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Lecture Overview
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 Introduction POSIX

 RTOS Challenges

 POSIX standard

 Process scheduling in POSIX

 POSIX.4 clocks & timers

 Memory locking
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RTOS

Real time in operating systems:

“The ability of the operating system to provide 

a required level of service in a bounded 

response time.”



RTOS

 A hard real-time operating system must, without fail, 
provide a response to some kind of event within a 
specified time window

 i.e. task scheduling (→ CE) is a response after a timer 
interrupt

 This response must be predictable and independent of 
other activities undertaken by the operating system on 
behalf of other tasks. Providing this response implies that 
system calls will have a specified, measured latency 
period

 This is NOT a common feature of many OS kernels and device 
drivers, see slides 9 ff



Pure RTOS

 The entire RTOS is built from scratch

 Example VxWorks

 Proprietary RTOS by Wind River Systems

◼ See http://www.windriver.com/products/vxworks/ 

◼ Fully POSIX.4 Compliant included pre-emptive FIFO priority 

scheduling 

◼ Continuously improved since the 1990s

 Widely used, even in safety critical systems

◼ Boeing 787 (aviation industry)

◼ Router/Switches

◼ Mars Pathfinder

Hardware
RTOS

RT-Application

http://www.windriver.com/products/vxworks/


OS Real-Time Extensions
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Problem 1 with RTOS Extensions: Re-entrant 

Code and ISRs

 Interrupts are disabled at several sections in the 

kernel to protect OS data from corruption (saves the 

effort of making functions re-entrant)

 This adds unpredictability to the amount of time it 

takes to respond to an event, i.e., the execution of an 

interrupt service routine (ISR)

Kernel Execution

Event

time

Desired start of ISR Actual start of ISR / event handler



Example for non-re-entrant Code 

[Wikipedia]

t *x *y

undef 3 4

3 3 4

3 4 4

3 1 2

1 1 2

1 2 2

1 2 1

1 4 1

Some kernel call 

of swap()



In-class Activity

 How can you make swap() re-entrant?
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Problem 2 with RTOS Extension: Process 

Scheduling

 Most standard OS implement a CPU-time sharing 

system designed to optimise average performance 

(as weighted by priorities), considering

 good user experience

 fairness

 maximising throughput

 This means that as the load increases any real time 

processes (i.e. processes with tight response times) will 

suffer the most 

 Subsequently an RTOS extension must implement its 

own scheduler



Problem 3: Process Scheduling

 Standard OS do not provide a reliable mechanism 

to wake a task up at a certain time 

 Long non-pre-emptible system calls executed by the 

kernel can interfere with timing constraints → 

Problem 1

Kernel Execution

Timer event

time

Desired start of task Actual start of task



Real-Time Linux Options: RTLinux
13

 RTLinux, short for "Real-Time Linux," is a microkernel 
operating system that provides a hard real-time computing 
environment

 It is an extension to the standard Linux kernel to provide 
real-time capabilities, as follows:

 Real-Time Microkernel: RTLinux uses a microkernel architecture. A 
small real-time kernel runs beneath the standard Linux kernel. This 
real-time kernel handles real-time tasks, ensuring that they meet 
strict timing requirements

 Standard Linux Kernel: The standard Linux kernel is modified to 
run as the lowest-priority task in the real-time system. This allows 
non-real-time applications to run alongside real-time tasks 
without interfering with their timing guarantees

 See https://wiki.linuxfoundation.org/realtime/start 

https://wiki.linuxfoundation.org/realtime/start


Real-Time Linux Options: The 

PREEMPT_RT Patch
14

 This patch transforms the Linux kernel into a fully preemptible 
kernel by

 making critical sections of the kernel preemptible and

 implementing priority inheritance (later)

   thereby reducing latency and improve determinism in scheduling (in 
   combination with the POSIX FIFO scheduler (next slide)

 The patch 

 has been fully integrated into the mainline Linux kernel, as of kernel 
version 6.12, released in September 2024

 is included by default for most supported architectures like x86, x86_64, 
RISC-V, and ARM64

 See https://wiki.linuxfoundation.org/realtime/preempt_rt_versions 

https://wiki.linuxfoundation.org/realtime/preempt_rt_versions


POSIX

 Portable Operating System Interface [for 
Unix] 

