

OLLSCOIL NA GAILLIMHE UNIVERSITY OF GALWAY

CT4101 Machine Learning

Dr. Frank Glavin Room 404, Computer Science Building Frank.Glavin@University*of*Galway.ie School of Computer Science

University *of*Galway.ie

Overview

- 1. Learning objectives and overview
- 2. What is Machine Learning?
- 3. Types of Machine Learning task
- 4. Overview of Data Mining
- 5. Applications of Machine Learning

Learning objectives for this section

Having completed this section successfully, you will be able to ...

- 1. Discuss definitions of Machine Learning
- 2. Describe what major categories of ML task entail: classification, regression, clustering, relationship discovery and reinforcement learning
- 3. Discuss the relationship with Data Mining
- 4. Explain the Data Mining process
- 5. Consider current and future applications of Machine Learning and Data Mining

Resources

Course slides:

Necessary but insufficient!

Recommended books:

List available on Blackboard

Others:

Andrew Ng's Coursera Machine Learning Course

Sebastian Thrun's Udacity AI Course

Contributions welcome!

If you find useful links, email them to me at frank.glavin@universityofgalway.ie

What is Machine Learning? [1]

Samuel, 1959:

"Field of study that gives computers the ability to learn without being explicitly programmed"

Witten & Frank, 1999:

Learning is changing behaviour in a way that makes performance better in the future

Arthur Samuel, 1901-1990

Image source: <u>http://www.computer.org/portal/web/awards/cp-samuel</u>

What is Machine Learning? [2]

Mitchell, 1997:

Improvement with experience at some task

A well-defined ML problem:

Improve over task T wrt performance measure P based on experience E For draughts/checkers example, what are T, P, E?

Other possible definitions

Philosophical and psychological considerations ... Relationship to Artificial Intelligence generally ... Artificial Intelligence ≠ Machine Learning ≠ Deep Learning Artificial Intelligence ⊋ Machine Learning ⊋ Deep Learning

What is Machine Learning? [3]

machine learning is

Machine Learning Techniques

Supervised learning Unsupervised learning Semi-supervised learning Reinforcement learning

Major Types of Task [1]

1. Classification

2. Regression

3. Clustering

Major Types of Task [2]

- 4. Co-Training
- 5. Relationship Discovery
- 6. Reinforcement Learning

beer <=> diapers

What do these have in common?

In all cases, machine searches for a hypothesis that best describes the data presented to it

Choices to be made: How is hypothesis expressed? mathematical equation, logic rules, diagrammatic form, table, parameters of a model (e.g. weights of an ANN), ... How is search carried out? systematic (breadth-first or depth-first), heuristic (most promising first), ... How do we measure quality of hypothesis? What is appropriate format for data? How much data is required?

What else to we need to know about?

To apply ML:

How to formulate a problem How to prepare the data How to select an appropriate algorithm How to interpret the results

To evaluate results and compare methods:

Separation between training, testing & validation Performance measures: simple metrics, statistical tests, graphical methods To improve performance Ensemble methods Theoretical bounds on performance

Data Mining: What's the Link?

Data Mining:

Extract interesting knowledge from large unstructured datasets non-obvious / comprehensible / meaningful / useful

Storage Law (Fayyad & Uthurusamy, Comms.ACM 2002)

Storage capacity doubling every year Faster than Moore's law Result: write-only "data tombs"

Developments in ML essential to be able to process and exploit this lost data

Big Data

- Data sets of scale and complexity such that they can be difficult to process using current standard methods
 - Standard DB tools & data management apps
 - Moving target

Big Data

Data scale dimensions (One or more of "3 Vs"): Volume: terabytes and up Velocity: from batch to streaming data Variety: numeric, video, sensor, unstructured text ...

Fashionable to add others that are not key ... Veracity: quality & uncertainty associated with items Variability: change / inconsistency over time Value: for the organization

Key techniques:

Sampling; inductive learning; clustering; associations Distributed programming methods

CRISP-DM Data Mining Process

Problem Definition Data Exploration Data Preparation Modelling Evaluation Deployment

Cross Industry Standard Process for Data Mining (CRISP-DM) process model

This link gives a summary of the main steps in CRISP-DM <u>https://www.sv-europe.com/crisp-dm-methodology/</u>

Current & Emerging Applications

Any ideas?

What companies use Machine Learning?

Users of ML & DM

98

36.0 36.5

High-Profile Examples ...

