
Spring Boot & GitHub Actions 1

�
Spring Boot & GitHub Actions

Introduction to Spring Boot and GitHub Actions
Why These Tools Matter:

Spring Boot Streamlines Java application development.

GitHub Actions Automates CI/CD pipelines, improving delivery speed
and reliability.

Essential for modern DevOps practices.

Overview of Spring Boot
What is Spring Boot?

A framework for building stand-alone Java applications with
embedded servers.

Spring Boot & GitHub Actions 2

Provides pre-configured, out-of-the-box functionality to avoid
boilerplate code.

Why Spring Boot?

Reduces configuration and setup.

Focus on convention over configuration.

Compatible with microservices architecture, REST APIs, and
monolithic apps.

What about Spring ?

Spring A comprehensive framework for building any Java application,
requiring more manual configuration and management of dependencies
and application context.

Spring Boot An extension of the Spring framework aimed at simplifying
development, configuration, and deployment, especially for
microservices and cloud-based applications.

Aspect Spring Spring Boot

Setup Manual configuration
required.

Automatic configuration with
defaults.

Spring Boot & GitHub Actions 3

Aspect Spring Spring Boot

Embedded
Server

Requires external server
Tomcat, Jetty, etc.).

Comes with an embedded
server Tomcat/Jetty).

Project
Complexity

Highly flexible but requires
more setup effort.

Simplifies Spring projects,
reducing setup time.

Use Case Best for complex, large-
scale applications.

Ideal for microservices and
fast prototypes.

Deployment
Requires WAR file and
deployment on external
server.

Packaged as JAR with an
embedded server for easy
deployment.

Why Choose One Over the Other:
Choose Spring when:

Your project needs extensive customizations.

Youʼre building a complex enterprise application where flexibility
and modularity are necessary.

You have a team experienced in managing detailed configurations.

Choose Spring Boot when:

Youʼre building microservices or need quick iterations in
development.

You want an all-in-one solution with auto-configuration.

Your focus is on simplicity and speed without worrying about
configuration details.

Criteria Spring Spring Boot

Purpose
Framework for building
complex enterprise-level
Java applications.

Simplified framework to quickly
build microservices or stand-
alone apps.

Development
Speed

Slower to set up due to
configuration.

Faster development with
minimal setup.

Customization
Provides maximum
flexibility and
customization.

Less flexibility, focuses on
ease of use.

Project
Suitability

Large-scale, complex,
highly customized apps.

Small/medium projects,
microservices, rapid

Spring Boot & GitHub Actions 4

Criteria Spring Spring Boot
development.

Core Concepts of Spring Boot
Spring Boot Starters:

Pre-packaged sets of dependencies that simplify build and
configuration.

Example: spring-boot-starter-web (for building web apps and RESTful
APIs).

Embedded Servers:

Supports Tomcat, Jetty, and Undertow.

No need for separate server setup.

Spring Initializr:

Online tool to generate Spring Boot project templates.

Customizable dependencies and build tools Maven/Gradle).

Visit: start.spring.io

https://start.spring.io/

Spring Boot & GitHub Actions 5

Spring Boot Annotations and Key Components
Annotations:

@SpringBootApplication  Marks the main class for Spring Boot.

@SpringBootApplication

public class Application {

 public static void main(String[] args) {

 SpringApplication.run(Application.class, arg

s);

 }

}

@RestController  Defines REST API controllers.

Spring Boot & GitHub Actions 6

@RestController

public class ApiController {

 @GetMapping("/hello")

 public String sayHello() {

 return "Hello World";

 }

}

@RequestMapping and @GetMapping  Handle HTTP requests.

@GetMapping("/users")

public List<User> getUsers() {

 return userService.getAllUsers();

}

Beans and Dependency Injection:

Spring Boot uses inversion of control IoC to manage beans.

@Autowired  Injects dependencies automatically.

@Autowired

private UserService userService;

Configuration:

Managed through application.properties or application.yml .

