CT437
COMPUTER SECURITY AND FORENSIC COMPUTING

BLOCK CIPHERS

Dr. Michael Schukat

\ b L
T %_ OLLSCOILNA GAILLIMHE
X ‘L'.r—l’ y -

Lecture Overview
I

0 This lecture provides an introduction to one of the
fundamental building blocks to provide confidentiality,
namely block ciphers, thereby covering the following:

O Symmetric versus Public Key Algorithms
O Block ciphers versus Stream Ciphers

o Building Blocks of modern Block Ciphers
o Modes of operation of block ciphers

o0 Examples for modern block ciphers

Recall: Model of Conventional

Cryptosystem
-b

—X
Cryptanal A .
ypranalst > K Symmetric
Algorithm!

Secure Channel

Y = E(X), X = E¢'(Y)

Symmetric Key Algorithms

0 Also called ciphers for traditional / conventional / single
key / private key encryption

0 Here the encryption key can be calculated from the
decryption key and vice versa

0 Normally both keys are the same
0 The algorithm / cipher itself is public, i.e. is not a secret
0 If the key is disclosed, communications are compromised
0 The key is also symmetric, parties are equal

0 Hence methods does not protect sender from receiver
forging a message & claiming is sent by sender
— nonrepudiation is usually not provided

Public-Key Algorithms

0 Also called ciphers for two key / asymmetric cryptography

0 These involve the use of two keys:

O a public key, which may be known by anybody, and can be used to
encrypt messages, and verify S|gnq’rures (later!)

O a private key, known only to the recipient/owner, used to decrypt
messages, and sign (create) signatures

0 The keys are asymmetric, because they are not equal

0 While the public and its private key are interlinked, it is
mathematically very hard to recover the private key via its
public key

0 Public key algorithms are generally significantly slower that
symmetric algorithms, therefore these are often used to securely
convey symmetric algorithm’ (session) keys

0 More later!

Block Ciphers versus Stream

Cighers
]

0 In a block cipher the data (e.g. text, video, or a network
packet) to be encrypted is broken into blocks M1, M2, etc.

of K bits length, each of which is then encrypted

0 The encryption process is like a substitution on very big
characters — 64 bits or more

1\£] T\£2 I\£3 ".1‘1]:1
AR

Cn
0 In contrast, stream ciphers (= next lecture) only process
one bit or one byte at a time

encoding

decoding

Example Block Cipher Transformation

P: 0000000000000000 TTTTITT1111111111
C: 0101001010100101 O110110110110010

0 Block size K is 16 bits

0 If there wasn’t a cipher available for this
transformation, we'd require a table with 2 entries

> Not feasible

0 Note that there are (2'9)! possible substitutions

Block Ciphers and Padding

S | —
0 Messages are usually not multiples of K bits
0 Padding is a way to take data that may or may not be

a multiple of the block size for a cipher and extend it
out so that it is

o It is only applied to the last block that is being encrypted
0 Padding must be reversable, i.e., one must be able to

distinguish between relevant content and padding bytes
in a block

Padding Algorithms
N

0 Let N be the number of bytes required to make a final
block of data the same size as the block size

o PKCS7 padding works by appending N bytes with the binary
value of N; example:

... | DD DD DD DD DD DD DD DD | DD DD OD DD ©4 64 84 84 |

0 ANSI X9.23 padding works by appending N-1 bytes with the
value of O and a last byte with the value of the binary value
of N; example:

... | DD DD DD DD DD DD DD DD | DD DD DD DD ©@ 00 €0 o4 |

Modes of Operation: Electronic
Codebook (EBC) Mode
B I

0 These modes comprise different strategies on how
to use block ciphers (to encode messages)

0 What are the advantages / disadvantages of the
ECB mode?

0 Note that “DES” in
the diagram on the
right is just an
example for a
block cipher

Characteristics and Limitations of ECB
Mode

Source:
Wikipedia

Original image Using ECB allows patterns 1o be Modes other than ECE result in
eagsily discerned pseudo-randomness
ECB

Electronic codebook
Encryption parallelizable Yes
Decryption parallelizable Yes

Random read access Yes

Why would one avoid the Electronic Codebook
Mode?

