Data Science Data Science Skillset

« Statistics, mathematics and IT skills (e.g. programming)
*Turning data into something meaningful

*Science of uncertainty

* Quintessential interdisciplinary science

Data Science Skillset Data Science Skillset

* Statistics, mathematics and IT skills (e.g. programming)  °Statistics, mathematics and IT skills (e.g. programming)

*Logical thinker
*Problem solver

e Good communicator



What is / are Statistics?

What does the term,
“Statistics ”

mean to you ?

What is / are Statistics? What is / are Statistics?

A statistic: A statistic*: any quantity computed from

sample data

Science of statistics: Science of statistics:

collecting, classifying, summarizing, organizing, ===
analyzing, estimation and interpretation of information

* Terminology also used for function to calculate the summary quantity



Role of Statistics Role of Probability

Field of statistics deals with the collection, presentation,

analysis, and use of data to: eProbability provides the framework for the study and

application of statistics
* make decisions

e solve problems
e design products and processes

It is the science of uncertainty

Statistical Methods

The Science - Science of summarizing data,

Statistical Methods numerically and graphically...
Descriptive NTere el Analysis methods applicable depends on the variable
Statistics Statistics being measured and the research questions which you

are trying to answer ...

https://www.nuigalway.ie/adult-learning/about-us/didyouknow/

https://visual.ly/community/infographic/animals/shark-attack




Thinking Challenge

Inferential Statistics: science of using the information fSu.ppose the §tudent newspaper

in your sample to say (i.e. to “infer”) something about is interested in what proportion

the population of interest of NUI Galway students pay rent
and

the average amount of rent paid

pAlIEALL]

How would you find out?

Breakdown the question...

What is the individual / experimental unit? Some important terms:

What is the population of interest?
Pop An experimental unit / individual

What are the variables of interest? is a single object upon which we collect data,
e.g. person,
What types are these variables? thing,
transaction,
What are the parameters of interest? event.

How would you collect the data?
What are the observations for the variables?

How would you summarise these observations?



Population A population
is a collection of
experimental units/individuals Sample
that we are interested in studying. \__7
e.g. people,
things,
transactions,
events

Population

A variable is a characteristic or property of an individual

A sample experimental unit.
is a subset of experimental units /

individuals from the population. examples:
e.g. people,
things, height
transactions, grade score
events account balance
gender (m/f/non-binary),
letter grade (A, B, C, etc.),
Likert scale (agree, neutral, disagree, etc.)

Sample



A variable is a characteristic or property of an
individual experimental unit

]

Qualitative

}

Quantitative

May be measured, or more generally
“observed”, on each individual

A variable is a characteristic or property of an

individual experimental unit.

]

Qualitative

¢

|

}

Quantitative

¢

|

Nominal

Ordinal

Discrete

Continuous

Qualitative Data:

Classified into categories,
can be ordered:

* Grade achieved in ST2001

@A

or unordered:
* Gender of each employee

at a company Q d 6

* Method of payment G
(cash, cheque, credit card) ——

A variable is a characteristic or property of an
individual experimental unit.

|
! l

Qualitative Quantitative
| —
Nominal Ordinal Discrete Continuous
v v ¥ ¥
Gender Education level # of texts sent Age, rent
Pay rent? Satisfaction level # of phone calls Temperature




Gapminder Data: https://www.gapminder.org/

Gapminder Data

The Gapminder Foundation is a Swedish NGO which promotes sustainable global development by
increased use and understanding of statistics about social, economic and environmental development

gapminder %>% head() Continuous ‘ Continuous ‘ ‘ Continuous ‘
Nominal .

## # A tibble: 6 x 6
Welcome to the Gapminder Global Facts test! ##  country continent year lifeExp pop gdpPercap
You will get 13 fact questions. There's a time limit of 45 seconds per question. e “fon> « <f‘_:t> Snt> “dbl> <ime> <dbl>

## 1 Afghanistan Asia 1952 28.8 8425333 T79.
If you pass the test, you are qualified to become a Gapminder and we'd like to honor you with the Gapminder Global Facts Certificate! ## 2 Afghanistan Asia 1957 30.3 9240934 821.
If you don't pass the test, don't worry: we won't tell anyone and you can try again later. HE.B Afghanist.an Asdd 1962 32.0 10267083 8L,

## 4 Afghanistan Asia 1967 34.0 11537966 836.
Thanks for spreading a fact-based worldview, starting with yourself. ## 5 Afghanistan Asia 1972 36.1 13079460 T40.
Good luck! ## 6 Afghanistan Asia 1977 38.4 14880372 786.

The Gapminder Team gapminder %>% dim()
Next
## [1] 1704 6
= Nominal Discrete /

Continuous?
http://forms.gapminder.org/s3/test-2018

* What is the rypical observation? * What is the rvpical observation?
o Is there much variation/spread between individuals in
the dataset?



» What is the rypical observation?

e Is there much variation/spread between individuals in

the dataset?

» How are the observations distributed over all
individuals in the group — i.e. what is the shape or

distribution?

» What is the rypical observation?

* Is there much variation/spread between individuals in

the dataset?

» How are the observations distributed over all
individuals in the group — i.e. what is the shape or

distribution?

* Are there any values lying outside of the range where
the majority of the dataset values lie — our/iers?

Summarising data (variables) can be done numerically,
with appropriate summaries, or graphically, with

appropriate plots

* What is the rypical observation?
o Is there much variation/spread between individuals in

the dataset?

* How are the observations distributed over all
individuals in the group — i.e. what is the shape or

distribution?

* Are there any values lying outside of the range where
the majority of the dataset values lie — out/iers?

Summarising Categorical Data

* Numerical Summary: frequency count and percentage

Continent Frequency
Africa 624
Americas 300

Asia 396
Europe 360
Oceania 24

Proportion

0.36619718
0.17605634
0.23239437
0.21126761
0.01408451

gapminder %>} select(continent) %>% table()

#o.

##  Africa Americas Asia  Europe Oceania

## 624 300 396 360

24

gapminder %>J select(continent) %>% table() %> prop.table()

## .
## Africa Americas Asia Europe Oceania
## 0.36619718 0.17605634 0.23239437 0.21126761 0.01408451




Summarising Categorical Data

* Graphical summary: bar chart, pie chart

ggplot (data=gapminder, aes(x=continent))+
geom_bar() +
ylab("Frequency")

Frequency

geom_bar ()+
ylab("Proportion")

Summarising Continuous Data

‘‘‘‘‘‘‘‘ A

Central
Tendency

.
Numerical Data
Properties
A 2 é K 3
Variation Shape
Mean Range t Outliers
Median IQR Symmetry
Mod Vari versus
ode ariance skewness
Standard
Deviation

ggplot (data=gapminder, aes(x=continent,y = (..count..)/sum(..count..)))+

aaaaaa

Summarising Categorical Data

* Graphical summary: bar chart, pie chart

Advice: don’t use pie

continent c h a rts

el People find determining
- angles very difficult

B oceania

Easier to understand
lengths/heights

Numerical summary of typical value:

Definition

Suppose that the observations in a sample are 1, x3,...,z,. The sample mean,
denoted by Z, is

n
E—in—z1+x2+.”+x”
- .

i=1

" ->| Sensitive to extreme values

Given that the observations in a sample are 1, xa, . .., Z,, arranged in increasing
order of magnitude, the sample median is

. {ac(n+1)/2, if m is odd,

%(%/2 + zn/2+1)v i 7 is.evan. >| NOT Sensitive to extreme values

Mode is the most frequent observation in a dataset. |




Example
Data: breaking strength of wire in kilograms
220 214 222 218 223 210 223 210 227 225 212

* Find the median:
* Order the data from lowest to highest

210 210 212 214 218 2£ 222 223 223 225 227

Median

* Find the Mean:

* Mode is 210 and 223, as both have been repeated twice

Numerical Summary of Spread

Range = maximum - minimum

Examples:
- 1,2,5,8,10 givesrangeof10-1=9
« 1,5,5,5,10 also gives range of 9

* Clearly the range is poor measure of spread
* Also badly affected by outliers

Summarising Continuous Data

Numerical Data

Properties

/ N
vy r 2

Central ..
Variation Shape
Tendency
Mean Range |: Outliers
Median IQR Symmetry
versus
Mode Variance
skewness
e Standard

Deviatio,

Numerical Summary of Spread

* Interquartile range (IQR = Q;- Q,)
*  Middle 50% range of data, so is robust to outliers
Split ordered data into 4 quarters

25% | 25% | 25% | 25%
Q Q, Q,

A B

Lower Quartile Median Upper Quartile




Tukey’s Method for IQR (lots of others)

Data: breaking strength of wire in kilograms
220 214 222 218 223 210 223 210 227 225 212

Put data in ascending order:
210 210 212 214 218 220 222 223 223 225 227
r afis r

Q, =213 Median Q,; =223
Lower (Upper) quartile is median of lower (upper) 50% of data
including the median

IQR = Q,- Q, =223 -213 =10

Sample Standard Deviation

* In same units as original variable
* So preferable to sample variance, which is in squared units

e But... it is sensitive to outliers

Numerical Summary of Spread

* Common measure of spread is the standard deviation, which takes into
account how far each data value is from the mean

* A deviation is the distance of a datapoint from the mean

* Since the sum of all the deviations would be zero, we square each
deviation and find an average (of sorts) of them (called the variance)

* We the square-root this average squared deviation... Why?

The sample variance, denoted by s2, is given by
Definition " (o - 3)
2 T, — T
5= ; n—1
The sample standard deviation, denoted by s, is the positive square root of
5 :
s°, that is,
s=Vs2.

Data: breaking strength of wire in kilograms
220214 222 218 223 210 223 210 227 225 212
*  Find the sample variance

* Find the sample standard deviation

x =218.5455




Numerical Summary in R: Vector

wire.strength <- ¢(220,214, 222, 218, 223, 210, 223, 210, 227, 225, 212)

> mean(wire.strength)
[1] 218.5455

> median(wire.strength)
[1] 220

> var{wire.strength)
[11 37.67273

> sd(wire.strength)

[1] 6.137811

summary() function uses a different formula for quartiles

> summary(wire.strength)
Min. 1st Qu. Median Mean 3rd Qu. Max.
210.0 213.0 220.0 218.5 223.0 227.0

fivenum() function uses Tukey’s method for Q; and Q,
called the five number summary

> Fivenum{wire.strength)
[1] 210 213 220 223 227

Summarising Continuous Data

Numerical Data

Properties

A 2 é x 3
Central ..
Variation Shape
Tendency
Mean Range t Outliers
Median IQR Symmetry
versus
Mode Variance
skewness
b Standard

Deviation

Numerical Summary in R:

Calculate the mean of life expectancy for gapminder data:

Tibrary(tidyverse)
gapminder %>% summarise(mean(1ifeExp))
‘méan (1 "ife!gxp)_ .

59.5

Calculate the mean of life expectancy for different continents:

gapminder %% ]
group_by(continent) %-%
summarise(mean(1ifeExp))

continent “mean(1ifeExp)’ arrange
africa 48.9
Americas 64.7
Asia 60.1
Europe 71.9
Oceania 74.3

gapminder %%
group_by(continent) %%

summarise(mean.1ife = mean(1ifeExp)) %%

arrange(mean.1ife)
continent mean.life

Africa 48.

9
Asia 60.1
Americas 64.7
Europe 71.9
Oceania 74.3

Summarising Continuous Data: Shape

* Graphical summary: boxplot, histogram

o



Boxplot Boxplot of Breaking Length

. Ahboxplotclls a z‘;glr'aphlcal display showing center, spread, Data: breaking strength of wire in kilograms
shape, and outliers. 220214 222 218 223 210 223 210 227 225 212
* It displays the 5-number summary:

. . Variable Minimum Q1 Median Q3 Maximum
min, Q,, median, Q;, and max Breaking Length  210.00 213.00 220.00 223.00 227.00

Upper fence: Q3+ 1.51QR=223+1.5x10 =238

Whisker extends to Whisker extends to

smallest data point within largest data point within LOWer fel’]ce: Ql - 1_5 IQR = 213 - 1,5 X 10 = 198
1.5 interquartile ranges from 1.5 interquartile ranges
first quartile from third quartile
lgaore {gaore
First quartile  Second quartile  Third quartile Lower - Upee
; T S Fenc
\[@/ Esy Foo 4 2 ] 238
o o } f o0 o Pt e SR e i e ° of E = e e -
X 7 A /
OQutliers Qutliers Extreme outlier Breahing
o o ’ 1o
«—— 1.5 1GR | 1.5 1GR : QR —>1 1.5 1GR : 1.5 1GR — Loy | b Steyth

nhoogems MV gin e

49

Think about a garden “fence” and closest ball is within your gardenn!

Graphical Summary in R: boxplot () Histograms

x = c(220, 214, 222, 218, 223, 210, 223, 210, 227, 225, 212)

_ _ v" Useful to show general shape, location and spread of data values —
boxplot (wire.strength, horizontal=TRUE) .
representation by area

Construction

* Determine range of data — minimum, maximum
* Split into convenient intervals (or bins)
* Usually use 5 to 15 intervals

* Count number of observations in each interval - frequency

T T T T
210 215 220 225
* Note: boxplot () function in R gives exactly same result

» Other functions / software may use different method to calculate the quartiles (and/or fences)
* Usually these differences are minor so can be ignored



Histogram of Breaking Length

Data: breaking strength of wire in kilograms
220214 222 218 223 210 223 210 227 225 212
. Find the minimum and maximum
. Make classes of width 5 starting from minimum
. Count the frequency
. Plot the histogram!

Frequency

T T T
210 215 220

breaking strength of wire (kg)

AN A NN

(a) Unimodal (b) Bimodal (¢) Trimodal
(d) Symmetric () Positively skewed () Negatively skewed
(long upper tail) (long lower tail)

(2) Symmetric (h) Bimodal with gap (i) Exponential shape

| < spike

(i) Spike in pattern

outlier outlier
& '3

(k) Outliers (1) Truncation plus outlier

Figure 2.3.10 Features to look for in histograms and stem-and-leaf plots.

225 230

e.g. minimum value

|~ for free postage!!!

Shape of the data

When talking about the shape of the data, make sure to address the
following three questions:

1. Does the histogram have a single, central hump or several well separated
bumps?

2. Isthe histogram or boxplot symmetric? Or more spread out in one
direction, i.e. skewed

3. Any unusual features? e.g. outliers, spikes

Remember the mean, median and mode ?

The mean is the average data value,

Left-Skewed Symmetric Right-Skewed
Mean Mode l\z::](ii:n Mol(:: . Mean
Median Mean ecdian

The value of the mean is strongly affected by
skewness and outliers, - more so than the median.



Plot the boxplot of life

Shape & Box Plot
These shapes can also be seen in the boxplots
Left-Skewed Symmetric Right-Skewed
Median Q, Median @, Median 0O,

\ AN
s 0 I

Left skewed - Longer tail on left than right, median
may not be central in the box.

Graphical Summary in R: Dataframe

expectancy for gapminder data: for different continents

ggplot (gay
geon_bo

80-

2

Life Expectancy (years)

s
&

der, aes(y = lifeExp)) +

ylab("Life Expectancy (years

nent, y = lifeExp)) +

)

Plot the boxplot of life expectancy

Life Expectancy (years)

00 02 04 Africa Americas Asia
Continent

%%

Graphical Summary in R: Vector

hist(wire.strength)

boxplot(wire.strength, horizontal=TRUE) Histogram of wire.strength
< -
o 4
>
,,,,,,,,,,,,,,,,,,,,,, 3
2
o
=1 N
o
e
w
T T T T
210 215 220 225 2= : ; ; s
210 215 220 225

wire.strength

Explanatory and response variables

230

TIP: Explanatory and response variables
To identify the explanatory variable in a pair of variables, identify which of the two
is suspected of affecting the other and plan an appropriate analysis.

explanatory might affect response
variable variable




Explanatory and response variables

TIP: Explanatory and response variables
To identify the explanatory variable in a pair of variables, identify which of the two
is suspected of affecting the other and plan an appropriate analysis.

explanatory might affect response
vai'rable varilabfe

l |

Continent mentafet |, Life expectancy

Graphical summaries of data

* Depends on the variable of interest
* Categorical response variable: barchart (n or %) or pie chart

. gate orical response variable with an explanatory variable: grouped
archart

* Continuous response variable: histogram, boxplot, density plot

* Continuous response variable with an explanatory variable: grouped
boxplot

Using "R

* R statistical computing and visualisation software
*Free open source package,
*Commonly used software for statistics

* 18,000+ contributed packages / libraries
* Lots of tutorials online
* Lots of sources of online help

64



@ DataCamp O Search

@ DataCamp 0 Search

THE SMARTEST WAY TO COURSES

Learn Data Science Online

The skills people and businesses need to succeed are cha

Intr ction to Py

Introduction to R
matter where you are in your career or what field you v ntroduction to SQL
need to understand the language of data. With DataCamp, you learn

data science today and apply it tomorrow. Data Science for Everyone

m ool

Introduction to Data Engineering

Introduction to Deep Learning in Python

See all courses (338)

@R @ Python E saL

cran.r-project.org

+
www.rstudio.com/download @ St u d i O®

A Gentle Start in .Q

Let's add a liftle colour, better axis labels and a title to make it more suitable.

Introduction to R

Rcode |@statover | | © Soiution

1 brary (tidyverse)
R as a Calculator 2

)+ geom par() ~

3 mbcars %% geplot(aes(cyl, Fill = facter: X
Count”, title = "Count Cars with No. of Cy

1abs(x = "Number of cylinders”, y =

Storing Things in R
Count Cars with No. of Cylinders
Vectors to Store Data

Selecting Data from Objects

What Have | Created? How to Delete:
10-
Things?
- .
a-
§ i 5 ; ;

5 8 7
Number of cylinders

factor(cyl)
B
| B
B

Count

Previous Topic

65 6

2.1 What are R and RStudio? moderndive.com
For much of this book, we will assume that you are using R via RStudio. First time users often confuse
the two. At its simplest:

« Ris like a car's engine

« RStudio is like a car’s dashboard

R: Engine RStudio: Dashboard
More precisely, R is a programming language that runs computations while RStudio is an integrated
development environment (IDE) that provides an interface by adding many convenient features and tools.
So the way of having access to a speedometer, rearview mirrors, and a navigation system makes driving
much easier, using RStudio’s interface makes using R much easier as well.
68

67



Installing R and RStudio

RStudio o

@ StUd i0® is an integrated development environment for R.

Tutorial in installing R and RStudio on your computer
(and key packages):

Details of Data
Objects produced.

Commands stored in
an R seript file.

https://jjallaire.shinyapps.io/learnr-tutorial-00-setup/

Y Graphics produced

Histogram of y

More instructions videos on Blackboard, but do also

g google!
s ]
2694446 0.33512555 -0.02565555 (.9/881880 *
072739 -1.32365245 -0.20680299 -0.47461682 -
,
L B —T
)
H s 6 7 8 9
y

requency

R session window: >
Processed commands
and outputs.

2 3 4

Send commands to R session
window using Run or Source

https://rmarkdown.rstudio.com/lesson-1.html

Garr

Introducing R Markdown »

*R Markdown is a file format for making dynamic
documents with R
* Written in markdown (an easy-to-write plain text format)
and contains:
* chunks of embedded R code (data management,
summaries, graphics, tables, analysis and interpretation)
s all in the one document R Markdown?
* Document can be knitted to html, pdf, word and many messe
|
other formats! & Knit ~

| 2 e 0 e&-wr_h-_.

70
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Key Benefits of R Markdown Drawback of terminal and R script?

*R Markdown makes it easy to produce statistical | | =l Fisourcconswe | & 2+ 5
reports with code, analysis, outputs and write-up all in
one place

egl =- c\(10, 23,14,12,34,26,28)
mean{egl)

* Perfect for reproducible research!
* Easy to convert to different document types

Bt B R SR WU N

egl <- (10, 23,14,12,34,26,28)

VNN N N NN NN

> mean(egl)
[1] 21
>

https://github.com/rstudio/cheatsheets/raw/master/rma |
rkdown.pdf

73 74

Creating R Markdown Document Basic R Markdown Document

i

New R Markdown

3 Rstudio | =
1 @] Untitled! =
File| Edit Code View Plots Session Buld Debug Profile Tools Hel 1 cament Title: | Example R-Markdown | U . . ~ -
New Eile =0 T = 1 = v Al @knit - - T Insert ~ [ ®Run ~ | B -
New B (s y Al T3 Presentation Author: | Carl Scarrott | 1--——
e R Notebook e» K 2 title: "Example R-Markdown"
. o /& shiny Default Output Format: 3 author: "Carl Scarrott”
Open File.. Culr0 +Run | %+ bSource - S efault Output Format: :
r - R Markdown... — o 4 date: "9/5/2021"
Reopen with Encoding. e From Template HTML 58 output: word_socuient
Recent Files ¥ Recommended format for authoring (you can switch to PDF 6a —
Text File \ or Word output anytime). 7
Open Project. Eh 8+ " “{r setup, include=FALSE} v
Open Project in New Session. = PDF 9 knitr::opts_chunk$set(echo = TRUE)
Recent Projects G R Sweave PDF output requires TeX (MikTeX on Windows, MacTex 10-
RHTML 2013+ on OS X, TeX Live 2073+ on Linux). 11
Import Dataset L 12 - # R Markdown
R Presentation . 13
® Wor A . . . :
Save Ctrl+S R Documentation 14 This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS word documents. For
Previewing Word documents requires an installation of MS : : 4
Save fs. Wt o Lt/ isen G ceson Lt more details on using R Markdown see <http://rmarkdown.rstudio.com>.
Save with Encoding. : 15 . 0 . .
Saye All CotAlES 16 when you click the **knit** button a document will be generated that includes both content as well as the output of any
£ embedded R code chunks within the document. You can embed an R code chunk like this:
Knit Document CtrleShift+K i . N
- X b
Comy Report. 18 {r cars} "
19 summary(cars)
Print. Rt 20~
Craste Empty Document oK Cancel 23 .
Close Chr+W &l 22 - ## Including Plots
23
Close All Ctrl+ Shifts W
7 24 You can also embed plots, for example:
Close All Except Current Ctrl+ Al St W 55
Clase Project 21 [ Bomple R-Markdown & R Markdown
Quit Session.. cul-Q 75 76




@ Example Rmdl

2 title: "Example R-Markdown"
3 author: "Carl Scarrott”

4 date: "9/5/2021"

5 output: word_document

75 i
7

8~ " {r setup, include=FALSE}
9 knitr::opts_chunkiset(echo = TRUE)
10~ °°°

11
12 - ## simple Example
13

Edit and “knit” Document

VA @k -

Knit to HTML

1@

Knit to PDF
W| Knit to Word

Knit with Parameters...

& Clear knitr Cache...

