Legacy TLS Versions: Apple ‘goto fail;’

Vulnerability in TLS 1.0 and TLS 1.1 (2014)
S

0 Affected iOS and Mac OS X operation systems

0 This vulnerability enabled MitM attacks on TLS connections

if ((err = ReadyHash (&SSLHashSHAl, &hashCtx)) != 0)
goto fail;

if ((err = SSLHashSHAl.update (&hashCtx, &clientRandom)) != 0)
goto fail;

if ((err = SSLHashSHAl.update (&hashCtx, &serverRandom)) != 0)
goto fail;

if ((err = SSLHashSHAl.update (&hashCtx, &signedParams)) != 0)

goto fail;
goto fail;

1f ((err = S5LHashSHAl.final (&hashCtx, &hashout)) = 0)
goto fail;

err = sslRawVerify(ctx,
ctx->peerPubKey,

dataToSign, /* plaintext */
dataToSignlen, /* plaintext length */
signature,
signaturelen);
if (exrxr) {
sslErrorLog ("SSLDecodeSignedServerReyExchange: sslRawVerify "

"returned %d\n", (int)err):
goto fail;

fail:
SSLFreeBuffer (&signedHashes);
SSLFreeBuffer (&hashCtx);
return err;

TLS Record Protocol Characteristics
I

0 The connection is private because a symmetric-key algorithm
(i.e., AES) is used to encrypt the data transmitted

0 The identity of the communicating parties is authenticated via
digital certificates that are exchanged and validated during
the initial handshake
O This (server-side) authentication is required for the server and

optional for the client (i.e. client-side authentication)
B We focus on server-side authentications for now

0 The connection is reliable, because each message transmitted
includes a message integrity check using a message
authentication code to prevent undetected loss or alteration
of the data during transmission

TLS Handshake Protocol Overview
N

0 Secure (TLS) connection is initiated by client

O Typically, via dedicated port, e.g. HTTP port 80 versus HTTPS port 443

0 It uses public key cryptography to establish cipher settings and session-
specific shared private keys with which further communication is encrypted
using a symmetric cipher
o Client and server agree on a cipher suite (a cipher and a hash function)

0 The server also presents its digital certificate to the client for authentication

0 To initiate the generation of session keys used for a secure connection, the
client either:

1. Encrypts a random number (PreMasterSecret) with the server’s (RSA or EC) public key and
sends the result to the server (only up to TLS 1.2)

® Forward secrecy is not provided!

2. Uses (Elliptic Curve) Diffie—Hellman key exchange (in TLS 1.2 and TLS 1.3)

m This key may have the property of forward secrecy, but MitM attacks need to be mitigated

Recall Forward Secrecy
N

0 Consider an attacker who

O intercepts and records all client / server messages, including
the handshake

O recovers the server’s private key sometime in the future, using
the public key in the server’s digital certificate as a starting
point

0 In option 1 the PreMasterSecret can now be retrospectively
recovered, session keys can be calculated, and all subsequent
messages can be decrypted by the attacker

0 However, the DH key negotiation in option 2 is based on other
secret token not linked to the server’s private key

O Nonetheless the key exchange has to be protected to
prevent a MitM attack as seen before

Ephemeral Diffie-Hellman vs static

Diffie-Hellman
I

0 Static Diffie-Hellman key exchange (in TLS 1.2 only)
O Always use the same Diffie-Hellman private keys (this saves CPU cycles)

O Each time the same parties do a DH key exchange, they end up with the
same shared secret > only partial forward secrecy

0 Ephemeral Diffie-Hellman key exchange (compulsory in TLS 1.3)

O A temporary DH key is generated for every connection and thus the
same key is never used twice

O This enables forward secrecy, which means that if the long-term private
key of the server gets leaked, past communication is still secure

0 This distinction also holds for the Elliptic Curve DH variants

0 ECDHE (ephemeral, provides Forward Secrecy) and
o ECDH (static)

TLS Handshake Overview

Sender Receiver

TLS 1.3 also
supports a

faster variation

‘_// e SYNACK
[Hc“ }..........--. A R R R A RN R A N ENE A EAE SRR REE e 56 s) . "
— T Servertiello
EIIE"tHE"D] Eq. MG [rrsoesmeasmaesnenns staesnss BOaas bR Esanauesne R0 aREEoETauEsnts S0 akanesnen sy {Ertiﬁ':ate
p— ‘/’/‘ | ServerHelloDone
ClientKeyEXChange ... et sesen e

1 112 ms

ChangeCipherSpec \ . - \
\ Finished TAD S frersrmeeerssseeasreessesessssessmeesnssesssaseessseeemseoreo b s sseeeee] Ehanlqﬁ]marﬂpec

w==oo 168 ms

: Application Data]\
r Application Data

SW9s -dil

swLl- Sl

196 [A R P R I TP ETT ST RETITRORI R SYRRT

p—_——

-

| 224 ms

In-Class Activity: Analysis of TLS

Handshake
e

0 Option 1:
O Open Wireshark and start packet recording

O In your browser open a HTTPS secured website you never
visited before (e.g. fussball.de)

O Stop packet recording and filter all TLS-related packets
(Filter option ‘tls’)
0 Option 2:

O Load pcap file “revenue tls” (Blackboard file name
“Example Wireshark TLS Handshake”)

0 Wireshark does a great job analysing the content of
the packets

TLS Handshake

1 TCP connection establishment
o SYN — SYN/ACK — ACK

0 The ClientHello message

0 The client initiates the handshake by sending a (plaintext) “hello”
message to the server

O The message includes
m the highest TLS version the client supports (1.2 or 1.3)

m the cipher suites supported (i.e. what algorithms are available to client,
see next slide),

m a session identifier

® Note that the session id is kept empty if the clients starts an entirely new
session

B a string of random bytes known as the "client random*

Cipher Suite Naming Scheme

0 Examples:

TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384

0 Here:

TLS defines the protocol that this cipher suite is for

ECDHE indicates the key exchange algorithm being used (Elliptic Curve Diffie-Hellman
Ephemeral)

RSA or ECDSA (Elliptic Curve Digital Signature Algorithm) authentication mechanism
during the handshake

® Remember the ServerHello message contains the server’s public DH parameter signed with its
private (RSA) key or signed via ECDSA

AES cipher for symmetric data encryption
128-bit or 256-bit AES key size
GCM type of encryption (Galois/Counter Mode, covered before)

SHA256 / SHA384 hash function (HMAC) indicates the message authentication
algorithm which is used to authenticate a message

m 256-bit or 384-bit digest size

Cipher Suite (Wireshark Screenshot)
B

¥ Cipher Suites (16 suites)

Cipher
Cipher
Cipher
Cipher
Cipher
Cipher
Cipher
Cipher
Cipher
Cipher
Cipher
Cipher
Cipher
Cipher
Cipher
Cipher

