
1st Year B.Sc (CS&IT)
CT1114. Web Development
HTML, CSS, JavaScript

Section 1:
Introduction and Course Overview

Dr. Sam Redfern
sam.redfern@nuigalway.ie
@psychicsoftware

mailto:sam.redfern@nuigalway.ie

Workshop Times

Workshops:
1st Semester: Thursdays, 11am-1pm,
Finnegan Suite (Top Floor, Block E, room BLE2012)
2nd Semester: TBA

Independent Study
In addition to the lecture notes and workshop exercises, you are
expected to independently study each topic. Lecture notes alone do
not provide sufficient depth.

Assignments
Approximately every 2 weeks there will be an assignment to submit.
Total marks for assignments: 20%.
Total marks for written exam (in April/May): 80%.

Overview of Syllabus

Web Page Design
HTML: (HyperText Markup Language)
CSS: (Cascading Style Sheets)

Client Side Scripting
JavaScript (JS) and Dynamic HTML (DHTML)

Software

• You need a text (code) editor for editing code
• You need a web browser to run your work on

Good code editor software highlights code with colour
coding of keywords, names, etc.

Good code editor software understands the programming
language and will provide “intellisense” hints

Recommended:
• Visual Studio Code. https://code.visualstudio.com/
• Or Sublime Text. https://www.sublimetext.com/
• Or notepad++. https://notepad-plus-plus.org/downloads/

https://code.visualstudio.com/
https://www.sublimetext.com/
https://notepad-plus-plus.org/downloads/

Web Browser (Web Client)

Chrome

Powerful software which displays text, images, animations,
etc. in a (mostly) consistent way, and supports user
interactivity as well as interactions with web servers =>
quite capable of running full applications within a browser

Discord

During (and outside) class, we will be using a Discord chatroom to
share links (URLs) and so you can post comments and questions at
any time

https://discord.gg/NgXKRw3tdR

Please join the Discord Channel indicated in this link. (It's
recommended that you sign up for a Discord account rather than
appear using a different anonymous name every week).

Say 'Hi' in there.

https://discord.gg/NgXKRw3tdR

Qwickly Code (Attendance Monitoring)

Use Blackboard
Sidebar "Attendance" link (in the Assessment
section)

To add Qwickly tool:
https://tips.nuigalway.ie/m/88122/l/1090525-
qwickly-attendance-for-instructors

https://tips.nuigalway.ie/m/88122/l/1090525-qwickly-attendance-for-instructors

HTML

HyperText Markup Language
The language used to define the contents of web pages
Includes text, tables, hyperlinks, images, etc.

HTML is the language used to define webpage CONTENT
and STRUCTURE

It is normally downloaded by your browser from a web
server, and then interpreted and displayed (rendered) by
your browser

CSS

Cascading Style Sheets
The language used to define the style of web pages
Includes colours, fonts, sizes, positions, etc.

CSS is the language used to define webpage VISUAL
STYLE

It is normally downloaded by your browser from a web
server, and then interpreted by your browser and used to
define the visual style of an HTML page that references it

Javascript

A programming language that runs in the user's browser,
providing interactivity, animation, calculations, and also the
ability to change the HTML content of a page after it has
been downloaded

Javascript is the language used to define the BEHAVIOUR
and INTERACTIVITY of a webpage

It is normally downloaded by your browser from a web
server, and then portions of it are executed as appropriate
on an HTML page that references it

W3Schools http://www.w3schools.com

Online tutorial site for internet languages
HTML, CSS, ASP, PHP, JavaScript, etc

“Try it Yourself” editor
A very good source of reference for your own
independent study

http://www.w3schools.com/

A Simple HTML Page

<!DOCTYPE html>
<html>
<head>

<title>Simple Page</title>
</head>
<body>

Hello World!
</body>

</html>

This is a simplest-possible web page, without any CSS or
Javascript. The <head>..</head> and <body>..</body>
tags denote important sections in the document

Another HTML Page, including
paragraphs and spans

<!DOCTYPE html>
<html>
<head>
<title>Another simple page</title>

</head>
<body>
<p>

This is a paragraph.
</p>
<p>

This is another paragraph, containing a 'span' section that we could
use Javascript to change the style or content of.

</p>
</body>

</html>

Creating an HTML File

Open a Text Editor
e.g. Notepad++ or Visual Studio Code (VS Code)
NB: Microsoft Word is not a text editor!

Write some HTML
Save it as a .html file

e.g. mypage.html
Double click the file

Your page will open in your browser
It has not been delivered from a webserver in the normal
way
However your browser is still happy to open it

Exercise

Write a simple HTML page that contains at least
two different paragraphs, as well as correct
sections for head and body.

Providing IDs for your tags

Wherever you use a tag in HTML, your browser
will create a separate software object which has
style and content.

By giving an ID to a tag, you will make it easy to
refer to that specific software object using
Javascript code, so that for example you can
change its content or style using Javascript.

Buttons

To create a clickable button in your page:

<button>Click Me!</button>

This should be inside the <body> section of the
html document

A page with a button that reacts to clicks
by alerting the user with a message

<!DOCTYPE html>
<html>
<head>
<title>A page with a button</title>
<script>

function handleClick() {
alert("You clicked the button.");

}
</script>

</head>
<body>
<button onclick='handleClick();'>Click Me!</button>

</body>
</html>

A page with a button that reacts to clicks
by modifying the content of a paragraph

<!DOCTYPE html>
<html>
<head>
<title>A page with a button</title>
<script>

function handleClick() {
var p = document.getElementById('myParagraph');
p.innerHTML = "..A stately pleasure dome decree.";

}
</script>

</head>
<body>

<p id='myParagraph'>
In Xanadu did Kubla Khan..

</p>
<button onclick='handleClick();'>Click Me!</button>

</body>
</html>

To see error messages, use..

In Firefox, use Tools > Web Developer > Browser Console
In Chrome, use More Tools > Developer Tools > (Console section)

For debugging in Javascript, you can also write directly to the console using
console.log("message");

Exercise

Make a webpage which contains a paragraph
(containing some text) and two buttons.

When the first button is clicked, the content
(innerHTML) of the paragraph should be changed.

When the second button is clicked, the content of the
paragraph should be changed to something different.

Exercise: sample solution

This sample solution will also indicate, in the
paragraph, how many times each button has been
clicked.

It will use variables to store these click counts.

CT1114

Web Development

HTML, CSS, JavaScript

Section 2:

Javascript Variables

Dr. Sam Redfern

sam.redfern@nuigalway.ie

@psychicsoftware

mailto:sam.redfern@nuigalway.ie

Discord / Qwickly

Use our Discord channel for questions, comments etc. at

any time

https://discord.gg/NgXKRw3tdR

Qwickly Code (Attendance Monitoring)

https://discord.gg/NgXKRw3tdR

HTML

HyperText Markup Language

The language used to define the contents of web pages

Includes text, tables, hyperlinks, images, etc.

HTML is the language used to define webpage CONTENT

and STRUCTURE

It is normally downloaded by your browser from a web

server, and then interpreted and displayed (rendered) by

your browser

Javascript

A programming language that runs in the user's browser,

providing interactivity, animation, calculations, and also the

ability to change the HTML content of a page after it has

been downloaded

Javascript is the language used to define the BEHAVIOUR

and INTERACTIVITY of a webpage

It is normally downloaded by your browser from a web

server, and then portions of it are executed as appropriate

on an HTML page that references it

Reminder: structure of an HTML page

with Javascript

<!DOCTYPE html>

<html>

<head>

<title>A page with a button</title>

<script>

function handleClick() {

alert("You clicked the button.");

}

</script>

</head>

<body>

<button onclick='handleClick();'>Click Me!</button>

</body>

</html>

What JavaScript is

 Scripting language

 Client side in web-browser

 Consists of lines of executable code

 Which are (typically) 'just in time' compiled

 Mostly located inside functions

 Which may run in response to an event (e.g. onclick)

 Designed to add interactivity to HTML pages

What JavaScript isn’t

 JavaScript is not Java

 Java is a more fully featured programming language

 More complex

 Used for standalone applications, web services, etc.

 Not sandboxed by the user's browser

 But Javascript is becoming more and more important and powerful

in recent years (and on modern browsers)

 Also when run inside special executables:

 Server-side programming (e.g. node.js)

 Stand-alone applications (e.g. nodewebkit, cordova), web

services (node.js) etc.

What can JavaScript do?

 Give HTML designers a programming tool

 Can read/write Form contents (text boxes, drop-down lists etc.)

 Can handle (respond to) Events

 onChange, onMouseOver, onLoad, etc

 Can read/write any attributes of HTML elements (e.g. innerHTML).

 Can even create and destroy elements on the page

 Animation/games

 Highly-interactive, responsive, animated user interfaces

 Drag-drop

 Etc.

Where to put JavaScript code

 Inside HTML Head

 Between <script ...> ... </script> tags

 JavaScript code in functions in the head section will

be executed only when CALLED

 Inside HTML Body

 JavaScript code in the body section (not in functions)

will be executed WHILE the page loads (use

sparingly)

 External source files – for re-usable code

 <script src="filename.js"></script>

JavaScript Syntax

 'C like' language

 Like PHP, C++, Java, and others..

 Braces used to denote code blocks { }

 Semi-colons used at the end of lines

 Comments as per C

 Single line comments // Single line

 Block comment /* Block comments

can span multiple lines */

Variables

 Created with the var keyword

 You can also use let and const (recently added to the language)

 Syntax

 var name=value;

 var num1, num2, num3;

 Like most "scripting" languages, variables in Javascript do not need to
be declared before being assigned a value

 var num=1;

 has the same effect as

 num=1;

 Variable "num" will be created if it doesn't exist

 "use strict"; is a good idea

Variables

 Variables are used to store data values

 Most commonly, these are either numbers, or strings of text

 They can also be other things such as objects or functions
(as we will see later)

Addition + ans=a+7

Subtraction - ans=x-y

Multiplication * ans=a*b

Division / ans=a/b

Modulus % ans=x%y

Arithmetic in JavaScript

 The same as C / C++ / Java etc

 Basic Arithmetic Operators

Exercise

 Modify this HTML page so that,

when the button is clicked, the

paragraph is modified so that it

displays the result of the

calculation: 5+7*6

<!DOCTYPE html>

<html>

<head>

</head>

<body>

<p id='myParagraph'>

Result will display here

</p>

<button>Click for result!</button>

</body>

</html>

Parenthesis

 Parenthesis (round brackets) can be used to

ensure order of priority in a computation

 x = a+b+c algebraically

5

 x=(a+b+c)/5 algorithmically

Order of Operations

 Set of rules, decide which operation is

performed first

1. () innermost first

2. * / % left to right

3. + - left to right

Order of Operations

 Assuming a=4, b=2, c=5 and d=3, evaluate the

following, bearing the order of precedence in

mind

 (a+b)*(c+d) =

 a+b*c+d =

 (d*(a-b))+c =

 d*a-b+c =

Graded Exercise #1

 Make a web page which contains just a button

 When the button is clicked, a javascript function

should be run

 The function should create four variables,

named a, b, c, and d, with values as shown on

the previous slide

 The function should then carry out the

calculations shown on the previous slide,

displaying each result using alert()

CT1114

Web Development
HTML, CSS, JavaScript

Section 3:

Expressions, Operators, and Loops in

Javascript

Dr. Sam Redfern

sam.redfern@nuigalway.ie

@psychicsoftware

mailto:sam.redfern@nuigalway.ie

Discord / Qwickly

Use our Discord channel for questions, comments etc. at

any time

https://discord.gg/NgXKRw3tdR

Qwickly Code (Attendance Monitoring)

https://discord.gg/NgXKRw3tdR

Expressions

 In programming, an expression is a statement that

evaluates to a value

 The resulting value could for example be a number, a

string, or a Boolean (true/false)

1 + 6

"Harry" + " " + "Potter"

20 > 19

var x = y * z;

alert("My name is "+"Harry" + " " + "Potter");

Boolean Variables & Expressions

 A Boolean value may be either true or false

 var a = true;

 var a = 20 > 19;

 A Boolean expression is one that resolves to

either true or false

 Often, produced by the use of relational and logical

operators (see below)

Relational Operators

 Less than <

 Greater than >

 Less than or equal to <=

 Greater than or equal to >=

 Equal to ==

 Not equal to !=

 These operators all take two values (usually

numbers) and produce a Boolean result by

comparing them

Conditional Statements

 if statement – execute code only if some
condition is true

 if…else statement – execute some code if the
statement is true and another piece if it is false

 if…else if … else statements – used to execute
one of many blocks of code

 switch.. case statement – used to execute one
of many blocks of code

 Use braces (curly brackets) to denote blocks of
code

Example
<!DOCTYPE html>

<html>

<head>

<title>Inequality Demo</title>

<script>

function handleClick() {

// create 2 random numbers

var a = Math.floor(Math.random()*1000);

var b = Math.floor(Math.random()*1000);

// build up an output result string from some equality tests

var res = "a = "+a+"
b = "+b;

if (a<b)

res += "
a is less than b";

else

res += "
a is not less than b";

if (a>b)

res += "
a is greater than b";

else

res += "
a is not greater than b";

// display the result

var p = document.getElementById('myParagraph');

p.innerHTML = res;

}

</script>

</head>

<body>

<p id='myParagraph'>

Results will display here

</p>

<button onclick='handleClick();'>Demo</button>

</body>

</html>

Exercise

 Edit the code from the previous slide

so that it also indicates if a and b are

equal

Logical Operators

 &&

 Logical 'and'

 Compares two Boolean values and equates to true if they are

both true

 ||

 Logical 'or'

 Compares two Boolean values and equates to true if one or the

other (or both) is true

 !

