
Test-Driven Development TDD 1

�
Test-Driven Development
(TDD)

A software development process where tests are written before the code
that fulfills those tests.

TDD follows a simple cycle of writing a test, writing code to make the test
pass, and refactoring the code for optimization.

TDD Cycle Red Green Refactor.

Red Write a failing test (test case does not pass initially).

Green Write just enough code to make the test pass.

Refactor Improve the code without changing its behavior.

Test-Driven Development TDD 2

The TDD Cycle Explained
� Write a Test Focus on small, specific units of behavior (e.g., a method).

The test should be failing at this point (e.g., a test for a function that
doesn't exist yet).

� Run the Test The test fails since the code doesnʼt exist or is incomplete.

� Write Code Implement just enough code to make the test pass.

� Run the Test Again If it passes, you're ready to move on.

� Refactor Clean up the code for readability, performance, and
maintainability.

Ensure that tests still pass after refactoring.

Test-Driven Development TDD 3

Behaviour-Driven Development BDD is a software development
methodology that extends Test-Driven Development TDD by
encouraging collaboration between developers, testers, and non-
technical stakeholders.

BDD focuses on defining software behavior through examples written in
natural language, often using a Given-When-Then format to specify how
the system should behave.

Why Use TDD?
Catch bugs early by testing small pieces of code individually.

Developers gain more confidence when refactoring since existing
functionality is protected by tests.

Writing tests first encourages modular and cleaner code because the
code is written to satisfy the test.

 The tests themselves serve as documentation, showing how the code is
expected to behave.

When tests fail, itʼs easier to pinpoint the exact piece of functionality that
broke.

Test-Driven Development TDD 4

Slide 4: The Red, Green, Refactor Process in Action
Phase 1 Red Write a Failing Test First)

In the red phase, you write a unit test that defines a functionʼs desired
behavior before implementing it. Since the functionality does not exist
yet, the test will fail.

// Red Phase: Failing Test

import org.junit.jupiter.api.Test;

import static org.junit.jupiter.api.Assertions.*;

class GradeBookTest {

 @Test

 void testAverageGrade() {

 GradeBook gradeBook = new GradeBook();

 gradeBook.addGrade(90);

 gradeBook.addGrade(80);

 gradeBook.addGrade(70);

 // Expecting the average of 90, 80, and 70 to be 80

 assertEquals(80, gradeBook.calculateAverage());

Test-Driven Development TDD 5

 }

}

Phase 2 Green Write Just Enough Code to Make the Test Pass)

In the green phase, you implement the minimal amount of code to make
the test pass.

Now, the test will pass because we've implemented the addGrade and
calculateAverage methods. The code works but can be refactored for
readability and performance.

// Green Phase: Passing Test

import java.util.ArrayList;

import java.util.List;

class GradeBook {

 private List<Integer> grades = new ArrayList<>();

 public void addGrade(int grade) {

 grades.add(grade);

 }

 public double calculateAverage() {

 int sum = 0;

 for (int grade : grades) {

 sum += grade;

 }

 return (double) sum / grades.size();

 }

}

Phase 3 Refactor Improve Code Without Changing Functionality)

One potential improvement is using Java Streams to make the
calculateAverage method cleaner and more concise. Additionally, we can
check for edge cases, such as when there are no grades in the
GradeBook .

Test-Driven Development TDD 6

Edge Case Handling: We added logic to return 0 if no grades have
been added, preventing division by zero.

Stream API The for-loop was replaced with a more concise and
modern approach using Java Streams (mapToInt and average()),
improving code readability and performance.

// Refactor Phase: Improved Code

import java.util.ArrayList;

import java.util.List;

class GradeBook {

 private List<Integer> grades = new ArrayList<>();

 public void addGrade(int grade) {

 grades.add(grade);

 }

 public double calculateAverage() {

 if (grades.isEmpty()) {

 return 0; // Handle case when no grades have

been added

 }

 // Use Java Streams for a cleaner calculation

 return grades.stream()

 .mapToInt(Integer::intValue)

 .average()

 .orElse(0);

 }

}

Best Practices for TDD
Write Tests First Always write your tests before writing the code.

Keep Tests Small Focus on testing one behavior at a time.

Test-Driven Development TDD 7

Frequent Testing Run tests frequently to get immediate feedback on
changes.

Refactor Often Donʼt skip the refactor step; clean code is easier to
maintain.

Avoid Over-Mocking While mocks can help isolate units, overuse can
lead to brittle tests that fail too often.

Common Challenges with TDD
Time Investment TDD initially requires more time, especially for writing
tests, but pays off later.

Legacy Code Introducing TDD into a legacy codebase is challenging
because existing code wasnʼt designed with testability in mind.

Test-Driven Development TDD 8

You're Not Qualified to Have an Opinion on TDD
One of the marks of a good senior developer is that they
have lots of interesting opinions.

https://blog.boot.dev/clean-code/youre-not-qualified
-for-tech-opinions/

Course overview Test-Driven Development
Free online course for learning Test-Driven Development
https://tdd.mooc.fi/

You wonʼt believe how old TDD is
Kent Beck is credited as the TDD inventor. Yet, he claims
he just re-discovered it.

https://arialdomartini.wordpress.com/2012/07/20/yo
u-wont-believe-how-old-tdd-is/

https://blog.boot.dev/clean-code/youre-not-qualified-for-tech-opinions/
https://tdd.mooc.fi/
https://arialdomartini.wordpress.com/2012/07/20/you-wont-believe-how-old-tdd-is/

