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Thinking Challenge

Breakdown the question...

Some important terms: 



Some important terms: Some important terms: 

Some important terms: Some important terms: 



Types of variable: 

Qualitative Quantitative

Qualitative Data:

Credit

Types of variable: 

Qualitative Quantitative

Nominal Ordinal Discrete Continuous

Types of variable: 

Qualitative Quantitative

Nominal Ordinal Discrete Continuous



What is the typical observation?
Is there much variation/spread between individuals in 
the dataset?

How are the observations distributed over all 
individuals in the group i.e. what is the shape or 
distribution?

Are there any values lying outside of the range where 
the majority of the dataset values lie outliers?

Summarising data can be done numerically, with 
appropriate numeric summaries, or graphically, with 
appropriate plots.
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in the group i.e. what is the shape or distribution?

Are there any values lying outside of the range where 
the majority of the dataset values lie outliers?

Summarising data can be done numerically, with 
appropriate numeric summaries, or graphically, with 
appropriate plots.
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distribution?
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What is the typical observation?
Is there much variation/spread between individuals in 

the dataset?
How are the observations distributed over all 

individuals in the group i.e. what is the shape or 
distribution?

Are there any values lying outside of the range where 
the majority of the dataset values lie outliers?

Summarising data (variables) can be done numerically, 
with appropriate summaries, or graphically, with 
appropriate plots
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Data:  breaking strength of wire in kilograms
220 214  222  218  223  210  223  210  227  225  212

210  210  212  214  218  220  222  223  223  225  227210  210  212  214  218  220 222  223  223  225  227
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Split ordered data into 4 quarters



Data:  breaking strength of wire in kilograms
220 214  222  218  223  210  223  210  227  225  212

210  210  212  214  218  220  222  223  223  225  227210  210  212  214  218  220 222  223  223  225  227210  210  212  214  218  220 222  223  223  225  227

MedianQ1 = 213 Q3 = 223

IQR = Q3 - Q1 = 223 213 = 10
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Useful to show general shape, location and spread of data values 
representation by area



(e)   Positively skewed

(a)   Unimodal (b)   Bimodal (c)   Trimodal

(d)   Symmetric
(long upper tail)

(f)   Negatively skewed
(long lower tail)

(g)   Symmetric (h)   Bimodal with gap

(j)   Spike in pattern

(k)   Outliers (l)   Truncation plus outlier

outlieroutlier

(i)   Exponential shape

spike

Figure 2.3.10 Features to look for in histograms and stem-and-leaf plots.

From Chance Encounters by C J Wild and G A F Seber © John Wiley & Sons 2000
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cran.r-project.org

www.rstudio.com/download
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moderndive.com
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is an integrated development environment for R.
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A consequence of natural variation
is that two samples drawn from the 
same population will usually give 
different estimates of the population 
parameters

Referred to as sampling variation



Non-probabilistic sampling methods are techniques of obtaining a sample 
that is not chosen at random and may be subject to sampling bias. 

Examples of Convenience Sampling
In the amount spent on rent weekly problem sending emails to students in 
the hope of a response may give this result
Could sample by standing at entrance to college bar or on concourse 
another example of convenience sampling

An issue with Convenience Sampling
Leave it to experimental unit to choose to complete a survey or opinion poll

A response may be more likely to be received because a responder has a 
particularly strong opinion
If sample consists of mainly such strong opinions, then sample may not 
be representative of population 

n 
N







Cluster





1. Which of the following statements is true 
regarding a population: 
 

a) it must refer to people; 
b) it is a collection of individuals or 

objects; 
c) neither of the above. 

 
 

 
3. Sampling that divides the population in 

subgroups and chooses a proportionate number 
from each subgroup at random is called:    

 
a) cluster sampling; 
b)  quota sampling; 
c) stratified sampling. 









Only properly designed and executed 
experiments can reliably demonstrate 

cause-and-effect
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Since launch of Lotto 6/45 on November 4th 2006. 
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Since launch of Lotto 6/45 on November 4th 2006. 
Balls  46 and 47 introduced September 3rd 2015.



Solution: Solution:





Probabilities of joint events can often be determined from the 
probabilities of the individual events that comprise them.

Joint events are generated by applying basic set operations to 
individual events, specifically:

57

( ) ( ) ( ) ( )        P A B P A P B P A B



Disjoint event share no common outcomes
A B = Ø

B B Total

A

Total 1.00

_

4

52

1

52

13

52

3

52

12

52
36

52

39

52

48

52



B B Total

A P(A B) P(A B) P(A)

P( B) P( B) P(

Total P(B) P(B) 1.00

_

_

_

_

This means that occurrence of one event has no impact on the probability of 
occurrence of the other event.
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P(A B) ?

P(A B) = P(A)·P(B)
= 0.90·0.90 
= 0.81

70

71



73 74

P(A B) ?

P(A B) = P(A) ·P(B | A)
= 0.90 x 0.95
= 0.855



( | ) (     )
( )

79

( | ) (     )
( )

T

P(A B) = P(A) ·P(B|A) 
P(B A) = P(B)·P(A|B)

As P(A B) = P(B A) implies 

P(A). P(B|A) = P(B) ·P(A|B)

80
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P(BC | +)   =  ?

P(BC | +)   =  ?

0.0365

0.9635

0.85

0.05

P(BC | +)   =  ?

0.0365

0.9635

0.85

0.05



( | ) 0.392P BC test
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P(F )  ?F

F

F

95

( ) ( | ) ( ) ( | ) ( ) ( | ) ( )

0.9(0.1) 0.2(0.6) 0.5(0.3) 0.36

P F P F H P H P F S P S P F O P O
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( | ) ( ) 0.9 0.1
( | ) 0.250

( ) 0.36

P F H P H
P H F
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5. Random Variables 
and Probability Distributions
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6. Some Discrete Probability 
Distributions: the Binomial and 
Poisson

1

1

Learning outcomes

• Describe the Binomial distribution and identify when it is applicable
• Calculate Binomial probabilities
• Describe the Poisson distribution and identify when it is applicable
• Calculate Poisson probabilities

2

2

Links between descriptive stats and 
probability theory
Data Random variable
x1, x2, … xn X
Empirical distributions (plots of relative frequencies) Pmf, pdf
Sample mean E(X)
Sample variance Var(X)
Sample sd Sd(X)

3

3

Motivation

• Often, the observations generated by different statistical experiments 
have the same general type of behaviour. 

• In general only a handful of important probability distributions are 
needed to describe many of the discrete random variables 
encountered in practice.

4

4
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Motivating Example: Camera Flash Tests

The time to recharge the flash is tested in three
mobile phone cameras. The probability that a
camera passes the test is 0.8, and the cameras
perform independently.

The random variable X denotes the number of
cameras that pass the test. The last column of the
table shows the values of X assigned to each
outcome of the experiment.

13

1 2 3 Probability X
Pass Pass Pass 0.512 3
Fail Pass Pass 0.128 2

Pass Fail Pass 0.128 2
Fail Fail Pass 0.032 1

Pass Pass Fail 0.128 2
Fail Pass Fail 0.032 1

Pass Fail Fail 0.032 1
Fail Fail Fail 0.008 0

1.000

Camera Flash Tests

Camera #
Outcome

What is the probability that the first and 
second cameras pass the test and the 
third one fails ? P(PPF) = ?.8)(0.8)(0.2) = 0.128

13

Motivating Example: Camera Flash Tests

14

1 2 3 Probability X
Pass Pass Pass 0.512 3
Fail Pass Pass 0.128 2

Pass Fail Pass 0.128 2
Fail Fail Pass 0.032 1
Pass Pass Fail 0.128 2
Fail Pass Fail 0.032 1

Pass Fail Fail 0.032 1
Fail Fail Fail 0.008 0

1.000

Camera Flash Tests

Camera #
OutcomeWhat is the probability that the first and 

second cameras pass the test and the 
third one fails ? 

P(PPF) = (0.8)(0.8)(0.2) = 0.128

Each camera test can be treated as a Bernoulli 
trial.
Probabilities for all other outcomes calculated 
in a similar fashion.

What is the probability that two cameras pass the test in three trials ?

14

Motivating Example: Camera Flash Tests

15

What is the probability that two cameras 
pass the test in three trials ?

How many ways can this event happen ?

What is the probability of this event ?
0.128 for each of the three ways
probability = 3(0.128) =  0.384

1 2 3 Probability X
Pass Pass Pass 0.512 3
Fail Pass Pass 0.128 2

Pass Fail Pass 0.128 2
Fail Fail Pass 0.032 1

Pass Pass Fail 0.128 2
Fail Pass Fail 0.032 1

Pass Fail Fail 0.032 1
Fail Fail Fail 0.008 0

1.000

Camera Flash Tests

Camera #
Outcome

𝑛
𝑟 =

𝑛!
𝑟! 𝑛 − 𝑟 ! =

3!
2! 3 − 2 ! =

3.2.1
2.1.1 = 3

This is an example of the Binomial Distribution.

15

16

16
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17

17

Binomial Distribution

18

18

Motivating Example: Camera Flash Tests

Calculate the probability of 2 passes in
three tests.

We are given that n = 3 and p = 0.8.

Use the Binomial distribution formula where X is
the number of passes:

19

1 2 3 Probability X
Pass Pass Pass 0.512 3
Fail Pass Pass 0.128 2

Pass Fail Pass 0.128 2
Fail Fail Pass 0.032 1

Pass Pass Fail 0.128 2
Fail Pass Fail 0.032 1

Pass Fail Fail 0.032 1
Fail Fail Fail 0.008 0

1.000

Camera Flash Tests

Camera #
Outcome

𝑃 𝑋 = 2 = 3
2 0.8 ! 0.2 "

= 3(0.128)  
= 0.384

19

Motivating Example: Camera Flash Tests

Calculate the probability of 2 passes in
three tests.

We are given that n = 3 and p = 0.8.

Use the Binomial distribution formula where X is
the number of passes:

20

1 2 3 Probability X
Pass Pass Pass 0.512 3
Fail Pass Pass 0.128 2

Pass Fail Pass 0.128 2
Fail Fail Pass 0.032 1

Pass Pass Fail 0.128 2
Fail Pass Fail 0.032 1

Pass Fail Fail 0.032 1
Fail Fail Fail 0.008 0

1.000

Camera Flash Tests

Camera #
Outcome

𝑃 𝑋 = 2 = 3
2 0.8 ! 0.2 "

= 3(0.128)  
= 0.384

20
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Exercise: Organic Pollution

Each sample of water has a 10% chance of containing 
a particular organic pollutant.  Assume that the 
samples are independent with regard to the presence 
of the pollutant. 

Find the probability that, in the next 18 samples, 
exactly 2 contain the pollutant.

21

21

Exercise: Organic Pollution

Find the probability that, in the next 18 samples, exactly 2 
contain the pollutant.

22

Let X denote the number of samples that contain the 
pollutant in the next 18 samples analyzed.  Then X is a 
binomial random variable with p = 0.1 and n = 18

22

Exercise: Organic Pollution

Find the probability that, in the next 18 samples, exactly 2 contain the 
pollutant.

23

Let X denote the number of samples that contain the 
pollutant in the next 18 samples analyzed.  Then X is a 
binomial random variable with p = 0.1 and n = 18

23

dbinom(x, size, prob)

x is the number of events of interest required, 
size is the total number of trials, 
prob is the probability of the event occurring.

