CT417 : Software Engineering Il " /16] 4

WKO7 Automated Testing - Unit Testing

Outline

Planned topics for this lesson:

TN JACOCO

N ' \ Java Code Coverage

CODE \\\\ ~~~~~~~~ ,

£/
~mockito®

-

CLIENTS

-4

® Test Automation / Unit Testing

WHAT IS IT?
via T-UNIT
HOW TO WRITE?

® Jest-Driven Development (TDD)

WHAT 1S IT?
BENERAITS?

CT417 : Software Engineering Il

WKO07 Automated Testing - Unit Testing

What is Unit Testing”

Pl T T ie— R

Q wira | | Ogit| | & @

)
& r 1)L) | oo Kfiocke'r 4 g\

kCHEF/

NSIBLE

A
. /
/

\

bernetes

ku
\

g
splunk> @

' kDATA DOG)

THIS WEEK :
VNIT TEST

What is Unit Testing”

® Unit testing is all about testing individual units of source code <

® Use to check that your code is working as expected — It’s
called unit testing because you breakdown the functionality
of your program into discrete testable behaviours that you
can test as individual units

® Unit testing is a key feature of the test-driven development
(TDD) approach to software development

® Developer writes a set of automated unit tests and ensures
that they fail initially. Next the developer implements the bare
Minimum amount of code required to pass the test cases.

CT417 : Software Engineering Il

WKO7 Automated Testing - Unit Testing

SMALLEST TESTABLE PARTS OF THE CODEBASE

Key Benefit of Unit Testing

Early Bug Detection:

e (Catching issues in small, isolated pieces of code makes it
easier to fix bugs before they become more complicated.

Improved Code Quality:

e Unit tests enforce modular code design and clean coding
practices since units are developed to be testable.

Facilitates Refactoring:

e As you refactor code, unit tests ensure that the original
functionality remains intact.

Faster Development Cycle:

e Once tests are in place, they can be rerun quickly, ensuring
that newly introduced code doesn’t break existing features.

CT417 : Software Engineering Il

1A
WKO7 Automated Testing - Unit Testing

‘UNIT TESTING

% EVIL BUG #3
‘\
‘
\ : ; %
\
|
)
) Gl D)
"l unmt OF C e \‘

’-—' \\
EVIL BUG #1 ’,""‘""
5

!

!

!

!

|

i

~-----\

5\

! wants to sneak
,‘ into production
!
!
!
!

S

. 7
EVILBUG N

a&) UNIT TESTING

PROTECTION FROM BUGS il

"

methodpoet.com

CT417 : Software Engineering Il " /16] 4

WKO07 Automated Testing - Unit Testing

lypes of lesting

ENSURES S/ MEETS USER REAVIREMENT

Acceptance test
Test the final system

System test VERIFIES THE ENTIRE SYSTEMS'S FUNCTIONALITY

Test the whole system

TESTS HOW DIFFERENT MODULES / SERVICES
WORK TOGETHER

Integration Test
Test integrated component

Unit test TESTING INDIVIDUAL FUNCTIONS OR METHODS

Test individual component

Principles of Good Unit Testing

Isolate the Unit:

e A unit test should only test one function or class without
iInvolving dependencies like databases or external APlIs.
Use mocks and stubs for dependencies.

Repeatability:

e Unit tests should produce the same results each time they

run, no matter the environment or order.
Fast Execution:

e Unit tests should execute quickly to allow for continuous

feedback during development.

Independent Tests:

e Each unit test should be independent, meaning tests
should not rely on the order of execution or shared state.

CT417 : Software Engineering Il

WKO7 Automated Testing - Unit Testing

Pass

CT417 : Software Engineering Il " /18] -

WKO7 Automated Testing - Unit Testing

Anatomy of a Unit Test

[TestMethod]
public void GetSumTest()

{

//] Arrange Set up the context and inputs
DemoClass demoClass = new DemoClass();

int firstValue = 5;

int secondValue = 6;

int expectedSumResult = 11;

int actualSumResult = default(int);

//] Act € Perform the action being tested (e.g., call the method)
actualSumResult = demoClass.GetSum(firstValue, secondValue);

/// Assert € Check if he result matches the expected outcome

Best Practices In Unit lesting

Keep Tests Small and Focused:

A single test should only validate one
behaviour or scenario.

