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Background
N

0 We already know a RTS may miss deadlines under the following
circumstances:

O Poorly structured CE or process hierarchy

0O Erroneous task / process WCET assumptions

O Non-preemptable kernel sections

O Too many asynchronous events, i.e. signals or interrupts, to be processed

O Incorrect use of timers to control process schedule (i.e., nanosleep()
example)
0 However, there is another problem area in pre-emptive
multitasking environments (and RTOS): Poorly designed resource
sharing of processes

O Problematic for both pure OS and OS RT extensions
0 In this lecture we are going to investigate this problem and at

solutions to make sure that resource sharing does not interfere with
the timely execution particularly of high-priority tasks



Lecture Overview

I S,
0 Introduction to real-time synchronisation, problems
and workarounds, i.e.
O critical regions
O priority inversion
O priority inheritance
O the priority ceiling protocol

o The Mars Pathfinder case study



Critical Region

0 Attention is needed when more than one process requires
access to single resource

0 Necessary to prevent race conditions
“The condition of an electronics, software, or other system where
the system's behaviour is dependent on the sequence or timing of
other uncontrollable events”

0 Ensure that only one process can access resource at any time
m E.g. memory write / read
0 A Critical Region is a section of code that interacts with the
shared resource
0 Once task enters critical region, it must be allowed to complete
o This is achieved via mutexes & semaphores



Semaphore Example
.

0 Two tasks have a print job, but only one task can
access the printer at a time

Task

0SSemPend ()
Access Printer

0SSemPost ()\
Semaphore PI'I nter

0SSemPend (/

AccessPrinter
OSSemPost ()
Task

2




Critical Region Example

0 Task 1 and 2 share common a resource
O The access to the resource is provided via a critical region

O A single mutex (binary semaphore) S shared between both tasks is used to
enforce single access

0 Semaphores and their APl are provided by OS

O wait (S)and signal (S) are used to lock and unlock access to region
respectively

Task 1 Task 2
walit (S)
critical region
signal (S)

wait (S) M

critical region TIME

signal (S)



Typical Semaphore Implementation
N

typedef struct SEMAPHORE ({
int value; /* the integer value for semaphore */
other stuff;
} sem t;

value determines how
init(sem_t *s, int 1) many processes can
{
S->value = i; access the protected

} resource at a time

vold wait(sem t *5)
{
S—>value—-;
if (S->value < 0)
block on semaphore

vold signal(sem t *S)
S—->value++;

if (S->value <= 0)
unblock one process or thread that is blocked on semaphore




Example: Binary Semaphore
N

0 In this example a binary semaphore S is used by
processes P1,..., P4 to control access to some
resource within a CS

Actions Results
State no. Calling process Operation Running in  Blocked Value of
CS on S S

Wait(S)
Signal(S)
Wait(S)
Wait(S)
Wait(S)




POSIX Semaphore API

Header file #include <semaphore.h>
name

Semaphore sem t :

data type - See next slide

Initialization | int sem init(sem t *sem, int pshared, unsigned value);
int sem;destroy(sem_t *sem) ;
int sem wait(sem t *sem);

Semaphore — —

Operaﬁﬂns int sem post(sem t *sem)

int sem trywait(sem t *sem);

Compilation

-1rt




POSIX Semaphore API

All of the POSIX.1b semaphore functions return =1 to indicate an error.

sem init function initializes the semaphore to have the value value. The value parameter

cannot be negative. If the value of pshared i1s not 0, the semaphore can be used between
processes (1.e. the process that initializes it and by children of that process). Otherwise it can be
used only by threads within the process that initializes 1t.

sem wait is a standard semaphore wait operation. If the semaphore value 1s 0, the sem wait
blocks unit it can successfully decrement the semaphore value.

sem trywait is similar to sem wailt except that instead of blocking when attempting to
decrement a zero-valued semaphore, 1f returns —1.

sem post 1s a standard semaphore signal operation. The POSIX.1b standard requires that

sem post be reentrant with respect to signals, that 1s, it 1s asynchronous-signal safe and may
be invoked from a signal-handler.