Suite:
Suite:
Suite:
Suite:
Suite:
Suite:
Suite:
Suite:
Suite:
Suite:
Suite:
Suite:
Suite:
Suite:
Suite:
Suite:

Reserved (GREASE) (@x7a7a)

TLS_AES 128 GCM_SHA256 (@x1381)
TLS_AES 256 GCM SHA384 (@x1382)

TLS_CHACHA2@ POLY1385 SHA256 (@x1383)
TLS_ECDHE_ECDSA_WITH AES 128 GCM_SHA256 (@xc@zb)
TLS_ECDHE_RSA WITH_AES 128 GCM_SHA256 (@xc@2f)
TLS_ECDHE_ECDSA_WITH _AES 256 GCM_SHA384 (@xc@2c)
TLS_ECDHE_RSA WITH_AES_256_GCM_SHA384 (@xc@30)
TLS_ECDHE_ECDSA WITH CHACHA2@ POLY1385 SHA256 (@xccad)
TLS_ECDHE_RSA WITH CHACHA2@ POLY13@5 SHA256 (@xccad)
TLS_ECDHE_RSA WITH AES 128 CBC_SHA (@xc@l3)
TLS_ECDHE_RSA WITH AES 256 CBC_SHA (@xc@ld)

TLS_RSA WITH_AES 128 GCM SHA256 (@xee9c)

TLS_RSA WITH_AES 256 GCM SHA384 (@xeead)

TLS_RSA WITH_AES 128 CBC_SHA (@x@e2f)

TLS_RSA WITH_AES 256 CBC_SHA (@x%8035)

Two bytes specify a cipher suite

Suits have different levels of
robustness

See also for details

https: / /ciphersuite.info /cs/

https://ciphersuite.info/cs/

Cipher Suite (Wireshark Screenshot)

I I —————

¥ Cipher Suites (16 suites)

Cipher

Cipher
Cipher
Cipher
Cipher
Cipher
Cipher
Cipher
Cipher
Cipher
Cipher
Cipher
Cipher

Suite:
Suite:
Suite:
Suite:
Suite:
Suite:
Suite:
Suite:
Suite:
Suite:
Suite:
Suite:
Suite:
Suite:
Suite:

O

TLS_AES 128 GCM_SHA256 (@x13@1)
TLS_AES 256 GCM _SHA3B4 (@x1382)

TLS CHACHA2@8 POLY1385 SHA256 (@x1383)
TLS_ECDHE_ECDSA WITH AES 128 GCM SHA256 (@xc@2b)
TLS_ECDHE_RSA_WITH_AES 128 GCM SHA256 (@xc@2f) N
TLS_ECDHE_ECDSA WITH_AES 256 _GCM SHA3B4 (@xc@2c)
TLS_ECDHE_RSA_WITH_AES 256 GCM_SHA3B4 (@xc@3@)
TLS_ECDHE_ECDSA WITH CHACHA2® POLY13@5 SHA2SE (@xccad)
TLS_ECDHE_RSA WITH_CHACHA2@ POLY13@85 SHAJS6 (@xccas)
TLS_ECDHE_RSA WITH AES 128 CBC_SHA (@xc@13)
TLS_ECDHE_RSA WITH AES 256 CBC_SHA (@xc@14)

TLS_RSA WITH AES 128 GCM SHA256 (@x@89c)
TLS_RSA_WITH_AES 256 GCM _SHA384 (@x@89d)

TLS_RSA WITH_AES 128 CBC_SHA (@x@azf)

TLS_RSA WITH_AES 256 CBC_SHA (@x@@835)

Two bytes specify a cipher suite

o Suits have different levels of
robusthess

O See also for details
https: / /ciphersuite.info /cs/

Cipher suits Ox1301, Ox1302
and Ox1303 do not describe the

O server authentication mechanism
(e.g., RSA)

O key exchange algorithm (e.g.,
ECDHE)

This is a simplification introduced
with TLS 1.3 (more later!)

https://ciphersuite.info/cs/

TLS Handshake

IR
0 The ServerHello message

o In reply to the ClientHello message, the server sends a
(plaintext) message containing
m the server’s digital certificate

® a certificate chain that includes all intermediate certificates up to
the root CA along the certification path

m the server's chosen cipher suite,
m its chosen session id (session resumption =2 later), and

m the "server random," another random string of bytes that's
generated by the server

TLS Handshake

0 Avuthentication

O The client verifies the server’s digital certificate with the certificate authority that issued
it using the intermediate certificates

o This confirms that the public key is linked to the certificate owner, but does not confirm
the authenticity of the server yet (as any threat actor could use the server’s certificate
in a spoofing attack)

0 Key negotiation (next slides)
o Option 1: RSA handshake (not supported anymore with TLS 1.3)
O Option 2: DH handshake (ECDH to be exact)
0 Change Cipher Spec (not shown in the diagrams in the following slides)

O In due course both parties will send a ChangeCipherSpec message which is used to
indicate that their subsequent messages will be sent encrypted using the negotiated key
and algorithm

0 Finished (not shown in the diagrams on the following slides)

O This is an encrypted message (more later)

Option 1 Overview: RSA Handshake
20

Now the visitor can request content from CloudFlare.
(also sent is a session ticket for session resumption)

@
Visitor CloudFlare
T — Rt T T L R T B KL £ L= R = W e S R R N
1 1 1 1
1 1 H i i i 1 1
. u m Client random '_o Visitor sends hello, client random, and cipher suites supported S - n m Client random .
1 1 1 1
G L e 1 L 1
O SPP- D SO S P - SO S SO S S P S 3+ < O - S (T 20T OSSR SO £ S S| S - S SR < D PP S P T . SN
i i) i
: n E Server random : y 2 - n E Server random -
H : = Server sends server random and public key certificate H :
|} 1 — s B z : 1 1
= (also sent is a session ID for session resumption) +
- Public key certificate | : Public key certificate !
! 1 ! [
S e e e e e e e e T e 7 e e e e e e e e e e e e e e e -
l’ } Visitor encrypts premaster secret with public key 1’ }
' On—> | !
t Premaster secret 1 1 Encrypted premaster secret 1
[} 1 <% ' 1
b e __l e e i e e e o e o <arag e !
ST I P o v S Sy S L i e, S o e N
1] 1
1 1
f § ‘ ,l_ Private ke !
1 Y 1
el i e e e e s '
e e e s
i 3
CloudFlare decrypts the premaster : Premaster secret :
secret with the private key ' 1
b e e e e e e e e e e e e _l
o — — — e T R U R KR N R P —y P S S N R R R RO N
: \' Both the visit: d CloudFl t ion k fre - }
[} 1 oth the visitor an oudFlare create session keys from 1
1 m Session key 1 the client random, server random, and premaster secret.] %
1 1 1
1] 1

