
 Node.js and the MEAN Stack

What is NodeJS?

• A JavaScript runtime environment running Google Chromes V8
engine
• a.k.a. a server-side solution for JS
• Compiles JS, making it really fast

• Created 2009
• Server Side JavaScript
• Designed for high concurrency
• Without threads or new processes

• Evented I/O for JavaScript
• Never blocks, not even for I/O

First what is MEAN
• M = mongoDB -- lightly covered in this class
• E = Express -- lightly covered in this class
• A = Angular.js (client side) – will not cover
• N=Node.js -- lightly covered in this class
FULL stack solution

http:N=Node.js

Why Use Node.js ?

• Node's goal is to provide an easy way to build scalable
network programs.

 What can you do with Node ?

• JS executed by the V8 javascript engine, the same thing
that makes Google Chrome so fast.

• Node provides a JavaScript API to access the network and
file system.

• Instead of threads Node uses an event loop with a stack
which alleviates overhead of context switching

What is unique about Node.js?

1. JavaScript on server-side ensures that communication
between client and server will happen in same
language – native JSON objects on both sides

2. Servers are normally thread based but Node.JS is
“Event” based. Node.JS serves each request in an
Evented loop that can handle simultaneous requests.

 What can’t do with Node?

• Node is a platform for writing JavaScript applications
outside web browsers. This is not the JavaScript we are
familiar with in web browsers. There is no DOM built
into Node, nor any other browser capability.

• Node doesn’t run in a GUI, but runs on the terminal or
as a background process

Threads VS Event-driven

Threads Asynchronous Event-driven

Lock application / request with
listener-workers threads
Using incoming-request model

multithreaded server might
block the request which might
involve multiple events
Using context switching

Using multithreading
environments where listener
and workers threads are used
frequently to take an incoming-
request lock

only one thread, which
repeatedly fetches an event
Using queue and then processes
it
manually saves state and then
goes on to process the next
event
no contention and no context
switches
Using asynchronous I/O
facilities (callbacks, not
poll/select or O_NONBLOCK)
environments

 Node.js uses an event-based model
Normally a webserver waits for server-side IO operations
to complete while processing a web client request, thus
blocking the next request to be processed.

Node.JS processes each request as events, it doesn’t wait
(non-blocking) for the IO operation to complete • it can
handle other request at the same time. When the IO
operation of first request is completed it will call-back the
server to complete the request.

Non-blocking I/O

• Servers do nothing but I/O
• Scripts waiting on I/O requests degrades performance

• To avoid blocking, Node makes use of the event driven nature of JS by
attaching callbacks to I/O requests
• Scripts waiting on I/O waste no space because they get popped off
the stack when their non-I/O related code finishes executing

 Blocking vs Non-Blocking……

Example :: Read data from file and show data

Blocking…..

● Read data from file
● Show data
● Do other tasks
var data = fs.readFileSync(“test.txt”);
console.log(data);
console.log(“Do other tasks”);

Callback
Non-Blocking……

● Read data from file
When read data completed, show data

● Do other tasks

fs.readFile(“test.txt”, function(err, data) {
console.log(data);
});

 PHP vs Node Example

Node.js VS Apache

1. It's fast
2. It can handle tons of concurrent requests
3. It's written in JavaScript (which means you can

use similar code server side and client side)

Platform Number of request per second

PHP (via Apache) 3187,27
Static (via Apache) 2966,51
Node.js 5569,30

Netflix has over 160 million customers worldwide

Success Stories…..
Change to Node.js reduced startup time by 70%

 Supports HTTP Method……

● GET
● POST
● PUT
● DELETE

 When to use it ?

• Chat/Messaging
• Real-time Applications
• Intelligent Proxies
• High Concurrency Applications
• Communication Hubs
• Coordinators

 Node.js for….
● Web application
● Websocket server
● Ad server
● Proxy server
● Streaming server
● Fast file upload client
● Any Real-time data apps
● Anything with high I/O

{ File package.json…..
"name": "node-js-getting-started",
"version": "0.2.5",
"description": "A sample Node.js app using Express 4",
"engines": {
"node": "5.9.1"
}, Project information "main": "index.js",
"scripts": {
"start": "node index.js" • Name },
"dependencies": {
"body-parser": "^1.16.1", • Version "cookie-parser": "^1.4.3",
"cool-ascii-faces": "1.3.4",
"ejs": "2.4.1", • Dependencies "express": "^4.13.3",
"express-session": "^1.15.1",
"mongodb": "^2.2.24", • Licence "multer": "^1.3.0",
"pg": "4.x",
"pug": "^2.0.0-beta11" • Main file },
"repository": {
"type": "git", etc... "url": "https://github.com/heroku/node-js-getting-started"
},
"keywords": [
"node",
"heroku",
"express"
],
"license": "MIT"
}

https://github.com/heroku/node-js-getting-started
http:nodeindex.js
http:index.js
http:AsampleNode.js

