N

CT437
COMPUTER SECURITY AND FORENSIC COMPUTING

MANAGEMENT / DISTRIBUTION OF SYMMETRIC AND
PUBLIC KEYS

Dr. Michael Schukat

Recap: Model of a Conventional

Cryptosystem
-b

Y = E(X), X = E'(Y)

Recap: DH and Man-in-the-Middle

SMi’th Attacks
.

Alice Mallory Bob

: 1 1
1 1 1
1 A=g°*modp, '

1
E :Z—Q’mndp:
1 1 II
i B=g"modp !
1 ' 1
1 Z=g’modp i
v 1 1
1

Ky=Zmodp K,=Amodp K= Z’mod p
K g= E'mod p

AMan In The Muidio
Mallory

0 Mallory is a MitM attacker and performs message interception and message fabrication
0 Mallory establishes two individual (secure) connections with Alice and Bob
0 Both Alice and Bob are unaware of Mallory’s existence (as there is no authentication)

0 DH alone is not sufficient for secure key distribution!

Recap: Public-Key Encryption

Ted’s Key?
JD}I - ?
ec
Bob's public Bob 's private
key key

Transmitted

ciphertext
| B

W
Plaintext Plaintext
. Encrvption algorithm Decryption algorithm
mput output

(e.o.. RSA) (reverse of encryption
algorithm)

Key Issues that need to be addressed
N

1. Symmetric key encryption
O Key distribution mechanism?
O Key management (key renewal / generation)?

O Key authentication?

2. Public key encryption
1. Public key distribution / management?

2. Public key authentication, i.e. validation of owner?

Terminology
B

0 Key rotation is the general term for creating a new key and
starting to encrypt data with it, while retiring the old key,
hence the rotation
O Time-Based Key Rotation

m E.g., every week
O Usage-Based Key Rotation

m E.g., after using it to process x Gigabyte of data
O Incident-Triggered Key Rotation

®m Change key if it was compromised

0 Re-keying involves changing cryptographic keys in an on-
going communication channel (e.g., TLS =2 later)

0 Re-encryption refers to the process of encrypting previously
encrypted data using a new key

Key Management Lifecycle

I I ————

O

d

Generation: Generating strong cryptographic keys using a cryptographically
secure random number generator (as seen before)

Distribution: Safely transmit them using encrypted channels / protocols, to
authorised parties without risking unintended exposure

0 Key wrapping is a common approach here, i.e. encrypt the new key using the old key
before circulation

0 Possibly DH if hardened against MitM attacks

Storage: Utilize key management systems (KMS) to encrypt, store and manage
cryptographic keys to protect them from theft or unauthorised access

O See next slide
Usage: Utilise keys for encryption / decryption / authentication

Rotation: Replace cryptographic keys regularly or according to a policy to limit
their exposure and minimize any data exposure impact from potential key
compromise

Destruction: Safely delete keys once they are no longer needed to prevent their
recovery or misuse

Types of KMS and cryptographic Key

Stores
N

0 Hardware Security Modules (HSMs):

O These are physical devices that provide secure key storage and
cryptographic operations, e.g. USB HSM

0 Cloud-based Key Management Services:

O E.g., AWS Key Management Service, Azure Key Vault, and Google
Cloud KMS

0 Software-based Key Stores:
O E.g.,, OpenSSL, Java KeyStore (JKS), and Microsoft's Cryptographic API
O They are used for storing keys in software applications

0 Hardware-based Key Stores:

O Devices like TPM (Trusted Platform Module) and smart
cards can securely store cryptographic keys and
perform cryptographic operations

- Symmetric Key Cryptosystems

Key Distribution Case Study

0 Problem

O Two parties PA and PB want to securely communicate over a public network
using symmetric key encryption

O How can the key distribution be achieved?

