

Load Balancing
– In a network of autonomous nodes there is a
large probability that at least one node is idle
while tasks are queued at some other node.
– The aim of load balancing is to spread the load
among all the available processors.
– Load sharing is a better term since the aim is
not to have the loads exactly the same on all
machines, but to avoid strong imbalance.

Load Balancing 1 University of Galway

Load Balancing

– The goals of load balancing are:
 To maximise throughput and minimise individual
response times.

 Provide a fair service to all users.
– So the load balancing system should be
transparent to the user.
– Transparency is a vital aspect of distribution in
general and load balancing in particular.
– The main disadvantage of these schemes is
that imbalances can occur where some servers
get overloaded.

Load Balancing 2 University of Galway

Job Migration

» This involves moving an active process or
job from one machine to another.
– The process migrates to a target machine.
– Transferring a sufficient amount of the state of
a process from one machine to another.
–We must know in advance that the job is going
to run for a good while more, in order to make
the effort of migration worthwhile.

Load Balancing 3 University of Galway

Job Migration

– In practice, this is impossible, but we can
usually guess that the longer a job has been
running the longer it will continue to run.
–When migrating, we must also handle:

 outstanding I/O,
 re-direct TTY I/O,
 problems which arise if the job is expecting reply
messages from other processes.

– All of this requires a fairly sophisticated and
transparent underlying system.
 Using JVMs can simplify this e.g. Hadoop framework

Load Balancing 4 University of Galway

Why Migrate?

» Load sharing
–Move processes from heavily loaded to lightly load
systems.
– Load can be balanced to improve overall
performance.

» Communications performance
– Processes that interact intensively can be moved to
the same node to reduce communications cost.
– May be better to move process closer to where the
data resides when the data is large.

Load Balancing 5 University of Galway

Fine Grained Load Balancing

– Some load balancing systems use a fine
granularity of load balancing:
 So that load balancing decisions are made more
often, and the system is less unstable.

–Most parallel machines reassign processes to
individual processors for each time slice.
 This can only be efficiently done if it is a shared
memory machine.

– The most common granularity in a distributed
system made up of multiple servers is on a per
job or per request basis.

Load Balancing 6 University of Galway

Fine Grained Load Balancing

– Each request is treated as a separate job, which
can be executed on any available Server.
– The load can be spread much more evenly and
can adapt to variations in the system.
– This is widely considered to be the most useful
form of load balancing in a distributed system, and
is used in many practical systems.
– It requires a load balancing system to decide which
server should be sent each new job.

Load Balancing 7 University of Galway

Server / Source Initiation

» Load balancing systems may be divided
into two broad categories:
– Server initiated systems, where an under
loaded system come looking for jobs.
– Source initiated systems, where overloaded
servers try to farm off jobs to other servers.
 Server initiated systems do not work well in systems
which do not support migration, as an overloaded
system must prevent jobs from starting in the hope
that an under-loaded system will come calling.

 This is because a job cannot be moved once started.

Load Balancing 8 University of Galway

Load Balancing Algorithms

– It is possible to break most load balancing
algorithms into three distinct policies:
 The transfer policy decides which jobs are eligible for
remote execution, and under what local conditions
they will be transferred.

 The information policy decides what load index
(measurement of load) is used, and what information
is available about the load on other hosts.

 The placement or location policy decides which
remote node is to be used for execution of the job.

– The algorithms used for these tasks are mainly
independent of each other.

Load Balancing 9 University of Galway

Transfer Policy

– The very first step in load balancing is to decide
if a job should be considered for remote
execution or done locally.
– There is no point in load balancing small jobs,
as the overhead incurred in sending it to
another server is frequently more than the
actual cost of executing the job.
– The major problem, of course, is that it is not
possible, in general, to predict the runtime of a
job.
 Although frequently, we can make a good guess.

Load Balancing 10 University of Galway

Transfer Policy

– For example:
 cc, nroff, TeX, LaTeX, mod2 -- probably big
 Is, who -- probably small
 a.out __ ????

– Also, there is no point in load balancing if the
local load is light anyway:
 So the Transfer Policy will normally include a
threshold load index below which the job will be
executed locally regardless of the state of other
nodes.

– There are also some jobs that have to be
executed locally - e.g, mount, shutdown, etc.

Load Balancing 11 University of Galway

Information Policy
» There are two major parts to this:
–What load index to use and,
– How to disseminate load information among the
hosts in the system.

