
CT437 

COMPUTER SECURITY AND FORENSIC COMPUTING

TRANSPORT LAYER SECURITY 

Dr. Michael Schukat



Background

 The exponential growth of the internet in the 1990s resulted 
in a need for better security, thereby considering support of

 ad-hoc and short-lived client/server connections

 casual and untrained users

◼ No awareness of risks and key concepts (confidentiality, integrity, 
authentication)

 web browsers as the main vehicle for client / server communication 

 The first attempt was Secure Socket Layer (SSL) 

 Introduced by Netscape in the 1990s

 Embedded in web browsers / servers

 Later became Internet standard known 
as  TLS (Transport Layer Security)



TLS (Transport Layer Security)
3

 This application layer protocol is widely used for 
applications such as email, instant messaging and VoIP

 Mainly known for securing HTTP (i.e. HTTPS)

 TLS provides

 privacy (confidentiality) of exchanged data 

 integrity of exchanged data

 authentication of server (and optionally client) through the 
use of digital certificates

 Composed of two layers: 

 TLS handshake protocol (main focus)

 TLS record protocol

 It operates on top of TCP, which in turn is gradually 
replaced by the QUIC (also called TCP/2) protocol



Sequence of a TLS Session
4

 Handshake Protocol

 Agree a cipher suite

 Agree a master secret

 Authentication using certificate(s)

 Record Protocol

 Secure data communication
◼ Symmetric key encryption

◼ Data authentication

◼ Often in combination with HTTP

 Alerts
◼ Graceful closure, or

◼ Problem detected



Website Protocol Support (Wikipedia)
5

 SSL 2.0 / 3.0 contain a number of 
security flaws

 Support for TLS versions 1.0 and 
1.1 was widely  deprecated by 
web sites around 2020

 TLS 1.3 was released  as RFC 8446
in August 2018. It is a streamlined version of the earlier TLS 1.2 specification with 
someone notable changes:

 Streamlined handshake

 Focus on elliptic curve cryptography using a reduced list of curves, RSA is not supported any more

 Removing support for the MD5 and SHA-224 cryptographic hash functions

 No more backwards compatibility beyond TLS 1.2

 As we’ll see later, TLS 1.3 presents itself as 1.2 (well almost), this is apparently 
for compatibility reasons

 Today, only TLS 1.2 and TLS 1.3 are in use, that’s the focus of this lecture!



Issues with Legacy TLS Versions: The Heartbleed 
Vulnerability in TLS 1.0 (2014)

6



Issues with Legacy TLS Versions: Apple ‘goto fail;’ 

Vulnerability in TLS 1.0 and TLS 1.1 (2014)
7

 Affected iOS and Mac OS X operation systems 

 This vulnerability enabled MitM attacks on TLS connections 



TLS Record Protocol Characteristics
8

 The connection is private because a symmetric-key algorithm 
(i.e., AES) is used to encrypt the data transmitted

 The identity of the communicating parties is authenticated via 
digital certificates that are exchanged and validated during 
the initial handshake

 This (server-side) authentication is required for the server and 
optional for the client (i.e. client-side authentication)
◼ We focus on server-side authentications for now

 The connection is reliable, because each message transmitted 
includes a message integrity check using a message 
authentication code to prevent undetected loss or alteration 
of the data during transmission



TLS Handshake Protocol Overview
9

 Secure (TLS) connection is initiated by client

 Typically, via dedicated port, e.g. HTTP port 80 versus HTTPS port 443 

 It uses public key cryptography to establish cipher settings and session-

specific shared private keys with which further communication is encrypted 

using a symmetric cipher

 Client and server agree on a cipher suite (a cipher and a hash function)

 The server also presents its digital certificate to the client for authentication

 To initiate the generation of session keys used for a secure connection, the 

client either:

1. Encrypts a random number (PreMasterSecret) with the server’s (RSA or EC) public key and 

sends the result to the server (only up to TLS 1.2)

◼ Forward secrecy is not provided!

