
CT420 REAL-TIME SYSTEMS

POSIX - INTRODUCTION

Dr. Michael Schukat

Lecture Overview
2

 Introduction POSIX

 RTOS Challenges

 POSIX standard

 Process scheduling in POSIX

 POSIX.4 clocks & timers

 Memory locking

RTOS versus no RTOS

Hardware

Operating

System

User Programs

Typical OS Configuration

Hardware

Including Operating

System Components

User Program

Typical CE Configuration

RTOS

Real time in operating systems:

“The ability of the operating system to provide

a required level of service in a bounded

response time.”

RTOS

 A hard real-time operating system must, without fail,
provide a response to some kind of event within a
specified time window

 i.e. task scheduling (→ CE) is a response after a timer
interrupt

 This response must be predictable and independent of
other activities undertaken by the operating system on
behalf of other tasks. Providing this response implies that
system calls will have a specified, measured latency
period

 This is NOT a common feature of many OS kernels and device
drivers, see slides 9 ff

Pure RTOS

 The entire RTOS is built from scratch

 Example VxWorks

 Proprietary RTOS by Wind River Systems

◼ See http://www.windriver.com/products/vxworks/

◼ Fully POSIX.4 Compliant included pre-emptive FIFO priority

scheduling

◼ Continuously improved since the 1990s

 Widely used, even in safety critical systems

◼ Boeing 787 (aviation industry)

◼ Router/Switches

◼ Mars Pathfinder

Hardware
RTOS

RT-Application

http://www.windriver.com/products/vxworks/

OS Real-Time Extensions

Hardware

Standard OS

RT Applications

RT
extension

Applications

M

Problem 1 with RTOS Extensions: Re-entrant

Code and ISRs

 Interrupts are disabled at several sections in the

kernel to protect OS data from corruption (saves the

effort of making functions re-entrant)

 This adds unpredictability to the amount of time it

takes to respond to an event, i.e., the execution of an

interrupt service routine (ISR)

Kernel Execution

Event

time

Desired start of ISR Actual start of ISR / event handler

Example for non-re-entrant Code

[Wikipedia]

t *x *y

undef 3 4

3 3 4

3 4 4

3 1 2

1 1 2

1 2 2

1 2 1

1 4 1

Some kernel call

of swap()

In-class Activity

 How can you make swap() re-entrant?

10

Problem 2 with RTOS Extension: Process

Scheduling

 Most standard OS implement a CPU-time sharing

system designed to optimise average performance

(as weighted by priorities), considering

 good user experience

 fairness

 maximising throughput

 This means that as the load increases any real time

processes (i.e. processes with tight response times) will

suffer the most

 Subsequently an RTOS extension must implement its

own scheduler

Problem 3: Process Scheduling

 Standard OS do not provide a reliable mechanism

to wake a task up at a certain time

 Long non-pre-emptible system calls executed by the

kernel can interfere with timing constraints →

Problem 1

Kernel Execution

Timer event

time

Desired start of task Actual start of task

Real-Time Linux Options: RTLinux
13

 RTLinux, short for "Real-Time Linux," is a microkernel
operating system that provides a hard real-time computing
environment

 It is an extension to the standard Linux kernel to provide
real-time capabilities, as follows:

 Real-Time Microkernel: RTLinux uses a microkernel architecture. A
small real-time kernel runs beneath the standard Linux kernel. This
real-time kernel handles real-time tasks, ensuring that they meet
strict timing requirements

 Standard Linux Kernel: The standard Linux kernel is modified to
run as the lowest-priority task in the real-time system. This allows
non-real-time applications to run alongside real-time tasks
without interfering with their timing guarantees

 See https://wiki.linuxfoundation.org/realtime/start

https://wiki.linuxfoundation.org/realtime/start

Real-Time Linux Options: The

PREEMPT_RT Patch
14

 This patch transforms the Linux kernel into a fully preemptible
kernel by

 making critical sections of the kernel preemptible and

 implementing priority inheritance (later)

 thereby reducing latency and improve determinism in scheduling (in
 combination with the POSIX FIFO scheduler (next slide)