0 Simple solutions
1. A key is selected by PA and physically delivered to PB
2. Some independent authority PC selects a key and physically delivers it to
PA and PB
0 Drawbacks of both solutions:
O Manual delivery of keys =2 this is tedious and is cumbersome

O The solution does not scale, as for N parties (e.g. endpoints in a computer
network)
N * (N =1) / 2 unique keys are required

Number of (unigue) Keys versus Number of
Endpoints
]

e
, /
L

e

10° = /

N

Mumber of keys

—_
=
-

5 6B ¥ a9 2
107 10* 10
Mumber of endpoints

Key Distribution using a KDC

0 Solution 3 overview

O PA and PB can rely on a secure (encrypted) connection to a
key distribution centre (KDC)

O The KDC delivers a key via the encrypted links to A and B on
demand

0 Details:
0 Each endpoint and the KDC already share a unique master key

O This key is used to securely exchange messages between both
(E¢, in the next slide)

O For N hosts, N master keys are required

O Two hosts communicate securely with each other, by using o
secure session key K, which is provided by the KDC

KDCs and the Needham-—
Schroeder Protocol

(1) Request | N

Key distribution (2) Egy | Ko || Request | Ny || Egpiks, (D4]
steps

(3) Egp [Ks [[TD 4]
Respond
(4) Exo N2 |

S Ep. | fiNA
Authentication (3) Egs [1iN2)]

sleps
1. A=>KDC: ID,||IDg||N,
2. KDC— A: E(K.. [K||1Dg||N||E(Ks. K< 1DAD))
3. A—B: E(K, [K,||ID 4])
4. B—A: E(K,. Nz)

thnh

. A—B: E(K,, f(N))

The Needham-Schroeder Protocol

explained
14|

0 Initiator A (IA) and responder B (RB) share a unique master key each with the KDC (K, and K;)

1. IA issues a message to the KDC for a session key to be shared with RB; it includes:
o The Request, containing the identity of IA and RB (e.g., their network addresses)

O A unique nonce N, for this transaction

2. The KDC responds with a message encrypted using Ky, that contains:
O The session key Kg
O The original Request and N,

O A message for the responder RB that is encrypted using Ky, and that includes:
® The session key Kg

® The identity of A, ID, (e.g., its network address)
3. IA decrypts / validates the response and sends only the above message to RB
4, RB:

O Decodes the message using Ky, and validates |IA to be the message sender
O Sends a new nonce N, to |A, encrypted using KS
5. IA:
O Decrypts the message using its copy of Kg
O Processes the nonce in an agreed fashion (e.g.,, N, = N, + 1)

O Encrypts N, and sends it to RB

0 RB validates the content of the message and by doing so authenticates |IA

KDCs and the Needham-—
Schroeder Protocol

How can the

KDC be
Compromlsed? Key distribution

How can the
protocol be

compromised?

steps %

Authentication
steps

(1) Request | N

(3) Egp [Ks [[1D 4]

(4) Egs [N2]

(3) Egs [TIN2)]

n

a w IV -

. A—B:
B— A:
. A—B:

. A—=KDC:
. KDC— A:

ID 4 |[IDg||N,

E(Ka. [Ks|[IDg| N1 ||[E(Ks. [K || IDAD)])
E(Kp. [K,||1D 4])

E(K,. N,)

E(K,, f(N,))

Possible Attacks on the Needham—

Schroeder Protocol
e

Assume an attacker is positioned between |IA and KDC
The MitM intercepts (1), identifies IA and RB, and intercepts (2)
The protocol is completed as before, and K is used by |A and RB

At some stage in the future K, is compromised

The MitM can now

0 decode (2)

O impersonate |A (by using ID,)

o resend X = EKB(K,, ID,) to RB (3),
0 complete the protocol

0 RB believes it is talking to 1A

0 Solution:

O 0O 0 o O

O X must be complemented with a timestamp (when K was created) and / or Kq
validity period, so RB can validate that KS is not stale (and must not be used
any more)

O all entities must be time-synchronised (= NTP / PTP)

- Public Key Cryptosystems

Key Management via uncontrolled Public-

Key Distribution
.

0 Simplistic approach, but easy to forge, e.qg.,
anyone could pretend to be user A

KUa \KUb
;.
KU
at ‘/KUI::
KUa KUb

Key Management via Public-Key

Directory
_—

0 The directory is just a public platform where everybody can
upload their public key

0 Similar issues as before

Public-Key
Directory

SN

KUa KUb

Key Management using a Public-Key

Authority
—

(1) Request || Time, {(4) Request || Time;

(2) Exrauth | KUb || Request || Time |

(5) Expaun | KUa || Request || Time, |

—

3) Exup DA || N

(6) Ega N1 IIN2

(T Egip [Ny |

Key Management using a Public-

Kex Authoritx
21

[

[

Based on the Needham—Schroeder Protocol, but with some
improvements

The public-key authority (PKA) has a public / private key pair
with:

O Private key K, .