Using R to calculate probabilities from a Binomial
Distribution: dbinom function

24

24
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In the Organic Pollution example x=2, size=18 and p=0.10

dbinom(x=2, size=18, prob=0.1)

0.2835121

Using R to calculate probabilities from a Binomial
Distribution: dbinom function

25

25

Exercise: Organic Pollution revisited

Determine the probability that 3 ≤ X < 7.

26

26

Exercise: Organic Pollution revisited

Now determine the probability that 3 ≤ X < 7.
Answer:

27

27

sum(dbinom(x=3:6, size = 18, prob=0.1))

0.2650319

28

28
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Binomial Mean and Variance

If X is a binomial random variable with 
parameters p and n,

Where q = 1-p.

29

29

http://www.artofstat.com

Use this app to explore different scenarios for a random variable 
following a Binomial distribution

30

30

31

31

Chebyshev’s Inequality

• Chebyshev’s inequality provides an estimate as to 
where a certain % of observations will lie relative to 
the mean once the standard deviation is known. 

• For example, at least 75% of values will lie within 
two standard deviations of the mean.

32

32
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33

33

StatsConsulting.com

• A medical device company needed to calculate the probability that a 
particular component of their device fails.  They have limited bench 
data which suggests that the probability of failure is 0.15.

• The plan to test 10 devices and want an indication as to the 
proportion of failures they should expect to see across all devices in 
the trial. 

• What is the number of failures they can expect in 10 devices given the 
probability of failure of a particular device ?

34

34

Binomial Mean and Variance

If X is a binomial random variable with 
parameters p and n,

35

where q=1-p. 

35

StatsConsulting.com
• The random variable X denotes the number of devices that fail.
• n = 10 trials and p = 0.15

Use the Binomial distribution.

The typical value they can expect is the mean of the random variable X
in question.

36

36
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StatsConsulting.com
• The random variable X denotes the number of devices that fail.
• n = 10 trials and p = 0.15

Use the Binomial distribution.

The typical value they can expect is the mean of the random variable X
in question.

37

μ = np = 10*0.15 = 1.5

i.e. they can expect 1.5 devices to fail in 
a sample of 10 …. interpret this !

37

StatsConsulting.com
• The random variable X denotes the number of devices that fail.
• n = 10 trials and p = 0.15

Use the Binomial distribution.

The variance they can expect is

38

σ2 = np(1-p) = 10*0.15*(1-0.15) = 1.27

The standard deviation is the square root of 1.27 = 1.13 

Use Chebyshev’s inequality to interpret this !

38

Motivating Example: Camera Flash Tests
• The random variable X denotes the number of

cameras that pass the test.
• n = 3 and p = 0.8

Find the mean and variance of the binomial
random variable.

39

1 2 3 Probability X
Pass Pass Pass 0.512 3
Fail Pass Pass 0.128 2

Pass Fail Pass 0.128 2
Fail Fail Pass 0.032 1

Pass Pass Fail 0.128 2
Fail Pass Fail 0.032 1

Pass Fail Fail 0.032 1
Fail Fail Fail 0.008 0

1.000

Camera Flash Tests

Camera #
Outcome

39

Motivating Example: Camera Flash Tests
• The random variable X denotes the number of

cameras that pass the test.
• n = 3 and p = 0.8

Find the mean and variance of the binomial
random variable.

40

1 2 3 Probability X
Pass Pass Pass 0.512 3
Fail Pass Pass 0.128 2

Pass Fail Pass 0.128 2
Fail Fail Pass 0.032 1

Pass Pass Fail 0.128 2
Fail Pass Fail 0.032 1

Pass Fail Fail 0.032 1
Fail Fail Fail 0.008 0

1.000

Camera Flash Tests

Camera #
Outcome

μ = np = 3*0.8 = 2.4

σ2 = np(1-p) = 3*0.8*0.2 = 0.48

σ = SD(X) = 0.69

40
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Is the Binomial distribution applicable here ?
Can each trial can be summarized as resulting in either a success or a failure with a 
fixed probability, assumed independent from trial to trial ?

• A multiple choice test contains 10 questions, each with four choices, and you 
guess at each question. Let X= the number of questions answered correctly.
• In the next 20 births at a hospital, let X= the number of female births.
• A worn machine tool produces 1% defective parts. Let X=number of defective 

parts in the next 25 parts produced.
• The probability of ordering a hot chocolate in Mr Waffle is 0.10. A group enters a 

coffee shop and each member places an order.  Let X=number of hot chocolates 
ordered.

41

41

Summary so far

• Bernoulli trials and Binomial distribution
• dbinom (in R) and sum(dbinom(start:fininsh, size=, p= ) trick
• Mean = np, var=np(1-p)
• When the binomial does and does not apply.
• Oliver’s world.

42

42

Oliver’s world

43

10,000 products made daily
Probability of a complaint is 0.0001.

What is the probability Oliver will see 10 complaints in a day ?

Does the Binomial Distribution apply ?

If you assume it does …. Let X be a random variable representing 
the number of complaints Oliver will receive in a day.
You are given that n = 10,000 and p=0.0001

43

Oliver’s world

44

P(X=10)= 𝑛𝑥 𝑝* 1−𝑝 +,* = 10,000
10 0.0001-. 1−0.0001 -.,...,-.

= 0.0000001010183

44
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Poisson Distribution

45

45

• Experiments yielding numerical values of a random variable X, 
the number of outcomes occurring during a given time interval 
or in a specified region, are called Poisson experiments. 

• The given time interval may be of any length, such as a 
minute, a day, a week, a month, or even a year. 

• A Poisson experiment is derived from the Poisson process and 
possesses the following properties.

Poisson Distribution

46

46

• The number of outcomes occurring in one time interval or specified 
region of space is independent of the number that occur in any other 
disjoint time interval or region. In this sense we say that the Poisson 
process has no memory.

• The probability that a single outcome will occur during a very short 
time interval or in a small region is proportional to the length of the 
time interval or the size of the region and does not depend on the 
number of outcomes occurring outside this time interval or region.

• The probability that more than one outcome will occur in such a 
short time interval or fall in such a small region is negligible.

Properties of the Poisson Process

47

47

Poisson Distribution

The random variable X that equals the number of 
events in a Poisson process is a Poisson random 
variable with parameter λ > 0, and the probability 
density function is:

48

( )      for     0,1,2,3,...          (3-16)
!

xef x x
x

ll-

= =

48
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Mean and Variance of Poisson Distribution

• If l is the average number of successes occurring in a given time 
interval or region in the Poisson distribution, then the mean and the 
variance of the Poisson distribution are both equal to l.

• Mean = l, variance = l

• A one parameter distribution.

49

49

Poisson density functions for different means

If the variance is much greater than the mean, then the Poisson distribution would not be a good model for the 
distribution of the random variable. 50

50

51

51

Poisson Example: Calculations for Wire Flaws

Suppose that the number of flaws on a thin copper 
wire follows a Poisson distribution with a mean of 2.3 
flaws per mm. 

Find the probability of exactly 2 flaws in 1 mm of wire.

52

( )      for     0,1,2,3,...          (3-16)
!

xef x x
x

ll-

= =

52
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Poisson Example: Calculations for Wire Flaws

Suppose that the number of flaws on a thin copper 
wire follows a Poisson distribution with a mean of 2.3 
flaws per mm. 

Find the probability of exactly 2 flaws in 1 mm of wire.

53

53

dpois(x, lambda)

x is the number of events of interest, 
lambda is the mean.

Using R to calculate probabilities from a Poisson
Distribution: dpois

54

54

dpois(x, lambda)
x is the number of events of interest, lambda is the mean

Copper wire example: x=2, lambda= 2.3 flaws per mm 
The probability of exactly 2 flaws in 1 mm of wire

dpois(x=2, lambda =2.3)
0.2651846

Using R to calculate probabilities from a Poisson
Distribution: dpois

55

55

Example: Calculations for Wire Flaws revisited

Suppose that the number of flaws on a thin copper 
wire follows a Poisson distribution with a mean of 2.3
flaws per mm. 

Determine the probability of 10 flaws in 5 mm of wire. 

56

56
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Determine the probability of 10 flaws in 5 mm of 
wire. 

Let X denote the number of flaws in 5 mm of wire.  We know 
that there will be 2.3 per 1mm therefore we expect 2.3 X 5 = 11.5 
flaws per 5 mm.

57

dpois(x=10, lambda =2.3*5)
0.1129351

57

58

58

59

59

60

60
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61

61

https://www.johndcook.com/blog/distribution_chart/62

62

The big three ….

• Binomial Distribution
• In a study involving testing the effectiveness of a new drug, the number of 

cured patients among all the patients who use the drug approximately follows 
a binomial distribution

• Geometric Distribution
• In a statistical quality control problem, the experimenter will signal a shift of 

the process mean when observational data exceed certain limits. The number 
of samples required to produce a false alarm follows a geometric distribution.

• Poisson Distribution
• The number of white cells from a fixed amount of an individual’s blood 

sample is usually random and may be described by a Poisson distribution.

63
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7. The Normal Distribution

0

0

Learning Objectives

• Describe features of the Normal distribution
• Describe the effects of changing values of the mean and standard 

deviation on the normal distribution
• Describe the Empirical Rule and its relationship with the normal 

distribution
• Describe features of the Standard Normal distribution
• Calculate normal probabilities using z-scores
• Calculate values of a normal random variable given the probability, 

(using the z-tables in reverse)
• Use R to calculate normal probabilities.

1

1

Continuous Probability Distributions Recap

Note P(X=x) = 0  i.e. there is no area exactly at x !

2

2

Normal Distribution 
• Also called the Gaussian distribution
• pdf is a bell-shaped curve
• The distribution of many types of observations can be 

approximated by a Normal – eg consider the relative 
frequency histograms of
• Heights
• Weight
• IQ, …, etc

• Single mode
• Symmetric 
• Model for continuous measurements

3

3
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The normal distribution

4

4

Normal Distribution
A random variable X with probability density function 

is a normal random variable with parameters µ and s
(where - ¥ < µ < ¥ and s > 0)

5

Mean
Standard 
deviation 

𝑓 𝑥 =
1
2𝜋𝜎!

𝑒
(#$%)!
!'! - ¥ < x < ¥

Write  X ~ N(µ , s2)  

5

Normal curves with     µ1 = µ2 and s1 < s2

6

6

6 - 7

Normal curves with     µ1 < µ2 and s1 < s2

7
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http://www.artofstat.com

8

8

Empirical Rule for a Normal Distribution

For any normal random variable, 
P(μ – σ < X < μ + σ)   = 0.6827
P(μ – 2σ < X < μ + 2σ) = 0.9545
P(μ – 3σ < X < μ + 3σ) = 0.9973

Probabilities associated with a normal distribution 9

9

The 68-95-99.7 Rule 
• Normal models give us an idea of how extreme a 

value is by telling us how likely it is to find one that far 
from the mean.
• It turns out that in a Normal model:
• about 68% of the values fall within one standard deviation 

of the mean;
• about 95% of the values fall within two standard deviations 

of the mean; and,
• about 99.7% (almost all!) of the values fall within three 

standard deviations of the mean.

