
CT437

COMPUTER SECURITY AND FORENSIC COMPUTING

STREAM CIPHERS

Dr. Michael Schukat

Lecture Overview
2

 This slide decks covers the following topics:

 Stream Ciphers and their implementation in

◼ LFSR

◼ NLFSR

◼ RC4

 Pseudorandom number generation principles

Recap: Block Ciphers versus

Stream Ciphers

 In a block cipher the data (e.g. text, video, or a network
packet) to be encrypted is broken into blocks M1, M2, etc. of K
bits length, each of which is then encrypted

 The encryption process is like a substitution on very big
characters – 64 bits or more

 In contrast, a stream cipher is a symmetric key cipher where
plaintext digits are combined with a pseudorandom cipher
digit stream (the keystream)

 Normally,
 stream ciphers only process one bit or one byte at a time
 the combining operation is an exclusive-or (XOR)

encoding

decoding

Stream Ciphers

 Stream ciphers typically provide a (pseudo) random stream key generator
that produces a pseudo-random digit sequence si (i = 1, 2, …)

 This stream is XORed digit-by-digit with the plaintext x:
 yi = xi XOR si

 The plaintext stream can be recovered by reapplying the XOR operation

 In modern stream ciphers, a digit is one bit (or one byte → later)

 A random stream key completely destroys any statistically properties in
the plaintext message
 For a perfectly random keystream si, each yi has a 50% chance of being 0 or 1

 But how can a pseudo-random sequence si be generated?

Stream Cipher Performance
5

 Since an XOR operation of a single bit or byte can be done in
a single CPU cycle,

 the code size and complexity of a stream cipher mainly depends
on the code size and complexity of the random number generator

 the speed of a stream cipher mainly depends on the speed of the
random number generator

 For comparison (based on some Intel Pentium architecture):

 Size and speed make stream ciphers very suitable for

resource constrained devices (e.g., mobile phones, IoT devices)

One-Time Pad

 The OTP is an encryption requires the use of a single-use pre-shared
key that is equal to the size of the message being encrypted

 For the resulting ciphertext to be impossible to decrypt, the key
must…
 be at least as long as the plaintext (think of Vigenère and its weakness)
 be

◼ random (uniformly distributed in the set of all possible keys and independent of
the plaintext)

◼ entirely sampled from a non-algorithmic, chaotic source such as a hardware
random number generator

◼ pattern-less
 never be reused in whole or in part (Coincidence counting -> next slide)
 be kept completely secret by the communicating parties

 OTPs are not practical for practical reasons, therefore pseudo-
random generators (PRG) are used

 PRGs are often based on Linear Feedback Shift Registers (LFSRs)

Example Coincidence Counting
8

 Coincidence counting allows predicting the length of the key of a stream cipher, by
comparing the ciphertext against itself with different offsets

 Assume ciphertext CXEKCWCOZKUCAYZEKW that has been encoded using a
stream cipher with an unknown key

 Count the number of identical characters (matches) using different displacements of
ciphertext:

 Displacement = 1
CXEKCWCOZKUCAYZEKW
 CXEKCWCOZKUCAYZEKW
Matches: 0

 Displacement = 2
CXEKCWCOZKUCAYZEKW
 CXEKCWCOZKUCAYZEKW
Matches: 1

 Displacement = 3
CXEKCWCOZKUCAYZEKW
 CXEKCWCOZKUCAYZEKW
Matches: 0

 …

Example Coincidence Counting
9

 If you line up the ciphertext with itself displaced by k (= key length) characters,
then you get a match in the ciphertext (offset by k places) if there is a match in the
plaintext (offset by k places)

 With the non-uniformity of the frequency distribution of English letters there's about a
6% chance that those two positions have the same letter (the index of coincidence)

 In contrast, when you line up the ciphertext using a different displacement, the
index of coincidence is much smaller, i.e., 1/256, if ciphertexts are bytes

