
CT437

COMPUTER SECURITY AND FORENSIC COMPUTING

MANAGEMENT / DISTRIBUTION OF SYMMETRIC AND

PUBLIC KEYS

Dr. Michael Schukat

Recap: Model of a Conventional

Cryptosystem

Y = EK(X), X = EK
-1(Y)

Recap: DH and Man-in-the-Middle

(MitM) Attacks

 Mallory is a MitM attacker and performs message interception and message fabrication

 Mallory establishes two individual (secure) connections with Alice and Bob

 Both Alice and Bob are unaware of Mallory’s existence (as there is no authentication)

 DH alone is not sufficient for secure key distribution!

Recap: Public-Key Encryption

Ted’s Key?

Key Issues that need to be addressed

1. Symmetric key encryption

 Key distribution mechanism?

 Key management (key renewal / generation)?

 Key authentication?

2. Public key encryption

1. Public key distribution / management?

2. Public key authentication, i.e. validation of owner?

Terminology
6

 Key rotation is the general term for creating a new key and
starting to encrypt data with it, while retiring the old key,
hence the rotation

 Time-Based Key Rotation

◼ E.g., every week

 Usage-Based Key Rotation

◼ E.g., after using it to process x Gigabyte of data

 Incident-Triggered Key Rotation

◼ Change key if it was compromised

 Re-keying involves changing cryptographic keys in an on-
going communication channel (e.g., TLS → later)

 Re-encryption refers to the process of encrypting previously
encrypted data using a new key

Key Management Lifecycle
7

 Generation: Generating strong cryptographic keys using a cryptographically
secure random number generator (as seen before)

 Distribution: Safely transmit them using encrypted channels / protocols, to
authorised parties without risking unintended exposure

 Key wrapping is a common approach here, i.e. encrypt the new key using the old key
before circulation

 Possibly DH if hardened against MitM attacks

 Storage: Utilize key management systems (KMS) to encrypt, store and manage
cryptographic keys to protect them from theft or unauthorised access

 See next slide

 Usage: Utilise keys for encryption / decryption / authentication

 Rotation: Replace cryptographic keys regularly or according to a policy to limit
their exposure and minimize any data exposure impact from potential key
compromise

 Destruction: Safely delete keys once they are no longer needed to prevent their
recovery or misuse

Types of KMS and cryptographic Key

Stores
8

 Hardware Security Modules (HSMs):

 These are physical devices that provide secure key storage and
cryptographic operations, e.g. USB HSM

 Cloud-based Key Management Services:

 E.g., AWS Key Management Service, Azure Key Vault, and Google
Cloud KMS

 Software-based Key Stores:

 E.g., OpenSSL, Java KeyStore (JKS), and Microsoft's Cryptographic API

 They are used for storing keys in software applications

 Hardware-based Key Stores:

 Devices like TPM (Trusted Platform Module) and smart
cards can securely store cryptographic keys and
perform cryptographic operations

Symmetric Key Cryptosystems

Key Distribution Case Study

 Problem

 Two parties PA and PB want to securely communicate over a public network
using symmetric key encryption

 How can the key distribution be achieved?

 Simple solutions

1. A key is selected by PA and physically delivered to PB

2. Some independent authority PC selects a key and physically delivers it to
PA and PB

 Drawbacks of both solutions:
 Manual delivery of keys → this is tedious and is cumbersome

 The solution does not scale, as for N parties (e.g. endpoints in a computer
network)
N * (N – 1) / 2 unique keys are required

Number of (unique) Keys versus Number of

Endpoints

Key Distribution using a KDC

 Solution 3 overview
 PA and PB can rely on a secure (encrypted) connection to a

key distribution centre (KDC)

 The KDC delivers a key via the encrypted links to A and B on
demand

 Details:
 Each endpoint and the KDC already share a unique master key

 This key is used to securely exchange messages between both
(EKx in the next slide)

 For N hosts, N master keys are required

 Two hosts communicate securely with each other, by using a
secure session key KS, which is provided by the KDC

KDCs and the Needham–

Schroeder Protocol

The Needham–Schroeder Protocol

explained
14

 Initiator A (IA) and responder B (RB) share a unique master key each with the KDC (KKA and KKB)

1. IA issues a message to the KDC for a session key to be shared with RB; it includes:

 The Request, containing the identity of IA and RB (e.g., their network addresses)

 A unique nonce N1 for this transaction

2. The KDC responds with a message encrypted using KKA that contains:

 The session key KS

 The original Request and N1

 A message for the responder RB that is encrypted using KKB and that includes:

◼ The session key KS

◼ The identity of A, IDA (e.g., its network address)

3. IA decrypts / validates the response and sends only the above message to RB

4. RB:

 Decodes the message using KKB and validates IA to be the message sender

 Sends a new nonce N2 to IA, encrypted using KS

5. IA:

 Decrypts the message using its copy of KS

 Processes the nonce in an agreed fashion (e.g., N2 = N2 + 1)

 Encrypts N2 and sends it to RB

 RB validates the content of the message and by doing so authenticates IA

KDCs and the Needham–

Schroeder Protocol

How can the

KDC be

compromised?

