
CT420 REAL-TIME SYSTEMS

POSIX - SIGNALS

Dr. Michael Schukat

Recap: Task Invocation using Timer

T1

T2

T3

Process Tx:

int main() {

// Initialise process

// Setup timer x to notify Tx

// about begin of every cycle, e.g.

// T1: 25ms; T2 = 50ms; T3 = 100ms

while (1) {

 do_something();

 block_until_timer_signal();

}

}

Blocked

T1 T2 T3T3

T3 pre-empted

T4

T4

0 25 50 75 …

T4

Timers, Processes and Signals
3

Timer 1 Process 1
Signal

Timer 2 Process 2
Signal

Timer n Process n
Signal

… …

POSIX Signals

 Signals are an integral part of Unix/POSIX

 They are the software equivalent of an interrupt

 Signals are used for

◼ Exception handling (e.g., division by zero)
◼ Termed synchronously-generated as occur in response to

something the process itself does

◼Asynchronous event occurrence notification

◼ Asynchronous as happens external to process execution

◼ E.g., Timer expiration, I/O completion,

◼ CTRL-C (process terminate)

◼ (Rudimentary) mechanism for inter-process communication
(one option)

POSIX Signal Terminology

 ACTION or DISPOSITION for signal

 1. Ignore

 2. Catch → write a handler function or

 3. Default action → usually terminate process

 Signal is GENERATED for a process (or sent to a
process) when the event that causes the signal occurs

 Signal is DELIVERED to a process when action for a
signal is taken

 In interim between GENERATION and DELIVERY, signal is said
to be PENDING

POSIX Signal Terminology

 Process can BLOCK delivery of a signal ➔ signal

remains PENDING until unblocked

 Signals may be blocked

 To ensure that critical sections of code are not interrupted

 Signal can then be unblocked when out of critical section

 Signal mask defines set of signals currently BLOCKED

from DELIVERY to that process.

 E.g., with 1 bit / signal, signal is blocked if bit is 'ON’

 Some OS-generated critical signals cannot be blocked

(e.g. process termination)

Signal Masks
7

 Data structure that contains 1 bit per signal, e.g.

unsigned 32-bit int (val in macro) and 4 signals
#define SIGNAL1 1

#define SIGNAL2 2

#define SIGNAL3 4

#define SIGNAL4 8

#define SET(val, signal) val |= signal

#define TEST(val, signal) ((val & signal) != 0)

…

Masking Signals

/* define a new mask set */

sigset_t mask_set;

/* first clear the set (i.e. make it contain no signal numbers) */

sigemptyset(&mask_set);

/* Add the TSTP and INT signals to our mask set */

sigaddset(&mask_set, SIGTSTP);

sigaddset(&mask_set, SIGINT);

/* Remove the TSTP signal from the set. */

sigdelset(&mask_set, SIGTSTP);

/* Check if the INT signal is defined in our set */

if (sigismember(&mask_set, SIGINT)

 printf("signal INT is in our set\n");

else

 printf("signal INT is not in our set\n");

/* finally, let's make the set contain ALL signals available on our system */

sigfillset(&mask_set);

Signal Terminal-Server Example (Server

Code, single Process)

 Idea: server process shuts down a number of terminal processes (children), it has
previously created:

#define SIG_GO_AWAY SIGUSR1

void shutdown_server(void)

{

 printf(“Shutting down server\n“);

 // Now kill all children with signal to process group

 kill(0,SIG_GO_AWAY); // Notify terminal processes

}

 Send signal SIG_GO_AWAY using kill() from server to all terminals

 1st arg 0 ➔ all processes in process group signalled

 SIG_GO_AWAY is alias for SIGUSR1, one of 2 signals available to
programmers with POSIX.1

Server Process

Terminal Process

#1

Terminal Process

#n
…

FYI: Process Group
10

 In a POSIX-conformant OS, a process group denotes a collection of one or
more processes