2. Uses (Elliptic Curve) Diffie–Hellman key exchange (in TLS 1.2 and TLS 1.3)

◼ This key may have the property of forward secrecy, but MitM attacks need to be mitigated



Recall Forward Secrecy
10

 Consider an attacker who 

 intercepts and records all client / server messages, including 
the handshake

 recovers the server’s private key sometime in the future, using 
the public key in the server’s digital certificate as a starting 
point

 In option 1 the PreMasterSecret can now be retrospectively 
recovered, session keys can be calculated, and all subsequent 
messages can be decrypted by the attacker

 However, the DH key negotiation in option 2 is based on other 
secret token not linked to the server’s private key 

 Nonetheless the key exchange has to be protected to 
prevent a MitM attack as seen before



Ephemeral Diffie-Hellman vs static 

Diffie-Hellman
11

 Static Diffie-Hellman key exchange (in TLS 1.2 only)

 Always use the same Diffie-Hellman private keys (this saves CPU cycles)

 Each time the same parties do a DH key exchange, they end up with the 
same shared secret → only partial forward secrecy

 Ephemeral Diffie-Hellman key exchange (compulsory in TLS 1.3)

 A temporary DH key is generated for every connection and thus the 
same key is never used twice

 This enables forward secrecy, which means that if the long-term private 
key of the server gets leaked, past communication is still secure

 This distinction also holds for the Elliptic Curve DH variants 

 ECDHE (ephemeral, provides Forward Secrecy) and 

 ECDH (static)



TLS Handshake Overview
12

TLS 1.3 also 

supports a 

faster variation



In-Class Activity: Analysis of TLS 

Handshake
13

 Option 1:

 Open Wireshark and start packet recording

 In your browser open a HTTPS secured website you never 
visited before (e.g. fussball.de)

 Stop packet recording and filter all TLS-related packets 
(Filter option ‘tls’) 

 Option 2:

 Load pcap file “revenue tls” (Blackboard file name 
“Example Wireshark TLS Handshake”)

 Wireshark does a great job analysing the content of 
the packets



TLS Handshake
14

 TCP connection establishment

 SYN – SYN/ACK – ACK

 The ClientHello message

 The client initiates the handshake by sending a (plaintext) “hello" 
message to the server

 The message includes 
◼ the highest TLS version the client supports (1.2 or 1.3)

◼ the cipher suites supported (i.e. what algorithms are available to client, 
see next slide), 

◼ a session identifier
◼ Note that the session id is kept empty if the clients starts an entirely new 

session 

◼ a string of random bytes known as the "client random“



Cipher Suite Naming Scheme
15

 Examples:

 TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

 TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384

 Here:

 TLS defines the protocol that this cipher suite is for

 ECDHE indicates the key exchange algorithm being used (Elliptic Curve Diffie-Hellman 
Ephemeral)

 RSA or ECDSA (Elliptic Curve Digital Signature Algorithm) authentication mechanism 
during the handshake

◼ Remember the ServerHello message contains the server’s public DH parameter signed with its 
private (RSA) key or signed via ECDSA

 AES cipher for symmetric data encryption

 128-bit or 256-bit AES key size

 GCM type of encryption (Galois/Counter Mode, covered before)

 SHA256 / SHA384 hash function (HMAC) indicates the message authentication 
algorithm which is used to authenticate a message

◼ 256-bit or 384-bit digest size



Cipher Suite (Wireshark Screenshot)
16

 Two bytes specify a cipher suite

 Suits have different levels of 

robustness

 See also for details 

https://ciphersuite.info/cs/ 

https://ciphersuite.info/cs/


Cipher Suite (Wireshark Screenshot)
17

 Two bytes specify a cipher suite

 Suits have different levels of 

robustness

 See also for details 

https://ciphersuite.info/cs/   

 Cipher suits 0x1301, 0x1302 

and 0x1303 do not describe the 

 server authentication mechanism 

(e.g., RSA)

 key exchange algorithm (e.g., 

ECDHE)