How can the

protocol be

compromised?

Possible Attacks on the Needham–

Schroeder Protocol
16

 Assume an attacker is positioned between IA and KDC

 The MitM intercepts (1), identifies IA and RB, and intercepts (2)

 The protocol is completed as before, and KS is used by IA and RB

 At some stage in the future KKA is compromised

 The MitM can now

 decode (2)

 impersonate IA (by using IDA)

 resend X = EKB(KS, IDA) to RB (3),

 complete the protocol

 RB believes it is talking to IA

 Solution:

 X must be complemented with a timestamp (when KS was created) and / or KS
validity period, so RB can validate that KS is not stale (and must not be used
any more)

 all entities must be time-synchronised (→ NTP / PTP)

Public Key Cryptosystems

Key Management via uncontrolled Public-

Key Distribution

 Simplistic approach, but easy to forge, e.g.,

anyone could pretend to be user A

Key Management via Public-Key

Directory

 The directory is just a public platform where everybody can
upload their public key

 Similar issues as before

Key Management using a Public-Key

Authority

Key Management using a Public-

Key Authority
21

 Based on the Needham–Schroeder Protocol, but with some
improvements

 The public-key authority (PKA) has a public / private key pair
with:

 Private key KRAuth

 Public key KUAuth being shared with all clients

 Initiator A (IA) and responder B (RB) have a public / private key
pair each

 KUA and KRA

 KUB and KRB

 KUA and KUB are managed by the PKA

 IA requests for KUB in order to setup a secure connection with RB

Key Management using a Public-Key

Authority

The Protocol explained
23

1. IA issues a message to the PKA to get KUB; it includes:

 The Request, containing the identity of IA and RB (e.g., their network
addresses)

 The timestamp Time1 of this transaction

2. The PKA responds with a message authenticated using KRauth that
contains

 RB’s public key KUB

 The original Request and Time1

3. IA:

 Validates the authenticity of the response by decoding the message
using Krauth and validating Request and Time1; IA extracts KUB

 Use this key to encrypt a message containing its (network) id IDA and
a nonce N1

 IA sends the message to RB

The Protocol explained
24

 RB:

 Decodes the message using KRB

 Validates the message sender’s id to be IDA

 Extract N1

 Requests IAs public key in steps (4) and (5)

6. RB sends a new nonce N2 together with N1 to IA, encrypted
using KUA

7. IA:

 Decrypts the message using KRA

 Validates the message origin (RB) by checking N1

 Encrypts N2 using KUB and sends it to RB

 RB:

 Decrypts the message using KRB

 Validates the message authenticity by checking N2

Key Management via Public-Key

Authority

 Main problem:

 The public-key authority is a single point of failure! If it is compromised
(e.g., via a DoS attack), keys cannot be distributed

 Therefore:

 Introduction of digital certificates, that can be used by nodes to exchange
public keys without contacting a public-key authority

 Requirements:

 Any participant can read a certificate to determine the name and public key
of the certificate’s owner

 Any participant can verify that the certificate originated from the certificate
authority and is not counterfeit

 Only the certificate authority can create and update certificates

 Any participant can verify the currency of the certificate

Key Management via Certificate

Authority (CA)

 The CA is the root of trust

 Participants (A and B in the diagram) acquire a digital certificate
each that binds their public key KUX to their identity IDX

 These certificates are subsequently exchanged to

 setup a secure connection

 authenticate both endpoints

Key Management via a Certificate

Authority: Aquiring a Certificate

 The CA receives a request from A (or B) to certify
their public key

 The CA creates a document that contains A’s (or B’s)
identity IDX, public key KUX and the document’s
validity period Time1

 The CA signs, i.e. encrypts, this document using its
private key KRauth, and returns it to A (or B)

 Every entity that possesses CA’s public key can
validate the authenticity of a (signed) document by
decoding it

Key Management via a Certificate

Authority

 A and B have acquired their certificates from the CA at some
stage in the past, and have a copy of CA’s public key

 Now A wants to securely communicate with B, resulting in the
following steps:

 A sends CA to B, and B in return sends CB to A

 Both mutually validate

◼ the other party’s certificate by decoding it using the CA’s public key

◼ the certificate's sender by comparing IDX in the received certificate with the
network address of the sender

