
Introduction to JaCoCo 1

�
Introduction to JaCoCo

What is JaCoCo?

JaCoCo is a popular code coverage tool for Java applications. It integrates
with build tools like Maven and Gradle to measure how much of your code
is tested by your unit tests.

Purpose of JaCoCo:

Provides insights into how well your tests cover your codebase. It measures
instruction coverage, branch coverage, and other metrics that indicate the
effectiveness of the tests.

How JaCoCo Works

Introduction to JaCoCo 2

Instrumentation — JaCoCo instruments Java bytecode to record which
parts of the code are executed during the test run.

Integration — JaCoCo integrates seamlessly with Maven, Gradle, Ant,
and even within CI/CD pipelines like GitHub Actions and Jenkins.

JaCoCo doesnʼt change your source code directly. Instead, it tracks
code execution at runtime and then compares it to the test suite.

Setting Up JaCoCo with Maven
Add Plugin — In your pom.xml , add the JaCoCo Maven plugin under the
<build> section.

Example:

<plugin>

 <groupId>org.jacoco</groupId>

 <artifactId>jacoco-maven-plugin</artifactId>

 <version>0.8.7</version>

 <executions>

 <execution>

 <goals>

 <goal>prepare-agent</goal>

 <goal>report</goal>

 </goals>

 </execution>

 </executions>

</plugin>

Run the Coverage Report — After writing your tests, run:

mvn clean test jacoco:report

Understanding the JaCoCo Report

Introduction to JaCoCo 3

Coverage Dashboard:

After running JaCoCo, navigate to target/site/jacoco/index.html . This will
show the coverage summary for each class and method.

Reading the Report:

Green  Fully covered

Red  Missed code or branches

Yellow  Partially covered branches.

JaCoCo and Continuous Integration CI
Why Use JaCoCo in CI?

Ensures that each commit and pull request maintains a standard level of
code quality and test coverage.

JaCoCo in CI/CD Pipelines:

JaCoCo can be integrated with GitHub Actions, Jenkins, Travis CI, etc.,
to automate the generation of reports after each test run.

Enforcing Coverage Thresholds:

You can enforce minimum coverage thresholds to ensure that your tests
reach a certain percentage of coverage.

JaCoCo Limitations
Coverage vs. Quality:

100% code coverage does not guarantee bug-free code. JaCoCo
measures execution, but you still need to write meaningful tests.

Mocking Challenges:

Introduction to JaCoCo 4

Testing certain parts of the code (e.g., integration with external
services) may require mocks or stubs, which donʼt fully reflect real-
world usage.

Best Practices for Using JaCoCo Effectively
Balance Coverage with Testing Value:

Not every line of code needs testing—focus on complex and critical
sections.

Set Realistic Coverage Goals:

Aiming for 80%90% coverage is a reasonable target, but donʼt force
100% at the expense of test quality.

Refactor Poorly Covered Code:

Use JaCoCo to identify areas where code can be refactored for better
maintainability and testability.

Integrating JaCoCo in GitHub Actions CI/CD
Step 1 Add a .github/workflows/main.yml file

Create a workflow file that sets up the CI pipeline to run tests and
generate the code coverage report using JaCoCo.

Hereʼs an example of a GitHub Actions workflow file:

Introduction to JaCoCo 5

name: CI Pipeline

on:

 push:

 branches:

 - main

 pull_request:

 branches:

 - main

jobs:

 build:

 runs-on: ubuntu-latest

 steps:

 - name: Checkout code

 uses: actions/checkout@v4

 - name: Set up JDK 17

 uses: actions/setup-java@v4

 with:

 distribution: 'temurin'

 java-version: '17'

 cache: 'maven'

 - name: Cache Maven dependencies

 uses: actions/cache@v4

 with:

 path: ~/.m2/repository

 key: ${{ runner.os }}-maven-${{ hashFiles('**/

pom.xml') }}

 restore-keys: |

 ${{ runner.os }}-maven-

 - name: Build with Maven

 run: mvn clean install

 - name: Run Tests and Generate JaCoCo Report

 run: mvn test jacoco:report

Introduction to JaCoCo 6

 - name: Upload JaCoCo coverage report

 uses: actions/upload-artifact@v4

 with:

 name: jacoco-report

 path: target/site/jacoco/index.html

Step 2 View Coverage Report in GitHub Actions

Once the pipeline runs, you can navigate to Actions in the GitHub
repository to view the pipeline run. There, the JaCoCo coverage report
will be uploaded as an artifact.

You can download this artifact and open the index.html file locally to
view the detailed coverage report.