10

10

P(x1 < X < x2) = area of the shaded region

11

11
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Areas under the Normal Curve
• Finding an area under a normal distribution in order to calculate 

probabilities

𝑃 𝑥( < 𝑋 < 𝑥! = ,
#"

#!
1
2𝜋𝜎!

𝑒
(#$%)!
!'! 𝑑𝑥

12

12

Standardised Z scores.

To convert a random variable X which follows a N(µ , s2) to a random 
variable Z that follows a standard Normal N(0, 1) calculate Z as 

𝑍 =
𝑋 − 𝜇
𝜎

Convert X ~ N(100 , 100) to a random variable Z such that Z ~ N(0 , 1)  

13

13

Z scores

• A z-score reports the number of standard deviations away from the 
mean.

• For example, a Z-score of 2 indicates that the observation is two 
standard deviations above the mean.

14

14

Φ(z) = P(Z ≤ z) The cumulative distribution function of a standard normal  
random variable is denoted as   Φ(z) = P(Z ≤ z)

15

15
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Calculating Probabilities for N(0,1)
• Left tail – P(Z < 1.8)
• Directly from table

• Right tail – P(Z > 1.8)
• By subtraction  P(Z>1.8)=1 – P(Z £ 1.8)

• Interval Probabilities – P(1 < Z < 1.8)
• By difference: P(1 < Z < 1.8)=P(Z<1.8)-P(Z<1)

16

16

Normal Probabilities by Hand 
• Use a table of the Standard Normal Distribution
• Convert to z-scores before using the table.

• X ~ N(500,1002) ;  P(X > 680) = P(Z > 1.8)=1-P(Z<1.8)=1-0.9641=0.0359
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s
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17

17

Normal: P(-0.5 < Z < 1)=P(Z<1)-P(Z<-0.5)
=0.8413-0.3085=0.5328

18

18

Using R to calculate probabilities from a Normal Distribution

pnorm(q=?? , mean= ?? , sd= ??)

pnorm returns the integral from -¥ to q for the pdf of the 
normal distribution with mean µ and standard deviation s.

0.20

0.15

0.10

0.05

0.00

De
ns
ity

q

19
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Example: Normal Distribution

Suppose that the current measurements in a strip of wire are 
assumed to follow a normal distribution with μ = 10 and σ = 2 mA, 
what is the probability that the current measurement is less than or 
equal to 9 mA?

Plot:

20

20

Example: Normal Distribution

Suppose that the current measurements in a strip of wire are 
assumed to follow a normal distribution with μ = 10 and σ = 2 mA, 
what is the probability that the current measurement is less than or 
equal to 9 mA?

Plot: 0.20

0.15

0.10

0.05

0.00

Current (mA)

De
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ity

9

0.3085

10

Distribution Plot
Normal, Mean=10, StDev=2

21

21

Example: Normal Distribution

Suppose that the current measurements in a strip of wire are 
assumed to follow a normal distribution with μ = 10 and σ = 2 mA, 
what is the probability that the current measurement is less than or 
equal to 9 mA?

Area:
0.20

0.15

0.10

0.05

0.00

Current (mA)

De
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ity

9

0.3085

10

Distribution Plot
Normal, Mean=10, StDev=2

𝑃 −∞< 𝑋 ≤ 9

= )
!"

#
1
2𝜋2$

𝑒𝑥𝑝
(&!'()!
$($!) 𝑑𝑥

= 𝑃
𝑋−10
2 <

9−10
2 = 𝑃(𝑍 < −0.5)

22

22

Example: Normal Distribution

Suppose that the current measurements in a strip of wire are 
assumed to follow a normal distribution with μ = 10 and σ = 2 mA, 
what is the probability that the current measurement is less than or 
equal to 9 mA?

Area:
0.20

0.15

0.10

0.05

0.00

Current (mA)

De
ns

ity

9

0.3085

10

Distribution Plot
Normal, Mean=10, StDev=2
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Using R to calculate probabilities from a Normal Distribution

pnorm(q=?? , mean= ?? , sd= ??, lower.tail =  ??)

pnorm returns the integral from -¥ to q for the pdf of the 
normal distribution with mean µ and standard deviation s.

pnorm

Note: the default is a standardised normal. It means

pnorm(q=??)=pnorm(q=?? , mean= 0, sd= 1, lower.tail =  ??)

24

24

0.20

0.15

0.10

0.05

0.00

De
ns
ity

q

pnorm(q=?? , mean= 0, sd= 1, lower.tail =  TRUE)

TRUE is the default

Defaults

pnorm(q=??)Which equals to: 

25

25

pnorm(q=?? , mean= 0, sd= 1, lower.tail =  FALSE)

0.20

0.15

0.10

0.05

0.00

De
ns
ity

q

26

26

Example: Normal Distribution

Suppose that the current measurements in a strip of wire are 
assumed to follow a normal distribution with μ = 10 and σ = 2 mA, 
what is the probability that the current measurement is between 9 
and 11 mA?

Plot:

27

27
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28

0.20

0.15

0.10

0.05

0.00

X

De
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ity

9 1110

Distribution Plot
Normal, Mean=10, StDev=2

28

Example: Normal Distribution

Suppose that the current measurements in a strip of wire are 
assumed to follow a normal distribution with μ = 10 and σ = 2 mA, 
what is the probability that the current measurement is between 
9 and 11 mA?

29

0.20

0.15

0.10

0.05

0.00

X
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11

0.6915

10

Distribution Plot
Normal, Mean=10, StDev=2
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0.3085

10

Distribution Plot
Normal, Mean=10, StDev=2
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0.3829

1110

Distribution Plot
Normal, Mean=10, StDev=2
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29

Example: Normal Distribution

Suppose that the current measurements in a strip of wire are 
assumed to follow a normal distribution with μ = 10 and σ = 2 mA, 
what is the probability that the current measurement is between 
9 and 11 mA?

30

pnorm(q=11, mean=10, sd=2) - pnorm(q=9, mean=10, sd=2)=
pnorm(q=0.5, mean=0, sd=1) - pnorm(q=-0.5, mean=0, sd=1)=
pnorm(q=0.5) - pnorm(q=-0.5)
Probability: 0.3829

30

Example: Normal Distribution determine percentiles …

Suppose that the current measurements in a strip of 
wire are assumed to follow a normal distribution with μ
= 10 and σ = 2 mA.

Determine the value for which the probability that a 
current measurement is below 0.98.

Plot:

31

31
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0.20

0.15

0.10

0.05

0.00

X

De
ns

ity

0.98

10

Distribution Plot
Normal, Mean=10, StDev=2

Example: Normal Distribution determine percentiles …

Determine the value for which the probability that a current 
measurement is below 0.98.

Plot:

32

Supply
p to 
find q 

q

p

32

𝑃 𝑋 < 𝑘 = 0.98

𝑃
𝑋 − 10
2 <

𝑘 − 10
2 = 0.98

𝑃 𝑍 <
𝑘 − 10
2

= 0.98

We also know from the normal table that:
𝑃 𝑧 < 2.05 = 0.98

Therefore:

𝑃 𝑍 < )$(*
! =𝑃 𝑍 < 2.05 which means )$(*! = 2.05:

Then: k = 2 ∗ 2.05 + 10 = 14.10

Example: Normal Distribution determine percentiles …

33

33

Using R to calculate percentiles from a Normal Distribution

qnorm(p=0.??, mean= ??, sd=?? , lower.tail = ??)

qnorm is the inverse of the cdf, which you can also think of 
as the inverse of pnorm.  Use qnorm to determine the x 
corresponding to the pth quantile of the normal 
distribution?

qnorm

34

34

0.20

0.15

0.10

0.05

0.00

X

De
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ity

14.11

0.98

10

Distribution Plot
Normal, Mean=10, StDev=2

Determine the value for which the probability that a current 
measurement is below 0.98.

35
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Normal Approximations
• The binomial and Poisson distributions become more 

bell-shaped and symmetric as their mean value increase.
• If X ~Binomial 𝑛, 𝑝 then X~𝑁(𝑛𝑝, 𝑛𝑝(1−𝑝))
• If X ~Poisson 𝜆 then X~ (𝑁(𝜆, 𝜆)

• The normal distribution is a good approximation for:
• Binomial if np > 5 and n(1-p) > 5.
• Poisson if λ > 5.

• For manual calculations, the normal approximation is 
practical – use R for exact probabilities of the binomial 
and Poisson.

36

36

6 - 37

Normal approximation of b(x; n=15, p=0.4)

µ= 15*0.4 = 6, 
s = 15*0.4*0.6 = 3.6

37

Normal Approximation to the Poisson

38

38

Continuity Correction

39

39
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40

40

41

41



1

8. Sampling distributions 
and confidence intervals

1

Learning Outcomes

• Explain sampling variation, sampling distribution, standard error
• Calculate the standard error of the sample mean
• State the Central Limit Theorem (applied to sampling distribution of the 

sample mean)
• Describe the sampling distribution of the sample mean in applications 

using the CLT
• Identify the point estimator of the parameter in applications
• Describe briefly the use of a confidence interval in inferential statistics
• Calculate and interpret 95% confidence interval for the population 

mean
• Use R to calculate the standard error and calculate a 95% confidence 

interval for the population mean
• Use the t distribution to calculate the standard error and confidence 

intervals for the population mean using a small sample
• Confidence intervals for the mean and other statistics via simulation, 

using R

1 - 2

2

Fundamental relationship between 
probability and inferential statistics 

3

3

Probability and Statistics

• In probability theory we consider some known 
process which has some randomness or 
uncertainty.  We model the outcomes by random 
variables, and we figure out the probabilities of 
what will happen. There is one correct answer to 
any probability question.

• In statistical inference we observe something that 
has happened, and try to figure out what 
underlying process would explain those 
observations.

4

4
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An example …

•Consider an (opaque) jar of red and green jelly 
beans.

•A probabilist starts by knowing the proportion of 
each and asks: What is the probability of drawing a 
red jelly bean from the jar? 

•A statistician infers the proportion of red jelly 
beans by sampling from the jar, and using the 
sample proportion to estimate the jar proportion.

5

5

Probability and Statistics

•The basic aim behind all statistical methods is to 
make inferences about a population by studying a 
relatively small sample chosen from it. 

•Probability is the engine that drives all statistical 
modelling, data analysis and inference.

6

6

Population
Parameters

Inference

Sample
Statistics

Sample

Probability

7

7

Foundations for Inference

• Recall that inference is concerned (primarily) with estimating 
population parameters using sample statistics.

• A classic inferential question is, “How sure are we that the 
sample mean, 𝑥, is near the true population mean, μ?”

• Estimates (i.e. statistics) generally vary from one sample to 
another, and an understanding of sampling variation is key 
when estimating the precision of a sample statistic as an 
estimate of the corresponding parameter.

8

8
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Sampling Distributions

•The probability distribution of a statistic is called a 
sampling distribution.

•Sampling distributions arise because samples vary. 

•Each random sample will have a different value of 
the statistic.

9

9

1
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10

Judgement Sample

11

11
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13
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Histogram of Estimated Mean
Sample Size = 50

14

14

http://www.artofstat.com/webapps.html

15

15

The Central Limit Theorem

• The sampling distribution of any mean becomes 
more nearly Normal as the sample size grows
• observations need to be independent.
• the shape of the population distribution doesn't 

matter.

!𝑋 ~𝑁 𝜇,
𝜎!

