
Andrew Hayes
21321503

a.hayes18@nuigalway.ie
CT2109 Assignment 2 2023-02-05

Solving Expressions in Postfix Notation Using Stacks

1 Problem Statement

The problem here is a reasonably basic one. We want to create a program that allows a user to enter an arith-
metic expression in conventional algebraic form (infix notation), calculates the answer to the expression using
a Stack, and displays the results to the user. The precedence rules outlined in the assignment specification are
the well-known BIMDAS (sometimes PEMDAS), meaning that Brackets have the highest precedence, followed
by Indices, followed by Multiplication & Division, followed by Addition & Subtraction.

To use a Stack to perform the calculations, the expression must first be converted from infix notation to
postfix notation. This allows a much simpler way of evaluating the expressions. If infix was used on the stack,
with one symbol per “slot” or index in the stack, the symbol at the top of the stack would be an operand. Our
program would need to pop the stack several times before it could determine what it was actually supposed to
do with said operand. If postfix notation was used, our program knows exactly what to do because the first
symbol on the stack will be an operator. When an operator is encountered, the program will know that the
operator requires two operands and pop them from the stack, avoiding any amount of guesswork or confusion
that infix notation would’ve caused.

2 Analysis & Design Notes

Firstly, we want to scan in the expression from the user using a Scanner object and a String. There are some
rules about valid & invalid expressions, and if the expression is invalid, we want to prompt the user to re-enter
their expression. The criteria for validity are as follows: the expression must be between 3 & 20 characters,
and it must only contain single digits 1-9 and the symbols ^, *, /, +, -, (, &). In a do-while loop, we’ll prompt
the user to enter an expression and scan it in. The expression will first be checked to ensure that it is of the
appropriate length. If not, the loop will repeat. If the expression is of the appropriate length, it will then be
checked using a regular expression to see if it contains any characters that are not the allowed characters. If
so, the loop will repeat. If the expression does not contain any illegal characters, it will finally be checked
using a regular expression to see if it contains numbers that have two or more digits (essentially just checking
if a digit is ever followed by another digit). If so, the loop will repeat. Otherwise, the loop will end, and the
program will proceed.

If the expression is valid, it will then be converted to postfix notation using the algorithm outlined in
the assignment specification. The user’s input String will be passed to a method that will convert it to a
character array and loop over it, implementing the algorithm as follows:

1. If the character is a “(”, it will be pushed to the stack.

2. Else, if the character is a “)”, a loop will be entered wherein the stack is popped and the results appended
to the output String until a “(” is encountered and the stack is not empty (to prevent errors). If a “(” is
encountered, it will be popped from the stack and discarded.

3. Else, if the character is a digit (operand), it will be appended to the output String.

4. Else, if the stack is empty, or contains a “(”, or the precedence of the scanned operator is greater than
the precedence of the operator on the stack, the scanned operator will be pushed to the stack. (We know
at this point that it is an operator, as it’s not a digit). It’s important that the stack.isEmpty() condition
comes first, as if true, it will prevent the rest of the condition being evaluated (in Java, logical OR is
such that if the first part of the condition is true, Java won’t bother to evaluate the rest, as the whole
condition must be true if part of it is true). This is important because if the subsequent stack.top()
operations were called on an empty stack, an error would occur.

5. Else, all the operators in the stack which are greater than or equal to the scanned operator will be popped
from the stack using a while loop (again, ensuring that the stack isn’t empty first), and appended to the
output String. If a “(” or “)” is encountered while poppung, it will be popped from the stack and the
loop will break. After that, the scanned operator will be pushed to the stack.

1

6. Finally, any remaing content in the stack will be popped and appended to the output String, which will
subsequently be returned.

A utility to determine the precedence of an operator will be required for the above method, so one will be
implemented as a method with the signature public static int precedence(char c). This method will
return an integer value; The higher the value of the returned integer, the higher the precedence of the operator
that was passed to the method. This will be implemented with a simple switch (c) statement, with default

returning -1 to indicate no precedence (invalid operator).

Once the postfix expression has been returned from the converter method in String form, it will then be passed
to a method which will convert it to a character array and will evaluate it using the algorithm outlined in the
assignment specification, which it will implement as follows, by iterating over each character in the postfix
expression:

1. If the character is a digit (operand), it will be pushed to the stack.

2. Else, as it must be an operator, two operands will be popped from the stack to be evaluated using that
operator. We will want these operands to be doubles, as there may be division involved, and it’s more
simple if only one numeric type is used. Operand 2 will be the one above operand 1 on the stack, as the
expression is in postfix, but because Java works in infix, we will have to treat it as an infix expression.
There is some difficulty involved, as the ArrayStack contains type Object. These Objects will be of two
types: Character & Double (autoboxed from char & double). Since we are assigning these elements
from the stack to variables of type double, we will need to cast them to type double first.