Set of IEEE standards

Mandatory + Optional parts

 Initiated in 1988, latest version is POSIX:2008

 Objective: Source code portability of 
applications across multiple OS

Standard way for applications to interface to OS

Mostly but not exclusively Unix type OS

 Total portability is not achievable



POSIX Support

 Compiler Support

 Options to include/invoke POSIX support

 Eg. GNU C Compiler

   gcc –lrt –o name name.c 

 Headers

 Set of header files that define POSIX interface supported 
on particular system

#include <unistd.h>

 Libraries

 Implement POSIX functionality



POSIX.4 (Real-Time Extension)

 Priority Scheduling

 Real-Time Signals

 Clocks and Timers

 Semaphores

 Message Passing

 Shared Memory

 Asynch and Synch I/O

 Memory Locking Interface
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POSIX.4 – Where can it be found?

 Implemented

 in Linux kernels 

 by many pure RTOS (QNX, LynxOS, VxWorks, RT Linux, Integrity)

 And subsequently used in many Soft RTS …

◼ Network switches

◼ Multimedia applications

◼ Navigation systems

◼ IoT applications

 … and even Hard RTS in

◼ Aviation

◼ Robotics

◼ Manufacturing
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CE Schedule → POSIX 

• Tasks become processes

• We replace the a CE task 

schedule with a proper process

scheduler

Task Period p 

[ms]

Exec Time 

[ms]

A 25 10

B 25 8

C 50 5

D 50 4

E 100 2



POSIX.4 RT Main Scheduling Policies 

 SCHED_FIFO

 SCHED_FIFO is a queue-based scheduler with different 
queues for each priority level (typically 32 levels)

 Most common scheduler in RTS

 An executed process either terminates, or is suspended if it

◼ is blocked (e.g. waiting for timer signal → CE) – and is placed at 
end of the queue

◼ invokes sched_yield(), i.e. suspends itself – and is placed at end of 
the queue

◼ Is pre-empted by a higher priority process – and placed at top of 
its queue



POSIX.4 RT Scheduling

 SCHED_RR

 SCHED_RR is a round-robin scheduler with each process having an 

execution time quota (i.e., timeslice or quantum)

 The size of the timeslice (or quantum) can be system-wide (fixed or 

configurable) or specific for a priority level or a process

 This scheduler typically used for lower priority tasks

 Higher priority SCHEDS_FIFO tasks can pre-empt SCHED_RR tasks

 Pre-empted processes are placed at top of queue

 Processes that have used their quantum are placed at end of queue



POSIX.4 RT Scheduling

 Example Sched_RR (Source: Wikipedia): 



POSIX.4 RT Scheduling

 Different policies can be used at the same time via 

concept of layers

 Note that the order of process execution is driven 

by their process priorities (1 … 10 in the example)

E.g. uncritical 

background tasks
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Example

#include <sched.h>

void vMyProcess() {

 struct sched_param scheduling_parameters;

 int scheduling_policy;

 int i;

 scheduling_parameters.sched_priority=17;

  // getpid() returns the process id

  // i is just a return value

 i = sched_setscheduler(getpid( ),SCHED_FIFO, 

&scheduling_parameters);

  // continue

  // …

}



POSIX.4 RT Scheduling

 Process priority ranges differ among OS

 Need this info before setting priority level
int sched_rr_min, sched_rr_max;

int sched_fifo_min, sched_fifo_max;

sched_rr_min = sched_get_priority_min(SCHED_RR);

sched_rr_max = sched_get_priority_max(SCHED_RR);

sched_fifo_min = sched_get_priority_min(SCHED_FIFO);

sched_fifo_max = sched_get_priority_max(SCHED_FIFO);



Scheduling with multiple Process 

Priorities

Blocked / suspended processes not included



FIFO Scheduling with Multiple 

Process Priorities

• Blocked / suspended processes not included

• Processes are free-running and do not adhere to major / minor cycle

Task Period p 

[ms]

Exec Time 

[ms]

A 25 10

B 25 8

C 50 5

D 50 4

E 100 2

AB

CD

E



FIFO Scheduling with Multiple 

Process Priorities

A

C

E

Process {A,B,C,D.E}:

int iProcessX() {

// Initialise process

// Setup interval timer x to notify it 

// about begin of every cycle, e.g.