Option 1: RSA Handshake
I

0 Premaster secret generation

O The client generates a random string of bytes, the "premaster
secret”

O The premaster secret is encrypted with the server’s public key

0 Premaster secret distribution
O The client sends the encrypted secret to the server
O The server decrypts the premaster secret

0 Master secret creation

O Both client and server generate a master secret (which is not the
encryption key used), using

® the client random,
® the server random,
® and the premaster secret

Option 1: RSA Handshake

0 Session keys generation

O Using the master secret both client and server generate 4 session keys (see next
slide):
® Client-write symmetric encryption key
B Server-write symmetric encryption key
m Client-write MAC key (for client message authentication)
m Server-write MAC key (for server message authentication)

0 Client is ready
O The client sends a finished message that is encrypted with the session key
0 Server is ready

O The server sends a finished message encrypted with the session key

m This validates the authenticity of the server, i.e. the client has proof that the server is in
possession of the private key linked to the server certificate

0 Secure symmetric encryption can be provided
O The handshake is completed, and communication continues using the session keys

Recall: Authenticated Encryption with
Additional Data

0 Links back to the use of hash functions

crrypion [+—EET]
1@

Hash function |

(<> previous lecture):

0 Encrypt-then-MAC (EtM) = top right

O Encrypt-and-MAC (E&M) = bottom right
0 MAC-then-Encrypt (MtE) =2 bottom left

LKy ' '
Encryption < K&y yash function

Hash function ™7 |
' ' MAC

Encryption ™

oo

Option 2 Overview: DH Handshake

and client DH parameter.

®
Visitor

ANR N SUR SR S0 VR CON (SN, SRR SVD S SRR GO SR SR S SR 50, 99 \

I |

: n m Client random : o Visitor sends hello, client random, and cipher suites supported

I I

e I

Frifepiphis g aatainintin it

[)

: n E Server random !

1 :4 Server sends server random and public key certificate
_: X _ 5 (also sent is a session ID for session resumption)

' Public key certificate :

! 1 .

o s s e s) Server protection

e e e e

! }. against MitM attack

I 1

I ﬁ Server DH parameter 1

| |

| |

| |

| | :

‘ , Signature from key server ¢ Server sends the server DH parameter and a signature

| |

| |

L\ S S S S V]

05 o e e e G, e, e, S o o e o \

| |

[} 3 ! Visitor sends the client DH parameter

i Client DH parameter r—o >

I |

b e e i e A o

D AP D AP FP.IN AN SN S PECR IS g, oy >, 3

L} I

| 1 Both the visitor and CloudFlare derive identical

1 Premaster secret | premaster secrets from the server DH parameter

| |

| |

\
: : Both the visitor and CloudFlare derive identical
' m Session key 1 session keys from the client random, server random,
1 1 and premaster secret. The visitor can request content
1 1 from CloudFlare, and the request will be encrypted.
---------------- (also sent is a session ticket for session resumption)

CloudFlare
Fo—r—r_r %Y S _NK_F_N_Y = K _S_F_&_N_%_{ Y
1 |
: n m Client random |
| 1
] 1

S S T o R D N R o S e e o 7
Tt TTTrT T)
1

ﬁ Server DH parameter b3
i 1
L T e R e SRR N PO _I
X SR PR RN P, SO0 O S e P SR TR SN A FRD AT, SPP VL SPP , FOL, O Ay
1
| 1
| O“ Private key :4—-——
s]
eSS e e O R e St

m E Server random

1
|
1
|
ﬂ Public key certificate :
|

The key signs for client
random, server random,
and public key certificate

Option 2: DH Handshake
B

0 Server Key Exchange

O This message contains either ECDH parameters (elliptic curve + primitive
root + public ECDH parameter) or DH parameters (modulus, primitive
root, public DH value) to be used by the client

O The values are signed by using the private (RSA or EC) key of the server

so that the client can verify (using corresponding public key in the
certificate) that the parameter indeed came from the server it is talking

to and not an attacker that impersonates the server

® Note that in
m TLS 1.2: DH, ephemeral DH (DHE), ECDH, or ECDHE can be used

m TLS 1.3: only ECDHE is allowed

0 Client Key Exchange
o Contains the client’s public parameters for the DH algorithm

o Client parameters are not signed (as the client does not have a
certificate)

Option 2 Overview: DH Handshake

0 Client and server calculate the premaster secret

O Instead of the client generating the premaster secret and sending it to
the server, as seen before, the client and server use the DH parameters
they exchanged to calculate a matching premaster secret separately

0 Master secret creation

O The client and server calculate the master secret using the premaster
secret, client random, and server random

0 Session keys generation
O Same as before
0 Client is ready
O Same as before
O Server is ready
O Secure symmetric encryption achieved

ClientHello (Wireshark Screenshot)

Transmission Control Protocol, Src Port: 63377, Dst Port: 443, Seq: 1, Ack: 1, Len: 517 D Highes-l- TLS version Supported

v Transport Layer Security
¥ TLSv1.3 Record Layer: Handshake Protocol: Client Hello
Content Type: Handshake (22)
Version: TLS 1.8 (@x@3el)

Length: 512
* Handshake Protocol: Client He
Handshake Type: Client Hello

Length: 588
Version: TLS 1.2 (@x@383)

0 32-byte random structure (contains
a 4-byte timestamp and a 28-byte
random = next slide)
Random: 5628afelaSafa352d8a3336c393

da39bl3ec3de@@9edcafiefa22ae H H
Fandon: Seameterasets 3sb13ec %W 0 Random 32-byte session id

Session ID: @7c2d4934554al463c42der9738cWbe45dbc5691c381e26bb3663dT24c . .
Cipher Suites Length: 32 0 List of supported cryptographic
algorithms

Cipher Suites (16 suites)
Compression Methods Length: 1
Compressicn Methods (1 method)
Extensions Length: 483
Extension: Reserved (GREASE) (len=8)
Extension: server_name (len=38)
Extension: extended_master_secret (len=8)
Extension: renegotiation_info (len=1)
Extension: supported_groups (len=18)
Extension: ec_point_formats (len=2)
Extension: session_ticket (len=@)
Extension: application_layer_protocel_negotiation (len=14)
Extension: status_request (len=5)

Extension: signature_algorithms (len=13)
Extension: signed_certificate_timestamp (len=8) . .
Extension: key_share (len-43) 0 Version of the record protocol (still
Extension: psk_key exchange_modes (len=2)

Extension: supported_versions (len=7)] 0())

Extension: compress_certificate (len=3)

Extension: application_settings (len=5)

Extension: Reserved (GREASE) (len=1)

Extension: padding (len=198)

0 List of supported data compression
methods, obsolete with TLS 1.3

0 List of extensions

O Note that all is plaintext!