 The patch

 has been fully integrated into the mainline Linux kernel, as of kernel
version 6.12, released in September 2024

 is included by default for most supported architectures like x86, x86_64,
RISC-V, and ARM64

 See https://wiki.linuxfoundation.org/realtime/preempt_rt_versions

https://wiki.linuxfoundation.org/realtime/preempt_rt_versions

POSIX

 Portable Operating System Interface [for
Unix]

Set of IEEE standards

Mandatory + Optional parts

 Initiated in 1988, latest version is POSIX:2008

 Objective: Source code portability of
applications across multiple OS

Standard way for applications to interface to OS

Mostly but not exclusively Unix type OS

 Total portability is not achievable

POSIX Support

 Compiler Support

 Options to include/invoke POSIX support

 Eg. GNU C Compiler

 gcc –lrt –o name name.c

 Headers

 Set of header files that define POSIX interface supported
on particular system

#include <unistd.h>

 Libraries

 Implement POSIX functionality

POSIX.4 (Real-Time Extension)

 Priority Scheduling

 Real-Time Signals

 Clocks and Timers

 Semaphores

 Message Passing

 Shared Memory

 Asynch and Synch I/O

 Memory Locking Interface

17

POSIX.4 – Where can it be found?

 Implemented

 in Linux kernels

 by many pure RTOS (QNX, LynxOS, VxWorks, RT Linux, Integrity)

 And subsequently used in many Soft RTS …

◼ Network switches

◼ Multimedia applications

◼ Navigation systems

◼ IoT applications

 … and even Hard RTS in

◼ Aviation

◼ Robotics

◼ Manufacturing

19

CE Schedule → POSIX

• Tasks become processes

• We replace the a CE task

schedule with a proper process

scheduler

Task Period p

[ms]

Exec Time

[ms]

A 25 10

B 25 8

C 50 5

D 50 4

E 100 2

POSIX.4 RT Main Scheduling Policies

 SCHED_FIFO

 SCHED_FIFO is a queue-based scheduler with different
queues for each priority level (typically 32 levels)

 Most common scheduler in RTS

 An executed process either terminates, or is suspended if it

◼ is blocked (e.g. waiting for timer signal → CE) – and is placed at
end of the queue

◼ invokes sched_yield(), i.e. suspends itself – and is placed at end of
the queue

◼ Is pre-empted by a higher priority process – and placed at top of
its queue

POSIX.4 RT Scheduling

 SCHED_RR

 SCHED_RR is a round-robin scheduler with each process having an

execution time quota (i.e., timeslice or quantum)

 The size of the timeslice (or quantum) can be system-wide (fixed or

configurable) or specific for a priority level or a process

 This scheduler typically used for lower priority tasks

 Higher priority SCHEDS_FIFO tasks can pre-empt SCHED_RR tasks

 Pre-empted processes are placed at top of queue

 Processes that have used their quantum are placed at end of queue

POSIX.4 RT Scheduling

 Example Sched_RR (Source: Wikipedia):

POSIX.4 RT Scheduling

 Different policies can be used at the same time via

concept of layers

 Note that the order of process execution is driven

by their process priorities (1 … 10 in the example)

E.g. uncritical

background tasks

24

Example

#include <sched.h>

void vMyProcess() {

 struct sched_param scheduling_parameters;

 int scheduling_policy;

 int i;

 scheduling_parameters.sched_priority=17;

 // getpid() returns the process id

 // i is just a return value

 i = sched_setscheduler(getpid(),SCHED_FIFO,

&scheduling_parameters);

