
CT417 : Software Engineering III

WK07 Automated Testing - Unit Testing

Outline

• Test Automation / Unit Testing
What is it?
via J-UNIT
how to write?

• Test-Driven Development (TDD)
What is it?
Benefits?

Planned topics for this lesson:

CT417 : Software Engineering III

This week :
unit test

What is Unit Testing?
WK07 Automated Testing - Unit Testing

CT417 : Software Engineering III

What is Unit Testing?
• Unit testing is all about testing individual units of source code

• Use to check that your code is working as expected — It’s
called unit testing because you breakdown the functionality
of your program into discrete testable behaviours that you
can test as individual units

• Unit testing is a key feature of the test-driven development
(TDD) approach to software development

• Developer writes a set of automated unit tests and ensures
that they fail initially. Next the developer implements the bare
minimum amount of code required to pass the test cases.

smallest testable parts of the codebase

WK07 Automated Testing - Unit Testing

CT417 : Software Engineering III

Key Benefit of Unit Testing
Early Bug Detection:

• Catching issues in small, isolated pieces of code makes it
easier to fix bugs before they become more complicated.

Improved Code Quality:

• Unit tests enforce modular code design and clean coding
practices since units are developed to be testable.

Facilitates Refactoring:

• As you refactor code, unit tests ensure that the original
functionality remains intact.

Faster Development Cycle:

• Once tests are in place, they can be rerun quickly, ensuring
that newly introduced code doesn’t break existing features.

WK07 Automated Testing - Unit Testing

CT417 : Software Engineering III

Types of Testing
WK07 Automated Testing - Unit Testing

testing individual functions or methods

tests how different modules / services
work together

verifies the entire systems’s functionality

ensures S/W meets user requirement

CT417 : Software Engineering III

Principles of Good Unit Testing
WK07 Automated Testing - Unit Testing

Isolate the Unit:

• A unit test should only test one function or class without
involving dependencies like databases or external APIs.
Use mocks and stubs for dependencies.

Repeatability:

• Unit tests should produce the same results each time they
run, no matter the environment or order.

Fast Execution:

• Unit tests should execute quickly to allow for continuous
feedback during development.

Independent Tests:

• Each unit test should be independent, meaning tests
should not rely on the order of execution or shared state.

CT417 : Software Engineering III

Anatomy of a Unit Test
WK07 Automated Testing - Unit Testing

Set up the context and inputs

Perform the action being tested (e.g., call the method)

Check if he result matches the expected outcome

CT417 : Software Engineering III

Best Practices in Unit Testing
WK07 Automated Testing - Unit Testing

• Keep Tests Small and Focused:

A single test should only validate one
behaviour or scenario.

• Use Descriptive Names:

Test names should explain exactly what
behaviour is being verified.

• Avoid Over-Mocking:

While mocks are useful for isolating the unit,
overusing them can lead to brittle tests.

• Test Edge Cases:

Don’t just test the "happy path" but also
consider boundary values and error
scenarios.

CT417 : Software Engineering III

Unit Testing in CI/CD
WK07 Automated Testing - Unit Testing

Automation in CI/CD Pipelines:

• Unit tests are automatically executed as part
of the Continuous Integration (CI) process to
ensure new code does not introduce
regressions.

Fast Feedback Loop:

• When developers push code, unit tests
immediately verify whether the change breaks
any functionality, allowing for quick fixes.

Key Metrics:

• Code Coverage: Measures how much of the
code is covered by unit tests.

• High coverage improves confidence, but
coverage is not the only measure of quality.

• Flakiness: Unit tests should be reliable.

• Flaky tests that randomly fail can create
confusion.

CT417 : Software Engineering III

Unit Testing Tools
WK07 Automated Testing - Unit Testing

most popular testing
framework for java apps

a mocking framework used to
mock dependencies and isolate
units during testing

for python, C# and js

CT417 : Software Engineering III

via J-Unit
WK05 Revision - CI and Unit Testing

• In Java, you can write a unit test to check the
behaviour of a number of methods of a single
class, however, it should remain within one class
(i.e., multiple test cases applied to a single class)

• Test code can be run and evaluated
automatically (test automation)

• Similar tools exist for C, C#, js, and other
languages

CT417 : Software Engineering III

via J-Unit
WK05 Revision - CI and Unit Testing

public Class Calculator {
 public int evaluate(String expression) {
 int sum = 0;
 for (String summand: expression.split(“\\+”))
 sum += Integer.valueOf(summand);
 return sum;
 }
}

Example

import static org.junit.Assert.*;
import org.junit.Test;

public class CalculatorTest {
 @Test
 public void evaluatesExpression() {
 Calculator calculator = new Calculator();
 int sum = calculator.evaluate(“1+2+3”);
 assertEquals(6, sum);
 }
}

• JUnit resources:
- https://github.com/junit-team
- https://www.vogella.com/tutorials/JUnit/article.html
- https://www.baeldung.com/junit-5
- https://mvnrepository.com/artifact/junit/junit

https://github.com/junit-team
https://www.vogella.com/tutorials/JUnit/article.html
https://www.baeldung.com/junit-5
https://mvnrepository.com/artifact/junit/junit

