
CT417 : Software Engineering III

WK05 Software Security

Outline

• To get a solid understanding of the
underlying problems of insecure
software

• To gain a practical foundation of
secure / resilient software
development techniques

• To get some hands-on experience to
probe software for vulnerabilities

Planned topics for this lesson:

CT417 : Software Engineering III

What is Software Security?

• Software security is the concept of implementing
mechanisms and adopting best development
practices to protect software against malicious
attacks (i.e., to make it resistant to attacks, and
keep it functional when attacked).

• In a traditional software design and development
practices, software security was almost an
afterthought

• Secure software is defined as software engineered in
such a way that its operation and functionality
continues as normal even when subjected to
malicious attacks

it is a concern, not a feature

providing holistic software security
is a difficult and tedious task

WK05 Software Security

CT417 : Software Engineering III

What is a Threat?

• In computer security, a threat is a potential negative
action or event facilitated by a vulnerability that results in
an unwanted impact to a computer system or application

• A threat can be either:
- a negative “intentional” event (i.e., cyberattack) or
- an “accidental” negative event (e.g., earthquake)

WK05 Software Security

CT417 : Software Engineering III

What is a Threat?

• ISO27005 (International for Standardisation) - Information Security Risk Management: A potential cause of an
incident, that may result in harm of systems and organisation

• NIST (National Institute of Standards and Technology): Any circumstance or event with the potential to adversely
impact organisational operations, organisational assets, or individuals through an information system via unauthorised
access, destruction, disclosure, modification of information, and / or denial of service

• ENISA (European Union Agency for Cybersecurity): Any circumstance or event with the potential to adversely
impact an asset through unauthorised access, destruction, disclosure, modification of data, and / or denial of service

WK05 Software Security

CT417 : Software Engineering III

Microsoft’s Threat Classification

• Spoofing of user identity (e.g., an attacker takes on the identify
of an administrator)

• Tampering (e.g., an attacker changes an account balance)

• Repudiation (e.g., a user denies performing an action without
either parties having any way to prove otherwise)

• Information disclosure (privacy breach or data leak)

• Elevation of privilege (e.g., an attacker elevates their own
security level to an administrator)

• Denial of Service (DoS)

- A DoS attack is a cyber-attack in which the perpetrator
seeks to make a machine or network resource unavailable
to its intended users by temporarily or indefinitely disrupting
services of a host connected to the internet

base of their threat modelling tool stride

WK05 Software Security

CT417 : Software Engineering III

Threat Agent

• The term threat agent is used to indicate an individual,
thing or a group that can manifest a threat

• These include:

- Non-target specific (e.g., computer virus, worms,
trojans, and logic bombs)

- Employees — disgruntled staff or contractors

- Organised crime and criminals

- Corporation (e.g., partners or competitors)

- Human (unintentional) — accidents, carelessness

- Human (intentional) — insider, outsider

- Natural (e.g., flood, fire, lightning, meteor,
earthquakes)

WK05 Software Security

CT417 : Software Engineering III

Threats

• Expertise in requirements engineering and information
system security is a rare combination:

- Customers and users also don’t know what they want
with respect to security

- Requirement engineers don’t know what questions to
ask to elicit security requirements

• This combined lack of security expertise lead to missing
our or unidentified security requirements, resulting in
security vulnerabilities

Requirement-level threats

Hardware-level threats & countermeasures

Threat Countermeasure

 Eavesdropping devices (e.g., keyloggers) Physical security

 Power outage UPS (Uninterruptible Power Supply)

 Natural disasters Geographically dispersed redundancy to avoid a single point of failure

 Sabotage Physical security

WK05 Software Security

CT417 : Software Engineering III

Code-Level Threats

• Mainly due to the lack of secure coding knowledge

• Example: Some library functions in C are vulnerable to buffer
overflow attacks

- Here an attacker puts too much information into a buffer, so
that it spills to another memory management, thereby
overwriting programme code or data

Unintentional

• Example: Malicious insider plants a logic bomb in the source
code, which eventually makes the software misbehave or
vulnerable

intentional

• Software security education and training

• Automatic static and dynamic code analysis

• Peer code review

• Peer code review

• Job rotation

• Mandatory vacation ⚠

WK05 Software Security

CT417 : Software Engineering III

Design-Level Threats

• Design-Level threats relate to weaknesses in principal OO
design and object interaction, therefore secure design is
more fundamental than secure coding

- e.g., object attributes being public rather than private

• Best OO design practices are captures in design patterns
for security

• Code implementation without a solid design is dangerous
and costly ⚠

structure of a security pattern (password design and use pattern)

WK05 Software Security

CT417 : Software Engineering III

Architectural-Level Design Threats

• Architectural design decisions entail overarching design
decisions

• Widely accepted solutions to these recurring architectural
design problems are referred to as architectural patterns

• Example:

- A single access point is an architectural pattern

✓ e.g., software has the single access point

✓ Potentially single point of failure

WK05 Software Security

CT417 : Software Engineering III

Vulnerability (RFC2828)

• A flow of weakness in a system’s design, implementation, or
operation and management that could be exploited to violate
the system’s security policy

• Most system have vulnerabilities of some sort, but this does not
mean that the systems are too flawed to use.