Client Hello: 32-Byte Random Structure

N
0 From RFC 5246 Section 7.4.1.2:

The ClientHello message includes & random structure, which is used

later im the protocol.

struct {
uint32 gmt_unix_time;
opaque random_bytes[28];
} Random;

gmt unix time
The current time and date in standard UNIX 32-bit format
(seconds since the midnight starting Jan 1, 1978, UTC, ignoring
leap seconds) according to the sender's internal clock. Clocks
are not reguired to be set correctly by the basic TLS protocol;
higher-level or application protocols may define additional
requirements. MNote that, for historical reasons, the data
element is named using GMT, the predecessor of the current
worldwide time base, UTC.

random_bytes
28 bytes generated by a secure random number generator.

The Version Rollback Attack

0 This MitM attack targets SSL 3.0 2ol
Server is fooled into thinking he S version,=2.0, suite, N,
0 Here the attacker intercepts the 55321“n3;3ﬁ2t5n"9'y\23?’“m rfiﬂ:ﬁiéz:é'
plaintext ClientHello message,)
that includes the highest TLS —— —
version the client supports Cand'S e Wy Commiunicating tadng S5 20
(i.e. SSL 3.0) Gt Wiy Pl o)

0 The attacker changes the message content to “SSL 2.0, thereby
tricking both server and client to accept a weaker (i.e. flawed)
protocol

O The server assumes the client only understands SSL 2.0

O The client assumes the server only understands SSL 2.0

TLS Protection against MitM Attacks

0 MitM attacks cannot be mitigated, as Client Hello and Server
Hello messages, as well as the client key exchange messages for
DH key negotiation are sent as plaintext

0 Instead, the Finished messages of both client and server contain
the result of the HMAC of the negotiated cyphersuite, truncated to
12 bytes (therefore called a pseudo-random function (PRF)), of:

0 The master secret

O A hash of all the previous handshake messages (from ClientHello up to
but excluding the Finished message)

O The finished-label string (“client finished” for client message and “server
finished” for server message)

0 Therefore, both sides can retrospectively validate the integrity of
the handshake protocol

O This includes all MitM attacks during the key exchange protocol
(remember only the server value was signed)

Sender

['q[h" }.. R
[ClientHello]54,“5

L L

0
[.ﬁ‘pp.l":atlun Data]u.umu N A AR A I LS R AT n

Receiver

196 15 frreremmsmsmsmsnsnsnncsnssssnmsnssssnmsnsassnsssnnsamsnsmanannsnsnnsafannnnnans

hd

el SINACK

[ServerHello

e e

Certificate
ServerHelloDone |

{ Application Data]

weof 28 ms

TLS Protection against MitM Attacks

SW9s -dil

sSwLl- Sl

TLS Handshake Extensions

Sender Receiver

CELEREEE nms

e SINACK

SW9s -dil

- 56 ms) \
ServerHello
Certificate

— 4—””’/‘ | ServerHelloDone |
ClientKeyExchange] evesesessssmsmmssasmsessesees] 112 18

swLl- Sl

ChangeCipherSpec

Finished \‘* cha“g;&;ﬂ;ﬁpﬂf 1
: Application Data]< 68ms /
, Application Data

196 [A R P R I TP ETT ST RETITRORI R SYRRT

—mm =

- -

i.......u. - 214 ms

140 ms

TLS Handshake

Hello Message

* Server Name Indication extension
Server Name list length: 28
Server Name Type: host _name (@)
Server Name length: 25
Server Name: lh3.googleusercontent.com

Extension:
Extension:
% Ewxtension:

extended _master_secret (len=8)
renegotiation_info (len=1)
supported_groups (len=18)

Type: supported groups (18)

Length: 1@

Supported Groups List Length: 8

¥ Supported Groups (4 groups)

Supported Group: Reserved (GREASE) (@x3)
Supported Group: x25519 (@x@8ld)
Supported Group: secp256rl (8xee17)
Supported Group: secp384rl (@w8e13)

Extension:
Extension:
Extension:
Extension:
Extension:
Extension:
Extension:
Extension:
Extension:
Extension:
Extension:
Extension:
Extension:

ec_point_formats (len=2)
session_ticket (len=8)
application_layer protocol negotiation (len=14)
status_request (len=5)
signature_algorithms (len=18)

signed certificate_timestamp (len=8)
key_share (len=43)

psk_key ewchange_modes (len=2)
supported wversions (len=7)
compress_certificate (len=3)
application_settings (len=5)
Reserved (GREASE) (len=1)

padding (len=198)

Extensions in the Client

0 These provide additional info to
the server

0 A few notable examples:

O Supported elliptic curves
o Server Name Indication

®m A client indicates which hostname it is
attempting to connect to at the start
of the handshake process

® This allows a server to present one of
multiple possible certificates on the
same IP address and TCP port
number and hence allows multiple
secure (HTTPS) websites to be served
by the same IP address without
requiring all those sites to use the
same certificate

TLS Handshake Extensions in the Client

Hello Message

Extensions Length: 483
> Extension: Reserved (GREASE) (len=@)
¥ Extension: server_name (len=38)

Type: server_name (@)

Length: 3@

» Server Name Indication extension

A Y L "

Extension: extended_master_secret (len=8)

Extensicn: renegotiation_info (len=1)

Extension: supported_groups (len=1@)

Extensicn: ec_point_formats (len=2)

Extension: session_ticket (len=8)

Extensicn: application_layer protocol negotiation (len=14)
Extensicn: status_request (len=5)

Extensicn: signature_algorithms (len=18)

Type: signature_algorithms (13)

Length: 18

Signature Hash Algorithms Length: 18
¥ Signature Hash Algorithms (8 algerithms)

Signature
Signature
Signature
Signature
Signature
Signature
Signature
Signature

WO W W W W W W

Algorithm:
Algorithm:
Algorithm:
Algorithm:
Algorithm:
Algorithm:
Algorithm:
Algorithm:

ecdsa_secp256rl_sha256 (8x@483)
rsa_pss_rsae_sha256 (@x0384)
rsa_pkecsl _sha256 (@x84a81)
ecdsa_secp384rl_sha3s4 (8x@583)
rsa_pss_rsae_sha384 (8x8885)
rsa_pkecsl_sha384 (8x8581)
rsa_pss_rsae_sha5l2 (8x88@6)
rsa_pkcsl_sha512 (@xe6al)

> Extension: signed_certificate_timestamp (len=8)
¥ Extension: key_share (len=43)
Type: key_share (51)

Length: 43

v Key Share extension
Client Key Share Length: 41

> Key Share Entry: Group: Reserved (GREASE), Key Exchange length: 1
> Key Share Entry: Group: x25519, Key Exchange length: 32