Semaphore Pitfalls in RTS: The Priority

Inversion Problem
I

0 Priority inversion is a scenario in process scheduling
in which a high-priority task is indirectly pre-
empted by a lower priority task effectively
inverting the relative priorities of the two tasks

0 This behaviour is undesirable, particularly in RTS,
where a high-priority task needs to meet a
deadline

0 Let’s have a look at an example



Example: Priority Inversion Problem
N

0 Consider Task 1, Task 2, Task 3 with decreasing task priorities

0 Task T and 3 share resource that is protected via mutex (binary
semaphore) S

0 Timeline (next slide)

O t0: Task 3 commences

o t1: Task 3 enters critical region S
O t2: Task 1 pre-empts Task 3
O

t3: Task 1 attempts to enter shared critical region S
® Locked out by Task 3
m Blocks = Task 3 resumes

t4: Task 2 released and pre-empts Task 3

t5: Task 2 completes

m Task 3 resumes S

O t6é: Task 3 completes critical region.. Releases S
®m Task 1 enters S

O t7: Task 1 releases S



Example: Priority Inversion Problem

]
CD S
Task 1 [ .
Task 2 N
S S S
Task 3 . I N
t0 t1 2 3 t4 t5 t6 t7 t8

0 Task 1, Task 2, Task 3 have decreasing task priorities

0 Task 1T and 3 share resource that is protected via the
mutex (binary semaphore) S



Example: Priority Inversion Problem

N
0 Task 2 delays Task 1 indirectly by period £t5-t4
0 Pre-empts Task 3 which was blocking Task 1

0 Lower priority Task 3 indirectly delays higher priority
Task 1 for indeterminate period
O Priority Inversion

O Intermediate Task 2 can repeatedly pre-empt Task3

0 ldeally, Task 2 should be prohibited from pre-empting
Task 3 when Task 3 was already blocking Task 1

0 Priority Inheritance facilitates this solution



Solution: Priority Inheritance

0 If a higher priority task is blocked by a lower priority
task (due to a critical region), the lower priority task
inherits the priority of the higher priority task for the
duration of critical region, after which lower priority
task restored to initial priority

0 More generally, a task causing blocking executes with
priority
0 max (Own Priority, Highest Priority of any tasks it 1is
blocking)
prevents an intermediate task priority from
delaying a higher priority task



Example: Priority Inheritance
—

D

Task 1 ]
Task 2 ]
S S S
Task 3 [ T I
t0 11 2 13 t4 5 6 17 18

Task 3 inherits Task 1 priority




Example: Priority Inheritance
N

* Timeline
— t0: Task 3 commences
— t1: Task 3 enters critical region S
— t2: Task 1 pre-empts Task 3

— t3: Task 1 attempts to enter shared critical region S
* Locked out by Task 3
* Blocks = Task 3 resumes but inherits Task 1 priority

— t4: Task 2 is released but does not pre-empt Task 3
* Task 3 continues

— t5: Task 3 completes critical region and releases S
* Task 1 enters S

— t6: Task 1 completes critical region and releases S
* Task 1 continues to completion

— t7:Task 2 runs
* Task 1 is only delayed (blocked) by time interval required by Task 3 to complete S
* |t will then get access to S
* Note:

* Atask T can be blocked multiple times by different lower priority tasks which
have locked various resources shared with Task T

* The total blocked time can be significant and needs to be considered by system
designers



Another Problem: Task Deadlocks

S =
0 Consider Task 1 and Task 2 with Task 1 having the highest priority

0 They share 2 resources R1 and R2, protected by S1 and S2
0 Task 1: Accesses S1, then S2 nested within

0 Task 2: Accesses S2, then S1 nested within
S S2 S1

Tosk 1 [
>

t0 t1 2 t3 t4 t5 t6 t7 t8 19 t10

Task 2 [ T |

S2 g S2

Above scenario: Time separated access = No problem
tO-t1: Task 1 is running S1 locked

t1-t2: Task 1 nested lock of S2, S2 unlocked at t2

t3-14: Task 1 running : no locks, complete at t4

t5: Task 2 runs, locks S2 at t6

t7: Nested lock of S1, unlocked at t8, S2 unlocked at 19



Example for a Deadlock Situation
N

e Scenario 2

tO: Task 2 is running and locks S2

t1: Task 1 pre-empts Task 2 and locks ST at ¥’

t2: Task 1 attempts to lock S2 ... Fails =>»Task 2 runs
t3: Task 2 attempts to lock ST ... Fails

