
CT420 REAL-TIME SYSTEMS

PROCESS SYNCHRONIZATION AND RTS

Dr. Michael Schukat

Background
2

 We already know a RTS may miss deadlines under the following
circumstances:

 Poorly structured CE or process hierarchy

 Erroneous task / process WCET assumptions

 Non-preemptable kernel sections

 Too many asynchronous events, i.e. signals or interrupts, to be processed

 Incorrect use of timers to control process schedule (i.e., nanosleep()
example)

 However, there is another problem area in pre-emptive
multitasking environments (and RTOS): Poorly designed resource
sharing of processes

 Problematic for both pure OS and OS RT extensions

 In this lecture we are going to investigate this problem and at
solutions to make sure that resource sharing does not interfere with
the timely execution particularly of high-priority tasks

Lecture Overview
3

 Introduction to real-time synchronisation, problems

and workarounds, i.e.

 critical regions

 priority inversion

 priority inheritance

 the priority ceiling protocol

 The Mars Pathfinder case study

Critical Region

 Attention is needed when more than one process requires
access to single resource
 Necessary to prevent race conditions

“The condition of an electronics, software, or other system where
the system's behaviour is dependent on the sequence or timing of
other uncontrollable events”

 Ensure that only one process can access resource at any time
◼ E.g. memory write / read

 A Critical Region is a section of code that interacts with the
shared resource
 Once task enters critical region, it must be allowed to complete

 This is achieved via mutexes & semaphores

Semaphore Example
5

 Two tasks have a print job, but only one task can

access the printer at a time

Critical Region Example

 Task 1 and 2 share common a resource

 The access to the resource is provided via a critical region

 A single mutex (binary semaphore) S shared between both tasks is used to
enforce single access

 Semaphores and their API are provided by OS

 wait(S)and signal(S)are used to lock and unlock access to region
respectively

Task 1 Task 2

. wait(S)

. critical region

 signal(S)

.

.

wait(S) .

critical region .

signal(S)

TIME

Typical Semaphore Implementation

value determines how

many processes can

access the protected

resource at a time

Example: Binary Semaphore
8

 In this example a binary semaphore S is used by

processes P1,…, P4 to control access to some

resource within a CS

Actions Results

State no. Calling process Operation Running in Blocked Value of

 CS on S S

0 1

1 P1 Wait(S) P1 0

2 P1 Signal(S) 1

3 P2 Wait(S) P2 0

4 P3 Wait(S) P2 P3 -1

5 P4 Wait(S) P2 P3,P4 -2

POSIX Semaphore API

See next slide

POSIX Semaphore API

Semaphore Pitfalls in RTS: The Priority

Inversion Problem
11

 Priority inversion is a scenario in process scheduling

in which a high-priority task is indirectly pre-

empted by a lower priority task effectively

inverting the relative priorities of the two tasks

 This behaviour is undesirable, particularly in RTS,

where a high-priority task needs to meet a

deadline

 Let’s have a look at an example

Example: Priority Inversion Problem

 Consider Task 1, Task 2, Task 3 with decreasing task priorities

 Task 1 and 3 share resource that is protected via mutex (binary
semaphore) S

 Timeline (next slide)
 t0: Task 3 commences

 t1: Task 3 enters critical region S

 t2: Task 1 pre-empts Task 3

 t3: Task 1 attempts to enter shared critical region S

◼ Locked out by Task 3

◼ Blocks ➔ Task 3 resumes

 t4: Task 2 released and pre-empts Task 3

 t5: Task 2 completes

◼ Task 3 resumes S

 t6: Task 3 completes critical region.. Releases S

◼ Task 1 enters S

 t7: Task 1 releases S

Example: Priority Inversion Problem

Task 1

Task 2

Task 3
t0 t1 t2 t3 t4 t5 t6 t7 t8

S S S

S

Blocks on

S

 Task 1, Task 2, Task 3 have decreasing task priorities

 Task 1 and 3 share resource that is protected via the
mutex (binary semaphore) S

Problem!