𝑛
16

16
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The Central Limit Theorem

The CLT depends crucially on the assumption of 
independence. 

You can’t check this with your data.  You have 
to think about how the data were gathered –
can you assume the observations are 
independent?

!𝑋 ~ 𝑁 𝜇,
𝜎"

𝑛

1 - 17

17

The Central Limit Theorem

•Sample means follow a Normal distribution centred 
on the population mean with a standard deviation 
equal to population standard deviation divided by 
the square root of the sample size.

•What happens when you take a single sample ?

)𝑿 ~ 𝑵 𝝁,
𝝈𝟐

𝒏

18

18

The Standard Error

•The standard error is a measured of the variability 
in the sampling distribution (i.e. how do sample 
statistics vary about the unknown population 
parameter they are trying to estimate) 

• It describes the typical ‘error’ or ‘uncertainty’ 
associated with the estimate.

S𝐸 =
𝜎
𝑛

)𝑿 ~ 𝑵 𝝁,
𝝈𝟐

𝒏

1 - 19

19

Use the CLT to provide a range of values that will 
capture 95% of sample means.

Interval Estimation for µ

20

20
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95% of sample means

𝑿 ~ 𝑵 𝝁,
𝝈𝟐

𝒏

µ-2s µ+2sµ

21

21

µ

95% of sample means

𝑿 ~ 𝑵 𝝁,
𝝈𝟐

𝒏

22

22

The sample mean 𝑋 has a normal distribution with mean μ
and standard deviation 𝜎" = σ/√n. 
Let’s consider a particular sample with mean 𝑥.
Now suppose 𝑥 lies in the middle 95% of the distribution of 
𝑋 − the 95% confidence interval 𝑥 ± 1.96𝜎" succeeds in 
covering the population mean μ.

23

23

The sample mean 𝑋 has a normal distribution with mean μ
and standard deviation 𝜎" = σ/√n. 
Let’s consider a particular sample with mean 𝑥.
Now suppose 𝑥 lies in the outer 5% of the distribution of 𝑋 −
the 95% confidence interval 𝑥 ± 1.96𝜎" does not include 
the population mean μ.

24

24
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In repeated sampling, 95% of intervals calculated in this 
manner

will contain the true mean µ.

x 1.96
n
s

± *

95% Confidence Interval for µ

25

25

26

26

Confidence intervals

•The population mean µ is fixed
•The intervals from different samples are random
•From our single sample, we only observe one of the 

intervals
•Our interval may or may not contain the true mean
• If we had taken many samples and calculated the 

95% CI for each, 95% of them would include the 
true mean

•We say we are “95% confident” that the interval 
contains the true mean.

1 - 27

27

• A point estimate (i.e. a statistic) is a single 
plausible value for a parameter.

• A point estimate is rarely perfect; usually there is 
some error in the estimate. 

• Instead of supplying just a point estimate of a 
parameter, a next logical step would be to provide 
a plausible range of values for the parameter.

• To do this an estimate of the precision of the 
sample statistic (i.e. the estimate) is needed.

Confidence Intervals

28

28
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n = 150, x = 69.5, s = 6.2

Is µ > 75 ?

29

29

𝟔𝟗. 𝟓 ± 𝟏. 𝟗𝟔
𝟔. 𝟐
𝟏𝟓𝟎

A 95% CI for the population mean is 
[68.51, 70.49]

Interpret this !

Is µ > 75 ?
30

30

95% confident that the population mean is 
between 68.48 and 70.51 based on the data 
provided.

No evidence to support the claim that the 
population mean (µ) greater than 75.

31

31

Application: mean weekly rent in 
ST2001

What is the population mean rent ?
What is a student likely to pay ?
What will they actually pay ?

32

32
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Population Mean Rent in ST2001 ?

33

33

Using s for s ?

•Knowing s must mean that you knew µ   ….

• The sample standard deviation s is used to 
estimate s.

• What are the consequences ?

1 - 34

x 1.96
n
s

± *

34

What if s is unknown and n is 
small ?

1 - 35

35

Population normal

𝒏 < 𝟑𝟎
%𝒙 ± 𝒕(𝟏#𝜶𝟐,𝒏#𝟏)

𝒔
𝒏

1- confidence level Degrees of freedom

1 - 36

36



10

1 - 37

𝒕𝝂 distribution

Mean = 0

Variance = 𝝂
𝝂"𝟐

for 𝝂 > 𝟐

37

T- distribution

• As the degrees of freedom increase, the t-models look more and 
more like the Normal. 

• In fact, the t-distribution with infinite degrees of freedom is the 
Normal distribution.

38

38

39

39

40

40
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T- tables

41

41

T- tables

42

42

• When the conditions are met, we are ready to find the 
confidence interval for the population mean, μ. 

• The confidence interval is

• The critical value 𝒕($%𝜶
𝟐
,𝒏%𝟏)depends on the particular 

confidence level, 1- 𝜶, that you specify and on the number of 
degrees of freedom, n – 1, which we get from the sample size. 

• Let R do the work ….

One-sample t-interval for a population mean

$𝒙 ± 𝒕(𝟏"𝜶𝟐,𝒏"𝟏)
𝒔
𝒏

43

43

Example: Celtic study

44

44
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Celtic Study

•A sample of 18 full-time youth soccer players from a 
Youth Academy performed high intensity aerobic 
interval training over a 10-week in-season period in 
addition to usual regime of soccer training and 
matches. 

•Did this extra training improve fitness (VO2 max) ?
• Paired design: each player measured before and 

after (i.e. start and after 10 weeks)

45

45

858075706560
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80

75
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65

60

Pre VO2 max (ml.kg-1.min-1)

Po
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)

Scatter plot of Pre and Post VO2 Max
(with line of equality)

Post VO2 max higher

Pre VO2 max higher

46

46

121086420-2
VO2 max Improvement (ml.kg-1.min-1)

0

Box plot of Improvement in VO2 max

ImprovementWorsening

Variable                      N     Mean    StDev
VO2 Improvement              18  5.11111  2.25829

47

47

Estimate the population mean improvement

•90% CI for µ 

•95% CI for µ

•99% CI for µ

$𝒙 ± 𝒕(𝟏"𝜶𝟐,𝒏"𝟏)
𝒔
𝒏

48

48
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Estimate the population mean improvement

•90% CI for µ 
(a = 0.10 split over the tails)

•95% CI for µ
(a = 0.05 split over the tails)

•99% CI for µ (a = 0.10)
a = 0.01  split over the tails

49

49

Using R to calculate the quantile needed 
corresponding to a particular tail area 

•Find the percentile of the Student t distribution 
needed for a 95% CI from a sample of size 18.  

The qt(p=? , df= ?, lower.tail=TRUE ) 
function calculates the t-value 
corresponding to a given lower-tailed
area.

50

50

• For a 95% CI need the percentiles 
corresponding to tail areas such that 
95% of the distribution is between 
these percentiles (i.e. 5% of the area 
split across the two tails).

• To calculate the 2.5th and 97.5th

percentiles of the Student t 
distribution with 17 degrees of 
freedom:  

•Find the percentile of the Student t distribution 
needed for a 95% CI from a sample of size 18.  

51

51

Check the tables …

1 - 52

52
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Estimate the population mean improvement

•95% CI for µ

Variable                      N     Mean    StDev
VO2 Improvement              18  5.11111  2.25829

$𝒙 ± 𝒕(𝟏"𝜶𝟐,𝒏"𝟏)
𝒔
𝒏

53

53

54

54

55

55

Conclusion ?

•On average ?

•What does 95% Confidence mean ?

•Terms and conditions ?

•Random sample ?

•Small n, normality ??

56

56
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If Normality is questionable

a) Try to transform the data to approximate 
Normality
• e.g. logarithms or square root

b) Non-Parametric technique
• Bootstrap 
• CI for the population MEDIAN

57

57

Transforming to Normality

•Example: A study of Bilirubin levels in patients with 
Liver Disease

 
   . 
   : 
   : 
   ::. 
   ::: 
   :::: 
   :::: :: 
  .:::::::.... .:  .      ..   .           .           . . 
  +---------+---------+---------+---------+---------+-------  
  0        80       160       240       320       400 

Bilirubin Level 
 

58

58

 
                        . 
          .  : .  . .   :  : .     . 
          : .: :  :.::::::.: :. ::.:  .  . 
     .  . : :: ::::::::::::::::.:::::.: :: .   :.   . .. 
   -+---------+---------+---------+---------+---------+----- 
  1.0       2.0       3.0       4.0       5.0       6.0 

log(bilirubin level) 
 

Logarithm of Bilirubin Data

1. Produce an interval estimate for the Population 
MEAN  
log bilirubin level 

2.  take anti-logs/exponentials of the resulting interval
59

59

If Normality is questionable

a) Try to transform the data to approximate 
Normality
• e.g. logarithms or square root

b) Non-Parametric technique
• Bootstrap 
• CI for the population MEDIAN

60

60



16

The Bootstrap

a) Try to transform the data to approximate 
Normality
• e.g. logarithms or square root

b) Non-Parametric technique
• Bootstrap 
• CI for the population MEDIAN

61

61

Estimation via bootstrapping

•We can quantify the variability of 
sample statistics using theory eg
the Central Limit Theorem, or by 
simulation via bootstrapping.

•The term bootstrapping comes from 
the phrase "pulling oneself up by one’s 
bootstraps”.

62

62

Bootstrapping scheme

•Take a bootstrap sample - a random sample taken 
with replacement from the original sample, of the 
same size as the original sample.

•Calculate the bootstrap statistic - a statistic such as 
mean, median, proportion, etc. computed on the 
bootstrap samples.

•Repeat steps (1) and (2) many times to create a 
bootstrap distribution - a distribution of bootstrap 
statistics.

•Calculate the bounds of the XX% confidence interval 
as the middle XX% of the bootstrap distribution.

63

63

Bootstrapping in R

64

64
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Generate bootstrap means

65

65

Plot the (empirical) sampling distribution

66

66

121086420-2
VO2 max Improvement (ml.kg-1.min-1)

0

Box plot of Improvement in VO2 max

ImprovementWorsening

Variable                      N     Mean    StDev
VO2 Improvement              18  5.11111  2.25829

67

67

Compare the two 95% Confidence Intervals

68

68
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Generate bootstrap medians

69

69

Generate bootstrap medians

70

70

Celtic Study

•Based on the data provided the sample mean 
improvement was 5.11 mL/kg/min.  We are 95% 
confident that the typical improvement in VO2 max 
is likely to be between 4 and 6 mL/kg/min. 

•Given that the typical VO2 max at the start of this 
study was 67.66, the estimated typical 
improvement is approximately 7% (i.e. 5.11/67.66 
expressed as percentage is 0.07*100 ).

•How would you translate this ? 
71

71

Celtic Study

•Does this mean that each player will improve 
by 5.11 units ?

72

72
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Pick a parameter of interest …. 

1. Estimate it using an (unbiased) estimator
2. Calculate its corresponding standard error;
3. Calculate the corresponding (1-a)100% CI;
4. Check the terms and conditions
5. Report the conclusions of the analysis.