 This is a simplification introduced 

with TLS 1.3 (more later!)

https://ciphersuite.info/cs/


TLS Handshake
18

 The ServerHello message

 In reply to the ClientHello message, the server sends a 

(plaintext) message containing 

◼ the server’s digital certificate 

◼ a certificate chain that includes all intermediate certificates up to 

the root CA along the certification path

◼ the server's chosen cipher suite, 

◼ its chosen session id (session resumption → later), and 

◼ the "server random," another random string of bytes that's 

generated by the server



TLS Handshake
19

 Authentication

 The client verifies the server’s digital certificate with the certificate authority that issued 
it using the intermediate certificates

 This confirms that the public key is linked to the certificate owner, but does not confirm 
the authenticity of the server yet (as any threat actor could use the server’s certificate 
in a spoofing attack)

 Key negotiation (next slides)

 Option 1: RSA handshake (not supported anymore with TLS 1.3)

 Option 2: DH handshake (ECDH to be exact)

 Change Cipher Spec (not shown in the diagrams in the following slides)

 In due course both parties will send a ChangeCipherSpec message which is used to 
indicate that their subsequent messages will be sent encrypted using the negotiated key 
and algorithm

 Finished  (not shown in the diagrams on the following slides)

 This is an encrypted message (more later)



20

Option 1 Overview: RSA Handshake



Option 1: RSA Handshake
21

 Premaster secret generation

 The client generates a random string of bytes, the "premaster 
secret" 

 The premaster secret is encrypted with the server’s public key

 Premaster secret distribution

 The client sends the encrypted secret to the server

 The server decrypts the premaster secret

 Master secret creation 

 Both client and server generate a master secret (which is not the 
encryption key used), using 
◼ the client random, 

◼ the server random, 

◼ and the premaster secret 

3 4



Option 1: RSA Handshake
22

 Session keys generation

 Using the master secret both client and server generate 4 session keys (see next 
slide):

◼ Client-write symmetric encryption key

◼ Server-write symmetric encryption key

◼ Client-write MAC key (for client message authentication)

◼ Server-write MAC key (for server message authentication)

 Client is ready

 The client sends a finished message that is encrypted with the session key

 Server is ready

 The server sends a finished message encrypted with the session key

◼ This validates the authenticity of the server, i.e. the client has proof that the server is in 
possession of the private key linked to the server certificate

 Secure symmetric encryption can be provided

 The handshake is completed, and communication continues using the session keys



Recall: Authenticated Encryption with 

Additional Data 
23

 Links back to the use of hash functions 

(→ previous lecture):

 Encrypt-then-MAC (EtM) → top right

 Encrypt-and-MAC (E&M) → bottom right

 MAC-then-Encrypt (MtE) → bottom left



Option 2 Overview: DH Handshake
24

Server protection 

against MitM attack 



Option 2: DH Handshake
25

 Server Key Exchange

 This message contains either ECDH parameters (elliptic curve + primitive 
root + public ECDH parameter) or DH parameters (modulus, primitive 
root, public DH value) to be used by the client

 The values are signed by using the private (RSA or EC) key of the server 
so that the client can verify (using corresponding public key in the 
certificate) that the parameter indeed came from the server it is talking 
to and not an attacker that impersonates the server

◼ Note that in 
◼ TLS 1.2: DH, ephemeral DH (DHE), ECDH, or ECDHE can be used

◼ TLS 1.3: only ECDHE is allowed 

 Client Key Exchange

 Contains the client’s public parameters for the DH algorithm

 Client parameters are not signed (as the client does not have a 
certificate)

4

3



Option 2 Overview: DH Handshake
26

 Client and server calculate the premaster secret

 Instead of the client generating the premaster secret and sending it to 
the server, as seen before, the client and server use the DH parameters 
they exchanged to calculate a matching premaster secret separately