0 Signature hash algorithms

O In TLS1.2 only, the client MAY include the
signatureAlgorithms extension indicating
what types of signatures it supports
verifying

O This includes the signatures on the
certificates in the server's chain

o This feature is dropped again in TLS 1.3

ServerHello (Wireshark Screenshot)
I

¥ Transport Layer Security
¥ TLSv1.3 Record Layer: Handshake Protocel: Server Hello
Content Type: Handshake (22)
Version: TLS 1.2 (@x@3@3)
Length: 122
¥ Handshake Protocol: Server Hello
Handshake Type: Server Hello (2)
Length: 1138
Version: TLS 1.2 (@x@303)

Random: ??b42be2bd?8b5c553da9zfﬂa24bf3ff99biff?ifffﬁi%f§z§§@ﬂ5b52ﬁﬁ4ﬂ6§F””””"’——’¥'
Session ID Length: 32

Session ID: @7c2d49a4554a146342de69738c7hA45dbc5691c3A1226bh366
Cipher Suite: TLS AES 128 GCM_SHA2S6 (Bx13@1)

Compression Method: null (@)
Extensions Length: 46 _}

¥ Extension: key share (len=36)
Type: key share (51)

Length: 36
» Key Share extension
¥ Extension: supported versions (len=2)
Type: supported_versions (43)
Length: 2
Supported Version: TLS 1.3 (@x@304)
[1A35 Fullstring: 771,4865,51-43]
[1A35: ebld94daa7ed344597e756a1fh6e7054]
¥ TLSv1.3 Record Layer: Change Cipher Spec Protocol: Change Cipher Spec
Content Type: Change Cipher Spec (2@)
Version: TLS 1.2 (@x@383)
Length: 1
Change Cipher Spec Message

v

O

Highest TLS version supported

Random 32 byte nonce (contains a
timestamp)

Client session id
Chosen cipher suite

List of supported data compression
methods, obsolete with TLS 1.3

List of extensions

Again, all plaintext!

TLS 1.2 Session Resumption
T

0 Assume a client wants to reconnect to a server it has previously
communicated with

0 If the client still has the negotiated cipher suite and keys from the previous
handshake cached, it can send the server the previously used session id in
the ClientHello message

If the server has cached all this data too, it can shorten the handshake

However, it still requires a round trip to verify the session, which can
infroduce some latency

o Otherwise, a full new session negotiation is required, which will generate a new
session ID, and which will take longer

0 If a browser requires multiple connections to the same host (e.g., when
HTTP/1.x is used), it will often wait for the first TLS negotiation to complete
before opening additional connections to the same server, such that they can
be "resumed" and reuse the same session parameters

0 On the other hand, caching the parameters of many client sessions over long
periods of time does not scale and it rarely used

TLS 1.2 Session Resumption

Client Server
Client Hello
Session Ticket (PSK) - S:e";"é,';'a‘:'f

key Share

<

—>
data (e. g HTTP
< Answer)

0 Here all key negotiation steps are excluded

TLS 1.3 and 1-Round Trip Time (1-RTT)
.

0 Beside only supporting a streamlined ciphersuite for
key negotiation (ECDHE only), TLS 1.3 also supports
a new accelerated handshake process called 1-RTT

versus

The key_share Extension
N

Transmission Control Protocol, Src Port: 63377, Dst Port: 443, Seq: 1, Ack: 1, Len: 517
v Transport Layer Security
¥ TLSv1.3 Record Layer: Handshake Protocol: Client Hello
Content Type: Handshake (22)
Version: TLS 1.8 (@x@3el)
Length: 512
* Handshake Protocol: Client Hello
Handshake Type: Client Hello (1)
Length: 588
Version: TLS 1.2 (@x@383)
Random: 5628afelaSafa352d8a3336c39387da39bl3ec3dB@dedcIfoefr22ae51dTEe49

0 This seems to suggest that the client

is requesting a TLS 1.2 handshake

0 A TLS 1.3 client hello looks
superficially exactly like a TLS 1.2

Session D Length: 32 handshake, right down to the
Session ID: @7c2d49a34554a1463c42de69738c7b645dbc5691c3@1e26bb3663dF24c965F37
Cipher Suites Length: 32 version number

Cipher Suites (16 suites)
Compression Methods Length: 1

Compression Methods (1 method) 0 If the server only understands TLS

Extensions Length: 483

Ext i : R d [:GRE.&SE:] (l ='3') . ° ° .

Extension: server_name (lens30) 1.2, it will just negotiate a TLS 1.2
Extension: extended_master_secret (len=8)

Extension: renegotiation_info (len=1) hqndshqke as before

Extension: supported_groups (len=18)
Extension: ec_point_formats (len=2)

Extension: session_ticket (len=@) | However, The new CIieaneIIo

Extension: application_layer_protocel_negotiation (len=14)

xteneion: imacire arearstnme (1en-15) extension key_share indicates that
Extension: signed_certificate_timestamp (len= . .
Extension: key_share (len-43) the client understands version 1.3

Extension: psk_key exchange_modes (len=2)
Extension: supported_versions (len=7)
Extension: compress_certificate (len=3)
Extension: application_settings (len=5)
Extension: Reserved (GREASE) (len=1)
Extension: padding (len=198)

The key_share Extension
N

Extensicns Length: 483
Extension: Reserved (GREASE) (len=8)
¥ Extension: server name (len=3@)

Type: server_name (@)

Length: 3@

Server Name Indication extension
extended_master_secret (len=8)
renegotiation_info (len=1)
supported_groups (len=18)
ec_point_formats (len=2)
session_ticket (len=8)

Extension:
Extension:
Extension:
Extension:
Extensien:
Extension: application layer protocel negotiation (len=14)
status_request (len=5)
signature_algorithms (len=18)
signed certificate_timestamp (len=8)
key share (len=43)
Type: key share (51)
Length: 43
¥ Key Share extensicn
Client Key Share Length: 41
Key Share Entry: Group: Reserved (GREASE), Key Exchange length: 1
¥ Key Share Entry: Group: x25519, Key Exchange length: 32
Group: x25519 (29)
Key Exchange Length: 32
Key Exchange: el7fc347fe2e7@BalbebdbB57a224161ca7e71b2328868 de
Extension: psk key exchange modes (len=2)

Extension:
Extensicn:
Extension:
¥ Extension:

O

%

In TLS 1.2, the ClientKeyExchange message is
used fo kick-off the key exchange

This is now complemented by a method where
the client presents the server with a ECDHE key
exchange right at the start

The idea is that the client just goes ahead and
assumes that the server will select its preferred
key exchange method and returns its ECDHE
parameter

If the server selects a different key exchange
method, it will respond with a RetryHelloRequest
message (not shown here) which restarts the
handshake; this can be the result of either:

o An ECDHE group that is not supported by the server

O A server (security) policy that necessitate the use of
different ECDH parameters than those proposed by the
client