Knit Directory >

14 I have created a simple example dataset and calculated the sample mean.

15+ ° r

16 somedata = c(10, 23, 14, 12, 34, 26, 28)
17 mean(somedata)

18~ "7

19

20 Here is a boxplot of the data
21~ """{r, echo = FALSE}

22 boxplot(somedata)

23 T

24

Structure

R Markdown documents contain three types of content

| untitled. Rmd*~ =0T
: 13—
2 title: "A YAML Header"
3 output: html_document
i -

5

6 Text in **Markdown**

7

8- " {r}
9 # A code chunk
10
13
12

13 Text in **Markdown**

13:21 B3 output: html_decument &

Ol | Y Qe - (0 Insert - Ll = Run -

A Markdonn +

AYAML header

77

79

L

T Abstract

Example R-Markdown
Carl scarrott

9/5/2021

simple Example

Ihave created a simple example dataset and calculated the sample mean.

somedata = c(10, 23, 14, 12, 34, 26, 28)
mean(somedata)

## (1] 21

Here is a boxplot of the data

10 15 20 25 30
L

R Markdown knitted to Word

AaBbCeDd  AaBbCel AaBbCcl

TAuthor  TBiblogr..

Stytes

Code Chunks

Write and execute code in a chunk. Insert with

S untitled Rmd~ =0

1+ --—-
2 title: "A YAML Header'
3 output: html_document
[

5

6 Text in **Markdown**
7

g "' {r}

9 # A code chunk

10

1T

1z

13 Text in **Markdown**

1321 [ output: himi_document & & Markdonn +

H VR - T -t L R -

« Command + Opt +1 (@)
Control + Alt +1 0)
« GUI Insert buttcn

Typing out the tick marks

78
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Code Chunks

Write and execute code in a chunk.

b @) untitied. Aimd*
Old 7V ALA - 5 - s

title: "A YAML Header"
output: html_document

Text in **Markdown**

0N U R W N

= A
9 # A code chunk

13 Text in **Markdown**

13:21 | [ cutput: htmi_document ¢

ert - L] Run -

A Markdonm %

code chunks
above

Click to run
code in chunk

Headers

# Header 1

## Header 2

### Header 3
#### Header 4
###H## Header 5
#H#i#A%# Header 6

Click to run all

=

Header 1
Header 2

Header 3

Header 4
Header 5

Header &

81
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Code Chunks

Write and execute code in a chunk.

@ | untitied.Rmd~

o
Ll

Wee NG R W

NE Y R e

title: "A YAML Header"

output: html_document

Text in **Markdown**

<SR

# A code chunk

| print("hello"p

[1] "hello”

Text in **Markdown**

B Chunk 1 =

e r

R Markdewn 2

Text
_italics_
__bold__
“code”

Click to run all
code chunks
above

Click to run
code in chunk

=

Text

italics

bold
code



Lists

Bullets

* pullet 1
* pullet 2

Numbered list

1. item 1
2. item 2

Code chunks

Here’s some code
o{r}
dim(iris)

Bullets

¢ bullet 1
e Dbullet 2

Numbered list

1. item 1
2. item 2

Here's some code

dim(iris)

## [1] 150 5

85
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Equations

According to
Einstein,

$E=mcr{2}$

Chunk Options

Here’s some c
""" {r echo=FALSE}
dim(iris)

According to

Einstein, E = mc?

Here's some code

## [1] 150 5

86
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echo = FALSE

Here’s some code Here's some code
“**{r echo=FALSE}

dim(iris) ## [1] 150 5

Displays code results, but not code

89

include = FALSE
Here’s some code Here’s some code
" {r include=FALSE}

dim(iris)

Displays neither code not results (but code is run)

91

eval = FALSE
Here’s some code Here’s some code
" {r eval=FALSE}

dim(iris) dim(iris)

Displays code, but not results (code is not run)

90



Statistical Methods

The Science -

Statistical Methods
Descriptive Inferential
Statistics Statistics

Science of summarizing data,
numerically and graphically...

Analysis methods applicable depends on the variable
being measured and the research questions which
you are trying to answer ...

science of using the
information in your sample to say (i.e. to “infer”)
something about the population of interest

to infer or estimate the value of
population parameters using sample statistics as
estimates

We will come back to this later!

How would you collect the data?



Population Features of population:
“population parameters”

Sample

\"——7

Estimate/Infer from sample:

“sample statistics”

Fopulation

Inference

—

Sample
Population \'-——?
parameters Probability
Sample
Inference / Inferential Statistics : statistics

estimating a parameter using sample statistic

Key concepts

* Population

* A parameter is a single value summarising some feature of
variable of interest in the population

* It is usually unknown...

* Sample
* A statistic is a single value summarising the observed values
of the variable from the sample collected

* Sample statistics will vary from sample to sample
* Source of uncertainty....

Inferential Statistics:
Inference is the process of making decisions about
a population based on information in a sample

Science of Inferential Statistics:
to infer or estimate population parameters using
sample statistics



Frequency Count
n

Population of Circles (Diameters)

Your Samples

Mean of 5 Circle Diameters

Take a representative sample
of 5 circles from the
population of 60 circles and
use the sample mean as an

estimate of the true
population mean

Histogram of Estimated Mean
Sample Size = 5

1

2501
2004

£ 150
S

U 100
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1.0 16 1.8 2.0
Estimated Mean




Histogram of Estimated Mean
Sample Size = 25

1

100
N JVH—Hh_I—_
0 T T

0.6 0.8 1.0 12 14 16 18 2.0
Estimated Mean

Frequency

A consequence of natural variation

Histogram of Estimated Mean
Sample Size = 50

1
1

Frequency

501
O T T

0.6 0.8 1.0 12 14 16 1.8 2.0
Estimated Mean

is that two samples drawn from the
same population will usually give
different estimates of the population
parameters

Referred to as sampling variation

How can we choose a
representative sample of size
500 University of Galway
students?




Convenience
Non-probabilistic sampling methods are techniques of obtaining a sample
that is not chosen at random and may be subject to sampling bias.
g Examples of Convenience Sampling
* In the amount spent on rent weekly problem sending emails to students in
the hope of a response may give this result
» Could sample by standing at entrance to college bar or on concourse —
another example of convenience sampling

An issue with Convenience Sampling
» Leave it to experimental unit to choose to complete a survey or opinion poll
* Aresponse may be more likely to be received because a responder has a
particularly strong opinion
 If sample consists of mainly such strong opinions, then sample may not
be representative of population

Convenience Simple Random Sampling

Population ”"Subset of z7 units chosen

from population of N units,
chosen randomly so that
every unit has same chance
of selection”

Or equivalently, every randomly subset of same size has
same change of being observed




Sound easy...

Just “table and label”!

https://istats.shinyapps.io/RandomNumbers/

Generate Random Numbers ~ Random Numbers  Coin Flips

Pick 1 random number between 1 and 20

Statistics STATISTICS
| ﬂﬂnﬂn

THE ART & SCIENCE OF LEARNING FROM DATA

An introductory statistics textbook for a one or two-semester course. Table of Content.
Web Apps Datasets
iso2c  country year Population Si
Sampling Distribution of the Sample Mean AR Arpantine 2012 Aoes
AU Australia 2012 22683
s BE Belgium 2012 11142
BR Brazil 2012 198656/
cA Canada 2012 34880,
c Chile 2012 17464,
. N China 2012 1350695¢
K > 8 TR co Colombia 2012 47704
Ot Dasunon Hetograr o ove sampse) £G Egypt,ArabRe 2012 80721
’ R France 2012 65696
i DE German y 2012 81889
| HK HongKongSAI 2012 7154
4 R — IN India 2012 1236686

https://www.artofstat.com

Choose Minimum: Choose Maximum:
1 20| s |
1 2 3 4 5 6 7 8 9 10
How many numbers doyou  Sample with
want to generate? Replacement?
| @ Yes No
11 12 13 14 156 16 17 18 19 20
Current Simulation: Al Simulations:
y P Random Number

Simple random sample

Difficulties:

* Obtaining a sampling frame (list of all experimental units)

* Possibly time consuming / expensive

* Minority groups, by chance, may not be represented in sample
e.g. population of N = 17,520 University of Galway students,

400 of which are mature students

how many in sample of n = 5007?




Convenience

Population

SRS
Stratified

Proportional Allocation

MALE, 56% ‘

n =100

FEMALE, 44%

N = 10,000

Stratified Random Sampling

(i) Split entire population into
homogeneous groups, called strata

(ii) Take a SRS from each stratum

Stratified Compared to SRS

Ensure representation from minority groups

Estimates of the population parameters per
strata may be of interest

Possibly reduction in cost per observation in the
survey

Increased accuracy as reduced sampling error
(less variation within a stratum)



Stratified Compared to SRS

e Can you correctly allocate each individual to
one and only one stratum?

* Should every group receive equal weight?

* What if some strata are more varied than
others?

* Take into account mean, variance and cost to
get “optimal allocation”

Convenience

Population

\

SRS Cluster
Stratified

What if a sampling
frame (or strata criteria)
is unavailable?

Cluster Sampling

Instead of randomly choosing
individuals,

a SRS of collections or groups of
individuals is taken



Cluster Sampling

Population is broken up into regions or groups, usually a
natural partition, called a cluster

e.g., geographical areas, or a class!

Clusters are assumed representative of entire population

(internally heterogenous, between are homogeneous)
Small number of clusters are selected at random

Every individual within a cluster are observed

Note:
in stratified sampling all
strata are sampled while in
cluster sampling only some
clusters are sampled

This is a crucial point!

Cluster over Stratified

*Sampling frame not necessarily needed

* May be more practical and / or economical than
SRS or stratified sampling

* Will be biased if entire cluster not sampled

e Careful if homogeneity within cluster and
heterogeneity between clusters as this can
increase sample error

Summary

*Try to estimate population parameters with sample
statistics

* Want sample to be as representative of the population
as possible

* Probability based sampling schemes are best in terms
of minimising chance of bias



Typical Exam Questions Typical Exam Questions

1. Which of the following statements is true 2. A sampling frame is:

di lation:
TeRATding @ popuiation a) the list of units from which the

sample is chosen;
b) atable of random numbers;
c) anon-probabilistic sampling
method.

a) it must refer to people;

b) itis a collection of individuals or
objects;

c) neither of the above.

Typical Exam Questions Collecting the Data (Sampling)

3. Sampling that divides the population in * Observational Study
subgroups and chooses a proportionate number
from each subgroup at random is called: « Designed Experiment

a) cluster sampling;
b) quota sampling;
c) stratified sampling.



Observational studies & experiments

* Observational study:

* data collected only by observing what occurs (e.g. surveys,
historical records)

* When researchers want to investigate causal relationships best to
conduct an experiment

* Usually there will be both an explanatory and a response variable

* Be wary of confounding variables.

Designed (comparative) Study

* An experiment allows us to prove a cause-and-effect
relationship

* An experiment will:
* Define treatment factor(s)
* Randomly assigns subjects to treatment levels

* Compares responses of the subject groups across
treatment levels

* Key difference between an observational study and an

experiment is that in an experiment we apply a treatment

to the subjects in a controlled way

Designed (comparative) Study

* An experiment allows us to prove a cause-and-effect

relationship

* Experimenter must identify:

* at least one explanatory variable, called a factor, to
manipulate; and

* at least one response variable to measure

* They must control any other nuisance factors that could

influence the response, e.g. weather, day of week, ...

Comparative Studies (Independent Samples)

Groupl ———> Treatment1

Random

Allocation \ /

Qroup 2 —> Treatment 2

COVWPGYC

* Randomisation

* Control Group

* Baseline (Pre) measurement

* Blinding

* Replication, not pseudo-replicates



Designed Study (cont.) Principles of Study Design

* When humans are involved, the term “experimental units” is
commonly replace with subjects or participants * Controlling (not just control group)

* Atreatment is a combination of specific levels from all the factors

that an experimental unit receives « Randomisation

* A baseline measurement is the initial measurements of the response

at the beginning of the experiement L
. . * Replication
* Changes from the baseline due to varying the treatment level are of

usually interest

* A control group receive a standard treatment (usually a placebo, or * Blocking (stratifying)
no treatment at all) called a control treatment, often the response is
not expected to change from baseline for the control group

* Blinding

Principles of Experimental Design
TEXTBOOKS 1.5.1 Principles of experimental design
Randomized experiments are generally built on four principles. L4 Control I | ng
Controlling. Researchers assign treatments to cases, and they do their best to control

any other differences in the groups. For example, when patients take a drug in pill b NEEd tO COﬂtrOl a” nUisa nce faCtOrS th at may |nﬂuence rESpOHSE

OpenIntro form, some patients take the pill with only a sip of water while others may have it

BEtiatics with an entire glass of water. To control for the effect of water consumption,  doctor or sources of variation, other than the treatments of interest by
may ask all patients to drink a 12 ounce glass of water with the pill. making Conditions aS Similar aS possib|e for a” treatment groups

Srd Ed]_tlon Randomization. Researchers randomize patients into treatment groups to account for
variables that cannot be controlled. For example, some patients may be more suscep-

2015, 436 pages ihle F——" ek i dio it ationta i
tible to a disease than others due to their dietary habits. Randomizing patients into

the treatment or control group helps even out such differences, and it also prevents

accidental bias from entering the study. ° Ra n d om isat|o n.:
Ensure every student can access the course textbook Replication. The more cases researchers observe, the more accurately they can estimate “ . ”
T R SR RN the effect of the explanatory variable on the response. In a single study, we replicate ® Attem ptS tO eq ua ||Se the effeCtS Of un knOWﬂ or un ContrO I Ia ble
* FREE Download by collecting a sufficiently large sample. Additionally, a group of scientists may . .
* $14.99 B&W paperback, Amazon (eligible for Prime) replicate an entire study to verify an earlier finding. sources Of va rlatlon
. and Reseller options (bulk orders)

Saet ety PDE Blocking. Researchers sometimes know or suspect that variables, other than the treat- ° It does nOt eliminate the Effects Of these SOUFCES, but it

ment, influence the response. Under these circumstances, they may first group in-

e dividuals based on this variable into blocks and then randomize cases within each t ri es to m i n i m i se th e i r i m p a Ct

block to the treatment groups. This strategy is often referred to as blocking. For

T —— instance, if we are looking at the effect of a drug on heart attacks, we might first split . . . . .
il patients in the study into low-risk and high-risk blocks, then randomly assign half ® WIthOUt ra ndomlsatlon, y0U dO nOt have ava | Id eXpe rl ment

Data sets + R packages + LaTeX source the patients from each block to the control group and the other half to the treatment

group, as shiown in Figure 1,16, This strateay ensures each treatumient group has an and will not be able to use the powerful methods of statistics
Typos and feedback equal number of low-risk and high-risk patients. H
to draw conclusions from your study



Principles of Experimental Design

* Replication:
* Repeat the experiment, applying the treatments to a number of
subjects
* Blocking (stratifying):
*  Sometimes attributes of the experimental units, that we are not

studying, and that we can’t control may affect the outcomes of an
experiment

* Solution: group similar individuals together and then randomise
within each of these blocks, to remove much of variability between
the blocks

* Note: blocking is an important compromise between randomisation
and control but is not required in an experimental design

Principles of Experimental Design

* Blinding:
* Refers to the concealment of treatment allocation, from
one or more individuals involved in a study

* Although randomisation minimizes differences between
treatment groups at the start of the study, it does nothing to
prevent differential treatment of the groups during trial, or
the differential assessment of outcomes, which may result in
biased estimates of treatment effects

* Best practice to minimise the likelihood of differential
treatment or assessments of outcomes is to blind as
many individuals as possible in a trial (e.g. participants,
experimenters, statisticians)

Blocking

* When experimental units within a group are similar, it’s often a good
idea to gather them together into blocks

* Blocking isolates the variability due to the differences between
the blocks so that we can see the differences due to the
treatments more clearly

* Basically it removes a source of noise so signal stronger

* When randomization occurs only within the blocks, we call the
design a randomized block design

* Blocking is same idea for experiments as stratifying is for sampling

Blinding

* There are two main classes of individuals who can affect the outcome:
* those who could influence the treatment response (usually the
subjects, treatment administrators or technicians)
* those who evaluate the results (statisticians, researchers, physicians,
etc.)

¢ When all individuals in either one of these classes are blinded, an
experiment is said to be single-blind (usually the first class)

* When everyone in both classes is blinded, the experiment is called
double-blind



Placebos

Often simply applying any treatment can induce an improvement

To separate out the effects of the treatment of interest, we can use a
control treatment that mimics the treatment itself

A “fake” treatment like the treatment being tested is called a placebo
(e.g. saline solution or inert pill)

Placebos are the best way to blind subjects from knowing whether
they are receiving the treatment or not

Best Practice for Experiments

e Usually:

* randomised

* comparative

* double-blind

* have control group (either placebo or a standard treatment)

Placebo Effect

A placebo effect occurs when taking the sham treatment results in a
change in the response variable

Just being involved in an experiment can change behavior or feelings

Highlights both the importance of effective blinding and the
importance of comparing treatments with a control

Placebo controls are so effective they should be considered an
essential tool for blinding whenever possible

Observational Studies

In an observational study we may compare units that happened to
receive different treatments

Example: Smoking & Lung Cancer

* Simply comparing across groups that smoked or not

* No control of treatment allocation

* Are those prone to smoking also naturally prone to lung cancer?

* Could identifying “possible” causes, but cannot establish causation

Only properly designed and executed
experiments can reliably demonstrate
cause-and-effect




What Can Go Wrong? What Can Go Wrong?

* Don’t give up if you can’t run an experiment * Bad things can happen even to good experiments
* If we can’t perform an experiment, an observational study * Protect yourself by recording additional information
may be good option * Account for nuisance factors in your modelling, even if

you randomised
* Beware of confounding; some other unmeasured variables

that has an effect on the response variable intertwined in the * Don’t spend your entire budget on the first run
experiment (e.g. severity of disease at baseline) * Run a small pilot experiment first
+ Use randomisation whenever possible to minimise risk of * You may learn some things that will help you make the

confounding full-scale experiment better

Always report any possible unavoidable confounding

Proposed Design Pilot Study




Summary

* Observational studies are tricky to analyse
* Experimental studies are the key to establishing cause and effect

* Both observational and experimental studies need randomisation to collect
unbiased data. But they do so in different ways and for different purposes:

* Observational studies attempt to randomly select participants from the
population.

* Experiments are usually done by randomly assigning the treatments to the
experimental units (e.g. patients) to reduce bias.

* No Control no Experiment
* Carry out a Pilot study
* Consult your favorite Statistician (bring gifts)




Topic 4: Probability

Summary so far

* Statistical inference involves sampling from populations to generate
an estimate (i.e. a statistic) of a population parameter of interest.

* Choosing a sample at random is crucial. Subjective sampling will lead
to bias (e.g. circles example).

First, an introduction: Dr Nicola Fitz-Simon

* Studied statistics at TCD, PhD (2006)

* Worked as a statistician on research studies and lecturing in the UK at
Oxford University, LSHTM, Imperial College London

* Most recent post in Galway in the Clinical Research Facility
* Research interests in statistical methods for causal inference
* Contact details next week ...

The challenge ...

* It is well and good to see what happens if you take lots of samples at
random from a population.

* In practice you will only be taking one sample !

* What can you say about how likely your statistic is to be a good guess of
the population parameter of interest ?

* To answer this we need to look at some probability theory.



The Role of Probability

eProbability provides the framework for the study and application
of statistics.

*Probability concepts will be introduced in the next few lectures.

The International
Bestseller

Thinking,

lPMRP ?{S]Bé[i [[% ILTE Fast and Slow

[ = I

Daniel Kahneman

Winner of the Nobel Prize @

Learning Objectives

Interpret probabilities and calculate probabilities of events
Calculate the probabilities of joint events
Interpret and calculate conditional probabilities

Determine independence and use independence to calculate
probabilities

5. Understand Bayes’ theorem and when to use it

e

Probability:

How likely ... ?



Tossing a coin

* If | toss a coin, what is the probability it will turn up heads?

What are probabilities?

* 6-sided die about to be tossed for the first time

* Classical: 6 possible outcomes, by symmetry each equally likely to
occur

* Frequentist: Empirical evidence shows that similar dice thrown in the
past have landed on each side about equally often

* Subjective: the degree of individual belief in occurrence of an event —
can be influenced by classical or frequentist arguments, eg here may
be willing to bet at a rate of 1/6 on any side

* Subjective probabilities also influenced by other reasons when
symmetry arguments don't apply and repeated trials are not possible

11

Tossing a coin

Magician and statistician Persi Diaconis found that when tossing a coin
and catching it in the hand the probability of the same face turning up
as initially is about
0.51. https://www.youtube.com/watch?v=AYnJv68T3MM

Numberphile

likely - . L L] L]
context
g ‘ likety
‘© probably- L] [ ] — .
abi
] probabily
— unlikely
unlikely = . - . bd Ld
' . ' : '
0.00 025 .50 0.75 1.00

personal probability



Probability

* The probability of an event A is the number of (equally
likely and disjoint) outcomes in the event divided by
the total number of (equally likely and
disjoint) possible outcomes.

# of outcomesin A

PIA) = # of possible outcomes

(0 <P(A)< 1) **

13

Examples of Sample Spaces

* Toss a coin twice
S={HH, HT, TH, TT }

*  Roll a pair of dice and record numbers
§={(11),(1,2),..,(1,6),(2,1),..., (2,6),...,(6,6)}

*  Roll a pair of dice and record total score
$=12,3,4,5,6,7,8,9,10,11, 12}

*  Toss a coin until first tail appears
S = {T, HT, HHT, HHHT, ...}

*  Maeasure duration of charge of mobile phone

battery
S={t|t>0}

All possible outcomes (Sample spaces)

* The set of all possible outcomes of a random experiment is
called the sample space, S.

* Sis discrete if it consists of a finite or countable infinite set of
outcomes.

* Sis continuous if it contains an interval of real numbers.

« P(S)=1 **

Events

An Event is a specific collection of sample points /
possible outcomes.

An event is denoted by E or capital letters at the start
of the alphabet, A, B, C etc.

16



Example: Lottery

Events

An Event is a specific collection of sample points /
possible outcomes. An event is denoted by E

A Simple Event is a collection of only one sample
point/possible outcome

e Eg:Throwadie—Eventl:geta4d

E1={4} - a simple event

17

9007 National
- Lottery

1234567 891011121314 151617 18 19 20 21 22 23 24 2526 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

Since launch of Lotto 6/45 on November 4th 2006.
Balls 46 and 47 introduced September 31 2015.
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Events

An Event is a specific collection of sample points /
possible outcomes. An event is denoted by E

A Simple Event is a collection of only one sample
point/possible outcome

e Eg:Throwadie—Eventl:geta4
E1={4} - a simple event

A Compound Event is a collection of more than one
sample point/possible outcomes

e Eg: Throw a die —Event 2: get at leasta 4

E2={4,5,6} - a compound event

Learning to count ..

* How many outcomes are there for the lotto when the outcome of
interest is to guess 6 numbers correctly from 47 ?

* How many ways can this occur ?

* Combinatorics: permutations and combinations

20



To calculate a probability:

If each sample point in the sample space is equally likely

P(Event) =  Number of outcomes in event
Total number outcomes in sample space.

So we need to learn how to count....