 Logical 'not'

 Negates the value of a Boolean value

Example
<!DOCTYPE html>

<html>

<head>

<title>Three random numbers</title>

<script>

function handleClick() {

// create 3 random numbers

var a = Math.floor(Math.random()*1000);

var b = Math.floor(Math.random()*1000);

var c = Math.floor(Math.random()*1000);

// find the biggest

var res = "a = "+a+"
b = "+b+"
c = "+c;

if (a>b && a>c)

res += "
The biggest value is "+a;

else if (b>a && b>c)

res += "
The biggest value is "+b;

else

res += "
The biggest value is "+c;

// display the result

var p = document.getElementById('myParagraph');

p.innerHTML = res;

}

</script>

</head>

<body>

<p id='myParagraph'>

Results will display here

</p>

<button onclick='handleClick();'>Demo</button>

</body>

</html>

Loops in JavaScript

 Repeat { block of code }

 As long as some condition is true

'for' loops

 execute code a specific number of times

'while' loops

 execute code an undetermined number of times

For Loop

 The For Loop repeats a block of code a certain

number of times

for(var i=1; i<=10; i=i+1) {

// Execute this code on each loop iteration

}

Three inner statements:

• for (Initialisation; Test; Loop statement)

Example <!DOCTYPE html>

<html>

<head>

<title>Twenty random numbers</title>

<script>

function handleClick() {

// create 20 random numbers and find the biggest

var biggest = 0;

for (var i=0; i<20; i++) {

var num = Math.floor(Math.random()*1000);

if (num>biggest)

biggest = num;

}

var res = "Of 20 random numbers, the biggest was

"+biggest;

// display the result

var p = document.getElementById('myParagraph');

p.innerHTML = res;

}

</script>

</head>

<body>

<p id='myParagraph'>

Results will display here

</p>

<button onclick='handleClick();'>Demo</button>

</body>

</html>

While Loop

 Executes code an undetermined number of times

 Loops while the condition remains true

• Which could be zero times

var i = 0, j = 10000;

while (i<j) {

// Execute this code per loop iteration

i++;

j /= 1.4;

}

Exercise

 How many times will this loop iterate?

 Write a webpage to find out!

 Use alert() to show your answer

var i = 0, j = 10000;

while (i<j) {

// Execute this code per loop iteration

i++;

j /= 1.4;

}

Exercise (not graded – no need to submit)

 Edit the "twenty random numbers" example so

that it shows the biggest, smallest, and sum of

the numbers

 Bonus! - also display each of the 20 numbers

CT1114
Web Development
Section 4:
Various HTML Tags including Spans,
Hyperlinks and Images

Dr. Sam Redfern
sam.redfern@nuigalway.ie
@psychicsoftware

mailto:sam.redfern@nuigalway.ie

Last Week’s Final Exercise

• How many times will this loop iterate?
• Write a webpage to find out!
• Use alert() to show your answer
var i = 0, j = 10000;

while (i<j) {

// Execute this code per loop iteration

i++;

j /= 1.4;

}

HTML Tags

• Tags denote markup elements
• Each tag is surrounded by angle brackets < >
• Tags normally (but not always) come in pairs:

• the opening tag and the closing tag
• Tags are not case sensitive

• <html> and <HTML> are functionally the same
• Recommended to use lowercase (see good practice)

• Text between the tags is the element content
or inner HTML

• Javascript can modify the innerHTML of an
element (and its various other attributes)

HTML Tags have Attributes

• HTML Tags have associated attributes (also called
properties) that provide extra information to the
browser

• Attributes consist of name="value" pairs
• Attributes are always added to the opening tag
• For example:

• bgcolor is an attribute that body elements have
• <body bgcolor="red">

• Example with two attributes defined:
• <body bgcolor='red' onload='alert("loaded!");'>

• Note the use of doublequotes inside singlequotes to
avoid ambiguity..

Some useful tags

Paragraph <p>Text</p>
Line Break

Forces a line break wherever it’s placed
Putting a carriage-return into the HTML code will not
produce a visible line break!

Horizontal Rule <hr>

HTML Comments <!-- Text here --> No ! at end

Headings

<h1> ... </h1> Section 1
<h2> ... </h2> Section 1.1
<h3> ... </h3> Section 1.1.1
<h4> ... </h4> Section 1.1.1.1
<h5> ... </h5> Section 1.1.1.1.1
<h6> ... </h6> Section 1.1.1.1.1.1

HTML Lists

Unordered Lists
Each List Item appears as Bullet

Ordered Lists
Bullets replaced with numbers or letters
Type of order defined with type attribute

Unordered Lists

List Item 1
List Item 2
List Item 3

Bullet is default type
Other types can be specified

"disc", "square", "circle", etc

Ordered Lists

<ol type="a">
List Item 1
List Item 2
List Item 3

Numeric is default type
Other types can be specified

"1", "A", "a", "I", "i"

 ..

 some content here

spans let you define sections of content without line
breaking. Useful for applying style to something, e.g.:

Some normal text and some <span
style='color:red;’>red text

style is a very important attribute that HTML Tags have,
allowing you to define many visual settings for the Tag

Spans are useful for reading/writing innerHTML of a section
of your page's text, using Javascript (see next slide)

Example
<!DOCTYPE html>
<html>
<head>
<title>Span click test</title>
<script>

var timesChanged = 0;
function changeTheSpan() {

timesChanged++;
var msg = "has been changed "+timesChanged+" time";
if (timesChanged>1)

msg += "s";
document.getElementById('mySpan').innerHTML = msg;

}
</script>

</head>
<body>
This document contains a span whose content <span

id='mySpan' style='color:red;' onclick='changeTheSpan();'>may
be changed by clicking it
</body>

</html>

Exercise

Use HTML tags such as
<h1>, <p>, <hr>, etc. to
produce the depicted
web page

Images in HTML.

• Images are added with the empty tag
• “Empty” => it has no closing tag or innerHTML

• requires a source (src) attribute with the
URL of the image, e.g.:

• Image (and other) filenames are case sensitive on
Linux and Mac servers
.jpg is not the same as .JPG

• Format can be .jpg, .png, or .gif

Hyperlink Anchors <a> …

The anchor element <a> … is used to make clickable
hyperlinks
• Use href attribute to define content to link to
• If content is on a different website:

Visit Amazon

• If content is on the same website:
Here is page 2

• If content is on the same page:
FAQ #1
…
Click here for FAQ #1

Absolute and Relative References

URL: The path to a resource

Any URL path in HTML can be given as either via
an Absolute or a Relative Reference

Both types are valid, interchangeable and useful
in different situations

e.g. Anchor tags and Image tags can use both
Reference Types

Absolute References

• Gives the complete (globally unique) path to
resource

• Uses full URL, including protocol (http://) and
path

• Absolute links reference a single, static,
location

• To display the image "testimage.jpg" from the
"images" folder within "www.randomsite.com":

Relative References

• Gives the path to the resource relative to the HTML
document in which it is being referenced

• Excludes the full URL of the resource
• Only pages local to the resource can use it, e.g. if

testimage.jpg is in the same folder as the HTML file
that references it:

• Or if the image is, relative to the HTML file, inside a
sub-folder:

Graded Exercise

• Write three separate web pages, which link to
each other using hyperlinks, e.g.:

CT1114
Web Development
HTML: Images
Javascript: window.alert(), window.prompt()

Dr. Sam Redfern
sam.redfern@nuigalway.ie
@psychicsoftware

mailto:sam.redfern@nuigalway.ie

Last Week’s Graded Exercise

• Write three separate web pages, which link to
each other using hyperlinks, e.g.:

Images in HTML.

• Images are added to a page with the empty tag
• requires a source (src) attribute with the URL of the

image
• Image (and other) filenames are case sensitive on Linux and

Mac servers
.jpg is not the same as .JPG

• The src can use either a relative or an absolute address,

e.g absolute:

e.g. relative:

Exercise

• Download the referenced png file and store it in the correct
place so that this HTML page, with its relative reference,
displays both images correctly

• Do not edit the HTML code itself

<!DOCTYPE html>
<html>
<head>
</head>
<body>

</body>
</html>

The window Object

• Represents an open window in a browser
• window is an object (as is document)
• Objects have associated attributes (pieces of

data) and methods (things they can do)
• Some important window methods:

- alert
- prompt
- confirm
- setTimeout

The alert Method

• Displays a Modal dialog box containing a
message

• Takes a string argument
• Syntax:

window.alert("Hello World!");

alert("Hello World!"); // this also works

The prompt Method

• Prompt the user to enter input via a Modal
dialog box

var result = window.prompt("string1", "string2");

First argument is the prompt’s text

Second argument is the default value in the field
(optional)

The prompt Method

• Prompt has a return value
var name;

name = window.prompt("What is your name?",
"Enter your name");

Exercise

• Make a webpage which uses prompt() to ask
the user for their name, and which then writes a
greeting (to include their name) into a
paragraph on the page:

Graded Exercise

• Create a web page which displays an image (using
absolute referencing) from the following URL:
http://www.psychicsoftware.com/ct1113/banner-image-1.png

• When the image is clicked, you should (with Javascript)
change its src attribute to:
http://www.psychicsoftware.com/ct1113/banner-image-2.png

• On each subsequent click, display the next image
(banner-image-3.png, banner-image-4.png, banner-
image-5.png, banner-image-6.png)

• After image 6, revert to image 1
• Submit your code via Blackboard for grading

http://www.psychicsoftware.com/ct1113/banner-image-1.png
http://www.psychicsoftware.com/ct1113/banner-image-2.png

CT1114
Web Development
HTML, CSS, JavaScript
Javascript: window.confirm(), Parse
functions, Debugging tools in Chrome
and Firefox

Dr. Sam Redfern
sam.redfern@nuigalway.ie
@psychicsoftware

mailto:sam.redfern@nuigalway.ie

Last Week's Graded Exercise

• Create a web page which displays an image (using
absolute referencing) from the following URL:

http://www.psychicsoftware.com/ct1113/banner-image-1.png
• When the image is clicked, you should (with Javascript)

change its src attribute to:
http://www.psychicsoftware.com/ct1113/banner-image-2.png

• On each subsequent click, display the next image
(banner-image-3.png, banner-image-4.png, banner-
image-5.png, banner-image-6.png)

• After image 6, revert to image 1

http://www.psychicsoftware.com/ct1113/banner-image-1.png
http://www.psychicsoftware.com/ct1113/banner-image-2.png

The Window Object

• Represents an open window in a browser
• window is an object just like document
• Objects have associated attributes (pieces of

data) and methods (things they can do)
• Some important window methods:

- alert (covered last week)
- prompt (covered last week)
- confirm (see below)
- setTimeout (see later)

The Confirm Method

• Used if you want the user to verify or accept
something

• User presented with the choice of clicking OK or
Cancel to proceed

• If the user pressed OK
- true is returned

• If the user pressed Cancel
- false is returned

The Confirm Method

• Syntax:
var choice;

choice=confirm("Confirm Dialogs give you a choice!");

Confirm Example<!DOCTYPE html>
<html>
<head>
<script>

function giveChoice() {
if (confirm("Make the document red?")==true)

document.body.style.background = "red";

else {
alert("Right so, it'll be green.");
document.body.style.background = "green";

}

}
</script>
<head>

<body onload="giveChoice();">
</body>
</html>

Parse Functions

• parseInt(string)
- Converts the string to an Integer and returns it

• parseFloat(string)
- Converts the string to a Floating Point number

• String argument must not be empty
• String argument must start with a valid number
• parseInt("123");
• parseInt("123abc");
• parseInt("123abc456");

All yield:
123}

Parse Functions - isNan() - "Is Not a
Number"
var number = parseInt("abc");

alert("The number is: " + number + " and
multiplied by two is " + (number*2));

Output: The number is NaN and multiplied by
two is NaN

- If string is not a number, it is set to a special NaN
value

• isNaN(value) checks if a value is a number
• Returns true if value is Not a Number
• Returns false if value is a Number

isNaN() function in use

<!DOCTYPE html>
<html>
<head>
<script>

function test() {
var str = prompt("Please type a number");
if (isNaN(str)) {

alert("That's not a number");
}
else {

var number = parseInt(str);
alert("The number is: " + number + " and multiplied by two

is " + (number*2));
}

}
</script>

</head>
<body>
<button onclick='test();'>Click Me!</button>

</body>
</html>

Exercise

• Make a webpage which, as soon as it loads, prompts
the user for an integer between 1 and 100, using the
prompt() method

• If the input given cannot convert to a number (e.g. if
they type their name), or if it converts to a number
that's not in the correct range, tell them the error.
Otherwise, thank them.

Debugging Tools
Firefox
Chrome

Consider this
HTML+Javascript..

<!DOCTYPE html>
<html>
<meta charset="utf-8"/>
<head>
<script>
function numbers() {
var sHTML = "<p>";
for (var i=1; i<=20; i++) {
sHTML += Math.random() + "
";

}
sHTML += "</p>";
document.getElementById("clientSideContent“).innerHTML = sHTML;
console.log("Final HTML generated in loop: "+sHTML);

}
</script>
</head><body>
Show Some Random Numbers

<div id='clientSideContent'>Something here</div>

</body>
</html>

Does it work? If not, why not?
The Web Console might help

Web Console (Firefox)

Firefox: Inspector

• Browse the live Document Object Model (DOM)
• Even make changes!

Chrome: Elements = Firefox:
Inspector

Firefox: Web Console

• Use console.log(value); to write data to the web
console, to see the sequence/flow-of-control
and values of variables during execution

Chrome: Console = Firefox:
Web Console

Firefox: Debugger

Rightclick, Add Breakpoint
(or leftclick in left margin)

Resume
Step Over
Step In
Step Out

Observe variables as you step line-by-line

Chrome: Sources = Firefox:
Debugger

Debugging Exercise The Javascript on
this webpage has
3 errors.