Forbes -

New Posts +4 posts this hour

Most Popular Most Disliked Athletes

Ollscoil na Gaillimhe

UNIVERSITY OF GALWAY

Welcome to The Not-So Private Parts where technology & privacy collide + Follow (1,178)

TECH | 2/16/2012 @ 11:02AM | 1,930,513 views

How Target Figured Out A Teen Girl Was Pregnant Before Her Father Did

Forbes, 16 Feb 2012 http://www.forbes.com/sites/kashmirhill/2012/02/16/how-target-figured-out-a-teen-girl-was-pregnant-before-her-father-did/

How Netflix is turning viewers into puppets

"House of Cards" gives viewers exactly what Big Data says we want. This won't end well

BY ANDREW LEONARD

ОLLSCOIL NA GAILLIMИE UNIVERSITY OF GALWAY

House of Cards (BBC, 1990)

⇔ Kevin Spacey (Actor)

 \Leftrightarrow David Fincher (Dir.)

 $\Leftrightarrow \star \star \star \star \star$

Salon, 1 Feb 2013 https://www.salon.com/2013/02/01/how netflix is turning viewers into puppets/

DALL-E 2

https://openai.com/dall-e-2/

https://www.assemblyai.com/blog/h ow-dall-e-2-actually-works/

"a corgi playing a flame throwing trumpet"

Deep Learning for Object Recognition: Hinton & colleagues, NIPS 2012

AI/ML for Autonomous Vehicles

Learning from Experience

Generative Adversarial Networks

SMARTNEWS *Keeping you current*

Christie's Is First to Sell Art Made by Artificial Intelligence, But What Does That Mean?

Paris-based art collective Obvious' 'Portrait of Edmond Belamy' sold for \$432,500, nearly 45 times its initial estimate

October 2018

https://www.smithsonianmag.com/smartnews/christies-first-sell-art-made-artificialintelligence-what-does-mean-180970642/

https://medium.com/syncedreview/nvidia-open-sources-hyper-realistic-face-generator-stylegan-f346e1a73826 https://www.theverge.com/2019/3/19/18272602/ai-art-generation-gan-nvidia-doodle-landscapes

Generative Adversarial Networks

OLLSCOIL NA GAILLIMHE UNIVERSITY OF GALWAY

Image & Sensor Data Mining

UC Irvine / NIH BIRN collaboration: Using fMRI to distinguish subjects with Schizophrenia from controls

Analysing microscope images of sputum to screen for TB: Image processing, ML, Sequential statistics

Ollscoil na Gaillimhe University of Galway

Identify Activities of Daily Living from sensors: Ensemble DTW Classifier

Reinforcement Learning

RL Agent that learns to play UT2004 through trial & error Goal: human-like performance

Robots that learn to navigate mazes & solve puzzles

The Future ...

Algorithms for learning from mixed media

Systems that can automatically adapt to changing circumstances (adaptive, 'self-healing')

Software and embedded in hardware

Search engines capable of resolving ambiguity and synthesising results from multiple sources

What will the weather be like in Finland next week?

Wolfram | Alpha, IBM's Watson

Cumulative learning and transfer of skills

Active experimentation

Databases and programming languages with built-in learning; Cloud APIs

Sensors everywhere; small & wearable computing

What Do Experts Say About the Future of Machine Learning (and Python)?

https://www.stxnext.com/blog/future-of-machine-learning-and-python-expert-opinions

Learning Objectives: Review

If you have been paying close attention, you will now be able to ...

- 1. Discuss definitions of Machine Learning
- 2. Describe what major categories of ML task entail: classification, regression, clustering, relationship discovery and reinforcement learning
- 3. Discuss the relationship with Data Mining
- 4. Explain the Data Mining process
- 5. Consider current and future applications of Machine Learning and Data Mining

Some of my ML work at NUI Galway:

"Towards Inherently Adaptive First Person Shooter Agents using Reinforcement Learning"

"A One-Sided Classification Toolkit with Applications in the Analysis of Spectroscopy Data"

"Balancing the Performance of a FightingICE Agent Using Reinforcement Learning and Skilled Experience Catalogue"

"Facial Expression Recognition of Animated Characters using Deep Learning"

"Robust Classification of High-Dimensional Spectroscopy Data Using Deep Learning and Data Synthesis"

"A Multi-class Approach–Building a Visual Classifier based on Textual Descriptions using Zero-Shot Learning"