Counting by Multiplication

The fixed-price dinner at a restaurant provides the
following choices:
Appetizer: Soup or Salad
Main Course: Baked chicken,
Broiled beef patty,
Baby beef liver,
or Roast beef
Dessert: Ice-cream or Cheese cake
How many different three course meals can be
ordered? 2x4x2=16

23

Counting by Multiplication

The fixed-price dinner at a restaurant provides the
following choices:
Appetizer: Soup or Salad
Main Course: Baked chicken,
Broiled beef patty,
Baby beef liver,
or Roast beef
Dessert: Ice-cream or Cheese cake
How many different three course meals can be
ordered?

The multiplication principle

If a task consists of a sequence of choices in which there are
p selections for the first choice,
g selections for the second choice,
r selections for the third choice,

and so on,

then the task of making these selections can be

donein

pXqgxr..
different ways.



Example: Postal delivery

You have just been hired as a Post Delivery
person for University of Galway. On your first
day, you must travel to seven buildings with
letters.

How many different routes are possible?

25

Example: Committee Problem

Three members from a 14-member committee
are to be randomly selected to serve as chair,
vice chair, and secretary.

The first person selected is the chair, the
second person selected is to be vice chair, and
the third secretary.

How many different committee structures are
possible?

Example: Postal delivery

You have just been hired as a Post Delivery
person for University of Galway. On your first day,
you must travel to seven buildings with letters.

How many different routes are possible?
7x6x5x4x3x2x1=5040

Example: Committee Problem

Three members from a 14-member committee
are to be randomly selected to serve as chair,
vice chair, and secretary.

The first person selected is the chair, the
second person selected is to be vice chair, and
the third secretary.

How many different committee structures are

possible? 14x13x12=2148




Permutations

A is an arrangement of objects.

We have seen that arranging n distinct (different)
objects can be donein  n(n-1)(n-2)..3.2.1
different ways.

This calculation is often written using the
symbol. If nis an integer, the factorial symbol n!
is defined as

Eg. 3!=32.1=6 Eg 2/=21=2

29

Permutations

A permutation can also be

objects
where replacement in the selection is not allowed.

n
The symbol, Pr , represents the number of
permutations of r objects selected from n objects.

The calculation is given by the formula:

i n!
" o(n—r)!

Example: Postal delivery

You have just been hired as a Post Delivery
person for University of Galway. On your first day, .“\
you must travel to seven buildings with letters.

o

How many different routes are possible? -
7x6x5x4x3x2x1=5040=7!

>
R'« > factorial(?7)
[1] 5e4@

Example: Committee Problem

Three members from a 14-member committee
are to be randomly selected to serve as chair,
vice chair, and secretary.

The first person selected is the chair, the
second person selected is to be vice chair, and
the third secretary.




Example: Committee Problem

Three members from a 14-member committee
are to be randomly selected to serve as chair,
vice chair, and secretary.

The first person selected is the chair, the
second person selected is to be vice chair, and
the third secretary.

pra 14
> (14 -3)!
>
R > factorial(l4)/factorial(14-3)

[1] 2184
>

Renmore U12 Soccer
* 6 players available, {A,B,C,D,E,F}
* 5 a side competition

* Number of permutations of 6 players choosing 5 at a time ?

op __m __ 6 _ 6 _
Ps = (n-r)!  (6-5)! 1! 720

) = factorial (&) /Tactorial{6-5)
[1] 720

Example: Renmore U12 Soccer
* 6 players available, {A,B,C,D,E,F}
* 5 a side competition

* Number of permutations of 6 players choosing 5 at a time ?

Renmore U12 Soccer

* 6 players available, {A,B,C,D,E,F}
* 5 a side competition

* 720 permutations — be careful as order doesn’t matter here !

Team A,B,C,D,E is the same team as E,D,C,B,A ..... lots of double
counting



Combinations (when order doesn’t matter!)

The number of combinations of n distinct objects taken r at a time is

(:) - r!(nni Il

Renmore U12 Soccer
* 6 players available, {A,B,C,D,E,F}
* 5 a side competition

* Number of combinations ?
n! 6! 6!
6C5 = — = =6
ri(n—-r)! 5!(6=5)! 511!

) choose(6, 5)
R [1] 6

Renmore U12 Soccer
* 6 players available, {A,B,C,D,E,F}
* 5 a side competition

* Number of combinations (as order doesn’t matter) ?

Renmore U12 Soccer

* 6 players available, {A,B,C,D,E,F}
* 5 a side competition

* 6 teams to choose

{A,B,C,D,E}, {A,B,C,D,F}, {A,B,C,E,F}, {A,B,D,E,F}, {A,C,D,E,F}, {B,C,D,E,F}

* Total football, every child gets a chance ... what is the probability of
any team of this list being the one chosen to start ?

40



ll "National

S Knowing when order matters is important ...

* https://www.youtube.com/watch?v=wOLxoCF19Ng

. 1

1234567 8910111213141516 171819 20 21 22 23 24 2526 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

Since launch of Lotto 6/45 on November 4th 2006.
Balls 46 and 47 introduced September 31 2015.
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Winning the Lotto Winning the Lotto

* 47 balls available, {1,2,3, ... ,47} ¢ 47 balls available, {1,2,3, ... ,47}

* 6 are selected at random ¢ 6 are selected at random

* Number of combinations ? * Number of combinations ?

n! wrm M 47 47
YCo = T Co = Tt — siar—o) — o1l
' ' = 10737573

Q > Choose(47,6)
\ [1] 10737573

43



National
! Lottery

. 1

1234567 8910111213141516 171819 20 21 22 23 24 2526 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

Since launch of Lotto 6/45 on November 4th 2006. > choose(47,6)
Balls 46 and 47 introduced September 3™ 2015. [1] 10737573
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ﬁ National
- Lottery

For a 4 euro bet, a player fills two lines - two sets of 6 numbers.

What is the probability of winning the Irish Lotto with a 4 euro
bet if ordering is not important?

With two lines there are two chances

. 2 _
P(Wln) = m =0.0000001862618

47

' National
Lottery

For a 4 euro bet, a player fills two lines - two sets of 6 numbers.

What is the probability of winning the Irish Lotto with a 4 euro
bet if ordering is not important?

46

Repetition: n non-distinct elements

The number of permutations of n of which
niare of one kind,
nz are of a second kind,

ceey

and n« are of a kth kind
is given by

n!
nilno! -+ ny!

where ni+ nz2+... + nk=n.

48



Repetition example: flags

How many different vertical arrangements
are there of 10 flags if 5 are white,
3 are blue and 2 are red?

Solution:

Joint Events ....

* Class survey ...

Example: flags

How many different vertical arrangements
are there of 10 flags if 5 are white,
3 are blue and 2 are red?

Solution:

10!
513121

= 2520

> factorial(1@)/(factorial(5)*factorial(3)*factorial(2))
[1] 2520

>
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Simple scatterplot

““{r cars}
ST2001.Data. 5c %=% ggplot{aes(y=Intelligence, x=Looks))+
geom_point{)
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Simple scatterplot A better scatterplot

. . . 5 “““fr cars} = )
p <- 5T2001l.Data.sc =% ggplot(aes(y=Intelligence, x=Looks))+
geom_point(l+
T ° ° ° i geom_jitter )+

geom_abline(intercept=0, slope=1, linetype="dashed”, color= "red")+
theme classic()

| p <- ggeExtra::ggmarginal(p, type="histogram")
Points are jittered (i.e. no longer hidden behind each other) and a line of equality (i.e. y=x) is added as a
reference and (marginal) histograms for each variable displayed.
Looks e o2 o
Joint Events ...
10.0 & ol
* Write down 9 characteristics that your ideal person in life must have.
e Fo * Assign a probability to each event.
= R . ’ T » Work out the probability of meeting a person with all characteristics
you have listed.
" Line of Equality (y=x)
2 50 7 100
56
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Joint events (and / or)

* Probabilities of joint events can often be determined from the
probabilities of the individual events that comprise them.

+ Joint events are generated by applying basic set operations to
individual events, specifically:

* Complement of event A is

A =all outcomes not in A
* AUB — Union of events; A or B or both
* ANB — Intersection of events A and B

* Disjoint events cannot occur together, i.e. ANB =
%)

Example: Rolling a die

* A=scoreondieiseven={2,4,6}
* B=scoreondieisodd ={1,3,5}
* C=scoreis greaterthan4={5,6}
*ANB={}=0
*AUB={1,2,3,4,5,6}=S

* AnC = {6}

* BNC = {5}

* (ANC) v (BNC) = {5,6}

* (AUB) NC = SNC=C={5,6}
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Example: Rolling a die

* A =score on die is even = { }

* B = score on die is odd ={ }

* C=score is greater than 4 = { }
* ANB =

* AUB =

* ANC=

*BNC=

* (ANC) U (BNC) =

* (AUB) NC =

Probability of a Union

* For any two events A and B, the probability of union is given by:

Example ?

P(4UB) = P(A)+P(B)- P(ANB)

v
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Probability of a Union: disjoint events

* For two disjoint events A and B, the probability
that one or the other occurs is the sum of the
probabilities of the two events.

P(AU B)= P(A)+ P(B)

provided that A and B are disjoint.
(also called mutually exclusive)

P Ty isioi L
Example ? Disjoint event share no common outcomes ~ "°disiointsets, Aand B

ANnB=0

Example .... exam paper 2018

b) A Garda report claims that 78% of drivers who are stopped on suspicion of drunk
driving are given a breath test, 36% a blood test and 22% both tests. What is the
probability that a randomly selected suspected driver is given a test?

b) 0.78 +0.36-0.22=0.92

Example .... exam paper 2018

b) A Garda report claims that 78% of drivers who are stopped on suspicion of drunk
driving are given a breath test, 36% a blood test and 22% both tests. What 1s the
probability that a randomly selected suspected driver is given a test?

62

Example: Draw a card; event A —an Ace; event B
—a heart

B B Total
A I 4
52 52 52
: 12 36 48
52 52 52
Total 13 39 1 1.00
52 52
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Table of joint probabilities

B B Total

A | P(ANB) | P(ARB) | P(A)

bl

P(A~B)|P(ANB)| P(A)

Total | P(B) | P®B) | 1.00

Intersections (A and B)

Multiplication Rule for independent events:

For two independent events A and B, the probability
that both A and B occur is the product of the
probabilities of the two events

P(ANB)=P(A)x P(B)

provided that A and B are independent.

This means that occurrence of one event has no impact on the probability of

occurrence of the other event.

67

Are events disjoint (mutually exclusive) ?

* If P(A U B) is greater than 1 then you know you have made a mistake
and the events were not mutually exclusive (i.e. there is an
intersection).

* Domain knowledge is needed here ...

66

Example: Electronic components

Two electronic components are selected at random from a production
line for inspection. It is known that 90% of the components have no
defects.

What is the probability that the two inspected components have no
defects?
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Example: Electronic components with

Calculate probability of intersection of A and B
dependence

Let A =15t component no defect, B=2"4 component has no defect What if the probability of the second component having no defects
changes once we know that the first component had no defects ?

P(A N B) ? How might this arise ?

P(AnB) =P(A)P(B)
=0.90-0.90
=0.81

Conditional Probability Independence revisited

Two events A and B are independent if and only if

* P(B | A) is the probability of event B occurring, given
that event A has already occurred. P(ANB) = P(A)P(B).

Therefore, to obtain the probability that two independent events will both occur,
we simply find the product of their individual probabilities.

The conditional probability of B, given A, denoted by P(B|A), is defined by

Two events A and B are independent if and only if
P(ANB
P(B|A) = —( )

pP4) provided  P(4)> 0. P(B|A) = P(B) or P(A|B)= P(A),

assuming the existences of the conditional probabilities. Otherwise, A and B are
dependent.

If in an experiment the events A and B can both occur, then
P(ANB) = P(A)P(B|A), provided P(A) > 0.




Example: Electronic components (dependent
events)

Two electronic components are selected at random from a production
line for inspection. It is known that the probability that the first
component has no defects is 0.90 and that the probability that a

second component has no defects given that the first component
had no defects is 0.95.

What is the probability that the two inspected components have no
defects?
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Are events independent ?

* Assuming independence is a HUGE assumption

* The product will be less than 1 so your answer will always make sense
but is unlikely to be correct!!

Calculate probability of intersection A and B

Let A =15t component no defect, B=2"4 component has no defect
given that A had no defect.

P(A N B)?

PAANB) =P(A)-PB|A)
=0.90x0.95
=0.855

Knowing that the first was defect free has increased the probability of both being defect free
(i.e. from 0.81 to 0.855) I

Sally Clark, mother wrongly convicted
of killing her sons, found dead at home

- Family says she never recovered from court case
- Cause of death to be determined by coroner
N\
‘ Professor Sir Roy Meadow, the

% controversial paediatrician, an expert
witness at the trial, told the jury the
chance of two children in an affluent
family suffering cot death was "one in
73m" The Royal Statistical Society
disagreed and wrote to the lord
chancellor saying there was "no statistical

Sally Clark, the solicitor wrongly convicted of murdering her two baby sons, was
found dead by her family at her home yesterday.

Mrs Clark, 42, who served three years of a life sentence after being found guilty




Conditional probability when B depends on A

* To find the probability of the event B given the event
A, we restrict our attention to the outcomes in A. We
then find the fraction of those outcomes B that also
occurred.

P@lA)=4 (i)B)

* Note: P(A) cannot equal 0, since we know that A has
occurred.

General Multiplication Rule with dependent
events

* The conditional probability can be rewritten to further generalise the
multiplication rule.

P(B\A):W

Task:

1. rewrite this formula in terms of P(A N B)

2. Use the fact that P(A N B)=P(B N A) and
see if you can reverse the conditioning ...
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Example: musical children

At a parents evening at the local Boys school a parent
was overheard to say:

“Both of my children are musical”

What is the probability that this parent has two boys?

General Multiplication Rule

* The conditional probability can be rewritten to further generalise the
multiplication rule.

P(An B)=P(A) -P(B|A)
P(Bn A) = P(B)-P(A|B)

As P(An B) =P(B nA) implies

P(A). P(B|A) = P(B) -P(A|B)
~_ )



Reversing the Conditioning

¢ This results means that P(A|B) can be calculated once we
know P(A), P(B, and P(B|A).

¢ From this information, we can find P(A|B):

_ P(B|A4)+P(4)
B)= 7(8) for P(B)>0

P(4
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Diagnostic tests/ Screening

83

Bayes’ Theorem

* Thomas Bayes (1702-1761) was an English mathematician and
Presbyterian minister.

* Bayes’ theorem states that,

P(B|4)+P(4)

P(418)=—=1

for P(B)>0

Recall P(B m A) = P(A n B) implies P(B|A)-P(A) = P(A|B)-P(B)
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Example: Breast Cancer Screening

* Breast cancer occurs most commonly amongst older
women (>60) where it is estimated that 3.65% get breast
cancer.

* A mammogram can typically identify correctly 85% of
cancer cases (sensitivity) and 95% of cases without
cancer (specificity).

* Ifawomanin her 60s gets a positive test what is the
probability she has breast cancer?



Breast Cancer Screening tree diagrams PBC|+) =7

Think about how many ways can a test come back

BC Test +
positive ?
Test -
* Tree diagrams are very useful here. P(Test '|') ?
No
BC Test +
Test -
PBC|+) = ? P(BC|+) = ?
0.85 0.85
BC Test + BC Test + 0.0365*0.85=0.031
0.0365 0.0365 -
Test - - Test -
P(Test +) ? - P(Test +) ?
Bg 0.05 Test + Bg 005 Test - 0.9635*0.05=0.048
0.9635 0.9635
Test -

Test -



P(B|A).P(A) -
P(B)

P(A | B) = for P(B) > 0

P(test + | BC).P(BC)-
P(test +)

P(BC | test +) =

(0.85x0.0365)

P(BC | test +) = 57250.0365)+ (0.05x0.9635)

P(BC |test+) =0.392
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1000 women

Y \

1 0 have breast 990 do not have
cancer breast cancer
9 1 * 99 T 891
have breast cancer has breast cancer do not have do not have
and test positive and tests negative breast cancer breast cancer
and test positive and test negative

Interpretation ?

* The probability of having breast cancer given that the test comes back

positive is 0.392.

* How would you communicate this result ?

Example: printer failures

* A printer manufacturer obtained the following three
types of printer failure probabilities:

Hardware P(H) =
Software P(S) =
Other P(0O) =
Also, previous experiments suggest
P(F| H)=0.9
P(F|S)=
P(F|O)=

If a failure occurs, determine if it’s most likely due to hardware,
software, or other.



Types of printer failure As a tree:

Fail F 0.9*0.1=0.09

If a failure occurs, determine if it’s most likely due to hardware, 0.9

software, or other.

Hardware

We have P(F | H), P(F | S) and P(F | O) 0.1

Fail F 06*0.2=0.12 P(F ) )
we need to calculate 0.2 )

Software

P(H | F), P(S | F)and P(O | F) 06

0.5 F 0.5*%0.3=0.15
Start by calculating P(F). Otgzr
Calculate probability of failure P(F) Calculate P(H|F) using Bayes rule

P(F)=P(F|H)P(H)+P(F|S)P(S)+P(F|O)P(O) P(F|H)-P(H) 0.9-0.1

=0.9(0.1)+0.2(0.6) + 0.5(0.3) = 0.36 P(H |F) = =0.250
(0.1)+0.2(0.6) +0.5(0.3) (H | F) P(F) 036

Now calculate P(H | F) using Bayes Rule



Calculate P(S|F) using Bayes rule

P(F|H)-P(H) _0.9:0.1

P(H|F)= =0.250 P(H|F)= =0.250
P(F) 0.36 P(F) 0.36
P(F -P 0.2:0.6 . 2-0.
P(S|F)= (F15)-P(S) _ =0.333 w P(S|F)=P(F|S) PS) _02:06_ 535
P(F) 0.36 P(F) 0.36
y e P(OlF)zP(F|0)-P(O)=O.5-O.3=0.417
softvare B P( F) 0.36 softvare
o7 Note that the conditionals given failure add to 1.

Printer failure interpretation

Calculate P(O|F) using Bayes rule

P(F|H)-P(H) _0.9-0.1

Screening test for disease: Bayes' Rule
example

Because P(O | F) is largest, the most likely cause of the problem is

in the other category.

Fail F
0.2

Fail
os- F
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b) The proportion of people in a given community who have a certain disease is 0.005. A test is
available to diagnose the disease. If a person has the disease, the probability that the test will
produce a positive signal is 0.99. If a person does not have the disease, the probability that the
test will produce a positive signal is 0.01. If a person tests positive, calculate the probability

that the person actually has the disease?

[10 marks]
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Calculate probability of disease given test +

Let D represent the event that the person actually has the disease, and let + represent the event that
the test gives a positive signal. We wish to find P(D|+). We are given the following probabilities:

P(D) = 0.005, P(+ | D) =0.99, P (+ | not D) =0.01
P(D | +) = (0.99)(0.005) / ( (0.99)(0.005) + (0.01)(0.995) )= 0.332

(0.99)*(0.005) / i (0.99)%(0.005) % (0.01)*(0.995) )
[1] 0.3322148
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Example: Astronauts ( Bayes' Rule)

* Astronauts on the shuttle realise that oxygen levels are
dropping. There are 3 possible problems that can cause oxygen
levels to drop (0): a leak in fuselage (L), malfunctioning oxygen
pump (M) and a CO, filter in need of replacement (F). It is
known that:

P(L) =0.02,
P(M) =0.49,
P(F) = 0.49.
Ground crew run simulations to find:
P(O|L)=1,P(O | M)=0.4,P(O | F)=0.6,

What should the astronauts try to fix first ?

Bayes Theorem with Total Probability

If E,, E,, ... E, are k mutually exclusive and

exhaustive events and B is any event,

P(B|E,)P(E,)
P(B|E,)P(E,)+P(B|E)P(E,)+..+ P(B|E,)P(E,)

P(E|B)=

where P(B) >0

Note : Numerator expression is always one of

the terms in the sum of the denominator.

Calculate P(L| Q)

) P(O[L)P(L)
P(LIO) = BB TR+ PO TM)P(M)+P(OFIP(F))

_ 1x0.02
T (1%0.02) + (0.4%0.49) +(0.6%0.49)

_ 0.02

"~ 0.51

=0.039



Calculate P(M| Q) Calculate P(FIO)

_ P(O|M)P(M) _ P(O|F)P(F)
P(MIO) = 5o TOR+P(OM)PIM)+P(OTEIP(E)) P(FI0) = 5B TR +PO [M)P(MI+P{OTEIP(F))
_ 0.4%0.49 _ 0.6%0.49
0.51 ~0.51
- 0.384 = 0.576
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Astronauts should check the filter first!

Section Summary
Note that P(L|O) + P(M]|0O) +P(F|O)=1

» Sample spaces (list by hand or use counting techniques)
* Permutations and combinations
* Probability
* Axioms
* Joint events as Unions (“or”) or intersections ("and”)
* For unions: mutually exclusive events ?
* For intersections: independent events ?
* Conditional probability and Bayes Rule
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What Can Go Wrong?

* Beware of probabilities that don’t add up to 1.

* To be a legitimate probability distribution, the sum of the probabilities for all
possible outcomes must total 1.

* Don’t add probabilities of events if they’re not disjoint.
* Events must be disjoint to use the Addition Rule.
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Learning Objectives

1. Determine probabilities from probability mass functions and
cumulative distribution functions.

2. Understand the assumptions for probability distributions.

5 . Ra ndom Va rlables 3. Select an appropriate probability distribution to calculate

probabilities.

and Pro bab| I |ty D|Str| but|0ns 4. Calculate probabilities, means and variances for probability

distributions.

Random variables

A random variable takes a numeric value based on the outcome of a

Definitions

A random variable is a function that associates a real number with each element random event.
in the sample space.

Denote by capital letter — X, Y, Z, etc.

. L. . . X A particular value of a random variable will be denoted with a lower case
The probability distribution of a random variable X gives the letter — x, y, z

probability for each value of X.
There are two types of random variables:

@ Discrete random variables: can take one of a finite number of
distinct outcomes.

e Continuous random variables: can take any numeric value within a
range of values.



Example: Discrete Random Variable Example: Discrete Random Variable

Computer chips may be classed as defective (D) or non-defective (V). Computer chips may be classed as defective (D) or non-defective ().
A large batch contains a proportion 0.1 of defectives, and 3 are sampled at A large batch contains a proportion 0.1 of defectives, and 3 are sampled at
random. random.

The possible outcomes, together with their probabilities are:-

Sample prob X
NNN
DNN
NDN
NND
DDN
DND
NDD
DDD

s Random variable X is the number of defectives in the sample.

Example: Discrete Random Variable Example: Discrete Random Variable

Computer chips may be classed as defective (D) or non-defective (V). Computer chips may be classed as defective (D) or non-defective ().
A large batch contains a proportion 0.1 of defectives, and 3 are sampled at A large batch contains a proportion 0.1 of defectives, and 3 are sampled at
random. random.
The possible outcomes, together with their probabilities are:- The possible outcomes, together with their probabilities are:-

Sample Prob X Sample Prob X

NNN (0.9)° NNN (0.9)* 0

DNN (0.1)(0.9)2 DNN (0.1)(0.9)2 1

NDN (0.9)(0.1))0.9) NDN (0.9)(0.1))0.9) 1

NND (0.9)%(0.1) NND (0.9)%(0.1) i

DDN (0.1)%(0.9) DDN (0.1)%(0.9) 2

DND (0.1)(0.9)(0.1) DND (0.1)(0.9)(0.1) 2

NDD (0.9)(0.1)2 NDD (0.9)(0.1)2 2

DDD (0.1)* DDD (0.1)* 3

Random variable X is the number of defectives in the sample. Random variable X is the number of defectives in the sample.