Fix this code so
that prime
numbers are
displayed

<!DOCTYPE html>
<html>

<head>
<script>

function isPrime(n) {
for (var i=2; i<=n/2; i+) {

if (n%i==0)
return false;

}
return true;

}

function showPrimes() {
var output = "";
var num = 0;
for (var i=2; i<5000; i++) {

if (isPrime(i)) {
num++;
output += i;
if (num%10=0)

output += "
";
else

output += " ";
}

}
document.getElementById("pOutput").innerHTML = Output;

}
</script>

</head>
<body onload="showPrimes();">

<p>Here's some prime numbers:</p>
<p id='pOutput'></p>

</body>
</html>

Exercise (not graded)

• Building on the previous exercise where you obtained a
number between 1-100 from the user, and checked its
validity

• If the input from the user does convert to a number in
the correct range (1-100), produce output in the
webpage which counts from 1 up to their number, with
a line-break
 between each number

• Hint: use a 'for' loop to build up your output string and
assign it into the innerHTML of a or <p>

CT1114
Web Development
HTML, CSS, JavaScript

Section 7 part 1:
HTML text fields, Javascript strings

Dr. Sam Redfern
sam.redfern@nuigalway.ie
@psychicsoftware

mailto:sam.redfern@nuigalway.ie

HTML tag:
<input type='text'>

Text Input Field
<input type="text" id="txtBox">
id attribute used to identify the field in code

Specify default text with value attribute
<input type="text" value="Initial Text"
id="txtBox">

Can specify size through style attribute
<input type="text" style="width:50px;"
id="txtBox">

Exercise
• Create a web page which provides:

• an <input> box for the user to enter a number into
• a button which the user clicks

• When the button is clicked, the user should be shown, in a <div>
tag, the factors of their number.
• The .value property tells you what the user has entered in the

box
• If you have spare time, include some error checking (as shown

below)
• See starting code on next slide

<!DOCTYPE html>
<html>
<meta charset="utf-8"/>
<head>
<script>
function showFactors() {

}
</script>
</head><body>
<input type='text' id='txtInputBox' value='1’>
<button onclick="showFactors();">Show Factors</button>
<div id='divOutput'>Output will go here</div>
</body>
</html>

HTML tag:
<textarea> … </textarea>

Accepts multiple lines of text
Uses rows and cols attributes to define size

<textarea rows="20" cols="40"
id="myTextArea" value="Default
text goes here"></textarea>

Strings
• A string is a group of characters
• A string literal is a group of characters

enclosed in quotes
- "This is a string literal"
- 'This is too'
- " "This" is not"
- " 'This' is"
- This isn't

• A string variable is a variable that holds a
string

• Space is a valid character in a string (as are
other special characters)

Concatenating Strings
• String operator ‘+’ is used to join to strings
var name;

name = "John" + "Doe";

• We can of course also concatenate string variables
var first, last, full;

first = "John";

last = "Doe";

full = first + last;

var name = "John Smyth";

alert("Hello there, " + name + "!");

• Special Characters in a string

\n New line

\r Carriage Return

\t Tab

\\ Backslash

\" Double Quote

\’ Single Quote

Escape Sequences

Some string handling methods
These are methods of the string object. Hence the dot operator '.'

var a = "something";
a.length - returns the number of characters in the string
a.indexOf("s") - returns the 1st position at which “s” occurs in string

- position is a 0-based index
- also .indexOf("s",5) to start looking at position 5

a.substr(3,5) – returns a portion of the string, in this case we start at
position 3 (i.e. the 4th character) and get 5 characters

Example that uses string handling. For code, see next slide:

Example: string handling methods
<!DOCTYPE html>
<html>
<head>
<script>
function processName() {
var myname = document.getElementById("txtName").value;
var len = myname.length;
var output = "Hi "+myname+", you have "+len+" characters in your

name
";
var spos = myname.indexOf(" ");
output += "The space character first appears at position "+spos+"
";
var firstname = myname.substr(0,spos);
output += "Your first name is: "+firstname+"
";
var surname = myname.substr(spos+1,len-spos-1);
output += "Your surname is: "+surname+"
";
document.getElementById("divOutput").innerHTML = output;

}
</script>

</head>
<body>
Your Name: <input type='text' id='txtName' value=''>

<button onclick="processName();">Process Name</button>

<div id='divOutput'>Output will go here</div>

</body>
</html>

Exercise (not graded)

• Create a web page which provides:
• two <input> boxes for the user to enter numbers
• Four <button> objects, labelled +, -, *, /
• A <div> tag, for displaying output

• When a button is clicked, the result of using the chosen
operator (add, subtract, multiply, or divide) on the two
numbers should be displayed

• See starting code (next slide)

<!DOCTYPE html>
<html>
<meta charset="utf-8"/>
<head>
</head><body>
<h2>The Little Calculator (TM)</h2>
<input type='text' id='txtInputBox1’>
<input type='text' id='txtInputBox2'>

<button>+</button> <button>-</button>
<button>*</button> <button>/</button>
<div id='divOutput'></div>
</body>
</html>

CT1114

Web Development

HTML, CSS, JavaScript

Section 7 (part 2):

HTML text fields, Javascript strings

Dr. Sam Redfern

sam.redfern@nuigalway.ie

@psychicsoftware

mailto:sam.redfern@nuigalway.ie

Example:

As the user types into a <textarea>, their text is

displayed one word per line

(code is on next slide)

<!DOCTYPE html>

<html>

<head>

<script>

function updateOutput() {

var txt = document.getElementById("txtUserInput").value; // text typed by

user

var numchars = txt.length;

var txtOutput = "";

var currWord = ""; // initial word

for (var i=0; i<numchars; i++) {

var currLetter = txt.substr(i,1);

if (currLetter==" ") { // space character => end current word and

start next one

txtOutput += currWord+"
";

currWord = "";

}

else

currWord += currLetter; // add letter to current word

}

if (currWord.length>0) // deal with any remaining word that didn't end

with a space

txtOutput += currWord;

document.getElementById("pOutput").innerHTML = txtOutput; // show result

to user

}

</script>

</head>

<body>

<textarea id='txtUserInput' onkeyup="updateOutput();" value=""></textarea>

<p id='pOutput'>

Your output will be shown here.

</p>

</body>

</html>

Exercise

• Edit the last example so that:

1. Rather than displaying each word on a separate

line, it displays each letter on a separate line

2. It displays those letters in reverse order

Exercise

• Edit the previous example so that:

1. It counts and displays how many vowels appear in

the text (a,e,i,o,u,A,E,I,O,U)

2. It adds up and displays each numerical digit, e.g. if

the text was "Hello 123 my name is Sam 456", then

the sum of numerical digits would be 1+2+3+4+5+6

= 21

Graded Exercise

• Create a web page which presents a <textarea> to the

user, and as they type it constantly tells them how

many characters and how many words they have

typed.

• Hint: the 'onkeyup' method will happen for the

<textarea> each time any key is pressed in it.

• Submit your

code via

Blackboard.

How to make the word count more robust?

This sentence contains some multiple spacing,

A carriage-return and some words with punctuation that’s likely to

cause problems for simple word count algorithms

How many words?

• Counting spaces gives 26

• But really there's 24 words

• How could we better define what a word is, rather than

pretending that a word is a space?

CT1114
Web Development

Section 8:
HTML Tables

Dr. Sam Redfern
sam.redfern@nuigalway.ie
@psychicsoftware

mailto:sam.redfern@nuigalway.ie

Tables in HTML

Arrange data in rows and columns of cells
Cells can contain any HTML data

Text, images, links, forms, form fields, other tables, etc.
i.e. each cell has innerHTML

Cells can span multiple rows and columns
Via the rowspan and colspan attributes

Tables are created with the <table> tag
Tables are closed with the </table> tag

Rows and Columns

Define a row in the table table row tags
Start the row with <tr>
End a row with </tr>

Each row can have multiple columns
Column headings created with the table heading tag
<th>Heading</th>
Cell data can be created with the table data tag
<td>Cell data here</td>

Each row of a table should have the same number
of columns

Table Example

<table border="1">
<caption>A simple table</caption>
<tr>

<th>Column 1</th>
<th>Column 2</th>

</tr>
<tr>

<td>100</td>
<td>200</td>

</tr>
</table>

Spanning Multiple Columns

Cells can span multiple columns in a table
Use the colspan attribute
<tr>

<th>Name</th>
<th colspan="2">Telephone Number</th>

</tr>
<tr>

<td>Bill Gates</td>
<td>555 12345</td>
<td>555 99887</td>

</tr>

Spanning Multiple Rows

Cells can span multiple rows in a table
Use the rowspan attribute
<tr>

<th>First Name</th>
<td>Bill Gates</td>

</tr>
<tr>

<th rowspan="2">Telephone</th>
<td>555 77 854</td>

</tr>
<tr>

<td>555 77 855</td>
</tr>

Formatting Tables

Borders can be added to tables by adding the
"border" attribute to the table tag

<table border="1">

Cell padding sets the number of pixels
surrounding the cell’s contents

<table cellpadding="30">

Cell spacing sets the number of pixels between
each cell wall

<table cellspacing="10">

Cell data can be aligned using the "align" attribute
"center", "left", "right"

Or vertically with "valign" attribute which takes the
values "top", "middle", "bottom"

A Common Web Page Layout

A common arrangement:

This can be achieved using an HTML Table

Header Area

Nav
Menu

Main Content Area Other
Content

Footer Area

Coding the Table

<table border="1">
<tr>

<td colspan="3">Header Area</td>
</tr>
<tr>

<td>Navigation Menu</td>
<td>Main Content Area</td>
<td>Other Content</td>

</tr>
<tr>

<td colspan="3">Footer Area</td>
</tr>
</table>

Table within Firefox

•Table occupies only a corner of the screen
•Can use width attribute to force dimensions

Sizing the table

Can set width in two ways:
By Pixels
By Percentage of Available Width

Must consider screen resolutions when picking a
width
Device resolutions range from less than 800x600
pixels (mobile phone) to in excess of 1920x1080
pixels (high resolution desktop PC)

Setting the Width

Consider the following table dimensions

Width = 950

Width = 200 Width = 550 Width = 200

Width = 950

Coding the Table – Adding Width

<table border="1">
<tr>

<td colspan="3" width="950">Header Area</td>
</tr>
<tr>

<td width="200">Navigation Menu</td>
<td width="550">Main Content Area</td>
<td width="200">Other Content</td>

</tr>
<tr>

<td colspan="3" width="950">Footer Area</td>
</tr>
</table>

Wide Table – Needs Height

•Table is now wide across the screen
•Can use height attribute to fill it out

CT532/CT870 Internet Programming

Exercise (not graded)
Make a webpage which displays Looney Tunes characters
in a table. Recall from a few weeks ago, there are 6
images available at these URLs:
http://www.psychicsoftware.com/ct1113/banner-image-1.png
http://www.psychicsoftware.com/ct1113/banner-image-2.png etc.
And, the top banner image is here:
http://www.psychicsoftware.com/ct1113/topbanner-looneytunes.jpg

http://www.psychicsoftware.com/ct1113/banner-image-1.png
http://www.psychicsoftware.com/ct1113/banner-image-2.png
http://www.psychicsoftware.com/ct1113/topbanner-looneytunes.jpg

CT1114
Web Development

Section 9:
Introducing CSS

Dr. Sam Redfern
sam.redfern@nuigalway.ie
@psychicsoftware

mailto:sam.redfern@nuigalway.ie

Discord / Qwickly

Use our Discord channel for questions, comments etc. at
any time

https://discord.gg/W9rE546

Qwickly Code (Attendance Monitoring)

https://discord.gg/W9rE546

Reminder: HTML

HyperText Markup Language
The language used to define the contents of web pages
Includes text, tables, hyperlinks, images, etc.

HTML is the language used to define webpage CONTENT
and STRUCTURE

It is normally downloaded by your browser from a web
server, and then interpreted and displayed (rendered) by
your browser

CSS

Cascading Style Sheets
The language used to define the style of web pages
Includes colours, fonts, sizes, positions, etc.

CSS is the language used to define webpage VISUAL
STYLE

It is normally downloaded by your browser from a web
server, and then interpreted by your browser and used to
define the visual style of an HTML page that references it

Cascading Style Sheets (CSS)

• CSS allows the developer to define a set of
styles

• These styles can be used across multiple
pages

• Helps to create a uniform and consistent look
across the website

• Makes formatting content much easier

Syntax of CSS

Styles are composed of two parts:
Selector
Declarations

The Selector is the HTML element involved
<p>, <h1>, etc

The Declaration consists of two parts
a Property to be affected (color, size, etc)
a Value to set it to (red, 12, etc)

Syntax – Continued

Example of styling H1 tags
Colour them Blue
Set their size to 12 pixels

Syntax – Continued

h1
{
color: blue;
font-size: 12px;
}

Note:
color not colour
Braces { } separate the
selector from the
declarations
Each declaration ends in
semi-colon ;

Syntax – Continued

h1
{
color: blue;
font-size: 12px;
}

Note:
No space between value
and units (12 and px)
No quotes for values

CSS Styling

Some parameters that can be styled

Background Colour

Styled by using
background-color:value

Accepts values of HTML Hex Colour Codes
Also standard colour names – red, blue, etc

Applicable to many elements:
Headings
Paragraphs
Document
Etc.

Text Formatting

Colour of text can be set using
color:value (Note US spelling)

Alignment can be set using
text-align:left
text-align:right
text-align:center (Note US spelling)
text-align:justify

Text Fonts

Font face specified in groups of fonts using
font-family:value
If the user doesn’t have the first font, the second font is
used (from comma-separated list), etc.

Final font should reference a generic family of
fonts

serif, sans-serif or monospace

h1{font-family:Arial,Verdana,sans-serif;}

Multiple fonts separated by commas
Times New Roman is a serif font

Serif vs. Sans Serif

Serif fonts are those
like Times New Roman

Serif Font
Serif are usually used
in print

Sans Serif fonts are
those like Arial

Sans Serif
Font
Sans Serif usually
display better on PCs

Styling Links

Links (anchor tags) can be styled like any other text
colour, size, background-color, font, etc

Links also have four special selectors
a:link {color:value;} Unvisited Link
a:visited {color:value;} Visited Link
a:hover {color:value;} Mouse over Link
a:active {color:value;} Selected Link

Must follow the above order

Example
<!DOCTYPE html>
<html>
<head>
<title>CSS Simple Example</title>
<style>
p {
color: blue;
font-size: 14px;

}
span {
color: #FF00FF;
font-size: 18px;

}
</style>

</head>
<body>
<p>Here is some text inside a paragraph, and some of it is also

inside a span.</p>
</body>

</html>

Exercise

<html>
<head>

<title>CSS Exercise</title>
</head>
<body>

<h2>Kubla Khan</h2>
<p>

In Xanadu did Kubla Khan

A stately pleasure-dome decree:

Where Alph, the sacred river, ran

Through caverns measureless to man

Down to a sunless sea.