 It is used to control the distribution of a signal; when a signal is directed to a
process group, the signal is delivered to each process that is a member of
the group

 The system call setsid() is used to create a new single (new) process group,
with the current process as the process group leader

 Process groups are identified by a positive integer, the process group ID,
which is the process identifier of the process that is (or was) the process
group leader

 Process groups need not necessarily have leaders, although they always
begin with one

 While POSIX prohibits the change of the process group ID of a session
leader, the system call setpgid() sets the process group ID of a process,
thereby typically joining the process to an existing process group

Signal Terminal-Server Example: Terminal Code

(potentially multiple Processes)

#define SIG_GO_AWAY SIGUSR1

//signal handler

void terminate_normally(int signo) {

exit(0);

}

main() {

 struct sigaction sa;

 sa.sa_handler=terminate_normally; // Signal handler

 sigemptyset(&sa.sa_mask);// Set of signals to be blocked
 // during execution of handler

 sa.sa_flags=0; // Later

 if(sigaction(SIG_GO_AWAY, &sa, NULL)) {

 perror(“sigaction”);

 exit(1);

 }

 while(1){

 // Carry out normal terminal duties, e.g. wait on user input

 …

 }

}

Option: Return old

sigaction structure

Linking a signal to its

handler

struct sigaction

 struct used to set all the details of what your process should do when
a particular signal arrives

 Used with sigaction signal function (identical names !?)

struct sigaction{

 void (*sa_handler)();

 sigset_t sa_mask;

 int sa_flags;

 void(*sa_sigaction)(int, siginfo_t *, void *);

};

 1st member can be SIG_DFL (default action), SIG_IGN (ignore) or take
a pointer to a function sa_handler (used for POSIX.1 signals)

POSIX.4 (later!)

Signal Terminal-Server Example

 Child (terminal) sets up a signal handler using
sigaction signal function

 3 arguments specify

◼ signal to wait for

◼ struct sigaction

◼ old sigaction

 When signal delivered from server, terminal is terminated
gracefully using function exit()

Signals and Process Behaviour
14

Process

Exit on n Ignore n Handler for n

Signal n

struct sigaction

 sa_mask used to define set of signals to be blocked from
delivery while handler is executing

 Overall mask in operation =

◼ mask in effect for process (e.g., inherited) + signal being delivered + signals
specified in sa_mask

◼ Signal being delivered included to avoid 2nd occurrence whilst handling 1st

 Note : Some signals eg. SIGKILL, SIGSTOP cannot be blocked

 3rd member is sa_flags .. See POSIX.4

 4th member is sa_sigaction

 Similar to sa_handler but used for queued POSIX.4 signals

Signals and Process Behaviour
16

Process

Exit on n Ignore n Handler for n

Signal n

Blocked

Signals

Signal Mask

 Each POSIX process has an associated signal mask

 Signals which will be blocked (held pending) if they are

generated until unblocked

◼ Will be delivered once unblocked

◼ Note: sa_mask sets mask while handler is executed

 What about setting mask in program code?

◼ sigprocmask(1st arg, &newest,&oldest)

◼ 1st arg can be SIG_BLOCK, SIG_UNBLOCK, SIG_SETMASK

◼ Newest is set of signals (type sigset_t) that you are adding for

blocking/unblocking from mask or for setting mask

◼ Use sigemptyset(),sigfillset()etc. to modify signal sets

Signals and Process Behaviour
18

Process

Exit on n Ignore n Handler for n

Signal n

Blocked

Signals

Blocked Signals

Case Study
19

 A flying Mars robot (let’s call it Ingenuity)
https://www.youtube.com/watch?v=NHMIgQ5RAl8

 has a build-in gyroscope connected to the CPU via some interface

 A device for measuring the robot’s orientation and angular velocity

 The robot’s orientation is controlled by a process

 The process reads the gyroscope every 50ms using a signal
handler invoked by a timer signal (signal A)

 However, during the landing phase the gyro is also read every
time that one of the robot’s legs touches the ground