» Load Index:
– Lots of different measurements may be used:

 e.g. number of processes in the ready queue,
 use of memory,
 amount of I/O, etc..
 The CPU cost of actually calculating the load can get
excessively high - so it is likely that a simple system
will be used.

Load Balancing 12 University of Galway

Information Policy

– For example, Unix systems typically calculate
the load based on the number of processes in
the ready queue averaged over the last 1, 5,
and 15 minutes (try the w command).
 Note, however, that this is significantly less useful on
high speed CPU machines ...

– The instantaneous value is too volatile, so the
figure has to be averaged over a period of time.
 This means that the load is always slightly out of
date, and reacts slowly to change.

 This can contribute to a condition known as flooding
where a system suddenly gets overloaded ...

Load Balancing 13 University of Galway

Information Policy

» Load Dissemination:
– To make an informed load balancing decision,
a server must have some information about
which other servers are lightly/heavily loaded.
– One obvious method is for a server to
periodically broadcast its own load…
– However, this can be expensive in terms of the
number of messages sent as the size of the
system grows, and, more importantly, the
burden placed on the servers to handle and
process all the incoming packets.

Load Balancing 14 University of Galway

Information Policy

–Other techniques include: partial broadcast to a
subset of servers, e.g., nearest neighbours;
centralised information gathering: and passing
a vector of loads around a ring.
– The system must also decide how often the
information is to be updated.
– Probing is an example of a completely different
approach to handling load information, which
works better in some situations.
– A common probing algorithm is to pick n nodes
at random, and to poll each for their loads.

Load Balancing 15 University of Galway

Location Policy

–Once it has been decided that a job should be
considered for remote execution, it is up to the
location or placement policy to decide at which
server it should be done.
 Note that the location policy may decide to run the
job at the Local node.

 If the local load is the lowest of the available nodes
after taking the (often significant) cost of remote
execution into account.

– Placement algorithms are broadly divided into
two categories: static and adaptive..

Load Balancing 16 University of Galway

Location Policy
– Static algorithms use no dynamic information
and have fixed rules for assigning jobs, e.g.,
80% of jobs go to node A and 20% to node B.
 Therefore, Static algorithms do NOT react to
changes in the system, and frequently provide bad
performance as a result.

– Adaptive algorithms use dynamic information
(such as the loads) to attempt to react to
changes in the system and provide better
service.
– The location and information policies in real
systems are frequently closely linked.

Load Balancing 17 University of Galway

Location Policy

» Flooding
–May happen when a server is identified as being
lightly loaded by a number of other servers.
 Each sends a job to this lightly loaded machine at the
same time, without taking into account the load being
placed on it by other servers.

 The lightly loaded machine will quickly become
saturated and the execution time of programs sent to it
will rapidly climb.

– Contributing factors:
 Out of date load information.
 Location policies of different nodes not co-ordintated.

Load Balancing 18 University of Galway

Location Policy

– Possible solutions:
 Keep the load information perfectly up to date - this
is impossible!

 Don’t send a job directly to a server, but first ask it if
it will accept the job. (or send the job to it, but allow it
to reject the job, or find another server to handle it).

 In this fashion, a lightly loaded server can accept the
first few jobs offered, and then refuse the rest.

– Both of these methods involve increasing the
number of messages sent.
 An alternative is to introduce a random element into
the location algorithm, e.g.. find n lightly loaded
servers, and randomly send the job to one of these.

Load Balancing 19 University of Galway

Other Design Issues
– As with all distributed system components, we
can provide load balancing either by layering it
on top of the OS or modifying the OS.
 The first is potentially more general, while the second
is potentially more efficient.

– Load balancing software can be broken down
into 2 major layers:
– Load/job exchange layer:

 When and where to send jobs.
– Remote execution layer:

 Mechanism for remote execution.
 Handles transparency.

Load Balancing 20 University of Galway

DNS Load Balancing

– Configure a domain in the Domain Name System
(DNS) such that client requests to the domain are
distributed across a group of servers.
 A domain can correspond to a website or another
service that is made accessible via the Internet.

 It facilitates faster access to a service by providing
several IP addresses for a single domain name, which
routes traffic between two or more servers.

 It uses round-robin access to the list of server IP
addresses returned by DNS.