 // continue

 // …

}

POSIX.4 RT Scheduling

 Process priority ranges differ among OS

 Need this info before setting priority level
int sched_rr_min, sched_rr_max;

int sched_fifo_min, sched_fifo_max;

sched_rr_min = sched_get_priority_min(SCHED_RR);

sched_rr_max = sched_get_priority_max(SCHED_RR);

sched_fifo_min = sched_get_priority_min(SCHED_FIFO);

sched_fifo_max = sched_get_priority_max(SCHED_FIFO);

Scheduling with multiple Process

Priorities

Blocked / suspended processes not included

FIFO Scheduling with Multiple

Process Priorities

• Blocked / suspended processes not included

• Processes are free-running and do not adhere to major / minor cycle

Task Period p

[ms]

Exec Time

[ms]

A 25 10

B 25 8

C 50 5

D 50 4

E 100 2

AB

CD

E

FIFO Scheduling with Multiple

Process Priorities

A

C

E

Process {A,B,C,D.E}:

int iProcessX() {

// Initialise process

// Setup interval timer x to notify it

// about begin of every cycle, e.g.

// T1: 25ms; T2 = 50ms; T3 = 100ms

while (1) {

 do_something();

 block_until_timer_signal();

}

}

Blocked

A C DD

D pre-empted

B

B

0 25 50 75 …

E

D

POSIX.4 Clocks & Timers

 POSIX supports at least one clock
 CLOCK_REALTIME

 CLOCK_REALTIME clock is a system-wide clock, visible to all
processes running on the system

 Returns time in seconds and nanoseconds

 But tick increment may be in the order of microseconds

 timespec structure (sec + nsec)
◼ struct timespec{

time_t tv_sec;

time_t tv_nsec;

}

 Typical specifies the number of seconds and nanoseconds
since the base time of 00:00:00 GMT, 1 January 1970

30

POSIX.4 Clocks & Timers

#include<unistd.h>

#include<time.h>

#include <stdio.h>

int main(){

 struct timespec clock_res;

 int stat;

 stat=clock_getres(CLOCK_REALTIME, &clock_res);

 printf("Clock resolution is %d seconds, %ld

nanoseconds\n",clock_res.tv_sec,clock_res.tv_nsec);

 return 0;

}

gcc –lrt –o name name.c

POSIX.4 Clocks & Timers

 clock_getres(CLOCK_REALTIME,&realtime_res)

 realtime_res is timespec structure

 clock_gettime(CLOCK_REALTIME, &time)
clock_settime(CLOCK_REALTIME, &time)
(the latter requires appropriate privileges)

Linux and clock_getres()

 The clock_getres() function shall return the resolution of
any clock, i.e. the increment value of a clocks’ tick

 clock_getres() is often not appropriately implemented in
Linux kernels; i.e., it shows either

 (correctly) the actual increment between two clock ticks

 (incorrectly) 1 ns, i.e. the smallest possible increment in a
timer structure:
struct timespec {

 time_t tv_sec;

 time_t tv_nsec;

 }

32

Recall: Clocks and Time Keeping in

Computers
33

POSIX.4 Clocks & Timers

• nanosleep(&nap,&time_left)

• Delays the execution of the program for at least the time

specified in &nap (of type timespec).

• The function can return earlier if a signal has been

delivered to the process. In this case, it returns -1, sets

errno to EINTR, and writes the remaining time into the

timespec structure pointed to by time_left unless

time_left is NULL. The value of time_left can then be

used to call nanosleep() again and complete the

specified pause

In-class Activity: Is this an acceptable

Design to run a Task at 30ms intervals?

void ProcessA() {

 timespec start, delay, nextCall, current;

 clock_gettime(CLOCK_REALTIME, &start);

 int count = 0;

 while (1) {

 do_something(); // Main activity of task

 count++;

 // Note that nextCall and delay calculations don’t distinguish
 // between .tv_sec and .tv_nsec – this is a simplification for
 // this example

 nextCall = start + (count * 30);

 clock_gettime(CLOCK_REALTIME, ¤t);

 delay = nextCall – current;

 nanosleep(delay, null);