</p>
</body>

</html>

Take this HTML code and add
styles as indicated in the picture
above

Placement of your Style Code

So far, we have been doing Embedded Style,
where our style code is embedded in the <head>
section of a document

CSS actually provides 3 different places to define
style, which gives a lot of flexibility..

Three Places to Define Styles

Inline Style
Style is defined for a single element using its style
attribute

Embedded Style
Block of CSS inside the document Head: applies to that
specific page only

External Style Sheets
Separate (external) file containing styles to be used
across all pages that reference the sheet

Effect of Style Placement

Inline Style
Affects only the element that it’s applied to
Localised, highest priority

Embedded Style
Affects only the page that it’s embedded on
Medium priority

External Style Sheet
Globally affects all pages calling it
Lowest priority

Prioritisation of Style Types

The higher priority style type will supersede the
lower priority style type

Example: Styling a Heading
Inline style tells the heading to be size 20
External style says it should be size 18
Inline style has higher priority (as it’s localised) and
sets the size to be 20

This process is called Cascading
Hence, Cascading Style Sheets

Inline Styles
<p style="color:blue;font-size:10px;">Text</p>

Uses style attribute for a single HTML element

Style is added in line with the HTML

Affects only that element
Others of the same type unchanged

To be used sparingly
External sheets offer more global consistency
Too many inline styles defeat the purpose, and is "bad software
engineering”.
Generally we’d prefer to have a separation of concerns, and inline
styles are poor in this regard

Embedded Styles

Embedded in the Head of
the HTML page

Affects only the page
containing the style

Takes priority over
external style sheets

Less priority than inline
styles

<head>
<style>
h1 {font-size:30px;}
h2 {font-size:20px;}
body

{background-color:#CCCCCC;}
</style>
</head>

External Style Sheets

Separate external file with .css extension

Link to the sheet is added to the Head of each
page that should use the stylesheet

<head>
<link rel="stylesheet" type="text/css"

href="mystyle.css" />
</head>

External Style Sheets

Must not contain any HTML

Simply lists the selectors and declarations
required

Style Sheets can be commented
/* Comment goes here */
Just like in C, C++, Java, etc
NB: Double forward slash (//) comments don’t work

Exercise

• Three paragraphs have
been coloured using inline
styling

• Your job is to write
Javascript so that when a
paragraph is clicked, its
style.color is set to "red",
while the other two
paragraphs have their
style.color set to "green"

• See initial code on next slide
(and via Discord)

<!DOCTYPE html>
<html>

<head>
<title>CSS Exercise</title>

</head>
<body>

<h2>Kubla Khan</h2>
<p style="color:red;">

In Xanadu did Kubla Khan

A stately pleasure-dome decree:

Where Alph, the sacred river, ran

Through caverns measureless to man

Down to a sunless sea.

</p>
<p style="color:green;">

So twice five miles of fertile ground

With walls and towers were girdled round;

And there were gardens bright with sinuous rills,

Where blossomed many an incense-bearing tree;

And here were forests ancient as the hills,

Enfolding sunny spots of greenery.

</p>
<p style="color:green;">

But oh! that deep romantic chasm which slanted

Down the green hill athwart a cedarn cover!

A savage place! as holy and enchanted

As e'er beneath a waning moon was haunted

By woman wailing for her demon-lover!

And from this chasm, with ceaseless turmoil seething,

As if this earth in fast thick pants were breathing.

</p>
</body>

</html>

Graded Exercise
You are tasked with creating a website for a fictitious online shop. You are to name this business and
also define what it is that they sell.

Each page should be laid out using an invisible (border=0) table, and contain a header and footer, a
navigation area and a content area. The navigation area should contain links to each of the three
pages in the website (using hyperlink anchors <a>).

The website should have three separate pages:
• Home (home.html)

• This should be the main landing page of your website and should show the latest news and
updates from your business.

• About Us (about.html)
• This page should explain to a new user what your business sells as well as its mission

statement.
• Contact Information (contact.html)

• Use a list to give the contact information for the business' Fulfilment Executive, Marketing
Officer and Secretary. Each person should have their name and phone number listed.

Styling
• You should use an external stylesheet (i.e., a .css file separate from the .html files) to define styles

for all three pages of the website. Include in this at least 4 style definitions, of your choice.

• Submit your code as a .zip archive, via Blackboard. It should consist of three .html files and one .css
file.

CT1114
Web Development

Section 10:
Timed Code and Animation in Javascript

Dr. Sam Redfern
sam.redfern@nuigalway.ie
@psychicsoftware

mailto:sam.redfern@nuigalway.ie

window.setTimeout()
Schedule the deferred execution of a piece of Javascript code (often, the code
takes the form of a call to a function)

Delay is specified in milliseconds (i.e. thousandths of a second)

Useful e.g. for controlling animation or other special effects which require the
gradual modification of an element's attributes (e.g. position, colour) as time
passes.

You can specify an arbitrary piece of Javascript (in quotes) to execute:

window.setTimeout("alert('hello');", 1000);

Or you can specify a function (by name) to execute. Note that the function
name only is used (no brackets after it). That's because you're actually
sending the function as an argument, not writing a line of code that’s executing
it:

window.setTimeout(animate, 50);

(In Javascript, functions are referred to as "first class objects".. We'll see how
useful it is to send functions as arguments, later..)

Example: countdown timer using a textbox
<html>
<head>
<script>
function countDown() {

var oBox = document.getElementById("currValue");
var v = parseInt(oBox.value);
if (v>=1) {
v--;
oBox.value = v;
window.setTimeout(countDown, 1000);

}
if (v<=0) {
oBox.value = "Lift off!";

}
}
</script>
</head>
<body>
Countdown!

<input id='currValue' value='10'> <input type=button value='Go'
onClick='countDown();'>

</body>
</html>

Problem?

What happens if we click the 'Go' button more than once, in
the previous example?

What can we do to fix that?

The Date Object

• A useful object that provides the current date
and time at the instant at which it is created

• To create a Date object:

• Methods of the Date object:

var myDate = new Date();

.getFullYear() - gives year as 4 digit integer

.getMonth() - gives month number as 0-11

.getDate() - gives day number of month as 1-31

.getDay() - gives day number in week as 0-6, (0=Sunday)

.getHours() - gives hour of the day as 0-23

.getMinutes() - gives elapsed minutes in current hour, 0-59

.getSeconds() - gives elapsed seconds in current min, 0-59

Exercise

• Make an onscreen clock that updates once per
second, displaying hour, minutes, and seconds

• You can start with this:

<!DOCTYPE html>
<html>
<head>
<script>

function updateClock() {
// needs code here!

}
</script>
<body onload="updateClock();">

<p id="theClock" style="text-align:center; font-size:120px;">00:00:00</p>
</body>

<div> tags and Absolute Position
<div> tags are very useful for creating sections of content that can be
positioned precisely on the page irrespective of anything else on the
page (to do this, set the 'position' property of their style to 'absolute' and
define the 'left' and 'top' properties of their style to some pixel values e.g.
"300px")

Analogy: sheets of tracing paper laid on top of a page can have content
on them and can be slid around on top of the page

E.g. a div with an image in its innerHTML can be moved by changing its
style.left and style.top :

<div id='divVan' style='position:absolute; left:800px; top:100px'>

</div>

Animation with window.setTimeout

<html>
<head>
<script>
var leftPos=800;
function moveTheVan() {

leftPos -= 2;
document.getElementById("divVan").style.left = leftPos+"px";
if (leftPos>0)

window.setTimeout(moveTheVan, 20);
}

</script>
</head>
<body>
<div id='divVan' style='position:absolute; left:800px; top:100px'>

</div>
<button onClick='moveTheVan();'>Scoobie Doo!</button>

</body>
</html>

Question: why haven't we just done the movement using a 'while’
or ‘for’ loop in place of window.setTimeout() ?

Two separate animations<html>
<head>
<script>
var leftPos=400;
var speed=-4;
var bugImg = "bug2_1.jpg";

function move() {
leftPos += speed;
if (leftPos<=5 && speed<0)

speed=4;
else if (leftPos>=595 && speed>0)

speed=-4;

document.getElementById("divBug").style.left = leftPos + "px";
window.setTimeout(move, 20);

}

function flapWings() {
if (bugImg=="bug2_1.jpg")

bugImg="bug2_2.jpg";
else

bugImg="bug2_1.jpg";

document.getElementById("imgBug").src = bugImg;
window.setTimeout(flapWings, 1000);

}

</script>
</head>
<body style="background-color:black;" onload="move(); flapWings();">
<div id='divBug' style='position:absolute; left:400px; top:100px'>

</div>
</body>
</html>

Some math(s) functions
• Math.random()

• Returns a random number between 0.0 and 0.999999
• Math.floor(x)

• Returns x rounded down to the nearest integer
• Math.round(x)

• Returns x rounded up or down to the nearest integer
• Math.cos(x) Math.sin(x)

• Returns the Cosine/Sine of x (angle in radians)
• And lots more..

• https://www.w3schools.com/js/js_math.asp

https://www.w3schools.com/js/js_math.asp

Graded Exercise

• Display an inside a <div>
• Position the <div> at a random place on the

document
• Hint:

var x = Math.random()*600;

• x now has a random number between 0 and 600,
which can be used as the value for the .style.left
property of the <div>

• Every time the <div> is clicked, move it to a
different random place on the document

CT1114

Web Development

Section 11:

More Javascript Animation and Events

Dr. Sam Redfern

sam.redfern@nuigalway.ie

@psychicsoftware

mailto:sam.redfern@nuigalway.ie

Last Week’s Graded Exercise

• Display an inside a <div>

• Position the <div> at a random place on the

document

• Hint:
var x = Math.random()*600;

• x now has a random number between 0 and 600,

which can be used as the value for the .style.left

property of the <div>

• Every time the <div> is clicked, move it to a

different random place on the document

Exercise

• Starting with the ‘animated mystery machine

van’ code from section 10, modify it so that the

van does not start moving until it is clicked.

• Further modify the code so that the van stops

moving if it is clicked a second time.

• Questions:

• What extra behaviour are we adding here?

• What’s an appropriate way to store the data

necessary to achieve this?

• (See next slide for initial code)

Animation with window.setTimeout

<html>

<head>

<script>

var leftPos=800;

function moveTheVan() {

leftPos -= 2;

document.getElementById("divVan").style.left = leftPos+"px";

if (leftPos>0)

window.setTimeout(moveTheVan, 20);

}

</script>

</head>

<body>

<div id='divVan' style='position:absolute; left:800px; top:100px'>

</div>

<button onClick='moveTheVan();'>Scoobie Doo!</button>

</body>

</html>

Question: why haven't we just done the movement using a 'while’

or ‘for’ loop in place of window.setTimeout() ?

Javascript event handlers

Recall that we have used some events and event

handlers already, e.g:

<body onload="giveChoice();">

<button onclick="showFactors();">Show Factors</button>

<textarea id='txtUserInput' onkeyup="updateOutput();">

We'll now introduce some more… (slides below)

Loading and Unloading a Page

 Events on the <body> tag:

 onload

 Triggered when a page has *finished* loading

 When the page loads in the browser

 onunload

 Triggered when a user exits a page

 When the page is unloaded from the browser

• onload is also used by the tag… question: why

might that be?

Selecting and De-Selecting Elements

 All three normally used with form elements such

as <input>, <textarea>

 onfocus

 Triggered when an element gets the keyboard focus

 an element that is clicked on is said to be "in focus"

 onblur

 Triggered when an element loses focus

 onchange

 Triggered when the content of an element changes

As the Mouse Moves Over HTML Elements

 onmouseover

 Triggered for an element when the mouse cursor is moved over

that element

 e.g. moving the mouse over an image ('rollover') can be used to

change the image's src property (see example below)

 onmouseout

 Triggered for an element when the mouse cursor is moved

away from that element

 e.g. moving the mouse out of the image can be used to revert

the image's src property to its initial value

• onmousemove

 Triggered every time the mouse moves while over an element

 Receives the mouse's current position on the element as an

argument (see example below)

Other Mouse Events

 onclick

 Triggered when the mouse clicks an element

 ondblclick

 Triggered when the mouse double clicks an element

 onmousedown

 Triggered when the mouse button is pressed on an

element

 onmouseup

 Triggered when the mouse button is released, having

previously been pressed on an element

onmousemove Example
<!DOCTYPE html>

<html>

<head>

<script>

function showCoords(e) {

document.getElementById("pOutput").innerHTML =

e.clientX+","+e.clientY;

}

</script>

</head>

<body>

<div style="width:600px; height:600px; background-

color:#BBBBBB;" onmousemove="showCoords(event);">

<p id="pOutput"></p>

</div>

</body>

</html>

The mousemove event receives an object

(e) which has various useful information in it

such as e.clientX and e.clientY

Exercise

• Display an in a document

• Display in a <p> how many times the

has been clicked and doubleclicked, and how

many times mouseover and mouseout have

happened to the .

Example: image follows mouse

<!DOCTYPE html>
<html>
<head>
<script>

function moveTheVan(e) {
var oImg = document.getElementById("imgVan");
oImg.style.left = e.clientX-(oImg.naturalWidth/2)+"px";
oImg.style.top = e.clientY-(oImg.naturalHeight/2)+"px";

}
</script>
</head>
<body onmousemove="moveTheVan(event);">
<div style="width:100%; height:100%; background-color:#888888;
position:absolute; left:0px; top:0px;">

<img id='imgVan' style='position:absolute; left:0px;
top:0px;' src='mysteryMachine.png'>
</div>
</body>
</html>

Exercise

 Modify the previous example so that the van

only follows the mouse if the mouse button is

held down on it

 i.e. implement a ‘drag’ behaviour for the

image

 Questions:

 What additional events do we need to handle, for

this?

 Which element should these events be attached to?

(onmousemove was attached to the <body>)

 What additional data do we need?