Use Descriptive Names:

Test names should explain exactly what
behaviour is being verified.

Avoid Over-Mocking:

While mocks are useful for isolating the unit,
overusing them can lead to brittle tests.

Test Edge Cases:

Don’t just test the "happy path" but also
consider boundary values and error
scenarios.

CT417 : Software Engineering Il

WKO7 Automated lesting - Unit Testing

When the developer When the quality
team tests

®wa cningl!

when the project when the customer
manager tests

Unit Testing in CI/CD

Automation in CI/CD Pipelines:

e Unit tests are automatically executed as part
of the Continuous Integration (Cl) process to
ensure new code does not introduce
regressions.

Fast Feedback Loop:

¢ \When developers push code, unit tests
iImmediately verify whether the change breaks
any functionality, allowing for quick fixes.

Key Metrics:

e Code Coverage: Measures how much of the
code Is covered by unit tests.

e High coverage improves confidence, but
coverage is not the only measure of quality.

¢ Flakiness: Unit tests should be reliable.

e [aky tests that randomly fail can create
confusion.

®

Delivery Team

Checkin

Version Control

CT417 : Software Engineering Il

WKO7 Automated Testing - Unit Testing

Commit Stage

Automated
Acceptance Tests

O

Manual
Validations

Release

Trigc

\ ‘
7

Feedback

/N

Checkin

/N

N
rd

Trigc

Feedback

/N

Checkin

N
7

Feedback

Trigc

N

/N

Feedback

N

/N

Feedback (what value did we create?)

/al

—
Approval

Feedback

Feedback

CT417 : Software Engineering Il

WKO7 Automated Testing - Unit Testing
&Foa PYTHON, C# AND TS
JI* pytest
JUnit

Jest
@ Foest
Hmocklt

JUmt@

Unit Testing Tools

Old Tests

k7,

) sedipse Morade Maven A MOCKING FRAMEWORK VSED TS
MOCK DEPENDENCIES AND ISOLATE
VNITS DURING TESTING

IDEs/Build Tools

MOST POPVLAR TESTING
FRAMEUIORK FOR TAVA APPS

via J-Unit

JUnit A)

© eclipse-workspace - demo/src/test/java/demo/tests/JUnitProgram.java - Eclipse IDE
File Edit Source Refactor Navigate Search Project Run Window Help

- @ v = BN LSRR Q vy OY S Yy P LA RE a0
gv JUnit &2 ne B))UnitProgram java 2 © Console
L3RR ® E ey < | package demo.tests;
Finished after 0.016 seconds 2

& 3*%import static org.junit.Assert.*;]
Runs: 1/1 @ Erors: 0 O Failures: 1

. 0 public class JUnitProgram {

v g demo.testsJUnitProgram [Runner: JUnit 4] (0.000 s)| @Test

g/ test_JUnit (0.000 s) public void test JUnit() {
System.out.println("This is the testcase in this class");
Btring str1="I donot match the expected";
assertEquals("This is the testcase in this class™, strl);

-. ')
10 }
1
1/

CT417 : Software Engineering Il " /18] -

WKO05 Revision - Cl and Unit Testing

® |n Java, you can write a unit test to check the
behaviour of a number of methods of a single
class, however, it should remain within one class
(i.e., multiple test cases applied to a single class)

® Jest code can be run and evaluated
automatically (test automation)

e Similar tools exist for C, C#, js, and other
languages

CT417 : Software Engineering Il " /16] 4

on
WKO05 Revision - Cl and Unit Testing '
Example
public Class Calculator { import static org.junit.Assert.*;
public int evaluate(String expression) { import org.junit.Test;
int sum = 0;
for (String summand: expression.split(“\\+”)) public class CalculatorTest {
sum += Integer.valueOf(summand); @Test
return sum; public void evaluatesExpression() {
} Calculator calculator = new Calculator();
} int sum = calculator.evaluate(“1+2+3”);
assertEquals(6, sum);
e JUnit resources: ;

- https://qgithub.com/junit-team

- https://www.vogella.com/tutorials/JUnit/article.html

- https://www.baeldung.com/junit-5

- https://mvnrepository.com/artifact/junit/junit

https://github.com/junit-team
https://www.vogella.com/tutorials/JUnit/article.html
https://www.baeldung.com/junit-5
https://mvnrepository.com/artifact/junit/junit