 }

}

35

In-class Activity: Is this an acceptable

Design to run a Task at 30ms intervals?

void ProcessA() {

 timespec start, delay, nextCall, current;

 clock_gettime(CLOCK_REALTIME, &start);

 int count = 0;

 while (1) {

 do_something(); // Main activity of task

 count++;

 // Note that nextCall and delay calculations don’t distinguish
 // between .tv_sec and .tv_nsec – this is a simplification for
 // this example

 nextCall = start + (count * 30);

 clock_gettime(CLOCK_REALTIME, ¤t);

 delay = nextCall – current;

 nanosleep(delay, null);

 }

}

36

Process

could be

pre-empted

around here

38

POSIX.4 Clocks & Timers

 Interval Timers

 Useful to specify precise intervals

 struct itimerspec{

struct timespec it_value;

struct timespec it_interval;

}

it_value = 1st occasion of timer event

it_interval = interval between subsequent events

 it_interval = 0 => One time

 it_value = 0 => Disable timer

 System calls

 timer_create() and timer_delete()

 Can have multiple timers within any process

39

POSIX.4 Clocks & Timers

 Interval Timer example
timer_t created_timer;

// Second argument below relates to signal structure

// (later), that indicate what signals to be generated

// after timer expiration

// CLOCKID = CLOCK_REALTIME etc.

i = timer_create(CLOCKID, _ , &created_timer);

struct itimerspec new, old;

new.it_value.tv_sec=1;

new.it_value.tv_nsec=0;

new.it_interval.tv_sec=0;

new.it_interval.tv_nsec=100000;

i=timer_settime(created_timer, 0,&new, &old);

..

i=timer_delete(created_timer);

Value interpreted relative to

the timer’s content at the time

of the call

This parameter comes

later

Recap: Task Invocation using Timer

A

C

E

Process {A,B,C,D.E}:

int iProcessX() {

// Initialise process

// Setup interval timer x to notify it

// about begin of every cycle, e.g.

// T1: 25ms; T2 = 50ms; T3 = 100ms

while (1) {

 do_something();

 block_until_timer_signal();

}

}

Blocked

A C DD

T3 pre-empted

B

B

0 25 50 75 …

E

D

Task Invocation using Interval Timer
41

Process A // do_something() invoked every 30 ms
timer_t created_timer;

int CLOCKID = CLOCK_REALTIME;

i = timer_create(CLOCKID, _ , &created_timer);

struct itimerspec new;

new.it_value.tv_sec=0;

new.it_value.tv_nsec=30000000;

new.it_interval.tv_sec=0;

new.it_interval.tv_nsec=30000000;

i=timer_settime(created_timer, 0,&new, null);

while (1) {

 do_something():

 waitforTimer();

}

POSIX.4 Clocks & Timers

 By default, the initial expiration time specified in
new_value->it_value is interpreted relative to the
current time on the timer's clock at the time of the
call

 How about absolute timer events?

 E.g. Timer event required ONCE at time tabs

POSIX.4 Clocks & Timers

 Determine interval and use interval timer
clock_gettime(CLOCK_REALTIME, &now);

// Calculate interval (simplified):
Interval = tabs - now

// Create and set Interval timer:
timer_t created_timer;
struct itimerspec new,old;

timer_create(CLOCKID, _ , &created_timer);

new.it_value.tv_sec=Interval.tv_sec;
new.it_value.tv_nsec=Interval.tv_nsec;
new.it_interval.tv_sec=0;// Set interval to 0
new.it_interval.tv_nsec=0;
i=timer_settime(created_timer, 0,&new, &old);

// Block and wait for timer signal

…

Problem: Process Pre-Emption

time

clock_gettime(CLOCK_REALTIME, &now);

Interval = tabs - now

timer_settime(…

tabs (Timer wakes up)

Interval

time

clock_gettime(CLOCK_REALTIME, &now);