Other Keyboard Events

 onkeydown

 Triggered when a keyboard key is pressed

 onkeyup

 Triggered when a keyboard key is released

 onkeypress

 Triggered when a keyboard key is pressed or held

 For each of these, an object (e) is received as an

argument, and e.keyCode identifies the key which has

triggered the event

A (Stylish) Events Handling Example
Sets the background colour of text fields to red if their content

is invalid, and white if it's ok
<!DOCTYPE html>

<html>

<head>

<script>

function validateYear() {

var oYear = document.getElementById('year');

var y = parseInt(oYear.value);

if (isNaN(y) || y<1900 || y>2019)

oYear.style.background = "#FF0000";

else

oYear.style.background = "#FFFFFF";

}

function validateEmail() {

var oEmail = document.getElementById('eMail');

var e = oEmail.value;

if (e.indexOf("@")<0 || e.indexOf(".")<0) {

oEmail.style.background = "#FF0000";

}

else {

oEmail.style.background = "#FFFFFF";

}

}

</script>

</head>

<body>

Please enter your year of birth:

<input type="text" id="year" value="1980" size="10" onkeyup="validateYear();">

Please enter your email address:

<input type="text" id="eMail" value="" size="10" onkeyup="validateEmail();">

</body>

</html>

Events example: 'rollover button' image

<html>

<head>

<script>

function preloadImages() {

var Image1 = new Image();

Image1.src = "btnOver.gif";

}

function changeImgSrc(oImg, sSrc) {

oImg.src = sSrc;

}

</script>

</head>

<body onLoad="preloadImages();">

<img src="btn.gif"

onmouseover="changeImgSrc(this,'btnOver.gif');"

onmouseout="changeImgSrc(this,'btn.gif');">

</body>

</html>

Preloading is a nice touch

but not strictly necessary

Notice the 'this' argument which

provides a reference to the

object receiving the event -- therefore

we can pass this to changeImgSrc()

and therefore don't need to use

document.getElementById to get it in

changeImgSrc()

Exercise

(not graded)
• Make an image move left,

right, up, and down when the

arrow keys are pressed

• Note the slightly different way

of attaching events to objects

• Start with this code

<html>
<head>
<script>
var leftPos = 800, topPos = 100;

function init() {
animate();

window.onkeydown = function(e) {
alert("You pressed: "+e.keyCode);

};

window.onkeyup = function(e) {
};

}

function animate() {
document.getElementById("divVan").style.left = leftPos+"px";
document.getElementById("divVan").style.top = topPos+"px";
window.setTimeout(animate, 20);

}
</script>
</head>
<body onload="init();">
<div id='divVan' style='position:absolute; left:800px; top:100px’>

</div>
</body>
</html>

CT1114
Web Development

Section 12:
Arrays

Dr. Sam Redfern
sam.redfern@nuigalway.ie
@psychicsoftware

mailto:sam.redfern@nuigalway.ie

Arrays in Javascript
• Arrays in Javascript are similar to those in other languages such as C.
• An array stores multiple values using a single array name, with a value

supplied in square-brackets defining the index which you wish to
access

• The index value you supply in square-brackets often comes from the
contents of a variable

• This means you can write generic code to deal with any element in an
array, rather than hard-coding it to a specific variable

• Dealing with 1 million elements is as easy as dealing with 1 element
• An array is a 'random access' data structure

• i.e. you can read/write any elements at any time without needing to do so in any
specific sequence

• In several ways, Javascript provides more powerful arrays than C:
• arrays can be ‘sparse’ i.e. have gaps (which is useful)
• arrays can be indexed on strings as well as integers (which is useful)
• each array element can contain any type of data (numbers, strings, even more

arrays, objects, or functions! – also useful!)

Arrays in Javascript
var a = []; // create an empty array
a.push(22); // add an element to the end (i.e. at index 0 in this case)
a[20] = "test"; // set an element at index 20 (now, indices 1-19 are undefined)
a.splice(10,1); // removes one element from index 10 (and shifts others down to fill

// the gap)
a[15] = [6,7,8]; // set an element at index 15 (this element is itself an array, so for

// example the value of a[15][0] is now 6)
a["exit"] = "salida"; // set an element at index “exit”.. is this useful?
a.length // returns the index of the last element, assuming the array is being

// indexed by integers rather than strings

if (a[15] != undefined)
alert("the array has something defined at index 15");

else
alert("the array is empty at index 15");

if (a["exit"] != undefined)
alert("the Spanish for ‘exit’ is ”+a["exit"]);

else
alert(”I don’t know the Spanish for ‘exit’");

Note that any variables in
Javascript which do not exist
have the special value
undefined

Use of Undefined
<html>
<head>
<script>
var a = [];
a["exit"] = "salida";

function translate(englishWord) {
if (a[englishWord] != undefined)
alert("the Spanish for '"+englishWord+"' is

"+a[englishWord]);
else
alert("I don’t know the Spanish for

'"+englishWord+"'");

}
</script>
<head>
<body onload="translate('exit'); translate('hello’);">
</body>
</html>

Hash Tables
A hash table is a data structure used to
implement an associative array, a structure that
can map keys to values. A hash table uses a
hash function to compute an index into an array
of buckets or slots, from which the desired value
can be found.

.. In Javascript we can do this:

In fact, in Javascript (unlike in C) arrays are
implemented internally as Hash Tables.

var tel = [];
tel["John Smith"] = "521-1234";
tel["Lisa Smith"] = "521-8976";
tel["Sandra Dee"] = "521-9655";

Iterating arrays

• Assuming that we have an array called ‘a’:

• Normal (dense, integer-indexed) arrays:
for (var i=0; i<a.length; i++)

txt += "Element "+i+" is "+a[i]+"
";

• Sparse (or string-indexed) arrays:
for (var i in a)

txt += "Element "+i+" is "+a[i]+"
";

Exercise • The code below adds a new number to the end
of the 'nums' array every time the user clicks
the 'Add Number' button

• Modify this code so that it also displays, in a
table in the paragraph ‘pOutput’, the numbers
entered (as shown here)

<!DOCTYPE html>
<html>
<head>
<script>

var nums = [];

function addNumber() {
var txt = document.getElementById("txtNumber").value;
var number = parseInt(txt);
if (isNaN(number))

alert(txt+" is not a number!");
else {

nums.push(number);
redrawTable();

}
}

function redrawTable() {
// write your code here!

}
</script>
</head>
<body>

<input type='text' id='txtNumber'> <button onclick='addNumber();'>Add Number</button>
<p id="pOutput"></p>

</body>
</html>

Exercise

• Modify the previous program so that each number has
a ‘delete’ button beside it

• When a ‘delete’ button is clicked, the corresponding
number should be remove from the array (using
nums.splice), and the table of data should be redrawn

• Question: how do we make delete buttons that are
associated with particular array elements?

Example: dice rolling, arrays, and
making a bar chart with <div> tags

<html>
<head>

<script src='12c-barcharts.js'></script>
</head>
<body>
<button onclick='roll();'>Roll the dice</button>
<button onclick='rollMany();'>Roll many dice</button>

The last roll was:

<div id='barChart'></div>

</body>
</html>

var frequency = []; // this file is 12c-barcharts.js
for (var i=2;i<=12;i++)

frequency[i] = 0;

function roll() {
var dice1 = 1 + Math.floor(Math.random()*6);
var dice2 = 1 + Math.floor(Math.random()*6);
var sum = dice1+dice2;
document.getElementById("lastRoll").innerHTML = dice1 + "+" + dice2 + " = " + sum;

frequency[sum]++;
updateBarChart();

}

function rollMany() {
var rollTimes = parseInt(window.prompt("How many rolls?"));
var dice1, dice2;
if (rollTimes>0) {

for (var i=0;i<rollTimes;i++) {
dice1 = 1 + Math.floor(Math.random()*6);
dice2 = 1 + Math.floor(Math.random()*6);
frequency[dice1+dice2]++;

}
document.getElementById("lastRoll").innerHTML = dice1 + "+" + dice2 + " = " +

(dice1+dice2);
updateBarChart();

}
}

function updateBarChart() {
var html = "";
for (var i=2;i<=12;i++) {

html += "<div style='background:blue; width:"+frequency[i]+"px; height:16px; margin:0px;
color:white; text-align:right;'>"+i+"</div>";

}
document.getElementById("barChart").innerHTML = html;

}

Graded Exercise

• Make a web page which, when it loads,
performs the following:

• Creates an array containing 100 random
integers, each between 1 and 999.

• Displays, in a <p>, the sum, average, largest
and smallest value from the set of numbers.

• Displays, in another <p>, the numbers
themselves, comma separated

CT1114
Web Development

Section 13:
Splitting Strings, Sorting Arrays

Dr. Sam Redfern
sam.redfern@nuigalway.ie
@psychicsoftware

mailto:sam.redfern@nuigalway.ie

Last Week's Graded Exercise

• Create an array containing 100 random
integers, each between 1 and 999.

• In a <p>, display the sum, average, largest and
smallest value from the set of numbers.

• Display the numbers themselves, comma
separated, in another <p>

String method: .split(" ")
• Splits a string into an array of substrings.
• Splits are made according to the delimiter

argument (which is often a space or \t character)
<html>
<head>
<script>
function splitWords() {

var txt = document.getElementById("userText").value;
var arr = txt.split(" ");
var output = arr.length + " words";
for (var i=0;i<arr.length;i++)

output += "\n" + arr[i];
document.getElementById("outputText").value = output;

}
</script>
</head>
<body>

Type some stuff..

<input id='userText' onkeyup='splitWords();'>

<textarea id='outputText'></textarea>

</body>
</html>

Array method: .sort()
• Sorts an array

• With no argument => sort alphabetically (even if you have an array of numbers)
• With an argument => sort using a custom function defining how to order two elements (see

next slide)
• E.g. modify previous example:

function splitWords() {
var txt = document.getElementById("userText").value;
var arr = txt.split(" ");
var output = arr.length + " words";
arr.sort();
for (var i=0;i<arr.length;i++)

output += "\n" + arr[i];
document.getElementById("outputText").value = output;

}

• But what if we typed "1 2 12 15 6" ? And why do we see this behaviour?

Array method:
.sort(compareFunction)

• You send a function as the argument (name only, no round
brackets since you’re not executing it).

• compareFunction is called whenever the (behind-the-scenes)
sorting algorithm needs to test two elements

• compareFunction is sent the two elements as arguments
• compareFunction should return a negative number if the 1st

argument is lower, a positive number if the 2nd argument is lower,
and zero if they're the same

• Technically, in this context, compareFunction is referred to as a
'callback' - we're sending it as an argument to another function.
We’re adding our own custom code into someone else’s library
function, without needing to even see their function’s code.

• Yes, that’s pretty cool.
• E.g… see next slide

<script>

function splitWords() {
var txt = document.getElementById("userText").value;
var arr = txt.split(" ");
var output = arr.length + " words";
arr.sort(compare);
for (var i=0;i<arr.length;i++)

output += "\n" + arr[i];
document.getElementById("outputText").value = output;

}

function compare(x,y) {
x = parseInt(x);
y = parseInt(y);
if (x<y)

return -1;
else if(y<x)

return 1;
else

return 0;
}

</script>

Exercise
984,209,501,428,7,313,990,439,855,38,375,769,488,491,188,677,110,300,711,425,246,637,483,630,170,460,954,172,359,614,920,21,13,232,707,364,
424,724,929,341,530,571,860,864,784,156,729,965,979,370,818,275,425,185,23,51,346,136,305,869,207,572,669,762,343,644,302,412,873,273,686,
630,693,285,250,416,739,757,160,484,363,106,240,547,546,521,954,666,707,646,597,256,730,152,755,914,728,746,384,522,149,905,932,339,711,68
1,887,486,586,994,591,321,103,527,959,214,311,452,291,2,272,200,653,312,263,220,607,245,987,396,879,659,238,634,972,869,87,755,770,923,230,
9,104,4,285,238,673,243,284,523,778,108,634,44,687,26,605,888,302,283,470,832,577,475,634,332,897,715,393,137,309,990,305,482,572,946,696,1
58,97,785,62,653,704,345,968,628,406,936,804,996,258,375,35,617,202,698,144,346,495,67,23,213,261,212,154,279,847,726,430,641,113,413,33,84
0,711,4,123,919,943,191,167,381,393,608,828,4,393,708,836,75,59,907,792,497,522,331,991,861,668,674,741,773,450,903,684,239,166,535,824,687
,636,247,916,356,300,606,494,493,559,543,179,992,201,831,996,377,530,164,331,876,914,274,398,948,119,408,413,785,530,972,919,282,724,276,2
43,345,217,727,783,382,701,365,207,181,45,215,593,815,297,664,466,959,528,904,998,165,33,784,414,59,873,808,202,168,819,485,783,131,854,86
5,763,912,245,249,614,435,697,152,649,893,21,677,152,573,366,502,443,119,386,350,158,292,197,911,456,697,760,951,414,775,869,744,83,169,50
6,129,402,277,118,537,701,865,450,85,704,140,723,275,862,135,422,120,432,381,426,589,282,422,116,945,754,552,783,451,212,420,171,705,217,9
49,98,695,912,204,217,172,697,228,665,121,412,51,550,13,196,231,19,537,251,285,154,630,538,905,173,178,641,789,21,998,620,344,284,102,919,4
55,350,631,700,951,180,348,184,207,733,525,844,578,251,356,721,432,716,81,990,101,473,957,296,964,158,348,63,954,424,629,264,210,414,209,2
99,670,275,676,601,985,975,626,819,493,988,151,30,5,113,906,891,956,925,920,595,171,400,157,235,894,299,844,629,658,929,213,860,933,979,74
6,823,470,612,569,229,843,786,166,403,189,30,85,310,932,990,788,754,212,115,597,787,944,820,49,684,130,506,518,502,266,430,34,874,926,395,6
7,244,459,573,108,708,990,4,143,900,183,139,768,48,235,15,843,848,884,980,336,631,818,230,688,395,113,931,787,960,110,475,780,442,234,122,3
44,795,989,751,340,927,243,289,849,483,258,124,757,823,779,630,141,865,446,769,255,375,350,449,40,52,407,335,264,681,312,532,911,573,588,9
27,83,283,922,375,1,829,403,936,855,814,744,326,554,232,691,684,254,297,213,167,678,51,391,82,187,697,910,1,535,530,980,677,775,872,769,662
,371,158,702,861,736,742,864,235,615,507,52,524,829,897,764,855,67,161,927,385,47,333,182,726,680,600,546,726,612,259,168,36,385,282,491,36
4,591,599,496,893,348,778,321,718,754,10,121,605,389,339,389,360,943,393,235,353,146,572,67,602,465,189,952,624,643,272,836,258,329,400,24
0,470,360,590,730,523,965,308,993,508,464,673,618,388,644,328,811,40,226,525,190,373,700,453,126,728,50,898,124,292,324,551,520,570,786,46
2,449,887,642,697,289,51,556,589,956,935,782,331,499,579,595,72,21,114,369,432,730,576,767,869,223,776,128,667,594,41,493,219,913,642,728,3
41,481,313,170,567,544,104,21,739,341,312,472,563,771,833,517,471,231,20,536,766,693,693,28,468,733,973,821,470,963,659,202,687,194,319,38
8,422,6,250,767,115,797,367,465,545,310,582,160,935,435,673,869,304,421,575,993,535,392,114,755,313,881,547,479,98,61,796,709,756,810,248,2
96,582,184,151,856,988,9,871,80,897,957,267,908,807,876,969,442,636,72,685,680,415,162,559,925,551,254,891,960,947,179,900,28,633,891,528,8
54,91,369,747,751,285,458,948,436,892,735,287,233,59,464,163,614,910,170,777,435,261,40,259,780,191,292,92,834,586,182,288,968,307,235,140,
50,648,427,964,41,476,540,918,227,879,327,153,812,232,862,650,127,238,312,266,940,921,804,482,158,786,756,874,492,495,548,851,911,315,383,
175,940,492,5,380,521,260,945,526,224,180,456,136,854,37,57,934,82,115,923,114,511,691,556,375,935,833,866,338,146,422,737,476,727,291,701,
614,732,391,415,762