If the element is an instanceof Character, it must first be converted to a char (unboxed) and then
the value of the character “0” subtracted from it. This will give the numeric value of the character. Else,
the element must be of type Double which can easily be cast to double to unbox it.

Finally, a switch (c) statement will be used on the operator to determine how to evaluate it. There
will be a case for each operator, and in it, the result of operand 1 combined with operand 2 using that
operator will be pushed to the stack.

3. When each character in the character array has been looped over, the element at the top of the stack is
the answer. This will be popped, cast to type double, and returned to be printed out & displayed to the
user.

3 Code

1 import java.util .*;
2 import java.util.regex .*;
3

4 public class StackCalculator {
5 public static void main(String [] args) {
6 Scanner sc = new Scanner(System.in); // creating a new scanner to read in expressions

from the user
7 String expr; // creating a String to hold the expression read in

.
8 boolean invalidInput; // boolean to tell whether the user’s input was

invalid
9

10 // will only loop if invalidInput is set to true
11 do {
12 // default false , meaning we assume valid input
13 invalidInput = false;
14

15 // prompting the user to enter expression & scanning it in
16 System.out.println("Enter an infix numerical expression between 3 & 20 characters :");
17 expr = sc.nextLine ();
18

19 // regex that will be used to match expressions that contain illegal characters
20 Pattern illegalchars = Pattern.compile(" (?=[^\\^*\\/\\+\\ -\\(\\)]) (?=[^0 -9])"); //

this is confusing -looking because in java , one has to escape the backslashes for one’s regex
escape sequences

21 Matcher illegalcharsMatcher = illegalchars.matcher(expr);
22

23 // regex that will be used to match numbers that are double -digit or more
24 Pattern doubledigit = Pattern.compile("[0 -9][0 -9]"); // just checking if a digit is

ever followed by another digit
25 Matcher doubledigitMatcher = doubledigit.matcher(expr);
26

27 // checking that the input length is correct
28 if (expr.length () > 20 || expr.length () < 3) {
29 System.out.println("Invalid input. Please ensure that the length of the input is

between 3 and 20 characters ");

2

30 invalidInput = true;
31 }
32 // checking for invalid characters using a regular expression which matches strings

that contain characters that are neither operands or digits
33 else if (illegalcharsMatcher.find()) {
34 System.out.println("Invalid input. Please use only the operators ’^, *, /, +, -, (,

)’ and the operand digits 0-9");
35 invalidInput = true;
36 }
37 // checking for numbers that are not single -digit
38 else if (doubledigitMatcher.find()) {
39 System.out.println("Invalid input. Please only use single -digit numbers.");
40 invalidInput = true;
41 }
42 } while (invalidInput);
43

44 // converting the expression to postfix
45 String postexpr = in2post(expr);
46

47 // evaluating the postfix expression & printing the result
48 System.out.println(expr + " = " + evalpost(postexpr));
49 }
50

51 // method to evaluate postfix expressions
52 public static double evalpost(String str) {
53 ArrayStack stack = new ArrayStack (); // arraystack to be used during calculations
54 char[] chars = str.toCharArray (); // turning the str expression into a character

array to make iterating over it easy
55

56 // iterating over the postfix expression
57 for (char c : chars) {
58 // if the element is an operand , pushing it to the stack
59 if (Character.isDigit(c)) {
60 stack.push(c);
61 }
62 // if the character is not a digit , then it must be an operator
63 // popping two operands from the stack for the operator & evaluating them , then pushing

the result to the stack
64 else {
65 // converting the operands to doubles for simplicity ’s sake if division is

encountered
66 // using an if statement to detect if the top is a Character or a Double.
67 // if it’s a Character , casting to char and subtracting the value of the character

’0’ to get the character ’s numeric value
68 // else , casting it to double
69 double operand2 = stack.top() instanceof Character ? (double) ((char) stack.pop() -

’0’) : (double) stack.pop(); // what would normally be operand 2 in infix will be the
first on the stack

70 double operand1 = stack.top() instanceof Character ? (double) ((char) stack.pop() -
’0’) : (double) stack.pop();

71

72 // switch statement on the operator to see which operator it is
73 // evaluating the expression and pushing the result to the stack
74 switch (c) {
75 // exponentiation
76 case ’^’:
77 stack.push(Math.pow(operand1 , operand2));
78 break;
79

80 // multipication
81 case ’*’:
82 stack.push(operand1 * operand2);
83 break;
84

85 // division
86 case ’/’:
87 stack.push(operand1 / operand2);
88 break;
89

90 // addition
91 case ’+’:
92 stack.push(operand1 + operand2);
93 break;
94

95 // subtraction
96 case ’-’:
97 stack.push(operand1 - operand2);
98 break;
99

100 // printing an error and exiting with code 1 if an unknown operator is somehow
encountered