Probability model (discrete)

The collection of all possible values of a random variable together with
associated probabilities is called the probability model

In the example, Pr(X = 1) can be determined by adding up the
probabilities of the 3 sample points associated with the event X =1, etc

X Pr(X = x)

w NN = O

A couple having children will stop when they have a child of each sex or
three children.

outcome ‘GGG GGB GB BG BBG BBEB
Probabiﬁty‘

Let the random variable X be the number of girls in the family

x ‘ 0 1 2 3

Probability function for a discrete random variable represented pictorially
by a bar graph.
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Probability model (discrete)

The collection of all possible values of a random variable together with
associated probabilities is called the probability model

In the example, Pr(X = 1) can be determined by adding up the
probabilities of the 3 sample points associated with the event X =1, etc

X Pr(X = x)
0 (0.9)
1 3(0.1)(0.9)?
2 3(0.1)2(0.9)
3 (0.1)?

A couple having children will stop when they have a child of each sex or
three children.

outcome ‘GGG GGB GB BG BBG BBB

1 1

Probabil'\ty‘ 3 i1 i

1 1 1
8 1 8 8

Let the random variable X be the number of girls in the family

x ‘0 1 2 3
TESE

1 1
8 8

Probability function for a discrete random variable represented pictorially
by a bar graph.



Probability Function: Bar Graph

0.50 —

P(X=x)

Choosing a number at random

Probability
Rk

survey.data %>% select (number) %>% table %>% prop.table %>% round(digits

number
1 2 3 4 5 6 7 8 9 10
0.02 0.11 0.10 0.12 0.09 0.09 0.22 9.13 9.10 0.03

13

= )

= 73

15

Class survey: choosing a number at random

Frequency

-}
survey.data %>% select (number) %-% table

Choosing a number at random

Probability

FEEEE - P
survey.data %>% select (number) %>% table %>% prop.table %>% round(digits = 2)

X
number
X 1 2 3 4 5 6 7 8 9 10
P(X=x) 0.02 0.11 0.10 ©.12 0.09 0.09 ©.22 ©.13 0.10 0.03

Note that capital X denotes the random variable while small x denotes one of its value

P(X=7) = ??



Discrete Probability Distributions Definitions

The set of ordered pairs (z, f(z)) is a probability function, probability mass TT}BI Cuﬁutéf'itvedfﬁts%ﬁ;'um}n( f)u'nCtion ) o diseree random wassble X
. o1 . . . . . . W 1
function, or probability distribution of the discrete random variable X if, for il PEADSIIEI SISIRDHUDE T =5

each possible outcome =z,

L f(z) 20,

2. 2 flz) =1,

‘ The cumulative distribution function, is the probability that a random
3. P(X =12) = f(@). variable X with a given probability distribution will be found at a value
less than or equal to x.

F(ac)=P(X§x)=2:f(t)7 for —oo <z < o0.

1<%

Capital letters for random variables, small letter for one of its values.

Cumulative Distribution Functions
Continuous Probability Distributions

Consider the probability distribution for the ‘choose a

number’ example. Find the probability of choosing a 3
or less The function f(z) is a probability density function (pdf) for the continuous
random variable X, defined over the set of real numbers, if

1. f(z) >0, for all z € R.
2. [% f(z) dz=1.

3. Pla< X <b)= fab f(z) dz.

* The event (X < 3) is the total of the events:
(X=0), (X=1),(X=2),and (X =3).

i 2 3 4 5 6 7 8 9 10
0.02 0.11 0.10 0.12 2.09 0.09 0.22 0.13 0.10 0.03

* From the table:
Note P(X = x) = 0 i.e. there is no area exactly at x !

P(X<3)=P(X=0)+P(X=1)+P(X=2)+P(X=3)=0.23

19



0.0025
P(a < X< b)
0.0020
f(x)

0.00154
=
wy
a»
b 0.0010 4

0.0005 4

X
0.0000 4 a b
l‘) 1 UIGD ZDID\':' 3(}‘0(} 40’(}0 SDID\':'

rent in euros o 5

Expected Value — Location

A useful summary of interest is the average, or expected value, of a
« Discrete: random variable — denoted by E [X] and .
* Binomial
* Poisson
* Hypergeometric

Popular discrete and continuous distributions

* Continuous:
¢ Uniform
* Normal
* Exponential

* What do they look like ?
* When are they used ?

23 B 24



Expected Value — Location

A useful summary of interest is the average, or expected value, of a
random variable — denoted by E [X] and p.

The expected value of a random variable can be found by summing the
products of each possible value by the probability that it occurs:

p=EX]= Y _%PN—%)

25

Variance, Standard Deviation — Spread

The variance of a random variable measures the squared deviation from
the mean:

0% = Var (X) = E [(X —p)’] =D (x — u)*P(X =x)
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Expected Value — Location

A useful summary of interest is the average, or expected value, of a
random variable — denoted by E [X] and p.

The expected value of a random variable can be found by summing the
products of each possible value by the probability that it occurs:

p=EX]=) xP(X=x)
Example

E [No.defectives) = 0x(0.9)*+1x3(0.1)(0.9)?+2x3(0.1)%(0.9)+3x(0.1)> =

Variance, Standard Deviation — Spread

The variance of a random variable measures the squared deviation from
the mean:

o? = Var (X) = E[(X —u)’] =D _(x — u)*P(X =x)

Or more usefully the standard deviation is:

o = sd(X) = /Var (X)

this has the advantage of being in the same units as X (and p).



Variance, Standard Deviation — Spread

The variance of a random variable measures the squared deviation from
the mean:

o =Var(X) =E [(X —p)’] =) (x—p)’P(X =x)

X

Or more usefully the standard deviation is:
o = sd(X) = /Var (X)
this has the advantage of being in the same units as X (and p).

Example

Var (No.defectives) = ((0 — 0.3)2 x 0.9%) + ((1 —0.3)% x 3 x 0.1 x 0.9%)+

((2-0.3)2 x 3 x 0.12 x 0.9) + ((3—0.3)2 x 0.13) = 0.27

29

.

survey.data %% select (number) %% summarise (mean = mean(number, na.rm=TRUE),
variance = var(number, na.r=TRUE), sd = sd(number, na.rm=TRUE), nas=
sum(is.naCnumber)))

X
Description: df [1 x 4]
mean variance sd nas
<dbl> <dbl> <dbl> <int>
5.705202 5.813752 2.411172 4
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Variance of a Random Variable

Var(X)=E(X?)-E?(X)

Where

E(X?) = ) x?P(X =x)

More on Means and Variances

Adding or subtracting a constant from data shifts the mean but does not
change the variance or standard deviation:

EX+cd=E[X]+c Var(X+c)=Var(X) sd(X+c)=sd(X)

EX—c=E[X]—-c Var(X—c)=Var(X) sd(X —c)=sd(X)

Multiplying a random variable by a constant multiplies the mean by that
constant and the variance by the square of the constant:

E[aX] = aE[X]  Var(aX) = a*Var(X) sd(aX) = |a|sd(X)



6. Some Discrete Probability

Distributions: the Binomial and
Poisson

10/10/22

Learning outcomes

* Describe the Binomial distribution and identify when it is applicable
* Calculate Binomial probabilities

* Describe the Poisson distribution and identify when it is applicable
* Calculate Poisson probabilities

Links between descriptive stats and
probability theory

e random varable
x1, X2, ... Xn X

Empirical distributions (plots of relative frequencies) Pmf, pdf
Sample mean

E(X)
Sample variance Var(X)
Sample sd Sd(X)

Motivation

* Often, the observations generated by different statistical experiments
have the same general type of behaviour.

* In general only a handful of important probability distributions are
needed to describe many of the discrete random variables
encountered in practice.
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Bernoulli Trial:

Random experiment with just two outcomes — success/failure
heads/tails; yes/no; death/survival; ...

Bin

mes

Bernoulli Trial:

Random experiment with just two outcomes — success/failure
heads/tails; yes/no; death/survival; ...

For a single trial, random variable

1 success
X =

0 failure




Binary Outcomes

Bernoulli Trial:

Random experiment with just two outcomes — success/failure
heads/tails; yes/no; death/survival; ...

For a single trial, random variable
1 success
X = i
0 failure

PX=1)=p and P(X=0)=1-p
where p is the success probability,

10/10/22

Binary Outcomes

Bernoulli Trial:

Random experiment with just two outcomes — success/failure
heads/tails; yes/no; death/survival; ...

For a single trial, random variable
1 success
X = i
0 failure

PX=1)=p and P(X=0)=1-p

where p is the success probability, or more compactly

P(X =x) = p*(1-p)'™ x=01

9
Binary Outcomes
Bernoulli Trial:
Random experiment with just two outcomes — success/failure
heads/tails; yes/no; death/survival; ...
For a single trial, random variable
X = 1 su-ccess
0 failure
P(X=1)=p and P(X=0)=1-p
where p is the success probability, or more compactly
P(X=x)=p"(1-p'™ x=01
Mean: E[X] = (0)(1 - p) + (1)p = p
Variance: Var (X) :FZ'—P)
11
11

10

Binary Outcomes — Sequence of Bernoulli Trials

e outcomes of trials mutually independent

o probability of success p is constant over trials

Note independence and constant success probability may not always be
appropriate assumptions.
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Motivating Example: Camera Flash Tests

Motivating Example: Camera Flash Tests

What is the probability that the first and
second cameras pass the test and the
third one fails ?

P(PPF) = (0.8)(0.8)(0.2) =0.128

Each camera test can be treated as a Bernoulli
trial.

Probabilities for all other outcomes calculated
in a similar fashion.

Camera Flash Tests

Outcome [

Camera #
1 2 3 Probability | X
Pass | Pass | Pass 0.512 3
Fal | Pass | Pass 0.128 2
Pass | Fail | Pass 0.128 2
Fail Fail | Pass 0.032 1
Pass | Pass | Fail 0.128 2
Fail Pass | Fail 0.032 1
Pass Fail Fail 0.032 1
Fail Fal | Fall 0.008 0

1.000

What is the probability that two cameras pass the test in three trials ?

1

The time to recharge the flash is tested in three (Camera Flash Tests
) . Outcome [
mobile phone cameras. The probability that a c 7
camera passes the test is 0.8, and the cameras ] amgra 3 robay T X
perform independently. Pass T Pass | Fass 3
Fail | Pass | Pass 2
The random variable X denotes the number of Pass | Fail | Pass 2
cameras that pass the test. The last column of the Fal | Fai | Pass 1
table shows the values of X assigned to each Pass | Pass | Fal 2
outcome of the experiment. Fail | Pass | Fai 1
Pass | Falil Fail 1
Fail Fail Fail 0
What is the probability that the first and
second cameras pass the test and the
third one fails ? P(PPF) =?
1
13
Motivating Example: Camera Flash Tests
Camera Flash Tests
What is the probability that two cameras °”‘°°meCamera#‘
pass the test in three trials ? 1 5 3 Probabilty | X
Pass | Pass | Pass 0.512 3
. Fail Pass | Pass 0.128 2
How many ways can this event happen ? Pass | Fal | Pass 0.128 2
Fail Fail | Pass 0.032 1
(n) __n _ 3! _321_ 3 Pass | Pass | Fail 0.128 2
v/ ritn—r)! 21(3-2)! 211 Fail | Pass | Fail 0.032 1
Pass Fail Fail 0.032 1
What is the probability of this event ? Fal | Fal | Fai ?ggg 0
0.128 for each of the three ways -
probability = 3(0.128) = 0.384
This is an example of the Binomial Distribution.
15
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Binomial Distribution

A random experiment consists of # Bernoulli trials such that

(1) The trials are independent

(2) Each trial results in only two possible outcomes, labeled as “success’ and
“failure”

(3) The probability of a success in each trial, denoted as p, remains constant
The random variable X that equals the number of trials that result in a success

has a binomial random variable with parameters 0 < p < landn = 1, 2, .... The
probability mass function of X is

17
Motivating Example: Camera Flash Tests
Calculate the probability of 2 passes in gi:lf;?asn TeST
three tests. Camera #
1 2 3 Probabilty | X
Pass | Pass | Pass 0.512 3
We are given that n =3 and p = 0.8. Fal | Pass | Pass 0128 |2
Pass Fail | Pass 0.128 2
Fail Fail | Pass 0.032 1
Use the Binomial distribution formula where X is Pass | Pass | Fal 0.128 2
the number of passes: Fail | Pass | Fal 0.032 1
Pass | Fal | Fai 0.032 1
P(X=2)= Fal | Fal | Fal 0.008 0
1.000
19

flx) = (f) pl—-p"* x=0,1,....n 3-7)
18
Motivating Example: Camera Flash Tests
. . Camera Flash T
Calculate the probability of 2 passes in oz;‘;ir;eas GST
three tests. Camera #
1 2 3 Probabilty | X
. Pass | Pass | Pass 0512 3
We are given thatn =3 and p = 0.8. Fal | Pass | Pass 0128 |2
Pass | Fal | Pass 0.128 2
. Fail Fail | Pass 0.032 1
Use the Binomial distribution formula where X is Pass | Pass | Fall 0.128 2
the number of passes: Fail | Pass | Fail 0.032 1
3 Pass | Fall | Fai 0.032 1
PX=2)= ( )(0_8)2(0.2)1 Fal | Fal | Fai 0.008 0
2 1.000
= 3(0.128)
=0.384
20
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Exercise: Organic Pollution

Each sample of water has a 10% chance of containing
a particular organic pollutant. Assume that the
samples are independent with regard to the presence
of the pollutant.

Find the probability that, in the next 18 samples,
exactly 2 contain the pollutant.

Exercise: Organic Pollution

Find the probability that, in the next 18 samples, exactly 2
contain the pollutant.

Let X denote the number of samples that contain the
pollutant in the next 18 samples analyzed. Then Xis a
binomial random variable with p =0.1 and n =18

P{X =2)=

21

Exercise: Organic Pollution

Find the probability that, in the next 18 samples, exactly 2 contain the
pollutant.

Let X denote the number of samples that contain the
pollutant in the next 18 samples analyzed. Then Xis a
binomial random variable with p =0.1and n =18

P(X=2)= (lzgj(o_l)2 (0.9)° =153(0.1)°(0.9)° =0.2835

23

22

R Using R to calculate probabilities from a Binomial
Distribution: dbinom function

dbinom(x, size, prob)

x is the number of events of interest required,
size is the total number of trials,
prob is the probability of the event occurring.

24



R Using R to calculate probabilities from a Binomial
Distribution: dbinom function

In the Organic Pollution example x=2, size=18 and p=0.10
dbinom(x=2, size=18, prob=0.1)

0.2835121

10/10/22

25

Exercise: Organic Pollution revisited

Determine the probability that 3 < X< 7.
X=3,1,5/4
L 3 ¢ x¢P)= Px=)+ PO PCXaS) 4POX=0)

2
W 18 s 3 .‘ ?
= 8 ;;O-)lr—! \g)o‘ll\o-ﬂ.\ 0O\ 09 4 . 0\ 0
-<3>0 y T

E

Exercise: Organic Pollution revisited

Now determine the probability that 3 < X< 7.
Answer:

PB33X<7)= 26:@8](0.1)" (0.9)*

x=3
=0.168+0.070+0.022+0.005
=0.265

26

27

sum(dbinom(x=3:6, size = 18, prob=0.1))

0.2650319

28
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Binomial Mean and Variance

If X is a binomial random variable with
parameters p and n,

=5andp=03
jon = 1.02

http://www.artofstat.com

The mean and variance of the binomial distribution b(z;n,p) are 94 | . R
2 Number of Successes
=np and 0° = npq.
Ll p Pq Binomial Distribution

Where q = 1-p.

Use this app to explore different scenarios for a random variable
following a Binomial distribution

29

30

[The Binomial Distribution

pepywarers [RUURI Chebyshev’s Inequality

Binomial Distribution withn=3 and p=0.8

Mean =24, Standard Deviation = 0.693 . . . .

P oS s ) * Chebyshev’s inequality provides an estimate as to
y 0s where a certain % of observations will lie relative to
romatyofsusces o 04 the mean once the standard deviation is known.

: @ %03
AR A s R s
Goz * For example, at least 75% of values will lie within
Optons: 01 : two standard deviations of the mean.
) Show table of probabilfies 0. ) 7 3 3
Number of Successes
& Download Graph

Successes (x) Probability P(X=x)
0 0.008
0.0%
0384
051

31

32
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The Binomial Distribution

The binomial distribution give:
probabiliy p.
Number of Bernoulli Trials (n):

'
—

Probability of Success (p):

° @

Options:

@l Zoom in on x-axis

Select range of x-axis:

® <]

of suc it of n Bernoull trials with success

Explore & Understand  Find Probabilf Find Percentile

Binomial Distribution withn=100and p=0.8
Mean =80, Standard Deviation=4

- Prot;ablhty
|
\]
[ NJ
L NJ
~J
I N
\ |

1 T
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79, gD 81 82 83 84 85 86 87 88 89 90 91 92 93 94
UCH

E(x) = WdX0-8= 86
Vor () 2 100X0:5x0°2= 16 > (XY=

0.000

StatsConsulting.com

* A medical device company needed to calculate the probability that a
particular component of their device fails. They have limited bench
data which suggests that the probability of failure is 0.15.

* The plan to test 10 devices and want an indication as to the
proportion of failures they should expect to see across all devices in
the trial.

* What is the number of failures they can expect in 10 devices given the
probability of failure of a particular device ?

33

Binomial Mean and Variance

If X is a binomial random variable with

parameters p and n,

The mean and variance of the binomial distribution b(z;n,p) are

u=np and o2 = npq.

where q=1-p.

35

34

StatsConsulting.com

* The random variable X denotes the number of devices that fail.

* n=10trials and p =0.15
Use the Binomial distribution.

The typical value they can expect is the mean of the random variable X
in question.

36
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StatsConsulting.com

* The random variable X denotes the number of devices that fail.
* n=10trials and p = 0.15

Use the Binomial distribution.

The typical value they can expect is the mean of the random variable X
in question.

n=np=1090.15=1.5

i.e. they can expect 1.5 devices to fail in
a sample of 10 .... interpret this !

StatsConsulting.com

* The random variable X denotes the number of devices that fail.
* n=10trials and p =0.15

Use the Binomial distribution.

The variance they can expect is
o =np(1-p) =10*0.15*(1-0.15) =1.27
The standard deviation is the square root of 1.27 =1.13

Use Chebyshev’s inequality to interpret this !

37
Motivating Example: Camera Flash Tests
* The random variable X denotes the number of
that the test Camera Flash Tests
cameras that pass the test. Ouicome I
*n=3andp=0.8 Camera #
1 2 3 Probability | X
i i i X Pass | Pass | Pass 0512 3
F|n<(:|j the m.egr; and variance of the binomial Fal | Pass | Pass 0128 5
random variable. Pass | Fail | Pass 0.128 2
Fail Fail | Pass 0.032 1
Pass | Pass | Falil 0.128 2
Fail | Pass | Fal 0.032 1
Pass | Fail | Fal 0.032 1
Fail Fail | Fal 0.008 0
1.000
39

38
Motivating Example: Camera Flash Tests
* The random variable X denotes the number of G T
hat pass the test amera Flash Tests
cameras t . Outcome I
*n=3andp=0.8 Camera #
1 2 3 Probability | X
P; P: P; 0512 3
Find the mean and variance of the binomial :;f P:: PZ: 0128 5
random variable. Pass | Fail | Pass 0.128 2
Fail Fail | Pass 0.032 1
Pass | Pass | Fall 0.128 2
Fail | Pass | Fal 0.032 1
w=np=308=24 Pass | Fal | Fal | 0032 |1
Fail Fail | Fal 0.008 0
02 = np(1-p) = 3*0.8*0.2 = 0.48 1000
o =SD(X) = 0.69 ‘
40

10
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Is the Binomial distribution applicable here ?

Can each trial can be summarized as resulting in either a success or a failure with a
fixed probability, assumed independent from trial to trial ?

* A multiple choice test contains 10 questions, each with four choices, and you
guess at each question. Let X= the number of questions answered correctly.

* In the next 20 births at a hospital, let X=the number of female births.

* A worn machine tool produces 1% defective parts. Let X=number of defective
parts in the next 25 parts produced.

* The probability of ordering a hot chocolate in Mr Waffle is 0.10. A group enters a
coffee shop and each member places an order. Let X=number of hot chocolates
ordered.

Summary so far

* Mean = np, var=np(1-p)

* Oliver’s world.

* Bernoulli trials and Binomial distribution
* dbinom (in R) and sum(dbinom(start:fininsh, size=, p=) trick

* When the binomial does and does not apply.

41

Oliver’s world

10,000 products made daily
Probability of a complaint is 0.0001.

What is the probability Oliver will see 10 complaints in a day ?

Does the Binomial Distribution apply ?

If you assume it does .... Let X be a random variable representing
the number of complaints Oliver will receive in a day.
You are given that n = 10,000 and p=0.0001

43

42
Oliver’s world
Pc=10)= () p*(1 = pm = (M%2%%) 0.0001(1 — 0.0001)10000-10
= 0.0000001010183
dbinom(x=10, size=10000, prob= 1,/10000)
dbinom(x=10, size=10000, prob= 1/10000)
1.010183e-07
44

11



Poisson Distribution

Tvi- \
7

- e
5

p=MIN , n=k , N~

45

Properties of the Poisson Process

* The number of outcomes occurring in one time interval or specified
region of space is independent of the number that occur in any other
disjoint time interval or region. In this sense we say that the Poisson
process has no memory.

The probability that a single outcome will occur during a very short
time interval or in a small region is proportional to the length of the
time interval or the size of the region and does not depend on the
number of outcomes occurring outside this time interval or region.

The probability that more than one outcome will occur in such a
short time interval or fall in such a small region is negligible.

47

Poisson Distribution

* Experiments yielding numerical values of a random variable X,
the number of outcomes occurring during a given time interval
or in a specified region, are called Poisson experiments.

* The given time interval may be of any length, such as a
minute, a day, a week, a month, or even a year.

* A Poisson experiment is derived from the Poisson process and
possesses the following properties.

46

Poisson Distribution

The random variable X that equals the number of
events in a Poisson process is a Poisson random
variable with parameter A > 0, and the probability
density function is:

-A9x
f(x)ze A for x=0,1,2,3,...

x!

48
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Mean and Variance of Poisson Distribution

* If A is the average number of successes occurring in a given time
interval or region in the Poisson distribution, then the mean and the
variance of the Poisson distribution are both equal to A.