Example: Priority Inversion Problem

 Task 2 delays Task 1 indirectly by period t5-t4

 Pre-empts Task 3 which was blocking Task 1

 Lower priority Task 3 indirectly delays higher priority
Task 1 for indeterminate period

 Priority Inversion

 Intermediate Task 2 can repeatedly pre-empt Task3

 Ideally, Task 2 should be prohibited from pre-empting
Task 3 when Task 3 was already blocking Task 1

 Priority Inheritance facilitates this solution

Solution: Priority Inheritance

 If a higher priority task is blocked by a lower priority
task (due to a critical region), the lower priority task
inherits the priority of the higher priority task for the
duration of critical region, after which lower priority
task restored to initial priority

 More generally, a task causing blocking executes with
priority
 max(Own Priority, Highest Priority of any tasks it is

blocking)

 prevents an intermediate task priority from
 delaying a higher priority task

Example: Priority Inheritance

Task 1

Task 2

Task 3
t0 t1 t2 t3 t4 t5 t6 t7 t8

S S S

S

Task 3 inherits Task 1 priority

Blocks on

S

Example: Priority Inheritance

• Timeline

– t0: Task 3 commences

– t1: Task 3 enters critical region S

– t2: Task 1 pre-empts Task 3

– t3: Task 1 attempts to enter shared critical region S
• Locked out by Task 3

• Blocks ➔ Task 3 resumes but inherits Task 1 priority

– t4: Task 2 is released but does not pre-empt Task 3
• Task 3 continues

– t5: Task 3 completes critical region and releases S
• Task 1 enters S

– t6: Task 1 completes critical region and releases S
• Task 1 continues to completion

– t7: Task 2 runs

• Task 1 is only delayed (blocked) by time interval required by Task 3 to complete S

• It will then get access to S

• Note:

• A task T can be blocked multiple times by different lower priority tasks which
have locked various resources shared with Task T

• The total blocked time can be significant and needs to be considered by system
designers

Another Problem: Task Deadlocks

 Consider Task 1 and Task 2 with Task 1 having the highest priority

 They share 2 resources R1 and R2, protected by S1 and S2

 Task 1: Accesses S1, then S2 nested within

 Task 2: Accesses S2, then S1 nested within

t0 t1 t2 t3

Above scenario: Time separated access ➔ No problem

t0-t1: Task 1 is running S1 locked

t1-t2: Task 1 nested lock of S2, S2 unlocked at t2

t3-t4: Task 1 running : no locks, complete at t4

t5: Task 2 runs, locks S2 at t6

t7: Nested lock of S1, unlocked at t8, S2 unlocked at t9

Task 1

Task 2

S1

S1

S2 S1

t4 t5 t6 t7 t8 t9 t10

S2 S2

Example for a Deadlock Situation

• Scenario 2

t0 t1 t2 t3

t0: Task 2 is running and locks S2

t1: Task 1 pre-empts Task 2 and locks S1 at t’

t2: Task 1 attempts to lock S2 … Fails ➔Task 2 runs

t3: Task 2 attempts to lock S1 ... Fails

➔ Deadlock

Task 2

Task 1

S2

S1

t’

The Priority Ceiling Protocol avoids this situation

M

The Priority Ceiling Protocol

 Extends the Priority Inheritance Protocol
 Prevents deadlock situations

 Reduces total potential blocking time

 Define
 The Priority Ceiling of a resource (critical region) R protected

by semaphore S denoted π(R) is defined as the highest priority
of all the tasks that may utilise R
◼ With priority inheritance, priority of task will change if it is locking a

resource requested by a higher priority task BUT by definition the Priority
Ceiling of that resource is unchanged by this

 The Current Priority Ceiling of the overall system denoted Π(t)
is defined as highest priority ceiling of all the resources that are
in use at time t (presuming some resources are in use)

Example: Priority Ceiling Protocol

 Tasks T1 toT4

 Decreasing priorities P1 to P4

 π(R) constant and shown in the table

 Π(t) depends on resources in use at

time t

Task 1

P1

Task 2

P2

Task 4

P3
Task 3

P4

R3

R1 R2

Resource Tasks π(R)

R1 T1,T2,T4 P1

R2 T3,T4 P3

R3 T2,T3 P2

R4 T1,T4 P1

R4

RTS

Priority Ceiling Protocol

 Rules

 At time t, if Task T requests resource R

◼ If R is already locked, the request fails and task T is blocked

◼ If R is free

◼ If the priority of task T is > Π(t) , R is allocated to T

◼ If the priority of task T is not > Π(t) , R is allocated iff task T is
already holding the resource R2 whose priority ceiling π(R2) is
Π(t)

