JACOCO

Java Code Coverage

Introduction to JaCoCo

e Whatis JaCoCo?

JaCoCo is a popular code coverage tool for Java applications. It integrates
with build tools like Maven and Gradle to measure how much of your code
is tested by your unit tests.

e Purpose of JaCoCo:

Provides insights into how well your tests cover your codebase. It measures
instruction coverage, branch coverage, and other metrics that indicate the
effectiveness of the tests.

v How JaCoCo Works

i

1

1

1

i

I Listener Dump request

: 1
i 1 [= atn]
i i
i JYMTI API JaCoCo agent
1
1
1

1
1
JI Coverage Reports

Introduction to JaCoCo

e Instrumentation — JaCoCo instruments Java bytecode to record which
parts of the code are executed during the test run.

e Integration — JaCoCo integrates seamlessly with Maven, Gradle, Ant,
and even within CI/CD pipelines like GitHub Actions and Jenkins.

o JaCoCo doesn't change your source code directly. Instead, it tracks
code execution at runtime and then compares it to the test suite.

v Setting Up JaCoCo with Maven

e Add Plugin — In your pon.xn1 , add the JaCoCo Maven plugin under the
<build> section.

Example:

plugin
groupId>org.jacoco</groupId
artifactId>jacoco-maven-plugin</artifactId
version>0.8.7</version
executions
execution
goals
goal>prepare-agent</goal
goal>report</goal
goals
execution
executions
plugin

e Run the Coverage Report — After writing your tests, run:

mvn clean test jacoco:report

v Understanding the JaCoCo Report

Introduction to JaCoCo

ExamRegistry

Element Missed Instructions =
@ enrol(Student, Exam)

@ recordScore(Student, Exam, _int)
@ isEnrolled(Student, Exam)
@ getScore(Student, Exam)

@ ExamBRegistry()

Total 0of 116

o Coverage Dashboard:

Cov.
100%

100%
100%
100%
100%:
100%

Missed Branches

20of 16

Cow.
100%
B3%
75%
n/a
n/a
B7%

After running JaCoCo, navigate to target/site/jacoco/index.htnl . This will
show the coverage summary for each class and method.

e Reading the Report:
o Green = Fully covered
o Red = Missed code or branches

o Yellow = Partially covered branches.

v JaCoCo and Continuous Integration (Cl)

e Why Use JaCoCo in CI?

Ensures that each commit and pull request maintains a standard level of

code quality and test coverage.

e JaCoCoin CI/CD Pipelines:

JaCoCo can be integrated with GitHub Actions, Jenkins, Travis Cl, etc.,
to automate the generation of reports after each test run.

» Enforcing Coverage Thresholds:

You can enforce minimum coverage thresholds to ensure that your tests

reach a certain percentage of coverage.

v JaCoCo Limitations

o Coverage vs. Quality:

100% code coverage does not guarantee bug-free code. JaCoCo
measures execution, but you still need to write meaningful tests.

* Mocking Challenges:

Introduction to JaCoCo

Testing certain parts of the code (e.g., integration with external
services) may require mocks or stubs, which don't fully reflect real-
world usage.

Export
Filter
Code Coverage *AX
=
mB~T=== Q Lings covered
Mame Lines total 79 N
4 M Mono.Ceci 2513](60%%) . 2? i return this.GetHasSecurityDeclaratic
4 {}Mono.Cedi 6119,/0438 (643%) 83
o5 . 16/22 (72%) a4 public Collection<SecurityDeclaration> Secur
GEeyDimenson 85 get { return security_declarations ?? (4
* % ArrayMarshalinfo 19/31 (61%) 36 }
P % AmayType 43/65 (66%) 87
» % AccemblyDefinition 54/82 (65%) 88 internal AssemblyDefinition ()
Y 89 {
r g AssemblylinkedResource DI 9@ ¥ ’
* & AssemblyNameDefinition 411 (36%) 91 Covered with bests
» % AssemblyNameReference 136/188 (82%) it B s
¥ 93 {
» % AssemblyResolutionException 0710 (0%) a4 if (this.modules == null) {
* % AssemblyResclveEventhrgs 0/7 (0%) 95 main_module.Dispose ();
% BaseAssemblyResalver 130/214 (60%) 96 return; Mot coveredwith tests
97 }
» % ByReferenceType 11419 (57%) a8
v % callsite 32/75 (42%) 99 var modules = this.Modules;
b % CustomAttribute 54/89 (B0%) 108 for (int 1 = @; i < modules.Count; i++)
11711 (100% 101 modules [i].Dispose ();
% CustomAttributeArgument () 162 3
r % CustomAttributeNamedArgument 11/11 (100%) 1e3 -
P& CustomAttributeValueProjection 0/5 (0%) M B 3
Totak]6 % 313 @ 3214 Coverage: 11117720437 (54%)

v Best Practices for Using JaCoCo Effectively
» Balance Coverage with Testing Value:

Not every line of code needs testing—focus on complex and critical
sections.

o Set Realistic Coverage Goals:

Aiming for 80%—-90% coverage is a reasonable target, but don't force
100% at the expense of test quality.

o Refactor Poorly Covered Code:

Use JaCoCo to identify areas where code can be refactored for better
maintainability and testability.

v Integrating JaCoCo in GitHub Actions CI/CD

Step 1: Add a .github/workflows/main.yml file

o Create a workflow file that sets up the ClI pipeline to run tests and
generate the code coverage report using JaCoCo.

e Here's an example of a GitHub Actions workflow file:

Introduction to JaCoCo

name: CI Pipeline

on:
push:

branches:

main

pull_ request:
branches:

jobs:

build:

main

runs-on: ubuntu-latest

steps:

name: Checkout code
uses: actions/checkout@v4

name: Set up JDK 17
uses: actions/setup-java@v4
with:
distribution: 'temurin'
java-version: '17'
cache: 'maven'

name: Cache Maven dependencies
uses: actions/cache@v4
with:
path: ~/.m2/repository
key: ${{ runner.os }}-maven-${{ hashFiles('**/

pom.xml') }}

Introduction to JaCoCo

restore-keys: |
${{ runner.os }}-maven-
name: Build with Maven
run: mvn clean install

name: Run Tests and Generate JaCoCo Report
run: mvn test jacoco:report

- name: Upload JaCoCo coverage report
uses: actions/upload-artifact@v4
with:

name: jacoco-report
path: target/site/jacoco/index.html

Step 2: View Coverage Report in GitHub Actions

e Once the pipeline runs, you can navigate to Actions in the GitHub
repository to view the pipeline run. There, the JaCoCo coverage report
will be uploaded as an artifact.

e You can download this artifact and open the index.ntn1 file locally to
view the detailed coverage report.

Introduction to JaCoCo