 Master secret creation

 The client and server calculate the master secret using the premaster 
secret, client random, and server random

 Session keys generation

 Same as before

 Client is ready

 Same as before

 Server is ready

 Secure symmetric encryption achieved



ClientHello (Wireshark Screenshot)
27

 Highest TLS version supported

 32-byte random structure (contains 
a 4-byte timestamp and a 28-byte 
random → next slide)

 Random 32-byte session id

 List of supported cryptographic 
algorithms

 List of supported data compression 
methods, obsolete with TLS 1.3 

 List of extensions

 Note that all is plaintext!

 Version of the record protocol (still 
1.0)



Client Hello: 32-Byte Random Structure 
28

 From RFC 5246 Section 7.4.1.2:



The Version Rollback Attack
29

 This MitM attack targets SSL 3.0

 Here the attacker intercepts the

plaintext  ClientHello message, 

that includes the highest TLS 

version the client supports 

(i.e. SSL 3.0)

 The attacker changes the message content to “SSL 2.0”, thereby 

tricking both server and client to accept a weaker (i.e. flawed) 

protocol

 The server assumes the client only understands SSL 2.0

 The client assumes the server only understands SSL 2.0 



TLS Protection against MitM Attacks
30

 MitM attacks cannot be mitigated, as Client Hello and Server 
Hello messages, as well as the client key exchange messages for 
DH key negotiation are sent as plaintext

 Instead, the Finished messages of both client and server contain 
the result of the HMAC of the negotiated cyphersuite, truncated to 
12 bytes (therefore called a pseudo-random function (PRF)), of:

 The master secret

 A hash of all the previous handshake messages (from ClientHello up to 
but excluding the Finished message)

 The finished-label string (“client finished” for client message and “server 
finished” for server message)

 Therefore, both sides can retrospectively validate the integrity of 
the handshake protocol

 This includes all MitM attacks during the key exchange protocol 
(remember only the server value was signed)



TLS Protection against MitM Attacks
31



TLS Handshake Extensions
32



TLS Handshake Extensions in the Client 

Hello Message
33

 These provide additional info to 

the server

 A few notable examples:

 Supported elliptic curves

 Server Name Indication

◼ A client indicates which hostname it is 

attempting to connect to at the start 

of the handshake process

◼ This allows a server to present one of 

multiple possible certificates on the 

same IP address and TCP port 

number and hence allows multiple 

secure (HTTPS) websites to be served 

by the same IP address without 

requiring all those sites to use the 

same certificate



TLS Handshake Extensions in the Client 

Hello Message
34

 Signature hash algorithms 

 In TLS1.2 only, the client MAY include the 

signatureAlgorithms extension indicating 

what types of signatures it supports 

verifying

 This includes the signatures on the 

certificates in the server's chain

 This feature is dropped again in TLS 1.3



ServerHello (Wireshark Screenshot)
35

 Highest TLS version supported

 Random 32 byte nonce (contains a 

timestamp)

 Client session id

 Chosen cipher suite

 List of supported data compression 

methods, obsolete with TLS 1.3 

 List of extensions

 Again, all plaintext!



TLS 1.2 Session Resumption
36

 Assume a client wants to reconnect to a server it has previously 
communicated with

 If the client still has the negotiated cipher suite and keys from the previous 
handshake cached, it can send the server the previously used session id in 
the ClientHello message

 If the server has cached all this data too, it can shorten the handshake

 However, it still requires a round trip to verify the session, which can 
introduce some latency

 Otherwise, a full new session negotiation is required, which will generate a new 
session ID, and which will take longer

 If a browser requires multiple connections to the same host (e.g., when 
HTTP/1.x is used), it will often wait for the first TLS negotiation to complete 
before opening additional connections to the same server, such that they can 
be "resumed" and reuse the same session parameters