0 In ECB mode identical plaintext blocks result in
identical ciphertext blocks

0 An attacker, while not able to decode the ciphertext
blocks, would conclude that the encoded data is
repetitive / structured, i.e. could be an image

0 However, random data (e.g. long cryptographic keys)
could be still encoded in ECB

o E.g., a 512-bit key could be encrypted using a 128-bit
block cipher using ECB mode

Modes of Operation: Cipher Block

Chaining (CBC) Mode
_—

Time =1 Time=N
v P, Py
Cra (+)
Encrypt Encrypt
C Cy
(a) Encryption
Cy C, Cy
DES DES DES
K Decrypt K Decrypt ¢ 0 K Decrypt
v —b? }? Caa 4’?
Py P, Py
(b) Decryption

The Initialisation Vector (IV)

0 An IV is a block of bits that is used by several modes
(including CBC) to randomise the encryption

0 An initialization vector has different security requirements
than a key, so the |V usually does not need to be secret

00 For most block cipher modes it is important that an
initialisation vector is never reused under the same key, i.e.
it must be a cryptographic nonce

O Hence distinct ciphertexts are generated even if the same
plaintext is encrypted multiple times using the same key

0 In data communication, the IV may be attached as
plaintext to the encrypted data, and send to the receiver

Modes of Operation: Cipher Block
_ Chaining (CBC) Mode

0 What are the characteristics of the CBC mode?

(b) Decryption

Modes of Operation: Cipher Block

Chaining (CBC) Mode
B I

0 For encryption, a one-bit change in a plaintext or IV affects all
following ciphertext blocks

0 Decrypting with the incorrect IV causes the first block of plaintext
to be corrupt but subsequent plaintext blocks will be correct

O This could be problematic if the IV was kept a secret and is used to
expand the algorithm's key space

CBC

Cipher block chaining

Encryption parallelizable Mo
Decryption parallelizable Yes (@) Encryption
Random read access Yes Cy

(b) Decryption

Full Block Cipher Feedback (CFB)

Mode
R

0 Note that CFB only requires block encryption for
both encoding and decoding

Initialization Vector (1V)
| l
block cipher block cipher block cipher
Key encryption Key encryption Key encryption
Plaintext Plaintext Plaintext
(- (- oo %
OTTTITTTTTTM OTTTITTTTTTM TTTTTTTTIT™
Ciphertext Ciphertext Ciphertext
Cipher Feedback (CFB) mode encryption
Initialization Vector (1)
| l
block cipher block cipher block cipher
Key encryption Key encryption Key encryption
Ciphertext Ciphertext Ciphertext
~[ITTTTTTTITT1] =<[ITTTTITTITT1 ~<[ITTTTITTITT1]
Plaintext Plaintext Plaintext
Cipher Feedback (CFB) mode decryption

Full Block Cipher Feedback (CFB)

Mode
T

0 This mode is particularly useful, when decryption
needs to be fast (i.e., parallelisable)

Initialization Vector (1V)
OTTTITTTTTTM
0 Note that CFB only : 1 l
block cipher block cipher block cipher
req Uires bIOCk Key —= encryption Key —= encryption Key —= encryption
. Plaintext I Plaintext I Plaintext _I"'%
encryption for both ™ e R
OTTTITTTTTTM OTTTITTTTTTM TTTTTTTTIT™
° Ciphertext Ciphertext Ciphertext
ncoding and
enco g a Cipher Feedback (CFB) mode encryption
[]
d eCOd I n g Initialization Vector (IV)
l i
block cipher block cipher block cipher
CFB K&Y —=| encryption K&Y —=| encryption K&Y —=| encryption
Cipher feedback Ciphertext Ciphertext Ciphertext
. i =[TIITITITITTIT] =<[ITTTTITTITT1 ~<[ITTTTITTITT1]
Encryption parallelizable Mo
Decryption parallelizable es - _ -
Plaintext Plaintext Plaintext
Random read access Yes
Cipher Feedback (CFB) mode decryption