– Can have issues related to caching of results and
reliability of an individual server goes down

Load Balancing 21 University of Galway

DNS Load Balancing

Load Balancing 22 University of Galway

BGP Anycast

– Using Anycast, a collection of servers share the
same IP address and send data from a source
computer to the server that is topographically the
closest.
 This helps cut down on latency and bandwidth costs,
improves load time for users, and improves availability.

 It is important to remember that topographically closer
does not inherently mean geographically closer,
though this is often the case.

 Great for load balancing and reliability for large CDN
providers that have server resources in different parts
of the world.

Load Balancing 23 University of Galway

BGP Anycast

– Anycast is linked with the BGP protocol which
ensures that all of a router’s neighbors are aware
of the networks that can be reached through that
router and the topographical distance to those
networks.
 The main principle of anycast is that the same IP
address range is advertised in the BGP messages of
multiple routers at different locations

 As the IP range propagates across the Internet, routers
become aware of which of their neighbours provides
the shortest path to the advertised IP address

 Apart from large CDNs, this is also used to ensure to
reach DNS root servers around the world

Load Balancing 24 University of Galway

BGP Anycast

If the Paris server goes
down internet traffic will
automatically find the
Next best path

Load Balancing 25 University of Galway

Case Study: LB Unix Shell

 Study of Load Balancing Performance.
» Case Study based on adding load
balancing capabilities to a Unix Shell.

» If the local load isn’t lower that the transfer
threshold, T, the modified C shell tries to
transfer the job to a remote linux server.

» It reads a file that contains the list of jobs
types (cc, tex, . . .) it is to threat like this.

» Five information and location policies:

Load Balancing 26 University of Galway

Case Study: LB Unix Shell

1. DISTED: each server periodically broadcasts its
load index to all other serverss (if it is
significantly different from the previous value).
 If a server decides to try to send a job remote, it uses
its list of load indices to select the server that appears
to have the lightest load.

 Job is done locally if all servers are heavily loaded.
2. GLOBAL: each server periodically sends its load
index to a master server, which then periodically
broadcasts load index list to all servers.
 In other ways it is similar to DISTED.

Load Balancing 27 University of Galway

Case Study: LB Unix Shell

3. CENTRAL: The load index list is collected at a
master server, and all placement requests are
sent to it.
 This is like DISTED but all decisions are made by the
master server.

4. LOWEST: If it decides to try to send a job
remote, it randomly probes n servers, and then
selects the server with the lightest load.
5.RANDOM: pick a server at random and send
the job to it (no retransfer of jobs).

Load Balancing 28 University of Galway

Case Study: LB Unix Shell

Main Results:
Resp Time Improv. Std Dev. Imp.

NoLB 53.3 - 90.1 -
DISTED 36.4 31.7% 50.6 43.8%
GLOBAL 32.6 38.9% 43.6 51.7%
CENTRAL 33.7 36.8% 48.5 46.8%
LOWEST 31.8 40.3% 42.8 52.5%
RANDOM 39.9 25.2% 62.0 31.2%

Load Balancing 29 University of Galway

Case Study: LB Unix Shell

– All algorithms show significant improvements
over not using load balancing.
– The Standard deviation was measured since it
has a major effect on the user.
– Note that in adaptive load balancing the system
is taking advantage of short term imbalances in
server loads, whereas static load balancing
takes advantage of long term load
(/performance) imbalances.
– They found that the effect of load balancing
increased as the system load increased.

Load Balancing 30 University of Galway

Case Study: LB Unix Shell
» Varying the parameters:
– Load Exchange Period:

 Found that there was an optimum (about 5 secs).
 Any shorter put too high a load on the system.
 Any longer meant that the information was out of date
and poor decisions, and even flooding, could anise.

 There was significant benefit from load balancing
even if the period was a long as 60 secs.

– Local Load Threshold:
 Too low implied unnecessary transfer of jobs: too high
meant less load balancing.

 Values of 1 to 2.5 worked well.

Load Balancing 31 University of Galway

Case Study: LB Unix Shell
– Probe Limit (value for n)

 Too low implied too similar to RANDOM.
 Too high implied unnecessary probing.
 Figures around 4 worked well.

– Immobility Factor: (the percentage of total CPU
time that is consumed by the immobile jobs -
jobs in the “don’t transfer” list).
 Even at 70% load balancing was still worthwhile.

– Fault tolerant and dynamically re-configurable
load balancing are provided by modern cloud
computing frameworks.

Load Balancing 32 University of Galway