Profiles for different environments (e.g., dev , prod). Profiles allow
you to define different configurations for different environments
(e.g., development, testing, production). You can activate profiles
with the spring.profiles.active property.

Example:

application-dev.yml

spring:

 datasource:

 url: jdbc:mysql://localhost/devDB

Spring Boot & GitHub Actions 7

Spring Boot Project Structure
Typical Structure:

├── src

│ ├── main

│ │ ├── java

│ │ │ └── com.example.demo

│ │ │ └── Application.java

│ │ ├── resources

│ │ │ └── application.properties

│ ├── test

└── pom.xml / build.gradle

Main Components:

src/main/java  Contains Java classes.

src/main/resources  Configuration files (e.g., application.properties).

pom.xml or build.gradle  Defines dependencies and build plugins.

Spring Boot & GitHub Actions 8

Running a Spring Boot Application
Steps to Run:

� Clone a Spring Boot project or generate one using Spring Initializr.

� Use Maven or Gradle to package and build the application.

� Run the application using:

./mvnw spring-boot:run Maven wrapper)

./gradlew bootRun Gradle wrapper)

� Access the app at localhost:8080 (default port).

Useful Tips:

Customize the port with server.port=8081 in application.properties .

Use actuator for monitoring and health checks (dependency: spring-
boot-starter-actuator).

GitHub Actions

What is CI/CD?

CI Continuous Integration): Automatically integrates and tests code
on each commit.

CD Continuous Deployment/Delivery): Automatically deploys tested
code to production or staging.

Why GitHub Actions?

Automates your workflow by triggering events like push , pull_request ,
and release .

Easily integrates with other tools like Docker, AWS, Heroku.

Spring Boot & GitHub Actions 9

Key Components of GitHub Actions

Workflows:

Defined in YAML format (.github/workflows/ folder).

Triggered by events such as push , pull_request .

Jobs:

Define units of work that run on a runner (e.g., ubuntu-latest , macos-
latest).

Jobs can run sequentially or in parallel.

Steps:

Each job consists of a series of steps (e.g., checking out the code,
building, testing).

Runners:

GitHub-hosted runners (e.g., Ubuntu, macOS execute workflows.

Self-hosted runners allow workflows to run on your own
infrastructure.

Spring Boot & GitHub Actions 10

Setting Up a Simple CI/CD Pipeline with GitHub Actions
Basic Example:

name: Java CI with Maven

on: [push]

jobs:

 build:

 runs-on: ubuntu-latest

 steps:

 - name: Checkout code

 uses: actions/checkout@v2

 - name: Set up JDK 11

 uses: actions/setup-java@v2

 with:

 java-version: '11'

 - name: Build with Maven

 run: mvn clean install

Breakdown:

on: [push] Trigger the workflow when a push event occurs.

jobs Defines the build job that runs on ubuntu-latest .

steps:

Checkout the code.

Set up Java 11.

Build the project using Maven.

Tips and Tricks for GitHub Actions
Caching:

Speed up builds by caching dependencies with the actions/cache
action.

Spring Boot & GitHub Actions 11

Secrets:

Use GitHub Secrets to securely store sensitive information (e.g., API
keys).

Accessible in workflows as secrets.MY_SECRET_KEY .

Reusability:

Use composite actions to define reusable workflows.

Debugging:

Add set -x to enable debugging in your bash scripts.

Use matrix for testing across multiple environments (e.g., different
Java versions).

Useful Resources:

Spring Boot
Level up your Java code and explore what Spring can do
for you.

https://spring.io/projects/spring-boot

GitHub Actions documentation  GitHub Docs
Automate, customize, and execute your software
development workflows right in your repository with
GitHub Actions. You can discover, create, and share

https://docs.github.com/en/actions

Guides for GitHub Actions  GitHub Docs
These guides for GitHub Actions include specific use
cases and examples to help you configure workflows.

https://docs.github.com/en/actions/guides

https://spring.io/projects/spring-boot
https://docs.github.com/en/actions
https://docs.github.com/en/actions/guides