Propagating Cipher Block Chaining

SPCBCE Mode
o

0 This mode fixes the IV problem of CBC, i.e,,
decrypting PCBC with the incorrect IV causes all
blocks of plaintext to be corrupt

Plaintext Plaintext Plaintext
OTITTTIITTTTT [MITITTITTITT]
Initialization Vector (IV)
T — & &
block cipher ‘ block cipher block cipher
Key encryption Key encryption Key encryption
[ITIITITTITT [IITITIITTITT] [IITTTTTITTTT
Ciphertext Ciphertext Ciphertext

Propagating Cipher Block Chaining (PCBC) mode encryption

Ciphertext Ciphertext Ciphertext
[IITITIITT7T1 LITITITITITIT] LITITITTTIT1
block cipher block cipher block cipher
Key decryption Key decryption key decryption
Initialization Vector (IV)
TTTTTTTTTT1 OTTTITTTTTIT1 ITTTTTTTTT1

Plaintext Plaintext Plaintext

Propagating Cipher Block Chaining

SPCBCE Mode
20

0 This mode fixes the IV problem of CBC, i.e,,
decrypting PCBC with the incorrect IV causes all
blocks of plaintext to be corrupt

Plaintext Plaintext Plaintext
OTITTTIITTTTT [MITITTITTITT] OTTTITITTTTT
Initialization Vector (IV)
T — & eg——
block cipher ‘ block cipher block cipher
Key encryption Key encryption Key encryption
[ITIITITTITT [IITITIITTITT] [IITTTTTITTTT
Ciphertext Ciphertext Ciphertext

Propagating Cipher Block Chaining (PCBC) mode encryption

Ciphertext Ciphertext Ciphertext
OTTITITTITT1d OIIITIIITITIT] OITITTITTTI11]
PCBC l—l l—‘ }
Propagating cipher block chaining Key —= b;gi:ﬂﬂgsr Key —= bcllc;ilﬁ;gfigﬁr Key —= bcllc;cc&;;fir;ﬁr
Encryption parallelizable No Initialization Vector (1)
Decryption parallelizable No LTI — EB—"% @—'%
Random read access No mm—t mj (ENNRNNNRNREN

Plaintext Plaintext Plaintext

Counter (CTR) Mode

0 Here the random nonce (which is equivalent to an IV) is
complemented with an incremented counter value

Monce Counter Monce Counter Monce Counter

0 Note that CFB only T e R

block cipher block cipher block cipher

[]
req U I res b I OCk Key —= encryption Key —= encryption Key —= encryption
Plaintext

encryption for both T))

OTTTTTTTITT TTTTITTTTT TTTTITTTTTM
Ciphertext Ciphertext Ciphertext

enCOd ing CI n d Counter (CTR) mode encryption

(]
d eCOd N g Nonce Counter Monce Counter Monce Counter

£59bcf35. elelelelelelele] c59bcf35. [eleleleleleleTN c59bcf3s. elelelelelelol)
COTTTTTITITTT] CTTTITITTTTTT CITTTITITITTT

| | |

block cipher block cipher block cipher
encryption encryption encryption

Key —

kKey —

Key —

Ciphertext—:-? Ciphertext—:-? Ciphertext ——=
CIITTITTITTITT CLITITITTIITT CLITITITTIITT A