=» Deadlock
S2
Tosk 2 N =
10 o 12 13 >
Task 1 -

S

The Priority Ceiling Protocol avoids this situation



The Priority Ceiling Protocol
N

0 Extends the Priority Inheritance Protocol
O Prevents deadlock situations
O Reduces total potential blocking time

0 Define

o The Priority Ceiling of a resource (critical region) R protected
by semaphore S denoted m(R) is defined as the highest priority
of all the tasks that may utilise R

m With priority inheritance, priority of task will change if it is locking a
resource requested by a higher priority task BUT by definition the Priority
Ceiling of that resource is unchanged by this

o The Current Priority Ceiling of the overall system denoted [(t)
is defined as highest priority ceiling of all the resources that are
in use at time t (presuming some resources are in use)



Example: Priority Ceiling Protocol
—

RTS 0 Tasks T1 toT4

O Decreasing priorities P1 to P4

‘ ‘ O 1(R) constant and shown in the table
o T1(t) depends on resources in use at

time t
(R3] [R4] Resource | Tasks m(R)
‘ ‘ R1 T1,T2T4 |P1
R2 T3,T4 P3
R3 T2,T3 P2
R4 T1,T4 P1




Priority Ceiling Protocol

e
0 Rules

O At time t, if Task T requests resource R

0\ mIf Ris already locked, the request fails and task T is blocked

lower priority

task that [ | If R iS fl‘ee

shares

(potenticlly) w If the priority of task Tis > [I(t) , R is allocated to T

d resource

with T -> No m |f the priority of task T is not > T1(t) , R is allocated iff task T is

d::sj:f;k already holding the resource R2 whose priority ceiling Tt(R2) is

r(t)
m Note: If another task is holding the resource R2, with priority
S ceiling (R2), T is blocked even if it never actually requires
resource, i.e. it access to R2

can’t block

itself Otherwise, task T is blocked

If we can’t guarantee the l.e. we only consider that is a resource is potentially shared, but we do

above, we need to be prudent not further consider if and when this will ever happen during the
and block T execution of the program



Priority Ceiling Protocol
N

0 General Rule: By definition, at time t, if the priority of
a task T is higher than the priority ceiling of the
system at that time [1(t),

O task T does not ever require the resources in use at time t

O tasks with priorities equal to or higher than T will not ever
use them either (otherwise [1(t) would be equal or higher
than T)
=> M(t) by default tells us the subset of tasks to which we can

grant free resources at time t, i.e. all the tasks that have
priorities higher than [1(t)



Recall Example Deadlock
N

e Scenario 2

tO: Task 2 is running and locks S2

t1: Task 1 pre-empts Task 2 and locks S1 at t’

t2: Task 1 attempts to lock S2 ... Fails =>»Task 2 runs
t3: Task 2 attempts to lock S1 ... Fails

= Deadlock
S2
[CE S | I
10 nr 12 13 >
Task 1 L

S1

Priority Ceiling Protocol avoids this situation



Example: Deadlock Avoidance via the

Priority Ceiling Protocol
S =

S2 S S2
Task 2 AEEE NN [ ] »
t0 t1T ' 12 t3t4 t5 t6 t7t8 19
Task 1 [ ] T

ST S2  SI



Example: Deadlock Avoidance via the

Priority Ceiling Protocol
-h

0 In the previous example,

0 Have 2 resources R1, R2 protected by ST and S2 and
shared by 2 Tasks, Task 1 and Task 2
® R1 =>»S1 : Priority Ceiling is m(R1) = Prior (Task 1)
m R2=>» S2: Priority Ceiling is m(R2) = Prior (Task 1)

O At time t', Task 1 attempts to lock S1
m Priority Ceiling of System [1(t) is that of resource R2 which is locked
by Task 2 =» M(t) = n(R2) = Prior (Taskl)
m ST is unlocked (R1 free) BUT
® Priority(Task 1) is not > I(t) as [(t) = Prior (Taskl)
m Task 1 is NOT holding resource whose priority ceiling = (1)
m i.e. Task 2 holding R2
m Task 1 blocked from locking S1
Task 2 continues and inherits Task 1 priority