73

73

90% C.I. for ,     1.65 sx
n

µ ±

95% C.I. for ,     1.96 sx
n

µ ±

99% C.I. for ,     2.58 sx
n

µ ±

Effect of increasing the confidence 
level

74

74

Theorem 9.2

Very useful for sample size calculations

75

75
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8. Sampling distributions 
and confidence intervals

1

Fundamental relationship between 
probability and inferential statistics 

2

2

Probability and Statistics

• In probability theory we consider some known 
process which has some randomness or 
uncertainty.  We model the outcomes by random 
variables, and we figure out the probabilities of 
what will happen. There is one correct answer to 
any probability question.

• In statistical inference we observe something that 
has happened, and try to figure out what 
underlying process would explain those 
observations.

3

3

An example …

•Consider an (opaque) jar of red and green jelly 
beans.

•A probabilist starts by knowing the proportion of 
each and asks: What is the probability of drawing a 
red jelly bean from the jar? 

•A statistician infers the proportion of red jelly 
beans by sampling from the jar, and using the 
sample proportion to estimate the jar proportion.

4

4
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Probability and Statistics

•The basic aim behind all statistical methods is to 
make inferences about a population by studying a 
relatively small sample chosen from it. 

•Probability is the engine that drives all statistical 
modelling, data analysis and inference.

5

5

Population
Parameters

Inference

Sample
Statistics

Sample

Probability

6

6

Foundations for Inference

• Recall that inference is concerned (primarily) with estimating 
population parameters using sample statistics.

• A classic inferential question is, “How sure are we that the 
sample mean, 𝑥, is near the true population mean, μ?”

• Estimates (i.e. statistics) generally vary from one sample to 
another, and an understanding of sampling variation is key 
when estimating the precision of a sample statistic as an 
estimate of the corresponding parameter.

7

7

Sampling Distributions

•The probability distribution of a statistic is called a 
sampling distribution.

•Sampling distributions arise because samples vary. 

•Each random sample will have a different value of 
the statistic.

8

8
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Judgement Sample
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13

http://www.artofstat.com/webapps.html

14

14

The Central Limit Theorem

• The sampling distribution of any mean becomes 
more nearly Normal as the sample size grows
• observations need to be independent.
• the shape of the population distribution doesn't 

matter.

!𝑋 ~𝑁 𝜇,
𝜎!

𝑛
15

15

The Central Limit Theorem

The CLT depends crucially on the assumption of 
independence. 

You can’t check this with your data.  You have 
to think about how the data were gathered –
can you assume the observations are 
independent?

!𝑋 ~ 𝑁 𝜇,
𝜎"

𝑛

1 - 16

16
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The Central Limit Theorem

•Sample means follow a Normal distribution centred 
on the population mean with a standard deviation 
equal to population standard deviation divided by 
the square root of the sample size.

•What happens when you take a single sample ?

)𝑿 ~ 𝑵 𝝁,
𝝈𝟐

𝒏

17

17

The Standard Error

•The standard error is a measured of the variability 
in the sampling distribution (i.e. how do sample 
statistics vary about the unknown population 
parameter they are trying to estimate) 

• It describes the typical ‘error’ or ‘uncertainty’ 
associated with the estimate.

S𝐸 =
𝜎
𝑛

)𝑿 ~ 𝑵 𝝁,
𝝈𝟐

𝒏

1 - 18

18

Use the CLT to provide a range of values that will 
capture 95% of sample means.

Interval Estimation for µ

19

19

95% of sample means

𝑿 ~ 𝑵 𝝁,
𝝈𝟐

𝒏

µ-2s µ+2sµ

20

20
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µ

95% of sample means

𝑿 ~ 𝑵 𝝁,
𝝈𝟐

𝒏

21

21

The sample mean 𝑋 has a normal distribution with mean μ
and standard deviation 𝜎" = σ/√n. 
Let’s consider a particular sample with mean 𝑥.
Now suppose 𝑥 lies in the middle 95% of the distribution of 
𝑋 − the 95% confidence interval 𝑥 ± 1.96𝜎" succeeds in 
covering the population mean μ.

22

22

The sample mean 𝑋 has a normal distribution with mean μ
and standard deviation 𝜎" = σ/√n. 
Let’s consider a particular sample with mean 𝑥.
Now suppose 𝑥 lies in the outer 5% of the distribution of 𝑋 −
the 95% confidence interval 𝑥 ± 1.96𝜎" does not include 
the population mean μ.

23

23

In repeated sampling, 95% of intervals calculated in this 
manner

will contain the true mean µ.

x 1.96
n
s

± *

95% Confidence Interval for µ

24

24
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25

25

Confidence intervals

•The population mean µ is fixed
•The intervals from different samples are random
•From our single sample, we only observe one of the

intervals
•Our interval may or may not contain the true mean
• If we had taken many samples and calculated the 

95% CI for each, 95% of them would include the 
true mean

•We say we are “95% confident” that the interval 
contains the true mean.

1 - 26

26

• A point estimate (i.e. a statistic) is a single 
plausible value for a parameter.

• A point estimate is rarely perfect; usually there is 
some error in the estimate. 

• Instead of supplying just a point estimate of a 
parameter, a next logical step would be to provide 
a plausible range of values for the parameter.

• To do this an estimate of the precision of the 
sample statistic (i.e. the estimate) is needed.

Confidence Intervals

27

27

n = 150, x = 69.5, s = 6.2

Is µ > 75 ?

28

28
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𝟔𝟗. 𝟓 ± 𝟏. 𝟗𝟔
𝟔. 𝟐
𝟏𝟓𝟎

A 95% CI for the population mean is 
[68.51, 70.49]

Interpret this !

Is µ > 75 ?
29

29

95% confident that the population mean is 
between 68.48 and 70.51 based on the data 
provided.

No evidence to support the claim that the 
population mean (µ) greater than 75.

30

30

Application: mean weekly rent in 
ST2001

What is the population mean rent ?
What is a student likely to pay ?
What will they actually pay ?

31

31

Population Mean Rent in ST2001 ?

32

32
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Using s for s ?

•Knowing s must mean that you knew µ   ….

• The sample standard deviation s is used to 
estimate s.

• What are the consequences ?

1 - 33

x 1.96
n
s

± *

33

What if s is unknown and n is 
small ?

1 - 34

34

Population normal

𝒏 < 𝟑𝟎
%𝒙 ± 𝒕(𝟏#𝜶𝟐,𝒏#𝟏)

𝒔
𝒏

1- confidence level Degrees of freedom

1 - 35

35

1 - 36

𝒕𝝂 distribution

Mean = 0

Variance = 𝝂
𝝂"𝟐

for 𝝂 > 𝟐

36
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T- distribution

• As the degrees of freedom increase, the t-models look more and 
more like the Normal. 

• In fact, the t-distribution with infinite degrees of freedom is the 
Normal distribution.

37

37

38

38

39

39

T- tables

40

40
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T- tables

41

41

• When the conditions are met, we are ready to find the 
confidence interval for the population mean, μ. 

• The confidence interval is

• The critical value 𝒕($%𝜶
𝟐
,𝒏%𝟏)depends on the particular 

confidence level, 1- 𝜶, that you specify and on the number of 
degrees of freedom, n – 1, which we get from the sample size. 

• Let R do the work ….

One-sample t-interval for a population mean

$𝒙 ± 𝒕(𝟏"𝜶𝟐,𝒏"𝟏)
𝒔
𝒏

42

42

Example: Celtic study

43

43

Celtic Study

•A sample of 18 full-time youth soccer players from a 
Youth Academy performed high intensity aerobic 
interval training over a 10-week in-season period in 
addition to usual regime of soccer training and 
matches. 

•Did this extra training improve fitness (VO2 max) ?
• Paired design: each player measured before and 

after (i.e. start and after 10 weeks)

44

44
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Scatter plot of Pre and Post VO2 Max
(with line of equality)

Post VO2 max higher

Pre VO2 max higher

45

45

121086420-2
VO2 max Improvement (ml.kg-1.min-1)

0

Box plot of Improvement in VO2 max

ImprovementWorsening

Variable                      N     Mean    StDev
VO2 Improvement              18  5.11111  2.25829

46

46

Estimate the population mean improvement

•90% CI for µ 

•95% CI for µ

•99% CI for µ

$𝒙 ± 𝒕(𝟏"𝜶𝟐,𝒏"𝟏)
𝒔
𝒏

47

47

Estimate the population mean improvement

•90% CI for µ 
(a = 0.10 split over the tails)

•95% CI for µ
(a = 0.05 split over the tails)

•99% CI for µ (a = 0.10)
a = 0.01  split over the tails

48

48
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Using R to calculate the quantile needed 
corresponding to a particular tail area 

•Find the percentile of the Student t distribution 
needed for a 95% CI from a sample of size 18.  

The qt(p=? , df= ?, lower.tail=TRUE ) 
function calculates the t-value 
corresponding to a given lower-tailed
area.

49

49

• For a 95% CI need the percentiles 
corresponding to tail areas such that 
95% of the distribution is between 
these percentiles (i.e. 5% of the area 
split across the two tails).

• To calculate the 2.5th and 97.5th

percentiles of the Student t 
distribution with 17 degrees of 
freedom:  

•Find the percentile of the Student t distribution 
needed for a 95% CI from a sample of size 18.  

50

50

Check the tables …

1 - 51

51

Estimate the population mean improvement

•95% CI for µ

Variable                      N     Mean    StDev
VO2 Improvement              18  5.11111  2.25829

$𝒙 ± 𝒕(𝟏"𝜶𝟐,𝒏"𝟏)
𝒔
𝒏

52

52
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53

53

54

54

Conclusion ?

•On average ?

•What does 95% Confidence mean ?

•Terms and conditions ?

•Random sample ?

•Small n, normality ??

55

55

If Normality is questionable

a) Try to transform the data to approximate 
Normality
• e.g. logarithms or square root

b) Non-Parametric technique
• Bootstrap 
• CI for the population MEDIAN

56

56
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Transforming to Normality

•Example: A study of Bilirubin levels in patients with 
Liver Disease

 
   . 
   : 
   : 
   ::. 
   ::: 
   :::: 
   :::: :: 
  .:::::::.... .:  .      ..   .           .           . . 
  +---------+---------+---------+---------+---------+-------  
  0        80       160       240       320       400 

Bilirubin Level 
 

57

57

 
                        . 
          .  : .  . .   :  : .     . 
          : .: :  :.::::::.: :. ::.:  .  . 
     .  . : :: ::::::::::::::::.:::::.: :: .   :.   . .. 
   -+---------+---------+---------+---------+---------+----- 
  1.0       2.0       3.0       4.0       5.0       6.0 

log(bilirubin level) 
 

Logarithm of Bilirubin Data

1. Produce an interval estimate for the Population 
MEAN  
log bilirubin level 

2.  take anti-logs/exponentials of the resulting interval
58

58

If Normality is questionable

a) Try to transform the data to approximate 
Normality
• e.g. logarithms or square root

b) Non-Parametric technique
• Bootstrap 
• CI for the population MEDIAN

59

59

The Bootstrap

a) Try to transform the data to approximate 
Normality
• e.g. logarithms or square root

b) Non-Parametric technique
• Bootstrap 
• CI for the population MEDIAN

60

60
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Estimation via bootstrapping

•We can quantify the variability of 
sample statistics using theory eg
the Central Limit Theorem, or by 
simulation via bootstrapping.

•The term bootstrapping comes from 
the phrase "pulling oneself up by one’s 
bootstraps”.