e oy OO

Plaintext Plaintext Plaintext

Counter (CTR) mode decryption

Counter (CTR) Mode

0 Here the random nonce (which is equivalent to an IV) is
complemented with an incremented counter value

Nonce Counter Nonce Counter Nonce Counter
D N O'I'e 'I'h q 1_ C F B on I c58hcf3s. [elelelelelelele] c59bcf35. elelelelelelenk c58bcf3s., [eleelelel e
y TTTTITTIT1T (TTTTTITTITT HEEEEEENNEREN
' | i
o block cipher block cipher block cipher
re q U I res b I OCk Key encryption Key encryption Key encryption
. Plaintext ? Plaintext ? Plaintext 613
encryption for both [T LTI T
y p OTTTTTTTITT TTTTITTTTT ITTTTTTTTTT]
Ciphertext Ciphertext Ciphertext
[]
enCOd Ing a nd Counter (CTR) mode encryption
[]
d e COd | n g Monce Counter Nonce Counter MNonce Counter
c59bcf35. elelelelelelele] c59becf35. elelelelelelen] c59bcf3s. [eleleleleleleh:
CIITTITTITTTITT CLITITITTITT CIITITITTITT
block cipher block cipher block cipher
Key encryption Key encryption Key encryption
CTR Ciphertext—:-? Ciphertext—:-? Ciphertext ——=
Counter CIITTITTITTITT CLITITITTIITT CLITITITTIITT A
. . LITITIITTIT OTTTITITTTTTY ITTIITTITTM
Encryption parallelizable Yes Plaintext Plaintext Plaintext
Decryption parallelizable fes .
Counter (CTR) mode decryption
Random read access Yes

Another Question ...
L TT——

0 Assume you have a large data file stored on your
computer that needs to be encrypted / decrypted
on-the-fly, potentially with random block access

0 You pick a suitable block cipher for this task

0 Which mode of operation would you choose?

- Building Block Ciphers

Confusion, diffusion and the avalanche effect
Using SP-Networks
Using Feistel Networks

Important Block Cipher Principle

0 Transformations must be reversible (“non-singular”), e.g.,

Plaintext Ciphertext Plaintext Ciphertext
00 «—— 11 00 «—— 11
o1 «—— 10 o1 «—— 10
10 «—— 00 VSs. 10 00
11— 01 11 F—. 00

?

0 There must be a 1:1 association between a n-bit plaintext

and an-bit ciphertext, otherwise mapping (encryption) is
irreversible

Confusion and Diffusion

0 A block cipher needs to completely obscure the statistical
properties of original message (obviously)

0 Claude Shannon introduced two terms:

o Diffusion seeks to make the statistical relationship between the
plaintext and ciphertext as complex as possible

o Confusion seeks to make the relationship between the statistics of
the ciphertext and the value of the encryption key as complex as
possible

0 Both thwart attempts to deduce the key

0 Thos can be achieved, by applying a cryptographic
operation iteratively multiple times, i.e. over multiple
rounds

0 See also the avalanche effect (next slide)

The Avalanche Effect
S

0 Practically, confusion and diffusion provide for encryption
algorithms, where a slight change in either the key or the
plaintext results in a significant change in the ciphertext

[] The TCIble ShOWS some {a) Change in Plaintext (b) Change in Key
. . Number of bits Number of bits

ChCI quferlslhcs Of The Round that differ Round that differ
. 0 1 0 0
DES algorithm (later), that | 6 ! 2
2 21 2 14
encrypts a block over 16 : 3s 3 2
4 39 4 32
rounds : y ; 0
6 32 6 32
0 A swap of a single bit either 1 o s
b C ¥ 34
in the key or in the plaintext 0 42) 4
10 44 10 38
results in an incrementally } 2 I 31
12 30 12 33
growing change in the 13 30 E 2
o 14 26 14 26
ciphertext (avalanche effect) E 2 15 y
16 34 16 35