 On the other hand, caching the parameters of many client sessions over long 
periods of time does not scale and it rarely used



TLS 1.2 Session Resumption
37

 Here all key negotiation steps are excluded



TLS 1.3 and 1-Round Trip Time (1-RTT)
38

 Beside only supporting a streamlined ciphersuite for 

key negotiation (ECDHE only), TLS 1.3 also supports 

a new accelerated handshake process called 1-RTT

versus



The key_share Extension
39

 This seems to suggest that the client 

is requesting a TLS 1.2 handshake

 A TLS 1.3 client hello looks 

superficially exactly like a TLS 1.2 

handshake, right down to the 

version number

 If the server only understands TLS 

1.2, it will just negotiate a TLS 1.2 

handshake as before

 However, the new ClientHello 

extension key_share indicates that 

the client understands version 1.3



The key_share Extension
40

 In TLS 1.2, the ClientKeyExchange message is 
used to kick-off the key exchange

 This is now complemented by a method where 
the client presents the server with a  ECDHE key 
exchange right at the start

 The idea is that the client just goes ahead and 
assumes that the server will select its preferred 
key exchange method and returns its ECDHE 
parameter

 If the server selects a different key exchange 
method, it will respond with a RetryHelloRequest 
message (not shown here) which restarts the 
handshake; this can be the result of either:

 An ECDHE group that is not supported by the server

 A server (security) policy that necessitate the use of 
different ECDH parameters than those proposed by the 
client

 In most cases the server will support the 
preferred key exchange method, so the 
handshake is shorter



The key_share Extension in both ClientHello 

(Left) and ServerHello (Right)
41

 Note that in the server response all messages after the ServerHello message are already 
encrypted



Cipher Suite (Wireshark Screenshot)
42

 The highlighted  cipher suits are 
used in TLS 1.3

 The negotiable bits are:

 128- or 256-bit AES in GCM 
mode, or

 256-bit ChaCha20 combined 
with POLY1305

◼ ChaCha20 is a stream cipher

◼ POLY1305 is a hash function, here 
used for authenticated encryption

 SHA256 or SHA384 hashing

 The fixed elements are:

 ECDHE using Curve25519

 Message authentication using RSA 
or ECDSA

◼ Depending if the server certificate 
contains a public RSA or EC key



Review a TLS Handshake with OpenSSL
45

1. Init TLS connection:
openssl s_client -connect universityofgalway.ie:443

2. Review the output on screen

3. You may decode the server certificate via 

https://www.sslshopper.com/certificate-decoder.html 

https://www.sslshopper.com/certificate-decoder.html


Review a TLS Handshake with OpenSSL
46

 Connection Status:

 CONNECTED(00000003): Indicates that the connection to the server was successful.

 Certificate Verification:

 depth=2, depth=1, depth=0: These lines show the verification process of the certificate chain. Each 
depth level represents a certificate in the chain, starting from the root CA (depth=2) to the server's 
certificate (depth=0).

 verify return:1: Indicates that the certificate at each depth level was successfully verified.

 Certificate Chain:

 Lists the certificates in the chain, including the subject (s:) and issuer (i:) details. The chain starts from the 
server's certificate and goes up to the root CA.

 Server Certificate:

 The server's certificate is displayed in PEM format, including details like the subject and issuer.

 Peer Information:

 No client certificate CA names sent: Indicates that no client certificate authority names were sent.

 Peer signing digest: SHA256: Specifies the digest algorithm used for signing.

 Peer signature type: RSA-PSS: Specifies the signature algorithm used.

 Server Temp Key: X25519, 253 bits: Indicates the temporary key used for key exchange.