 To make sure that the robot is parallel to the flat ground and doesn’t
topple (or damage it blades…)

 Here the asynchronous signal B (“robot touches ground”) calls a
second signal handler that reads the gyroscope

 The gyro can only be accessed by one handler at a time

https://www.youtube.com/watch?v=NHMIgQ5RAl8

Case Study
20

 Signal handler A checks the entire orientation of the
drone (every 50 ms), while signal handler B checks
only for horizontal alignment (parallel to the ground,
i.e. X and Z axes), a rotation around the Y axis doesn’t
matter

 Why must each handler mutually block the other
handler?

SignalHandlerA()

{
 // Get drone orientation in
 // space relative to X, Y, and
 // z axis:
 // I.e., send command:
 // “Get X-Y-Z orientation”
 // …
 // Read X, Y and Z
}

SignalHandlerB()

{

 // Get drone orientation in
 // space relative to X and Y
 // axis only:
 // I.e., send command:
 // “Get X-Z orientation”
 // …
 // Read X and Z
}

M

Case Study
21

 Correct Sequence:

Send commandHandler A Receive data

Send commandHandler B Receive data

21

 Incorrect Sequence:

SendHandler A ?

Send commandHandler B ?

Command

Recap: Signal Terminal-Server Example: Terminal

Code (potentially multiple Processes)

#define SIG_GO_AWAY SIGUSR1

//signal handler

void terminate_normally(int signo) {

exit(0);

}

main(int argc, char **argv) {

 struct sigaction sa;

 sa.sa_handler=terminate_normally; // Signal handler

 sigemptyset(&sa.sa_mask);// Set of signals to be blocked
 // during execution of handler

 sa.sa_flags=0; // Later

 if(sigaction(SIG_GO_AWAY, &sa, NULL)) {

 perror(“sigaction”);

 exit(1);

 }

 while(1){

// Carry out normal terminal duties, e.g. wait on user input

…

 }

}

Option: Return last

signal handler

sigsuspend()

 Terminal code

 Infinite while(1) loop

◼ Wasting CPU cycles

 Useful to be able to put terminal to sleep and wait for something to happen

◼ e.g. signal from server to indicate it has completed some work

 Need to make sure that signal cannot arrive before process is put to sleep, i.e.

 while(sig_received == false)

pause(); //waiting for a signal

◼ Could get scenario where sig_received is TRUE just after above check but before
process is put to sleep

◼ Waiting for signal that has just previously arrived

◼ ➔ sleep forever!

◼ Need to block signal until process is put to sleep

 sigsuspend(&signal_mask) facilitates this

sigsuspend()

 Installs signal_mask as process mask AND puts

process to sleep in atomic operation

◼ Keep signal blocked until process put to sleep

◼ sigsuspend() unblocks and sleeps atomically

 Halts execution until unblocked signal (e.g. not set in

signal_mask) arrives

 Process woken up and signal handler called

 When signal handler returns, sigsuspend()

returns and original signal mask is set for process

Example: sigsuspend()

More complex server / terminal

#define SIG_GO_AWAY SIGUSR1 // as before

// 2nd signal

#define SIG_QUERY_COMPLETE SIGUSR2

//2nd signal handler

void query_has_completed(int signo){

…

}

void terminate_normally(int signo){

exit(0);

}

main(int argc, char **argv){

 struct sigaction sa, sa2;

 sigset_t wait_for_these;

sa2.sa_handler=query_has_completed;

sigemptyset(&sa2.sa_mask);

sa2_sa_flags=0;

if(sigaction(SIG_QUERY_COMPLETE, &sa2, NULL)) {

perror(“sigaction”);

exit(1);

}

sigemptyset(&wait_for_these);

sigaddset(&wait_for_these, SIG_QUERY_COMPLETE);

sigprocmask(SIG_BLOCK, &wait_for_these, NULL);

// SIG_QUERY_COMPLETE now blocked ..reset signal set

sigemptyset(&wait_for_these);