 However, certificates are public documents and either side’s
network address could have been spoofed by an attacker, that
impersonates A or B

 Therefore, additional steps as shown shortly are required

Example for a simple unsigned XML-

based Certificate

<SimpleCertificate>

 <Authority> NUI-Galway </Authority>

 <SignatureType> SimpleSignature </SignatureType>

 <Created> 15-NOV-2019 </Created>

 <Expires> 14-NOV-2024</Expires>

 <OwnerName> William Simpson </OwnerName>

 <KeyType> RSA </KeyType>

 <KeyLength> 256 </KeyLength>

 <PublicKey>

 gHJgjh57JKf#j’\;gkwg@45tRET46$Ed

 </PublicKey>

</SimpleCertificate>

Example for a signed simple XML-

based Certificate

hi6IGHJ^gu#”:HGLFdyUf56EEdx3X5XxXuAzyl;*6/.,:g

wqui^09udfsqfhaspfaj#w994HK51’fjg095u321\er3f2875

gyor23ro32rj6yhggIGUoowqru07t99Y)*-36wrqwUIuiill

No891 u[`[c0 t6Rt*(v858e3w70-v794x3xz7c8c9799999s

9udfsqfhaspfaj7t99 -v794x3xz7c8c9799 09udfsqfhaspfaj#

w994HK51’fjg095u32nfjewYU87Deffe7s%Rk936-J0D9d

 The signed certificate is just undecipherable text

 Its validation requires the decoding of the entire document

 Later ➔ X.509 digital certificates provide a much neater solution

In-Class Activity

 Can you identify any “weak spots” in the CA system

below?

Symmetric Key Distribution with

Public Key Cryptosystems

Symmetric-Key Distribution Using a

Public Key Encryption

 Public-key encryption is slow

 Therefore, it is often used for the distribution of a secret (session) key to be
used for conventional symmetric encryption

 This is an example for a simple secret-key distribution, where A shares its
public key KUa with B:

 Problem: B cannot authenticate A or their public key (and vice versa),
therefore

 A or B could be impersonated via network address spoofing

 A MitM attacker could place itself between A and B

Secret-Key Distribution with Confidentiality

and Authentication

• In this protocol both sides have already acquired and validated the other side’s

certificate (that contains the owner’s identity IDX) and public key

• The 4-step authentication process guarantees that

• mutual authentication is provided (no network address spoofing possible)

• a MitM attacker cannot place itself between A and B

• It is the logical continuation of the protocol “Key Management via Certificate

Authority (CA)”

	Slide 1: CT437 Computer Security and Forensic computing Management / Distribution of Symmetric and public Keys
	Slide 2: Recap: Model of a Conventional Cryptosystem
	Slide 3: Recap: DH and Man-in-the-Middle (MitM) Attacks
	Slide 4: Recap: Public-Key Encryption
	Slide 5: Key Issues that need to be addressed
	Slide 6: Terminology
	Slide 7: Key Management Lifecycle
	Slide 8: Types of KMS and cryptographic Key Stores
	Slide 9: Symmetric Key Cryptosystems
	Slide 10: Key Distribution Case Study
	Slide 11: Number of (unique) Keys versus Number of Endpoints
	Slide 12: Key Distribution using a KDC
	Slide 13: KDCs and the Needham–Schroeder Protocol
	Slide 14: The Needham–Schroeder Protocol explained
	Slide 15: KDCs and the Needham–Schroeder Protocol
	Slide 16: Possible Attacks on the Needham–Schroeder Protocol
	Slide 17: Public Key Cryptosystems
	Slide 18: Key Management via uncontrolled Public-Key Distribution
	Slide 19: Key Management via Public-Key Directory
	Slide 20: Key Management using a Public-Key Authority
	Slide 21: Key Management using a Public-Key Authority
	Slide 22: Key Management using a Public-Key Authority
	Slide 23: The Protocol explained
	Slide 24: The Protocol explained
	Slide 25: Key Management via Public-Key Authority
	Slide 26: Key Management via Certificate Authority (CA)
	Slide 27: Key Management via a Certificate Authority: Aquiring a Certificate
	Slide 28: Key Management via a Certificate Authority
	Slide 29: Example for a simple unsigned XML-based Certificate
	Slide 30: Example for a signed simple XML-based Certificate
	Slide 31: In-Class Activity
	Slide 32: Symmetric Key Distribution with Public Key Cryptosystems
	Slide 33: Symmetric-Key Distribution Using a Public Key Encryption
	Slide 34: Secret-Key Distribution with Confidentiality and Authentication