The HTTPS Protocol
47

 HTTPS (Hypertext Transfer Protocol Secure) is 

syntactically identical to the HTTP protocol, but 

operates on top of TLS (rather than TCP)

 TLS on the other hand operates on top of TCP

 It provides secure client / (web) server HTTP data 

communication, while also allowing a client (i.e. web 

browser) to authenticate the (web) server, as part of 

the TLS handshake

 The default HTTPS port is 443



The Importance of Server-Side 

Authentication: Pharming Scams

 Pharming scams use domain 
spoofing (in which the domain 
appears authentic) to redirect 
users to copies of popular 
websites where personal data 
like usernames, passwords 
and financial information can 
be ‘farmed’ and collected for 
fraudulent use

48

What is it?

 Copy a website 1:1 and present it 

to the victim using a slightly 

different domain name

How can it be achieved – Simple Pharming!



The Importance of Server-Side 

Authentication: Pharming Scams

 Pharming scams use domain 
spoofing (in which the domain 
appears authentic) to redirect 
users to copies of popular 
websites where personal data 
like usernames, passwords 
and financial information can 
be ‘farmed’ and collected for 
fraudulent use

49

What is it?

 Similar to simple pharming, but also 

manipulate the DNS server to redirect 

DNS queries to the attacker’s website, 

i.e. the same domain name is used 

 Known as DNS poisoning, DNS cache 

poisoning or DNS spoofing

How can it be achieved - DNS Spoofing!



Anti-Pharming Support in your Browser 

 In DNS spoofing, the malicious server cannot support HTTPS 

or TLS, as its doesn’t have the spoofed server’s private key

 It has its certificate though, but that’s not enough to complete the 

TLS handshake

 All modern browsers pick up

on this and abort the 

connection

 Also, users are warned if TCP

rather than TLS is used (see

image)



Certificate Stapling
51

 In certificate stapling, the server appends all certificates in the path up 
to the root CA / RCA in a “Certificate” message, which is sent together 
with its ServerHello message to the client 

 These stapled certificates are sent as

 plaintext in TLS 1.2 (see Wireshark screenshot below)

 ciphertext in TLS 1.3 (as all messages after the “Server Hello” 
message are already encrypted



Example Certificate Path Validation 

 For Alice (Client PC with web browser) to authenticate Diana (Server that hosts secure 
website), she requires CA2’s (Certification Authority) certificate

 This may be already installed in Alice’s browser (right image) together with RCA’s 
certificate

 However, there’s no guarantee that a browser contains the certificates of all 
intermediate CAs

 On the other hand, the handshake process should not be delayed by the client collating 
all the certificates belonging the Diana’s certificate path

 Therefore, the server (Diana) provides Alice with the chain of certificates up to RCA level 
via certificate stapling



OCSP Stapling
53

 Recall: The Online Certificate Status Protocol (OCSP) is a standard 

for checking the revocation status of X.509 digital certificates

 An OCSP response is digitally signed and time-stamped by the CA (OCSP 

server) that confirmed the revocation status of a certificate

 In OCSP stapling

 The client includes a "status_request" extension in its ClientHello message

 The server includes the OSCP response “Certificate Status” message in the 

ServerHello response

 This eliminates the need for a client to contact the CA, thereby 

improving overall performance

 However, the status of intermediate and root certificates is typically 

managed by separate OCSP checks



The ServerHello OCSP Response
54

 Type (BasicResponse)

 ResponderID identifies the 
OCSP server via its DN issuer 
information, or its hashed 
public key (as shown here)

 CertId determines the cert 
that is being validated; using 
a hash algorithm (SHA-1) a 
hash of the issuer’s DN, a 
hash of it’s public key, and 
the certificates serial number 
are provided 

 certStatus (good)

 Validity period of OCSP 
response

 The entire message us 
digitally signed by the OCSP 
responder

 That’s the signature



Mutual Authentication (Server-Side and 

Client-Side Authentication)
55

 Consider a scenario where both the server and the 

client need to mutually authenticate, e.g.