Find the average and median of this set of 999 numbers
(The median of a set of numbers is the number which has half of the other
numbers less than it, and half greater than it)
File: 13b-numbers.txt

Example
Given a dictionary consisting of comma-separated
words, make a webpage which performs
spellchecks on words that the user enters, by seeing
if they exist in the dictionary

“a,aah,aahed,aahing,aahs,aardvark,aardvarks,aard
wolf,aardwolves,ab,aba,abac,abaca,abaci,aback,ab
acs,abacus,abacuses,…” .. and 137000 more…

• See next slide

<html>
<head>
<script>
var dictionary;

function init() {
var txt = "a,aah,aahed,aahing,aahs,aardvark,aardvarks,aardwolf”; // and a lot more!
dictionary = txt.split(",");
alert("There are "+dictionary.length+" words in the dictionary");

}

function checkUserWord() {
var word = document.getElementById("txtUserWord").value;
word = word.toLowerCase();

for (var i=0; i<dictionary.length; i++) {
if (word==dictionary[i]) {

alert(word+" is in the dictionary!");
return;

}
}

alert(word+" was not found");
}

</script>
</head>
<body onload="init();">
<input type='text' id='txtUserWord'> <button
onclick='checkUserWord();'>Check Word</button>
</body>
</html>

Discussion

• Is the approach taken to search the dictionary
in the previous example efficient?
• Linear search of 137000+ items

• How could we do it more efficiently?

Exercise (not graded)

• Modify the previous program so that it performs
the search more efficiently:
• Binary search?
• Hash table?

• How much faster is it?

CT1114

Web Development

Section 14:

More CSS

Dr. Sam Redfern

sam.redfern@nuigalway.ie

@psychicsoftware

mailto:sam.redfern@nuigalway.ie

The CSS Box Model

All HTML elements considered as boxes
Paragraphs, Headings, Tables, etc

Box Model
A box that wraps around all the HTML elements

Consists of Four Parts:
Content

Padding

Border

Margin

CSS Box Model

•Content

•Padding

•Border

•Margin

•Padding, Border & Margin are ZERO by default

Content Area

Content

•The HTML element concerned

•Text, Image, List, Table, etc

Content – Embedded <p> Style Example

<html>

<head>

<style>

p

{

background: #00FFFF;

}

</style>

</head>

<body>

<p>Text Goes Here!</p>

</body>

</html>

Result:

Text Goes Here!

Padding Area

Padding

•Empty space surrounding the Content

•Uses the same background colour as the Content

Padding Content

p

{
background: #00FFFF;

padding: 0px;

}

p

{
background: #00FFFF;

padding: 20px;

}

Text Goes Here! Text Goes Here!

Border Area

Border

•The HTML element concerned
•border-style must be set for border to take effect

Bordering Content

p

{

background: #00FFFF;

padding: 20px;

border: 20px;

border-color: #FF0000;

}

Text Goes Here!

Missing border-style,

so no border displays

Bordering Content

p

{

background: #00FFFF;

padding: 20px;

border: 20px;

border-color: #FF0000;

border-style: solid;

}

Text Goes Here!

border-style values

none No border

dotted Dotted border

dashed Dashed border

solid Solid border

double Two solid borders

groove 3D "grooved" border (engraved)

ridge 3D "ridged" border (emboss)

inset 3D "inset" border (lowered)

outset 3D "outset" border (raised)

Margin Area

Margin

•Transparent area that surrounds everything else

•Used for spacing the element relative to others

Width and Height

Set through width and height properties
width: 100px;

height: 40px;

Affects only the Content of the Box Model

Width Example

p

{

width: 100px;

padding: 10px;

border: 10px;

border-style: solid;

}

Total width:

100 (Content)

+ 20 (Padding L/R)

+ 20 (Border L/R)

= 140 pixels

Side Independent Sizes

Individual sides can be given their own sizes
Left, Top, Right, Bottom

Done by adding the side to property
border-left: 10px; 10 pixel left border

border-top: 20px; 20 pixel top border

border-right: 5px; 5 pixel right border

border-bottom: 40px; 40 pixel bottom border

Padding, Border or Margin work too
e.g., padding-left or margin-top

Side Independent Sizes – Shorthand

Possible to declare the sides in one declaration
border: 10px 20px 5px 40px;

Order is important
Top, Right, Bottom, Left 4 values declared

Top, Right/Left, Bottom 3 values declared

Top/Bottom, Right/Left 2 values declared

All four take value 1 value declared

Also applies to border-style
border-top-style or border-right-style

<html>

<head>

<style>

span

{

width: 100px;

padding: 10px;

border: 3px;

border-top-style: solid;

border-bottom-style: dotted;

border-left-style: dashed;

border-right-style: groove;

}

</style>

</head>

<body>

<p>

Hey, it's a span

Hey, it's another span

</p>

</body>

</html>

Grouping Selectors

• Can apply common style to more than one

selector

• Do so by grouping the selectors together

• Example, centre aligning all Heading elements:

h1,h2,h3,h4,h5,h6

{

text-align: center;

}

What Takes Priority?

Consider:

h1,h2,h3,h4,h5,h6

{

color: #FF0000;

}

h1

{

color: #0000FF;

}

Local Element Style will

always take priority over a

grouped style

In this case, h1’s colour will

be blue - #0000FF

Apply General Style

Can use Asterisk Wildcard (*) as a selector to

apply a general style to all elements

*

{

font-family: Arial, sans-serif;

}

As per previous slide, local element styles will

over-write any general style for that element

Style Classes

Allows for multiple elements to be styled with a

single class

Useful for things like paragraphs
Multiple text alignments

Left, Center, Right, Justify

Classes created by naming selector .name

Classes are called by using the class attribute

Classes inherit the style of the parent element
Unless overwritten by class (attribute use only)

Example

p

{

color: #0000FF;

}

.left

{

text-align: left;

}

.right

{

text-align: right;

color: #FF0000;

}

.center

{

text-align: center;

}

.justify

{

text-align: justify;

}

Elements using

the "right" class

will also be red

Alignment Classes – Page Source

<p>This text is default left aligned</p>

<p class="left">This text is left aligned</p>

<p class="center">This text is center aligned</p>

<p class="right">This text is right aligned</p>

<p class="justify">This text is justified. All text

should appear as the colour blue as it was specified

in the parent paragraph class</p>

<h1 class="center">Centered H1, but NOT Blue</h1>

h1 is not blue as only the paragraph had blue colour

Page Output

Exercise

<!DOCTYPE html>

<html>

<head>

<link rel="stylesheet" type="text/css" href="cornerstyles.css" />

</head>

<body>

<div class='topleft'>Top-Left</div>

<div class='bottomleft'>Bottom-Left</div>

<div class='topright'>Top-Right</div>

<div class='bottomright'>Bottom-Right</div>

</body>

</html>

Write a CSS file

(cornerstyles.css) which can

be used by the following

HTML document in order to

produce the depicted output

Alternative units of size/distance in CSS:
‘em’

• In CSS, an em unit is equal to the computed font-size for

the element to which the em is applied.

• If no font size is defined anywhere in the CSS, the em unit

will be equal to the browser's default font size for the

document, which is usually 16px.

• You can define the sizes of elements using em rather than

px, in order to define them relative to each other and then

perhaps easily change them all at once

CSS ‘display’ attribute

• The display attribute controls how an element is

positioned
• display:block; the element starts on a new line

and stretches out to the left and right as far as it can

(default for DIV tags)
• display:inline; the element does not interrupt

the flow of the paragraph, but still defines a section of

content that you can control. (default for SPAN tags)
• display:inline-block; the same as inline, except

the element is allowed to have a width and height
• display:none; the element is not displayed at

all, and the page is unaffected by it, as if it doesn’t exist

(useful for hiding content and revealing it later)

html {
font-size:18px; /* we can dynamically change this

based on screen size, and everything else is relative to
this as em units */

color:white;
}

.btn {
border-radius: 0.333em;
padding: 0.5em 0.4167em;
font-size: 1.167em;
text-align: center;
text-decoration: none;
margin: 0.5em;
color: #ffffff;
position: relative;
display: inline-block;
min-width: 11em;

}

.btn:active {
transform: translate(0em, 0.25em);
-webkit-transform: translate(0em, 0.25em);
box-shadow: 0em 0.0833em 0em 0em;

}

Example: CSS buttons
.blue {

background-color: #55acee;

box-shadow: 0em 0.25em 0em 0em #3C93D5;

}

.blue:hover {

background-color: #6FC6FF;

}

.green {

background-color: #2ecc71;

box-shadow: 0em 0.25em 0em 0em #15B358;

}

.green:hover {

background-color: #48E68B;

}

.red {

background-color: #e74c3c;

box-shadow: 0em 0.25em 0em 0em #CE3323;

}

.red:hover {

background-color: #FF6656;

}

Example: CSS buttons

<html>
<head>

<link rel="stylesheet" type="text/css" href="css_buttons.css" />
</head>
<body>

Blue Button Red Button

Green Button

</body>
</html>

Graded Exercise

• Write an HTML/Javascript page which requests from the user:

• The number of days in the month

• The day of the week (0-6) that the 1st of the month falls on

• Your Javascript code should then construct a calendar similar to the

one shown above, from the supplied information

• The calendar should be structured using a <table> and displayed in

a <div>. You should use css styling to colour it.

• Note that the pink table cell indicates the current day of the month,

obtained from a Date() object

CT1114
Web Development

Section 15:
Calendar Calculations using Javascript

Dr. Sam Redfern
sam.redfern@nuigalway.ie
@psychicsoftware

mailto:sam.redfern@nuigalway.ie

Last Week's Graded Exercise

• Write an HTML/Javascript page which requests from the user:
• The number of days in the month
• The day of the week (0-6) that the 1st of the month falls on

• Your Javascript code should then construct a calendar similar to the
one shown above, from the supplied information

• The calendar should be structured using a <table> and displayed in
a <div>. You should use css styling to colour it.

• Note that the pink table cell indicates the current day of the month,
obtained from a Date() object

Drawing the calendar: algorithmic
steps

• Using a loop, create correct number of grey-coloured
table cells for ‘missing’ days in 1st week

• Using another loop, create a blue-coloured table cell
for each day in the month. Treat Saturday each week
as a special case which requires a closing row tag
</TR> followed by an opening row tag <TR> for the
next line

• Using a third loop, draw any remaining grey cells to
bring the final week up to Saturday

• Each loop follows the previous one, i.e. *not* nested!
• Optionally, we can also colour a cell a special colour

if it is today (according to system clock)

Making a complete calendar webpage

• Previously, we asked the user for:
• The number of days in the month
• The day of the week (0-6) that the 1st of the month

falls on
• But surely, given a month number and year number, we

can calculate these things using Javascript?

How many days does our month have?

Leap Years

• What are the rules for determining if a year is a leap
year?

1. ?
2. ?
3. ?

Exercise: Leap Years

• Write a Javascript function which receives a year
number as an argument.

• The function should return 1 if the year is a leap year,
and return 0 if it is not.

• Start with the code provided on the next slide

Exercise: Leap Years<!DOCTYPE html>
<html>
<head>
<script>

function is_leap(year) {
// write your code here!
// return 1 if year is a leap year
// return 0 if year is not a leap year

}

function checkYear() {
var txt = document.getElementById("txtYear").value;
var year = parseInt(txt);
if (isNaN(year))

alert(txt + " is not a number!");
else if (is_leap(year)==1)

alert(year + " is a leap year");
else

alert(year + " is not a leap year");
}

</script>
</head>
<body>
<input id='txtYear'> <button onclick='checkYear();'>Check Year</button>

</body>
</html>

How many days does our month have?

This function now correctly deals with leap years

What day of the week does
our month start on?

• Baseline fact: January 1st, 1900 was a Monday
• So, what day of the week was February 1st,

1900?
• And how do we calculate that?

Generalising this rule
• The day of the week that the 1st of any

month (after Jan 1900) falls on is:
• (1 + the number of days that have elapsed

since Jan 1st, 1900) % 7
• Question: what day of the week was May

1st, 1900?
• Note that 1900 was not a leap year

What about years later than
1900?
• We can calculate that Jan 1st 1905 was a

Sunday..
• How.. ?

This Week's Graded Exercise

• Make an HTML page which lets the user
enter a year number and a month number

• The page should then format and display a
calendar for that month and year (using
last week’s assignment as a basis)
• You can use my solution to last week’s static calendar

to start with, or else your own
• Your solution should use functions such as

those we have been discussing, i.e. don’t
simply manipulate Date objects to find out
information such as days of the week

CT1114
Web Development

Section 16:
HTML (Forms), Javascript

Dr. Sam Redfern
sam.redfern@nuigalway.ie
@psychicsoftware

mailto:sam.redfern@nuigalway.ie

HTML Forms

• Forms provide a standard set of input controls: text fields,
buttons, check boxes, lists, etc.