Interval = tabs - now

timer_settime(…

Terr(Timer wakes up)

Pre-Emption Interval

tabs

POSIX.4 Clocks & Timers

 Use absolute time!
timer_t created_timer;

timer_t tabs;

// Set tabs
// …

struct itimerspec new,old;

timer_create(CLOCKID, _ , &created_timer);

clock_gettime(CLOCK_REALTIME, &now);

if (now < tabs) { // simplified comparison

new.it_value.tv_sec=tabs.tv_sec;

new.it_value.tv_nsec=tabs.tv_nsec;

new.it_interval.tv_sec=0;// Set interval to 0

new.it_interval.tv_nsec=0;

i=timer_settime(created_timer, TIMER_ABSTIME,&new,

&old);

}

POSIX.4 Memory Locking

Problem: Swapping of entire Processes

48

Problem: Demand Paging

POSIX.4 Memory Locking

#include <unistd.h>

/*Main routine */

int main(){

/* Lock all process down */

mlockall(MCL_CURRENT|MCL_FUTURE);

… process code

munlockall();

return 0;

}

• Locks currently and future mapped pages belonging to process
in memory
– Locked Memory will vary as process runs

– Physical memory can be exceeded!

	Slide 1: CT420 Real-Time Systems POSIX - Introduction
	Slide 2: Lecture Overview
	Slide 3: RTOS versus no RTOS
	Slide 4: RTOS
	Slide 5: RTOS
	Slide 6: Pure RTOS
	Slide 7: OS Real-Time Extensions
	Slide 8: Problem 1 with RTOS Extensions: Re-entrant Code and ISRs
	Slide 9: Example for non-re-entrant Code [Wikipedia]
	Slide 10: In-class Activity
	Slide 11: Problem 2 with RTOS Extension: Process Scheduling
	Slide 12: Problem 3: Process Scheduling
	Slide 13: Real-Time Linux Options: RTLinux
	Slide 14: Real-Time Linux Options: The PREEMPT_RT Patch
	Slide 15: POSIX
	Slide 16: POSIX Support
	Slide 17: POSIX.4 (Real-Time Extension)
	Slide 18: POSIX.4 – Where can it be found?
	Slide 19: CE Schedule  POSIX
	Slide 20: POSIX.4 RT Main Scheduling Policies
	Slide 21: POSIX.4 RT Scheduling
	Slide 22: POSIX.4 RT Scheduling
	Slide 23: POSIX.4 RT Scheduling
	Slide 24: Example
	Slide 25: POSIX.4 RT Scheduling
	Slide 26: Scheduling with multiple Process Priorities
	Slide 27: FIFO Scheduling with Multiple Process Priorities
	Slide 28: FIFO Scheduling with Multiple Process Priorities
	Slide 29: POSIX.4 Clocks & Timers
	Slide 30: POSIX.4 Clocks & Timers
	Slide 31: POSIX.4 Clocks & Timers
	Slide 32: Linux and clock_getres()
	Slide 33: Recall: Clocks and Time Keeping in Computers
	Slide 34: POSIX.4 Clocks & Timers
	Slide 35: In-class Activity: Is this an acceptable Design to run a Task at 30ms intervals?
	Slide 36: In-class Activity: Is this an acceptable Design to run a Task at 30ms intervals?
	Slide 38: POSIX.4 Clocks & Timers
	Slide 39: POSIX.4 Clocks & Timers
	Slide 40: Recap: Task Invocation using Timer
	Slide 41: Task Invocation using Interval Timer
	Slide 42: POSIX.4 Clocks & Timers
	Slide 43: POSIX.4 Clocks & Timers
	Slide 44: Problem: Process Pre-Emption
	Slide 45: POSIX.4 Clocks & Timers
	Slide 46: POSIX.4 Memory Locking
	Slide 47: Problem: Swapping of entire Processes
	Slide 48: Problem: Demand Paging
	Slide 49