 By counting the displacement over a long ciphertext stream, k can be determined

0

1

2

3

4

5

6

7

8

9

0 2 4 6 8 10 12

D
is
p
la

ce
m

e
nt

#Matches

Linear Feedback Shift Registers

(LFSR)

 A LFSR consists of a binary shift register of some length along with a
linear feedback function (LFF) that operates on some of those bits
 The most commonly used LFF is the XOR operation

 To get started the register is preset with a secret initialisation vector

 Each time a bit is needed,
 a new bit is formed from the linear feedback function

 all bits are shifted by one position (shifted right in the example below) with the
new bit being shifted in

 The bit shifted out is used as the (pseudo-random) output of the LFSR

 A well-designed n-bit LFSR generates a pseudo-random sequence whose
length correlates to n

Example for an 8-Bit LFSR

 Initialisation vector: 10100110 (B7 … B0)

 Feedback Function: B7 XOR B4 XOR B1
 Right shift after each cycle (B0 shifted out)

 Iteration 0: 10100110

 Iteration 1: 01010011 >> 0

 Iteration 2: 00101001 >> 1

 Iteration 3: 00010100 >> 1

 Iteration 4: 10001010 >> 0

 … …

Example VoIP Encoding using a Stream

Cipher

Bitwise

encoding
Bitwise

decoding

Stream Ciphers in Practice
13

 In practice, one key is used to encrypt many messages

 Example: Wireless communication

 Solution: Use Initial vectors (IV)

 Ekey[M] = [IV, M PRNG(key || IV)]

◼ IV is sent in clear to receiver

◼ IV needs integrity protection, but not confidentiality protection

◼ IV ensures that key streams do not repeat, but does not increase cost

of brute-force attacks

◼ Without key, knowing IV still cannot decrypt

 Need to ensure that IV never repeats! How?

Example for a 16-bit LFSR written in C
14

#include <stdint.h>

#include <stdio.h>

int main(void) {

 uint16_t start_state = 0xACE1u; /* Any non-zero start state will work. */

 uint16_t lfsr = start_state;

 uint16_t bit, input, period = 0;

 printf(“Enter LFSR IV as integer: ”); scanf(“%d”, &input);

 if (input > 0) {

 start_state = input;

 lfsr = start_state;

 }

 do

 { /* LFF: B15 XOR B13 XOR B12 XOR B10 */

 bit = ((lfsr >> 0) ^ (lfsr >> 2) ^ (lfsr >> 3) ^ (lfsr >> 5)) & 1u;

 lfsr = (lfsr >> 1) | (bit << 15);

 printf(“%d”, bit);

 ++period;

 } while (lfsr != start_state);

 printf(“\nPeriod of output sequence: %d \n”, period);

 return 0;

}

What is the Maximum Sequence Length

of a single LFSR?
15

 Consider a single n-bit LFSR with some feedback function

 Each bit that is shifted out is intrinsically linked to the content of the LFSR

 Each shift operation maps the register content to another (different) pattern,
as seen in the example, resulting in another bit shifted out

 An n-bit LFSR allows for 2n different register content variations, with each
variation pushing out a 0 or a 1

 Therefore, the longest cycle of non-repeating patterns is
2n – 1 iterations, with 2n the maximum length of the sequence

 Think of a 1-bit LFSR (n = 1):

◼ There are 2 different LFSR contents (“0” or “1”) possible

◼ The longest possible patterns are “10” or “01”; both have a length of 2n

◼ It just takes one iteration (2n-1) to reach all possible register contents (1 → 0 or 0 → 1)

 However,

 poorly designed LFSR may result in cycles that are shorter

 the Index of Coincidence problem also applies to LFSR (and in fact to all stream
ciphers)

The Combined LFSR

 A combined LFSR uses multiple LFSR in parallel, and combines
their respective outputs to generate a key stream

 They work well on resource-constrained devices too

 Example: A5/1, which was used for GSM voice communication:

 The Global System for Mobile Communications (GSM) was a mobile
phone standard back in the 1990s

 In GSM, digitised phone conversations are sent as sequences of
frames

 One frame is sent every 4.6 milliseconds and is 228 bits in length
◼ Voice samples are collected / digitised over 4.6 milliseconds and send in a block