Block Cipher Building Blocks

0 In order to build a block cipher efficiently, one needs

robust building blocks, that can be easily implemented
and tested

0 The robustness of the block cipher depends on the robustness
of its components

0 These blocks are combined or iterated through creating
a block cipher

0 The most common building blocks are:
O P-Boxes
0 S-Boxes

O Feistel ciphers

The Permutation Operation

0 A binary word (i.e. block) has its _ P-Box
bits reordered (permuted) " N
O Similar to classical transposition ! | —> ¢
ciphers ﬂ \’ < me
0 This operation is represented by a ; r?? .
P-box (see diagram) 0 " e
0 .{" 0
0 Here the re-ordering / internal) ",:\) — 0
wiring forms the key E: ‘?{ 1
[—)
0 The example shown allows for 15! ; "\ !
=1,307,674,368,000 ; | — 0
combinations g !

The Substitution Operation

0 A binary word is replaced by some other binary word
0 Similar to classical substitution ciphers

0 This operation is represented by an S-box

0 Here the re-ordering / internal wiring forms the key

0 The box shown allows S-Box
for 8! = 40320 combinations | Py P8 o

A
m

= T OO A ©
=] I N e L R =S
=] O U LD R e
= T oo n =

—

Substitution-Permutation Network
S

encoding * The key describes the
] internal wiring of all S-
1—| P | st s el ls [olPle >
A\ s Bl BN Bls B\ [B boxes and P-boxes
0 — > > > > — > > —» 0
C I\ s Y S Yo e A s P
NS e B N/l cs: ¢ The same key can be
P o 's_: 's_: 'S—:f—’s_'l i
el <\l n<hl =< v v used for encoding and
00— > - - — > > » |0 . . e
< =< = ks < U= An =< decoding, hence it is a
0o —» > —> — > N > > .
» > n
= B PR R Bl private key
encryption algorithm
decoding ¢ The direction of the
process determines
Question: encoding / decoding

* How big is the key space for this arrangement?
* How many bits are needed to describe a single S or P box?
* What is the total number of bits required to describe all boxes?

The Feistel Cipher
N

0 In practice, we need algorithms that can decrypt and
encrypt messages using similar code / hardware for both

0 An S-P network as seen in the example cannot be easily
reversed when implemented in hardware / software

O i.e. one needs different functions for encoding / decoding

0 In contrast, a Feistel cipher is an invertible cipher structure
which adapts Shannon's S-P network in an easily invertible
structure for encoding and decoding

O In fact, it can use other cryptographic building blocks
0 It is based on the concept of the invertible product cipher

0 It was invented by Horst Feistel, who worked at IBM
Thomas J Watson Research Labs in early 70's

The Feistel Cipher — A Single Round
—

0 The idea is to partition the input block into two halves, L (i-1) and
R(i-1), and use only R(i—1) in the i round (part) of the cipher

0 The function g incorporates the equivalent of one stage of the S-P
network, controlled by part of the key K (i) known as the i subkey

L(i-1) R(3-1) L{1-1) R(i-1)

—K(i) — k(1)
(o

L(i) = R(1-1) R(i) L(i) = R(i-1) R(i)

The Feistel Cipher — A single Round
—

0 A round of a Feistel cipher can be described functionally

as:

oL(i) = R3GE-1)

oR(i) = L(i-1) EXOR g(K(i), R(i-1))
LG-1) RG-1) L(i-1) RGD

X i K(i) - ; —K(i)

|L{i:r = R(i-1) R(i) L(i) = R{i-l)l R(i)

Recap: Symmetry of Bitwise EXOR

5 A EXOR B = C 1
A EXOR C = B olol
C EXOR B = A 1710

In-Class Activity: Feistel Cipher — Single

Round
.