61

61

Bootstrapping scheme

•Take a bootstrap sample - a random sample taken 
with replacement from the original sample, of the 
same size as the original sample.

•Calculate the bootstrap statistic - a statistic such as 
mean, median, proportion, etc. computed on the 
bootstrap samples.

•Repeat steps (1) and (2) many times to create a 
bootstrap distribution - a distribution of bootstrap 
statistics.

•Calculate the bounds of the XX% confidence interval 
as the middle XX% of the bootstrap distribution.

62

62

Bootstrapping in R

63

63

Generate bootstrap means

64

64
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Plot the (empirical) sampling distribution

65

65

121086420-2
VO2 max Improvement (ml.kg-1.min-1)

0

Box plot of Improvement in VO2 max

ImprovementWorsening

Variable                      N     Mean    StDev
VO2 Improvement              18  5.11111  2.25829

66

66

Compare the two 95% Confidence Intervals

67

67

Generate bootstrap medians

68

68
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Generate bootstrap medians

69

69

Celtic Study

•Based on the data provided the sample mean 
improvement was 5.11 mL/kg/min.  We are 95% 
confident that the typical improvement in VO2 max 
is likely to be between 4 and 6 mL/kg/min. 

•Given that the typical VO2 max at the start of this 
study was 67.66, the estimated typical 
improvement is approximately 7% (i.e. 5.11/67.66 
expressed as percentage is 0.07*100 ).

•How would you translate this ? 
70

70

Celtic Study

•Does this mean that each player will improve 
by 5.11 units ?

71

71

Pick a parameter of interest …. 

1. Estimate it using an (unbiased) estimator
2. Calculate its corresponding standard error;
3. Calculate the corresponding (1-a)100% CI;
4. Check the terms and conditions
5. Report the conclusions of the analysis.

72

72
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90% C.I. for ,     1.65 sx
n

µ ±

95% C.I. for ,     1.96 sx
n

µ ±

99% C.I. for ,     2.58 sx
n

µ ±

Effect of increasing the confidence 
level

73

73

Theorem 9.2

Very useful for sample size calculations

74

74
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1

Topic 10: Hypothesis testing

1

Learning Outcomes

1. Carry out hypothesis tests for a single mean.
2. Use the p-value approach for making decisions in hypothesis tests.
3. Understand types of testing errors
4. Understand the relationship between hypothesis testing and 

confidence intervals and the advantages of interval estimation
5. Additional reading material : Open Intro book Chapters 5.1 & 7.1

2

2

3

3

A claim has been made that college students have 
been in, on average, at least 4 exclusive 
relationships. Data collected on a random sample of 
50 college students yielded a mean of 3.2 and a 
standard deviation of 1.74. 

Do these data provide evidence for or against the 
hypothesis claimed ?

The corresponding 95% CI is [2.7, 3.7].

Recap: Inference using Confidence 
Interval Estimation

4
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2

Which of the following is the correct interpretation of this confidence 
interval?

We are 95% confident that

(a) the average number of exclusive relationships college students in 
this sample have been in is between 2.7 and 3.7.

(b) college students on average have been in between 2.7 and 3.7 
exclusive relationships.

(c) a randomly chosen college student has been in 2.7 to 3.7 exclusive 
relationships.

(d) 95% of college students have been in 2.7 to 3.7 exclusive    
relationships.

Practice

5

Which of the following is the correct interpretation of this confidence 
interval?

We are 95% confident that

(a) the average number of exclusive relationships college students in 
this sample have been in is between 2.7 and 3.7.

(b) college students on average have been in between 2.7 and 3.7 
exclusive relationships.

(c) a randomly chosen college student has been in 2.7 to 3.7 exclusive 
relationships.

(d) 95% of college students have been in 2.7 to 3.7 exclusive    
relationships.

Practice

6

Review

• Formal Statistical Analysis (Inference)

• Given a sample, what can we say about the population (or the 
process that generated the data)

• Interval Estimation
• Hypothesis testing (p-values) 

7

7

Hypothesis Testing

• A hypothesis test is intended to assess whether a population parameter of 
interest is equal to some specified value of direct interest to the researcher

• Hypothesis tests are structured in a very specific and, what may seem 
initially, peculiar manner

• The p-value is central to the notion of a hypothesis test

• The CLT and t-distribution provide the framework for assessing if the 
sample mean is not the same as the proposed parameter mean

8

8
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Null and alternative hypotheses

• The null hypothesis is a claim to be tested – often the skeptical claim of “no 
effect”.. eg

𝐻!: 𝜇 = 𝜇!
• The alternative hypothesis is an alternative claim under consideration, 

often represented by a range of parameter values – eg

𝐻": 𝜇 ≠ 𝜇!
• We only reject the null in favour of the alternative if there is strong 

supporting evidence.
• We decide a priori how much evidence is “strong” enough to reject the null

9

9

Stages in Hypothesis Testing

1. Null Hypothesis: The hypothesis that the population parameter is 
equal to some claimed value (H0)

2. Study or Alternative Hypothesis: The hypothesis that must be 
true if the null hypothesis is false (H1)

3. Collect appropriate data
4. Assess, through a test statistic, how probable (the p-value) it 

would be to observe data as or more extreme than the data 
actually collected if, in fact, the Null Hypothesis was true

5. Come to a conclusion whether or not to reject the Null 
Hypothesis 

10

10

Rejecting/not rejecting the null

• If we do not reject the null hypothesis in favour of the alternative, we 
are saying that the effect indicated by the sample is due only to 
sampling variation. 

• If we do reject the null hypothesis in favour of the alternative, we are 
saying that the effect indicated by the sample is real, in that it is more 
than can be attributed to sampling variation.

11

11

12

12
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One-Sample Tests for the population mean

1. Specify the hypotheses about 𝜇

2. Calculate a test statistic – based on the sampling distribution of the 
sample mean

3. See how extreme the test statistic is if the null hypothesis was true 
– compare the test statistic with the t or Normal distribution

4. Make a decision: reject the null or don’t reject it.

13

13

Strategy

• If the sample came from the population in question the sample mean 
should be ‘close’ to the population mean in question

• ‘Close’ needs to take into account the sample size used and the 
variability in the measure (i.e. the standard error)

• For testing means, the Central Limit Theorem or t distribution (or the 
bootstrap) is key

14

14

Tests on the Mean of a Normal Distribution, Variance 
Unknown
One-Sample t-Test

15

Null Hypothesis

H0: µ = µ0

Test statistic:

Alternative hypothesis Rejection criteria

H1: µ ¹ µ0                            T0 > ta/2,n-1 or T0 < -ta/2,n-1
H1: µ > µ0 T0 > ta,n-1
H1: µ < µ0 T0 < -ta,n-1

nS
XT
/

0
0

µ-
=

One sided hypotheses tests

Two sided hypotheses test

15

Alternative hypothesis Rejection criteria

H1: µ ¹ µ0                            T0 > ta/2,n-1 or T0 < -ta/2,n-1

H1: µ > µ0 T0 > ta,n-1

H1: µ < µ0 T0 < -ta,n-1

T0

T0

T0-T0

Typically a is set at 0.05 16

16
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Terms and conditions:

• Independence: random sample/assignment

• Normality: for small samples where we use the t 
distribution, we require the observations to be 
approximately normally distributed.  For larger (n
≥ 30) samples, no extreme skew we can use the 
CLT and do not require the observations to be 
normally distributed. 

17

17

p-values and (a) significance levels …

• A p-value ≤ 0.05 is (typically) considered as 
sufficient evidence against a null hypothesis 
(ie sufficient evidence to reject the null).

• If the p-value for the test of a parameter with 
2-sided alternative is <0.05, the 95% 
Confidence Interval will not include the 
parameter.

18

18

Statistical Significance

•Whenever the p-value is less than a particular threshold, the 
result is said to be “statistically significant” at that level. 
• The threshold should be decided a priori, before you 

calculate the test statistic
• For example, if the threshold is p ≤ 0.05, the result is 

statistically significant at the 5% level; if p ≤ 0.01, the result is 
statistically significant at the 1% level, and so on. 
• If a result is statistically significant at the 100α% level, we can 

also say that the null hypothesis is “rejected at level 100α%.”
19

19

Example: Golf Club Design

20

An experiment was performed in which 15 drivers produced 
by a particular club maker were selected at random and 
their coefficients of restitution measured. It is of interest to 
determine if there is evidence (with a = 0.05 significance 
level) to support a claim that the mean coefficient of 
restitution exceeds 0.82. 

The sample mean and sample standard deviation are                         
and s = 0.02456. 

The objective of the experimenter is to demonstrate that the 
mean coefficient of restitution exceeds 0.82, hence a one-
sided alternative hypothesis is appropriate.

83725.0=x

20
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Example: Golf Club Design continued

21

1. Parameter of interest: The parameter of interest is the 
mean coefficient of restitution, µ.

2. Null hypothesis: H0: µ = 0.82

3. Alternative hypothesis: H1: µ > 0.82

We decide a priori we will reject H0 if the p-value is 
<0.05.

21

4. Test Statistic: The test statistic is 

Computations:    Since                       , s = 0.02456, 
µ = 0.82, and n = 15, our observed test statistic is

83725.0=x

Example: Golf Club Design continued

72.2
15/02456.0
82.083725.0

0 =
-

=t𝑡!

22

𝑇! =
#𝑋 − 𝜇!
𝑆/ 𝑛

22

n = 15, t0=2.72

p is between 0.005 and 0.01 i.e. < 0.05
23

23

Use R (first principles)

0.4

0.3

0.2

0.1

0.0

X

De
ns

ity

2.72

0.008297

0

Distribution Plot
T, df=14

24

24
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25

Conclusions: The probability of observing such 
data (or more extreme data) if the null hypothesis 
is true is less than 0.008.

Interpretation: There is strong evidence 
(p=0.008) to conclude that the mean coefficient of 
restitution exceeds 0.82.  
A CI would give an interval estimate as to what it 
actually is … !

Example: Golf Club Design continued

25

A poll by the National Sleep Foundation found that college 
students average about 8 hours of sleep per night. A sample of 
169 college students taking an introductory statistics class 
yielded an average of 7.84 hours, with a standard deviation of  
0.98 hours. 

Assuming that this is a random sample representative of all 
college students (bit of a leap of faith?), carry out a hypothesis 
test to evaluate whether the data provide convincing evidence 
that the average amount of sleep college students get per night 
is different to the average value claimed.

Sleep hygiene example

26

Example: Sleep Hygiene

Parameter of interest: The parameter of 
interest is the mean amount of sleep (hours) in 
the population of interest, µ.

Null hypothesis: H0: µ = 8

Alternative hypothesis: H1: µ ¹ 8

Two-sided test … interested in whether the 
amount of sleep, on average, is different to 
the claimed national average. 27

27

Test Statistic: The test statistic is

From our observed data

𝑡! =
".$% &$
!.#$
%&#

= - 2.05

Example: Sleep Hygiene

28

𝑇! =
#𝑋 − 𝜇!
𝑆/ 𝑛

28



11/2/22

8

Test Statistic: The test statistic is

From our observed data

p-value : calculate area to the right 
of 2.05 and to the left of -2.05 in a 
t distribution with 169-1 degrees 
of freedom.