◼ Note: If another task is holding the resource R2, with priority
ceiling π(R2), T is blocked even if it never actually requires
access to R2

◼ Otherwise, task T is blocked

There’s no

lower priority

task that

shares

(potentially)

a resource

with T -> No

deadlock

possible

T holds the

resource, i.e. it

can’t block

itself

If we can’t guarantee the

above, we need to be prudent

and block T

I.e. we only consider that is a resource is potentially shared, but we do

not further consider if and when this will ever happen during the

execution of the program

Priority Ceiling Protocol

 General Rule: By definition, at time t, if the priority of

a task T is higher than the priority ceiling of the

system at that time Π(t),

 task T does not ever require the resources in use at time t

 tasks with priorities equal to or higher than T will not ever

use them either (otherwise Π(t) would be equal or higher

than T)

➔ Π(t) by default tells us the subset of tasks to which we can

grant free resources at time t, i.e. all the tasks that have

priorities higher than Π(t)

Recall Example Deadlock

• Scenario 2

t0 t1 t2 t3

t0: Task 2 is running and locks S2

t1: Task 1 pre-empts Task 2 and locks S1 at t’

t2: Task 1 attempts to lock S2 … Fails ➔Task 2 runs

t3: Task 2 attempts to lock S1 ... Fails

➔ Deadlock

Task 2

Task 1

S2

S1

t’

Priority Ceiling Protocol avoids this situation

Example: Deadlock Avoidance via the

Priority Ceiling Protocol

t0 t1 t2 t3

Task 2

Task 1

S2

S1

t’

S1 S2

t4

S2 S1

t5 t6 t7 t8 t9

Example: Deadlock Avoidance via the

Priority Ceiling Protocol

 In the previous example,
 Have 2 resources R1, R2 protected by S1 and S2 and

shared by 2 Tasks, Task 1 and Task 2
◼ R1 ➔S1 : Priority Ceiling is π(R1) = Prior(Task 1)

◼ R2➔ S2 : Priority Ceiling is π(R2) = Prior(Task 1)

 At time t’, Task 1 attempts to lock S1
◼ Priority Ceiling of System Π(t) is that of resource R2 which is locked

by Task 2 ➔ Π(t) = π(R2) = Prior(Task1)

◼ S1 is unlocked (R1 free) BUT
◼ Priority(Task 1) is not > Π(t) as Π(t) = Prior(Task1)

◼ Task 1 is NOT holding resource whose priority ceiling = Π(t)

◼ i.e. Task 2 holding R2

◼ Task 1 blocked from locking S1

◼ Task 2 continues and inherits Task 1 priority

Example: Deadlock Avoidance via the

Priority Ceiling Protocol

• Scenario 2: Full timeline

t0: Task 2 is running and locks S2

t1: Task 1 pre-empts Task 2 and attempts to lock S1 at t’

t’: Task 1 blocked, Task 2 resumes and inherits Task 1 priority

t2: Task 2 attempts to lock S1 .. Successful

Note: Prior(Task 2) = Prior(Task 1) = P through inheritance

P not > Π(t) as Π(t) = π(R2) = Prior(Task1) BUT

Task 2 actually holds R2 ➔ ok

t3: Task 2 releases S1, continues with S2

t4: Task 2 releases S2, priority restored to Prior(Task 2)

t4:Task 1 pre-empts Task 2, resumes, locks S1

t5: Task 1 attempts to lock S2 .. Successful

Same reason as above t2 but logic applied to Task 1

t6: Task 1 releases S2, continues with S1

t7: Task 1 releases S1, no resources held. Task 1 continues

t8: Task 1 complete, Task 2 resumes

t9: Task 2 complete

Case Study: Mars Pathfinder

 Launched 1996 and landed July 1997

 Consisted of a Lander (Pathfinder) and a Rover
(Sojourner)

 It was the first mission to Mars since the Viking
programme in 1976 (2 probes were sent)

 Inflation corrected,

 the Viking programme did cost $7 billion

 Pathfinder did only cost $485 million

 It was a “faster-better-cheaper” project and a
demonstrator for using new landing techniques
(parachute and airbags) and standard components
where possible (e.g. computer boards or OS)