//other signal handling code for SIG_GO_AWAY

while(1){

…

sigsuspend(&wait_for_these);//unblock signal and sleep

 }

}

Example: sigsuspend()

 Here: Used to protect critical code section from SIGINT:
sigset_t newmask,oldmask,waitmask;

//set up signal handler for SIGINT via sigaction etc.

sigemptyset(&waitmask);

sigaddset(&waitmask,SIGUSR1);

sigemptyset(&newmask);

sigaddset(&newmask,SIGINT);

sigprocmask(SIG_BLOCK, &newmask, &oldmask);

// Enter critical section.. SIGINT blocked

// …

// Leave critical section

sigsuspend(&waitmask); //process sleeps, SIGINT
unblocked,SIGUSR1 blocked

//When SIGINT arrives, signal handler called and
sigsuspend() returns, restores mask to that prior i.e.
SIGINT now blocked, SIGUSR1 now unblocked

//Now reset old mask .. Both unblocked

sigprocmask(SIG_SETMASK,&oldmask, NULL);

//continue

Example: sigsuspend()

28

POSIX.4 Signals

 Addresses some of limitations of POSIX.1

 More signals

◼ SIGRTMIN to SIGRTMAX (minimum 8)

◼ Specified in RTSIG_MAX

◼ Decreasing priority in order of delivery if more than 1 pending

 Real-time signals are delivered in a guaranteed order

 Can queue signals ➔ can see if more than one has occurred

during a signal blocked period

◼ POSIX.1 does not queue signals

◼ Implemented via sa_flags member of sigaction struct

◼ Set SA_SIGINFO bit in sa_flags

struct sigaction revisited

 This structure is used to set all the details of what your process should do
when a particular signal arrives

 Used with sigaction signal function

struct sigaction{

 void (*sa_handler)();

 sigset_t sa_mask;

 int sa_flags;

 void(*sa_sigaction)(int, siginfo_t *, void *);

};

 1st member can be SIG_DFL (default action), SIG_IGN (ignore) or take
a pointer to a function sa_handler (used for POSIX.1 signals)

30

POSIX.4 Signals

 Separate signal handler method for queued signals

 Recall 4th member of sigaction struct

◼ *sa_sigaction: pointer to sig handler function

 Signal handler has 3 arguments
void handler(int signum,siginfo_t *data, void *extra)

◼ Recall POSIX.1 signal handler has 1 argument

 Set SA_SIGINFO bit in sa_flags in sigaction() to select

new handler over POSIX.1 handler

 data is structure with various member fields

◼ signal number, signal value, cause of signal (e.g., timer)

 Queued signals can deliver more data

siginfo_t

 typedef struct {
…
int si_signo; // Signal id as before
int si_code; // Who sent signal?
 //See slide “Constants for si_code”
union sigval si_value; // See also next slides
…
} siginfo_t;
union sigval {
…
int sival_int;
void *sival_ptr;
…
) sigval;

Unions in C

#include <stdio.h>

#include <stdlib.h>

main() {

union {

float y;

char x;

} e;

e.y = 23.5;

printf("value is %f\n", e.y);

e.x = 5;

printf("value is %d\n", e.x);

printf("value is %f\n", e.y);

exit(EXIT_SUCCESS);

}

Program output:

value is 23.5

value is 5

value is 327394.343

Unions in C: How to specify Data Type

stored

#include <stdio.h>

#include <stdlib.h>

/* code for types in union */

#define FLOAT_TYPE 1

#define CHAR_TYPE 2

#define INT_TYPE 3

struct var_type {

 int type_in_union;

 union {

 float un_float;

 char un_char;

 int un_int;

 } vt_un;

 } var_type;

Constants for siginfo_t->si_code

 SI_QUEUE

 Signal was sent by sigqueue() (next slide)

 SI_TIMER

Signal was generated by expiration of a timer set by

timer_settimer() (as seen before)

 SI_ASYNCIO

Signal was generated by completion of an asynchronous

I/O request (not important for us)

sigqueue()

 int sigqueue(pid_t pid, int sig, const union sigval

value);

 The sigqueue() function sends a signal to a process

or a group of processes that pid specifies along

with the value specified by value.