• Not every attack results in an attack, and not every attack
succeeds.

• Success depends on the degree of vulnerability, the strength of
attacks, and the effectiveness of any countermeasures in use

- e.g., if the attacks needed to exploit a vulnerability are very
difficult to carry out, then the vulnerability may be tolerable

• Vulnerabilities in software arises mainly due to defects

document published by Internet Engineering Task Force (IETF) in
may 2000 - provide a standardised glossary of security-related
terms and concepts relevant to the internet community.

WK05 Software Security

CT417 : Software Engineering III

Exploit

• An exploit is a piece of software, data, or a sequence
of commands that takes advantage of a vulnerability
to cause unintended or unanticipated behaviour to
occur on computer software or hardware

• Such behaviour frequently includes things like
gaining control of a computer system, allowing
privilege escalation, or a denial-of-service attack

• A remote exploit works over a network and exploits
the security vulnerability without any prior access to
the vulnerable system

• A local exploit requires prior access to the vulnerable
system and usually increases the privileges of the
person running the exploit past those granted by the
system administrator

WK05 Software Security

CT417 : Software Engineering III

Zero-Day Vulnerability

• A zero-day vulnerability is a computer-software
vulnerability that is unknown to those who should
be interested in mitigating the vulnerability
(including the vendor of the target software)

• Until the vulnerability is mitigated, hackers can
exploit it to adversely affect computer programs,
data, additional computers or a network

• An exploit directed at a zero-day is called a zero-
day exploit, or a zero-day attack

WK05 Software Security

CT417 : Software Engineering III

Zero-Day Vulnerability
• Zero-day vulnerabilities can effect:

- Libraries used across multiple products
(e.g., OpenSSL)

- Generically used software (e.g., MSOffice)

- Proprietary software (e.g., XSS
vulnerability in smartphone app)

• However, vulnerabilities will become public
eventually, and have to be communicated to
affected users, before being patched (e.g., MS
Update and Security)

WK05 Software Security

CT417 : Software Engineering III

CVE Systems

• CVE = Common Vulnerabilities and Exposure Systems

• Security vulnerabilities need to be managed
systematically to help identify weaknesses in the
affected source code of a software system

• CVE provides a reference-method for publicly known
information-security vulnerabilities

• The National Cybersecurity FFRDC (NCF), operated by
the MITRE Corporation (a non-profit organisation that
manages federally funded research and development
centres) maintains the system, with funding from the
National Cyber Security Division of the United States
Department of Homeland Security

WK05 Software Security

CT417 : Software Engineering III

CVE Systems

• CVE (https://cve.mitre.org/) is a central repository of all
the reported security vulnerabilities associated with a
specific software system

- Each CVE entry has a unique identifier which is
commonly used by many commercial vulnerability
management systems to refer to a specific
vulnerability.

• CWE (common weakness enumeration) -
https://cwe.mitre.org/ categorises the vulnerabilities
identified in CVE

- CWE has much fewer DB entries than the CVE

WK05 Software Security

https://cve.mitre.org/
https://cwe.mitre.org/

CT417 : Software Engineering III

The Call Stack

• Each stack frame contains a stack pointer to the
top of the frame immediately below

- The stack pointer is a mutable register

• The stack frame is the collection of all data on the
stack associated with one subprogram call, The
stack frame generally includes the return address,
argument variables passed on the stack, and local
variables

• A frame pointer of a given invocation of a function
is a copy of then stack pointer as it was before the
function was invoked

• If a stack is corrupted, i.e., overwritten, arguments,
variables and or return address do change

WK05 Software Security

CT417 : Software Engineering III

Stack Overflow
WK05 Software Security

CT417 : Software Engineering III

Buffer-Overflow Countermeasures

• Use a programming language that supports automatic bound checking of buffers

- Java or Python, but NOT C

• Use a language specific library module that implements info validation in the form
of safe buffer handling

• Compilers can produce a warning when an unsafe function call is made, or can
add code for buffer overflow detection

• An Operating System can enforce more stringent memory access control so that
buffer overflows cannot infringe into the protected areas of the main memory

WK05 Software Security

CT417 : Software Engineering III

Security Tactics

• A security tactic is a global design concept that addresses a
security problem at the architectural design level

• There are four main categories of security tactics:

- Tactics to help detect attacks, e.g., intrusion detection system

- Tactics that are used to resist attacks, e.g., single access point,
authenticate users

- Tactic to react to attacks

- Tactic to recover from attacks

was it correct ?

WK05 Software Security

CT417 : Software Engineering III

Security Tactics
WK05 Software Security