 A5/1 is a combined LFSR-based algorithm that is used to produce
228 bits of key stream which is XORed with the frame

 It is initialised using a 64-bit key

Example A5/1

 3 independent LFSRs:
 LFSR 1

◼ 19 bits

◼ LFF: B18 XOR B17 XOR B16 XOR B13

 LFSR 2:
◼ 22 bits

◼ LFF: B21 XOR B20

 LFSR 3:
◼ 23 bits

◼ LFF: B22 XOR B21 XOR B20 XOR B7

 The output bit is the XORed
output of all 3 LFSRs

 A LFSR is only shifted to the left,
if their clocking bit (B8, B10, and
B10 respectively) matches the
output bit;
otherwise, there is no shift, and
the same output bit value is used
again in the next cycle

Non-Linear Feedback Shift Registers

(NLFSR)
18

 NLFSR contain AND gates as well as XOR gates in

their feedback function

 Example Trivium: A, B and C are three shift registers

with bit lengths of 93, 84 and 111 bits respectively

Example for a 16-bit NLFSR in C
19

#include <stdint.h>

#include <stdio.h>

int main(void)

{

 uint16_t start_state = 0xACE1u; /* Any non-zero start state will work. */

 uint16_t lfsr = start_state;

 uint16_t bit, period = 0;

 do

 { /* FBF: B15 XOR B13 XOR B12 XOR B10 XOR (B2 and B1)*/

 bit = ((lfsr >> 0) ^ (lfsr >> 2) ^ (lfsr >> 3) ^ (lfsr >> 5) ^ ((lfsr >> 13) & (lfsr >> 14))) & 1u;

 lfsr = (lfsr >> 1) | (bit << 15);

 printf(“%d”, bit)

 ++period;

 } while (lfsr != start_state);

 printf(“\nPeriod of output sequence: %d \n”, period);

 return 0;

}

Pseudo-Random Number

generation: RC4

 Instead of single bits, a generator algorithm can also
produce one byte (or one word) at a time

 RC4 is an example for such an algorithm, it returns one
pseudorandom byte at a time

 It was designed by Ron Rivest of RSA Security in 1987

 RC4 was initially a trade secret, but in 1994 a
description of it was anonymously posted on the Internet

 RC4 consists of a

 key-scheduling algorithm (KSA) and a

 pseudo-random generation algorithm (PRGA)

RC4: The Key-Scheduling Algorithm

(KSA)

 The KSA requires a key (stored in key[]) of length
keylength
 keylength is somewhere between 1 and 256

 Using the keyword, a 256-byte long permutation
vector S[] is generated:
for i from 0 to 255

 S[i] := i;
j := 0;
for i from 0 to 255
 j := (j + S[i] + key[i mod keylength])
 mod 256;
 swap(S[i],S[j]);

RC4: The Pseudo-Random Generation

Algorithm (PRGA)

 PRGA returns one byte at a time:

i := 0;
j := 0;
while GeneratingOutput:
 i := (i + 1) mod 256;
 j := (j + S[i]) mod 256;
 swap(S[i],S[j]);
 output S[(S[i] + S[j]) mod 256];

Security of RC4

 Obviously not an LFSR-based design, but a more
general pseudo-random number generator design

 Can also be efficiently implemented in software

 Very compact algorithm

 However, it is not deemed safe
anymore!

Background: Pseudorandom Number

Generators
24

 Cryptographically strong pseudorandom number generation

is essential!