 The signal to be sent is specified by sig

Example: Server Code

Example: Client Code (I)

Example: Client Code (II)

struct sigevent

 Server-Terminal example
 POSIX.1 signals delivered via kill()

 POSIX.4 signals can be generated by:
 sigqueue() … similar to kill() in above example

◼ Facilitates extra data required .. signal value

 Timer expiration

 Completion of asynch I/O

 Message queues (not covered here)

 Last 2 scenarios
 A process can generate signals including data payload via
sigqueue()

 Asynchronous events (e.g. timer) use sigevent

struct sigevent

 struct sigevent {

int sigev_notify; // must be SiGEV_SIGNALS

int sigev_signo; // SIGRTMIN to SIGRTMAX

union sigval sigev_value; // Value for RT signal

…

};

 union sigval {

int sival_int; /* Integer value */

void *sival_ptr; /* Pointer value */

}

Example

 Interval Timer example
timer_t created_timer;

sigevent se;

// Init se

…

i = timer_create(CLOCK_REALTIME, &se , &created_timer);

struct itimerspec new,old;

new.it_value.tv_sec=1;

new.it_value.tv_nsec=0;

new.it_interval.tv_sec=0;

new.it_interval.tv_nsec=100000;

i=timer_settime(created_timer, 0,&new, &old)

..

i=timer_delete(created_timer);

41

Remember the

first handout

42

signals & timers: Summary

 Need to create & configure timer settings

 timer_create(), timer_settime()

 struct sigevent

◼ Details of signal to be sent upon timer expiration

 Need to set up signal handler

 sigaction() to describe what signal to wait for and what

to do when it arrives

 Avoid resource wasting via polling

 sigsuspend() to put process to sleep and wait for signal

 Implement signal blocking correctly

	Slide 1: CT420 Real-Time Systems POSIX - Signals
	Slide 2: Recap: Task Invocation using Timer
	Slide 3: Timers, Processes and Signals
	Slide 4: POSIX Signals
	Slide 5: POSIX Signal Terminology
	Slide 6: POSIX Signal Terminology
	Slide 7: Signal Masks
	Slide 8: Masking Signals
	Slide 9: Signal Terminal-Server Example (Server Code, single Process)
	Slide 10: FYI: Process Group
	Slide 11: Signal Terminal-Server Example: Terminal Code (potentially multiple Processes)
	Slide 12: struct sigaction
	Slide 13: Signal Terminal-Server Example
	Slide 14: Signals and Process Behaviour
	Slide 15: struct sigaction
	Slide 16: Signals and Process Behaviour
	Slide 17: Signal Mask
	Slide 18: Signals and Process Behaviour
	Slide 19: Case Study
	Slide 20: Case Study
	Slide 21: Case Study
	Slide 22: Recap: Signal Terminal-Server Example: Terminal Code (potentially multiple Processes)
	Slide 23: sigsuspend()
	Slide 24: sigsuspend()
	Slide 25: Example: sigsuspend()
	Slide 26
	Slide 27: Example: sigsuspend()
	Slide 28: POSIX.4 Signals
	Slide 29: struct sigaction revisited
	Slide 30: POSIX.4 Signals
	Slide 31: siginfo_t
	Slide 32: Unions in C
	Slide 33: Unions in C: How to specify Data Type stored
	Slide 34: Constants for siginfo_t->si_code
	Slide 35: sigqueue()
	Slide 36: Example: Server Code
	Slide 37: Example: Client Code (I)
	Slide 38: Example: Client Code (II)
	Slide 39: struct sigevent
	Slide 40: struct sigevent
	Slide 41: Example
	Slide 42: signals & timers: Summary