In most cases the server will support the
preferred key exchange method, so the
handshake is shorter

The key_share Extension in both ClientHello
(Left) and ServerHello (Right)

Extensions Length: 483
Extension: Reserved (GREASE) (len=8)
¥ Extension: server name (len=38)
Type: server_name (@)
Length: 3@
» Server Name Indication extension
Extension: extended master_secret (len=8)
Extension: renegotiation_info (len=1)
Extension: supported _groups (len=18)
Extension: ec_point formats (len=2)
Extension: session_ticket (len=8)
Extension: application layer protocel negotiation (len=14)
Extension: status_request (len=5)
Extension: signature_algorithms (len=18)
Extension: signed certificate_timestamp (len=8)
Extension: key share (len=43)
Type: key share (51)
Length: 43
¥ _Vag7snare extension
Client Key Share Length: 41
» Key Share Entry: Group: Reserved (GREASE), Key Exchange length: 1
¥ Key Share Entry: Group: x25519, Key Exchange length: 32
Group: x25519 (29)
Key Exchange Length: 32
ey Ewchange: el7fc347fe2e786alb6bdb857a224161ca727102328868 de
Extension: psk key excharpe wdues (icii--)

L L T R e A

¥ Handshake Protocel: Server Hello
Handshake Type: Server Hello (2)
Length: 113
Version: TLS 1.2 (@xB3@3)
Random: 77b42be2bd78b5cE53da92f8624bf3To0b742badach32f6726008b5)
Session ID Length: 32
Session ID: @7c2d49a4554a1463c42de69738c7b645dbe5691c301e26bb36E]
Cipher Suite: TLS_AES 128 GCM SHA256 (@x13@1)
Compression Method: null (@)
Extensions Length: 46
¥ Extension: key share (len=3g)
Type: key_share (51)
Length:.22
¥ Key Share extension
¥ Key Share Entry: Group: x25519, Key Exchange length: 32
Group: x25519 (29)
Key Exchange Length: 32
Key Exchange: ff218582cc@c2bcflafd@S4chi45459fc82a325dd]
¥ Extensicn: supported versions (len=2)
Iypatsunported versions (43)
Length: 2
Supported Version: TLS 1.3 (@x@3@4)
[1A35 Fullstring: 771,4865,51-43]
[JA35: ebld34daa?eR3445972756alfhee7054]
TL5v1.3 Record Layer: Change Cipher Spec Protocol: Change Cipher Spec

- . P -1 ' Fmmy

0 Note that in the server response all messages after the ServerHello message are already

encrypted

Cipher Suite (Wireshark Screenshot)
B

¥ Cipher Suites (16 suites)

Cipher

Cipher
Cipher
Cipher
Cipher
Cipher
Cipher
Cipher
Cipher
Cipher
Cipher
Cipher
Cipher

Suite:
Suite:
Suite:

Suite:

Suite:
Suite:
Suite:
Suite:
Suite:
Suite:
Suite:
Suite:
Suite:
Suite:
Suite:

0 The highlighted cipher suits are
used in TLS 1.3

0 The negotiable bits are:
‘ O 128- or 256-bit AES in GCM

TLS_AES 128 GCM_SHA256 (@x13@1)
mode, or

TLS_AES 256 GCM_SHA3E4 (@x1382)
TLS CHACHA28 POLY1385 SHA256 (@x1383) . .

o 256-bit ChaCha20 combined
with POLY1305

TLS_ECDHE ECDSA WLTH AES 128 GUM_SHAZ56 (@xce2b)
m ChaCha20 is a stream cipher

TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 (Bxc@2f)
TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 (@xc@2c)

m POLY1305 is a hash function, here
used for authenticated encryption

TLS_ECDHE_RSA_WITH_AES 256 GCM SHA3B4 (@xc@3@)
TLS_ECDHE_ECDSA WITH CHACHA2® POLY13@5 SHA256 (@xccad)
TLS_ECDHE_RSA WITH CHACHA2@ POLY13@5 SHA256 (@xccasd)

o SHA256 or SHA384 hashing
0 The fixed elements are:
o ECDHE using Curve25519

TLS_ECDHE_RSA WITH AES 128 CBC_SHA (@xc@13)
TLS_ECDHE_RSA WITH AES 256 CBC_SHA (@xc@14)

O Message authentication using RSA
or ECDSA

TLS_RSA_WITH_AES 128 GCM_SHAZ56 (@x@89c)
TLS_RSA_WITH_AES_256_GCM_SHA384 (@x@89d)

m Depending if the server certificate
contains a public RSA or EC key

TLS_RSA WITH_AES 128 CBC_SHA (@x@azf)
TLS_RSA WITH_AES 256 CBC_SHA (@x@@835)

Review a TLS Handshake with OpenSSL
s

1. Init TLS connection:

openssl s_client -connect universityofgalway.ie:443

2. Review the output on screen

3. You may decode the server certificate via
https: / /www.sslshopper.com/certificate-decoder.html

https://www.sslshopper.com/certificate-decoder.html

Review a TLS Handshake with OpenSSL
e

O

Connection Status:
o CONNECTED(0O0000003): Indicates that the connection to the server was successful.
Certificate Verification:

o depth=2, depth=1, depth=0: These lines show the verification process of the certificate chain. Each
depth level represents a certificate in the chain, starting from the root CA (depth=2) to the server's
certificate (depth=0).

o verify return:1: Indicates that the certificate at each depth level was successfully verified.
Certificate Chain:

O Lists the certificates in the chain, including the subject (s:) and issuer (i:) details. The chain starts from the
server's certificate and goes up to the root CA.

Server Certificate:

0 The server's certificate is displayed in PEM format, including details like the subject and issuer.
Peer Information:

O No client certificate CA names sent: Indicates that no client certificate authority names were sent.
O Peer signing digest: SHA256: Specifies the digest algorithm used for signing.

O Peer signature type: RSA-PSS: Specifies the signature algorithm used.

o Server Temp Key: X25519, 253 bits: Indicates the temporary key used for key exchange.

The HTTPS Protocol

2 ==
0 HTTPS (Hypertext Transfer Protocol Secure) is
syntactically identical to the HTTP protocol, but
operates on top of TLS (rather than TCP)

0 TLS on the other hand operates on top of TCP
0 It provides secure client / (web) server HTTP data

communication, while also allowing a client (i.e. web
browser) to authenticate the (web) server, as part of

the TLS handshake
0 The default HTTPS port is 443

The Importance of Server-Side

Authentication: Pharming Scams
n*

How can it be achieved — Simple Pharming!