* Mean = A, variance = A

* A one parameter distribution.

f(x)

0.75

05

025

1)

0.20

0.10

1)

Poisson density functions for different means

0.20

0.10

x
0 2 4 6 8 10

0 x
0 2 4 6 8 10

0 x
0 2 4 6 8 10

If the variance is much greater than the mean, then the Poisson distribution would not be a good model for th
distribution of the random variable. 0

49

The Poisson Distribution with A = 1.5

JNGmber of Events: 2|
Probabilty: 25.10%

Fmﬁff,:,,_

5
)

Poisson Distribution

51

50

Poisson Example: Calculations for Wire Flaws

Suppose that the number of flaws on a thin copper
wire follows a Poisson distribution with a mean of 2.3
flaws per mm.

Find the probability of exactly 2 flaws in 1 mm of wire.

S (%)=

x!

_ e

for x=0,1,2,3,...

52

13



Poisson Example: Calculations for Wire Flaws

Suppose that the number of flaws on a thin copper
wire follows a Poisson distribution with a mean of 2.3
flaws per mm.

Find the probability of exactly 2 flaws in 1 mm of wire.

e—243 2 32

P(Xx=2)= =0.265

10/10/22

R Using R to calculate probabilities from a Poisson
Distribution: dpois

dpois(x, lambda)

x is the number of events of interest,
lambda is the mean.

53
R Using R to calculate probabilities from a Poisson
Distribution: dpois

dpois(x, lambda)
x is the number of events of interest, lambda is the mean
Copper wire example: x=2, lambda= 2.3 flaws per mm
The probability of exactly 2 flaws in 1 mm of wire
dpois(x=2, lambda =2.3)
0.2651846

55

54
Example: Calculations for Wire Flaws revisited
Suppose that the number of flaws on a thin copper
wire follows a Poisson distribution with a mean of 2.3
flaws per mm.
Determine the probability of 10 flaws in 5 mm of wire.
56

14
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Example: Car Park
Determine the probability of 10 flaws in 5 mm of

wire. A car park has 3 entrances, A, B and C.

The number of cars per hour entering through each of these is Poisson

Let X denote the number of flaws in 5 mm of wire. We know distributed with means Ag = 1.5, Ag = 1.0, Ac = 2.5.

that there will be 2.3 per 1mm therefore we expect 2.3 X5=11.5

Arrivals at each entrance are independent.
flaws per 5 mm.

11.5"
— e—ll.S

10!

dpois(x=10, lambda =2.3*5)
0.1129351

P(X =10) =0.113

58

Example: Car Park Example: Car Park

A car park has 3 entrances, A, B and C. A car park has 3 entrances, A, B and C.
The number of cars per hour entering through each of these is Poisson

The number of cars per hour entering through each of these is Poisson
distributed with means Ay = 1.5, Ag = 1.0, Ac = 2.5.

distributed with means Ay = 1.5, A\g = 1.0, A¢c = 2.5.
Arrivals at each entrance are independent. Arrivals at each entrance are independent.

T = Total number of cars entering in an hour T = Total number of cars entering in an hour

T ~ Poisson(Xa + Ag + Ac) = Poisson(1.5 + 1.0 + 2.5) = Poisson(5)

e~55%

P(T=80="

=0.1755

60
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Sums of Independent Poisson Random Variables

If X1, Xz ..., X, are independently Poisson distributed with parameters
A1, A2, ..., Ap then

T=Xi+Xo+---+X, is Paisson(A + X2+ +\,)
and
E[T]=M+X+ - +A,

and
Var(T)=M+X+---+ A,

10/10/22
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https://www.johndcook.com/blog/distributiéﬁ_chart/

The big three ....

* Binomial Distribution

* In a study involving testing the effectiveness of a new drug, the number of

cured patients among all the patients who use the drug approximately follows
a binomial distribution

* Geometric Distribution

* In a statistical quality control problem, the experimenter will signal a shift of
the process mean when observational data exceed certain limits. The number
of samples required to produce a false alarm follows a geometric distribution.

* Poisson Distribution

* The number of white cells from a fixed amount of an individual’s blood
sample is usually random and may be described by a Poisson distribution.

63

62
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Learning Objectives

* Describe features of the Normal distribution
* Describe the effects of changing values of the mean and standard

7 - Th e N orma | DIStI’I b utl on deviation on the normal distribution

* Describe the Empirical Rule and its relationship with the normal
distribution

* Describe features of the Standard Normal distribution
* Calculate normal probabilities using z-scores

* Calculate values of a normal random variable given the probability,
(using the z-tables in reverse)

* Use R to calculate normal probabilities.

1
Normal Distribution
Continuous Probability Distributions Recap
* Also called the Gaussian distribution
* pdfis a bell-shaped curve
The function f(z) is a probability density function (pdf) for the continuous * The distribution of many types of observations can be
random variable X, defined over the set of real numbers, if approximated by a Normal — eg consider the relative
frequency histograms of
1. f(z) >0, for all z € R. « Heights
2. [ f(z)dz=1. * Weight
5. Pla<X <t) = [ (@) d Qe
. a < < = T X
a * Single mode
* Symmetric
Note P(X=x) = 0 i.e. there is no area exactly at x ! * Model for continuous measurements
3



The normal distribution

:------I---

Normal curves with

1= thand o1 < 0y

H1=He
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Normal Distribution

A random variable X with probability density function

f( ) 1 (X__l;ﬁ 0 < X <00
x) = e 20 -
V2ma?

is a normal random variable with parameters p1and

(where -0 < p <o and o >0)

/ Standard
Mean deviation

Write X ~N(u, 6?)

Normal curves with 1< 1 and o1 < o3

b\

e ———

N




Statistics STATISTICS http://www.artofstat.com
\ THE ART & SCIENCE OF LEARNING FROM DATA
briteel

Explore statistical concepts in an interactive way
The follo date
stati

The 68-95-99.7 Rule

* Normal models give us an idea of how extreme a
value is by telling us how likely it is to find one that far
from the mean.

* It turns out that in a Normal model:

* about 68% of the values fall within one standard deviation
of the mean;

* about 95% of the values fall within two standard deviations
of the mean; and,

* about 99.7% (almost all!) of the values fall within three
standard deviations of the mean.

10

Empirical Rule for a Normal Distribution

For any normal random variable,
P(u—0 <X<p+o) =0.6827
P(L—20< X< W+20)=0.9545
P(u—30<X<u+30)=0.9973

fa

p-30 p-20 p-o m pro p+20 p+3c x

~— 68% —>|

-~ 5% —>

| 99.7% |

Probabilities associated with a normal distribution

P(x1< X < x,) = area of the shaded region

11

10/11/22
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14

Areas under the Normal Curve

* Finding an area under a normal distribution in order to calculate
probabilities

Pty < X < x,) Tz 1 (xz—u)zd
X1 Xp) = e 207 dx
Vi 2
2 2no

Z scores

* A z-score reports the number of standard deviations away from the
mean.

* For example, a Z-score of 2 indicates that the observation is two
standard deviations above the mean.

13

15

Standardised Z scores.

To convert a random variable X which follows a N(u. , 6%) to a random
variable Z that follows a standard Normal N(0O, 1) calculate Z as

X —
z=2—£
o

Convert X~ N(100, 100) to a random variable Z such that Z~ N(0, 1)

The cumulative distribution function of a standard normal

q)(Z) = P(Z S Z) random variable is denoted as ®(z) = P(Z< z)

P(Z = 1.5) =®(1.5) - .
= shaded area z | 0.00 0.01

02 .03

oo
oo

0 | 0.50000 0.50399 0.50398 0.51197

0.93319 0.93448 0.93574 0.93699

~~ 1.5

10/11/22



Calculating Probabilities for N(0,1)

* Left tail - P(Z < 1.8)
* Directly from table

* Right tail - P(2> 1.8)
* By subtraction P(Z>1.8)=1-P(Z<1.8)

* Interval Probabilities —P(1<Z < 1.8)
* By difference: P(1 < Z < 1.8)=P(Z<1.8)-P(Z<1)

16

Normal: P(-0.5 < Z < 1)=P(Z<1)-P(Z<-0.5)
=0.8413-0.3085=0.5328

18

Normal Probabilities by Hand

* Use a table of the Standard Normal Distribution

* Convert to z-scores before using the table.

17

PX <k) :PL

10/11/22

<7k_ﬂ):P(Z<—k_'uj
o

(o2

« X~ N(500,1002) ; P(X >680) = P(Z > 1.8)=1-P(Z<1.8)=1-0.9641=0.0359
S

z .00 01
17 9554 9564

+8—>.9641 9649
19 9713 9719

Using R to calculate probabilities from a Normal Distribution

Density

005

000

pnorm(g=??, mean=??, sd= ??)
pnorm returns the integral from -co to g for the pdf of the
normal distribution with mean p and standard deviation o.

19



Example: Normal Distribution

Suppose that the current measurements in a strip of wire are
assumed to follow a normal distribution with p =10 and 6 =2 mA,
what is the probability that the current measurement is less than or
equal to 9 mA?

Plot:

Example: Normal Distribution

Suppose that the current measurements in a strip of wire are
assumed to follow a normal distribution with u =10 and 0 =2 mA,
what is the probability that the current measurement is less than or
equal to 9 mA?

Distribution Plot
Normal, Mean=10, StDev=2

Area:

P(—0o<X<9)

f 1 (x—10)2
—00

005

exp 2G5 dx
Noz i

9
X-10 9-10 o
= P(T < T) = P(Z <—05) cunt (m)

R -

> pnorm(q=9, mean=10, sd=2, lower.tail = TRUE)
[1] 0.3085375

Example: Normal Distribution

Suppose that the current measurements in a strip of wire are
assumed to follow a normal distribution with =10 and 6 =2 mA,
what is the probability that the current measurement is less than or
equal to 9 mA?

Distribution Plot
Normal, Mean=10, StDev=2

Plot:

005 03085

9 10
Current (mA)

Example: Normal Distribution

Suppose that the current measurements in a strip of wire are
assumed to follow a normal distribution with u=10and 0 =2 mA,
what is the probability that the current measurement is less than or
equal to 9 mA?

Distribution Plot
Normal, Mean=10, StDev=2

Area:

008 03085

> pnorm(-0.5, mean=0, sd=1, lower.tail = T)

[1] @.3085375 —

> pnorm(-0.5) Current (mA)
[1] 0.3085375

10/11/22
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Using R to calculate probabilities from a Normal Distribution

R*‘ pnorm

pnorm(g=??, mean=??, sd= ??, lower.tail = ??)

TRUE is the default

pnorm returns the integral from -co to g for the pdf of the

pnorm(g=??, mean= 0, sd= 1, lower.tail = TRUE)
normal distribution with mean p and standard deviation .

Note: the default is a standardised normal. It means

) Defaults
pnorm(g=??)=pnorm(q=?? , mean= 0, sd= 1, lower.tail = ??)

Which equalsto: ~ pnorm(q=??)

24 25

- Example: Normal Distribution

i Suppose that the current measurements in a strip of wire are
assumed to follow a normal distribution with u=10and 0 =2 mA,

what is the probability that the current measurement is between 9
. ! and 11 mA?

pnorm(g=??, mean= 0, sd= 1, lower.tail = FALSE) Plot:

26 27
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Distribution Plot
Normal, Mean=10, StDev=2

0.20

0.15

Density
°
3

0.05

0.00

Example: Normal Distribution

Suppose that the current measurements in a strip of wire are
assumed to follow a normal distribution with L =10 and 0 =2 mA,
what is the probability that the current measurement is between
9and 11 mA?

R

pnorm(g=11, mean=10, sd=2) - pnorm(q=9, mean=10, sd=2)=
pnorm(g=0.5, mean=0, sd=1) - pnorm(g=-0.5, mean=0, sd=1)=
pnorm(g=0.5) - pnorm(g=-0.5)

Probability: 0.3829

29

31

Example: Normal Distribution

Suppose that the current measurements in a strip of wire are
assumed to follow a normal distribution with u =10 and 6 =2 mA,
what is the probability that the current measurement is between
9 and 11 mA?

Distribution Plot Distribution Plot
i Dov=2 -

Example: Normal Distribution determine percentiles ...

Suppose that the current measurements in a strip of
wire are assumed to follow a normal distribution with p
=10and 6 =2 mA.

Determine the value for which the probability that a
current measurement is below 0.98.

Plot:

10/11/22
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Example: Normal Distribution determine percentiles ...

Determine the value for which the probability that a current

measurement is below 0.98.

Distribution Plot

Plot: Normal, Mean=10, StDev=2
0.20
P o098 Supply
pto
015 find q

Density
°
B

0.05

Using R to calculate percentiles from a Normal Distribution

R gnorm

gnorm(p=0.??, mean= ??, sd=?7?, lower.tail = ??)

gnorm is the inverse of the cdf, which you can also think of
as the inverse of pnorm. Use gnorm to determine the x
corresponding to the pth quantile of the normal
distribution?

10/11/22

Example: Normal Distribution determine percentiles ...

Cor 2o

P(X <k) =098

(X—10<k—10)_098
2 2 -
k—10 /
P (Z < ) =0.98 09%
We also know from the normal table that: 2054206 _ 2.055
—Rep=<265) = 0.98 — N
Therefore: Plz <2.055)= 698 pLzZ< 2.05%5)=0

P (z < %):P(z < 2.05) which means = = 2.055
Then: k=2 % 2.0%+ 10 = 14.10

Determine the value for which the probability that a current
measurement is below 0.98.

Distribution Plot
Normal, Mean=10, StDev=2

098

000
10
X

> gnorm(p=0.98, mean=10, sd=2, lower.tail = TRUE)
[1] 14.1075 &% ja)|
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Normal Approximations Normal approximation of b(x; n=15, p=0.4)

* The binomial and Poisson distributions become more CAC%kA A
bell-shaped and symmetric as their mean value increase. =3 u=15%0.4 =6,
* If X ~Binomial(n, p) then X ~ N(np,np(1 — p)) c=15%0.4*0.6 =3.6
* If X ~Poisson(1) then X ~{N(4, 1)
* The normal distribution is a good approximation for:
* Binomial if np > 5 and n(1-p) > 5. X300 P) P é‘*&\‘“\ Qt\—?)
* Poisson ifA>5. W~P(A) =2 EX =D

. Vo<ly) = . . i
* For manual calculations, the normal approximation is

ractical — use R for exact probabilities of the binomial
zndpoisson P 0123456789 11 13 15"

37

. . . Continuity Correction
Normal Approximation to the Poisson

Using the normal distribution to approximate a discrete distribution (e.g.
binomial) we need to take into account the fact that the normal

If X is a Poisson random variable with E(X) = A and distribution is continuous.
V(X) =1 Discrete Continuous
| Ya P(X > k) — P(X>k+3d)
Z=T P(X = k) — P(X>k-1)
P(X < k) — P(X<k-31)
The approximation is good for 4 =5 P(X < k) — P(X<k+3)
Pk <X <ky) — Pl + <X<k;.—§1)
Py <X<hk) — Plhi-i<X<hk+1)

39
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The number of phone calls at a call centre is Poisson distributed with

mean 64 per hour. X ~ P (2= 64) => XA N(éq, é4)

1. What is the probability of 70 or more calls in a given hour?

2. What is the probability of less than 240 calls in a 4 hour period?

40

41

10/11/22

The number of phone calls at a call centre is Poisson distributed with
mean 64 per hour.

1. What is the probability of 70 or more calls in a given hour?
By using normal approximation to the poisson:

=44
=695 )mem
X ~ N(64,64) ~(4 / gA;#d,Lm;f-‘
sE
P(X >70) = P(X > 70— 3) = P(X > 69.5) = P(X754 >
69.5-61) _ P(7 > 0.69) = 1 — P(Z < 0.60) = 1 — 0.7549 = 0.2451

2. What is the probability of less than 240 calls in a 4 hour period? In
four hours period Kiwes ~ Poisson( Unéd) & P(zs9

Xanrs = N(4 x 64,4 x 64) = N (256, 256)
P(Xahrs < 240) = P(Xgnrs < 240 — 1) = P(Xgnrs < 239.5) =

P(Hanpe 256 > 2952956 = P(Z < —1.03) = 0.1515

11



8. Sampling distributions
and confidence intervals

Fundamental relationship between
probability and inferential statistics

Probability
Population Sample

Statistical Inference

Learning Outcomes

* Explain sampling variation, sampling distribution, standard error
* Calculate the standard error of the sample mean

« State the Central Limit Theorem (applied to sampling distribution of the
sample mean)

* Describe the sampling distribution of the sample mean in applications
using the CLT

« |dentify the point estimator of the parameter in applications
* Describe briefly the use of a confidence interval in inferential statistics

* Calculate and interpret 95% confidence interval for the population
mean

* Use R to calculate the standard error and calculate a 95% confidence
interval for the population mean

* Use the t distribution to calculate the standard error and confidence
intervals for the population mean using a small sample

. C_onﬁlgence intervals for the mean and other statistics via simulation,
using

Probability and Statistics

* In probability theory we consider some known
process which has some randomness or
uncertainty. We model the outcomes by random
variables, and we figure out the probabilities of
what will happen. There is one correct answer to
any probability question.

*In statistical inference we observe something that
has happened, and try to figure out what
underlying process would explain those
observations.



An example ...

* Consider an (opaque) jar of red and green jelly
beans.

* A probabilist starts by knowing the proportion of
each and asks: What is the probability of drawing a
red jelly bean from the jar?

* A statistician infers the proportion of red jelly
beans by sampling from the jar, and using the
sample proportion to estimate the jar proportion.

Population

W Probability
Population Inference
N

Parameters

Statistics

Probability and Statistics

*The basic aim behind all statistical methods is to
make inferences about a population by studying a
relatively small sample chosen from it.

* Probability is the engine that drives all statistical
modelling, data analysis and inference.

Foundations for Inference

« Recall that inference is concerned (primarily) with estimating
population parameters using sample statistics.

* A classic inferential question is, “How sure are we that the
sample mean, x, is near the true population mean, pu?”

« Estimates (i.e. statistics) generally vary from one sample to
another, and an understanding of sampling variation is key
when estimating the precision of a sample statistic as an
estimate of the corresponding parameter.
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Sampling Distributions

*The probability distribution of a statistic is called a
sampling distribution.

* Sampling distributions arise because samples vary.

* Each random sample will have a different value of
the statistic.

Judgement Sample

N w N
S 8 8

Frequency Count

=

1 2
Mean of 5 Circle Diameters

O

o O

O

Circles N=60
OQ o
o O

@Oooi

e} O
@ (O~
O
O (e ©)
O30 5o
10
Histogram of Estimated Mean
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g
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=
o
o
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Histogram of Estimated Mean Histogram of Estimated Mean
Sample Size = 25 Sample Size = 50
1 1
2504 250+ n
2004 200 4
g g
S 150 S 150
3 3
o o
[ [
< o
Y 1004 % 1004
50 1 50 1
0 T T T T T T T T 0 T T T T T T T
0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Estimated Mean Estimated Mean
13 14

http://www.artofstat.com/webapps.html

Sampling Distribution for the
Sample Proportion

See how the sampling distribution builds up
with r
shape depends on n and p

sampling and explore how ts

15

Sampling Distribution for the
Sample Mean

The Central Limit Theorem

* The sampling distribution of any mean becomes
more nearly Normal as the sample size grows

* observations need to be independent.

* the shape of the population distribution doesn't
matter.

Sampling Distribution for the
Sample Mean

16



17

19

The Central Limit Theorem

_ o?
X~N (u,—>
n

The CLT depends crucially on the assumption of
independence.

You can’t check this with your data. You have
to think about how the data were gathered —
can you assume the observations are
independent?

The Standard Error

*The standard error is a measured of the variability
in the sampling distribution (i.e. how do sample
statistics vary about the unknown population

parameter they are trying to estimate)

* |t describes the typical ‘error’ or ‘uncertainty’
associated with the estimate.

_ o’ B o
X~N(p>— = —
(w%) 7

The Central Limit Theorem

* Sample means follow a Normal distribution centred
on the population mean with a standard deviation
equal to population standard deviation divided by

the square root of the sample size.

_ a?
X~N (ﬂ,;)

* What happens when you take a single sample ?

18

Interval Estimation for w

Use the CLT to provide a range of values that will
capture 95% of sample means.

20
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23

95% of sample means

o2
X~ N(ﬂ.;)

u—20'/ n u+2%\
"
21
95%
’/| L | |
- 1.9y 3 X w190y
| | | |
T T !
X — 1.960% X + 1.960¢

The sample mean X has a normal distribution with mean u
and standard deviation gy = g/Vn.

Let’s consider a particular sample with mean x.

Now suppose x lies in the middle 95% of the distribution of
X — the 95% confidence interval x £ 1.960x succeeds in
covering the population mean p.

22

24

95% of sample means

95%

]

Il
X p— 190y P w+ 1.960%
‘ |
T

X — 1.9607 X + 1.960%

The sample mean X has a normal distribution with mean u
and standard deviation oy = a/Vn.

Let’s consider a particular sample with mean x.

Now suppose x lies in the outer 5% of the distribution of X —
the 95% confidence interval x £ 1.960x does not include
the population mean pu.



95% Confidence Interval for u

In repeated sampling, 95% of intervals calculated in this
manner

Xt

O
1.96% ;
Jn —

‘- -
i
i
will contain the true mean L.
25 26
Confidence intervals Confidence Intervals
' o * A point estimate (i.e. a statistic) is a single
* The population mean p is fixed plausible value for a parameter.
*The intervals from different samples are random
*From 0|Uf single sample, we only observe one of the + A point estimate is rarely perfect; usually there is
mter'va S . some error in the estimate.
* Our interval may or may not contain the true mean
*If we had taken many samples and calculated the . P ; ;
95% Cl for each, 95% of them would include the Instead of supplymgj'ust a point estimate of a .
true mean parameter, a next logical step would be to provide
«We say we are “95% confident” that the interval a plausible range of values for the parameter.

contains the true mean.
* To do this an estimate of the precision of the
sample statistic (i.e. the estimate) is needed.

27 28



6.2
.5 ) S—
n =150, %X=69.5, G = 6.2 6952196 =5

> 69.5-1.96%6.2/sqrt(150)

[1] 68.50779
Is L > 75 ? R > 69.5+1.96%6.2/5qrt(150)

[1] 70.49221

A 95% ClI for the population mean is
[68.51, 70.49]

Interpret this !
Isp>757?
30
Application: mean weekly rent in
95% confident that the population mean is ST2001
between 68.48 and 70.51 based on the data I
prOVIded select(rent) %>%
filter(rent>0 & rent < 5000) %>%
summarise(sample.size = n(),
mean = mean(rent),
No evidence to support the claim that the il
population mean () greater than 75. % mamleize  mean .
## 1 108 617.8056 214.7341

What is the population mean rent ?
What is a student likely to pay ?
What will they actually pay ?

32



Population Mean Rent in ST2001 ?

survey.data %>%
select(rent) %>%
filter(rent>0 & rent < 5000) %>%
t.test()

##

## One Sample t-test

##

## data: .

## t = 29.899, df = 107, p-value < 2.2e-16

## alternative hypothesis: n is not equal to 0
## 95 percent confidence interval:

# 576.8440 658.7671

## sample estimates:

## mean of x
## 617.8056

33

What if  is unknown and n is

small ?