• The user’s choices are entered into the controls
• The contents of the controls can be manipulated and

processed on the client (using Javascript), prior to posting
them to the webserver

• or (after being posted) they can be processed on the
server, using a server-side language such as PHP.

• Any arbitrary programming functions can be performed
with the posted data, once the server has it: Calculations,
Database entries, Email, Credit Card charges, etc.

• To post the form to the server, either:
• Provide an <input type='submit'> field in the form
• Or, use the form object's .submit() method in Javascript

<form>
Attributes of the <form> container tag:
ACTION defines the URL that the data will be posted to
METHOD defines how the data is sent:

POST – the form element names and values are sent as a ‘Request’
object which the server-side script can read

GET – the form element names and values are sent as part of the
URL using ‘query strings’

Form controls:
<textarea> defines a field in which the user can type multiple lines of text.
<select> enables the user to choose among a number of options in a list
<input> provides all of the other types of input: single lines of text, radio
buttons, check boxes
<button> push-buttons

The next few slides illustrate form controls in HTML

Form Layout

<form method="post" action="script.php">
<!-- form elements such as text fields are added here -->

</form>

method
How the field values will be processed (either ‘post’ or ‘get’)

action
The server-side script which the field values will be passed to

<form> elements

<select> drop-down lists
<option> items in <select> lists
<input type='checkbox'> checkboxes
<input type='radio'> radio buttons
<input> single-line text boxes
<textarea> multi-line text boxes
<input type='submit'> 'submit form' push-buttons
<button> general purpose push-buttons

Multiple Choice – Radio Buttons

<input type="radio" name="grouplabel"
value="1">Option 1 Here

<input type="radio" name="grouplabel"
value="2">Option 2 Here

User can only select one option with radios
(identified as a group by name)

Multiple Choice – Check Boxes

<input type="checkbox" name="label"
checked="checked">Option 1 Here

<input type="checkbox" name="label2">Option 2 Here

Multiple Choice – Drop Down List

<select name="listlabel" id="listid">
<option value="1">Item 1</option>
<option value="2" selected="selected">Item

2</option>
<option value="3">Item 3</option>

</select>

To find the 0-based index of the selected item at run-time, using Javascript:

var idx = document.getElementById("listid").selectedIndex;

Exercise

• Make an HTML page which contains a
<select> and a <button>.

• The <select> should have 12 <option>s,
containing the 12 months of the year

• When the user clicks the button, use an
alert to tell them which month number they
selected (1 - 12)

Example: submitting a form to the server
following client-side validation

<html>
<head>
<script>
function validateForm() {

var a = document.getElementById("field1").value;
var b = document.getElementById("field2").value;
if (a<1 || a>10)

alert("The first number is not between 1 and 10");
else if (b<1 || b>10)

alert("The second number is not between 1 and 10");
else {

alert("All ok.. will submit the form now..");
document.getElementById("theForm").submit();

}
}
</script>
</head>
<body>
<form id='theForm' method='post' action='page.php’>
Please enter two numbers, each between 1 and 10

<input name='field1' id='field1'>

<input name='field2' id='field2'>

<button onclick='validateForm();'>Submit</button>

</form>
</body>
</html>

Graded
Exercise

The HTML form depicted is used to collect information from customers on a
website. It has been laid out on the page through use of a <table>. It
contains:
• a drop-down <select> control containing the options: “Goods for Sale”,

“Complaints”, and “Support”
• a <textarea> into which the user types a question
• two text <input> boxes, into which the user enters their name and email

address
• a button labelled ‘Submit’

Write suitable HTML+CSS code to produce this form. Write a Javascript
function to check the validity of the form, when the Submit button is clicked.
To be valid, each of the fields must contain some text, and the text in the
Email field must include an ‘@’ symbol and a ‘.’ symbol.

CT1114
Web Development

Section 16:
HTML (Forms), Javascript

Dr. Sam Redfern
sam.redfern@nuigalway.ie
@psychicsoftware

mailto:sam.redfern@nuigalway.ie

HTML Forms

• Forms provide a standard set of input controls: text fields,
buttons, check boxes, lists, etc.

• The user’s choices are entered into the controls
• The contents of the controls can be manipulated and

processed on the client (using Javascript), prior to posting
them to the webserver

• or (after being posted) they can be processed on the
server, using a server-side language such as PHP.

• Any arbitrary programming functions can be performed
with the posted data, once the server has it: Calculations,
Database entries, Email, Credit Card charges, etc.

• To post the form to the server, either:
• Provide an <input type='submit'> field in the form
• Or, use the form object's .submit() method in Javascript

<form>
Attributes of the <form> container tag:
ACTION defines the URL that the data will be posted to
METHOD defines how the data is sent:

POST – the form element names and values are sent as a ‘Request’
object which the server-side script can read

GET – the form element names and values are sent as part of the
URL using ‘query strings’

Form controls:
<textarea> defines a field in which the user can type multiple lines of text.
<select> enables the user to choose among a number of options in a list
<input> provides all of the other types of input: single lines of text, radio
buttons, check boxes
<button> push-buttons

The next few slides illustrate form controls in HTML

Form Layout

<form method="post" action="script.php">
<!-- form elements such as text fields are added here -->

</form>

method
How the field values will be processed (either ‘post’ or ‘get’)

action
The server-side script which the field values will be passed to

<form> elements

<select> drop-down lists
<option> items in <select> lists
<input type='checkbox'> checkboxes
<input type='radio'> radio buttons
<input> single-line text boxes
<textarea> multi-line text boxes
<input type='submit'> 'submit form' push-buttons
<button> general purpose push-buttons

Multiple Choice – Radio Buttons

<input type="radio" name="grouplabel"
value="1">Option 1 Here

<input type="radio" name="grouplabel"
value="2">Option 2 Here

User can only select one option with radios
(identified as a group by name)

Multiple Choice – Check Boxes

<input type="checkbox" name="label"
checked="checked">Option 1 Here

<input type="checkbox" name="label2">Option 2 Here

Multiple Choice – Drop Down List

<select name="listlabel" id="listid">
<option value="1">Item 1</option>
<option value="2" selected="selected">Item

2</option>
<option value="3">Item 3</option>

</select>

To find the 0-based index of the selected option at run-time, using Javascript:

var idx = document.getElementById("listid").selectedIndex;

To find the value of the selected option, use the options array of the select
object:

var s = document.getElementById("listid");
var val = s.options[s.selectedIndex].value;

Exercise

• Make an HTML page which contains a
<select> and a <button>.

• The <select> should have 12 <option>s,
containing the 12 months of the year

• When the user clicks the button, use an
alert to tell them which month number they
selected (1 - 12)

Example: submitting a form to the server
following client-side validation

<html>
<head>
<script>
function validateForm() {

var a = document.getElementById("field1").value;
var b = document.getElementById("field2").value;
if (a<1 || a>10)

alert("The first number is not between 1 and 10");
else if (b<1 || b>10)

alert("The second number is not between 1 and 10");
else {

alert("All ok.. will submit the form now..");
document.getElementById("theForm").submit();

}
}
</script>
</head>
<body>
<form id='theForm' method='post' action='page.php’>
Please enter two numbers, each between 1 and 10

<input name='field1' id='field1'>

<input name='field2' id='field2'>

<button onclick='validateForm();'>Submit</button>

</form>
</body>
</html>

Graded
Exercise

The HTML form depicted is used to collect information from customers on a
website. It has been laid out on the page through use of a <table>. It
contains:
• a drop-down <select> control containing the options: “Goods for Sale”,

“Complaints”, and “Support”
• a <textarea> into which the user types a question
• two text <input> boxes, into which the user enters their name and email

address
• a button labelled ‘Submit’

Write suitable HTML+CSS code to produce this form. Write a Javascript
function to check the validity of the form, when the Submit button is clicked.
To be valid, each of the fields must contain some text, and the text in the
Email field must include an ‘@’ symbol and a ‘.’ symbol.

CT1114
Web Development
HTML, CSS, JavaScript

Section 17:
Ajax

Dr. Sam Redfern
sam.redfern@nuigalway.ie
@psychicsoftware

mailto:sam.redfern@nuigalway.ie

Last Week’s
Graded
Exercise

The HTML form depicted is used to collect information from customers on a
website. It has been laid out on the page through use of a <table>. It
contains:
• a drop-down <select> control containing the options: “Goods for Sale”,

“Complaints”, and “Support”
• a <textarea> into which the user types a question
• two text <input> boxes, into which the user enters their name and email

address
• a button labelled ‘Submit’

Write suitable HTML+CSS code to produce this form. Write a Javascript
function to check the validity of the form, when the Submit button is clicked.
To be valid, each of the fields must contain some text, and the text in the
Email field must include an ‘@’ symbol and a ‘.’ symbol.

Normal (Basic) HTML Interaction

1. Web Server stores HTML files
2. Client browser requests page through URL
3. Server sends HTML page to client
4. Client browser displays HTML page to User
(Note that we haven’t been using a server at all, we’ve been opening

a local file directly into the browser. Notice the protocol in the
address bar will be file:// instead of the normal http://)

Server

.html

Browser
URL

page.html

Client Side Scripting Interaction
(using Javascript in the browser)

1. Web Server stores HTML/Script pages
2. Client browser requests page through URL
3. Server sends HTML/Script page to client
4. Client browser runs script locally and updates HTML page
5. Client browser displays HTML page to User

Server

.html

Browser
URL

page.html

What is the Time?

Server Side Scripting Interaction
(using e.g. PHP or Node.js)

1. Web Server stores HTML/Script pages
2. Client browser requests page through URL
3. Server runs script locally and updates HTML page
4. Server sends updated HTML page to client
5. Client browser displays HTML page to User

Server

.html

Browser
URL

page.html

What is the Time?

Ajax – "Asynchronous
Javascript and XML"
• A key component of modern web-apps
• Normal HTTP interactions instruct the browser to

request an entire webpage at once
• Ajax, however, instructs the browser to request small

pieces of content
• Typically, smaller parts of the webpage
• But can be any arbitrary data, not necessary marked up as

HTML
• Asynchronous update => no tangible ‘refresh’ process for user
• Often updated to individual elements on the page, e.g. via

their .innerHTML attribute

Requests that are not entire
pages?

• A normal HTTP request to the server causes the entire
page to be refreshed

• The page is re-sent by the server and updated in the client’s
browser

• All existing Javascript data on the page is destroyed
• Ajax requests do not cause the page to refresh

• Only the appropriate content is updated (by JavaScript
manipulating the existing Document)

• e.g. Google Search Suggestions
• These requests are handled by the client separately to the

normal HTTP requests
• On the server, Ajax requests are identical to normal HTTP

requests

Ajax Requests

Server

.html

Browser
URL

page.html

Refresh
exchange
rates

Ajax Request (What is the current rate?)

Ajax Response (The current rate is <rate>)

XMLHttpRequest

What is Ajax?

• Asynchronous
• Request is made without interrupting the page
• Doesn’t happen at the same time as other code
• Often user initiated by events, sometimes timed

• JavaScript
• Asynchronously called-back whenever the

Response has been received by the browser
• XML

• Language agnostic mechanism for data transport
and storage

eXtensible Markup Language (XML)

• Designed to transport and store data in a human-readable
yet structured format

• Typically a simple text file of extension .xml
• Like HTML:

• It is a semantic markup language made up of tags
• i.e. It describes information

• Unlike HTML:
• There are no standard tags
• The tags are made up to fit the data being described

• Tags are self-descriptive
• XML is increasingly being superseded by JSON (JavaScript

Object Notation) as a standard data interchange format..
see next week

XMLHttpRequest

• Browser feature that allows JavaScript to make
an Ajax request to the server without going
through normal HTTP page-request process

• i.e. the request is sent in the background without
the page reloading

• XMLHttpRequest is an Object that must be
created before it can be used:
var requester = new XMLHttpRequest();

• Once created we’re ready to open a
connection and send a request

Opening an Ajax Connection
• Must first open a connection to the server

• Connection is created via the open() method
requester.open(method, location,
asynchronous);

• Open function takes three arguments
• Method: GET or POST
• Location: URL to access
• Asynchronous (true/false)?

• Async: Allows other scripts to execute while
request is going on

• Sync: Freezes the browser until request is done

Sending the Request
• Once the connection is opened, the request can

be sent via the send() method
• Example:
// Create the object

var requester = new XMLHttpRequest();

// Open the connection

requester.open("POST", "page.php", true);

// Send the request

requester.send();

GET or POST?
• Either can be used to pass info to the PHP page
• Using GET, add name=value pairs at end of

location’s URL, i.e. as a querystring
• requester.open("GET", "page.php?id=101&name=John",
true);

• Using POST, add an extra header value and send
the information via the send() method

• requester.open("POST", "page.php", true);
• requester.setRequestHeader("Content-type",
"application/x-www-form-urlencoded");

• requester.send("id=101&name=John");

Receiving the Response
• Use an Event Handler to execute when the

server has returned a response
• Monitor for changes in the readyState property

of the XMLHttpRequest object
• Property has five states:

• 0 uninitialized
• 1 loading
• 2 loaded
• 3 interactive
• 4 complete

Change in readyState
• Monitored by the onreadystatechange event
• This event is triggered when the readyState

changes
• The event should be handled by a function

which is called when the state changes

requester.onreadystatechange = function()
{
// code here

}

Change in readyState
requester.onreadystatechange = function()

{

if (requester.readyState == 4 &&
requester.status == 200)

{

// Then response has been received and
is okay.. So process data here!

