
AS02 Testing, Security & Expanded Application 🚨 1

AS02: Testing, Security &
Expanded Application 🚨

Introduction:
In this assignment, you will further develop the musicFinder application by:

Implementing unit tests,

Performing static and dynamic security testing, and

Expanding the application's functionality.

The goal is to introduce testing methodologies and security practices which are
crucial in modern software development.

Task 2.1 Unit Testing with JUnit5 10 marks]

Goal:
You will write unit tests to verify the functionality of the musicFinder
applicationʼs API layer for fetching song lyrics, and handle error cases with
invalid inputs are provided.

Instructions:
� Set Up JUnit :

Ensure JUnit5 is added as a dependency in your pom.xml :

� Write Unit Tests for the API Layer:

Test the /song/{artist}/{name} endpoint to verify that:

Valid inputs return the correct lyrics.

Invalid inputs (e.g., unknown artists / songs, or null, or other
relevant edge cases) return the appropriate error messages.

Ensure the proper HTTP status codes are returned (e.g., 200 OK for
valid responses and 404 Not Found for errors).

Use Mock if necessary.

� Skeleton Code:

AS02 Testing, Security & Expanded Application 🚨 2

Place your tests under src/test/java/com/example/musicFinder/controller/
in a class such as SongControllerTest.java .

Sample code:

public class SongControllerTest {

 @Test

 public void testFetchLyrics_ValidSong() {

 // Add code to test valid artist/song requ

est

 }

 @Test

 public void testFetchLyrics_InvalidSong() {

 // Add code to test invalid artist/song re

quest

 // and error handling as well

 }

}

You can include a new exception class (if required).

� Run Tests:

Use Maven to run the tests locally.

� Integrate with GitHub Action:

Ensure the unit tests run automatically in the CI/CD pipeline
whenever code is pushed.

💡 Submission:
JUnit test cases in the test directory for testing the API layer
and error handling.

GitHub Action workflow showing successful test runs as part
of the build process.

AS02 Testing, Security & Expanded Application 🚨 3

Task 2.2 Static Code Analysis with SonarQube 10
marks]

Goal:
Integrate SonarQube to perform static code analysis on the musicFinder
application.

Youʼll identify code quality issues, security vulnerabilities, and technical
debt, and take steps to improve the application based on the findings.

Instructions:
� Set Up SonarQube :

If you are using a SonarQube Cloud instance, follow the integration
steps to link your GitHub repository to SonarQube .

If using a local SonarQube instance, install SonarQube locally and
configure it to scan your codebase.

� Analyse the Codebase:

Run SonarQube to scan the musicFinder application.

Focus on identifying:

Code Smells (inefficient or non-standard coding practices).

Security Vulnerabilities (e.g., missing input validation).

Duplicated Code and Complexity.

� Review and Fix Issues:

Identify at least TWO major code smells or security vulnerabilities.

Refactor the application code to resolve these issues, ensuring the
next SonarQube scan reflects improvements.

� Integrate SonarQube with GitHub Action:

Modify your GitHub Actions pipeline to trigger a SonarQube scan on
every push.

Run SonarCloud if appropriate.

AS02 Testing, Security & Expanded Application 🚨 4

💡 Submission:
SonarQube Report detailing the issues found and the steps taken
to resolve them, (i) initial report, and (ii) after report - add
reports folder to repository.

GitHub Action workflow with SonarQube configuration.

Task 2.3 Dynamic Security Testing with OWASP
ZAP 10 marks]

Goal:
Use OWASP ZAP to perform dynamic security testing on the musicFinder
application.

This task will help identify web vulnerabilities, such as SQL injection or
Cross-Site Scripting XSS, that could compromise the security of your
application.

Instructions:
� Set Up OWASP ZAP :

Install OWASP ZAP locally or use the Docker image for ZAP.

� Run a Security Scan:

Perform a full scan of the musicFinder applicationʼs endpoints (e.g.,
/song/{artist}/{name}).

Focus on identifying common vulnerabilities like SQL injection,
Cross-Site Scripting XSS, and Cross-Site Request Forgery
CSRF  if any.

� Review and Fix Vulnerabilities:

Address at least one critical vulnerability found during the scan
(e.g., ensuring input validation on the song and artist fields).

Update the application code to mitigate these vulnerabilities.

� Generate the OWASP ZAP Report:

AS02 Testing, Security & Expanded Application 🚨 5

After fixing the vulnerabilities, rerun the scan and generate a new
report to confirm that the issues are resolved.

� Integrate OWASP ZAP with GitHub Action:

Modify your GitHub Actions pipeline to trigger a SonarQube scan on
every push.

💡 Submission:
OWASP ZAP Reports showing the vulnerabilities found (initial
report) and the latest report after youʼve performed the
necessary steps to mitigate them.

Updated GitHub repository with changes reflecting the fixes
for the security vulnerabilities.

Task 2.4 Expanded Application Functionality:
Artist Information via Wikipedia API 10 marks]

Goal:
Expand the functionality of the musicFinder application by adding a new
feature that fetches artist information (e.g., biography) using the Wikipedia
API.

This feature will allow users to retrieve details about the artist without
needing an API key.

Instructions:
� Add the Wikipedia API Endpoint:

Create a new controller method in
src/main/java/com/example/musicFinder/controller/ArtistController.java .

The endpoint should handle requests to /artist/{name} and fetch
artist information using Wikipediaʼs API

https://en.wikipedia.org/api/rest_v1/page/summary/

{name}

AS02 Testing, Security & Expanded Application 🚨 6

� Skeleton Code:

You can add the following into your controller:

@GetMapping("/artist/{name}")

public ResponseEntity<String> getArtistInfo(@PathV

ariable String name) {

String url = "https://en.wikipedia.org/api/res

t_v1/page/summary/"

+ name;

ResponseEntity<String> response = restTemplat

e.getForEntity(url,

String.class);

return ResponseEntity.ok(response.getBody());

}

� Update index.html :

Modify the index.html file to include a section that displays the artist
information.

� Test the Endpoint:

Test the new /artist/{name} endpoint by making a GET request to it.

For example:

GET /artist/Coldplay

Ensure the response contains a summary of the artist retrieved from
Wikipedia.

� Error Handling:

Ensure the application responds correctly when the artist does not
exist on Wikipedia, returning an appropriate error message and
HTTP status code (404 Not Found).

� Add a run a curl command in your GitHub Action:

Modify your GitHub Actions to trigger a curl command to test your
new API.

AS02 Testing, Security & Expanded Application 🚨 7

💡 Submission:
Updated index.html with the expanded functionality to fetch
artist information using Wikipedia's API.

Add a curl command inside your GitHub Action workflow for
the new API.