0 Pharming scams use domain 0 Copy a website 1:1 and present it
spoofing (in which the domain to the victim using a slightly
appears authentic) to redirect different domain name

users to copies of popular
websites where personal data
like usernames, passwords
and financial information can

tand share witl C
be ‘farmed’ and collected for ST e e S R L s
X
fraudulent use O e TN s e st o
1 '''''' G e Page Your Email
X £y =2 N -1 Re-enter Email

New Password

The Importance of Server-Side

Authentication: Pharming Scams
n*
o —

0 Pharming scams use domain o Similar to simple pharming, but also
spoofing (in which the domain manipulate the DNS server to redirect
appears authentic) to redirect DNS queries to the attacker’s website,
users to copies of popular i.e. the same domain name is used
websites where personal data 0 Known as DNS poisoning, DNS cache
like usernames, passwords poisoning or DNS spoofing
and financial information can
be ‘farmed’ and collected for @
fraudulent use Atacker

ARy Request resolves Fake website
1 Tie etste
@ ——E
e lis,”:‘f;%:offé =Em e

Anti-Pharming Support in your Browser
N

0 In DNS spoofing, the malicious server cannot support HTTPS
or TLS, as its doesn’t have the spoofed server’s private key

O It has its certificate though, but that’s not enough to complete the
TLS handshake

0 All modern browsers pick up » | obers
on this and abort the
connection | A
. | Your connection is not private
D AISOI Use rs q re Wq rned If TC P i ﬁmack:rs might be ‘t’ryi:\fg to steallyourinfnrmdationfrom omop-leadf.- .
rather than TLS is used (se e T8 GENT COUNON AN NIALD

Q To get Chrome's highest level of security, turn on enhanced protection

°
image)
Advanced

Certificate Stapling
I

0 In certificate stapling, the server appends all certificates in the path up
to the root CA / RCA in a “Certificate” message, which is sent together
with its ServerHello message to the client

0 These stapled certificates are sent as
O plaintext in TLS 1.2 (see Wireshark screenshot below)

O ciphertext in TLS 1.3 (as all messages after the “Server Hello”
message are already encrypted

Frame 12: 1872 bytes on wire (8576 bits), 1872 bytes captured (8576 bits) on interface \Dewvice\NPF_{D65A8A53-7DBC-4AE2-93E1-1C9B99DCACE2}, id &
Ethernet II, Src: Sagemcom 5b:a3:57 (5c:bl:3e:5b:a3:57), Dst: IntelCor a6:2e:6c (18:5e:8f:a6:2e:6¢c)
Internet Protocol Version 4, Src: 13.79.243.64, Dst: 192.168.1.185
Transmission Control Protocol, Src Port: 443, Dst Port: 56944, Seq: 2921, Ack: 518, Len: 1818
[3 Reassembled TCP Segments (3938 bytes): #18(146@8), #11(1468), #12(1018)]
v Transport Layer Security
~ TLSv1.2 Recerd Layer: Handshake Protocol: Multiple Handshake Messages
Content Type: Handshake (22)
Version: TLS 1.2 (@x@3e3)
Length: 3933
Handshake Proteocol: Server Helle
¥ Handshake Protocol: Certificate
Handshake Type: Certificate (11)
Length: 3@57
Certificates Length: 3854
¥ Certificates (3854 bytes)
Certificate Length: 1838
Certificate: 3082072a30520612a00302010202100b183ee5deb9b4c931506d59591F7ecf300d@6092a.. (id-at-commonName=www.revenue.ie,id-at-organizationName=0ffice of the Revenue Commissioners,id-at-localityName=Dublin,id-at-countryName=IE,..
Certificate Length: 1218
Certificate: 385284b6305208300aB0302010282100C79a944b@8c11952092615Fe26b1d53300de6092a.. (id-at-commonName=DigiCert SHA2 Extended Validation Server CA,id-at-organizaticnalUnitName=www.digicert.com,id-at-organizationName=DigiCert..
Handshake Proteocol: Certificate Status
Handshake Protocol: Server Key Exchange
Handshake Protocol: Server Hello Done

Example Certificate Path Validation
—

Certificates X
request web site
m . !\ —— certificate | Cettification Intended purpose: <All> ~
‘ secure 2
b si [2J Authority Intermediate Certification Authorities Trusted Root Certification Authorities Trusted publ 4+ | »
o web site = (ca
-Sign
_/ g R Issued To Issued By Expiry Date Friendly Name &~
- / 0
P ey ® { \ " mA\phaSSL CA -SHA... GlobalSign Root CA 20/02/2024 <None>
. e i 5 ‘. | @Cullaburatun Certif... WVeriSign Class 2 Public... 01/09/2019 <None>
“ "9 § 2 § § % [53/coMODO ECC Cert... AddTrustExternal CA... 30/05/2020 <None>
(\ | (‘\.. 2 g o a E g_' [=;/COMODO RSA Dom... COMODO RSA Certific... 11/02/2028 <None>
———— 2 g % £ c [5JCOMODO RSA Org... COMODO RSA Certific... 11/02/2028 <None>
// \. = e ‘ln []DFN-verein Certific... T-TeleSec GlobalRoot ... 22/02/2031 <Nonex
\ e | [55/DFN-verein Global 1... DFN-Verein Certificati... 22/02/2031 <None>
mD\giCert Assured ID... DigiCert Assured IDR... 10/02/2026 <None>
’ 3

\ |
/ f \ !
/ \ /
{ / \) A 4 |5/ DigiCert Assured ID... DigiCert Assured ID R 15/01/2038 <None> b
n / \ 1
(‘A3 ('.\,l \ user at PC " | browser
p y | \ with browser || ——— ,dismbu.e — vendor Import... Export... Remove Advanced
7= ' - \ — with browser
\\ / \ -"_& = Certificate intended purposes
f \ \
\ / \ verify s
’ 4 1 CA root certificate

-
Alie | Bob ' [Carl ’ ”f"',“f,J Eanil | [weo st corcte

0 For Alice (Client PC with web browser) to authenticate Diana (Server that hosts secure
website), she requires CA2’s (Certification Authority) certificate

0 This may be already installed in Alice’s browser (right image) together with RCA’s
certificate

0 However, there’s no guarantee that a browser contains the certificates of all
intermediate CAs

0 On the other hand, the handshake process should not be delayed by the client collating
all the certificates belonging the Diana’s certificate path

0 Therefore, the server (Diana) provides Alice with the chain of certificates up to RCA level
via certificate stapling

OCSP Stapling

0 Recall: The Online Certificate Status Protocol (OCSP) is a standard
for checking the revocation status of X.509 digital certificates

o An OCSP response is digitally signed and time-stamped by the CA (OCSP
server) that confirmed the revocation status of a certificate

0 In OCSP stapling
O The client includes a "status_request” extension in its ClientHello message

O The server includes the OSCP response “Certificate Status” message in the
ServerHello response