Example: Deadlock Avoidance via the

Priority Ceiling Protocol
S =

* Scenario 2: Full timeline

t0: Task 2 is running and locks S2

t1: Task 1 pre-empts Task 2 and attempts to lock S1 at 1’

t': Task 1 blocked, Task 2 resumes and inherits Task 1 priority

t2: Task 2 attempts to lock ST .. Successful
Note: Prior (Task 2) = Prior(Task 1) = P through inheritance
P not > l(t) as M(t) = n(R2) = Prior (Taskl) BUT
Task 2 actually holds R2 = ok

t3: Task 2 releases S1, continues with S2

t4: Task 2 releases S2, priority restored to Prior (Task 2)

t4:Task 1 pre-empts Task 2, resumes, locks ST

t5: Task 1 attempts to lock S2 .. Successful
Same reason as above 12 but logic applied to Task 1

t6: Task 1 releases S2, continues with S1

t7: Task 1 releases S1, no resources held. Task 1 continues

t8: Task 1 complete, Task 2 resumes

t9: Task 2 complete



Case Study: Mars Pathfinder

- J
0 Launched 1996 and landed July 1997 e

Consisted of a Lander (Pathfinder) and a Rover
(Sojourner)

0 It was the first mission to Mars since the Viking
programme in 1976 (2 probes were sent)

0 Inflation corrected,

O the Viking programme did cost $7 billion
O Pathfinder did only cost $485 million

0 It was a “faster-better-cheaper” project and a
demonstrator for using new landing techniques
(parachute and airbags) and standard components
where possible (e.g. computer boards or OS)

O See
O https://www.youtube.com/watch?v=5-cBjl2zgBO

0 Compare this to the 2021 landing of
Perseverance:

O https://www.youtube.com/watch?2v=rzmd7RouGrM



https://www.youtube.com/watch?v=5-cBjI2zgB0
https://www.youtube.com/watch?v=rzmd7RouGrM

Mars Pathfinder Hardware
T

0 The computer on board the rover was based on a 2
MHz Intel 80C85 CPU with 512 KB of RAM and
176 KB of flash memory solid-state storage, running
a bare-bone cyclic executive

0 The computer of the Pathfinder lander was a
radiation hardened IBM RISC 6000 (Rad6000 SC)
CPU with 128 MB of RAM and 6 MB of EEPROM; it
used the RTOS VxWorks



V xWorks

N =
0 Proprietary RTOS by Wind River Systems

O See hitp://www.windriver.com/products/vxworks/

o Fully POSIX.4 Compliant included pre-emptive FIFO priority
scheduling

o Continuously improved since the 1990s
0 Widely used, even in safety critical systems
O Boeing 787 (aviation industry)
O Router/Switches
0 Mars Pathfinder

0 However, a few days after being deployed on Mars,
Pathfinder suffered repeated system resets


http://www.windriver.com/products/vxworks/

Mars Pathfinder Hardware Architecture

0 The Rad6000 SC CPU controlled the entire spacecraft
(excluding the rover)




Pathfinder Instruments

0 Imager for Mars Pathfinder (IMP):
O Hosted on the lander

O Used for imaging the surface of Mars and helped to navigate the
rover

0 Atmospheric Structure Instrument and Meteorology Package
(ASI/MET):
O Hosted on the lander

O Used to acquire atmospheric information (e.g. pressure,
temperature, wind)

0 Alpha Proton X-ray Spectrometer (APXS):

O Hosted on the rover

O Designed to determine the elements that make up the rocks and
soil on Mars



Mars Pathfinder Hardware Architecture

1
Radio
VME Bus
CPU 1553 Bus Interface

1553 Bus

Lander / ASI-MET Cruise




Mars Pathfinder Bus Architecture
N

0 The CPU was connected to a VME hardware bus, which
linked it to the radio, the camera, and the interface to a

1553 bus

0 The VME bus is a parallel bus originally designed for the Motorola
68000 series

0 The 1553 bus is a military grade serial bus, and it
connected to:

0 The "cruise stage" part of the spacecraft and

0 The "lander" part of the spacecraft



Mars Pathfinder: Lander/ASI-MET and

Cruise Subsystem
-—

0 The hardware on the Cruise Q Q
part of the spacecraft controlled Q [ s
thrusters, valves, a sun e T

sensor, and a star scanner

Lander / ASI-MET Cruise

0 Was only operational during the flight to Mars
0 The hardware on the Lander / ASI-MET part provided

O an accelerometers and a radar altimeter (used during the
landing phase only)