// T1: 25ms; T2 = 50ms; T3 = 100ms 

while (1) {

  do_something(); 

  block_until_timer_signal();

}

}

Blocked

A C DD

D pre-empted

B

B

0 25 50 75 …

E

D



POSIX.4 Clocks & Timers

 POSIX supports at least one clock
 CLOCK_REALTIME

 CLOCK_REALTIME clock is a system-wide clock, visible to all 
processes running on the system

 Returns time in seconds and nanoseconds

 But tick increment may be in the order of microseconds

 timespec structure (sec + nsec)
◼ struct timespec{

time_t tv_sec;

time_t tv_nsec;

}

 Typical specifies the number of seconds and nanoseconds 
since the base time of 00:00:00 GMT, 1 January 1970
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POSIX.4 Clocks & Timers

#include<unistd.h>

#include<time.h>

#include <stdio.h>

int main(){  

 struct timespec clock_res;  

 int stat;  

 stat=clock_getres(CLOCK_REALTIME, &clock_res);  

 printf("Clock resolution is %d seconds, %ld 

nanoseconds\n",clock_res.tv_sec,clock_res.tv_nsec);  

 return 0;

}

gcc –lrt –o name name.c



POSIX.4 Clocks & Timers

 clock_getres(CLOCK_REALTIME,&realtime_res)

 realtime_res is timespec structure

 clock_gettime(CLOCK_REALTIME, &time) 
clock_settime(CLOCK_REALTIME, &time)
(the latter requires appropriate privileges)



Linux and clock_getres()

 The clock_getres() function shall return the resolution of 
any clock, i.e. the increment value of a clocks’ tick

 clock_getres() is often not appropriately implemented in 
Linux kernels; i.e., it shows either

 (correctly) the actual increment between two clock ticks

 (incorrectly) 1 ns, i.e. the smallest possible increment in a 
timer structure:
struct timespec {

 time_t tv_sec;

 time_t tv_nsec;

    }

32



Recall: Clocks and Time Keeping in 

Computers
33



POSIX.4 Clocks & Timers

• nanosleep(&nap,&time_left)

• Delays the execution of the program for at least the time 

specified in &nap (of type timespec). 

• The function can return earlier if a signal has been 

delivered to the process. In this case, it returns -1, sets 

errno to EINTR, and writes the remaining time into the 

timespec structure pointed to by time_left unless 

time_left is NULL. The value of time_left can then be 

used to call nanosleep() again and complete the 

specified pause



In-class Activity: Is this an acceptable 

Design to run a Task at 30ms intervals?

void ProcessA() {

 timespec start, delay, nextCall, current;

 clock_gettime(CLOCK_REALTIME,  &start);

 int count = 0;

 while (1) {

  do_something(); // Main activity of task

  count++;

  // Note that nextCall and delay calculations don’t distinguish 
        // between .tv_sec and .tv_nsec – this is a simplification for
  // this example

  nextCall = start + (count * 30); 

  clock_gettime(CLOCK_REALTIME,  &current);

  delay = nextCall – current;

  nanosleep(delay, null);

 }

}

35



In-class Activity: Is this an acceptable 

Design to run a Task at 30ms intervals?

void ProcessA() {

 timespec start, delay, nextCall, current;

 clock_gettime(CLOCK_REALTIME,  &start);

 int count = 0;

 while (1) {

  do_something(); // Main activity of task

  count++;

  // Note that nextCall and delay calculations don’t distinguish 
        // between .tv_sec and .tv_nsec – this is a simplification for
  // this example

  nextCall = start + (count * 30); 

  clock_gettime(CLOCK_REALTIME,  &current);

  delay = nextCall – current;

  nanosleep(delay, null);

 }

}

36

Process 

could be 

pre-empted 

around here
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POSIX.4 Clocks & Timers

 Interval Timers

 Useful to specify precise intervals

 struct itimerspec{

struct timespec it_value;

struct timespec it_interval;

}

it_value = 1st occasion of timer event

it_interval = interval between subsequent events

 it_interval = 0 => One time

 it_value = 0 => Disable timer

 System calls 

 timer_create( ) and timer_delete( )