0 This eliminates the need for a client to contact the CA, thereby
improving overall performance

0 However, the status of intermediate and root certificates is typically
managed by separate OCSP checks

The ServerHello OCSP Response
I

. 0 Type (BasicResponse)
Handshake Protoccl: Certificate Status
Handshake Type: Certificate Status (22) O
Length: 475
Certificate Status Type: OCSP (1)
OCSP Response Length: 471
¥ 0C5FP Response
responseStatus: successful (@)
¥ responseBytes
ResponseType Id: 1.3.6.1.5.5.7.48.1.1 (id-pkix-
% BasicOCSPResponse
“ thsResponseData

esponderID identifies the
OCSP server via its DN issuer
information, or its hashed
public key (as shown here)

ertld determines the cert
that is being validated; using
a hash algorithm (SHA-1) a
hash of the issuer’s DN, a

’ resfgderlgédggegdéag deef34a600a65d321d4T8Fad60T hash of it's public key, and
ey : asdealadeef34ac0ba o fe .
producedAt: Mar 18, 2823 23:86:29. 008000088 GMT Standard Time the Cel’flf.ICCﬂ'eS serial number
¥ responses: 1 item are prowded
v SingleRespons
v certl
» hashAlgorithm (SHA-1)
issuerNameHash: 49f4bd3alsbf760698c5ded4b2de

O certStatus (good)

Validity period of OCSP
response

seriallumber: @x@bl@3eesd The entire message us
7 certStatus: good (@) digitally signed by the OCSP

thisUpdate: Mar 1@, 2823 22:51:81.220220080
: responder
nextUpdate: Mar 17, 2823 22:86:081. Standard Time

» signaturefAlgorithm (sha25eWithRSAEncryption hat’s the signq'rure
Padding: @ k_’ﬁ‘/E/T
signature [..]: 6d3ld2blededlblebiSecd7d494facc5989T395 c4ch364815 e

Mutual Authentication (Server-Side and

Client-Side Au’rhen’rica’rioni
s

1 Consider a scenario where both the server and the
client need to mutually authenticate, e.g.

1 Server-to-server data communication
0 loT sensor network communication

O Online Revenue services where client (browser) needs to be
authenticated too

0 Mutual authentication is just an extension of the process
as seen before with the difference that the client sends
it certificate (chain) to the server too for verification

Mutual Authentication |
B 5

Client Server

Phase 1

Establish security capabilities, including
protocol version, session ID, cipher suite,
compression method, and mnitial random
numbers.

y

nge

yﬁ““”/
uest

certificate B

gerver ,.he“O _don®

Phase 2
Server may send certificate, key exchange,

andrequest certificate Server signals end

of hello message phase.

Mutual Authentication Il
B 5

Client Server
Certificay
client ke Phase 3
=—J_€Xchap ge Client sends certificate 1f requested. Client
] sends key exchange. Client may send
Certificata verify certificate verification.

w‘
Phase 4

Change cipher suite and finish

Cha“ge __Cipher —-Spec handshake protoc ol.

In Summary
I

0 TLS is the de-facto security protocol used in Internet data
communication

0 It went through a series of versions, and today only TLS 1.2
and TLS 1.3 are used

0 TLS combines a lot of the foundation topics we've discussed
in recent weeks

0 Practically it is very hard to break TLS security, as the
protocol went through various improvements over the years

0 Therefore, from an attacker perspective, it is more promising
to compromise a system by attacking either the client, the
server, or the end user directly

	Slide 1: CT437 Computer Security and Forensic Computing Transport Layer Security
	Slide 2: Background
	Slide 3: TLS (Transport Layer Security)
	Slide 4: Sequence of a TLS Session
	Slide 5: Website Protocol Support (Wikipedia)
	Slide 6: Issues with Legacy TLS Versions: The Heartbleed Vulnerability in TLS 1.0 (2014)
	Slide 7: Issues with Legacy TLS Versions: Apple ‘goto fail;’ Vulnerability in TLS 1.0 and TLS 1.1 (2014)
	Slide 8: TLS Record Protocol Characteristics
	Slide 9: TLS Handshake Protocol Overview
	Slide 10: Recall Forward Secrecy
	Slide 11: Ephemeral Diffie-Hellman vs static Diffie-Hellman
	Slide 12: TLS Handshake Overview
	Slide 13: In-Class Activity: Analysis of TLS Handshake
	Slide 14: TLS Handshake
	Slide 15: Cipher Suite Naming Scheme
	Slide 16: Cipher Suite (Wireshark Screenshot)
	Slide 17: Cipher Suite (Wireshark Screenshot)
	Slide 18: TLS Handshake
	Slide 19: TLS Handshake
	Slide 20: Option 1 Overview: RSA Handshake
	Slide 21: Option 1: RSA Handshake
	Slide 22: Option 1: RSA Handshake
	Slide 23: Recall: Authenticated Encryption with Additional Data
	Slide 24: Option 2 Overview: DH Handshake
	Slide 25: Option 2: DH Handshake
	Slide 26: Option 2 Overview: DH Handshake
	Slide 27: ClientHello (Wireshark Screenshot)
	Slide 28: Client Hello: 32-Byte Random Structure
	Slide 29: The Version Rollback Attack
	Slide 30: TLS Protection against MitM Attacks
	Slide 31: TLS Protection against MitM Attacks
	Slide 32: TLS Handshake Extensions
	Slide 33: TLS Handshake Extensions in the Client Hello Message
	Slide 34: TLS Handshake Extensions in the Client Hello Message
	Slide 35: ServerHello (Wireshark Screenshot)
	Slide 36: TLS 1.2 Session Resumption
	Slide 37: TLS 1.2 Session Resumption
	Slide 38: TLS 1.3 and 1-Round Trip Time (1-RTT)
	Slide 39: The key_share Extension
	Slide 40: The key_share Extension
	Slide 41: The key_share Extension in both ClientHello (Left) and ServerHello (Right)
	Slide 42: Cipher Suite (Wireshark Screenshot)
	Slide 45: Review a TLS Handshake with OpenSSL
	Slide 46: Review a TLS Handshake with OpenSSL
	Slide 47: The HTTPS Protocol
	Slide 48: The Importance of Server-Side Authentication: Pharming Scams
	Slide 49: The Importance of Server-Side Authentication: Pharming Scams
	Slide 50: Anti-Pharming Support in your Browser
	Slide 51: Certificate Stapling
	Slide 52: Example Certificate Path Validation
	Slide 53: OCSP Stapling
	Slide 54: The ServerHello OCSP Response
	Slide 55: Mutual Authentication (Server-Side and Client-Side Authentication)
	Slide 56: Mutual Authentication I
	Slide 57: Mutual Authentication II
	Slide 58: In Summary