𝑡! =
".$% &$
!.#$
%&#

= - 2.05

Example: Sleep Hygiene

-2.05 2.05 
29

𝑇! =
#𝑋 − 𝜇!
𝑆/ 𝑛

29

P-value : calculate area to the right of 2.05 and to 
the left of -2.05 in a t distribution with 169-1 
degrees of freedom.

Example: Sleep Hygiene

0.4

0.3

0.2

0.1

0.0

D
en

sit
y

-2.053

0.02083

2.05272

0.02083

0

Distribution Plot
t  with df=168

30

30

p-value : use the symmetry in the distribution i.e. 
calculate area to the right of 2.05 in a t distribution 
with 169-1 degrees of freedom and double it.

Example: Sleep Hygiene

p-value : 0.0416

31

31

32

Conclusions: The probability of 
observing such data (or more extreme) if 
the null hypothesis is true is = 0.04.

Interpretation: As the p-value is less than 
0.05, there is evidence (at the 5% 
significance level) that the mean hours 
sleeping is different from the national 
average of 8. 

Example: Sleep Hygiene

32
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Example: Sleep Hygiene using R

Parameter of interest: The parameter of 
interest is the mean amount of sleep (hours) in 
the population of interest, µ.

Null hypothesis: H0: µ = 8

Alternative hypothesis: H1: µ ¹ 8

Two-sided test … interested in whether the 
amount of sleep, on average, is different to 
claimed national average. 33

33

34

34

35

35

36

36
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37

37

Statistical Significance Is Not the Same as 
Practical Significance

• When a result has a small p-value, we say that it is “statistically 
significant.” In common usage, the word significant means 
“important.” It is therefore tempting to think that statistically 
significant results must always be important. 

• This is not the case. Sometimes statistically significant results do not 
have any scientific or practical importance. 

• A difference is only a difference if it makes a difference.

38

38

Statistical Significance Is Not the Same as 
Practical Significance continued …
• The p-value does not measure practical significance. What it does 

measure is the degree of confidence we can have that the true value 
is really different from the value specified by the null hypothesis.

• When the p-value is small, then we can be confident that the true 
value is really different. This does not necessarily imply that the 
difference is large enough to be of practical importance.

39

39

Connection between Hypothesis Tests and 
Confidence Intervals

A close relationship exists between the test of a hypothesis for q, and the 
confidence interval for q. 

If [l, u] is a 95% confidence interval for the parameter q, the test of the null 
hypothesis against a 2-sided alternative at the 0.05 significance level

H0: q = q0
H1: q ¹ q0

will lead to rejection of H0 if and only if q0 is not in the 95% 
CI [l, u]. 

And similarly for your alpha of choice e.g. 90% CI and p < 0.10 ….
40

40
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p-values revisited …

• A p-value is not the probability of the null hypothesis 
being true given the data observed.

• It is the probability of observing such data (or more 
extreme data) given the null hypothesis is actually 
true.

• A non-significant test does not imply that the null 
hypothesis is true. It actually means that we do not 
have enough evidence to reject the null hypothesis. 

• A significant result does not mean the alternative 
hypothesis is true – it means that we have enough 
evidence to reject the null. 41

41

• We’ve learned:
• Start with a null hypothesis.
• Alternative hypothesis can be one- or two-sided.
• Collect Data
• Check assumptions and conditions.
• Data are out of line with H0, small p-value, reject the null hypothesis.
• Data are consistent with H0, large p-value, don’t reject the null hypothesis.
• State the conclusion in the context of the original question.

What have we learned?

42

42

Summary
• Hypothesis testing is useful if you are interested in testing if the parameter 

is equal to a particular value.

• Typically interval estimation is more useful as an interval provides an 
estimate of the parameter you are interested in and the range of values 
for the parameter supported by the data.

• You can do a hypothesis test using the resulting interval estimate (i.e. does 
the interval contain the hypothesised value ?) but you can’t use the 
hypothesis to get an interval estimate of what the parameter is likely to 
be.

• Don’t be impressed by ‘clinically proven’.  Ask to see the corresponding 
95% CI … 

43

43

● Hypothesis tests are not flawless.
● In the court system innocent people are sometimes wrongly 

convicted, and the guilty sometimes walk free.
● Similarly, we can make a wrong decision in statistical 

hypothesis tests. 
● The difference is that we have the tools necessary to quantify 

how often we make errors in statistics.

Decision errors

44



11/2/22

12

• There are two competing hypotheses: the null and the 
alternative. 

• In a hypothesis test, we make a decision about which might 
be true, but our choice might be incorrect.

Decision errors (cont.)

45

There are two competing hypotheses: the null and the 
alternative. In a hypothesis test, we make a decision about which 
might be true, but our choice might be incorrect.

Decision errors (cont.)

46

There are two competing hypotheses: the null and the 
alternative. In a hypothesis test, we make a decision about which 
might be true, but our choice might be incorrect.

Decision errors (cont.)

47

There are two competing hypotheses: the null and the 
alternative. In a hypothesis test, we make a decision about which 
might be true, but our choice might be incorrect.

Decision errors (cont.)

48
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● A Type 1 Error is rejecting the null hypothesis when H0 is true.

There are two competing hypotheses: the null and the 
alternative. In a hypothesis test, we make a decision about which 
might be true, but our choice might be incorrect.

Decision errors (cont.)

49

● A Type 1 Error is rejecting the null hypothesis when H0 is true.
● A Type 2 Error is failing to reject the null hypothesis when HA is 

true.

There are two competing hypotheses: the null and the 
alternative. In a hypothesis test, we make a decision about which 
might be true, but our choice might be incorrect.

Decision errors (cont.)

50

We (almost) never know if H0 or HA is true, but we need to consider all 
possibilities.

● A Type 1 Error is rejecting the null hypothesis when H0 is true.
● A Type 2 Error is failing to reject the null hypothesis when HA is 

true.

There are two competing hypotheses: the null and the 
alternative. In a hypothesis test, we make a decision about which 
might be true, but our choice might be incorrect.

Decision errors (cont.)

51

Hypothesis Test as a trial 

• Think about the logic of jury trials: 

• To prove someone is guilty, we start by assuming they are innocent. 

• We retain that hypothesis until the facts make it unlikely beyond a 
reasonable doubt. 

• Then, and only then, we reject the hypothesis of innocence and declare the 
person guilty.

52

52
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If we think of a hypothesis test as a criminal trial then it makes sense to frame 
the verdict in terms of the null and alternative hypotheses:

H0: Defendant is innocent

HA: Defendant is guilty

Which type of error is being committed in the following circumstances?

● Declaring the defendant innocent when they are actually guilty

● Declaring the defendant guilty when they are actually innocent

Hypothesis Test as a trial

53

If we think of a hypothesis test as a criminal trial then it makes sense to frame 
the verdict in terms of the null and alternative hypotheses:

H0: Defendant is innocent

HA: Defendant is guilty

Which type of error is being committed in the following circumstances?

● Declaring the defendant innocent when they are actually guilty

Type 2 error

● Declaring the defendant guilty when they are actually innocent

Hypothesis Test as a trial

54

If we think of a hypothesis test as a criminal trial then it makes sense to frame 
the verdict in terms of the null and alternative hypotheses:

H0: Defendant is innocent

HA: Defendant is guilty

Which type of error is being committed in the following circumstances?

● Declaring the defendant innocent when they are actually guilty

Type 2 error

● Declaring the defendant guilty when they are actually innocent

Type 1 error

Hypothesis Test as a trial

Which error do you think is the worse error to make?

55

If we think of a hypothesis test as a criminal trial then it makes sense to frame 
the verdict in terms of the null and alternative hypotheses:

H0: Defendant is innocent

HA: Defendant is guilty

Which type of error is being committed in the following circumstances?

● Declaring the defendant innocent when they are actually guilty

Type 2 error

● Declaring the defendant guilty when they are actually innocent

Type 1 error

Hypothesis Test as a trial

“better that ten guilty persons escape than that one innocent suffer”
- William Blackstone (English jurist , Commentaries on the Laws of England, published in the 1760s.)

56
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● As a general rule we reject H0 when the p-value is less than 
0.05, i.e. we use a significance level of 0.05, α = 0.05.

Type 1 error rate

57

● As a general rule we reject H0 when the p-value is less than 
0.05, i.e. we use a significance level of 0.05, α = 0.05.

● This means that, for those cases where H0 is actually true, we 
do not want to incorrectly reject it more than 5% of those 
times. 

Type 1 error rate

58

● As a general rule we reject H0 when the p-value is less than 
0.05, i.e. we use a significance level of 0.05, α = 0.05.

● This means that, for those cases where H0 is actually true, we 
do not want to incorrectly reject it more than 5% of those 
times. 

● In other words, when using a 5% significance level there is 
about 5% chance of making a Type 1 error if the null 
hypothesis is true.

P(Type 1 error) = α
Or      P(Reject H0 | H0 true) = α

Type 1 error rate

59

● As a general rule we reject H0 when the p-value is less than 
0.05, i.e. we use a significance level of 0.05, α = 0.05.

● This means that, for those cases where H0 is actually true, we 
do not want to incorrectly reject it more than 5% of those 
times. 

● In other words, when using a 5% significance level there is 
about 5% chance of making a Type 1 error if the null 
hypothesis is true.

P(Type 1 error) = α
Or      P(Reject H0 | H0 true) = α

This is why we prefer small values of α -- increasing α increases 
the Type 1 error rate.

Type 1 error rate

60
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● Choosing a significance level for a test is important in many contexts, and 
the traditional level is 0.05. However, it is often helpful to adjust the 
significance level based on the application. 

● We may select a level that is smaller or larger than 0.05 depending on the 
consequences of any conclusions reached from the test.

● If making a Type 1 Error is dangerous or especially costly, we should 
choose a small significance level (e.g. 0.01). Under this scenario we want 
to be very cautious about rejecting the null hypothesis, so we demand 
very strong evidence favoring HA before we would reject H0.

● If a Type 2 Error is relatively more dangerous or much more costly than a 
Type 1 Error, then we should choose a higher significance level (e.g. 0.10). 
Here we want to be cautious about failing to reject H0 when the null is 
actually false.

Choosing a significance level

61
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Topic 11: Correlation and 
Linear Regression

1

Modelling Relationships

• In many applications we want to know is there a relationship
between variables
• Regression is a set of statistical methods for estimating the 

relationship between a response variable and one or more 
explanatory variables
• Regression may have the aim of explanation (describing & 

quantifying relationships between variables) or prediction (how 
well can we predict a response variable from explanatory 
variables)
• In this section we focus on linear relationships between 

variables 

2

2

Learning outcomes

After careful study of this section, you should be able to:

1.Understand correlation.
2.Use simple linear regression to model linear relationships in scientific data.
3.Define residuals and residual standard error
4.Understand how the method of least squares is used to estimate the parameters in a 

linear regression model.
5.Interpret the coefficients of a simple linear regression model
6.Use the regression model to make a prediction of the response variable based on the 

explanatory variable.
7. Confidence intervals and prediction intervals for predictions

3

3

Motivation

• Many problems in science involve exploring the relationships 
between two or more variables. 

• Scatterplots are the best way to start observing the relationship and 
the ideal way to picture associations (e.g. correlation) between two 
continuous variables.

• When the roles are clear, the explanatory or predictor variable goes on the x-
axis, and the response variable (variable of interest) goes on the y-axis.

• The statistical technique known as Regression allows the researcher 
to model the dependency of a Response variable on one or more 
Explanatory variables.