 Can have multiple timers within any process
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POSIX.4 Clocks & Timers

 Interval Timer example
timer_t created_timer;

// Second argument below relates to signal structure

// (later), that indicate what signals to be generated

// after timer expiration

// CLOCKID = CLOCK_REALTIME etc.  

i = timer_create(CLOCKID, _ ,  &created_timer);

struct itimerspec new, old;

new.it_value.tv_sec=1;

new.it_value.tv_nsec=0;

new.it_interval.tv_sec=0;

new.it_interval.tv_nsec=100000;

i=timer_settime(created_timer, 0,&new, &old);

..

i=timer_delete(created_timer);

Value interpreted relative to 

the timer’s content at the time 

of the call 

This parameter comes 

later



Recap: Task Invocation using Timer

A

C

E

Process {A,B,C,D.E}:

int iProcessX() {

// Initialise process

// Setup interval timer x to notify it 

// about begin of every cycle, e.g.

// T1: 25ms; T2 = 50ms; T3 = 100ms 

while (1) {

  do_something(); 

  block_until_timer_signal();

}

}

Blocked

A C DD

T3 pre-empted

B

B

0 25 50 75 …

E

D



Task Invocation using Interval Timer
41

Process A // do_something() invoked every 30 ms
timer_t created_timer;

int CLOCKID = CLOCK_REALTIME;

i = timer_create(CLOCKID, _ ,  &created_timer);

struct itimerspec new;

new.it_value.tv_sec=0;

new.it_value.tv_nsec=30000000;

new.it_interval.tv_sec=0;

new.it_interval.tv_nsec=30000000;

i=timer_settime(created_timer, 0,&new, null);

while (1) {

 do_something():

  waitforTimer();

}



POSIX.4 Clocks & Timers

 By default, the initial expiration time specified in 
new_value->it_value is interpreted relative to the 
current time on the timer's clock at the time of the 
call 

 How about absolute timer events?

 E.g. Timer event required ONCE at time tabs



POSIX.4 Clocks & Timers

 Determine interval and use interval timer
clock_gettime(CLOCK_REALTIME, &now);

// Calculate interval (simplified):
Interval = tabs  - now

// Create and set Interval timer:
timer_t created_timer;
struct itimerspec new,old;

timer_create(CLOCKID, _ ,  &created_timer);

new.it_value.tv_sec=Interval.tv_sec;
new.it_value.tv_nsec=Interval.tv_nsec;
new.it_interval.tv_sec=0;// Set interval to 0 
new.it_interval.tv_nsec=0;
i=timer_settime(created_timer, 0,&new, &old);

// Block and wait for timer signal

…



Problem: Process Pre-Emption

time

clock_gettime(CLOCK_REALTIME, &now);

Interval = tabs  - now

timer_settime(…

tabs (Timer wakes up)

Interval

time

clock_gettime(CLOCK_REALTIME, &now);

Interval = tabs  - now

timer_settime(…

Terr(Timer wakes up) 

Pre-Emption Interval

tabs



POSIX.4 Clocks & Timers

 Use absolute time!
timer_t created_timer;

timer_t tabs;

// Set tabs
// …

struct itimerspec new,old;

timer_create(CLOCKID, _ ,  &created_timer); 

clock_gettime(CLOCK_REALTIME, &now);

if (now < tabs) { // simplified comparison

new.it_value.tv_sec=tabs.tv_sec;

new.it_value.tv_nsec=tabs.tv_nsec;

new.it_interval.tv_sec=0;// Set interval to 0 

new.it_interval.tv_nsec=0;

i=timer_settime(created_timer, TIMER_ABSTIME,&new, 

&old);

}



POSIX.4 Memory Locking



Problem: Swapping of entire Processes
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Problem: Demand Paging



POSIX.4 Memory Locking

#include <unistd.h>

/*Main routine */

int main(){

/* Lock all process down */

mlockall(MCL_CURRENT|MCL_FUTURE);

… process code

munlockall();

return 0;

}

• Locks currently and future mapped pages belonging to process 
in memory
– Locked Memory will vary as process runs

– Physical memory can be exceeded!
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