CT437 COMPUTER SECURITY AND FORENSIC COMPUTING

SECURE NETWORK COMMUNICATION PRINCIPALS

Dr. Michael Schukat

Lecture Overview

This lecture will look in more detail into how data encryption and hashing mechanisms can be applied to provide secure peer-to-peer data communication over an (unsecure) network

Lecture Overview

3

- Symmetric block and stream ciphers allow the encryption of data in transit
 - Needs robust key management and distribution
- Hash functions / MACs allow authentication of data in transit
- Digital certificates allow end-point authentication
- Hashing and encryption provide mechanisms to address some of security attack types on information in transit
 - Example Wireshark
- This lecture will look in more detail into how these mechanisms can be applied to provide secure peer-to-peer data communication over a network

Issues with the IP Protocol

- IP payload is not encrypted (no confidentiality) and can be manipulated in transit
- \square IP header fields can be manipulated in transit (CRC can be adjusted on-the-fly \rightarrow next slide)
 - IP addresses can be spoofed (no authentication)
- IP header has mutable fields that can change during datagram transport

 ✓ 32 Bits — 								
Version	IHL	Type of service		Total length				
	ldentif	ication	D M F F	Fragment offset				
Time 1	o live	Protocol		Header checksum				
		Source	address					
		Destinatio	n address					
Options (0 or more words)								

Recap: Cyclic Redundancy Check (CRC)

Issues with the Transport Layer Protocol (Example TCP)

- TCP payload is not encrypted (no confidentiality) and can be manipulated in transit
- TCP header fields can be manipulated in transit (CRC can be adjusted)
 - TPDUs can be rearranged in transit via manipulating sequence and acknowledgement numbers

			1	1	1	1	<u>і </u>	
	Source por	t						Destination port
					Se	eque	∍nc	e number
				Acł	kno	wlee	dge	ment number
TCP header length		URG	AUK	P S H	R S T	2 × 0	Е – Z	Window size
	Checksum							Urgent pointer
			Or	otior	ns (0 01	ma	pre 32-bit words)
L T						Data	a (o	ptional)

TCP/IP Header Hierarchy

Example MACsec

Ethernet frame and its payload

Ethernet frame and its payload, using MACsec (encryption enabled)

Ethernet

Encryption Coverage Implications

Γ	Link-H	Net-H	IP-H	TCP-H	Data	Link-T
_						

(a) Application-level encryption (on links and at routers and gateways)

Link-H	Net-H	IP-H	TCP-H	Data	Link-T
			On links and at r	outers	
Link-H	Net-H	IP-H	TCP-H	Data	Link-T
			In gateways		
			(b) TCP-level encry	ption	

TCP-H	-	TCP header
IP-H	_	IP header
Net-H		Network-level header (e.g., X.25 packet header, LLC header
Link-H	-	Data link control protocol header
Link T	-	Data link control protocol trailer

Μ

Encryption Coverage Implications

Link-H	Net-H	IP-H	TCP-H	I Data	Link-T
			On	links	
Link-H	Net-H	IP-H	TCP-H	I Data	Link-T
Shading in	dicates encryj	ption.	TCP-H = IP-H =	TCP header IP header	
			Net-H = Link-H = Link-T =	Data link control protocol header Data link control protocol header	packet header, LLC h

Example for an unsecure network security protocol

Wire Equivalent Privacy (WEP)

- The first attempt of encrypting 802.11 (Wi-Fi) communication
- It was the de-facto 802.11 security protocol for a couple of years, implemented in all Wi-Fi routers at the time
- However, it has a flawed design and has been broken in the early 2000s
 - It is completely obsolete by now Don't use it!
- Nonetheless it makes a good case study...

802.11 Summary

- Wireless network protocol, operates on 2.4 GHz or 5 GHz carrier frequency
- The base version of this IEEE standard was released in 1997, with various amendments since
- In the common infrastructure mode networks are organise as wireless network basic service set (BSS)
- A BSS consists of one redistribution point (i.e., an access point) together with one or more client stations that are associated with it
- Each BSS has a
 - unique id (BSSID), like a 48 medium access sublayer (MAC) address
 - Customisable name, the Service Set ID (SSID)
- 802.11 is based on the exchange of plaintext messages and as such prone to Wi-Fi eavesdropping too (→ Wireshark)

BSS, BSSID and SSID

Recall: The 802.3 MAC Sublayer Protocol

□ Simpler than 802.3 packet structure:

WEP Overview

16

- WEP was ratified as a Wi-Fi security standard in 1999
- Two main flavours,
 - WEP-40 (40-bit secret key plus 24-bit shared initialisation vector), i.e., 64-bit WEP
 - WEP-104 (104-bit secret key plus 24-bit shared initialisation vector), i.e., 128-bit WEP
- □ WEP uses
 - the stream cipher RC4 for confidentiality
 - the CRC-32 checksum for integrity
- Both flavours were deprecated in 2004 (!)
- The WEP header is shown on the right with encrypted sections highlighted in dark
 - Note the (24-bit) plaintext initialisation vector is incremented with every packet

WEP Encoding

- A secret BSS key K_{BSS} (40 bit or 104 bit) is shared between the AP and all clients
- Every Wi-Fi packet contains a random 24-bit initialisation vector
 IV chosen by the sender
- \square IV $| | K_{BSS}$ is the seed for an RC4 stream cipher (WEP PRNG)
- The payload M is complemented by a 32-bit CRC (cyclicredundancy-checksum) and bitwise EXORed with the key stream
- The resulting encrypted message is complemented with the IV and transmitted

WEP Encoding

Recap: RC4 as used in WEP

- RC4 is a stream cipher
- It consists of a
 - key-scheduling algorithm (KSA) and a
 - pseudo-random generation algorithm (PRGA)
- The KSA uses IV ¦ K_{BSS} as a key to initialise the algorithm
- Subsequently the PRGA returns pseudo-random byte at a time

WEP Weaknesses

- 20
- Because RC4 is a stream cipher, the same traffic key must never be used twice
- The purpose of an IV, which is transmitted as plain text, is to prevent any repetition, but a 24-bit IV is not long enough to ensure this on a busy network
 - 16,777,216 different RC4 cipher streams when the IV is just incremented
 - Even worse, when a new IV is randomly picked for each packet, there is a 50% probability the same IV will repeat after 5,000 packets (Birthday paradox)
- There's a range of WEP attacks that takes advantage of that

Summary

- 21
 - Network security (i.e., data encryption and / or authentication) is important for obvious reasons
 - The layered structure of the TCP/IP stack allows positioning the extra security layer in different levels
- Each of these options has its advantages and disadvantages / limitations, for example with regard to
 - the portions of a packet that can be secured
 - compatibility with network routing, NAT, etc.
- WEP as a much weaker and depreciated option shows how encryption / authentication may take place on data-link layer