Using s forc ?
* Knowing s must mean that you knew . ...
O

Jn

* The sample standard deviation s is used to
estimate c.

* What are the consequences ?

xt1.96%*

- I',
UINNESS

35

34
n <30
. s
a _
*E 2" Dy/n
1- confidence level Degrees of free
Population normal
36 |
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39

t, distribution
Mean =0

Variance = v_iz forv > 2

Kt PMIN sk, N0

y
__Mum.n.h,__,<.m,".-\
%
L
. 4
Nin(Xi).

n \ -7
.

Chi-squared(n)

| ol
\ /
Vi Vi
=

Double- Exponental(0)))

38

40

T- distribution

Normal Vg \\ t-model with 2 degrees of freedom

-4 2 0 2 4
As the degrees of freedom increase, the t-models look more and
more like the Normal.

In fact, the t-distribution with infinite degrees of freedom is the
Normal distribution.

10
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43

Table: t distribution crifical values.

Upper Gail probability
@ | 035 02 045 010 085 0025 002 001 0005 00025 0001 0.008
A 1000 1as 1es2 8078 63w 12705 15825 31821 G3se7 127321 318.908 62851
2 oBte 1081 1388 1895 2020 4303 480 0S5 025 1408 237 3L
3 07es 0ETe 1250 1838 23 31 34® 451 SBH 748 10215 12224
4 074t oe %R0 1533 212 2778 2000 3747 464 558 173 86N
077 00 116 1476 2015 2571 275 35 4032 4773 6B ageg)
0718 0005 1134 1440 1343 2447 2612 3143 3707 437 6208 5080
7 0711 0S8 1ME 1415 185 2385 2517 2008 3400 4020 4785 5408
8 070: os 1108 1307 1E0 2305 2440 2808 338 2EW 480 504
o o70: pEss 1100 33 1sm 208 2308 2821 3260 350 4207 47E|
wf 070 oETr toea Iz s 2228 23 2784 3463 356 414 &%)
1 06w 0se 10ss 133 1788 2201 238 2718 3108 3497 4025 443
12 oees e tmsa 16 17m 207 2203 2681 3085 342 ag0 4308
1 06 0ET0 1070 130 1771 2ie0 228 2880 3012 33T amEr 42
1 oem oms 1078 15 1781 2145 228 2624 2077 338 A 4140
1 oeer omse 1o7a 131 17 2131 220 2602 2047 3288 AR 4073
1 oom osss 1071 a7 i7ee 21 223 zsss 2a1 32 3 40|
4] 0sm 03 10se 133 1740 2110 2234 2557 2808 322 3546 3085
1o oser o2 1057 130 173 2101 221 2882 2878 19T as0 2|
19 ooes oem ioso me 172 20m 2208 2mW 2861 3976 3570 3
0 06w om0 1054 15 1725 208 2107 285 2845 34 35 3850
21 oses omm 10sa 1ma 1721 2080 218 2818 2831 313 a5y asi|
22 ooes osse 10s1 mi 177 200 218 2808 2810 319 3506 a7ag)
2 oes omsm 1050 130 174 208 2177 2500 2807 3404 3485 3766
24 08 087 1050 1318 17M 208 2172 2422 2707 3081 3467 a7
2) oosr oEs 1058 1316 1708 2000 2107 2485 278 3078 4% a7
26 065+ 0B 1058 1315 1706 208 218 2470 2778 3087 343  3707)
2] 08t 08 1057 134 1703 208 2158 2473 2771 3057 2421 age)
2 08m 0mE 1058 1313 1701 2048 2154 2457 2783 3047 2408 agw|
23 oo oEst 1055 1311 10@ 2045 2100 2462 2750 308 330 3050
s 06 0E 1055 1310 16 2042 2147 2457 2750 30M 3385 354
a 0881 081 1050 1303 188¢ 2021 2123 2423 2704 2071 330 3581
sof 062 0B 1047 1200 167 2000 2100 2403 2678 203 3261 340
s 0672 0848 1045 1206 1671 2000 2088 2380 2860 2815 323 3480
s 0672 084 1043 1202 1est 10GD 2088 2374 2838 287 1% 3416
10of 0677 0ses 1042 120 1m0 1994 2081 2384 2828 2871 ar 33
000 0678 0s42 1037 122 1848 198 208 230 2561 2813 3085 3300 “
2] o7 o0s0 18 1omr 164 1080 208t 2me 2578 2007 3080 300

One-sample t-interval for a population mean

When the conditions are met, we are ready to find the
confidence interval for the population mean, pu.

The confidence interval is

. S
X+t « —
The critical value t(l_%n_l)depends on the particular

confidence level, 1- &, that you specify and on the number of
degrees of freedom, n — 1, which we get from the sample size.

Let R do the work ....

Table: t distribution critical values

42

44

W T
Tpper &il probability
df 025 020 045 040 005 0025 002 004 0005 0.0025 0001 0000
| 1000 1378 1883 3078 6314 12705 15835 31821 63657 127321 218300 833514
2| 0818 1081 1385 1886 2820 4303 4840 6065 0025 14088 22307 31500
3 0785 0878 1250 1636 2353 3182 3432 4541 5341 745 10215
4 071 081 1920 1533 213 2776 2090 3747 46804 5508 7aT3
5| 0727 080 1155 1476 2015 2571 2757 335 4032 4773 58m
6 O7IE 0808 1434 1440 143 2447 2612 3143 3707 4317 5208
7| 0711 0888 1012 1415 1895 2385 2517 2008 3400 4020 4765
8| 0708 0832 1408 1307 1850 2305 2440 2805 3355 2833 4801
9| 0703 0833 1400 1383 1833 2262 2386 2621 3250 3600 4207
10} 0700 0879 1003 1372 1812 2228 2350 2784 3160 3581 4144
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Celtic Study

* A sample of 18 full-time youth soccer players from a
Youth Academy performed high intensity aerobic
interval training over a 10-week in-season period in
addition to usual regime of soccer training and
matches.

*Did this extra tréining improve fitness (VO2 max) ?

* Paired design: each player measured before and
after (i.e. start and after 10 weeks)

45
Box plot of Improvement in VO2 max
0
T
Worsening : Improvement
|
|
|
|
|
| R — *
|
|
|
|
|
|
|
-2 0 2 4 6 8 10 12
V02 max Improvement (ml.kg-1.min-1)
Variable N Mean StDev
VO2 Improvement 18 5.11111 2.25829
47

46

48

Scatter plot of Pre and Post VO2 Max
(with line of equality)

854 X .
Post VO2 max higher - ,,’
~ | | -
T 80 . L7
£ [] -7
£ R
i " -7
2 754 R
i -
E "y " ,//
X 704 mm Pd
g a -7
~ . R
o ] -
> 654 m o -7
b3 -
o PR
e g
60 -
Pre VO2 max higher

60 65 70 75 80 85
Pre VO2 max (ml.kg-1.min-1)

Estimate the population mean improvement

*90% Cl for p
*95% ClI for p X +

*99% Cl for p

S

+ t(1—5,n—1) \/_1_1

12



Using R to calculate the quantile needed

Estimate the population mean improvement corresponding to a particular tail area

*90% Cl for p
(a0 =0.10 split over the tails) R
*95% Cl for o The qt(p=?, df=?, lower.tail=TRUE ) 2 s ““,""‘ \\\
(OL =0.05 5p|it over the tails) function calculates the t-value E / \
corresponding to a given lower-tailed o \,,&
« area. L2 oo 2 o4
° Tifa x
*99% Cl for u (o = 0.10) _ _ o
o =0.01 split over the tails *Find the percentile of the Student t distribution
needed for a 95% Cl from a sample of size 18.
50
* Find the percentile of the Student t distribution
needed for a 95% CI from a sample of size 18. Check the tables ...
* For a 95% Cl need the percentiles . ;‘A\‘ Table: t distribution critical values =
corresponding to tail areas such that ° / /N
95% of the distribution is between = = [\ . f A\
these percentiles (i.e. 5% of the area . / i
split across the two tails). c // ‘\\ i ) ‘t’ «
* To calculate the 2.5™ and 97.5% cror Upper tail probability
percent"es of the Student t df 0.25 020 015 0.10 005 0025 002 001 0005 0.0025 0.001 0.0005
S : 14 062 0888 1078 1345 1781 2145 2204 2624 2077 338 3787 4.14]
distribution with 17 degrees of 15 o06o1 0888 1074 1341 1753 2131 2240 2602 2047 328 373 4073
freedom: 16 0600 0885 1071 1337 1746 2120 2235 2583 2021 3252 3685 4015
17| 0680 0883 1082 1333 1740 2110 2224 2567 2808 322 3646 3085
> qt(0.975, df=17) 1) o0ess 082 1067 1330 173 2101 2214 262 2878 3167 3610 302
« 3D, =1/

[1] 2.109816

52



Estimate the population mean improvement

*95%Clforp Xx

Variable N Mean StDev
VO2 Improvement 18 5.11111 2.25829

> qu(0.975, df=17)
[1] 2.109816

53

## Using the t.test function
TArd

train.df %-% select(Improvement) %-% t.test()

One Sample t-test

data: .
t = 9.6022, df = 17, p-value = 2.798e-08
alternative hvpothesis: true mean is not equal to 0
95 percent confidence interval:

3.988090 6.234132
sample estimates:
mean of x

5.111111

55

T t(1—ﬂ‘,n—1) \/_,—1

54

56

### Lower 95% CI using summary statistics
L

5.11 - qt(0.975, df=17)%(2.25829/sqrt(18))

[1] 3.986979

### Upper 95% CI using summary statistics
Ty

5.11 + qt(0.975, df=17)%(2.25829/sqrt(18))

[1] 6.233021

Conclusion ?

*On average ?

*What does 95% Confidence mean ?
*Terms and conditions ?

*Random sample ?

*Small n, normality ??

14



If Normality is questionable

a) Try to transform the data to approximate
Normality
¢ e.g. logarithms or square root

b) Non-Parametric technique
e Bootstrap
e (i for the population MEDIAN

57

Logarithm of Bilirubin Data

log(bilirubin level)

1. Produce an interval estimate for the Population
MEAN
log bilirubin level

2. take anti-logs/exponentials of the resulting interval

59

Transforming to Normality

* Example: A study of Bilirubin levels in patients with
Liver Disease

0 80 160 240 320 400
Bilirubin Level

58

If Normality is questionable

a) Try to transform the data to approximate
Normality
e e.g. logarithms or square root

b) Non-Parametric technique
e Bootstrap
e Cl for the population MEDIAN

60

15



The Bootstrap Estimation via bootstrapping

*We can quantify the variability of
sample statistics using theory eg
the Central Limit Theorem, or by
simulation via bootstrapping.

b) Non-Parametric technique

e Bootstrap *The term bootstrapping comes from

e Cl for the population MEDIAN the phrase "pulling oneself up by one’s
bootstraps”.
61 62
Bootstrapping scheme Bootstrapping in R

* Take a bootstrap sample - a random sample taken
with replacement from the original sample, of the library(infer)
same size as the original sample.

* Calculate the bootstrap statistic - a statistic such as
mean, median, proportion, etc. computed on the
bootstrap samples.

* Repeat steps (1) and (2) many times to create a
bootstrap distribution - a distribution of bootstrap
statistics.

* Calculate the bounds of the XX% confidence interval
as the middle XX% of the bootstrap distribution.

63 64
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67

Generate bootstrap means

4r}

boot <- train.df =%
specify(response = Improvement) %>%
generate(reps = 1000, type = "bootstrap”) %>%
calculate(stat = "mean")

percentile_ci <- get_ci(boot)
round(percentile_ci,2)

# A tibble: 1 x 2
t2.5% "97.5%
<db1> <db1>

1 4.17 6.25

Box plot of Improvement in VO2 max
0
T
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VO2 Improvement 18 5.11111 2.25829

66

68

Plot the (empirical) sampling distribution

ir} vy
boot %>% visualize(endpoints = percentile_ci, direction = "between")
¥
xlab("Bootstrap Mean") + ylab("Frequency")
150~
8100~
5
E
=
©°
w
50- I
- I!-__
. . . .
4 5 6 7

Bootstrap Mean

Compare the two 95% Confidence Intervals

Oone Sample t-test

data: .
t = 9.6022, df = 17, p-value = 2.798e-08
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:

3.988090 6.234132

# A tibble: 1 x 2
“2.5% "97.5%
<db1> <db1>

1 4.17 6.25

17



Generate bootstrap medians

boot <- train.df %%
specify(response = Improvement) %%
generate(reps = 1000, type = "bootstrap") %%
calculate(stat = "mean")

percentile_ci <- get_ci(boot)
round(percentile_ci,2)

69

Celtic Study

* Based on the data provided the sample mean
improvement was 5.11 mL/kg/min. We are 95%
confident that the typical improvement in VO2 max

is likely to be between 4 and 6 mL/kg/min.

* Given that the typical VO2 max at the start of this
study was 67.66, the estimated typical
improvement is approximately 7% (i.e. 5.11/67.66
expressed as percentage is 0.07*100 ).

* How would you translate this ?

71

70

72

Generate bootstrap medians

{r}
boot.median <- train.df %%
specify(response = Improvement) %>°
generate(reps = 1000, type = "bootstrap™) %%
calculate(stat = "median™)

percentile_ci_median <- get_ci(boot.median)
round(percentile_ci_median,2)

# A tibble: 1 x 2
T2.5%° T97.5%
<db1> <db1>

1 4.1 6.05

Celtic Study

*Does this mean that each player will improve
by 5.11 units ?

18
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75

Pick a parameter of interest ....

Estimate it using an (unbiased) estimator
Calculate its corresponding standard error;
Calculate the corresponding (1-)100% Cl;
Check the terms and conditions

Report the conclusions of the analysis.

LA N

Theorem 9.2

If Z is used as an estimate of y, we can be 100(1 — a)% confident that the error
will not exceed a specified amount e when the sample size is

2
(=2

Very useful for sample size calculations

Effect of increasing the confidence
level

90% C.I for z, x+£1.65

&

95% C.I for u, x+1.96

99% C.L for 1, X+2.58——

74

19



8. Sampling distributions
and confidence intervals

Fundamental relationship between
probability and inferential statistics

Probability
Population Sample

Statistical Inference

Probability and Statistics

* In probability theory we consider some known
process which has some randomness or
uncertainty. We model the outcomes by random
variables, and we figure out the probabilities of
what will happen. There is one correct answer to
any probability question.

*In statistical inference we observe something that
has happened, and try to figure out what
underlying process would explain those
observations.

An example ...

* Consider an (opaque) jar of red and green jelly
beans.

* A probabilist starts by knowing the proportion of
each and asks: What is the probability of drawing a
red jelly bean from the jar?

* A statistician infers the proportion of red jelly
beans by sampling from the jar, and using the
sample proportion to estimate the jar proportion.




Probability and Statistics

*The basic aim behind all statistical methods is to
make inferences about a population by studying a
relatively small sample chosen from it.

* Probability is the engine that drives all statistical
modelling, data analysis and inference.

Population

m Probability
. Inference
Population \
Parameters
Sample
Statistics

Foundations for Inference

* Recall that inference is concerned (primarily) with estimating
population parameters using sample statistics.

* A classic inferential question is, “How sure are we that the
sample mean, x, is near the true population mean, pu?”

* Estimates (i.e. statistics) generally vary from one sample to
another, and an understanding of sampling variation is key
when estimating the precision of a sample statistic as an
estimate of the corresponding parameter.

Sampling Distributions

*The probability distribution of a statistic is called a
sampling distribution.

*Sampling distributions arise because samples vary.

* Each random sample will have a different value of
the statistic.
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Histogram of Estimated Mean
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The Central Limit Theorem

* The sampling distribution of any mean becomes
more nearly Normal as the sample size grows

* observations need to be independent.

* the shape of the population distribution doesn't
matter.

Sampling Distribution for the
Sample Proportion Sample Mean Sample Mean

http://lwww.artofstat.com/webapps.html

Sampling Distribution for the Sampling Distribution for the

See how the sampling distribution builds up
with

shape depends on n and p

ated

pling and explore how its

14

15

The Central Limit Theorem

X~N o
w—

The CLT depends crucially on the assumption of
independence.

You can’t check this with your data. You have
to think about how the data were gathered —
can you assume the observations are
independent?

16




The Central Limit Theorem

* Sample means follow a Normal distribution centred
on the population mean with a standard deviation
equal to population standard deviation divided by
the square root of the sample size.

_ a?
X~N (ﬂ,;)

* What happens when you take a single sample ?

The Standard Error

*The standard error is a measured of the variability
in the sampling distribution (i.e. how do sample
statistics vary about the unknown population
parameter they are trying to estimate)

* |t describes the typical ‘error’ or ‘uncertainty’
associated with the estimate.

_ o2 g2
X~N(p— = —=
(n%) 7

17

Interval Estimation for u

Use the CLT to provide a range of values that will
capture 95% of sample means.

19

18
95% of sample means
0.2
XN”(*‘?)
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95% of sample means

21

95%

i

X u— 190z
|
I

X — 1.960% X + 1.960%

1
n u+ 1.960%

The sample mean X has a normal distribution with mean u
and standard deviation oy = g/Vn.

Let’s consider a particular sample with mean x.

Now suppose x lies in the outer 5% of the distribution of X —

the 95% confidence interval x £ 1.960 does not include
the population mean pu.

Il

= 1.960% I3 X p+1960g
| |
T 1

|
{
X — 1.960y X + 19607

The sample mean X has a normal distribution with mean u
and standard deviation gy = g/Vn.

Let’s consider a particular sample with mean x.

Now suppose x lies in the middle 95% of the distribution of

X —the 95% confidence interval x £ 1.960x succeeds in
covering the population mean u.

22

95% Confidence Interval for p

In repeated sampling, 95% of intervals calculated in this
manner

O

Jn

xt1.96*

will contain the true mean L.

23

24
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Confidence Intervals

* A point estimate (i.e. a statistic) is a single
plausible value for a parameter.

* A point estimate is rarely perfect; usually there is
some error in the estimate.

* Instead of supplying just a point estimate of a
parameter, a next logical step would be to provide
a plausible range of values for the parameter.

* To do this an estimate of the precision of the
sample statistic (i.e. the estimate) is needed.

Confidence intervals

*The population mean p is fixed
*The intervals from different samples are random

* From our single sample, we only observe one of the
intervals

* Our interval may or may not contain the true mean

*If we had taken many samples and calculated the
95% ClI for each, 95% of them would include the
true mean

*We say we are “95% confident” that the interval
contains the true mean.

26

n=150,x=69.5 6=6.2

Isu>757?

27

28




6.2
69.5 £1.96 —

V150

> 69.5-1.96%6.2/sqrt(150)

[1] 68.50779
R > 69.5+1.96*6.2/5qrt(150)
[1] 70.49221

A 95% CI for the population mean is
[68.51, 70.49]

Interpret this !

Isu>757?

29

Application: mean weekly rent in
ST2001

survey.data %>%
select(rent) %>%
filter(rent>0 & rent < 5000) %>%
summarise(sample.size = n(),
mean = mean(rent),
sd = sd(rent))

## sample.size mean sd
## 1 108 617.8056 214.7341

What is the population mean rent ?
What is a student likely to pay ?
What will they actually pay ?

95% confident that the population mean is

between 68.48 and 70.51 based on the data
provided.

No evidence to support the claim that the
population mean (u) greater than 75.

30

31

Population Mean Rent in ST2001 ?

survey.data %>%
select(rent) %>%
filter(rent>0 & rent < 5000) %>%

t.test()
##
## One Sample t-test
##
## data:
## t = 29.899, df = 107, p-value < 2.2e-16
## alternative hypothesis: true.me an is not equal to 0

## 95 percent confidence interval:
##576.8440 658.7671

## sample estimates:

## mean of x

## 617.8056

32




Using s forc ?
* Knowing s must mean that you knew ...
O

Jn

* The sample standard deviation s is used to
estimate c.

* What are the consequences ?

xt1.96*

What if o is unknown and n is
small ?

33
n <30
. S
X+t «a —
/gz 7,11%
1- confidence level Degrees of freg

Population normal

35

34

t, distribution

Mean =0

Variance = vTvz forv > 2
36



T- distribution

Vg \\ t-model with 2 degrees of freedom

Normal

- ~.
= I ' ! Se=om

-4 2 0 2 4

As the degrees of freedom increase, the t-models look more and
more like the Normal.

In fact, the t-distribution with infinite degrees of freedom is the
Normal distribution.

37

39
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Double-Exponental(0)
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Table: t distribution critical values

fatia

-
/ T- tables

g,_;// . \¥

Upper il probabiiity
df 025 020 045 040 005 0025 002

0.005

1000 1378 1883 3078 62314 12706 15805
081 1081 1386 1.886 2820 4303 4540
0765 0878 1250 1838 2383 3182 3432
0741 081 1780 1533 2932 2776 290
0777 0920 1158 1478 2015 2671 2757
0718 0008 1134 1440 1043 2447 2812
0711 0808 1110 1415 1805 2386 2517
0706 0838 1108 1397 1880 2306 2440
0702 0833 1100 1383 1833 2262 2308
0700 0879 1083 1372 1812 2228 2350

S oo s omotn e me o

83.857
8.825
.84
4.804
4032
3707
3400
3355
3.250
3160

41

Example: Celtic study

43

One-sample t-interval for a population mean

* When the conditions are met, we are ready to find the
confidence interval for the population mean, u.

* The confidence interval is

. S
X+ t(1 In-1)
2’ Vn
* The critical value t(l_g,n_l)depends on the particular

confidence level, 1- a, that you specify and on the number of
degrees of freedom, n — 1, which we get from the sample size.

* Let R do the work ....

42

Celtic Study

* A sample of 18 full-time youth soccer players from a
Youth Academy performed high intensity aerobic
interval training over a 10-week in-season period in
addition to usual regime of soccer training and
matches.

*Did this extra tréining improve fitness (VO2 max) ?

* Paired design: each player measured before and
after (i.e. start and after 10 weeks)

44
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Scatter plot of Pre and Post VO2 Max
(with line of equality)
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45
Estimate the population mean improvement
*90% Cl for p
95% Cl for p X+t S
*9>7 X a —

- (1_7111_1) \/ﬁ

*99% Cl for p

47

Box plot of Improvement in VO2 max
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Variable N Mean StDev
VO2 Improvement 18 5.11111 2.25829

46

Estimate the population mean improvement

*90% Cl for p
(a0 =0.10 split over the tails)

*95% Cl for p
(o0 = 0.05 split over the tails)

Tdfa

*99% Cl for p (a0 =0.10)
o =0.01 split over the tails

48
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Using R to calculate the quantile needed
corresponding to a particular tail area

~ |

The qt(p=?, df=?, lower.tail=TRUE ) \‘
function calculates the t-value 3 / \

1x)

* Find the percentile of the Student t distribution
needed for a 95% Cl from a sample of size 18.

\
corresponding to a given lower-tailed R ,/ N
area. M

49

Check the tables ...