 Server-to-server data communication

 IoT sensor network communication

 Online Revenue services where client (browser) needs to be 

authenticated too

 Mutual authentication is just an extension of the process 

as seen before with the difference that the client sends 

it certificate (chain) to the server too for verification



Mutual Authentication I



Mutual Authentication II



In Summary
58

 TLS is the de-facto security protocol used in Internet data 
communication

 It went through a series of versions, and today only TLS 1.2 
and TLS 1.3 are used

 TLS combines a lot of the foundation topics we’ve discussed 
in recent weeks

 Practically it is very hard to break TLS security, as the 
protocol went through various improvements over the years

 Therefore, from an attacker perspective, it is more promising 
to compromise a system by attacking either the client, the 
server, or the end user directly


	Slide 1:  CT437  Computer Security and Forensic Computing  Transport Layer Security 
	Slide 2: Background
	Slide 3: TLS (Transport Layer Security)
	Slide 4: Sequence of a TLS Session
	Slide 5: Website Protocol Support (Wikipedia)
	Slide 6: Issues with Legacy TLS Versions: The Heartbleed Vulnerability in TLS 1.0 (2014)
	Slide 7: Issues with Legacy TLS Versions: Apple ‘goto fail;’ Vulnerability in TLS 1.0 and TLS 1.1 (2014)
	Slide 8: TLS Record Protocol Characteristics
	Slide 9: TLS Handshake Protocol Overview
	Slide 10: Recall Forward Secrecy
	Slide 11: Ephemeral Diffie-Hellman vs static Diffie-Hellman
	Slide 12: TLS Handshake Overview
	Slide 13: In-Class Activity: Analysis of TLS Handshake
	Slide 14: TLS Handshake
	Slide 15: Cipher Suite Naming Scheme
	Slide 16: Cipher Suite (Wireshark Screenshot)
	Slide 17: Cipher Suite (Wireshark Screenshot)
	Slide 18: TLS Handshake
	Slide 19: TLS Handshake
	Slide 20: Option 1 Overview: RSA Handshake
	Slide 21: Option 1: RSA Handshake
	Slide 22: Option 1: RSA Handshake
	Slide 23: Recall: Authenticated Encryption with Additional Data 
	Slide 24: Option 2 Overview: DH Handshake
	Slide 25: Option 2: DH Handshake
	Slide 26: Option 2 Overview: DH Handshake
	Slide 27: ClientHello (Wireshark Screenshot)
	Slide 28: Client Hello: 32-Byte Random Structure 
	Slide 29: The Version Rollback Attack
	Slide 30: TLS Protection against MitM Attacks
	Slide 31: TLS Protection against MitM Attacks
	Slide 32: TLS Handshake Extensions
	Slide 33: TLS Handshake Extensions in the Client Hello Message
	Slide 34: TLS Handshake Extensions in the Client Hello Message
	Slide 35: ServerHello (Wireshark Screenshot)
	Slide 36: TLS 1.2 Session Resumption
	Slide 37: TLS 1.2 Session Resumption
	Slide 38: TLS 1.3 and 1-Round Trip Time (1-RTT)
	Slide 39: The key_share Extension
	Slide 40: The key_share Extension
	Slide 41: The key_share Extension in both ClientHello (Left) and ServerHello (Right)
	Slide 42: Cipher Suite (Wireshark Screenshot)
	Slide 45: Review a TLS Handshake with OpenSSL
	Slide 46: Review a TLS Handshake with OpenSSL
	Slide 47: The HTTPS Protocol
	Slide 48: The Importance of Server-Side Authentication: Pharming Scams
	Slide 49: The Importance of Server-Side Authentication: Pharming Scams
	Slide 50: Anti-Pharming Support in your Browser 
	Slide 51: Certificate Stapling
	Slide 52: Example Certificate Path Validation 
	Slide 53: OCSP Stapling
	Slide 54: The ServerHello OCSP Response
	Slide 55: Mutual Authentication (Server-Side and Client-Side Authentication)
	Slide 56: Mutual Authentication I
	Slide 57: Mutual Authentication II
	Slide 58: In Summary