Node.js Modules….. MANY

● https://npmjs.org/
● # of modules = 450k and counting

http:�https://npmjs.org

Install a module…..inside your project directory

$npm install <module name> --save

Install a module…..globally

$npm install <module name> --g

Using a module….. Inside your javascript code

•var http = require(‘http’);
•var fs = require(‘fs’);
•var express = require(‘express’);

Hello World Example

STEP 1: create directory and call npm install and follow instructions
>mkdir myapp
>cd myapp

• Use the npm init command to create a package.json file for your
application. For more information, see Specifics of npm’s
package.json handling.
> $ npm init

•prompts you for a number of things, such as the name and version of
your application. For now, you can simply hit RETURN to accept the
defaults

https://docs.npmjs.com/files/package.json

Hello World example

•Create file index.js with the following code:
http.createServer(function (request, response) {

// Send the HTTP header
// HTTP Status: 200 : OK
// Content Type: text/plain
response.writeHead(200, {'Content-Type': 'text/plain'});
// Send the response body as "Hello World“
response.end('Hello World\n'); }).listen(8081);

// Console will print the message
console.log('Server running at http://127.0.0.1:8081/');

Hello World example –package.json –
describes application
{

"name": "helloworld",
"version": "1.0.0",
"description": "simple hello world app",
"main": "index.js",
"scripts": {
"test": "echo \"Error: no test specified\" && exit 1"
},
"author": "L. Grewe",
"license": "ISC",
"dependencies": {
"express": "^4.14.1"
}

}

http:index.js

Run your hello world application

Run the app with the following command:

$ node app.js

Then, load http://localhost:3000/ in a browser to see the output.

http:nodeapp.js

Express

• minimal and flexible Node.js web application framework that
provides a robust set of features for web and mobile applications.

Express gives ease of functionality

• Routing
• Delivery of Static Files
• “Middleware” – some ease in development (functionality)
• Form Processing
• Simple forms of Authentication
• Cookies and Session Manipulation

A lot of this you can do in NodeJS but, you may write more code to do it than
if you use the framework Express.

There are other alternatives than Express (the E in MEAN) like Sail, Meteor

Install express

• install Express (if you want it, most will) and any other
dependencies needed

dependencies list. For example:
>$ npm install express --save

•Now install Express in the myapp directory and save it in the

Express install

• Will add files
to the node_modules
directory

• If this is the first
module you
have installed for
current application
IT will create the
node_modules
directory first.

ALTERNATIVE express-generator
npm install express-generator -g express helloapp
create : helloapp

create : helloapp/package.json

create : helloapp/app.js

create : helloapp/public

create : helloapp/public/images

create : helloapp/routes

create : helloapp/routes/index.js

create : helloapp/routes/users.js

create : helloapp/public/stylesheets

create : helloapp/public/stylesheets/style.css

create : helloapp/views create : helloapp/views/index.jade

create : helloapp/views/layout.jade

create : helloapp/views/error.jade

create : helloapp/bin

create : helloapp/bin/www

install dependencies:
$ cd helloapp && npm install
run the app:
$ DEBUG=helloapp:* npm start
create : helloapp/public/javascripts

http:create:helloapp/routes/users.js
http:create:helloapp/routes/index.js
http:create:helloapp/app.js

console.log('Example app listening

res) {

on port 3000!')

Express – hello world code
• index.js have the code

var express = require('express')

This says requires module express
var app = express()

app.get('/', function (req, Calls function express to initialize object app
res.send('Hello World!')

})

app.listen(3000, function () {

})

App object has various methods like get
that responds to HTTP get request.
This code will be call the function specified when
a GET for the URI / is invoked

Sets up the HTTP server for listening port 3000

NEXT – Todo Application

• We will go cover a simple Todo application that uses Node.js, Express,
EJS, a templating engine that works with Express, and Mongo DB.

Once you understand this, you will know the basics of MEAN (without the A)
and a start towards using NodeJS for web systems.

HOWEVER…..you might also want to look at Meteor – less callbacks, more
subscription model than using MEAN

http:�WewillgocoverasimpleTodoapplicationthatusesNode.js

References

• http://nodejs.org/
• http://npmjs.com/
• http://www.w3schools.com/nodejs
• http://ajaxian.com/archives/google-chrome-chromium-and-v8

http://nodejs.org/
http://npmjs.com/
http://www.w3schools.com/nodejs
http://ajaxian.com/archives/google-chrome-chromium-and-v8