 See

 https://www.youtube.com/watch?v=5-cBjI2zgB0

 Compare this to the 2021 landing of
Perseverance:

 https://www.youtube.com/watch?v=rzmd7RouGrM

https://www.youtube.com/watch?v=5-cBjI2zgB0
https://www.youtube.com/watch?v=rzmd7RouGrM

Mars Pathfinder Hardware
29

 The computer on board the rover was based on a 2

MHz Intel 80C85 CPU with 512 KB of RAM and

176 KB of flash memory solid-state storage, running

a bare-bone cyclic executive

 The computer of the Pathfinder lander was a

radiation hardened IBM RISC 6000 (Rad6000 SC)

CPU with 128 MB of RAM and 6 MB of EEPROM; it

used the RTOS VxWorks

VxWorks

 Proprietary RTOS by Wind River Systems

 See http://www.windriver.com/products/vxworks/

 Fully POSIX.4 Compliant included pre-emptive FIFO priority
scheduling

 Continuously improved since the 1990s

 Widely used, even in safety critical systems

 Boeing 787 (aviation industry)

 Router/Switches

 Mars Pathfinder

 However, a few days after being deployed on Mars,
Pathfinder suffered repeated system resets

http://www.windriver.com/products/vxworks/

Mars Pathfinder Hardware Architecture

 The Rad6000 SC CPU controlled the entire spacecraft

(excluding the rover)

Pathfinder Instruments
32

 Imager for Mars Pathfinder (IMP):

 Hosted on the lander

 Used for imaging the surface of Mars and helped to navigate the
rover

 Atmospheric Structure Instrument and Meteorology Package
(ASI/MET):

 Hosted on the lander

 Used to acquire atmospheric information (e.g. pressure,
temperature, wind)

 Alpha Proton X-ray Spectrometer (APXS):

 Hosted on the rover

 Designed to determine the elements that make up the rocks and
soil on Mars

Mars Pathfinder Hardware Architecture

CPU

Radio IMP

Lander / ASI-MET Cruise

VME Bus

1553 Bus

1553 Bus Interface

Mars Pathfinder Bus Architecture

 The CPU was connected to a VME hardware bus, which

linked it to the radio, the camera, and the interface to a

1553 bus

 The VME bus is a parallel bus originally designed for the Motorola

68000 series

 The 1553 bus is a military grade serial bus, and it

connected to:

 The "cruise stage" part of the spacecraft and

 The "lander" part of the spacecraft

Mars Pathfinder: Lander/ASI-MET and

Cruise Subsystem

 The hardware on the Cruise

part of the spacecraft controlled

thrusters, valves, a sun

sensor, and a star scanner

 Was only operational during the flight to Mars

 The hardware on the Lander / ASI-MET part provided

 an accelerometers and a radar altimeter (used during the

landing phase only)

 the aforementioned ASI-MET instrument (used when the

lander was on the Mars surface)

The VME Bus
36

 Data (video images, meteorological readings, etc.) from the
various instruments on the lander (Pathfinder) and the rover
(Sojourner) had to pass through this bus to be transmitted to
Earth

 Likewise, commands to control the instruments on Pathfinder
(such as the camera or the ASI-MET) had to pass through
this bus

 Obviously, this couldn’t happen all at once, therefore data
threads and command strings had to take turns using the
bus

 It was the job of VxWorks to schedule traffic through the
bus according to the pre-assigned priorities of data and
commands

Pathfinder Software Architecture
37

 VxWorks provided pre-emptive fixed-priority

scheduling

 Tasks were executed via a cyclic scheduler with a

cycle of 125 ms

 Basically, the scheduler was organised as a CE, a bit like

the example in previous lectures, but with

◼ just one task per priority

◼ tasks exited after completion and were executed again in the

next cycle

Pathfinder Software Architecture

 The software to control the 1553 bus and the attached
instruments was implemented in two main tasks
 Bus Scheduler: bc_sched
◼ Decided what instrument would transmit data next and transmitted

the schedule to the instrument

 Data Collection: bc_dist

◼ Handled the collection of the instrument data selected by bc_sched

 Additional tasks perform other spacecraft functions
 Communication task (for radio comms): communication

 Meteorological data processing task (processing data from ASI-
MET instrument): ASI-MET