0 the aforementioned ASI-MET instrument (used when the
lander was on the Mars surface)



The VME Bus

0 Data (video images, meteorological readings, etc.) from the
various instruments on the lander (Pathfinder) and the rover

(Sojourner) had to pass through this bus to be transmitted to
Earth

0 Likewise, commands to control the instruments on Pathfinder
(such as the camera or the ASI-MET) had to pass through
this bus

0 Obviously, this couldn’t happen all at once, therefore data
threads and command strings had to take turns using the

bus

0 It was the job of VxWorks to schedule traffic through the
bus according to the pre-assigned priorities of data and
commands



Pathfinder Software Architecture
T2
0 VxWorks provided pre-emptive fixed-priority
scheduling

0 Tasks were executed via a cyclic scheduler with a
cycle of 125 ms

O Basically, the scheduler was organised as a CE, a bit like
the example in previous lectures, but with
W just one task per priority

® tasks exited after completion and were executed again in the
next cycle



Pathfinder Software Architecture

0 The software to control the 1553 bus and the attached
instruments was implemented in two main tasks

O Bus Scheduler: bc sched

m Decided what instrument would transmit data next and transmitted
the schedule to the instrument

O Data Collection: bc dist
= Handled the collection of the instrument data selected by bc sched
0 Additional tasks perform other spacecraft functions
0 Communication task (for radio comms): communication

0 Meteorological data processing task (processing data from ASI-
MET instrument): AST-MET

0 Process priorities were as follows:

o prio(“bc sched”) > prior(“bc dist”) >
prio(“communication”) > prio(*ASI-MET")



Pathfinder Software Architecture

0 Using a watchdog timer, the bc sched task checked at the
beginning of its execution whether the bc dist task had
completed its execution in the previous cycle

o Similar to TimerFlag variable in the CE example

O If bc dist had not completed, bc sched initiated a
system reset

0 A system reset caused a cold restart of the pathfinder to
bring it back to a safe state

O This terminated all current ground commanded activities including
rover control, data upload etc. for hours

o This was critical, since the probe had only a limited expected

lifetime (30 days for the lander and 7 days for the rover) because
of dust slowly covering the solar panels



The Problem

0 The AST-MET task and the bc dist task shared a
resource managed by a binary semaphore

0 The fault sequence looks as follows:
O t0: The ASI-MET task acquires semaphore
O tl: communication task pre-empts AST-MET
O t2: bc dist is released and pre-empts the communication task

O t3: bc dist attempts to lock semaphore which is already locked

B communication task resumes

O t4: bc sched is released and determines that bc_dist has not completed

® Forces system reset

0 = Classical Priority Inversion Problem



The Problem
N

bc_sched [
bc_dist T
. L. [ [
communication
S
ASI-MET T
t0 t1 t2 t3 t4

\ bc_sched released.. system reset

bc_dist attempts to lock S.. fails




Root Cause Analysis and Fix
N

0 The problem only manifested when AST-MET collected data and the
communication task was heavily loaded

0 There were two oversights by NASA engineers

O Firstly, testing before launch was limited to the "best case™ communication
task activity, therefore the problem did never occur

O Secondly, engineers were not aware that VxWorks sets the priority
inheritance flag off for semaphores by default, i.e. it needs to be set via a

compiler switch

0 However, the problem was identified (as a priority inversion issues) by
engineers within a day

0 The problem was subsequently rectified by recompiling the code with
the Priority Inheritance option set, and uploaded it to the pathfinder
probe



Timeline with Priority Inheritance Option

enabled
I

bc_sched L

bc_dist [ ] EE ]

bc_dist completes

/ Med task resumes

Medium Task

ASI-MET [ 1 [ 1] [ ]

S released, bc_dist preempts
ASI-MET locks S

bc_dist attempts to lock S.. Fails
ASI-MET inherits priority and runs
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