 Pseudorandom number generators (PRNG) are used in a

variety of cryptographic and security applications, including

 Stream cipher encryption → 802.11 WEP

 Encryption keys (both for symmetric and public key algorithms)

Obvious Requirements for Random

Number Generators
25

 Assume we toss a fair coin or throw a fair dice multiple

times. We expect the following from the resulting sequence:

 Randomness, i.e. uniform distribution

 The distribution of values in the sequence (e.g. “head or tail”)

should be uniform; that is, the frequency of occurrence of

possible outputs should be approximately equal

 Unpredictability, i.e. independence

 Successive members of the sequence are unpredictable; no

subsequence in the sequence can be inferred from the others

Types of Random Generators
26

 A TRNG takes as input a source that

is effectively random

 The source is often referred to as an

entropy source

 The entropy source is drawn from the

physical environment of the computer,

e.g. a combination of keystroke timing

patterns, CPU temperature changes

and mouse movements

 A PRNG uses just a seed (e.g. LFSR)

 A PRF often also takes in a context-specific value, e.g.

 A secure end-to-end communication via TCP/IP may take in the endpoints’ IP addresses

 However, PRNG and PRF are based on deterministic algorithms, therefore the “P”

Formal Requirements for

Pseudorandom Generators
27

 Randomness
The generated bit stream must “appear” random even though it is
deterministic
This can be validated by applying a sequence of tests to the generator,
which determine (among others) the following characteristics:

 Uniformity: At any point in the generation of a sequence of random or
pseudorandom bits, the occurrence of a zero or one is equally likely;
The expected number of zeros (or ones) is n/2, with n being the
sequence length

 Scalability: Any test applicable to a sequence can also be applied to
sub-sequences extracted at random; if a sequence is random, then any
such extracted subsequence should also be random

 Consistency: The behavior of a generator must be consistent across
many starting values (seeds); it is inadequate to test a PRNG based on
the output from a single seed

Formal Requirements for

Pseudorandom Generators
28

 Unpredictability

A stream of pseudorandom numbers should exhibit two forms of

unpredictability

 Forward unpredictability: If the seed is unknown, the next output bit in the

sequence should be unpredictable in spite of any knowledge of previous

bits in the sequence

 Backward unpredictability: It should not be feasible to determine the seed

from knowledge of any generated values; no correlation between a seed

and any value generated from that seed should be evident; each element

of the sequence should appear to be the outcome of an independent

random event whose probability is 0.5

NIST SP 800-22
29

 The National Institute of Standards and Technology

(NIST) published the above report, “A Statistical Test

Suite for Random and Pseudorandom Number Generators

for Cryptographic Applications”

 It lists 15 separate tests of randomness and

unpredictability

 https://github.com/terrillmoore/NIST-Statistical-Test-

Suite

https://github.com/terrillmoore/NIST-Statistical-Test-Suite
https://github.com/terrillmoore/NIST-Statistical-Test-Suite

	Slide 1: CT437 Computer Security and Forensic Computing Stream Ciphers
	Slide 2: Lecture Overview
	Slide 3: Recap: Block Ciphers versus Stream Ciphers
	Slide 4: Stream Ciphers
	Slide 5: Stream Cipher Performance
	Slide 6: One-Time Pad
	Slide 8: Example Coincidence Counting
	Slide 9: Example Coincidence Counting
	Slide 10: Linear Feedback Shift Registers (LFSR)
	Slide 11: Example for an 8-Bit LFSR
	Slide 12: Example VoIP Encoding using a Stream Cipher
	Slide 13: Stream Ciphers in Practice
	Slide 14: Example for a 16-bit LFSR written in C
	Slide 15: What is the Maximum Sequence Length of a single LFSR?
	Slide 16: The Combined LFSR
	Slide 17: Example A5/1
	Slide 18: Non-Linear Feedback Shift Registers (NLFSR)
	Slide 19: Example for a 16-bit NLFSR in C
	Slide 20: Pseudo-Random Number generation: RC4
	Slide 21: RC4: The Key-Scheduling Algorithm (KSA)
	Slide 22: RC4: The Pseudo-Random Generation Algorithm (PRGA)
	Slide 23: Security of RC4
	Slide 24: Background: Pseudorandom Number Generators
	Slide 25: Obvious Requirements for Random Number Generators
	Slide 26: Types of Random Generators
	Slide 27: Formal Requirements for Pseudorandom Generators
	Slide 28: Formal Requirements for Pseudorandom Generators
	Slide 29: NIST SP 800-22