 Process priorities were as follows:

 prio(“bc_sched”) > prior(“bc_dist”) >
prio(“communication”) > prio(“ASI-MET”)

Pathfinder Software Architecture
39

 Using a watchdog timer, the bc_sched task checked at the
beginning of its execution whether the bc_dist task had
completed its execution in the previous cycle

 Similar to TimerFlag variable in the CE example

 If bc_dist had not completed, bc_sched initiated a
system reset

 A system reset caused a cold restart of the pathfinder to
bring it back to a safe state
 This terminated all current ground commanded activities including

rover control, data upload etc. for hours

 This was critical, since the probe had only a limited expected
lifetime (30 days for the lander and 7 days for the rover) because
of dust slowly covering the solar panels

The Problem

 The ASI-MET task and the bc_dist task shared a

resource managed by a binary semaphore

 The fault sequence looks as follows:
 t0: The ASI-MET task acquires semaphore

 t1: communication task pre-empts ASI-MET

 t2: bc_dist is released and pre-empts the communication task

 t3: bc_dist attempts to lock semaphore which is already locked

◼ communication task resumes

 t4: bc_sched is released and determines that bc_dist has not completed

◼ Forces system reset

 ➔ Classical Priority Inversion Problem

The Problem

bc_dist

communication

ASI-MET
t0 t2 t3 t4

S

bc_dist attempts to lock S.. fails

t1

bc_sched

bc_sched released.. system reset

Root Cause Analysis and Fix

 The problem only manifested when ASI-MET collected data and the
communication task was heavily loaded

 There were two oversights by NASA engineers

 Firstly, testing before launch was limited to the "best case" communication
task activity, therefore the problem did never occur

 Secondly, engineers were not aware that VxWorks sets the priority
inheritance flag off for semaphores by default, i.e. it needs to be set via a

compiler switch

 However, the problem was identified (as a priority inversion issues) by
engineers within a day

 The problem was subsequently rectified by recompiling the code with
the Priority Inheritance option set, and uploaded it to the pathfinder
probe

Timeline with Priority Inheritance Option

enabled

bc_dist

Medium Task

ASI-MET

S

bc_dist attempts to lock S.. Fails

ASI-MET inherits priority and runs

bc_sched

S released, bc_dist preempts

ASI-MET locks S

bc_dist completes

Med task resumes

	Slide 1: CT420 Real-Time Systems Process Synchronization And RTS
	Slide 2: Background
	Slide 3: Lecture Overview
	Slide 4: Critical Region
	Slide 5: Semaphore Example
	Slide 6: Critical Region Example
	Slide 7: Typical Semaphore Implementation
	Slide 8: Example: Binary Semaphore
	Slide 9: POSIX Semaphore API
	Slide 10: POSIX Semaphore API
	Slide 11: Semaphore Pitfalls in RTS: The Priority Inversion Problem
	Slide 12: Example: Priority Inversion Problem
	Slide 13: Example: Priority Inversion Problem
	Slide 14: Example: Priority Inversion Problem
	Slide 15: Solution: Priority Inheritance
	Slide 16
	Slide 17
	Slide 18: Another Problem: Task Deadlocks
	Slide 19
	Slide 20: The Priority Ceiling Protocol
	Slide 21: Example: Priority Ceiling Protocol
	Slide 22: Priority Ceiling Protocol
	Slide 23: Priority Ceiling Protocol
	Slide 24
	Slide 25
	Slide 26: Example: Deadlock Avoidance via the Priority Ceiling Protocol
	Slide 27
	Slide 28: Case Study: Mars Pathfinder
	Slide 29: Mars Pathfinder Hardware
	Slide 30: VxWorks
	Slide 31: Mars Pathfinder Hardware Architecture
	Slide 32: Pathfinder Instruments
	Slide 33: Mars Pathfinder Hardware Architecture
	Slide 34: Mars Pathfinder Bus Architecture
	Slide 35: Mars Pathfinder: Lander/ASI-MET and Cruise Subsystem
	Slide 36: The VME Bus
	Slide 37: Pathfinder Software Architecture
	Slide 38: Pathfinder Software Architecture
	Slide 39: Pathfinder Software Architecture
	Slide 40: The Problem
	Slide 41
	Slide 42: Root Cause Analysis and Fix
	Slide 43

