JACOCO

Java Code Coverage

Introduction to JaCoCo

e Whatis JaCoCo?

JaCoCo is a popular code coverage tool for Java applications. It integrates
with build tools like Maven and Gradle to measure how much of your code
is tested by your unit tests.

e Purpose of JaCoCo:

Provides insights into how well your tests cover your codebase. It measures
instruction coverage, branch coverage, and other metrics that indicate the
effectiveness of the tests.

v How JaCoCo Works
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e Instrumentation — JaCoCo instruments Java bytecode to record which
parts of the code are executed during the test run.

e Integration — JaCoCo integrates seamlessly with Maven, Gradle, Ant,
and even within CI/CD pipelines like GitHub Actions and Jenkins.

o JaCoCo doesn't change your source code directly. Instead, it tracks
code execution at runtime and then compares it to the test suite.

v Setting Up JaCoCo with Maven

e Add Plugin — In your pon.xn1 , add the JaCoCo Maven plugin under the
<build> section.

Example:

plugin
groupId>org.jacoco</groupId
artifactId>jacoco-maven-plugin</artifactId
version>0.8.7</version
executions
execution
goals
goal>prepare-agent</goal
goal>report</goal
goals
execution
executions
plugin

e Run the Coverage Report — After writing your tests, run:

mvn clean test jacoco:report

v Understanding the JaCoCo Report
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o Coverage Dashboard:
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After running JaCoCo, navigate to target/site/jacoco/index.htnl . This will
show the coverage summary for each class and method.

e Reading the Report:
o Green = Fully covered
o Red = Missed code or branches

o Yellow = Partially covered branches.

v JaCoCo and Continuous Integration (Cl)

e Why Use JaCoCo in CI?

Ensures that each commit and pull request maintains a standard level of

code quality and test coverage.

e JaCoCoin CI/CD Pipelines:

JaCoCo can be integrated with GitHub Actions, Jenkins, Travis Cl, etc.,
to automate the generation of reports after each test run.

» Enforcing Coverage Thresholds:

You can enforce minimum coverage thresholds to ensure that your tests

reach a certain percentage of coverage.

v JaCoCo Limitations

o Coverage vs. Quality:

100% code coverage does not guarantee bug-free code. JaCoCo
measures execution, but you still need to write meaningful tests.

* Mocking Challenges:
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Testing certain parts of the code (e.g., integration with external
services) may require mocks or stubs, which don't fully reflect real-
world usage.
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v Best Practices for Using JaCoCo Effectively
» Balance Coverage with Testing Value:

Not every line of code needs testing—focus on complex and critical
sections.

o Set Realistic Coverage Goals:

Aiming for 80%—-90% coverage is a reasonable target, but don't force
100% at the expense of test quality.

o Refactor Poorly Covered Code:

Use JaCoCo to identify areas where code can be refactored for better
maintainability and testability.

v Integrating JaCoCo in GitHub Actions CI/CD

Step 1: Add a .github/workflows/main.yml file

o Create a workflow file that sets up the ClI pipeline to run tests and
generate the code coverage report using JaCoCo.

e Here's an example of a GitHub Actions workflow file:
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name: CI Pipeline

on:
push:

branches:

main

pull_ request:
branches:

jobs:

build:

main

runs-on: ubuntu-latest

steps:

name: Checkout code
uses: actions/checkout@v4

name: Set up JDK 17
uses: actions/setup-java@v4
with:
distribution: 'temurin'
java-version: '17'
cache: 'maven'

name: Cache Maven dependencies
uses: actions/cache@v4
with:
path: ~/.m2/repository
key: ${{ runner.os }}-maven-${{ hashFiles('**/

pom.xml') }}
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restore-keys: |
${{ runner.os }}-maven-
name: Build with Maven
run: mvn clean install

name: Run Tests and Generate JaCoCo Report
run: mvn test jacoco:report



- name: Upload JaCoCo coverage report
uses: actions/upload-artifact@v4
with:

name: jacoco-report
path: target/site/jacoco/index.html

Step 2: View Coverage Report in GitHub Actions

e Once the pipeline runs, you can navigate to Actions in the GitHub
repository to view the pipeline run. There, the JaCoCo coverage report
will be uploaded as an artifact.

e You can download this artifact and open the index.ntn1 file locally to
view the detailed coverage report.
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