}

}

• Status code 200 means the request was okay

Dealing with the Response
• There are two properties of XMLHttpRequest for

handling the response
• responseXML If the response is XML
• responseText If the response is text or HTML

• In most cases, the response will be Text/HTML
despite the fact that XML is part of the name Ajax

• XML is not used so much these days; often we might send
JSON data instead, formatted as a string in responseText

• The text can then be processed as required on the
browser using Javascript

• For example it could be added to your page:

document.getElementById("mydiv").innerHTML = requester.responseText;

Putting it All Together

• Assume we have a PHP script called time.php
• The time.php page will return the current

server time when it is executed
• We have a div on our page to display the time

in the correct place
<div id="divTime"></div>

• We want to send an Ajax request to update the
time in this div

CT532/CT870 Internet Programming

Page with AJAX Function and Time Update Button time.html

<html>
<head>

<!-- see next slide for gettime.js -->
<script src="gettime.js"></script>

</head>
<body>

<h1>The time on the server is:</h1>
<div id="divTime"></div>

<input type="button" value="Update Time" onclick="getTime();">
</body>

</html>

CT532/CT870 Internet Programming

gettime.js

function getTime() {
// Create new XMLHttpRequest Object
var requester = new XMLHttpRequest();

/* Monitor the onreadystatechange event for a change in the readyState.
This function will be executed whenever the readyState is changed so must
be declared before the request is sent */
requester.onreadystatechange = function() {

if (requester.readyState == 4 && requester.status == 200) {
// Put the response into the div
document.getElementById("divTime").innerHTML =

requester.responseText;
}

}

// Open connection to time.php and send the request asynchronously
requester.open("GET", "https://www.dark-wind.com/ct1114time.php", true);
requester.send();

}

CT532/CT870 Internet Programming

time.php - this runs on a webserver, e.g. Apache

<?php
// Echo the current time in the format hh:mm:ss
echo date('H:i:s');

?>

Q: Why does this PHP script echo just one thing, and not
include <HTML> page tags etc.?

Sequence of Last Example
• A button-click event was captured onclick()
• Executed a JavaScript function getTime()
• Sent an Ajax Request to a PHP page (executed on the

server) time.php
• Current time was echo’d into Response time.php
• Ajax Response was received by Javascript readyState
• The time was read from Response responseText
• "divTime" div was updated innerHTML

Exercise
• Try out the last example! (using time.html and gettime.js)

• We don’t have scope in CT1114 to study PHP code or using
webservers, so instead I have made available some PHP
scripts at specific URLs, so you can still practice Ajax from
the client-side perspective

• The URL on which the ‘time’ php script is available is:
• https://www.dark-wind.com/ct1114time.php

AJAX, PHP, Node.js, MySQL, WebSockets..
• The previous (server-time) example was a very simple example of Ajax
• More complex/realistic uses: e.g. query a database and update a page via Ajax

• All without causing the full page to refresh
• Useful e.g. if you have continuously-changing data to display on a webpage and don’t want an ugly

refresh process or the trouble it creates technically (e.g. JavaScript variables destroyed by page
refresh)

• Modern 'single page' web-apps often use Ajax for server interactions, and are
structured as single HTML/Javascript pages which never refresh

• Sections of the app can be written into separate <div> tags, which are shown/hidden as appropriate
• An alternative to the Ajax approach is WebSockets which allow persistent (stateful)

bi-directional communication channels to be established between a server and a
browser.

• WebSockets use TCP communication but don't use the HTTP: protocol.. Node.js is a
very suitable server technology for WebSockets, but is beyond the scope of CT1114.

• Websockets are often used for web-based chatrooms or even online multiplayer games
(e.g. Agar.io, Orbs.it, Newbychinese.com)

Exercise (not graded)
• Write a webpage which displays, alongside each other:

• The time according to the user's browser
• The time according to the server
• The difference (in seconds) between these

• You should use Ajax to periodically retrieve the server's time
(every 0.5 seconds) before updating the webpage with the above
values

• Question: why not just do it every 1.0 seconds?
• Hint: recall the use of setTimeout to repeatedly (periodically) call

a Javascript function
• Question: how can we calculate the difference in seconds

between the server and browser’s reported time?

• As before, you can access ct1114time.php here:
• https://www.dark-wind.com/ct1114time.php

CT1114
Web Development
HTML, CSS, JavaScript

Section 18:
Javascript Objects; Exploring Callbacks;
ES6 Syntax; Revision

Dr. Sam Redfern
sam.redfern@nuigalway.ie
@psychicsoftware

mailto:sam.redfern@nuigalway.ie

Last Week’s Exercise
• Write a webpage which displays, alongside

each other:
• The time according to the user's browser
• The time according to the server

• You should use Ajax to periodically retrieve the
server's time (every 0.5 seconds) before
updating the webpage with the two time values

• Q: why not just do it every 1.0 seconds?
• Hint: recall the use of setTimeout to

repeatedly (periodically) call a Javascript
function

OOP: Classes and Objects
• A class is like a blueprint for things in Object Oriented

Programming (OOP)
• Classes have properties
• Classes have methods
• An object is an instance of a class, i.e. an actual live

set of data about a thing in the program

Classes in Javascript
• In Javascript, functions are objects
• So when you declare a function, you have an object!
• The keyword 'this' is used within an object's code to refer to its own instance

function myClass(var y) {
this.y = y; // .y is now a property of the object

}

• This object also has an (implicitly created) class, which you can access through the
prototype keyword

myClass.prototype.hello = function() {
// ‘hello’ is now a member function (i.e. a method) of the myClass class

alert("hello, my value of y is "+this.y);
};

• To declare another instance of the myClass class, and use its hello method:

var obj = new myClass(6);
obj.hello();

Classless Objects
• You can also simply declare arbitrary data objects like this:

var o = {x:5, y:6, name:"Sam", data:[3,2,1], child:{a:2, b:6}};

• And of course you can access its members:

o.x = 6;
alert(o.name);
o.data[0] = 2;
o.child.b++;

• And you can add more members at any time:

o.z = 20;
o.child.c = [1,2,3];

JSON and data organisation in
Javascript
• JSON: “Javascript Object Notation”
• A syntax for specifying Javascript objects – now used in many languages
• This is JSON format:

var o = {x:5, y:6, name:"Sam", data:[3,2,1], child:{a:2, b:6}};

• Serializing is the act of turning a software object into a form that can be saved
to file or sent across a network (i.e. as a series of bytes/characters).

• De-serializing is the inverse: turning a series of bytes/characters back into a
software object

• Javascript provides functions for serializing/de-serializing objects as JSON:
• JSON.stringify(o)

• returns a string containing a JSON representation of object o
• E.g. for saving to disk or sending over the internet as text (e.g. using Ajax or

Websockets)
• JSON.parse(str)

• takes a JSON string and returns an instantiated Javascript object from it
• E.g. for instantiating an object having read its JSON representation from disk or over

the internet

JSON Exercise
var car = { color:'red',
wheels:[true,true,true,true],
engine:{capacity:1000, power:200} };

Write a webpage which uses Javascript code to interact with this JSON object in
order to:
• On a button click, user alert() to tell the user the color of the car object
• On a button click, use prompt() to let the user type a new color (as a string)

and then change the car’s color property to that value
• On a button click, tell the user whether the car’s 4th and 5th wheels exist
• On a button click, tell the user the power of the car’s engine
• On a button click, add a new property to the car, called ‘value’, and give it a

number gathered from the user using prompt()

• On a button click, use alert() to display the entire car object as a
serialized string

Asynchronous Programming in
Javascript
• Javascript was designed to deal with

asynchronous situations
• Waiting for a resource to arrive over the internet (recall:

Ajax)
• Waiting for the user to perform an action such as a

button click (recall: onclick)
• Waiting for time to pass (recall: setTimeout)

• So it has elegant ways to deal with these types of
asynchronous situations, e.g. callbacks

• Callbacks are when we send a function as a
parameter to another function, so that that other
function can call the parameter function when
required

• Recall: arr.sort(compare);

Callbacks using Named
functions
<html>
<head>
<script>
function start() {
nextInSequence(1);

}

function nextInSequence(i) {
document.getElementById("divOutput").innerHTML += i + "
";
if (i<12)
setTimeout(nextInSequence, 500, i+1);

}

</script>
</head>
<body onload="start();">
<div id='divOutput'></div>

</body>
</html>

We're sending the nextInSequence function as a parameter to setTimeout

Another Callbacks example
(3 slides)
• Creating a customised (reusable) dialog box in

HTML/Javascript

<div id="divAlert" style="position:absolute; width:100%; height:100%;
overflow:hidden; left:0px; top:0px; text-align:center; display:none;
background-color:rgba(0, 0, 0, 0.9); z-index:3;">

<div style="position:absolute; left:50%; top:50%; width:75%; transform:
translate(-50%, -60%); z-index:4;">

<h1 id='alertHeading'></h1>
<p id='alertMsg'></p>
OK
Cancel

</div>
</div>

• Sending callbacks as named functions:

• Or as anonymous functions:

Javascript ES6

• New ways to declare variables: const and let

• New Array methods: map, reduce, filter
• Providing simpler syntax for manipulating arrays of

data

• Alternatives to callbacks for asynchronous
programming: Promises, Async/Await

• We won’t be looking at these, as they’re a bit more
complex than we have time for

Surely ‘var’ is the only way to
declare variables in Js?
• No, not anymore!
• A problem with ‘var’ is that its scoping rules are unusual

• if declared inside a function, even within a loop etc., then a var
will have ‘function scope’ (this is called ‘hoisting’, and some
programmers dislike it)

• this is at odds with most languages (e.g. Java) which have ‘block
scope’

• The keyword ‘let’ can be used instead of ‘var’ if you want
more normal (and thus, perhaps less error-prone) scoping

• Another new keyword for declaring variables is ‘const’
• To create constants, which can never change after their initial

declaration/assignment
• Can remove errors caused by accidentally overwriting a variable

• See example on next slide

Example
<html>
<head>
<script>

function test() {
var j = 0;
let k = 0;
const l = 20;
for (var i=0;i<10;i++) {
var j = i; // this will be the same variable as the previous j
let k = i; // this will be a new, block-scoped variable
l = i; // this line will cause a runtime error

}
alert("The value of j is: "+j);
alert("The value of k is: "+k);

}
</script>

</head>
<body onload="test();">
</body>

</html>

.map(callback)

• A new method of Arrays
• For translating (mapping) all elements in an

array to another set of values.
• Traverses the array from left to right invoking a

callback function on each element. For each
callback the value returned becomes the
element in the new array.

• After all elements have been traversed, .map()
returns the new array with all the translated
elements

.map() example
var fahrenheit = [0, 32, 45, 50, 75, 80, 99, 120];
var celsius = fahrenheit.map(

function(elem) {
return Math.round((elem - 32) * 5 / 9);

}
);

// or in the new ES6 ‘arrow functions’ syntax:
var celsius =
fahrenheit.map(elem => Math.round((elem - 32) * 5 / 9));

// content of celsius array is now:
// [-18, 0, 7, 10, 24, 27, 37, 49]

.filter(callback)

• A new method of Arrays
• For removing specific elements of an array
• Traverses the array from left to right invoking a

callback function on each element. The
returned value must be a boolean identifying
whether the element will be kept or discarded.

• After all elements have been traversed, .filter()
returns a new array with all elements that
returned true

.filter() example
// this examples removes all duplicates in arr

var arr = [1,10,4,10,3,4,10,8,10];

var uniqueArray = arr.filter(

function(elem, index, array) {

return (array.indexOf(elem) == index);

}

);

// or in new ES6 ‘arrow functions’ syntax:

var uniqueArray =

arr.filter((elem,index,arr) => arr.indexOf(elem) == index);

.reduce(callback, initialVal)

• A new method of Arrays
• For finding a cumulative or concatenated value

based on elements across the array
• Traverses the array from left to right invoking a

callback function on each element.
• The value returned is the cumulative value

passed from each callback, added to initialVal.
• After all elements have been traversed,

.reduce() returns the cumulative value

.reduce() example
var rockets = [

{ country:'Russia', launches:32 },
{ country:'US', launches:23 },
{ country:'China', launches:16 },

{ country:'Europe(ESA)', launches:7 },
{ country:'India', launches:4 },

{ country:'Japan', launches:3 }];

var sum = rockets.reduce(
function(prevVal, elem) {

return prevVal + elem.launches;

}, 0
);

// In ES6 ‘arrow functions’ syntax
var sum = rockets.reduce((prevVal, elem) => prevVal + elem.launches, 0);

Some Revision Exercises..

1. DHTML (Dynamic HTML)

• Write a webpage which contains a text input
field and a button

• When the button is clicked, use the
window.alert method to tell the user what they
typed into the text field

2. DHTML (Dynamic HTML) #2
• Write a webpage which contains a text input field and

an empty <div> tag
• As the user types into the text input field (i.e. after each

keypress), convert their text into a number
• If the conversion fails to produce a number, put an

error message into the <div> tag
• If the conversion succeeds, show the "times table" of

their number in the <div> tag, e.g:

You typed 4
1 x 4 = 4
2 x 4 = 8
3 x 4 = 12

3. Simple Animation

• Edit the provided webpage (next slide) in order
to animate this goblin character by cycling
through its 6 png files (please update 5 times
per second)

• Now make the goblin appear to run across the
screen, by moving the img as well as changing
its src

Base code for exercise on
previous slide
<!DOCTYPE html>
<html>
<head></head>
<body>
<div style='position:absolute; left:200px; top:200px;'

id='theGoblin'>

</div>
</body>

</html>

4. More simple animation
• Modify the provided webpage (next slide) in

order to move the 'ball' image around within the
bounds of the green <div> tag

• Initially, the ball should move, per second, 50
pixels to the right and 50 pixels downwards

• Whenever the ball hits an edge of the <div>
tag, its movement in the appropriate direction
should reverse.. i.e. hitting the right or left edge
should reverse its horizontal movement, while
hitting the top or bottom edge should reverse
its vertical movement

Base code for exercise on
previous slide

<!DOCTYPE html>
<html>
<head></head>
<body>
<div style='position:absolute; left:0px; top:0px;

width:600px; height:600px; background:#00FF00;'>
<div style='position:absolute; left:200px; top:200px;'

id='theBall'>

</div>
</div>

</body>
</html>

5. String Handling, Loops

• Using Javascript, take some text from the user,
and tell them how many vowels are in that text
(a,e,i,o,u,A,E,I,O,U)

6. Loops

• Make a webpage which obtains a number from
the user

• The user should then be shown all prime
numbers less than or equal to their number

• (A prime number is an integer that's greater
than 1 that has no positive divisors other than 1
and itself).

7. Arrays, Loops

• Create an array containing 100 random
integers, each between 1 and 999.

• In a <p>, display the numbers in sorted order