0 Encoding of O1011110:

olL(i - 1) = 0101 R(1—-1) = 1110
og (@), R(H-1)) = 1001 L(i) = 2
oR@) =2
o Therefore 01011110 becomes
LG-1) R(-1) Li-1) RGD

@ | K1) @ ; —K(i)

ILG) = R(i-1) R(i) L(i) = R(i-1) R(i)

Example Feistel Cipher — Single Round
B

0 Encoding of O1011110:
oL -1) = 0101 R(1-1) = 1110
og(K(@), R(i-1)) = 1001 L) = 1110
oR(i) = 0101 XOR 1001 = 1100
o Therefore 01011110 becomes 11101100

0 Decoding of [1101100:
oL() = 1110 R(i) = 1100
og(K(i), RG-1)) = 1001 R@GE - 1) = 1110
oL - 1) = 1100 XOR 1001 = 0101
o Therefore 1110 1100 becomes 01011110

Feistel Network
1

0 Common structure of many modern
block ciphers

0 It perform multiple transformations
(single rounds) sequentially,
whereby output of i round
becomes the input of the (i+1)"
round

. | O Every round gets is own subkey,
which is derived from master key

0 Decryption process goes from
bottom to top

Feistel Cipher Design Elements
S =

These include

0 Block size (typically 64 — 256 bits)
0 Key size (typically 80 — 256 bits)
0 Number of rounds (typically > 16)
0 Subkey generation algorithm

0 Round function

Simple Methods for Subkey Generation

1
0 Here two 8-bit round keys (K, and 10-bit key
K,) are derived from a 10-bit i"’
(master) key: lﬁ'
o0 The 10-bit master enters the e
permutation box (P10) ” ”

O The output is split into 2 parts

O Each part is left-rotated by one bit
(LS-1)

O Both parts are concatenated and

passed into a permutation box (P8)

O P8 has eight outputs, which make K,

- Block Cipher Examples

Data Encryption Standard (DES)
AES

Common Block Cipher Key and Block

Lengths
-_

Key length k = 80,128,192, 256
Block lengthn = 64,128, 256

Plaintext {0,1}n

0,1} Key

Examples: m {0,1}”

DES: k = 56, n = 64
AES: k = 128,192,256, n = 128

Data Encryption Standard (DES)

0 DES was the first block
cipher widely used in

industry
0 Introduced in 1976
0 64-bit block length
0 56-bit key length

0 Feistel network with 16

rounds and 48-bit subkeys [_r32-“it5wav)

The DES Challenge

0 Contest to demonstrate to the US government that

56-bit DES is an ineffective form of encryption

0 The goal of the challenge was to decrypt secret
messages which had been encrypted with DES

Nome _______|When | Duration | Hardwareused __

DES | Challenge
DES Il Challenge
DES Challenge 1I-2

DES Challenge llI

June 1997
February 1998
July 1998

January 1999

140 days
41 days
56 hours

22 hours

Up to 70,000 PC
4

Custom FPGA
Design

~100,000 PC

Triple DES

0 DES has been widely used and implemented across many OS and crypto
libraries, so attempts were made to increase its active life span

This resulted in Triple-DES
It is based on three processing stages
Note the symmetry in the encoding and decoding process

O O O 0O

In principal, this concatenation can be applied to every private key block
cipher

0 There are 2 common keying options:

O 2 keys (as shown in the figure) K, K, K,
O 3 keys (one for each stage)
Encryption
Ky K, K,
—{(p)} (D)—>p
Decryption

Double-DES and the Meet-in-the-

Middle Attack

0 Double DES uses two instances of DES with different keys

0 While this algorithm uses two independent keys, it is not as
sound as it looks

0 It is vulnerable to the meet-in-the-middle attack, where an

attacker has access to P and C, and tries to determine K1
and K2

Double-DES and the Meet-in-the-
Middle Attack

0 This attack is an example of a space-time tradeoff, where the
adversary does the following:

1. Encrypt P using every possible key, and copy each key and the resulting
cyphertext into a table T1

m T1 will have 2 columns and 2%% rows

2. Decrypt C using every possible key, and copy each key and the
resulting plaintext into a table T2

® Again, T2 will have 2 columns and 23° rows
3. Check for identical ciphertext / plaintext entries in T1 and T2
4. Their corresponding keys K1 and K2 are key candidates and can be
further validated using other plaintext/cyphertext pairs