Table: t distribution critical values

N
/N
“ \.
§ /
: \
5 s
== 'ata
Upper tail probability
o | 025 020 015 010 005 0025 002 001 0005 00025 0001 00005
14 0602 088 1078 1345 1761 2145 2204 2624 2077 3328 3787 4140
15| 0801 0888 1074 1341 1753 2131 2240 2602 2047 3288 373 4073
16 0600 0885 1071 1337 1748 2120 2235 2583 2821 3252 3685 4015
17) 0882 0853 1052 1333 1740 2110 2204 257 2888 322 30646 3985
18] 0883 0882 1057 1330 17 2101 2214 2552 2878 3167 3610 3922

* Find the percentile of the Student t distribution
needed for a 95% Cl from a sample of size 18.

* For a 95% Cl need the percentiles
corresponding to tail areas such that

95% of the distribution is between z 8 “\\
these percentiles (i.e. 5% of the area / \\
split across the two tails). : / \
p ) | / \__
-4 2 ; 2 4
* To calculate the 2.5t and 97.5t )

percentiles of the Student t
distribution with 17 degrees of
freedom:

> qr(0.975, df=17)
[1] 2.109816

51

50
Estimate the population mean improvement
. S
*95% Cl for u Xttt a —
Variable N Mean StDev
VO2 Improvement 18 5.11111 2.25829
> qt(0.975, df=17)
[1] 2.109816
52

13



### Lower 95% CI using summary statistics
el

rs

5.11 - qt(0.975, df=17)%(2.25829/sqrt(18))

[1] 3.986979

### Upper 95% CI using summary statistics
{r}

5.11 + qt(0.975, df=17)%(2.25829/sqrt(18))

[1] 6.233021

53

Conclusion ?

*On average ?

*What does 95% Confidence mean ?
*Terms and conditions ?

*Random sample ?

*Small n, normality ??

55

## Using the t.test function

a2

“{r}
train.df %-% select(Improvement) %>% t.test()
One Sample t-test
data:

t = 9.6022, df = 17, p-value = 2.798e-08
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:

3.988090 6.234132
sample estimates:
mean of x

5.111111

54

If Normality is questionable

a) Try to transform the data to approximate
Normality
e e.g. logarithms or square root

b) Non-Parametric technique
e Bootstrap
(Il for the population MEDIAN

56
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Transforming to Normality

* Example: A study of Bilirubin levels in patients with
Liver Disease

Bilirubin Level

57

Logarithm of Bilirubin Data

log(bilirubin level)

1. Produce an interval estimate for the Population
MEAN
log bilirubin level

2. take anti-logs/exponentials of the resulting interval

If Normality is questionable

a) Try to transform the data to approximate
Normality
e e.g. logarithms or square root

b) Non-Parametric technique
e Bootstrap
e Cl for the population MEDIAN

58

59

The Bootstrap

b) Non-Parametric technique
e Bootstrap
e Cl for the population MEDIAN

60
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Estimation via bootstrapping

*We can quantify the variability of
sample statistics using theory eg
the Central Limit Theorem, or by
simulation via bootstrapping.

*The term bootstrapping comes from

the phrase "pulling oneself up by one’s
bootstraps”.

61

Bootstrapping in R

library(infer)

Bootstrapping scheme

* Take a bootstrap sample - a random sample taken
with replacement from the original sample, of the
same size as the original sample.

* Calculate the bootstrap statistic - a statistic such as
mean, median, proportion, etc. computed on the
bootstrap samples.

* Repeat steps (1) and (2) many times to create a
bootstrap distribution - a distribution of bootstrap
statistics.

* Calculate the bounds of the XX% confidence interval
as the middle XX% of the bootstrap distribution.