O Public key K .., Peing shared with all clients

Initiator A (IA) and responder B (RB) have a public / private key
pair each

0 Ky, and Ki .
0 Ky and K

Kua and K ; are managed by the PKA
|A requests for K3 in order to setup a secure connection with RB

Key Management using a Public-Key

Authority
—

(1) Request || Time, {(4) Request || Time;

(2) Exrauth | KUb || Request || Time |

(5) Expaun | KUa || Request || Time, |

—

3) Exup DA || N

(6) Ega N1 IIN2

(T Egip [Ny |

The Protocol explained

1. |Aissues a message to the PKA to get K ; it includes:

O The Request, containing the identity of |IA and RB (e.g., their network
addresses)

O The timestamp Time, of this transaction
2. The PKA responds with a message authenticated using K,_ ., that
contains
O RB’s public key K,
O The original Request and Time,

3. 1A

O Validates the authenticity of the response by decoding the message
using K, ., and validating Request and Time,; |A extracts K,

O Use this key to encrypt a message containing its (network) id ID, and
a nonce N,

O |A sends the message to RB

The Protocol explained

24
0 RB:

O Decodes the message using K,
O Validates the message sender’s id to be ID,
O Extract N,
O Requests |As public key in steps (4) and (5)
6. RB sends a new nonce N, together with N, to IA, encrypted
using K,
7. lA:
O Decrypts the message using K,
O Validates the message origin (RB) by checking N,
O Encrypts N, using K ; and sends it to RB

0 RB:

O Decrypts the message using K,
O Validates the message authenticity by checking N,

Key Management via Public-Key

Authority
e

0 Main problem:

O The public-key authority is a single point of failure! If it is compromised
(e.g., via a DoS attack), keys cannot be distributed

0 Therefore:

O Introduction of digital certificates, that can be used by nodes to exchange
public keys without contacting a public-key authority

0 Requirements:

O Any participant can read a certificate to determine the name and public key
of the certificate’s owner

O Any participant can verify that the certificate originated from the certificate
authority and is not counterfeit

O Only the certificate authority can create and update certificates

O Any participant can verify the currency of the certificate

Key Management via Certificate
Authority (CA)

0 The CA is the root of trust

0 Participants (A and B in the diagram) acquire a digital certificate
each that binds their public key KU, to their identity ID,

0 These certificates are subsequently exchanged to
O setup a secure connection

O authenticate both endpoints

KUa

Ca = Fepaun | Timey, 1D, KUa |

Cp = Egpauen | Timey, [Dg. KUb |

(2) (‘[3

Key Management via a Certificate

_ Authoritx: Aguiring a Certificate

0 The CA receives a request from A (or B) to certify
their public key

0 The CA creates a document that contains A’s (or B’s)
identity IDy, public key KU, and the document’s
validity period Time,

0 The CA signs, i.e. encrypts, this document using its
private key Kg_ ., and returns it to A (or B)

0 Every entity that possesses CA's public key can
validate the authenticity of a (signed) document by
decoding it

Key Management via a Certificate

Authoritx
]

0 A and B have acquired their certificates from the CA at some
stage in the past, and have a copy of CA’s public key

0 Now A wants to securely communicate with B, resulting in the
following steps:

O A sends C, to B, and B in return sends C; to A
O Both mutually validate

B the other party’s certificate by decoding it using the CA’s public key

m the certificate's sender by comparing ID, in the received certificate with the
network address of the sender

0 However, certificates are public documents and either side’s
network address could have been spoofed by an attacker, that
impersonates A or B

0 Therefore, additional steps as shown shortly are required

Example for a simple unsigned XML-

based Certificate
N
<SimpleCertificate>
<Authority> NUI-Galway </Authority>
<SignatureType> SimpleSignature </SignatureType>
<Created> 15-NOV-2019 </Created>
<Expires> 14-NOV-2024</Expires>
<OwnerName> William Simpson </OwnerName>
<KeyType> RSA </KeyType>
<KeylLength> 256 </KeylLength>
<PublicKey>
gHJgih57 JKf#i'\;gkwg@45tRET46 $Ed
</PublicKey>
</SimpleCertificate>