0 Overall, this process requires 2°° encryption and 2°° decryption
attempts, so overall 2 x 2°¢ = 2°7 attempts (rather than 2'12
attempts) are required

0 Note that this attack can also be applied to Triple DES, but it
would require 22%°¢ attempts

Advanced Encryption Standard (AES)
B

0 Successor of DES since 2002

0 Based on a S-P network

0 Block size is 128-bit

0 Key length is configurable can be 128, 192 or 256 bit

0 Stronger & faster than Triple-DES
o2 *56 << 128!

0 Envisaged active life until ~2030
0 Full specification & design details public

0 Algorithm has reference implementations across many
programming languages

- Breaking Block Ciphers

Why does Block and Key Length

matter?
I

0 Cryptographic algorithms with short block length
can be tackled as seen with the substitution
cipher

0 Large keys and large blocks prevent brute-force
attacks / searches

O Take the ciphertext and try all possible key
combinations (or block permutations), until the text is
successfully decoded (e.g. until the decryption
provides meaningful text)

Brute Force Search / Attacks

0 DES uses 56-bit key has a key space that contains 2°°
(= 7.2 X 10'%) keys
00 Deemed unsafe since the 1990s

0 Triple-DES uses two 56-bit keys. and its key space
contains 212 (= 5.1 X 10°3) keys
o Its use will be prohibited from 2024

0 AES-128 key space contains 2''2 (= 3.4 X 1038) keys

0 Generally accepted minimum key length today

0 Top secret information requires the use of either AES-

192 or AES-256

Brute Force Search / Attacks

Always possible to simply try every key
Most basic attack, effort proportional to key size
Assume that you either know or recognise plaintext

GPUs are very good at this task, for example a single RTX 3070 GPU
can crack a DES key in ~215 days

O 0O 0o od

Key Size (bits) Number of Time required at 1 Time required at 10°
Alternative Keys decryption/us decryptions/us
32 2% =43 x10° 23 us =35.8 minutes | 2.15 milliseconds
56 256 =72 x10'6 2% us = 1142 years 10.01 hours
128 2128 =34 x 1038 227 us =54x10* 5.4 x 10'8 years
years
168 2168 =37 x 10°° 2167 s =59 x 103 5.9 x 10%° years
years
26 characters 26! =4 x 10% 2x10%° pus =64 x 1012 6.4 x 106 years
(permutation) years

Side-Channel Attacks

0 AES is cryptographically sound and there is no
practical cryptographic "break” that is faster than a
brute-force attack

0 However, there are possible side-channel attacks

0 Generally, these are attacks on implementations of
a cipher on hardware or software systems that
inadvertently leak datq, e.g.

o Timing information (how long does an encryption take)

0 Cache and memory content (> HeartBleed)

Timing Attacks

0 Here the attacker attempts to compromise o

cryptosystem by analysing the time taken to execute
a cryptographic algorithm

0 Every logical operation in a computer takes time to
execute, and the time can differ based on the input

0 With precise measurements of the time for each

operation, an attacker can work backwards to the
input

Example: Insecure String Comparison

‘Wikiﬁediqz
5o

0 Spot the difference?

bool insecureStringCompare(const void *a, const void *b, size t length) {
const char *ca = a, *cb = b;
for (size t i = 8; i < length; i++)
if (ca[i] != cb[i])}
return false;
return true;

}
versus

bool constantTimeStringCompare(const void *a, const void *b, size t length) {
const char *ca = a, *cb = b;
bool result = true;
for (size t 1 = 8; 1 < length; i++)
result &= ca[i] == cb[i];
return result;

}

0 Note that many such functions in normal (rather than
crypto-) libraries are unsafe

0 Example memcpy() as used in C

Timing Attacks
N

0 In principal, timing attacks can be performed

O remotely (e.g. a client measures the response time of a
server that encrypts a message)

O locally (i.e. in the host machine itself)