4
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Motivating Example

• Windfarms are used to generate direct current. Data are collected on 
34 different days to determine the relationship between wind speed 
in mi/h and current in kA.

5

Data:

Name of data file: Windspeed.csv

Response Variable: current in kA
Explanatory Variable: wind speed in mi/h

6

7 8
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9

Subjective Impressions ?

• Does it look like there is a relationship between windspeed and 
current ?

• What is the direction of relationship ?

• How would you quantify the strength of the relationship ? 

10

Sample Correlation Coefficient

The sample correlation coefficient (r) gives a
numerical measurement of the strength of the
linear relationship between the explanatory and
response variables.
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11

r = +1 means a perfect, linear direct relationship
between X and Y

r = 0 means no linear relationship between
X and Y

r = -1 means a perfect, inverse linear relationship
between X and Y.

Correlation Coefficient

Note: r is the population correlation coefficient while
r is the sample correlation coefficient.

12
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Correlation Coefficient
• Correlation treats x and y symmetrically: 

• The correlation of x with y is the same as the correlation of 
y with x.

• Correlation has no units.
• Correlation is not affected by changes in the center or 

scale of either variable. 

13

(e)   r = 0

(d)   r =   0.2(c)   r =    0.4(b)   r =    0.8(a)   r =   1

(i)   r = + 1 (h)   r = + 0.95 (g)   r = + 0.6 (f)   r = + 0.3

Negative

Positive

Correlation coefficient r

Perfect
correlation

Becoming
weaker

From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000.

14

15

Or directly using cor function as below:

16
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Correlation of zero ?

• Sketch what it looks like …

17

(a)  1000 data points with no relationship between X and Y

y

x
From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 1999.

18

Some patterns with  r = 0

r = 0r = 0r = 0

(a) (b) (c)

From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000.

19

Some patterns with  r = 0.7

r = 0.7 r = 0.7 r = 0.7

r = 0.7r = 0.7r = 0.7

(d) (e) (f)

(g) (h) (i)

From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000.

20
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r=0.817

21

Take home message …

• Show me the data

• The correlation coefficient measures only linear association

• The correlation coefficient can be misleading when outliers are 
present

• Correlation does not imply causation

22

Correlation ≠ Causation

• Whenever we have a strong correlation, it is tempting to explain it by 
imagining that the predictor variable has caused the response to help.

• Scatterplots and correlation coefficients never prove causation.

• A hidden variable that stands behind a relationship and determines it 
by simultaneously affecting the other two variables is called a lurking 
or confounding variable.

23

Correlation ≠ Causation

• Don’t say “correlation” when you mean “association.

• More often than not, people say correlation when they mean 
association.

• The word “correlation” should be reserved for measuring the 
strength and direction of the linear relationship between two 
quantitative variables.

24
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Summary so far ….
• Scatterplots are useful graphical tools for assessing direction, form, 

strength, and unusual features between two variables.
• Although not every relationship is linear, when the scatterplot is 

straight enough, the correlation coefficient is a useful numerical 
summary.
• The sign of the correlation tells us the direction of the association.
• The magnitude of the correlation tells us the strength of a linear 

association.
• Correlation has no units, so shifting or scaling the data, 

standardizing, or swapping the variables has no effect on the 
numerical value.

25

Simple Linear Regression

• Simple linear regression is the name given to the statistical technique 
that is used to model the dependency of a response variable on a 
single explanatory variable

• the word ‘simple’ refers to the fact that a single explanatory variable is 
available.

• Simple linear regression is appropriate if the average value of the 
response variable is a linear function of the explanatory i.e. the 
underlying dependency of the response on the explanatory appears 
linear.

26

Strategy

• Propose a model

• Check the assumptions

• Make some predictions

• Assess how useful it is

• Improve it.

27

Simple Linear Regression

28

28
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29

Motivating Example

• Windfarms are used to generate direct current. Data are collected on 
34 different days to determine the relationship between wind speed 
in mi/h and current in kA.

30

A glimpse of the first few rows of data ..

31 32
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33

Simple Linear Regression

• The simple linear regression model is of the form

Response  Variable =   Intercept   +   Slope*Explanatory Variable 
+ random variability

where the intercept and slope must be estimated from a relevant sample 
of data from the population of interest.

34

r = 0.82

35

Line of best fit ?

36
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37

Interpreting the Slope and Intercept

• b1 is the slope, which tells us how rapidly     changes with respect to x
e.g. what is the change in the mean current per unit increase in wind 
speed.

• b0 is the y-intercept, which tells where the line crosses (intercepts) 
the y-axis when x is zero e.g. what is the mean current when wind 
speed is zero.

ŷ

Regression Equation
Mean Current = 1.057 + 0.2113 Wind Speed

38

Predict the Current when Wind Speed = 7.1

Regression Equation
Mean Current = 1.057 + 0.2113 Wind Speed 

39

Predict the Current when Wind Speed = 7.1

Regression Equation
Mean Current = 1.057 + 0.2113 (7.1) = 
2.56 

The predicted value is often referred to as !𝑦 (i.e. ‘y hat’).

From looking at the data the 7th observation was for a 
wind speed of 7.1 where the actual Current (i.e. y) was 
equal to 2.7.

40
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Residuals …. difference between actual and predicted values

Actual current = 2.7
Predicted current ( !𝑦 )= 2.56
The difference (Actual – Predicted) = 0.14

41

The line of best fit is the line for which the sum of the squared 
residuals is smallest, the least squares line.

Observed 
data value (y)

line of best fit

The standard deviation se of the 
residuals quantifies the amount of 
scatter around the line.

residual 

42

Actual 
current

Predicted 
current

Actual - Predicted

standard 
deviation 

of the 
residuals

se

43

The Residual Standard Deviation (se)

• The standard deviation of the 
residuals, se, measures how much 
the points spread around the 
regression line.
• Also known as the residual 

standard error.
• You can interpret se in the context 

of a data set. It is the typical error 
in the predictions made by the 
regression line.

44
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Line of ‘best fit’.

• The line of best fit is the line for which the sum of the 
squared residuals is smallest, the least squares line.

• Some residuals are positive, others are negative, and, on 
average, they cancel each other out.

• You can’t assess how well the line fits by adding up all 
the residuals.

45

• Simple Linear Regression Model:
Yi = b0 + b1xi + ei for i=1, …, n assuming ei ~N(0, se) 

• Features of this model:
• b0 (intercept) and b1 (slope) are the population parameters of the model and 

must be estimated from the data as  b0 (sample intercept) and b1 (sample slope). 
• The process of estimating b0 and b1 is called fitting the model to the data.
• b0 + b1 xi is the population mean response (mean of Y) given X=xi. 
• ei is the error term in the regression model. Actually it refers to the difference 

between the fitted line and 𝑦!.
• se (error) is the stochastic part of the model (unexplained variability). Or in other 

words, it is the standard deviation corresponding to the error term. 
• Once estimated predicted values for y (labelled as #𝑦 ) can be made as follows:

• #𝑦 is used to emphasize that the points that satisfy this equation are just our 
predicted values, not the actual data values.

ŷ = b0 + b1x

46

• In the simple linear regression model the slope (b1) is built from the 
correlation coefficient r and the standard deviations of y and x:

• The slope is always in units of y per unit of x.

b1 = r
sy
sx

Estimating the Slope (least squares)

47

• In the simple linear regression model the intercept (b0) the intercept 
is built from the means and the slope:

• The intercept is always in units of y.

• We almost always use technology to find the equation of the 
regression line.

b0 = y − b1x

Estimating the Intercept (least squares)

48
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Summary Statistics

49

Slope and Intercept

𝑏! = 𝑟 "!""
= 0.817#.%&'%!.%'& = 0.2113, 

𝑏#= 𝑦 − 𝑏!𝑥= 2.3353 −0.2113(6.047) = 1.057

Regression Equation
Mean Current = 1.057 + 0.2113 Wind Speed

50

Slope and Intercept

𝑏! = 𝑟 "!""
= 0.817#.%&'%!.%'& = 0.2113, 

𝑏#= 𝑦 − 𝑏!𝑥= 2.3353 −0.2113(6.047) = 1.057

Regression Equation
Mean Current = 1.057 + 0.2113 Wind Speed

51

Windspeed and
current standardized
(subtract mean and 
divide by sd)
So standardized 
values have mean 0 
and sd 1

r = 0.817

52
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Summary so far …

• Correlation is a useful metric for measuring the degree of linear
relationship between two continuous variables

• Regression is a useful tool for modelling the relationship between two 
continuous variables: a response (y) and an explanatory/predictor (x)

• The line of best fit is the line where the sum of the squared residuals 
(difference between observed and fitted values) is a minimum

• To use this line to make inference (and predictions) there are several 
assumptions that must be satisfied

53

Fitting a Simple Linear Regression in R

54

Fitting a Simple Linear Regression in R

SlopeIntercept

55

Interpreting the Slope and Intercept

• b1 is the slope, which tells us how rapidly     changes with respect to x
e.g. what is the change in the (mean) current per unit increase in 
wind speed.

• b0 is the y-intercept, which tells where the line crosses (intercepts) 
the y-axis when x is zero e.g. what is the (mean) current when wind 
speed is zero.

ŷ

Regression Equation
Mean Current = 1.057 + 0.2113 Wind Speed

56
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Inference for predictions

• We have seen how to make point estimates of the predicted 
response
• Just as in inference for the true mean, an interval estimate is more 

useful for inference 
• We look at two types of interval estimates for the mean (or 

predicted) response given some value of the explanatory variable
• 1. Confidence interval
• 2. Prediction interval

57

Confidence Interval for the mean response

• A range of values that is likely to contain the true mean value of the 
response variable given a specific values of the the explanatory 
variable. 
• This range doesn’t tell you about the spread of the individual data 

points around the true mean.

58

Prediction Interval for response in new 
observations
• A range of values that is likely to contains the value of the response 

variable for a single new observation given a specific value of the 
explanatory variable. 
• The prediction interval is for individual observations rather than the 

mean.

59

For prediction in R: the predict() function

• predict(object, newdata, se.fit = FALSE, interval = c("none", 
"confidence", "prediction"), level = 0.95)

• object a fitted lm() model object.
• newdata An optional data frame in which to look for variables with which 

to predict.
• se.fit A switch indicating if standard errors for predictions are required. The 

default is se.fit = FALSE.
• interval Type of interval to be calculated. The default is interval = "none".
• level the confidence level for generating interval estimates. The default 

is level = 0.95.

60
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R code for confidence interval and prediction 
interval for a single point

61

R code for pointwise CI and PI

62

63

What Can Go Wrong?
• Don’t fit a straight line to a nonlinear relationship.
• Beware extraordinary points (y-values that stand off from the linear 

pattern or extreme x-values).
• Don’t extrapolate beyond the data—the linear model may no longer 

hold outside of the range of the data.
• Don’t infer that x causes y just because there is a good linear model for 

their relationship—association is not causation.
• An empirical model is valid only for the data to which it is fit. It may or 

may not be useful in predicting outcomes for subsequent observations.

64
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Exam Tips

Make sure you can find the following values from a computer’s 
regression output:
1. The explanatory and response variables
2. The corresponding regression equation by finding intercept and 

slope.
3. Use the equation to predict for a new value of explanatory variable.

65