Example for a sighed simple XML-

based Certificate
I

hi6IGHJ gu#”:HGLFdyUf56EEdx3X5XxXuAzyl;*6/.,:g
wqui®0QudfsgfhaspfajEw994HK51'fig095u321\er3f2875
gyor23ro32ri6yhgglGUoowqru07t99Y)*-36wrgwUluiill
No891 u['[cO t6Rt*(v858e3w70-v794x3x27c8c9799999s
Qudfsgfhaspfaj7t99 -v794x3xz7c8c9799 O0Qudfsqgfhaspfaj#
w994HK51'fjg095u32nfiewYU87Deffe7s%Rk9236-J0D9d

0 The signed certificate is just undecipherable text
0 Its validation requires the decoding of the entire document

0 Later =» X.509 digital certificates provide a much neater solution

In-Class Activity
—

0 Can you identify any “weak spots” in the CA system
below?

Kla

ertificate
Authority

Ca = Fepaun [Time, [DA. KlUa |

KUb

Cp = Exraun | Timea. [Dg. KUb |

Symmetric-Key Distribution Using a

Public Key Encryption
_—

0 Public-key encryption is slow

0 Therefore, it is often used for the distribution of a secret (session) key to be
used for conventional symmetric encryption

0 This is an example for a simple secret-key distribution, where A shares its

public key KU, with B:

0 Problem: B cannot authenticate A or their public key (and vice versa),
therefore

(1) KU, || 1D 5

(2) Egua [Kq]

O A or B could be impersonated via network address spoofing

O A MitM attacker could place itself between A and B

Secret-Key Distribution with Confidentiality
and Authentication

* In this protocol both sides have already acquired and validated the other side’s
certificate (that contains the owner’s identity ID,) and public key
* The 4-step authentication process guarantees that
* mutual authentication is provided (no network address spoofing possible)
* a MitM attacker cannot place itself between A and B
* It is the logical continuation of the protocol “Key Management via Certificate

Authority (CA)”
Y () (D Egpn [Ny [[1Dg]

(2) EXUa INT || N2

Responde

(3} EKUB INz/j

(4) EguplEgralKsl]

	Slide 1: CT437 Computer Security and Forensic computing Management / Distribution of Symmetric and public Keys
	Slide 2: Recap: Model of a Conventional Cryptosystem
	Slide 3: Recap: DH and Man-in-the-Middle (MitM) Attacks
	Slide 4: Recap: Public-Key Encryption
	Slide 5: Key Issues that need to be addressed
	Slide 6: Terminology
	Slide 7: Key Management Lifecycle
	Slide 8: Types of KMS and cryptographic Key Stores
	Slide 9: Symmetric Key Cryptosystems
	Slide 10: Key Distribution Case Study
	Slide 11: Number of (unique) Keys versus Number of Endpoints
	Slide 12: Key Distribution using a KDC
	Slide 13: KDCs and the Needham–Schroeder Protocol
	Slide 14: The Needham–Schroeder Protocol explained
	Slide 15: KDCs and the Needham–Schroeder Protocol
	Slide 16: Possible Attacks on the Needham–Schroeder Protocol
	Slide 17: Public Key Cryptosystems
	Slide 18: Key Management via uncontrolled Public-Key Distribution
	Slide 19: Key Management via Public-Key Directory
	Slide 20: Key Management using a Public-Key Authority
	Slide 21: Key Management using a Public-Key Authority
	Slide 22: Key Management using a Public-Key Authority
	Slide 23: The Protocol explained
	Slide 24: The Protocol explained
	Slide 25: Key Management via Public-Key Authority
	Slide 26: Key Management via Certificate Authority (CA)
	Slide 27: Key Management via a Certificate Authority: Aquiring a Certificate
	Slide 28: Key Management via a Certificate Authority
	Slide 29: Example for a simple unsigned XML-based Certificate
	Slide 30: Example for a signed simple XML-based Certificate
	Slide 31: In-Class Activity
	Slide 32: Symmetric Key Distribution with Public Key Cryptosystems
	Slide 33: Symmetric-Key Distribution Using a Public Key Encryption
	Slide 34: Secret-Key Distribution with Confidentiality and Authentication