0 Remote timing attacks are not practical, as variable OS
and network latencies effect any measurement

0 Local attacks are better, but require the exploit to be
installed on the host under attack

0 Saying this, many modern CPUs have built-in hardware
instructions for AES, which protect against timing-related
side-channel attacks

FYIl: More Side-Channel Attacks

0 Transient execution CPU vulnerabilities are
vulnerabilities in a computer system in which a
speculative execution optimisation implemented in o

microprocessor is exploited to leak secret data to an
unauthorized party

O Example Meltdown and Spectre attack

0 In cache timing aftacks an attacker process
deliberately causes page faults and /or cache misses in

the target process, and monitors the resulting changes in
access times

O This can be done despite both processes being otherwise
isolated

	Slide 1: CT437 Computer Security and Forensic Computing Block Ciphers
	Slide 2: Lecture Overview
	Slide 3: Recall: Model of Conventional Cryptosystem
	Slide 4: Symmetric Key Algorithms
	Slide 5: Public-Key Algorithms
	Slide 6: Block Ciphers versus Stream Ciphers
	Slide 7: Example Block Cipher Transformation
	Slide 8: Block Ciphers and Padding
	Slide 9: Padding Algorithms
	Slide 10: Modes of Operation: Electronic Codebook (EBC) Mode
	Slide 11: Characteristics and Limitations of ECB Mode
	Slide 12: Why would one avoid the Electronic Codebook Mode?
	Slide 13: Modes of Operation: Cipher Block Chaining (CBC) Mode
	Slide 14: The Initialisation Vector (IV)
	Slide 15: Modes of Operation: Cipher Block Chaining (CBC) Mode
	Slide 16: Modes of Operation: Cipher Block Chaining (CBC) Mode
	Slide 17: Full Block Cipher Feedback (CFB) Mode
	Slide 18: Full Block Cipher Feedback (CFB) Mode
	Slide 19: Propagating Cipher Block Chaining (PCBC) Mode
	Slide 20: Propagating Cipher Block Chaining (PCBC) Mode
	Slide 21: Counter (CTR) Mode
	Slide 22: Counter (CTR) Mode
	Slide 23: Another Question …
	Slide 24: Building Block Ciphers
	Slide 25: Important Block Cipher Principle
	Slide 26: Confusion and Diffusion
	Slide 27: The Avalanche Effect
	Slide 28: Block Cipher Building Blocks
	Slide 29: The Permutation Operation
	Slide 30: The Substitution Operation
	Slide 31: Substitution-Permutation Network
	Slide 32: The Feistel Cipher
	Slide 33: The Feistel Cipher – A Single Round
	Slide 34: The Feistel Cipher – A single Round
	Slide 35: Recap: Symmetry of Bitwise EXOR
	Slide 36: In-Class Activity: Feistel Cipher – Single Round
	Slide 37: Example Feistel Cipher – Single Round
	Slide 38: Feistel Network
	Slide 39: Feistel Cipher Design Elements
	Slide 40: Simple Methods for Subkey Generation
	Slide 41: Block Cipher Examples
	Slide 42: Common Block Cipher Key and Block Lengths
	Slide 43: Data Encryption Standard (DES)
	Slide 45: The DES Challenge
	Slide 46: Triple DES
	Slide 47: Double-DES and the Meet-in-the-Middle Attack
	Slide 48: Double-DES and the Meet-in-the-Middle Attack
	Slide 49: Advanced Encryption Standard (AES)
	Slide 50: Breaking Block Ciphers
	Slide 51: Why does Block and Key Length matter?
	Slide 52: Brute Force Search / Attacks
	Slide 53: Brute Force Search / Attacks
	Slide 54: Side-Channel Attacks
	Slide 55: Timing Attacks
	Slide 56: Example: Insecure String Comparison (Wikipedia)
	Slide 57: Timing Attacks
	Slide 58: FYI: More Side-Channel Attacks