62

63

Generate bootstrap means

~~~~~

irs
boot <- train.df %%
specify(response = Improvement) %%
generate(reps = 1000, type = "bootstrap") %%
calculate(stat = "mean”)

percentile_ci <- get_ci(boot)
round(percentile_ci,2)

# A tibble: 1 x 2
T2.5% "97.5%
<db1> <db1>

1 4,17 6.25

64
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Plot the (empirical) sampling distribution

{r} 4
boot %>% visualize(endpoints = percentile_ci, direction = "between")
¥

xlab("Bootstrap Mean") + ylab("Frequency")

,_IIII|||III“-_
: : ; -

Bootstrap Mean
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Box plot of Improvement in VO2 max
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VO2 Improvement 18 5.11111 2.25829

66

65
Compare the two 95% Confidence Intervals
One sample t-test
data: .
t = 9.6022, df = 17, p-value = 2.798e-08
alternative hypothesis: true mean is not equal to O
95 percent confidence interval:
3.988090 6.234132
# A tibble: 1 x 2
T2.5% "97.5%
<dbl>  <dbl>
1 4.17 6.25
67

Generate bootstrap medians

4}

boot <- train.df %%
specify(response = Improvement) %>%
generate(reps = 1000, type = "bootstrap") %%
calculate(stat = "mean")

percentile_ci <- get_ci(boot)
round(percentile_ci,2)

68
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Generate bootstrap medians

boot.median <- train.df %%
specify(response = Improvement) %>%
generate(reps = 1000, type = "bootstrap™) %>%
calculate(stat = "median™)

percentile_ci_median <- get_ci(boot.median)
round(percentile_ci_median,2)

# A tibble: 1 x 2
“2.5%° "97.5%
<db1> <dbl>

1 4.1 6.05

Celtic Study

*Based on the data provided the sample mean
improvement was 5.11 mL/kg/min. We are 95%
confident that the typical improvement in VO2 max
is likely to be between 4 and 6 mL/kg/min.

* Given that the typical VO2 max at the start of this
study was 67.66, the estimated typical
improvement is approximately 7% (i.e. 5.11/67.66
expressed as percentage is 0.07*100 ).

* How would you translate this ?

70

69
Celtic Study
*Does this mean that each player will improve
by 5.11 units ?
71

ARSI SR R

Pick a parameter of interest ....

Estimate it using an (unbiased) estimator
Calculate its corresponding standard error;
Calculate the corresponding (1-¢)100% Cl;
Check the terms and conditions

Report the conclusions of the analysis.

72




Effect of increasing the confidence
level

90% C.I. for 4, x+£1.65—=
(i M \/;

S
95% C.I. for 4, x+1.96—=
0 y2) \/;

99% C.I for u, x+2.58—
(0 M \/;

Theorem 9.2

If Z is used as an estimate of y, we can be 100(1 — a)% confident that the error
will not exceed a specified amount e when the sample size is

- ()

Very useful for sample size calculations

73

74
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Topic 10: Hypothesis testing

Learning Outcomes

. Carry out hypothesis tests for a single mean.

. Understand types of testing errors

. Understand the relationship between hypothesis testing and
confidence intervals and the advantages of interval estimation

5. Additional reading material : Open Intro book Chapters 5.1 & 7.1

AW N R

Use the p-value approach for making decisions in hypothesis tests.

Openlntro Statistics
Fourth Edition

Christopher D Barr
Investment Analyst
Varadero Capital

Recap: Inference using Confidence
Interval Estimation

A claim has been made that college students have

been in, on average, at least 4 exclusive
relationships. Data collected on a random sample of
50 college students yielded a mean of 3.2 and a
standard deviation of 1.74.

Do these data provide evidence for or against the
hypothesis claimed ?

The corresponding 95% Cl is [2.7, 3.7].

11/2/22



Practice

Which of the following is the correct interpretation of this confidence
interval?

We are 95% confident that

(a) the average number of exclusive relationships college students in
this sample have been in is between 2.7 and 3.7.

(b) college students on average have been in between 2.7 and 3.7
exclusive relationships.

(c) a randomly chosen college student has been in 2.7 to 3.7 exclusive
relationships.

(d) 95% of college students have been in 2.7 to 3.7 exclusive
relationships.

Practice

Which of the following is the correct interpretation of this confidence
interval?

We are 95% confident that

(a) the average number of exclusive relationships college students in
this sample have been in is between 2.7 and 3.7.

(c) a randomly chosen college student has been in 2.7 to 3.7 exclusive
relationships.

(d) 95% of college students have been in 2.7 to 3.7 exclusive
relationships.

Review

* Formal Statistical Analysis (Inference)

* Given a sample, what can we say about the population (or the

process that generated the data)

* Interval Estimation
* Hypothesis testing (p-values)

Hypothesis Testing

* A hypothesis test is intended to assess whether a population parameter of
interest is equal to some specified value of direct interest to the researcher

* Hypothesis tests are structured in a very specific and, what may seem
initially, peculiar manner

* The p-value is central to the notion of a hypothesis test

* The CLT and t-distribution provide the framework for assessing if the
sample mean is not the same as the proposed parameter mean

11/2/22



Null and alternative hypotheses

* The null hypothesis is a claim to be tested — often the skeptical claim of “no
effect”.. eg

Ho: = po
* The alternative hypothesis is an alternative claim under consideration,
often represented by a range of parameter values — eg

Hy: p # po
* We only reject the null in favour of the alternative if there is strong
supporting evidence.

* We decide a priori how much evidence is “strong” enough to reject the null

Stages in Hypothesis Testing

1. Null Hypothesis: The hypothesis that the population parameter is
equal to some claimed value (Ho)

2. Study or Alternative Hypothesis: The hypothesis that must be
true if the null hypothesis is false (H1)
Collect appropriate data
Assess, through a test statistic, how probable (the p-value) it
would be to observe data as or more extreme than the data
actually collected if, in fact, the Null Hypothesis was true

5. Come to a conclusion whether or not to reject the Null
Hypothesis

10

9

Rejecting/not rejecting the null

* If we do not reject the null hypothesis in favour of the alternative, we
are saying that the effect indicated by the sample is due only to
sampling variation.

* If we do reject the null hypothesis in favour of the alternative, we are
saying that the effect indicated by the sample is real, in that it is more
than can be attributed to sampling variation.

11

186 CHAPTER 4. FOUNDATIONS FOR INFERENCE

4.3.4 Formal testing using p-values

The p-value is a way of quantifying the strength of the evidence against the null hypothesis
and in favor of the alternative. Formally the p-value is a conditional probability.

p-value

The p-value is the probability of observing data at least as favorable to the al-
ternative hypothesis as our current data set, if the null hypothesis is true. We
typically use a summary statistic of the data, in this chapter the sample mean, to
help compute the p-value and evaluate the hypotheses.

p-value as a tool in hypothesis testing

The smaller the p-value, the stronger the data favor H4 over Hy. A small p-value
(usually < 0.05) corresponds to sufficient evidence to reject Hp in favor of Ha.

12
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One-Sample Tests for the population mean
1. Specify the hypotheses about u

2. Calculate a test statistic — based on the sampling distribution of the
sample mean

3. See how extreme the test statistic is if the null hypothesis was true
— compare the test statistic with the t or Normal distribution

4. Make a decision: reject the null or don’t reject it.

Strategy

* If the sample came from the population in question the sample mean
should be ‘close’ to the population mean in question

* ‘Close’ needs to take into account the sample size used and the
variability in the measure (i.e. the standard error)

* For testing means, the Central Limit Theorem or t distribution (or the

bootstrap) is key

13

14

Tests on the Mean of a Normal Distribution, Variance
Unknown

One-Sample t-Test
Null Hypothesis
Ho: p=po

X —
Test statistic: Ty = A “Ho
S/An

Alternative hypothesis Rejection criteria

Two sided hypotheses test " Hyp# o To > tuon1 OF To < —typny
) [ Hitpu>pe To> tyn1
One sided hypotheses tests — .
Yp L Hiip<po To < ~tyn-1

Alternative hypothesis Rejection criteria

Hitp# po To > taz,n1 OF To < —tuz,n1

Hy: > o To> tyn1

Hitp < po To < ~ly,n1

Typically a is set at 0.05

P-value = sum of area in two tails

tcurve for n — 1 df

tcurve forn — 1 df

P-value = area in upper tail

To

t curve for n

P-value = area in lower tail

To

1df

15
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Terms and conditions:

. Independence: random sample/assignment

- Normality: for small samples where we use the t
distribution, we require the observations to be
approximately normally distributed. For larger (n
> 30) samples, no extreme skew we can use the
CLT and do not require the observations to be
normally distributed.

17

Statistical Significance

* Whenever the p-value is less than a particular threshold, the
result is said to be “statistically significant” at that level.

* The threshold should be decided a priori, before you
calculate the test statistic

* For example, if the threshold is p < 0.05, the result is
statistically significant at the 5% level; if p < 0.01, the result is
statistically significant at the 1% level, and so on.

* If a result is statistically significant at the 100a% level, we can
also say that the null hypothesis is “rejected at level 100a%.”

p-values and (o) significance levels ...

* A p-value < 0.05 is (typically) considered as
sufficient evidence against a null hypothesis
(ie sufficient evidence to reject the null).

* If the p-value for the test of a parameter with
2-sided alternative is <0.05, the 95%

Confidence Interval will not include the
parameter.

18
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Example: Golf Club Design

An experiment was performed in which 15 drivers produced
by a particular club maker were selected at random and
their coefficients of restitution measured. It is of interest to
determine if there is evidence (with o = 0.05 significance
level) to support a claim that the mean coefficient of
restitution exceeds 0.82.

The sample mean and sample standard deviation are
X =0.83725 and s=0.02456.

The objective of the experimenter is to demonstrate that the
mean coefficient of restitution exceeds 0.82, hence a one-
sided alternative hypothesis is appropriate.

hh

20
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Example: Golf Club Design continued Example: Golf Club Design continued
1. Parameter of interest: The parameter of interest is the X — Uo
mean coefficient of restitution, pL. 4. Test Statistic: The test statistic is Ty = ——

2. Null hypothesis: Ho: 1L = 0.82

3. Alternative hypothesis: H;: |1 > 0.82 Computations: Since X = 0.83725, s = 0.02456,
1 =0.82, and n =15, our observed test statistic is

We decide a priori we will reject Hpif the p-value is 0.83725—0.82
<0.05. to = = s = 272
0.02456//15
21 22

Table: t distribution critical values Use R (flrst pr|nC|p|eS)

n <- 15
g xbar <- 0.83725
n =15, tx=2.72 H samp.sd <- 0.02456
a Dlirlbuilon Plot
mu <- 0.82
o L
test.stat <- (xbar- .sd t
‘ | Upper G probaiiy | est.stat <- (xbar-mu) / (samp.sd / sqrt(n))
df 025 020 045 040  0.05 0.025 _ 0.02 _ 0.01 _ 0.005 0.0025 _ 0.001 0.0005 # probability to the right of the test statistic i
14| 0692 0868 1076 1345 1761 2145 2264 2624 2977 3326 3787 4'I40| pt(g=test.stat, df=n-1, Tower.tail = FALSE)
oo )ﬂ( 2n
> pt(g=test.stat, df=n-1, lower.tail = FALSE)
. . [1] 0.008292926
p is between 0.005 and 0.01 i.e. < 0.05
23 24



Example: Golf Club Design continued

Conclusions: The probability of observing such
data (or more extreme data) if the null hypothesis
is true is less than 0.008.

Interpretation: There is strong evidence
(p=0.008) to conclude that the mean coefficient of
restitution exceeds 0.82.

A Cl would give an interval estimate as to what it
actually is ... !

Sleep hygiene example

A poll by the National Sleep Foundation found that college
students average about 8 hours of sleep per night. A sample of
169 college students taking an introductory statistics class
yielded an average of 7.84 hours, with a standard deviation of
0.98 hours.

Assuming that this is a random sample representative of all
college students (bit of a leap of faith?), carry out a hypothesis
test to evaluate whether the data provide convincing evidence
that the average amount of sleep college students get per night
is to the average value claimed.

25

26

Example: Sleep Hygiene

Parameter of interest: The parameter of
interest is the mean amount of sleep (hours) in
the population of interest, p.

Null hypothesis: Hy: =8
Alternative hypothesis: Hy: u # 8
Two-sided test ... interested in whether the

amount of sleep, on average, is different to
the claimed national average.

27

Example: Sleep Hygiene

Test Statistic: The test statistic i T, = Xt
istic: The test statistic is = —_—
YN

From our observed data

ty = Lonrt=-2.05
o)

28
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Example: Sleep Hygiene

. o T — X — U
Test Statistic: The test statistic is 0 S/\/ﬁ

From our observed data

ty = Lowre=-2.05
e

p-value : calculate area to the right
of 2.05 and to the left of -2.05 in a
t distribution with 169-1 degrees
of freedom.

Example: Sleep Hygiene

P-value : calculate area to the right of 2.05 and to
the left of -2.05 in a t distribution with 169-1
degrees of freedom.

Distribution Plot
t with df=168

002083 0.02083
o -2.053 0 205272

30

Example: Sleep Hygiene

Conclusions: The probability of
observing such data (or more extreme) if
the null hypothesis is true is = 0.04.

Interpretation: As the p-value is less than
0.05, there is evidence (at the 5%
significance level) that the mean hours
sleeping is different from the national
average of 8.

29
Example: Sleep Hygiene

p-value : use the symmetry in the distribution i.e.
calculate area to the right of 2.05 in a t distribution
with 169-1 degrees of freedom and double it.
> 2 * pt(gq= 2.052717, df=168, lower.tail = FALSE)
[1] 0.04165098
p-value : 0.0416

31
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Example: Sleep Hygiene using R

Parameter of interest: The parameter of
interest is the mean amount of sleep (hours) in
the population of interest, L.

Null hypothesis: Hy: =8
Alternative hypothesis: Hy: L = 8
Two-sided test ... interested in whether the

amount of sleep, on average, is different to
claimed national average.

" {r, echo=FALSE} =4
sleep.df <- read.csv("hours_sleeeing.csv", header = TRUE)

glimpse(sleep.df)

Observations: 169
variables: 1

$ Hours b7> 6.756878, 7.920529, 8.217221, 6.5176...
## Boxplot
{r} »
goplot(sleep.df, aes(x = "", y = Hours)) +

ST
sleep.df %%
summarize(sample.size = n(),
Mean=mean (Hours) ,
Median = median(Hours),
SD= sd(Hours)
D)
sample.size Me”an Medi‘a‘n HSD
Zint <dbl> <dbl> <dbl>
169 7.845269  7.92018 0.9799231

geom_boxplot() +
ggtitle("Boxplot of Hours Spent Sleeping") +
ylab("Hours spent sleeping™) +
Xlab("") +
geon_hline(yintercept=8, Tinetype="dashed",color =

"green”, size=1)

Boxplot of Hours Spent Sleeping

Hours spent sleeping

36




# Classic version of t test
T {r}

t.test(sleep.dfSHours, mu = 8,
alternative = "two.sided",
conf.level = 0.95)

One sSample t-test

data: sleep.df$Hours

t = -2.0527, df = 168, p-value = 0.04165
alternative hypothesis: true mean is not equal to 8
95 percent confidence interval:

7.696457 7.994080

sample estimates:

mean of x

7.845269

37

Statistical Significance Is Not the Same as
Practical Significance continued ...

* The p-value does not measure practical significance. What it does
measure is the degree of confidence we can have that the true value
is really different from the value specified by the null hypothesis.

* When the p-value is small, then we can be confident that the true
value is really different. This does not necessarily imply that the
difference is large enough to be of practical importance.

Statistical Significance Is Not the Same as

Practical Significance

* When a result has a small p-value, we say that it is “statistically
significant.” In common usage, the word significant means

“important.” It is therefore tempting to think that statistically
significant results must always be important.

* This is not the case. Sometimes statistically significant results do not
have any scientific or practical importance.

* A difference is only a difference if it makes a difference.

38
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Connection between Hypothesis Tests and
Confidence Intervals

A close relationship exists between the test of a hypothesis for 0, and the
confidence interval for 6.

If [/, u] is a 95% confidence interval for the parameter 0, the test of the null
hypothesis against a 2-sided alternative at the 0.05 significance level

Ho: 9=90
Hi: 9#90

will lead to rejection of Hy if and only if O, is not in the 95%
Cl [, ul.

And similarly for your alpha of choice e.g. 90% Cl and p < 0.10 ...

40
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p-values revisited ...

* A p-value is not the probability of the null hypothesis
being true given the data observed.

* It is the probability of observing such data (or more
extreme data) given the null hypothesis is actually
true.

* A non-significant test does not imply that the null
hypothesis is true. It actually means that we do not
have enough evidence to reject the null hypothesis.

* A significant result does not mean the alternative
hypothesis is true — it means that we have enough
evidence to reject the null.

41

Summary

* Hypothesis testing is useful if you are interested in testing if the parameter
is equal to a particular value.

* Typically interval estimation is more useful as an interval provides an
estimate of the parameter you are interested in and the range of values
for the parameter supported by the data.

* You can do a hypothesis test using the resulting interval estimate (i.e. does
the interval contain the hypothesised value ?) but you can’t use the
Bypothesis to get an interval estimate of what the parameter is likely to

e.

* Don’t be impressed by ‘clinically proven’. Ask to see the corresponding
95% Cl ...

What have we learned?

We've learned:
Start with a null hypothesis.
Alternative hypothesis can be one- or two-sided.
Collect Data
Check assumptions and conditions.
Data are out of line with Ho, small p-value, reject the null hypothesis.
Data are consistent with Ho, large p-value, don’t reject the null hypothesis.
State the conclusion in the context of the original question.

42
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Decision errors

e Hypothesis tests are not flawless.

® In the court system innocent people are sometimes wrongly
convicted, and the guilty sometimes walk free.

e Similarly, we can make a wrong decision in statistical
hypothesis tests.

e The difference is that we have the tools necessary to quantify
how often we make errors in statistics.

44
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Decision errors (cont.)

® There are two competing hypotheses: the null and the
alternative.

* In a hypothesis test, we make a decision about which might
be true, but our choice might be incorrect.

Decision errors (cont.)

There are two competing hypotheses: the null and the
alternative. In a hypothesis test, we make a decision about which
might be true, but our choice might be incorrect.

Decision
fail to reject Ho reject Hy

Hj true

Truth
Hj true

45

Decision errors (cont.)

There are two competing hypotheses: the null and the
alternative. In a hypothesis test, we make a decision about which
might be true, but our choice might be incorrect.

Decision
fail to reject Hop reject Hy
Hj true v

Truth

Hy true

47
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Decision errors (cont.)

There are two competing hypotheses: the null and the
alternative. In a hypothesis test, we make a decision about which
might be true, but our choice might be incorrect.

Decision
fail to reject Ho reject Hy
Hj true v

Truth

Hy true Vv

48
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Decision errors (cont.)

There are two competing hypotheses: the null and the
alternative. In a hypothesis test, we make a decision about which
might be true, but our choice might be incorrect.

Decision
fail to reject Hop reject Hy
H true v Type 1 Error
Truth
Hy true v

® A Type 1 Erroris rejecting the null hypothesis when Hp is true.

49

Decision errors (cont.)

There are two competing hypotheses: the null and the
alternative. In a hypothesis test, we make a decision about which
might be true, but our choice might be incorrect.

Decision
fail to reject Hop reject Hy
Hyj true v Type 1 Error

Hy true Type 2 Error v

Truth

® AType 1 Erroris rejecting the null hypothesis when Hp is true.
® A Type 2 Error is failing to reject the null hypothesis when H, is
true.

We (almost) never know if Hy or Hy is true, but we need to consider all
possibilities.

Decision errors (cont.)

There are two competing hypotheses: the null and the
alternative. In a hypothesis test, we make a decision about which
might be true, but our choice might be incorrect.

Decision
fail to reject Ho reject Hy
H true v Type 1 Error
Truth
Hj true Type 2 Error v

® A Type 1 Erroris rejecting the null hypothesis when Hp is true.
® A Type 2 Error is failing to reject the null hypothesis when H, is
true.

50
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Hypothesis Test as a trial
* Think about the logic of jury trials:

» To prove someone is guilty, we start by assuming they are innocent.

* We retain that hypothesis until the facts make it unlikely beyond a
reasonable doubt.

¢ Then, and only then, we reject the hypothesis of innocence and declare the
person guilty.

52
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Hypothesis Test as a trial

If we think of a hypothesis test as a criminal trial then it makes sense to frame
the verdict in terms of the null and alternative hypotheses:

H,: Defendant is innocent
H,: Defendant is guilty
Which type of error is being committed in the following circumstances?

e Declaring the defendant innocent when they are actually guilty

e Declaring the defendant guilty when they are actually innocent

Hypothesis Test as a trial

If we think of a hypothesis test as a criminal trial then it makes sense to frame
the verdict in terms of the null and alternative hypotheses:

H,: Defendant is innocent
H,: Defendant is guilty
Which type of error is being committed in the following circumstances?
e Declaring the defendant innocent when they are actually guilty
Type 2 error

e Declaring the defendant guilty when they are actually innocent

53

Hypothesis Test as a trial

If we think of a hypothesis test as a criminal trial then it makes sense to frame
the verdict in terms of the null and alternative hypotheses:

Hy: Defendant is innocent
H,: Defendant is guilty
Which type of error is being committed in the following circumstances?
o Declaring the defendant innocent when they are actually guilty
Type 2 error
o Declaring the defendant guilty when they are actually innocent

Type 1 error

Which error do you think is the worse error to make?

54

Hypothesis Test as a trial

If we think of a hypothesis test as a criminal trial then it makes sense to frame
the verdict in terms of the null and alternative hypotheses:

Ho: Defendant is innocent
H,: Defendant is guilty
Which type of error is being committed in the following circumstances?
e Declaring the defendant innocent when they are actually guilty
Type 2 error
e Declaring the defendant guilty when they are actually innocent

Type 1 error

“better that ten guilty persons escape than that one innocent suffer”

- William Black (English jurist , C on the Laws of England, published in the 1760s.)

55
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Type 1 error rate

® As ageneral rule we reject Hy when the p-value is less than
0.05, i.e. we use a significance level of 0.05, o = 0.05.

57

Type 1 error rate

e As ageneral rule we reject Ho when the p-value is less than
0.05, i.e. we use a significance level of 0.05, o = 0.05.

e This means that, for those cases where Hy is actually true, we
do not want to incorrectly reject it more than 5% of those
times.

e In other words, when using a 5% significance level there is
about 5% chance of making a Type 1 error if the null
hypothesis is true.

P(Type 1 error) =a
or P(Reject HO | HO true) = a

Type 1 error rate

® As ageneral rule we reject Hy when the p-value is less than
0.05, i.e. we use a significance level of 0.05, o = 0.05.

e This means that, for those cases where H, is actually true, we
do not want to incorrectly reject it more than 5% of those
times.

58

Type 1 error rate

® As ageneral rule we reject Ho when the p-value is less than
0.05, i.e. we use a significance level of 0.05, o = 0.05.

e This means that, for those cases where Hy is actually true, we
do not want to incorrectly reject it more than 5% of those
times.

e In other words, when using a 5% significance level there is
about 5% chance of making a Type 1 error if the null
hypothesis is true.

P(Type 1 error) = a
or P(Reject HO | HO true) = a
This is why we prefer small values of a -- increasing a increases
the Type 1 error rate.

59
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Choosing a significance level

Choosing a significance level for a test is important in many contexts, and
the traditional level is 0.05. However, it is often helpful to adjust the
significance level based on the application.

We may select a level that is smaller or larger than 0.05 depending on the
consequences of any conclusions reached from the test.

If making a Type 1 Error is dangerous or especially costly, we should
choose a small significance level (e.g. 0.01). Under this scenario we want
to be very cautious about rejecting the null hypothesis, so we demand
very strong evidence favoring H, before we would reject H,.

If a Type 2 Error is relatively more dangerous or much more costly than a
Type 1 Error, then we should choose a higher significance level (e.g. 0.10).
Here we want to be cautious about failing to reject Hy when the null is
actually false.

61
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Topic 11: Correlation and
Linear Regression

Modelling Relationships

* In many applications we want to know is there a relationship
between variables

* Regression is a set of statistical methods for estimating the
relationship between a response variable and one or more
explanatory variables

* Regression may have the aim of explanation (describing &
quantifying relationships between variables) or prediction (how
well can we predict a response variable from explanatory
variables)

* In this section we focus on linear relationships between
variables

Learning outcomes

After careful study of this section, you should be able to:

1.Understand correlation.
2.Use simple linear regression to model linear relationships in scientific data.
3.Define residuals and residual standard error

4.Understand how the method of least squares is used to estimate the parameters in a
linear regression model.

5.Interpret the coefficients of a simple linear regression model

6.Use the regression model to make a prediction of the response variable based on the
explanatory variable.

7. Confidence intervals and prediction intervals for predictions

Motivation

» Many problems in science involve exploring the relationships
between two or more variables.

¢ Scatterplots are the best way to start observing the relationship and
the ideal way to picture associations (e.g. correlation) between two
continuous variables.

¢ When the roles are clear, the explanatory or predictor variable goes on the x-
axis, and the response variable (variable of interest) goes on the y-axis.

* The statistical technique known as Regression allows the researcher
to model the dependency of a Response variable on one or more
Explanatory variables.




Motivating Example

* Windfarms are used to generate direct current. Data are collected on
34 different days to determine the relationship between wind speed
in mi/h and current in kA.

11/15/22

Data:

Name of data file: Windspeed.csv
Response Variable: current in kA
Explanatory Variable: wind speed in mi/h

windspeed.df %>%

H#i#
##
#it
#it
H#i
H#i
#i#

select(Current, Wind.Speed) %>%

summary ()
Current Wind.Speed
Min. :1.500  Min. :4.000
1st Qu.:2.125 1st Qu.:4.950
Median :2.300 Median :5.850
Mean :2.335 Mean :6.047
3rd Qu.:2.600 3rd Qu.:7.050
Max. 3.100  Max. 9.200

ggplot(windspeed.df, aes(y = Current, x = Wind.Speed)) +
geom_point() +
labs(x = "Wind.Speed (mi/h)", y = "Current(kA)",
title = "Scatterplot of Windspeed and Current™)




Scatterplot of Windspeed and Current

6 7
Wind.Speed (mi‘/h)

Sample Correlation Coefficient

The sample correlation coefficient (r) gives a
numerical measurement of the strength of the
linear relationship between the explanatory and
response variables.

Z(xi _x)(yi _)_/)
VZ(XI‘ _X)ZZ(yi _)_/)2

=

11/15/22

Subjective Impressions ?

* Does it look like there is a relationship between windspeed and
current ?

* What is the direction of relationship ?

* How would you quantify the strength of the relationship ?

11

10
Correlation Coefficient
p =+1 means a perfect, linear direct relationship
between X and Y
p=20 means no linear relationship between
XandY
p =-1 means a perfect, inverse linear relationship
between X and Y.
Note: p is the population correlation coefficient while
r is the sample correlation coefficient.
12
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Correlation coefficient r

. . . Negative
Correlation Coefficient 0 r- 4 R Y Vi
* Correlation treats x and y symmetrically:
* The correlation of x with y is the same as the correlation of “
y with x.
: : 1 (e) r=0
* Correlation has no units.
* Correlation is not affected by changes in the center or (Jorfect - Becoming
scale of either variable.
l Positive
@) r=+1 (h) r=+0.95 (g) r=+0.6 ) r=+03
('[ji
&'”ek

13 14

Scatterplot of Windspeed and Current correlatlon CoefﬁClent
windspeed.df %>%

a0 select(Current, Wind.Speed) %>%
cor()

o d of olo & ## Current Wind.Speed
. ## Current 1.0000000 ©.8169993
## Wind.Speed ©.8169993 1.0000000

N
o
.

Current(kA)
.
.
.
.
.
.

o o Or directly using cor function as below:

SEEErE
¢ . ° cor(windspeed.df$Current, windspeed.df$Wind.Speed)

~
.
.

4 5 6 7 8

Wind.Speed (mi/h) ’ [1] 0.8169993
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Correlation of zero ?

* Sketch what it looks like ...

(a) 1000 data points with no relationship between X and Y

From Chance Encounters by C.J. Wild and G.AF. Seber, © John Wiley & Sons, 1999,

(a)

| Some patterns with r=0 |

(b)

(©)

From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000.

‘ Some patterns with r=0.7 ‘

d) ©) (€3]
2 o El
> o
o )
B
S0 %, .
5 ° g
) ° Oy
% o & ° 3 o
ot o
e
© r=0 r=07
2) h) (i)
N o
e
s
H
H
o M
80 3
r=20 r=07
o Chance Encomirs by . WG and G F e, 1o Wiky & o, 200,
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r=0.817 Scatterplot of Windspeed and Current
.
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P )
Wind.Speed (mi/h)
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Correlation # Causation

* Whenever we have a strong correlation, it is tempting to explain it by

imagining that the predictor variable has caused the response to help.

* Scatterplots and correlation coefficients never prove causation.

* A hidden variable that stands behind a relationship and determines it
by simultaneously affecting the other two variables is called a lurking
or confounding variable.

11/15/22

Take home message ...

* Show me the data
* The correlation coefficient measures only linear association

* The correlation coefficient can be misleading when outliers are
present

* Correlation does not imply causation

22

23

Correlation # Causation

* Don’t say “correlation” when you mean “association.

* More often than not, people say correlation when they mean
association.

* The word “correlation” should be reserved for measuring the
strength and direction of the linear relationship between two
quantitative variables.

24



Summary so far ....

* Scatterplots are useful graphical tools for assessing direction, form,
strength, and unusual features between two variables.

* Although not every relationship is linear, when the scatterplot is
straight enough, the correlation coefficient is a useful numerical
summary.

* The magnitude of the correlation tells us the strength of a linear
association.

* Correlation has no units, so shifting or scaling the data,
standardizing, or swapping the variables has no effect on the
numerical value.

* The sign of the correlation tells us the direction of the association.

Simple Linear Regression

* Simple linear regression is the name given to the statistical technique
that is used to model the dependency of a response variable on a
single explanatory variable

« the word ‘simple’ refers to the fact that a single explanatory variable is
available.

* Simple linear regression is appropriate if the average value of the
response variable is a linear function of the explanatory i.e. the
underlying dependency of the response on the explanatory appears
linear.

26

25
Strategy
* Propose a model
* Check the assumptions
* Make some predictions
* Assess how useful it is
* Improve it.

27

Simple Linear Regression

Openlntro Statistics
Fourth Edition

8 Introduction to linear regression 303
8.1 Fitting a line, residuals, and correlation . ... ..................... 305

28




&5 ModemDive

6 Basic Regression

Now that we are equipped with data visualization skills from Chapter 3, an understanding of the “tidy”
data format from Chapter 4, and data wrangling skills from Chapter 5, we now proceed with data
modeling. The fundamental premise of data modeling is to make explicit the relationship between:

« an outcome variable y, also called a dependent variable and
« an explanatory/predictor variable , also called an independent variable or covariate

11/15/22

Motivating Example

* Windfarms are used to generate direct current. Data are collected on
34 different days to determine the relationship between wind speed
in mi/h and current in kA.

29
A glimpse of the first few rows of data ..

Wind.Speed Current

<dbl> <dbl>

1 4.2 1.9

2 6.6 2.2

3 4.7 2.0

4 5.8 2.6

5 5.8 2.3

6 7.3 2.6

7 7.1 2.7

8 6.4 2.4

9 4.6 2.2

10 4.2 1.5

31
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ggplot(windspeed.df, aes(y = Current, x = Wind.Speed)) +
geom_point() +
geom_smooth() +
labs(x = "Wind.Speed (mi/h)", y = "Current(kA)",
title = "Scatterplot with Loess Smoother™)
32



Scatterplot with Loess Smoother

Current(kA)

6 7 8

Wind.Speed (mi/h)
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Simple Linear Regression

* The simple linear regression model is of the form

Response Variable = Intercept + Slope*Explanatory Variable

+ random variability

where the intercept and slope must be estimated from a relevant sample
of data from the population of interest.

34

Line of best fit ?

Scatterplot of Windspeed and Current

0
© -

33
Scatterplot of Windspeed and Current
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Wind.Speed (mi/h)
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6 7
Wind.Speed (mi/h)
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bgglot windspeed.df, aes(y=Current, x=Wind.Speed)) +
geom_point() +
geom_smooth(method = "1m", se= FALSE) +
labs(x = "Wind.Speed (mi/h)", y = "Current(kA)",
title = "Scatterplot with Line of Best Fit")

Scatterplot with Line of Best Fit

N

Current(kA)

6 7
Wind.Speed (mi/h)
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Predict the Current when Wind Speed =7.1

Regression Equation
Mean Current = 1.057 + 0.2113 Wind Speed

39
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Interpreting the Slope and Intercept

Regression Equation
Mean Current = 1.057 + 0.2113 Wind Speed

* by is the slope, which tells us how rapidly y changes with respect to x

e.g. what is the change in the mean current per unit increase in wind
speed.

* b is the y-intercept, which tells where the line crosses (intercepts)

the y-axis when x is zero e.g. what is the mean current when wind
speed is zero.

38

Predict the Current when Wind Speed =7.1

Regression Equation

Mean Current = 1.057 + 0.2113 (7.1) =
2.56

The predicted value is often referred to as y (i.e. ‘y hat’).

From looking at the data the 7th observation was for a

wind speed of 7.1 where the actual Current (i.e. y) was
equal to 2.7.

40
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Residuals .... difference between actual and predicted values

Wind.Spﬁe‘q Curjﬁn;
1 42 1.9
2 6.6 22
3 a7 20 Actual current = 2.7
4 5.8 2.6 Predicted current (y )= 2.56
5 5.8 2.3
6 7.3 2.6
7 7.1 27 |
8 6.4 24
9 46 2.2
10 42 1.5

The difference (Actual — Predicted) = 0.14

41
get_regression_points(windspeed.model) 1ﬁﬂzf
Actual ## # A tibble: 34 x 5 Actual - Predicted
current :
## ID Current Wind.Speed Current_hat residual
#it <int>  <dbl> <dbl> <dbl> <dbl>
## 1 1 1.9 4.2 1.94 -0.045
## 2 2 2.2 6.6 2.45 -0.252
## 3 3 2 4.7 2.05 -0.051
## 4 4 2.6 5.8 2.28 0.317
## 5 5 2.3 5.8 2.28 0.017 _ Se
## 6 6 2.6 7.3 2.6 0 standard
## 7 7 2.7 7.1 2.56 0.142 deviation
### 8 8 2.4 6.4 2.41 -0.01 of the
## 9 9 2.2 4.6 2.03 0.171 residuals
## 10 10 1.5 4.2 1.94 -0.445
## # ... with 24 more rows
43
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The line of best fit is the line for which the sum of the squared

residuals is smallest, the least squares line.

Observed
residual

data value (y)

line of best fit

The standard deviation s, of the
residuals quantifies the amount of
scatter around the line.

.4

42

The Residual Standard Deviation (s,)

* The standard deviation of the
residuals, s., measures how much
the points spread around the
regression line.

* Also known as the residual
standard error.

* You can interpret s, in the context
of a data set. It is the typical error
in the predictions made by the
regression line.

Scatterplot with Line of Best Fit

7 8 9

6
Wind.Speed (mith)

44
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Line of ‘best fit’.

* The line of best fit is the line for which the sum of the
squared residuals is smallest, the least squares line.

* Some residuals are positive, others are negative, and, on
average, they cancel each other out.

* You can’t assess how well the line fits by adding up all
the residuals.

45

Estimating the Slope (least squares)

* In the simple linear regression model the slope (b1) is built from the
correlation coefficient r and the standard deviations of y and x:

* The slope is always in units of y per unit of x.

11/15/22

« Simple Linear Regression Model:
Yi=Bo + Bi1Xi+ ¢ fori=1, .., nassuming &~N(0, c.)
* Features of this model:

* Bo (intercept) and B4 (slope) are the population parameters of the model and
must be estimated from the data as b, (sample intercept) and b, (sample slope).

* The process of estimating 3o and B is called fitting the model to the data.
* Bo + B4 X; is the population mean response (mean of Y) given X=x;.

* g isthe error term in the regression model. Actually it refers to the difference
between the fitted line and y;.

* o (error) is the stochastic part of the model (unexplained variability). Or in other
words, it is the standard deviation corresponding to the error term.

* Once estimated predicted values for y (labelled as § ) can be made as follows:
y=b,+bx

* ¥y is used to emphasize that the points that satisfy this equation are just our
predicted values, not the actual data values.

46

47

Estimating the Intercept (least squares)

* In the simple linear regression model the intercept (by) the intercept
is built from the means and the slope:

by,=y—-bx
* The intercept is always in units of y.

* We almost always use technology to find the equation of the
regression line.

48
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Summary Statistics

windspeed.df %>%
summarize(Mean.Current=mean(Current), SD.Current=

Slope and Intercept

sd(Current), Sy
Mean.Windspeed-mean(Wind.Speed), S.Windspeed= sd(Wind.Speed)) b1 = 7"5— = ’
X
##  Mean.Current SD.Current Mean.Windspeed S.Windspeed b= — byx=
## 1 2.335294 0.3583484 6.047059 1.385255 0=y 1X=
S22

cor(windspeed.df$Current, windspeed.df$Wind.Speed)
Regression Equation
Mean Current = +

Wind Speed

[1] 0.8169993

49 50

Scatterplot with Line of Best Fit

Slope and Intercept

Windspeed and
current standardized "

(subtract mean and é
S; 0.3583 divide by sd) 3
b1=T—y = 0.8l7=—= 0.2113, So standardized §
Sx 1.385 values have mean 0 2
bo=y —byx= 2.3353 —0.2113(6.047) = 1.057 andsd 1 -
r=0.817 .

Regression Equation
Mean Current = 1.057 + 0.2113 Wind Speed

2

> InCcurrentstd ~ windspeedstd, data = windspeed.df)

0 1
standardised wind speed
Call:

InCfornula = currentstd ~ windspeedstd, data = windspeed.df)

Coefficients:
(Intercept) windspeedstd
-5.052e-16  8.170e-01

51 52
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Summary so far ...

e Correlation is a useful metric for measuring the degree of linear
relationship between two continuous variables

* Regression is a useful tool for modelling the relationship between two
continuous variables: a response (y) and an explanatory/predictor (x)

* The line of best fit is the line where the sum of the squared residuals
(difference between observed and fitted values) is a minimum

* To use this line to make inference (and predictions) there are several
assumptions that must be satisfied

11/15/22

Fitting a Simple Linear Regression in R

“qr}
windspeed.model <- Im(Current ~ Wind.Speed, windspeed.df)

windspeed.model

Call:
Im(formula = Current ~ Wind.Speed, data = windspeed.df)
Coefficients:
(Intercept) Wind.Speed
1.0573 0.2113

53
Fitting a Simple Linear Regression in R
{r}
windspeed.model <- lm(Current ~ Wind.Speed, windspeed.df)
windspeed.model
Call:
Im(formula = Current ~ Wind.Speed, data = windspeed.df)
Coefficients:
(Intercept) Wind.Speed
1.0573 0.2113
Intercept Slope
55

54
Interpreting the Slope and Intercept
Regression Equation
Mean Current = 1.057 + 0.2113 Wind Speed

* by is the slope, which tells us how rapidly )A/ changes with respect to x
e.g. what is the change in the (mean) current per unit increase in
wind speed.

* b is the y-intercept, which tells where the line crosses (intercepts)
the y-axis when x is zero e.g. what is the (mean) current when wind
speed is zero.

56
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Inference for predictions

* We have seen how to make point estimates of the predicted
response

« Just as in inference for the true mean, an interval estimate is more
useful for inference

* We look at two types of interval estimates for the mean (or
predicted) response given some value of the explanatory variable

* 1. Confidence interval
* 2. Prediction interval

Confidence Interval for the mean response

* A range of values that is likely to contain the true mean value of the
response variable given a specific values of the the explanatory
variable.

* This range doesn’t tell you about the spread of the individual data
points around the true mean.

57
Prediction Interval for response in new
observations
* A range of values that is likely to contains the value of the response
variable for a single new observation given a specific value of the
explanatory variable.
* The prediction interval is for individual observations rather than the
mean.
59

58
For prediction in R: the predict() function
» predict(object, newdata, se.fit = FALSE, interval = c("none",
"confidence”, "prediction”), level = 0.95)
* object a fitted Im() model object.
* newdata An optional data frame in which to look for variables with which
to predict.
« se.fit A switch indicating if standard errors for predictions are required. The
default is se.fit = FALSE.
* interval Type of interval to be calculated. The default is interval = "none".
* level the confidence level for generating interval estimates. The default
is level = 0.95.
60
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R code for confidence interval and prediction
interval for a single point

> fit<-Im(Current ~ Wind.Speed, data = windspeed.df)

> new.d <- data.frame(Wind.Speed = 7)

> predict(fit, newdata - new.d, interval = "confidence", level = 0.95)
fit Twr upr

1 2.536696 2.44729 2.626102

> predict(fit, newdata = new.d, interval = "prediction”, level = 0.95)
fit Twr upr

1 Iz.ssse% 2.100013 2.973379

>

11/15/22

R code for pointwise Cl and Pl

- pred.int <- predict(fit, newdata = windspeed.df, interval = "prediction™)
- windspeed.df2 <- cbind(windspeed.df, pred.int)

- windspeed.df2 %%
- ggplot(aes(x = Wind.Speed, y = Current)) +
geom_point() +
stat_smooth(method = 1m) +
geom_line(aes(Cy = lwr), color = = "dashed") +
geom_line(aes(y = upr), color = "red", linetype = "dashed") +
labs(x = "Wind.Speed (mi/h)", y = "Current(kA)",
title = "Scatterplot with line of best fit and Confidence and Prediction Interv

"red", linetype

ﬁs")

61
Scatterplot with line of best fit, Cl and PI
3.5
3.0
<
=
'g 25
=1
o
63

62
What Can Go Wrong?
* Don'’t fit a straight line to a nonlinear relationship.
* Beware extraordinary points (y-values that stand off from the linear
pattern or extreme x-values).
* Don’t extrapolate beyond the data—the linear model may no longer
hold outside of the range of the data.
* Don’t infer that x causes y just because there is a good linear model for
their relationship—association is not causation.
* An empirical model is valid only for the data to which it is fit. It may or
may not be useful in predicting outcomes for subsequent observations.
64
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Exam Tips

Make sure you can find the following values from a computer’s
regression output:

1. The explanatory and response variables

2. The corresponding regression equation by finding intercept and
slope.

3. Use the equation to predict for a new value of explanatory variable.

65
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