101 default:
102 System.out.println("The postfix expression contained an unrecognised

operator! Exiting ...");
103 System.exit (1);
104 }
105 }
106 }
107

108 // returning the final answer - the number on the stack
109 return (double) stack.pop();
110 }

3

111

112 // method to convert infix to postfix
113 public static String in2post(String str) {
114 ArrayStack stack = new ArrayStack ();
115 char[] chars = str.toCharArray (); // converting str to a character array to make it

easier to iterate over
116 String output = ""; // output string to be returned
117

118 // looping through each character in the array
119 for (char c : chars) {
120 // if the scanned character is a ’(’, pushing it to the stack
121 if (c == ’(’) {
122 stack.push(c);
123 }
124 // if the scanned character is a ’)’, popping the stack & appending to the output until

a ’(’ is encountered
125 else if (c == ’)’) {
126 while (!stack.isEmpty ()) {
127 // if a (is encountered , popping it & breaking
128 if (stack.top().equals(’(’)) {
129 stack.pop();
130 break;
131 }
132 // otherwise , popping the stack & appending to the output
133 else {
134 output += stack.pop();
135 }
136 }
137 }
138 // appending the character to the output string if it is an operand (digit)
139 else if (Character.isDigit(c)) {
140 output += c;
141 }
142 // if the stack is empty or contains ’(’ or the precedence of the scanned operator is

greater than the precedence of the operator in the stack
143 // important that stack.isEmpty () comes first - the rest of the if condition will not

be evaluated if this is true as we are using OR
144 // this prevents any NullPointerExceptions from being thrown if we try to access the

top of an empty stack
145 else if (stack.isEmpty () || stack.top().equals(’(’) || precedence(c) > precedence ((char

) stack.top())) {
146 // pushing the scanned operator to the stack
147 stack.push(c);
148 }
149 else {
150 // popping all the operators from the stack which are >= to in precedence to that

of the scanned operator & appending them to the output string
151 while (!stack.isEmpty () && precedence ((char) stack.top()) >= precedence(c)) {
152 // if parenthesis is encountered , popping it , stopping , and pushing the scanned

operator
153 if (stack.top().equals(’(’) || stack.top().equals(’)’)) {
154 stack.pop();
155 break;
156 }
157 // otherwise , popping the stack and appending to output
158 else {
159 output += stack.pop();
160 }
161 }
162

163 // after that , pushing the scanned operator to the stack
164 stack.push(c);
165 }
166 }
167

168 // popping and appending to output any remaining content from the stack
169 while (!stack.isEmpty ()) {
170 output += stack.pop();
171 }
172

173 // returning the generated postfix expression
174 return output;
175 }
176

177 // method to get the precedence of each operator - the higher the returnval , the higher the
precedence. -1 indicates no precedence (invalid char)

178 public static int precedence(char c) {
179 switch (c) {
180 // exponentiation
181 case ’^’:
182 return 2;
183

184 // multiplication
185 case ’*’:
186 return 1;
187

188 // division
189 case ’/’:
190 return 1;
191

192 // addition
193 case ’+’:

4

194 return 0;
195

196 // subtraction
197 case ’-’:
198 return 0;
199

200 // default - invalid operator
201 default:
202 return -1;
203 }
204 }
205 }

StackCalculator.java

4 Testing

The first series of tests that we’ll want to perform are testing that the program rejects invalid inputs. The
testing that it accepts valid inputs will come later. We expect that the program will prompt us to re-enter our
expression in the following circumstances:

• If the expression is not between 3 & 20 characters in length.

• If the expression entered contains a character other than the digits 0-9 and the symbols ^, *, /, +, -, (, &
).

• If the expression contains any double-digit numbers.

The screenshots below show that the expected output for the scenarios outlined above match the real output:

Figure 1: Testing Expressions of Illegal Length

Figure 2: Testing Expressions which Contain Illegal Characters

Figure 3: Testing Expressions which Contain Double-Digit Numbers

Of course, the next thing that we must ensure is that the program accepts valid inputs. However, for the sake
of convenience & concision, these tests can be bundled with tests ensuring that the calculations work properly.

5

Assuming that the program passes the tests which check if the program calculates expressions correctly, then
we know that the program must also be accepting valid inputs.

The next series of tests that we’ll want to perform are checking that the program calculates the correct
answer to the expressions that are entered. We’ll want to test each operator both individually and in concert
with other operators. We expect that the program obeys the standard BIMDAS rules, and that the results match
the results you would get from any other calculator.

Figure 4: Testing Each Operator Individually

Figure 5: Testing Combinations of Operators

These screenshots demonstrate that the program behaved as expected in each potential situation. The program
rejects invalid input, accepts valid input, and calculates the correct answer for each valid input, regardless of
which operators or which numbers are combined together.

6

	Problem Statement
	Analysis & Design Notes
	Code
	Testing

