
L E C T U R E 1 4 - 1 5

O B J E C T S E R I A L I Z A T I O N

D R A D R I A N C L E A R
S C H O O L O F C O M P U T E R S C I E N C E

CT326 Programming III

Object Serialization
• Two streams in java.io - ObjectInputStream and
ObjectOutputStream - are special in that they can read and
write actual objects.

• The key to writing an object is to represent its state in a
serialized form sufficient to reconstruct the object as it is read.

• Thus reading and writing objects is a process called object
serialization.

• Object serialization can be useful in lots of application
domains.

Uses of Object Serialization
• You can use object serialization in the following ways:
• Remote Method Invocation (RMI) - communication between objects via

sockets i.e. to pass various objects back and forth between the client and
server.

• Lightweight persistence - the archival of an object for use in a later
invocation of the same program.

• As a Java programmer, you need to know about object
serialization from two points of view:
• How to serialize existing objects.
• How to provide serialization for new classes.

Object Serialization in Practice
• Reconstructing an object from a stream requires that the object

first be written to a stream.
• Writing objects to a stream is a straight-forward process.
• For example, the following code sample gets the current time

in milliseconds by constructing a Date object and then
serializes that object:
• ObjectOutputStream is a processing stream, so it must be

constructed on another stream.

Object Serialization in Practice
FileOutputStream out = new FileOutputStream("theTime");

ObjectOutputStream s = new ObjectOutputStream(out);

s.writeObject("Today");

s.writeObject(new Date());

s.flush();

• This code constructs an ObjectOutputStream on a
FileOutputStream, thereby serializing the object to a file
named theTime.

• Next, the string Today and a Date object are written to the
stream with the writeObject method of
ObjectOutputStream.

Object Serialization with Related Objects
• If an object refers to other objects, then all of the objects that

are reachable from the first must be written at the same time so
as to maintain the relationships between them.

• Thus the writeObject method serializes the specified object,
traverses its references to other objects recursively, and writes
them all.
• The writeObject method throws a NotSerializableException if

it's given an object that is not serializable.
• An object is serializable only if its class implements the Serializable

interface.

Reconstructing serialized objects
• Reading from an ObjectInputStream
• Once you've written objects and primitive data types to a stream, you'll

likely want to read them out again and reconstruct the objects.
• Here's code that reads in the String and the Date object that was

written to the file named theTime in the last example:

FileInputStream in = new FileInputStream("theTime");
ObjectInputStream s = new ObjectInputStream(in);

String today = (String) s.readObject();

Date date = (Date) s.readObject();

• Note that there’s no standard file extension for files that store serialized
objects

Reconstructing serialized objects
• Like ObjectOutputStream, ObjectInputStream must be

constructed on another stream.
• In this example, the objects were archived in a file, so the code

constructs an ObjectInputStream on a
FileInputStream.

• Next, the code uses ObjectInputStream's readObject
method to read the String and the Date objects from the file.

• The objects must be read from the stream in the same order in
which they were written.

Reconstructing serialized objects
• Note that the return value from readObject is an object that

is cast to and assigned to a specific type.
• The readObject method deserializes the next object in the

stream and traverses its references to other objects recursively
to deserialize all objects that are reachable from it.

• In this way, it maintains the relationships between the objects.
• The methods in DataInput parallel those defined in
DataOutput for writing primitive data types.

Serializing classes
• Providing Serialization for Your Own Classes
• An object is serializable only if its class implements the Serializable

interface.
• Thus, if you want to serialize the instances of one of your classes, the

class must implement the Serializable interface.
• The good news is that Serializable is an empty interface.
• That is, it doesn't contain any method declarations; it's purpose is simply

to identify classes whose objects are serializable.

The Serializable Interface
• Here's the complete definition of the Serializable interface:

package java.io;

public interface Serializable {

// there's nothing in here!
};

• To make instances of your classes serializable, just add the
implements Serializable clause to your class
declaration.

A Serializable class
• Example of serializable class ...

public class MySerializableClass implements Serializable {

...

}

• You don't have to write any methods.
• The serialization of instances of this class are handled by the
defaultWriteObject method of ObjectOutputStream.

Instance variables in Serializable classes
• All instance variables to be serialized must be serializable
• Referenced objects must be serializable, including those within

referenced data structures
• In Java, all primitive type variables are serializable by default
• Can ignore instance variables in the process by declaring them

as transient

The defaultWriteObject method
• This method automatically writes out everything required to

reconstruct an instance of the class, including the following:
• Class of the object
• Class signature
• Values of all non-transient and non-static members, including members

that refer to other objects.
• For many classes, the default behaviour is fine.
• However, default serialization can be slow, and a class might

want more explicit control over the serialization.

Customising Serialization
• You can customise serialization for your classes by providing

two methods for it: writeObject and readObject.
• The writeObject method controls what information is saved

and is typically used to append additional information to the
stream.

• The readObject method either reads the information written
by the corresponding writeObject method or can be used to
update the state of the object after it has been restored.

Customising Serialization
• The writeObject and readObject methods must be

declared exactly as shown in the following example.
• Also, it should call the stream's defaultWriteObject as the

first thing it does to perform default serialization (any special
arrangements can be handled afterwards):

private void writeObject(ObjectOutputStream s)

throws IOException {

s.defaultWriteObject();
// customised serialization code

}

Customising Serialization
• The readObject method must read in everything written by
writeObject in the same order in which it was written.

• Here's the readObject method that corresponds to the
writeObject method just shown:

private void readObject(ObjectInputStream s)
throws IOException {

s.defaultReadObject();

// customised deserialization code
// followed by code to update the object,
//if necessary

}

Customising Serialization
• Also, the readObject method can perform calculations or

update the state of the object in some way.
• The writeObject and readObject methods are

responsible for serializing only the immediate class.
• Any serialization required by the superclasses is handled

automatically.
• However, a class that needs to explicitly co-ordinate with its superclasses

to serialize itself can do so by implementing the Externalizable
interface.

Externalizable Interface
• For complete, explicit control of the serialization process, a

class must implement the Externalizable interface.
• For Externalizable objects, only the identity of the object's

class is automatically saved by the stream.
• The class is responsible for writing and reading its contents,

and it must co-ordinate with its superclasses to do so.

Next time…
• Object Serialization demo

